1 /* 2 * This file and its contents are supplied under the terms of the 3 * Common Development and Distribution License ("CDDL"), version 1.0. 4 * You may only use this file in accordance with the terms of version 5 * 1.0 of the CDDL. 6 * 7 * A full copy of the text of the CDDL should have accompanied this 8 * source. A copy of the CDDL is also available via the Internet at 9 * http://www.illumos.org/license/CDDL. 10 */ 11 12 /* 13 * Copyright 2016 Nexenta Systems, Inc. All rights reserved. 14 * Copyright 2016 Tegile Systems, Inc. All rights reserved. 15 * Copyright (c) 2016 The MathWorks, Inc. All rights reserved. 16 */ 17 18 /* 19 * blkdev driver for NVMe compliant storage devices 20 * 21 * This driver was written to conform to version 1.1b of the NVMe specification. 22 * It may work with newer versions, but that is completely untested and disabled 23 * by default. 24 * 25 * The driver has only been tested on x86 systems and will not work on big- 26 * endian systems without changes to the code accessing registers and data 27 * structures used by the hardware. 28 * 29 * 30 * Interrupt Usage: 31 * 32 * The driver will use a FIXED interrupt while configuring the device as the 33 * specification requires. Later in the attach process it will switch to MSI-X 34 * or MSI if supported. The driver wants to have one interrupt vector per CPU, 35 * but it will work correctly if less are available. Interrupts can be shared 36 * by queues, the interrupt handler will iterate through the I/O queue array by 37 * steps of n_intr_cnt. Usually only the admin queue will share an interrupt 38 * with one I/O queue. The interrupt handler will retrieve completed commands 39 * from all queues sharing an interrupt vector and will post them to a taskq 40 * for completion processing. 41 * 42 * 43 * Command Processing: 44 * 45 * NVMe devices can have up to 65536 I/O queue pairs, with each queue holding up 46 * to 65536 I/O commands. The driver will configure one I/O queue pair per 47 * available interrupt vector, with the queue length usually much smaller than 48 * the maximum of 65536. If the hardware doesn't provide enough queues, fewer 49 * interrupt vectors will be used. 50 * 51 * Additionally the hardware provides a single special admin queue pair that can 52 * hold up to 4096 admin commands. 53 * 54 * From the hardware perspective both queues of a queue pair are independent, 55 * but they share some driver state: the command array (holding pointers to 56 * commands currently being processed by the hardware) and the active command 57 * counter. Access to the submission side of a queue pair and the shared state 58 * is protected by nq_mutex. The completion side of a queue pair does not need 59 * that protection apart from its access to the shared state; it is called only 60 * in the interrupt handler which does not run concurrently for the same 61 * interrupt vector. 62 * 63 * When a command is submitted to a queue pair the active command counter is 64 * incremented and a pointer to the command is stored in the command array. The 65 * array index is used as command identifier (CID) in the submission queue 66 * entry. Some commands may take a very long time to complete, and if the queue 67 * wraps around in that time a submission may find the next array slot to still 68 * be used by a long-running command. In this case the array is sequentially 69 * searched for the next free slot. The length of the command array is the same 70 * as the configured queue length. 71 * 72 * 73 * Namespace Support: 74 * 75 * NVMe devices can have multiple namespaces, each being a independent data 76 * store. The driver supports multiple namespaces and creates a blkdev interface 77 * for each namespace found. Namespaces can have various attributes to support 78 * thin provisioning and protection information. This driver does not support 79 * any of this and ignores namespaces that have these attributes. 80 * 81 * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier 82 * (EUI64). This driver uses the EUI64 if present to generate the devid and 83 * passes it to blkdev to use it in the device node names. As this is currently 84 * untested namespaces with EUI64 are ignored by default. 85 * 86 * 87 * Blkdev Interface: 88 * 89 * This driver uses blkdev to do all the heavy lifting involved with presenting 90 * a disk device to the system. As a result, the processing of I/O requests is 91 * relatively simple as blkdev takes care of partitioning, boundary checks, DMA 92 * setup, and splitting of transfers into manageable chunks. 93 * 94 * I/O requests coming in from blkdev are turned into NVM commands and posted to 95 * an I/O queue. The queue is selected by taking the CPU id modulo the number of 96 * queues. There is currently no timeout handling of I/O commands. 97 * 98 * Blkdev also supports querying device/media information and generating a 99 * devid. The driver reports the best block size as determined by the namespace 100 * format back to blkdev as physical block size to support partition and block 101 * alignment. The devid is either based on the namespace EUI64, if present, or 102 * composed using the device vendor ID, model number, serial number, and the 103 * namespace ID. 104 * 105 * 106 * Error Handling: 107 * 108 * Error handling is currently limited to detecting fatal hardware errors, 109 * either by asynchronous events, or synchronously through command status or 110 * admin command timeouts. In case of severe errors the device is fenced off, 111 * all further requests will return EIO. FMA is then called to fault the device. 112 * 113 * The hardware has a limit for outstanding asynchronous event requests. Before 114 * this limit is known the driver assumes it is at least 1 and posts a single 115 * asynchronous request. Later when the limit is known more asynchronous event 116 * requests are posted to allow quicker reception of error information. When an 117 * asynchronous event is posted by the hardware the driver will parse the error 118 * status fields and log information or fault the device, depending on the 119 * severity of the asynchronous event. The asynchronous event request is then 120 * reused and posted to the admin queue again. 121 * 122 * On command completion the command status is checked for errors. In case of 123 * errors indicating a driver bug the driver panics. Almost all other error 124 * status values just cause EIO to be returned. 125 * 126 * Command timeouts are currently detected for all admin commands except 127 * asynchronous event requests. If a command times out and the hardware appears 128 * to be healthy the driver attempts to abort the command. If this fails the 129 * driver assumes the device to be dead, fences it off, and calls FMA to retire 130 * it. In general admin commands are issued at attach time only. No timeout 131 * handling of normal I/O commands is presently done. 132 * 133 * In some cases it may be possible that the ABORT command times out, too. In 134 * that case the device is also declared dead and fenced off. 135 * 136 * 137 * Quiesce / Fast Reboot: 138 * 139 * The driver currently does not support fast reboot. A quiesce(9E) entry point 140 * is still provided which is used to send a shutdown notification to the 141 * device. 142 * 143 * 144 * Driver Configuration: 145 * 146 * The following driver properties can be changed to control some aspects of the 147 * drivers operation: 148 * - strict-version: can be set to 0 to allow devices conforming to newer 149 * versions or namespaces with EUI64 to be used 150 * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor 151 * specific command status as a fatal error leading device faulting 152 * - admin-queue-len: the maximum length of the admin queue (16-4096) 153 * - io-queue-len: the maximum length of the I/O queues (16-65536) 154 * - async-event-limit: the maximum number of asynchronous event requests to be 155 * posted by the driver 156 * - volatile-write-cache-enable: can be set to 0 to disable the volatile write 157 * cache 158 * - min-phys-block-size: the minimum physical block size to report to blkdev, 159 * which is among other things the basis for ZFS vdev ashift 160 * 161 * 162 * TODO: 163 * - figure out sane default for I/O queue depth reported to blkdev 164 * - polled I/O support to support kernel core dumping 165 * - FMA handling of media errors 166 * - support for devices supporting very large I/O requests using chained PRPs 167 * - support for querying log pages from user space 168 * - support for configuring hardware parameters like interrupt coalescing 169 * - support for media formatting and hard partitioning into namespaces 170 * - support for big-endian systems 171 * - support for fast reboot 172 * - support for firmware updates 173 * - support for NVMe Subsystem Reset (1.1) 174 * - support for Scatter/Gather lists (1.1) 175 * - support for Reservations (1.1) 176 * - support for power management 177 */ 178 179 #include <sys/byteorder.h> 180 #ifdef _BIG_ENDIAN 181 #error nvme driver needs porting for big-endian platforms 182 #endif 183 184 #include <sys/modctl.h> 185 #include <sys/conf.h> 186 #include <sys/devops.h> 187 #include <sys/ddi.h> 188 #include <sys/sunddi.h> 189 #include <sys/bitmap.h> 190 #include <sys/sysmacros.h> 191 #include <sys/param.h> 192 #include <sys/varargs.h> 193 #include <sys/cpuvar.h> 194 #include <sys/disp.h> 195 #include <sys/blkdev.h> 196 #include <sys/atomic.h> 197 #include <sys/archsystm.h> 198 #include <sys/sata/sata_hba.h> 199 200 #include "nvme_reg.h" 201 #include "nvme_var.h" 202 203 204 /* NVMe spec version supported */ 205 static const int nvme_version_major = 1; 206 static const int nvme_version_minor = 1; 207 208 /* tunable for admin command timeout in seconds, default is 1s */ 209 static volatile int nvme_admin_cmd_timeout = 1; 210 211 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t); 212 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t); 213 static int nvme_quiesce(dev_info_t *); 214 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *); 215 static int nvme_setup_interrupts(nvme_t *, int, int); 216 static void nvme_release_interrupts(nvme_t *); 217 static uint_t nvme_intr(caddr_t, caddr_t); 218 219 static void nvme_shutdown(nvme_t *, int, boolean_t); 220 static boolean_t nvme_reset(nvme_t *, boolean_t); 221 static int nvme_init(nvme_t *); 222 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int); 223 static void nvme_free_cmd(nvme_cmd_t *); 224 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t, 225 bd_xfer_t *); 226 static int nvme_admin_cmd(nvme_cmd_t *, int); 227 static int nvme_submit_cmd(nvme_qpair_t *, nvme_cmd_t *); 228 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *); 229 static boolean_t nvme_wait_cmd(nvme_cmd_t *, uint_t); 230 static void nvme_wakeup_cmd(void *); 231 static void nvme_async_event_task(void *); 232 233 static int nvme_check_unknown_cmd_status(nvme_cmd_t *); 234 static int nvme_check_vendor_cmd_status(nvme_cmd_t *); 235 static int nvme_check_integrity_cmd_status(nvme_cmd_t *); 236 static int nvme_check_specific_cmd_status(nvme_cmd_t *); 237 static int nvme_check_generic_cmd_status(nvme_cmd_t *); 238 static inline int nvme_check_cmd_status(nvme_cmd_t *); 239 240 static void nvme_abort_cmd(nvme_cmd_t *); 241 static int nvme_async_event(nvme_t *); 242 static void *nvme_get_logpage(nvme_t *, uint8_t, ...); 243 static void *nvme_identify(nvme_t *, uint32_t); 244 static boolean_t nvme_set_features(nvme_t *, uint32_t, uint8_t, uint32_t, 245 uint32_t *); 246 static boolean_t nvme_write_cache_set(nvme_t *, boolean_t); 247 static int nvme_set_nqueues(nvme_t *, uint16_t); 248 249 static void nvme_free_dma(nvme_dma_t *); 250 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *, 251 nvme_dma_t **); 252 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t, 253 nvme_dma_t **); 254 static void