1 /*
   2  * This file and its contents are supplied under the terms of the
   3  * Common Development and Distribution License ("CDDL"), version 1.0.
   4  * You may only use this file in accordance with the terms of version
   5  * 1.0 of the CDDL.
   6  *
   7  * A full copy of the text of the CDDL should have accompanied this
   8  * source.  A copy of the CDDL is also available via the Internet at
   9  * http://www.illumos.org/license/CDDL.
  10  */
  11 
  12 /*
  13  * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
  14  * Copyright 2016 Tegile Systems, Inc. All rights reserved.
  15  * Copyright (c) 2016 The MathWorks, Inc.  All rights reserved.
  16  */
  17 
  18 /*
  19  * blkdev driver for NVMe compliant storage devices
  20  *
  21  * This driver was written to conform to version 1.0e of the NVMe specification.
  22  * It may work with newer versions, but that is completely untested and disabled
  23  * by default.
  24  *
  25  * The driver has only been tested on x86 systems and will not work on big-
  26  * endian systems without changes to the code accessing registers and data
  27  * structures used by the hardware.
  28  *
  29  *
  30  * Interrupt Usage:
  31  *
  32  * The driver will use a FIXED interrupt while configuring the device as the
  33  * specification requires. Later in the attach process it will switch to MSI-X
  34  * or MSI if supported. The driver wants to have one interrupt vector per CPU,
  35  * but it will work correctly if less are available. Interrupts can be shared
  36  * by queues, the interrupt handler will iterate through the I/O queue array by
  37  * steps of n_intr_cnt. Usually only the admin queue will share an interrupt
  38  * with one I/O queue. The interrupt handler will retrieve completed commands
  39  * from all queues sharing an interrupt vector and will post them to a taskq
  40  * for completion processing.
  41  *
  42  *
  43  * Command Processing:
  44  *
  45  * NVMe devices can have up to 65536 I/O queue pairs, with each queue holding up
  46  * to 65536 I/O commands. The driver will configure one I/O queue pair per
  47  * available interrupt vector, with the queue length usually much smaller than
  48  * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
  49  * interrupt vectors will be used.
  50  *
  51  * Additionally the hardware provides a single special admin queue pair that can
  52  * hold up to 4096 admin commands.
  53  *
  54  * From the hardware perspective both queues of a queue pair are independent,
  55  * but they share some driver state: the command array (holding pointers to
  56  * commands currently being processed by the hardware) and the active command
  57  * counter. Access to the submission side of a queue pair and the shared state
  58  * is protected by nq_mutex. The completion side of a queue pair does not need
  59  * that protection apart from its access to the shared state; it is called only
  60  * in the interrupt handler which does not run concurrently for the same
  61  * interrupt vector.
  62  *
  63  * When a command is submitted to a queue pair the active command counter is
  64  * incremented and a pointer to the command is stored in the command array. The
  65  * array index is used as command identifier (CID) in the submission queue
  66  * entry. Some commands may take a very long time to complete, and if the queue
  67  * wraps around in that time a submission may find the next array slot to still
  68  * be used by a long-running command. In this case the array is sequentially
  69  * searched for the next free slot. The length of the command array is the same
  70  * as the configured queue length.
  71  *
  72  *
  73  * Namespace