nvme_free_qpair(nvme_qpair_t *); 255 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int); 256 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t); 257 258 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t); 259 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t); 260 static inline uint64_t nvme_get64(nvme_t *, uintptr_t); 261 static inline uint32_t nvme_get32(nvme_t *, uintptr_t); 262 263 static boolean_t nvme_check_regs_hdl(nvme_t *); 264 static boolean_t nvme_check_dma_hdl(nvme_dma_t *); 265 266 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *); 267 268 static void nvme_bd_xfer_done(void *); 269 static void nvme_bd_driveinfo(void *, bd_drive_t *); 270 static int nvme_bd_mediainfo(void *, bd_media_t *); 271 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t); 272 static int nvme_bd_read(void *, bd_xfer_t *); 273 static int nvme_bd_write(void *, bd_xfer_t *); 274 static int nvme_bd_sync(void *, bd_xfer_t *); 275 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *); 276 277 static int nvme_prp_dma_constructor(void *, void *, int); 278 static void nvme_prp_dma_destructor(void *, void *); 279 280 static void nvme_prepare_devid(nvme_t *, uint32_t); 281 282 static void *nvme_state; 283 static kmem_cache_t *nvme_cmd_cache; 284 285 /* 286 * DMA attributes for queue DMA memory 287 * 288 * Queue DMA memory must be page aligned. The maximum length of a queue is 289 * 65536 entries, and an entry can be 64 bytes long. 290 */ 291 static ddi_dma_attr_t nvme_queue_dma_attr = { 292 .dma_attr_version = DMA_ATTR_V0, 293 .dma_attr_addr_lo = 0, 294 .dma_attr_addr_hi = 0xffffffffffffffffULL, 295 .dma_attr_count_max = (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1, 296 .dma_attr_align = 0x1000, 297 .dma_attr_burstsizes = 0x7ff, 298 .dma_attr_minxfer = 0x1000, 299 .dma_attr_maxxfer = (UINT16_MAX + 1) * sizeof (nvme_sqe_t), 300 .dma_attr_seg = 0xffffffffffffffffULL, 301 .dma_attr_sgllen = 1, 302 .dma_attr_granular = 1, 303 .dma_attr_flags = 0, 304 }; 305 306 /* 307 * DMA attributes for transfers using Physical Region Page (PRP) entries 308 * 309 * A PRP entry describes one page of DMA memory using the page size specified 310 * in the controller configuration's memory page size register (CC.MPS). It uses 311 * a 64bit base address aligned to this page size. There is no limitation on 312 * chaining PRPs together for arbitrarily large DMA transfers. 313 */ 314 static ddi_dma_attr_t nvme_prp_dma_attr = { 315 .dma_attr_version = DMA_ATTR_V0, 316 .dma_attr_addr_lo = 0, 317 .dma_attr_addr_hi = 0xffffffffffffffffULL, 318 .dma_attr_count_max = 0xfff, 319 .dma_attr_align = 0x1000, 320 .dma_attr_burstsizes = 0x7ff, 321 .dma_attr_minxfer = 0x1000, 322 .dma_attr_maxxfer = 0x1000, 323 .dma_attr_seg = 0xfff, 324 .dma_attr_sgllen = -1, 325 .dma_attr_granular = 1, 326 .dma_attr_flags = 0, 327 }; 328 329 /* 330 * DMA attributes for transfers using scatter/gather lists 331 * 332 * A SGL entry describes a chunk of DMA memory using a 64bit base address and a 333 * 32bit length field. SGL Segment and SGL Last Segment entries require the 334 * length to be a multiple of 16 bytes. 335 */ 336 static ddi_dma_attr_t nvme_sgl_dma_attr = { 337 .dma_attr_version = DMA_ATTR_V0, 338 .dma_attr_addr_lo = 0, 339 .dma_attr_addr_hi = 0xffffffffffffffffULL, 340 .dma_attr_count_max = 0xffffffffUL, 341 .dma_attr_align = 1, 342 .dma_attr_burstsizes = 0x7ff, 343 .dma_attr_minxfer = 0x10, 344 .dma_attr_maxxfer = 0xfffffffffULL, 345 .dma_attr_seg = 0xffffffffffffffffULL, 346 .dma_attr_sgllen = -1, 347 .dma_attr_granular = 0x10, 348 .dma_attr_flags = 0 349 }; 350 351 static ddi_device_acc_attr_t nvme_reg_acc_attr = { 352 .devacc_attr_version = DDI_DEVICE_ATTR_V0, 353 .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC, 354 .devacc_attr_dataorder = DDI_STRICTORDER_ACC 355 }; 356 357 static struct dev_ops nvme_dev_ops = { 358 .devo_rev = DEVO_REV, 359 .devo_refcnt = 0, 360 .devo_getinfo = ddi_no_info, 361 .devo_identify = nulldev, 362 .devo_probe = nulldev, 363 .devo_attach = nvme_attach, 364 .devo_detach = nvme_detach, 365 .devo_reset = nodev, 366 .devo_cb_ops = NULL, 367 .devo_bus_ops = NULL, 368 .devo_power = NULL, 369 .devo_quiesce = nvme_quiesce, 370 }; 371 372 static struct modldrv nvme_modldrv = { 373 .drv_modops = &mod_driverops, 374 .drv_linkinfo = "NVMe v1.1b", 375 .drv_dev_ops = &nvme_dev_ops 376 }; 377 378 static struct modlinkage nvme_modlinkage = { 379 .ml_rev = MODREV_1, 380 .ml_linkage = { &nvme_modldrv, NULL } 381 }; 382 383 static bd_ops_t nvme_bd_ops = { 384 .o_version = BD_OPS_VERSION_0, 385 .o_drive_info = nvme_bd_driveinfo, 386 .o_media_info = nvme_bd_mediainfo, 387 .o_devid_init = nvme_bd_devid, 388 .o_sync_cache = nvme_bd_sync, 389 .o_read = nvme_bd_read, 390 .o_write = nvme_bd_write, 391 }; 392 393 int 394 _init(void) 395 { 396 int error; 397 398 error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1); 399 if (error != DDI_SUCCESS) 400 return (error); 401 402 nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache", 403 sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0); 404 405 bd_mod_init(&nvme_dev_ops); 406 407 error = mod_install(&nvme_modlinkage); 408 if (error != DDI_SUCCESS) { 409 ddi_soft_state_fini(&nvme_state); 410 bd_mod_fini(&nvme_dev_ops); 411 } 412 413 return (error); 414 } 415 416 int 417 _fini(void) 418 { 419 int error; 420 421 error = mod_remove(&nvme_modlinkage); 422 if (error == DDI_SUCCESS) { 423 ddi_soft_state_fini(&nvme_state); 424 kmem_cache_destroy(nvme_cmd_cache); 425 bd_mod_fini(&nvme_dev_ops); 426 } 427 428 return (error); 429 } 430 431 int 432 _info(struct modinfo *modinfop) 433 { 434 return (mod_info(&nvme_modlinkage, modinfop)); 435 } 436 437 static inline void 438 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val) 439 { 440 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0); 441 442 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 443 ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val); 444 } 445 446 static inline void 447 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val) 448 { 449 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0); 450 451 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 452 ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val); 453 } 454 455 static inline uint64_t 456 nvme_get64(nvme_t *nvme, uintptr_t reg) 457 { 458 uint64_t val; 459 460 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0); 461 462 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 463 val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg)); 464 465 return (val); 466 } 467 468 static inline uint32_t 469 nvme_get32(nvme_t *nvme, uintptr_t reg) 470 { 471 uint32_t val; 472 473 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0); 474 475 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 476 val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg)); 477 478 return (val); 479 } 480 481 static boolean_t 482 nvme_check_regs_hdl(nvme_t *nvme) 483 { 484 ddi_fm_error_t error; 485 486 ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION); 487 488 if (error.fme_status != DDI_FM_OK) 489 return (B_TRUE); 490 491 return (B_FALSE); 492 } 493 494 static boolean_t 495 nvme_check_dma_hdl(nvme_dma_t *dma) 496 { 497 ddi_fm_error_t error; 498 499 if (dma == NULL) 500 return (B_FALSE); 501 502 ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION); 503 504 if (error.fme_status != DDI_FM_OK) 505 return (B_TRUE); 506 507 return (B_FALSE); 508 } 509 510 static void 511 nvme_free_dma_common(nvme_dma_t *dma) 512 { 513 if (dma->nd_dmah != NULL) 514 (void) ddi_dma_unbind_handle(dma->nd_dmah); 515 if (dma->nd_acch != NULL) 516 ddi_dma_mem_free(&dma->nd_acch); 517 if (dma->nd_dmah != NULL) 518 ddi_dma_free_handle(&dma->nd_dmah); 519 } 520 521 static void 522 nvme_free_dma(nvme_dma_t *dma) 523 { 524 nvme_free_dma_common(dma); 525 kmem_free(dma, sizeof (*dma)); 526 } 527 528 /* ARGSUSED */ 529 static void 530 nvme_prp_dma_destructor(void *buf, void *private) 531 { 532 nvme_dma_t *dma = (nvme_dma_t *)buf; 533 534 nvme_free_dma_common(dma); 535 } 536 537 static int 538 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma, 539 size_t len, uint_t flags, ddi_dma_attr_t *dma_attr) 540 { 541 if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL, 542 &dma->nd_dmah) != DDI_SUCCESS) { 543 /* 544 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and 545 * the only other possible error is DDI_DMA_BADATTR which 546 * indicates a driver bug which should cause a panic. 547 */ 548 dev_err(nvme->n_dip, CE_PANIC, 549 "!failed to get DMA handle, check DMA attributes"); 550 return (DDI_FAILURE); 551 } 552 553 /* 554 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified 555 * or the flags are conflicting, which isn't the case here. 556 */ 557 (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr, 558 DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp, 559 &dma->nd_len, &dma->nd_acch); 560 561 if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp, 562 dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, 563 &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) { 564 dev_err(nvme->n_dip, CE_WARN, 565 "!failed to bind DMA memory"); 566 atomic_inc_32(&nvme->n_dma_bind_err); 567 nvme_free_dma_common(dma); 568 return (DDI_FAILURE); 569 } 570 571 return (DDI_SUCCESS); 572 } 573 574 static int 575 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags, 576 ddi_dma_attr_t *dma_attr, nvme_dma_t **ret) 577 { 578 nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP); 579 580 if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) != 581 DDI_SUCCESS) { 582 *ret = NULL; 583 kmem_free(dma, sizeof (nvme_dma_t)); 584 return (DDI_FAILURE); 585 } 586 587 bzero(dma->nd_memp, dma->nd_len); 588 589 *ret = dma; 590 return (DDI_SUCCESS); 591 } 592 593 /* ARGSUSED */ 594 static int 595 nvme_prp_dma_constructor(void *buf, void *private, int flags) 596 { 597 nvme_dma_t *dma = (nvme_dma_t *)buf; 598 nvme_t *nvme = (nvme_t *)private; 599 600 dma->nd_dmah = NULL; 601 dma->nd_acch = NULL; 602 603 if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize, 604 DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) { 605 return (-1); 606 } 607 608 ASSERT(dma->nd_ncookie == 1); 609 610 dma->nd_cached = B_TRUE; 611 612 return (0); 613 } 614 615 static int 616 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len, 617 uint_t flags, nvme_dma_t **dma) 618 { 619 uint32_t len = nentry * qe_len; 620 ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr; 621 622 len = roundup(len, nvme->n_pagesize); 623 624 q_dma_attr.dma_attr_minxfer = len; 625 626 if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma) 627 != DDI_SUCCESS) { 628 dev_err(nvme->n_dip, CE_WARN, 629 "!failed to get DMA memory for queue"); 630 goto fail; 631 } 632 633 if ((*dma)->nd_ncookie != 1) { 634 dev_err(nvme->n_dip, CE_WARN, 635 "!got too many cookies for queue DMA"); 636 goto fail; 637 } 638 639 return (DDI_SUCCESS); 640 641 fail: 642 if (*dma) { 643 nvme_free_dma(*dma); 644 *dma = NULL; 645 } 646 647 return (DDI_FAILURE); 648 } 649 650 static void 651 nvme_free_qpair(nvme_qpair_t *qp) 652 { 653 int i; 654 655 mutex_destroy(&qp->nq_mutex); 656 657 if (qp->nq_sqdma != NULL) 658 nvme_free_dma(qp->nq_sqdma); 659 if (qp->nq_cqdma != NULL) 660 nvme_free_dma(qp->nq_cqdma); 661 662 if (qp->nq_active_cmds > 0) 663 for (i = 0; i != qp->nq_nentry; i++) 664 if (qp->nq_cmd[i] != NULL) 665 nvme_free_cmd(qp->nq_cmd[i]); 666 667 if (qp->nq_cmd != NULL) 668 kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry); 669 670 kmem_free(qp, sizeof (nvme_qpair_t)); 671 } 672 673 static int 674 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp, 675 int idx) 676 { 677 nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP); 678 679 mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER, 680 DDI_INTR_PRI(nvme->n_intr_pri)); 681 682 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t), 683 DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS) 684 goto fail; 685 686 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t), 687 DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS) 688 goto fail; 689 690 qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp; 691 qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp; 692 qp->nq_nentry = nentry; 693 694 qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx); 695 qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx); 696 697 qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP); 698 qp->nq_next_cmd = 0; 699 700 *nqp = qp; 701 return (DDI_SUCCESS); 702 703 fail: 704 nvme_free_qpair(qp); 705 *nqp = NULL; 706 707 return (DDI_FAILURE); 708 } 709 710 static nvme_cmd_t * 711 nvme_alloc_cmd(nvme_t *nvme, int kmflag) 712 { 713 nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag); 714 715 if (cmd == NULL) 716 return (cmd); 717 718 bzero(cmd, sizeof (nvme_cmd_t)); 719 720 cmd->nc_nvme = nvme; 721 722 mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER, 723 DDI_INTR_PRI(nvme->n_intr_pri)); 724 cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL); 725 726 return (cmd); 727 } 728 729 static void 730 nvme_free_cmd(nvme_cmd_t *cmd) 731 { 732 if (cmd->nc_dma) { 733 if (cmd->nc_dma->nd_cached) 734 kmem_cache_free(cmd->nc_nvme->n_prp_cache, 735 cmd->nc_dma); 736 else 737 nvme_free_dma(cmd->nc_dma); 738 cmd->nc_dma = NULL; 739 } 740 741 cv_destroy(&cmd->nc_cv); 742 mutex_destroy(&cmd->nc_mutex); 743 744 kmem_cache_free(nvme_cmd_cache, cmd); 745 } 746 747 static int 748 nvme_submit_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd) 749 { 750 nvme_reg_sqtdbl_t tail = { 0 }; 751 752 mutex_enter(&qp->nq_mutex); 753 754 if (qp->nq_active_cmds == qp->nq_nentry) { 755 mutex_exit(&qp->nq_mutex); 756 return (DDI_FAILURE); 757 } 758 759 cmd->nc_completed = B_FALSE; 760 761 /* 762 * Try to insert the cmd into the active cmd array at the nq_next_cmd 763 * slot. If the slot is already occupied advance to the next slot and 764 * try again. This can happen for long running commands like async event 765 * requests. 766 */ 767 while (qp->nq_cmd[qp->nq_next_cmd] != NULL) 768 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry; 769 qp->nq_cmd[qp->nq_next_cmd] = cmd; 770 771 qp->nq_active_cmds++; 772 773 cmd->nc_sqe.sqe_cid = qp->nq_next_cmd; 774 bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t)); 775 (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah, 776 sizeof (nvme_sqe_t) * qp->nq_sqtail, 777 sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV); 778 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry; 779 780 tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry; 781 nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r); 782 783 mutex_exit(&qp->nq_mutex); 784 return (DDI_SUCCESS); 785 } 786 787 static nvme_cmd_t * 788 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp) 789 { 790 nvme_reg_cqhdbl_t head = { 0 }; 791 792 nvme_cqe_t *cqe; 793 nvme_cmd_t *cmd; 794 795 (void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0, 796 sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL); 797 798 cqe = &qp->nq_cq[qp->nq_cqhead]; 799 800 /* Check phase tag of CQE. Hardware inverts it for new entries. */ 801 if (cqe->cqe_sf.sf_p == qp->nq_phase) 802 return (NULL); 803 804 ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp); 805 ASSERT(cqe->cqe_cid < qp->nq_nentry); 806 807 mutex_enter(&qp->nq_mutex); 808 cmd = qp->nq_cmd[cqe->cqe_cid]; 809 qp->nq_cmd[cqe->cqe_cid] = NULL; 810 qp->nq_active_cmds--; 811 mutex_exit(&qp->nq_mutex); 812 813 ASSERT(cmd != NULL); 814 ASSERT(cmd->nc_nvme == nvme); 815 ASSERT(cmd->nc_sqid == cqe->cqe_sqid); 816 ASSERT(cmd->nc_sqe.sqe_cid == cqe->cqe_cid); 817 bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t)); 818 819 qp->nq_sqhead = cqe->cqe_sqhd; 820 821 head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry; 822 823 /* Toggle phase on wrap-around. */ 824 if (qp->nq_cqhead == 0) 825 qp->nq_phase = qp->nq_phase ? 0 : 1; 826 827 nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r); 828 829 return (cmd); 830 } 831 832 static int 833 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd) 834 { 835 nvme_cqe_t *cqe = &cmd->nc_cqe; 836 837 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 838 "!unknown command status received: opc = %x, sqid = %d, cid = %d, " 839 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc, 840 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct, 841 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m); 842 843 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 844 845 if (cmd->nc_nvme->n_strict_version) { 846 cmd->nc_nvme->n_dead = B_TRUE; 847 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); 848 } 849 850 return (EIO); 851 } 852 853 static int 854 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd) 855 { 856 nvme_cqe_t *cqe = &cmd->nc_cqe; 857 858 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 859 "!unknown command status received: opc = %x, sqid = %d, cid = %d, " 860 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc, 861 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct, 862 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m); 863 if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) { 864 cmd->nc_nvme->n_dead = B_TRUE; 865 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); 866 } 867 868 return (EIO); 869 } 870 871 static int 872 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd) 873 { 874 nvme_cqe_t *cqe = &cmd->nc_cqe; 875 876 switch (cqe->cqe_sf.sf_sc) { 877 case NVME_CQE_SC_INT_NVM_WRITE: 878 /* write fail */ 879 /* TODO: post ereport */ 880 bd_error(cmd->nc_xfer, BD_ERR_MEDIA); 881 return (EIO); 882 883 case NVME_CQE_SC_INT_NVM_READ: 884 /* read fail */ 885 /* TODO: post ereport */ 886 bd_error(cmd->nc_xfer, BD_ERR_MEDIA); 887 return (EIO); 888 889 default: 890 return (nvme_check_unknown_cmd_status(cmd)); 891 } 892 } 893 894 static int 895 nvme_check_generic_cmd_status(nvme_cmd_t *cmd) 896 { 897 nvme_cqe_t *cqe = &cmd->nc_cqe; 898 899 switch (cqe->cqe_sf.sf_sc) { 900 case NVME_CQE_SC_GEN_SUCCESS: 901 return (0); 902 903 /* 904 * Errors indicating a bug in the driver should cause a panic. 905 */ 906 case NVME_CQE_SC_GEN_INV_OPC: 907 /* Invalid Command Opcode */ 908 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 909 "invalid opcode in cmd %p", (void *)cmd); 910 return (0); 911 912 case NVME_CQE_SC_GEN_INV_FLD: 913 /* Invalid Field in Command */ 914 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 915 "invalid field in cmd %p", (void *)cmd); 916 return (0); 917 918 case NVME_CQE_SC_GEN_ID_CNFL: 919 /* Command ID Conflict */ 920 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 921 "cmd ID conflict in cmd %p", (void *)cmd); 922 return (0); 923 924 case NVME_CQE_SC_GEN_INV_NS: 925 /* Invalid Namespace or Format */ 926 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 927 "invalid NS/format in cmd %p", (void *)cmd); 928 return (0); 929 930 case NVME_CQE_SC_GEN_NVM_LBA_RANGE: 931 /* LBA Out Of Range */ 932 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 933 "LBA out of range in cmd %p", (void *)cmd); 934 return (0); 935 936 /* 937 * Non-fatal errors, handle gracefully. 938 */ 939 case NVME_CQE_SC_GEN_DATA_XFR_ERR: 940 /* Data Transfer Error (DMA) */ 941 /* TODO: post ereport */ 942 atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err); 943 bd_error(cmd->nc_xfer, BD_ERR_NTRDY); 944 return (EIO); 945 946 case NVME_CQE_SC_GEN_INTERNAL_ERR: 947 /* 948 * Internal Error. The spec (v1.0, section 4.5.1.2) says 949 * detailed error information is returned as async event, 950 * so we pretty much ignore the error here and handle it 951 * in the async event handler. 952 */ 953 atomic_inc_32(&cmd->nc_nvme->n_internal_err); 954 bd_error(cmd->nc_xfer, BD_ERR_NTRDY); 955 return (EIO); 956 957 case NVME_CQE_SC_GEN_ABORT_REQUEST: 958 /* 959 * Command Abort Requested. This normally happens only when a 960 * command times out. 961 */ 962 /* TODO: post ereport or change blkdev to handle this? */ 963 atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err); 964 return (ECANCELED); 965 966 case NVME_CQE_SC_GEN_ABORT_PWRLOSS: 967 /* Command Aborted due to Power Loss Notification */ 968 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); 969 cmd->nc_nvme->n_dead = B_TRUE; 970 return (EIO); 971 972 case NVME_CQE_SC_GEN_ABORT_SQ_DEL: 973 /* Command Aborted due to SQ Deletion */ 974 atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del); 975 return (EIO); 976 977 case NVME_CQE_SC_GEN_NVM_CAP_EXC: 978 /* Capacity Exceeded */ 979 atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc); 980 bd_error(cmd->nc_xfer, BD_ERR_MEDIA); 981 return (EIO); 982 983 case NVME_CQE_SC_GEN_NVM_NS_NOTRDY: 984 /* Namespace Not Ready */ 985 atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy); 986 bd_error(cmd->nc_xfer, BD_ERR_NTRDY); 987 return (EIO); 988 989 default: 990 return (nvme_check_unknown_cmd_status(cmd)); 991 } 992 } 993 994 static int 995 nvme_check_specific_cmd_status(nvme_cmd_t *cmd) 996 { 997 nvme_cqe_t *cqe = &cmd->nc_cqe; 998 999 switch (cqe->cqe_sf.sf_sc) { 1000 case NVME_CQE_SC_SPC_INV_CQ: 1001 /* Completion Queue Invalid */ 1002 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE); 1003 atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err); 1004 return (EINVAL); 1005 1006 case NVME_CQE_SC_SPC_INV_QID: 1007 /* Invalid Queue Identifier */ 1008 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE || 1009 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE || 1010 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE || 1011 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE); 1012 atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err); 1013 return (EINVAL); 1014 1015 case NVME_CQE_SC_SPC_MAX_QSZ_EXC: 1016 /* Max Queue Size Exceeded */ 1017 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE || 1018 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE); 1019 atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc); 1020 return (EINVAL); 1021 1022 case NVME_CQE_SC_SPC_ABRT_CMD_EXC: 1023 /* Abort Command Limit Exceeded */ 1024 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT); 1025 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 1026 "abort command limit exceeded in cmd %p", (void *)cmd); 1027 return (0); 1028 1029 case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC: 1030 /* Async Event Request Limit Exceeded */ 1031 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT); 1032 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 1033 "async event request limit exceeded in cmd %p", 1034 (void *)cmd); 1035 return (0); 1036 1037 case NVME_CQE_SC_SPC_INV_INT_VECT: 1038 /* Invalid Interrupt Vector */ 1039 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE); 1040 atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect); 1041 return (EINVAL); 1042 1043 case NVME_CQE_SC_SPC_INV_LOG_PAGE: 1044 /* Invalid Log Page */ 1045 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE); 1046 atomic_inc_32(&cmd->nc_nvme->n_inv_log_page); 1047 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1048 return (EINVAL); 1049 1050 case NVME_CQE_SC_SPC_INV_FORMAT: 1051 /* Invalid Format */ 1052 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT); 1053 atomic_inc_32(&cmd->nc_nvme->n_inv_format); 1054 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1055 return (EINVAL); 1056 1057 case NVME_CQE_SC_SPC_INV_Q_DEL: 1058 /* Invalid Queue Deletion */ 1059 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE); 1060 atomic_inc_32(&cmd->nc_nvme->n_inv_q_del); 1061 return (EINVAL); 1062 1063 case NVME_CQE_SC_SPC_NVM_CNFL_ATTR: 1064 /* Conflicting Attributes */ 1065 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT || 1066 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ || 1067 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); 1068 atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr); 1069 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1070 return (EINVAL); 1071 1072 case NVME_CQE_SC_SPC_NVM_INV_PROT: 1073 /* Invalid Protection Information */ 1074 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE || 1075 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ || 1076 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); 1077 atomic_inc_32(&cmd->nc_nvme->n_inv_prot); 1078 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1079 return (EINVAL); 1080 1081 case NVME_CQE_SC_SPC_NVM_READONLY: 1082 /* Write to Read Only Range */ 1083 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); 1084 atomic_inc_32(&cmd->nc_nvme->n_readonly); 1085 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1086 return (EROFS); 1087 1088 default: 1089 return (nvme_check_unknown_cmd_status(cmd)); 1090 } 1091 } 1092 1093 static inline int 1094 nvme_check_cmd_status(nvme_cmd_t *cmd) 1095 { 1096 nvme_cqe_t *cqe = &cmd->nc_cqe; 1097 1098 /* take a shortcut if everything is alright */ 1099 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && 1100 cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS) 1101 return (0); 1102 1103 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC) 1104 return (nvme_check_generic_cmd_status(cmd)); 1105 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC) 1106 return (nvme_check_specific_cmd_status(cmd)); 1107 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY) 1108 return (nvme_check_integrity_cmd_status(cmd)); 1109 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR) 1110 return (nvme_check_vendor_cmd_status(cmd)); 1111 1112 return (nvme_check_unknown_cmd_status(cmd)); 1113 } 1114 1115 /* 1116 * nvme_abort_cmd_cb -- replaces nc_callback of aborted commands 1117 * 1118 * This functions takes care of cleaning up aborted commands. The command 1119 * status is checked to catch any fatal errors. 1120 */ 1121 static void 1122 nvme_abort_cmd_cb(void *arg) 1123 { 1124 nvme_cmd_t *cmd = arg; 1125 1126 /* 1127 * Grab the command mutex. Once we have it we hold the last reference 1128 * to the command and can safely free it. 1129 */ 1130 mutex_enter(&cmd->nc_mutex); 1131 (void) nvme_check_cmd_status(cmd); 1132 mutex_exit(&cmd->nc_mutex); 1133 1134 nvme_free_cmd(cmd); 1135 } 1136 1137 static void 1138 nvme_abort_cmd(nvme_cmd_t *abort_cmd) 1139 { 1140 nvme_t *nvme = abort_cmd->nc_nvme; 1141 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1142 nvme_abort_cmd_t ac = { 0 }; 1143 1144 sema_p(&nvme->n_abort_sema); 1145 1146 ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid; 1147 ac.b.ac_sqid = abort_cmd->nc_sqid; 1148 1149 /* 1150 * Drop the mutex of the aborted command. From this point on 1151 * we must assume that the abort callback has freed the command. 1152 */ 1153 mutex_exit(&abort_cmd->nc_mutex); 1154 1155 cmd->nc_sqid = 0; 1156 cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT; 1157 cmd->nc_callback = nvme_wakeup_cmd; 1158 cmd->nc_sqe.sqe_cdw10 = ac.r; 1159 1160 /* 1161 * Send the ABORT to the hardware. The ABORT command will return _after_ 1162 * the aborted command has completed (aborted or otherwise). 1163 */ 1164 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) { 1165 sema_v(&nvme->n_abort_sema); 1166 dev_err(nvme->n_dip, CE_WARN, 1167 "!nvme_admin_cmd failed for ABORT"); 1168 atomic_inc_32(&nvme->n_abort_failed); 1169 return; 1170 } 1171 sema_v(&nvme->n_abort_sema); 1172 1173 if (nvme_check_cmd_status(cmd)) { 1174 dev_err(nvme->n_dip, CE_WARN, 1175 "!ABORT failed with sct = %x, sc = %x", 1176 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 1177 atomic_inc_32(&nvme->n_abort_failed); 1178 } else { 1179 atomic_inc_32(&nvme->n_cmd_aborted); 1180 } 1181 1182 nvme_free_cmd(cmd); 1183 } 1184 1185 /* 1186 * nvme_wait_cmd -- wait for command completion or timeout 1187 * 1188 * Returns B_TRUE if the command completed normally. 1189 * 1190 * Returns B_FALSE if the command timed out and an abort was attempted. The 1191 * command mutex will be dropped and the command must be considered freed. The 1192 * freeing of the command is normally done by the abort command callback. 1193 * 1194 * In case of a serious error or a timeout of the abort command the hardware 1195 * will be declared dead and FMA will be notified. 1196 */ 1197 static boolean_t 1198 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec) 1199 { 1200 clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC); 1201 nvme_t *nvme = cmd->nc_nvme; 1202 nvme_reg_csts_t csts; 1203 1204 ASSERT(mutex_owned(&cmd->nc_mutex)); 1205 1206 while (!cmd->nc_completed) { 1207 if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1) 1208 break; 1209 } 1210 1211 if (cmd->nc_completed) 1212 return (B_TRUE); 1213 1214 /* 1215 * The command timed out. Change the callback to the cleanup function. 1216 */ 1217 cmd->nc_callback = nvme_abort_cmd_cb; 1218 1219 /* 1220 * Check controller for fatal status, any errors associated with the 1221 * register or DMA handle, or for a double timeout (abort command timed 1222 * out). If necessary log a warning and call FMA. 1223 */ 1224 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 1225 dev_err(nvme->n_dip, CE_WARN, "!command timeout, " 1226 "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_opc, csts.b.csts_cfs); 1227 atomic_inc_32(&nvme->n_cmd_timeout); 1228 1229 if (csts.b.csts_cfs || 1230 nvme_check_regs_hdl(nvme) || 1231 nvme_check_dma_hdl(cmd->nc_dma) || 1232 cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) { 1233 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 1234 nvme->n_dead = B_TRUE; 1235 mutex_exit(&cmd->nc_mutex); 1236 } else { 1237 /* 1238 * Try to abort the command. The command mutex is released by 1239 * nvme_abort_cmd(). 1240 * If the abort succeeds it will have freed the aborted command. 1241 * If the abort fails for other reasons we must assume that the 1242 * command may complete at any time, and the callback will free 1243 * it for us. 1244 */ 1245 nvme_abort_cmd(cmd); 1246 } 1247 1248 return (B_FALSE); 1249 } 1250 1251 static void 1252 nvme_wakeup_cmd(void *arg) 1253 { 1254 nvme_cmd_t *cmd = arg; 1255 1256 mutex_enter(&cmd->nc_mutex); 1257 /* 1258 * There is a slight chance that this command completed shortly after 1259 * the timeout was hit in nvme_wait_cmd() but before the callback was 1260 * changed. Catch that case here and clean up accordingly. 1261 */ 1262 if (cmd->nc_callback == nvme_abort_cmd_cb) { 1263 mutex_exit(&cmd->nc_mutex); 1264 nvme_abort_cmd_cb(cmd); 1265 return; 1266 } 1267 1268 cmd->nc_completed = B_TRUE; 1269 cv_signal(&cmd->nc_cv); 1270 mutex_exit(&cmd->nc_mutex); 1271 } 1272 1273 static void 1274 nvme_async_event_task(void *arg) 1275 { 1276 nvme_cmd_t *cmd = arg; 1277 nvme_t *nvme = cmd->nc_nvme; 1278 nvme_error_log_entry_t *error_log = NULL; 1279 nvme_health_log_t *health_log = NULL; 1280 nvme_async_event_t event; 1281 int ret; 1282 1283 /* 1284 * Check for errors associated with the async request itself. The only 1285 * command-specific error is "async event limit exceeded", which 1286 * indicates a programming error in the driver and causes a panic in 1287 * nvme_check_cmd_status(). 1288 * 1289 * Other possible errors are various scenarios where the async request 1290 * was aborted, or internal errors in the device. Internal errors are 1291 * reported to FMA, the command aborts need no special handling here. 1292 */ 1293 if (nvme_check_cmd_status(cmd)) { 1294 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 1295 "!async event request returned failure, sct = %x, " 1296 "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct, 1297 cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr, 1298 cmd->nc_cqe.cqe_sf.sf_m); 1299 1300 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && 1301 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) { 1302 cmd->nc_nvme->n_dead = B_TRUE; 1303 ddi_fm_service_impact(cmd->nc_nvme->n_dip, 1304 DDI_SERVICE_LOST); 1305 } 1306 nvme_free_cmd(cmd); 1307 return; 1308 } 1309 1310 1311 event.r = cmd->nc_cqe.cqe_dw0; 1312 1313 /* Clear CQE and re-submit the async request. */ 1314 bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t)); 1315 ret = nvme_submit_cmd(nvme->n_adminq, cmd); 1316 1317 if (ret != DDI_SUCCESS) { 1318 dev_err(nvme->n_dip, CE_WARN, 1319 "!failed to resubmit async event request"); 1320 atomic_inc_32(&nvme->n_async_resubmit_failed); 1321 nvme_free_cmd(cmd); 1322 } 1323 1324 switch (event.b.ae_type) { 1325 case NVME_ASYNC_TYPE_ERROR: 1326 if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) { 1327 error_log = (nvme_error_log_entry_t *) 1328 nvme_get_logpage(nvme, event.b.ae_logpage); 1329 } else { 1330 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in " 1331 "async event reply: %d", event.b.ae_logpage); 1332 atomic_inc_32(&nvme->n_wrong_logpage); 1333 } 1334 1335 switch (event.b.ae_info) { 1336 case NVME_ASYNC_ERROR_INV_SQ: 1337 dev_err(nvme->n_dip, CE_PANIC, "programming error: " 1338 "invalid submission queue"); 1339 return; 1340 1341 case NVME_ASYNC_ERROR_INV_DBL: 1342 dev_err(nvme->n_dip, CE_PANIC, "programming error: " 1343 "invalid doorbell write value"); 1344 return; 1345 1346 case NVME_ASYNC_ERROR_DIAGFAIL: 1347 dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure"); 1348 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 1349 nvme->n_dead = B_TRUE; 1350 atomic_inc_32(&nvme->n_diagfail_event); 1351 break; 1352 1353 case NVME_ASYNC_ERROR_PERSISTENT: 1354 dev_err(nvme->n_dip, CE_WARN, "!persistent internal " 1355 "device error"); 1356 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 1357 nvme->n_dead = B_TRUE; 1358 atomic_inc_32(&nvme->n_persistent_event); 1359 break; 1360 1361 case NVME_ASYNC_ERROR_TRANSIENT: 1362 dev_err(nvme->n_dip, CE_WARN, "!transient internal " 1363 "device error"); 1364 /* TODO: send ereport */ 1365 atomic_inc_32(&nvme->n_transient_event); 1366 break; 1367 1368 case NVME_ASYNC_ERROR_FW_LOAD: 1369 dev_err(nvme->n_dip, CE_WARN, 1370 "!firmware image load error"); 1371 atomic_inc_32(&nvme->n_fw_load_event); 1372 break; 1373 } 1374 break; 1375 1376 case NVME_ASYNC_TYPE_HEALTH: 1377 if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) { 1378 health_log = (nvme_health_log_t *) 1379 nvme_get_logpage(nvme, event.b.ae_logpage, -1); 1380 } else { 1381 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in " 1382 "async event reply: %d", event.b.ae_logpage); 1383 atomic_inc_32(&nvme->n_wrong_logpage); 1384 } 1385 1386 switch (event.b.ae_info) { 1387 case NVME_ASYNC_HEALTH_RELIABILITY: 1388 dev_err(nvme->n_dip, CE_WARN, 1389 "!device reliability compromised"); 1390 /* TODO: send ereport */ 1391 atomic_inc_32(&nvme->n_reliability_event); 1392 break; 1393 1394 case NVME_ASYNC_HEALTH_TEMPERATURE: 1395 dev_err(nvme->n_dip, CE_WARN, 1396 "!temperature above threshold"); 1397 /* TODO: send ereport */ 1398 atomic_inc_32(&nvme->n_temperature_event); 1399 break; 1400 1401 case NVME_ASYNC_HEALTH_SPARE: 1402 dev_err(nvme->n_dip, CE_WARN, 1403 "!spare space below threshold"); 1404 /* TODO: send ereport */ 1405 atomic_inc_32(&nvme->n_spare_event); 1406 break; 1407 } 1408 break; 1409 1410 case NVME_ASYNC_TYPE_VENDOR: 1411 dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event " 1412 "received, info = %x, logpage = %x", event.b.ae_info, 1413 event.b.ae_logpage); 1414 atomic_inc_32(&nvme->n_vendor_event); 1415 break; 1416 1417 default: 1418 dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, " 1419 "type = %x, info = %x, logpage = %x", event.b.ae_type, 1420 event.b.ae_info, event.b.ae_logpage); 1421 atomic_inc_32(&nvme->n_unknown_event); 1422 break; 1423 } 1424 1425 if (error_log) 1426 kmem_free(error_log, sizeof (nvme_error_log_entry_t) * 1427 nvme->n_error_log_len); 1428 1429 if (health_log) 1430 kmem_free(health_log, sizeof (nvme_health_log_t)); 1431 } 1432 1433 static int 1434 nvme_admin_cmd(nvme_cmd_t *cmd, int sec) 1435 { 1436 int ret; 1437 1438 mutex_enter(&cmd->nc_mutex); 1439 ret = nvme_submit_cmd(cmd->nc_nvme->n_adminq, cmd); 1440 1441 if (ret != DDI_SUCCESS) { 1442 mutex_exit(&cmd->nc_mutex); 1443 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 1444 "!nvme_submit_cmd failed"); 1445 atomic_inc_32(&cmd->nc_nvme->n_admin_queue_full); 1446 nvme_free_cmd(cmd); 1447 return (DDI_FAILURE); 1448 } 1449 1450 if (nvme_wait_cmd(cmd, sec) == B_FALSE) { 1451 /* 1452 * The command timed out. An abort command was posted that 1453 * will take care of the cleanup. 1454 */ 1455 return (DDI_FAILURE); 1456 } 1457 mutex_exit(&cmd->nc_mutex); 1458 1459 return (DDI_SUCCESS); 1460 } 1461 1462 static int 1463 nvme_async_event(nvme_t *nvme) 1464 { 1465 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1466 int ret; 1467 1468 cmd->nc_sqid = 0; 1469 cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT; 1470 cmd->nc_callback = nvme_async_event_task; 1471 1472 ret = nvme_submit_cmd(nvme->n_adminq, cmd); 1473 1474 if (ret != DDI_SUCCESS) { 1475 dev_err(nvme->n_dip, CE_WARN, 1476 "!nvme_submit_cmd failed for ASYNCHRONOUS EVENT"); 1477 nvme_free_cmd(cmd); 1478 return (DDI_FAILURE); 1479 } 1480 1481 return (DDI_SUCCESS); 1482 } 1483 1484 static void * 1485 nvme_get_logpage(nvme_t *nvme, uint8_t logpage, ...) 1486 { 1487 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1488 void *buf = NULL; 1489 nvme_getlogpage_t getlogpage = { 0 }; 1490 size_t bufsize; 1491 va_list ap; 1492 1493 va_start(ap, logpage); 1494 1495 cmd->nc_sqid = 0; 1496 cmd->nc_callback = nvme_wakeup_cmd; 1497 cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE; 1498 1499 getlogpage.b.lp_lid = logpage; 1500 1501 switch (logpage) { 1502 case NVME_LOGPAGE_ERROR: 1503 cmd->nc_sqe.sqe_nsid = (uint32_t)-1; 1504 bufsize = nvme->n_error_log_len * 1505 sizeof (nvme_error_log_entry_t); 1506 break; 1507 1508 case NVME_LOGPAGE_HEALTH: 1509 cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t); 1510 bufsize = sizeof (nvme_health_log_t); 1511 break; 1512 1513 case NVME_LOGPAGE_FWSLOT: 1514 cmd->nc_sqe.sqe_nsid = (uint32_t)-1; 1515 bufsize = sizeof (nvme_fwslot_log_t); 1516 break; 1517 1518 default: 1519 dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d", 1520 logpage); 1521 atomic_inc_32(&nvme->n_unknown_logpage); 1522 goto fail; 1523 } 1524 1525 va_end(ap); 1526 1527 getlogpage.b.lp_numd = bufsize / sizeof (uint32_t) - 1; 1528 1529 cmd->nc_sqe.sqe_cdw10 = getlogpage.r; 1530 1531 if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t), 1532 DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { 1533 dev_err(nvme->n_dip, CE_WARN, 1534 "!nvme_zalloc_dma failed for GET LOG PAGE"); 1535 goto fail; 1536 } 1537 1538 if (cmd->nc_dma->nd_ncookie > 2) { 1539 dev_err(nvme->n_dip, CE_WARN, 1540 "!too many DMA cookies for GET LOG PAGE"); 1541 atomic_inc_32(&nvme->n_too_many_cookies); 1542 goto fail; 1543 } 1544 1545 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress; 1546 if (cmd->nc_dma->nd_ncookie > 1) { 1547 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, 1548 &cmd->nc_dma->nd_cookie); 1549 cmd->nc_sqe.sqe_dptr.d_prp[1] = 1550 cmd->nc_dma->nd_cookie.dmac_laddress; 1551 } 1552 1553 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) { 1554 dev_err(nvme->n_dip, CE_WARN, 1555 "!nvme_admin_cmd failed for GET LOG PAGE"); 1556 return (NULL); 1557 } 1558 1559 if (nvme_check_cmd_status(cmd)) { 1560 dev_err(nvme->n_dip, CE_WARN, 1561 "!GET LOG PAGE failed with sct = %x, sc = %x", 1562 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 1563 goto fail; 1564 } 1565 1566 buf = kmem_alloc(bufsize, KM_SLEEP); 1567 bcopy(cmd->nc_dma->nd_memp, buf, bufsize); 1568 1569 fail: 1570 nvme_free_cmd(cmd); 1571 1572 return (buf); 1573 } 1574 1575 static void * 1576 nvme_identify(nvme_t *nvme, uint32_t nsid) 1577 { 1578 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1579 void *buf = NULL; 1580 1581 cmd->nc_sqid = 0; 1582 cmd->nc_callback = nvme_wakeup_cmd; 1583 cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY; 1584 cmd->nc_sqe.sqe_nsid = nsid; 1585 cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL; 1586 1587 if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ, 1588 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { 1589 dev_err(nvme->n_dip, CE_WARN, 1590 "!nvme_zalloc_dma failed for IDENTIFY"); 1591 goto fail; 1592 } 1593 1594 if (cmd->nc_dma->nd_ncookie > 2) { 1595 dev_err(nvme->n_dip, CE_WARN, 1596 "!too many DMA cookies for IDENTIFY"); 1597 atomic_inc_32(&nvme->n_too_many_cookies); 1598 goto fail; 1599 } 1600 1601 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress; 1602 if (cmd->nc_dma->nd_ncookie > 1) { 1603 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, 1604 &cmd->nc_dma->nd_cookie); 1605 cmd->nc_sqe.sqe_dptr.d_prp[1] = 1606 cmd->nc_dma->nd_cookie.dmac_laddress; 1607 } 1608 1609 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) { 1610 dev_err(nvme->n_dip, CE_WARN, 1611 "!nvme_admin_cmd failed for IDENTIFY"); 1612 return (NULL); 1613 } 1614 1615 if (nvme_check_cmd_status(cmd)) { 1616 dev_err(nvme->n_dip, CE_WARN, 1617 "!IDENTIFY failed with sct = %x, sc = %x", 1618 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 1619 goto fail; 1620 } 1621 1622 buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP); 1623 bcopy(cmd->nc_dma->nd_memp, buf, NVME_IDENTIFY_BUFSIZE); 1624 1625 fail: 1626 nvme_free_cmd(cmd); 1627 1628 return (buf); 1629 } 1630 1631 static boolean_t 1632 nvme_set_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t val, 1633 uint32_t *res) 1634 { 1635 _NOTE(ARGUNUSED(nsid)); 1636 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1637 boolean_t ret = B_FALSE; 1638 1639 ASSERT(res != NULL); 1640 1641 cmd->nc_sqid = 0; 1642 cmd->nc_callback = nvme_wakeup_cmd; 1643 cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES; 1644 cmd->nc_sqe.sqe_cdw10 = feature; 1645 cmd->nc_sqe.sqe_cdw11 = val; 1646 1647 switch (feature) { 1648 case NVME_FEAT_WRITE_CACHE: 1649 if (!nvme->n_write_cache_present) 1650 goto fail; 1651 break; 1652 1653 case NVME_FEAT_NQUEUES: 1654 break; 1655 1656 default: 1657 goto fail; 1658 } 1659 1660 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) { 1661 dev_err(nvme->n_dip, CE_WARN, 1662 "!nvme_admin_cmd failed for SET FEATURES"); 1663 return (ret); 1664 } 1665 1666 if (nvme_check_cmd_status(cmd)) { 1667 dev_err(nvme->n_dip, CE_WARN, 1668 "!SET FEATURES %d failed with sct = %x, sc = %x", 1669 feature, cmd->nc_cqe.cqe_sf.sf_sct, 1670 cmd->nc_cqe.cqe_sf.sf_sc); 1671 goto fail; 1672 } 1673 1674 *res = cmd->nc_cqe.cqe_dw0; 1675 ret = B_TRUE; 1676 1677 fail: 1678 nvme_free_cmd(cmd); 1679 return (ret); 1680 } 1681 1682 static boolean_t 1683 nvme_write_cache_set(nvme_t *nvme, boolean_t enable) 1684 { 1685 nvme_write_cache_t nwc = { 0 }; 1686 1687 if (enable) 1688 nwc.b.wc_wce = 1; 1689 1690 if (!nvme_set_features(nvme, 0, NVME_FEAT_WRITE_CACHE, nwc.r, &nwc.r)) 1691 return (B_FALSE); 1692 1693 return (B_TRUE); 1694 } 1695 1696 static int 1697 nvme_set_nqueues(nvme_t *nvme, uint16_t nqueues) 1698 { 1699 nvme_nqueue_t nq = { 0 }; 1700 1701 nq.b.nq_nsq = nq.b.nq_ncq = nqueues - 1; 1702 1703 if (!nvme_set_features(nvme, 0, NVME_FEAT_NQUEUES, nq.r, &nq.r)) { 1704 return (0); 1705 } 1706 1707 /* 1708 * Always use the same number of submission and completion queues, and 1709 * never use more than the requested number of queues. 1710 */ 1711 return (MIN(nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1)); 1712 } 1713 1714 static int 1715 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx) 1716 { 1717 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1718 nvme_create_queue_dw10_t dw10 = { 0 }; 1719 nvme_create_cq_dw11_t c_dw11 = { 0 }; 1720 nvme_create_sq_dw11_t s_dw11 = { 0 }; 1721 1722 dw10.b.q_qid = idx; 1723 dw10.b.q_qsize = qp->nq_nentry - 1; 1724 1725 c_dw11.b.cq_pc = 1; 1726 c_dw11.b.cq_ien = 1; 1727 c_dw11.b.cq_iv = idx % nvme->n_intr_cnt; 1728 1729 cmd->nc_sqid = 0; 1730 cmd->nc_callback = nvme_wakeup_cmd; 1731 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE; 1732 cmd->nc_sqe.sqe_cdw10 = dw10.r; 1733 cmd->nc_sqe.sqe_cdw11 = c_dw11.r; 1734 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress; 1735 1736 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) { 1737 dev_err(nvme->n_dip, CE_WARN, 1738 "!nvme_admin_cmd failed for CREATE CQUEUE"); 1739 return (DDI_FAILURE); 1740 } 1741 1742 if (nvme_check_cmd_status(cmd)) { 1743 dev_err(nvme->n_dip, CE_WARN, 1744 "!CREATE CQUEUE failed with sct = %x, sc = %x", 1745 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 1746 nvme_free_cmd(cmd); 1747 return (DDI_FAILURE); 1748 } 1749 1750 nvme_free_cmd(cmd); 1751 1752 s_dw11.b.sq_pc = 1; 1753 s_dw11.b.sq_cqid = idx; 1754 1755 cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1756 cmd->nc_sqid = 0; 1757 cmd->nc_callback = nvme_wakeup_cmd; 1758 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE; 1759 cmd->nc_sqe.sqe_cdw10 = dw10.r; 1760 cmd->nc_sqe.sqe_cdw11 = s_dw11.r; 1761 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress; 1762 1763 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) { 1764 dev_err(nvme->n_dip, CE_WARN, 1765 "!nvme_admin_cmd failed for CREATE SQUEUE"); 1766 return (DDI_FAILURE); 1767 } 1768 1769 if (nvme_check_cmd_status(cmd)) { 1770 dev_err(nvme->n_dip, CE_WARN, 1771 "!CREATE SQUEUE failed with sct = %x, sc = %x", 1772 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 1773 nvme_free_cmd(cmd); 1774 return (DDI_FAILURE); 1775 } 1776 1777 nvme_free_cmd(cmd); 1778 1779 return (DDI_SUCCESS); 1780 } 1781 1782 static boolean_t 1783 nvme_reset(nvme_t *nvme, boolean_t quiesce) 1784 { 1785 nvme_reg_csts_t csts; 1786 int i; 1787 1788 nvme_put32(nvme, NVME_REG_CC, 0); 1789 1790 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 1791 if (csts.b.csts_rdy == 1) { 1792 nvme_put32(nvme, NVME_REG_CC, 0); 1793 for (i = 0; i != nvme->n_timeout * 10; i++) { 1794 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 1795 if (csts.b.csts_rdy == 0) 1796 break; 1797 1798 if (quiesce) 1799 drv_usecwait(50000); 1800 else 1801 delay(drv_usectohz(50000)); 1802 } 1803 } 1804 1805 nvme_put32(nvme, NVME_REG_AQA, 0); 1806 nvme_put32(nvme, NVME_REG_ASQ, 0); 1807 nvme_put32(nvme, NVME_REG_ACQ, 0); 1808 1809 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 1810 return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE); 1811 } 1812 1813 static void 1814 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce) 1815 { 1816 nvme_reg_cc_t cc; 1817 nvme_reg_csts_t csts; 1818 int i; 1819 1820 ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT); 1821 1822 cc.r = nvme_get32(nvme, NVME_REG_CC); 1823 cc.b.cc_shn = mode & 0x3; 1824 nvme_put32(nvme, NVME_REG_CC, cc.r); 1825 1826 for (i = 0; i != 10; i++) { 1827 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 1828 if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE) 1829 break; 1830 1831 if (quiesce) 1832 drv_usecwait(100000); 1833 else 1834 delay(drv_usectohz(100000)); 1835 } 1836 } 1837 1838 1839 static void 1840 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid) 1841 { 1842 /* 1843 * Section 7.7 of the spec describes how to get a unique ID for 1844 * the controller: the vendor ID, the model name and the serial 1845 * number shall be unique when combined. 1846 * 1847 * If a namespace has no EUI64 we use the above and add the hex 1848 * namespace ID to get a unique ID for the namespace. 1849 */ 1850 char model[sizeof (nvme->n_idctl->id_model) + 1]; 1851 char serial[sizeof (nvme->n_idctl->id_serial) + 1]; 1852 1853 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model)); 1854 bcopy(nvme->n_idctl->id_serial, serial, 1855 sizeof (nvme->n_idctl->id_serial)); 1856 1857 model[sizeof (nvme->n_idctl->id_model)] = '\0'; 1858 serial[sizeof (nvme->n_idctl->id_serial)] = '\0'; 1859 1860 nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X", 1861 nvme->n_idctl->id_vid, model, serial, nsid); 1862 } 1863 1864 static int 1865 nvme_init(nvme_t *nvme) 1866 { 1867 nvme_reg_cc_t cc = { 0 }; 1868 nvme_reg_aqa_t aqa = { 0 }; 1869 nvme_reg_asq_t asq = { 0 }; 1870 nvme_reg_acq_t acq = { 0 }; 1871 nvme_reg_cap_t cap; 1872 nvme_reg_vs_t vs; 1873 nvme_reg_csts_t csts; 1874 int i = 0; 1875 int nqueues; 1876 char model[sizeof (nvme->n_idctl->id_model) + 1]; 1877 char *vendor, *product; 1878 1879 /* Check controller version */ 1880 vs.r = nvme_get32(nvme, NVME_REG_VS); 1881 nvme->n_version.v_major = vs.b.vs_mjr; 1882 nvme->n_version.v_minor = vs.b.vs_mnr; 1883 dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d", 1884 nvme->n_version.v_major, nvme->n_version.v_minor); 1885 1886 if (NVME_VERSION_HIGHER(&nvme->n_version, 1887 nvme_version_major, nvme_version_minor)) { 1888 dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.%d", 1889 nvme_version_major, nvme_version_minor); 1890 if (nvme->n_strict_version) 1891 goto fail; 1892 } 1893 1894 /* retrieve controller configuration */ 1895 cap.r = nvme_get64(nvme, NVME_REG_CAP); 1896 1897 if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) { 1898 dev_err(nvme->n_dip, CE_WARN, 1899 "!NVM command set not supported by hardware"); 1900 goto fail; 1901 } 1902 1903 nvme->n_nssr_supported = cap.b.cap_nssrs; 1904 nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd; 1905 nvme->n_timeout = cap.b.cap_to; 1906 nvme->n_arbitration_mechanisms = cap.b.cap_ams; 1907 nvme->n_cont_queues_reqd = cap.b.cap_cqr; 1908 nvme->n_max_queue_entries = cap.b.cap_mqes + 1; 1909 1910 /* 1911 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify 1912 * the base page size of 4k (1<<12), so add 12 here to get the real 1913 * page size value. 1914 */ 1915 nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT), 1916 cap.b.cap_mpsmax + 12); 1917 nvme->n_pagesize = 1UL << (nvme->n_pageshift); 1918 1919 /* 1920 * Set up Queue DMA to transfer at least 1 page-aligned page at a time. 1921 */ 1922 nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize; 1923 nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize; 1924 1925 /* 1926 * Set up PRP DMA to transfer 1 page-aligned page at a time. 1927 * Maxxfer may be increased after we identified the controller limits. 1928 */ 1929 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize; 1930 nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize; 1931 nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize; 1932 nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1; 1933 1934 /* 1935 * Reset controller if it's still in ready state. 1936 */ 1937 if (nvme_reset(nvme, B_FALSE) == B_FALSE) { 1938 dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller"); 1939 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 1940 nvme->n_dead = B_TRUE; 1941 goto fail; 1942 } 1943 1944 /* 1945 * Create the admin queue pair. 1946 */ 1947 if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0) 1948 != DDI_SUCCESS) { 1949 dev_err(nvme->n_dip, CE_WARN, 1950 "!unable to allocate admin qpair"); 1951 goto fail; 1952 } 1953 nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP); 1954 nvme->n_ioq[0] = nvme->n_adminq; 1955 1956 nvme->n_progress |= NVME_ADMIN_QUEUE; 1957 1958 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, 1959 "admin-queue-len", nvme->n_admin_queue_len); 1960 1961 aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1; 1962 asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress; 1963 acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress; 1964 1965 ASSERT((asq & (nvme->n_pagesize - 1)) == 0); 1966 ASSERT((acq & (nvme->n_pagesize - 1)) == 0); 1967 1968 nvme_put32(nvme, NVME_REG_AQA, aqa.r); 1969 nvme_put64(nvme, NVME_REG_ASQ, asq); 1970 nvme_put64(nvme, NVME_REG_ACQ, acq); 1971 1972 cc.b.cc_ams = 0; /* use Round-Robin arbitration */ 1973 cc.b.cc_css = 0; /* use NVM command set */ 1974 cc.b.cc_mps = nvme->n_pageshift - 12; 1975 cc.b.cc_shn = 0; /* no shutdown in progress */ 1976 cc.b.cc_en = 1; /* enable controller */ 1977 cc.b.cc_iosqes = 6; /* submission queue entry is 2^6 bytes long */ 1978 cc.b.cc_iocqes = 4; /* completion queue entry is 2^4 bytes long */ 1979 1980 nvme_put32(nvme, NVME_REG_CC, cc.r); 1981 1982 /* 1983 * Wait for the controller to become ready. 1984 */ 1985 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 1986 if (csts.b.csts_rdy == 0) { 1987 for (i = 0; i != nvme->n_timeout * 10; i++) { 1988 delay(drv_usectohz(50000)); 1989 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 1990 1991 if (csts.b.csts_cfs == 1) { 1992 dev_err(nvme->n_dip, CE_WARN, 1993 "!controller fatal status at init"); 1994 ddi_fm_service_impact(nvme->n_dip, 1995 DDI_SERVICE_LOST); 1996 nvme->n_dead = B_TRUE; 1997 goto fail; 1998 } 1999 2000 if (csts.b.csts_rdy == 1) 2001 break; 2002 } 2003 } 2004 2005 if (csts.b.csts_rdy == 0) { 2006 dev_err(nvme->n_dip, CE_WARN, "!controller not ready"); 2007 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 2008 nvme->n_dead = B_TRUE; 2009 goto fail; 2010 } 2011 2012 /* 2013 * Assume an abort command limit of 1. We'll destroy and re-init 2014 * that later when we know the true abort command limit. 2015 */ 2016 sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL); 2017 2018 /* 2019 * Setup initial interrupt for admin queue. 2020 */ 2021 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1) 2022 != DDI_SUCCESS) && 2023 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1) 2024 != DDI_SUCCESS) && 2025 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1) 2026 != DDI_SUCCESS)) { 2027 dev_err(nvme->n_dip, CE_WARN, 2028 "!failed to setup initial interrupt"); 2029 goto fail; 2030 } 2031 2032 /* 2033 * Post an asynchronous event command to catch errors. 2034 */ 2035 if (nvme_async_event(nvme) != DDI_SUCCESS) { 2036 dev_err(nvme->n_dip, CE_WARN, 2037 "!failed to post async event"); 2038 goto fail; 2039 } 2040 2041 /* 2042 * Identify Controller 2043 */ 2044 nvme->n_idctl = nvme_identify(nvme, 0); 2045 if (nvme->n_idctl == NULL) { 2046 dev_err(nvme->n_dip, CE_WARN, 2047 "!failed to identify controller"); 2048 goto fail; 2049 } 2050 2051 /* 2052 * Get Vendor & Product ID 2053 */ 2054 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model)); 2055 model[sizeof (nvme->n_idctl->id_model)] = '\0'; 2056 sata_split_model(model, &vendor, &product); 2057 2058 if (vendor == NULL) 2059 nvme->n_vendor = strdup("NVMe"); 2060 else 2061 nvme->n_vendor = strdup(vendor); 2062 2063 nvme->n_product = strdup(product); 2064 2065 /* 2066 * Get controller limits. 2067 */ 2068 nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT, 2069 MIN(nvme->n_admin_queue_len / 10, 2070 MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit))); 2071 2072 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, 2073 "async-event-limit", nvme->n_async_event_limit); 2074 2075 nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1; 2076 2077 /* 2078 * Reinitialize the semaphore with the true abort command limit 2079 * supported by the hardware. It's not necessary to disable interrupts 2080 * as only command aborts use the semaphore, and no commands are 2081 * executed or aborted while we're here. 2082 */ 2083 sema_destroy(&nvme->n_abort_sema); 2084 sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL, 2085 SEMA_DRIVER, NULL); 2086 2087 nvme->n_progress |= NVME_CTRL_LIMITS; 2088 2089 if (nvme->n_idctl->id_mdts == 0) 2090 nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536; 2091 else 2092 nvme->n_max_data_transfer_size = 2093 1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts); 2094 2095 nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1; 2096 2097 /* 2098 * Limit n_max_data_transfer_size to what we can handle in one PRP. 2099 * Chained PRPs are currently unsupported. 2100 * 2101 * This is a no-op on hardware which doesn't support a transfer size 2102 * big enough to require chained PRPs. 2103 */ 2104 nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size, 2105 (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize)); 2106 2107 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size; 2108 2109 /* 2110 * Make sure the minimum/maximum queue entry sizes are not 2111 * larger/smaller than the default. 2112 */ 2113 2114 if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) || 2115 ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) || 2116 ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) || 2117 ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t))) 2118 goto fail; 2119 2120 /* 2121 * Check for the presence of a Volatile Write Cache. If present, 2122 * enable or disable based on the value of the property 2123 * volatile-write-cache-enable (default is enabled). 2124 */ 2125 nvme->n_write_cache_present = 2126 nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE; 2127 2128 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, 2129 "volatile-write-cache-present", 2130 nvme->n_write_cache_present ? 1 : 0); 2131 2132 if (!nvme->n_write_cache_present) { 2133 nvme->n_write_cache_enabled = B_FALSE; 2134 } else if (!nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)) { 2135 dev_err(nvme->n_dip, CE_WARN, 2136 "!failed to %sable volatile write cache", 2137 nvme->n_write_cache_enabled ? "en" : "dis"); 2138 /* 2139 * Assume the cache is (still) enabled. 2140 */ 2141 nvme->n_write_cache_enabled = B_TRUE; 2142 } 2143 2144 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, 2145 "volatile-write-cache-enable", 2146 nvme->n_write_cache_enabled ? 1 : 0); 2147 2148 /* 2149 * Grab a copy of all mandatory log pages. 2150 * 2151 * TODO: should go away once user space tool exists to print logs 2152 */ 2153 nvme->n_error_log = (nvme_error_log_entry_t *) 2154 nvme_get_logpage(nvme, NVME_LOGPAGE_ERROR); 2155 nvme->n_health_log = (nvme_health_log_t *) 2156 nvme_get_logpage(nvme, NVME_LOGPAGE_HEALTH, -1); 2157 nvme->n_fwslot_log = (nvme_fwslot_log_t *) 2158 nvme_get_logpage(nvme, NVME_LOGPAGE_FWSLOT); 2159 2160 /* 2161 * Identify Namespaces 2162 */ 2163 nvme->n_namespace_count = nvme->n_idctl->id_nn; 2164 nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) * 2165 nvme->n_namespace_count, KM_SLEEP); 2166 2167 for (i = 0; i != nvme->n_namespace_count; i++) { 2168 nvme_identify_nsid_t *idns; 2169 int last_rp; 2170 2171 nvme->n_ns[i].ns_nvme = nvme; 2172 nvme->n_ns[i].ns_idns = idns = nvme_identify(nvme, i + 1); 2173 2174 if (idns == NULL) { 2175 dev_err(nvme->n_dip, CE_WARN, 2176 "!failed to identify namespace %d", i + 1); 2177 goto fail; 2178 } 2179 2180 nvme->n_ns[i].ns_id = i + 1; 2181 nvme->n_ns[i].ns_block_count = idns->id_nsize; 2182 nvme->n_ns[i].ns_block_size = 2183 1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads; 2184 nvme->n_ns[i].ns_best_block_size = nvme->n_ns[i].ns_block_size; 2185 2186 /* 2187 * Get the EUI64 if present. If not present prepare the devid 2188 * from other device data. 2189 */ 2190 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1)) 2191 bcopy(idns->id_eui64, nvme->n_ns[i].ns_eui64, 2192 sizeof (nvme->n_ns[i].ns_eui64)); 2193 2194 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 2195 if (*(uint64_t *)nvme->n_ns[i].ns_eui64 == 0) { 2196 nvme_prepare_devid(nvme, nvme->n_ns[i].ns_id); 2197 } else { 2198 /* 2199 * Until EUI64 support is tested on real hardware we 2200 * will ignore namespaces with an EUI64. This can 2201 * be overriden by setting strict-version=0 in nvme.conf 2202 */ 2203 if (nvme->n_strict_version) 2204 nvme->n_ns[i].ns_ignore = B_TRUE; 2205 } 2206 2207 /* 2208 * Find the LBA format with no metadata and the best relative 2209 * performance. A value of 3 means "degraded", 0 is best. 2210 */ 2211 last_rp = 3; 2212 for (int j = 0; j <= idns->id_nlbaf; j++) { 2213 if (idns->id_lbaf[j].lbaf_lbads == 0) 2214 break; 2215 if (idns->id_lbaf[j].lbaf_ms != 0) 2216 continue; 2217 if (idns->id_lbaf[j].lbaf_rp >= last_rp) 2218 continue; 2219 last_rp = idns->id_lbaf[j].lbaf_rp; 2220 nvme->n_ns[i].ns_best_block_size = 2221 1 << idns->id_lbaf[j].lbaf_lbads; 2222 } 2223 2224 if (nvme->n_ns[i].ns_best_block_size < nvme->n_min_block_size) 2225 nvme->n_ns[i].ns_best_block_size = 2226 nvme->n_min_block_size; 2227 2228 /* 2229 * We currently don't support namespaces that use either: 2230 * - thin provisioning 2231 * - protection information 2232 */ 2233 if (idns->id_nsfeat.f_thin || 2234 idns->id_dps.dp_pinfo) { 2235 dev_err(nvme->n_dip, CE_WARN, 2236 "!ignoring namespace %d, unsupported features: " 2237 "thin = %d, pinfo = %d", i + 1, 2238 idns->id_nsfeat.f_thin, idns->id_dps.dp_pinfo); 2239 nvme->n_ns[i].ns_ignore = B_TRUE; 2240 } 2241 } 2242 2243 /* 2244 * Try to set up MSI/MSI-X interrupts. 2245 */ 2246 if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX)) 2247 != 0) { 2248 nvme_release_interrupts(nvme); 2249 2250 nqueues = MIN(UINT16_MAX, ncpus); 2251 2252 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 2253 nqueues) != DDI_SUCCESS) && 2254 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 2255 nqueues) != DDI_SUCCESS)) { 2256 dev_err(nvme->n_dip, CE_WARN, 2257 "!failed to setup MSI/MSI-X interrupts"); 2258 goto fail; 2259 } 2260 } 2261 2262 nqueues = nvme->n_intr_cnt; 2263 2264 /* 2265 * Create I/O queue pairs. 2266 */ 2267 nvme->n_ioq_count = nvme_set_nqueues(nvme, nqueues); 2268 if (nvme->n_ioq_count == 0) { 2269 dev_err(nvme->n_dip, CE_WARN, 2270 "!failed to set number of I/O queues to %d", nqueues); 2271 goto fail; 2272 } 2273 2274 /* 2275 * Reallocate I/O queue array 2276 */ 2277 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *)); 2278 nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) * 2279 (nvme->n_ioq_count + 1), KM_SLEEP); 2280 nvme->n_ioq[0] = nvme->n_adminq; 2281 2282 /* 2283 * If we got less queues than we asked for we might as well give 2284 * some of the interrupt vectors back to the system. 2285 */ 2286 if (nvme->n_ioq_count < nqueues) { 2287 nvme_release_interrupts(nvme); 2288 2289 if (nvme_setup_interrupts(nvme, nvme->n_intr_type, 2290 nvme->n_ioq_count) != DDI_SUCCESS) { 2291 dev_err(nvme->n_dip, CE_WARN, 2292 "!failed to reduce number of interrupts"); 2293 goto fail; 2294 } 2295 } 2296 2297 /* 2298 * Alloc & register I/O queue pairs 2299 */ 2300 nvme->n_io_queue_len = 2301 MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries); 2302 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len", 2303 nvme->n_io_queue_len); 2304 2305 for (i = 1; i != nvme->n_ioq_count + 1; i++) { 2306 if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len, 2307 &nvme->n_ioq[i], i) != DDI_SUCCESS) { 2308 dev_err(nvme->n_dip, CE_WARN, 2309 "!unable to allocate I/O qpair %d", i); 2310 goto fail; 2311 } 2312 2313 if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) 2314 != DDI_SUCCESS) { 2315 dev_err(nvme->n_dip, CE_WARN, 2316 "!unable to create I/O qpair %d", i); 2317 goto fail; 2318 } 2319 } 2320 2321 /* 2322 * Post more asynchronous events commands to reduce event reporting 2323 * latency as suggested by the spec. 2324 */ 2325 for (i = 1; i != nvme->n_async_event_limit; i++) { 2326 if (nvme_async_event(nvme) != DDI_SUCCESS) { 2327 dev_err(nvme->n_dip, CE_WARN, 2328 "!failed to post async event %d", i); 2329 goto fail; 2330 } 2331 } 2332 2333 return (DDI_SUCCESS); 2334 2335 fail: 2336 (void) nvme_reset(nvme, B_FALSE); 2337 return (DDI_FAILURE); 2338 } 2339 2340 static uint_t 2341 nvme_intr(caddr_t arg1, caddr_t arg2) 2342 { 2343 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 2344 nvme_t *nvme = (nvme_t *)arg1; 2345 int inum = (int)(uintptr_t)arg2; 2346 int ccnt = 0; 2347 int qnum; 2348 nvme_cmd_t *cmd; 2349 2350 if (inum >= nvme->n_intr_cnt) 2351 return (DDI_INTR_UNCLAIMED); 2352 2353 /* 2354 * The interrupt vector a queue uses is calculated as queue_idx % 2355 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array 2356 * in steps of n_intr_cnt to process all queues using this vector. 2357 */ 2358 for (qnum = inum; 2359 qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL; 2360 qnum += nvme->n_intr_cnt) { 2361 while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) { 2362 taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq, 2363 cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent); 2364 ccnt++; 2365 } 2366 } 2367 2368 return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED); 2369 } 2370 2371 static void 2372 nvme_release_interrupts(nvme_t *nvme) 2373 { 2374 int i; 2375 2376 for (i = 0; i < nvme->n_intr_cnt; i++) { 2377 if (nvme->n_inth[i] == NULL) 2378 break; 2379 2380 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK) 2381 (void) ddi_intr_block_disable(&nvme->n_inth[i], 1); 2382 else 2383 (void) ddi_intr_disable(nvme->n_inth[i]); 2384 2385 (void) ddi_intr_remove_handler(nvme->n_inth[i]); 2386 (void) ddi_intr_free(nvme->n_inth[i]); 2387 } 2388 2389 kmem_free(nvme->n_inth, nvme->n_inth_sz); 2390 nvme->n_inth = NULL; 2391 nvme->n_inth_sz = 0; 2392 2393 nvme->n_progress &= ~NVME_INTERRUPTS; 2394 } 2395 2396 static int 2397 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs) 2398 { 2399 int nintrs, navail, count; 2400 int ret; 2401 int i; 2402 2403 if (nvme->n_intr_types == 0) { 2404 ret = ddi_intr_get_supported_types(nvme->n_dip, 2405 &nvme->n_intr_types); 2406 if (ret != DDI_SUCCESS) { 2407 dev_err(nvme->n_dip, CE_WARN, 2408 "!%s: ddi_intr_get_supported types failed", 2409 __func__); 2410 return (ret); 2411 } 2412 } 2413 2414 if ((nvme->n_intr_types & intr_type) == 0) 2415 return (DDI_FAILURE); 2416 2417 ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs); 2418 if (ret != DDI_SUCCESS) { 2419 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed", 2420 __func__); 2421 return (ret); 2422 } 2423 2424 ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail); 2425 if (ret != DDI_SUCCESS) { 2426 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed", 2427 __func__); 2428 return (ret); 2429 } 2430 2431 /* We want at most one interrupt per queue pair. */ 2432 if (navail > nqpairs) 2433 navail = nqpairs; 2434 2435 nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail; 2436 nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP); 2437 2438 ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail, 2439 &count, 0); 2440 if (ret != DDI_SUCCESS) { 2441 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed", 2442 __func__); 2443 goto fail; 2444 } 2445 2446 nvme->n_intr_cnt = count; 2447 2448 ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri); 2449 if (ret != DDI_SUCCESS) { 2450 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed", 2451 __func__); 2452 goto fail; 2453 } 2454 2455 for (i = 0; i < count; i++) { 2456 ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr, 2457 (void *)nvme, (void *)(uintptr_t)i); 2458 if (ret != DDI_SUCCESS) { 2459 dev_err(nvme->n_dip, CE_WARN, 2460 "!%s: ddi_intr_add_handler failed", __func__); 2461 goto fail; 2462 } 2463 } 2464 2465 (void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap); 2466 2467 for (i = 0; i < count; i++) { 2468 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK) 2469 ret = ddi_intr_block_enable(&nvme->n_inth[i], 1); 2470 else 2471 ret = ddi_intr_enable(nvme->n_inth[i]); 2472 2473 if (ret != DDI_SUCCESS) { 2474 dev_err(nvme->n_dip, CE_WARN, 2475 "!%s: enabling interrupt %d failed", __func__, i); 2476 goto fail; 2477 } 2478 } 2479 2480 nvme->n_intr_type = intr_type; 2481 2482 nvme->n_progress |= NVME_INTERRUPTS; 2483 2484 return (DDI_SUCCESS); 2485 2486 fail: 2487 nvme_release_interrupts(nvme); 2488 2489 return (ret); 2490 } 2491 2492 static int 2493 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg) 2494 { 2495 _NOTE(ARGUNUSED(arg)); 2496 2497 pci_ereport_post(dip, fm_error, NULL); 2498 return (fm_error->fme_status); 2499 } 2500 2501 static int 2502 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 2503 { 2504 nvme_t *nvme; 2505 int instance; 2506 int nregs; 2507 off_t regsize; 2508 int i; 2509 char name[32]; 2510 bd_ops_t l_bd_ops = nvme_bd_ops; 2511 2512 if (cmd != DDI_ATTACH) 2513 return (DDI_FAILURE); 2514 2515 instance = ddi_get_instance(dip); 2516 2517 if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS) 2518 return (DDI_FAILURE); 2519 2520 nvme = ddi_get_soft_state(nvme_state, instance); 2521 ddi_set_driver_private(dip, nvme); 2522 nvme->n_dip = dip; 2523 2524 nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 2525 DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE; 2526 nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY, 2527 dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ? 2528 B_TRUE : B_FALSE; 2529 nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 2530 DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN); 2531 nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 2532 DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN); 2533 nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 2534 DDI_PROP_DONTPASS, "async-event-limit", 2535 NVME_DEFAULT_ASYNC_EVENT_LIMIT); 2536 nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 2537 DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ? 2538 B_TRUE : B_FALSE; 2539 nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 2540 DDI_PROP_DONTPASS, "min-phys-block-size", 2541 NVME_DEFAULT_MIN_BLOCK_SIZE); 2542 2543 if (!ISP2(nvme->n_min_block_size) || 2544 (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) { 2545 dev_err(dip, CE_WARN, "!min-phys-block-size %s, " 2546 "using default %d", ISP2(nvme->n_min_block_size) ? 2547 "too low" : "not a power of 2", 2548 NVME_DEFAULT_MIN_BLOCK_SIZE); 2549 nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE; 2550 } 2551 2552 if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN) 2553 nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN; 2554 else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN) 2555 nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN; 2556 2557 if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN) 2558 nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN; 2559 2560 if (nvme->n_async_event_limit < 1) 2561 nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT; 2562 2563 nvme->n_reg_acc_attr = nvme_reg_acc_attr; 2564 nvme->n_queue_dma_attr = nvme_queue_dma_attr; 2565 nvme->n_prp_dma_attr = nvme_prp_dma_attr; 2566 nvme->n_sgl_dma_attr = nvme_sgl_dma_attr; 2567 2568 /* 2569 * Setup FMA support. 2570 */ 2571 nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip, 2572 DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable", 2573 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE | 2574 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE); 2575 2576 ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc); 2577 2578 if (nvme->n_fm_cap) { 2579 if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE) 2580 nvme->n_reg_acc_attr.devacc_attr_access = 2581 DDI_FLAGERR_ACC; 2582 2583 if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) { 2584 nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR; 2585 nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR; 2586 } 2587 2588 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) || 2589 DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 2590 pci_ereport_setup(dip); 2591 2592 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 2593 ddi_fm_handler_register(dip, nvme_fm_errcb, 2594 (void *)nvme); 2595 } 2596 2597 nvme->n_progress |= NVME_FMA_INIT; 2598 2599 /* 2600 * The spec defines several register sets. Only the controller 2601 * registers (set 1) are currently used. 2602 */ 2603 if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE || 2604 nregs < 2 || 2605 ddi_dev_regsize(dip, 1, ®size) == DDI_FAILURE) 2606 goto fail; 2607 2608 if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize, 2609 &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) { 2610 dev_err(dip, CE_WARN, "!failed to map regset 1"); 2611 goto fail; 2612 } 2613 2614 nvme->n_progress |= NVME_REGS_MAPPED; 2615 2616 /* 2617 * Create taskq for command completion. 2618 */ 2619 (void) snprintf(name, sizeof (name), "%s%d_cmd_taskq", 2620 ddi_driver_name(dip), ddi_get_instance(dip)); 2621 nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus), 2622 TASKQ_DEFAULTPRI, 0); 2623 if (nvme->n_cmd_taskq == NULL) { 2624 dev_err(dip, CE_WARN, "!failed to create cmd taskq"); 2625 goto fail; 2626 } 2627 2628 /* 2629 * Create PRP DMA cache 2630 */ 2631 (void) snprintf(name, sizeof (name), "%s%d_prp_cache", 2632 ddi_driver_name(dip), ddi_get_instance(dip)); 2633 nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t), 2634 0, nvme_prp_dma_constructor, nvme_prp_dma_destructor, 2635 NULL, (void *)nvme, NULL, 0); 2636 2637 if (nvme_init(nvme) != DDI_SUCCESS) 2638 goto fail; 2639 2640 /* 2641 * Attach the blkdev driver for each namespace. 2642 */ 2643 for (i = 0; i != nvme->n_namespace_count; i++) { 2644 if (nvme->n_ns[i].ns_ignore) 2645 continue; 2646 2647 if (!nvme->n_write_cache_present) { 2648 l_bd_ops.o_sync_cache = NULL; 2649 } 2650 2651 nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i], 2652 &l_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP); 2653 2654 if (nvme->n_ns[i].ns_bd_hdl == NULL) { 2655 dev_err(dip, CE_WARN, 2656 "!failed to get blkdev handle for namespace %d", i); 2657 goto fail; 2658 } 2659 2660 if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl) 2661 != DDI_SUCCESS) { 2662 dev_err(dip, CE_WARN, 2663 "!failed to attach blkdev handle for namespace %d", 2664 i); 2665 goto fail; 2666 } 2667 } 2668 2669 return (DDI_SUCCESS); 2670 2671 fail: 2672 /* attach successful anyway so that FMA can retire the device */ 2673 if (nvme->n_dead) 2674 return (DDI_SUCCESS); 2675 2676 (void) nvme_detach(dip, DDI_DETACH); 2677 2678 return (DDI_FAILURE); 2679 } 2680 2681 static int 2682 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 2683 { 2684 int instance, i; 2685 nvme_t *nvme; 2686 2687 if (cmd != DDI_DETACH) 2688 return (DDI_FAILURE); 2689 2690 instance = ddi_get_instance(dip); 2691 2692 nvme = ddi_get_soft_state(nvme_state, instance); 2693 2694 if (nvme == NULL) 2695 return (DDI_FAILURE); 2696 2697 if (nvme->n_ns) { 2698 for (i = 0; i != nvme->n_namespace_count; i++) { 2699 if (nvme->n_ns[i].ns_bd_hdl) { 2700 (void) bd_detach_handle( 2701 nvme->n_ns[i].ns_bd_hdl); 2702 bd_free_handle(nvme->n_ns[i].ns_bd_hdl); 2703 } 2704 2705 if (nvme->n_ns[i].ns_idns) 2706 kmem_free(nvme->n_ns[i].ns_idns, 2707 sizeof (nvme_identify_nsid_t)); 2708 if (nvme->n_ns[i].ns_devid) 2709 strfree(nvme->n_ns[i].ns_devid); 2710 } 2711 2712 kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) * 2713 nvme->n_namespace_count); 2714 } 2715 2716 if (nvme->n_progress & NVME_INTERRUPTS) 2717 nvme_release_interrupts(nvme); 2718 2719 if (nvme->n_cmd_taskq) 2720 ddi_taskq_wait(nvme->n_cmd_taskq); 2721 2722 if (nvme->n_ioq_count > 0) { 2723 for (i = 1; i != nvme->n_ioq_count + 1; i++) { 2724 if (nvme->n_ioq[i] != NULL) { 2725 /* TODO: send destroy queue commands */ 2726 nvme_free_qpair(nvme->n_ioq[i]); 2727 } 2728 } 2729 2730 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) * 2731 (nvme->n_ioq_count + 1)); 2732 } 2733 2734 if (nvme->n_prp_cache != NULL) { 2735 kmem_cache_destroy(nvme->n_prp_cache); 2736 } 2737 2738 if (nvme->n_progress & NVME_REGS_MAPPED) { 2739 nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE); 2740 (void) nvme_reset(nvme, B_FALSE); 2741 } 2742 2743 if (nvme->n_cmd_taskq) 2744 ddi_taskq_destroy(nvme->n_cmd_taskq); 2745 2746 if (nvme->n_progress & NVME_CTRL_LIMITS) 2747 sema_destroy(&nvme->n_abort_sema); 2748 2749 if (nvme->n_progress & NVME_ADMIN_QUEUE) 2750 nvme_free_qpair(nvme->n_adminq); 2751 2752 if (nvme->n_idctl) 2753 kmem_free(nvme->n_idctl, sizeof (nvme_identify_ctrl_t)); 2754 2755 if (nvme->n_progress & NVME_REGS_MAPPED) 2756 ddi_regs_map_free(&nvme->n_regh); 2757 2758 if (nvme->n_progress & NVME_FMA_INIT) { 2759 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 2760 ddi_fm_handler_unregister(nvme->n_dip); 2761 2762 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) || 2763 DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 2764 pci_ereport_teardown(nvme->n_dip); 2765 2766 ddi_fm_fini(nvme->n_dip); 2767 } 2768 2769 if (nvme->n_vendor != NULL) 2770 strfree(nvme->n_vendor); 2771 2772 if (nvme->n_product != NULL) 2773 strfree(nvme->n_product); 2774 2775 ddi_soft_state_free(nvme_state, instance); 2776 2777 return (DDI_SUCCESS); 2778 } 2779 2780 static int 2781 nvme_quiesce(dev_info_t *dip) 2782 { 2783 int instance; 2784 nvme_t *nvme; 2785 2786 instance = ddi_get_instance(dip); 2787 2788 nvme = ddi_get_soft_state(nvme_state, instance); 2789 2790 if (nvme == NULL) 2791 return (DDI_FAILURE); 2792 2793 nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE); 2794 2795 (void) nvme_reset(nvme, B_TRUE); 2796 2797 return (DDI_FAILURE); 2798 } 2799 2800 static int 2801 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer) 2802 { 2803 nvme_t *nvme = cmd->nc_nvme; 2804 int nprp_page, nprp; 2805 uint64_t *prp; 2806 2807 if (xfer->x_ndmac == 0) 2808 return (DDI_FAILURE); 2809 2810 cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress; 2811 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac); 2812 2813 if (xfer->x_ndmac == 1) { 2814 cmd->nc_sqe.sqe_dptr.d_prp[1] = 0; 2815 return (DDI_SUCCESS); 2816 } else if (xfer->x_ndmac == 2) { 2817 cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress; 2818 return (DDI_SUCCESS); 2819 } 2820 2821 xfer->x_ndmac--; 2822 2823 nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1; 2824 ASSERT(nprp_page > 0); 2825 nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page; 2826 2827 /* 2828 * We currently don't support chained PRPs and set up our DMA 2829 * attributes to reflect that. If we still get an I/O request 2830 * that needs a chained PRP something is very wrong. 2831 */ 2832 VERIFY(nprp == 1); 2833 2834 cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP); 2835 bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len); 2836 2837 cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress; 2838 2839 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 2840 for (prp = (uint64_t *)cmd->nc_dma->nd_memp; 2841 xfer->x_ndmac > 0; 2842 prp++, xfer->x_ndmac--) { 2843 *prp = xfer->x_dmac.dmac_laddress; 2844 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac); 2845 } 2846 2847 (void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len, 2848 DDI_DMA_SYNC_FORDEV); 2849 return (DDI_SUCCESS); 2850 } 2851 2852 static nvme_cmd_t * 2853 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer) 2854 { 2855 nvme_t *nvme = ns->ns_nvme; 2856 nvme_cmd_t *cmd; 2857 2858 /* 2859 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep. 2860 */ 2861 cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ? 2862 KM_NOSLEEP : KM_SLEEP); 2863 2864 if (cmd == NULL) 2865 return (NULL); 2866 2867 cmd->nc_sqe.sqe_opc = opc; 2868 cmd->nc_callback = nvme_bd_xfer_done; 2869 cmd->nc_xfer = xfer; 2870 2871 switch (opc) { 2872 case NVME_OPC_NVM_WRITE: 2873 case NVME_OPC_NVM_READ: 2874 VERIFY(xfer->x_nblks <= 0x10000); 2875 2876 cmd->nc_sqe.sqe_nsid = ns->ns_id; 2877 2878 cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu; 2879 cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32); 2880 cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1); 2881 2882 if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS) 2883 goto fail; 2884 break; 2885 2886 case NVME_OPC_NVM_FLUSH: 2887 cmd->nc_sqe.sqe_nsid = ns->ns_id; 2888 break; 2889 2890 default: 2891 goto fail; 2892 } 2893 2894 return (cmd); 2895 2896 fail: 2897 nvme_free_cmd(cmd); 2898 return (NULL); 2899 } 2900 2901 static void 2902 nvme_bd_xfer_done(void *arg) 2903 { 2904 nvme_cmd_t *cmd = arg; 2905 bd_xfer_t *xfer = cmd->nc_xfer; 2906 int error = 0; 2907 2908 error = nvme_check_cmd_status(cmd); 2909 nvme_free_cmd(cmd); 2910 2911 bd_xfer_done(xfer, error); 2912 } 2913 2914 static void 2915 nvme_bd_driveinfo(void *arg, bd_drive_t *drive) 2916 { 2917 nvme_namespace_t *ns = arg; 2918 nvme_t *nvme = ns->ns_nvme; 2919 2920 /* 2921 * blkdev maintains one queue size per instance (namespace), 2922 * but all namespace share the I/O queues. 2923 * TODO: need to figure out a sane default, or use per-NS I/O queues, 2924 * or change blkdev to handle EAGAIN 2925 */ 2926 drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len 2927 / nvme->n_namespace_count; 2928 2929 /* 2930 * d_maxxfer is not set, which means the value is taken from the DMA 2931 * attributes specified to bd_alloc_handle. 2932 */ 2933 2934 drive->d_removable = B_FALSE; 2935 drive->d_hotpluggable = B_FALSE; 2936 2937 bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64)); 2938 drive->d_target = ns->ns_id; 2939 drive->d_lun = 0; 2940 2941 drive->d_model = nvme->n_idctl->id_model; 2942 drive->d_model_len = sizeof (nvme->n_idctl->id_model); 2943 drive->d_vendor = nvme->n_vendor; 2944 drive->d_vendor_len = strlen(nvme->n_vendor); 2945 drive->d_product = nvme->n_product; 2946 drive->d_product_len = strlen(nvme->n_product); 2947 drive->d_serial = nvme->n_idctl->id_serial; 2948 drive->d_serial_len = sizeof (nvme->n_idctl->id_serial); 2949 drive->d_revision = nvme->n_idctl->id_fwrev; 2950 drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev); 2951 } 2952 2953 static int 2954 nvme_bd_mediainfo(void *arg, bd_media_t *media) 2955 { 2956 nvme_namespace_t *ns = arg; 2957 2958 media->m_nblks = ns->ns_block_count; 2959 media->m_blksize = ns->ns_block_size; 2960 media->m_readonly = B_FALSE; 2961 media->m_solidstate = B_TRUE; 2962 2963 media->m_pblksize = ns->ns_best_block_size; 2964 2965 return (0); 2966 } 2967 2968 static int 2969 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc) 2970 { 2971 nvme_t *nvme = ns->ns_nvme; 2972 nvme_cmd_t *cmd; 2973 2974 if (nvme->n_dead) 2975 return (EIO); 2976 2977 /* No polling for now */ 2978 if (xfer->x_flags & BD_XFER_POLL) 2979 return (EIO); 2980 2981 cmd = nvme_create_nvm_cmd(ns, opc, xfer); 2982 if (cmd == NULL) 2983 return (ENOMEM); 2984 2985 cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1; 2986 ASSERT(cmd->nc_sqid <= nvme->n_ioq_count); 2987 2988 if (nvme_submit_cmd(nvme->n_ioq[cmd->nc_sqid], cmd) 2989 != DDI_SUCCESS) 2990 return (EAGAIN); 2991 2992 return (0); 2993 } 2994 2995 static int 2996 nvme_bd_read(void *arg, bd_xfer_t *xfer) 2997 { 2998 nvme_namespace_t *ns = arg; 2999 3000 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ)); 3001 } 3002 3003 static int 3004 nvme_bd_write(void *arg, bd_xfer_t *xfer) 3005 { 3006 nvme_namespace_t *ns = arg; 3007 3008 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE)); 3009 } 3010 3011 static int 3012 nvme_bd_sync(void *arg, bd_xfer_t *xfer) 3013 { 3014 nvme_namespace_t *ns = arg; 3015 3016 if (ns->ns_nvme->n_dead) 3017 return (EIO); 3018 3019 /* 3020 * If the volatile write cache is not present or not enabled the FLUSH 3021 * command is a no-op, so we can take a shortcut here. 3022 */ 3023 if (!ns->ns_nvme->n_write_cache_present) { 3024 bd_xfer_done(xfer, ENOTSUP); 3025 return (0); 3026 } 3027 3028 if (!ns->ns_nvme->n_write_cache_enabled) { 3029 bd_xfer_done(xfer, 0); 3030 return (0); 3031 } 3032 3033 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH)); 3034 } 3035 3036 static int 3037 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid) 3038 { 3039 nvme_namespace_t *ns = arg; 3040 3041 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 3042 if (*(uint64_t *)ns->ns_eui64 != 0) { 3043 return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN, 3044 sizeof (ns->ns_eui64), ns->ns_eui64, devid)); 3045 } else { 3046 return (ddi_devid_init(devinfo, DEVID_ENCAP, 3047 strlen(ns->ns_devid), ns->ns_devid, devid)); 3048 } 3049 }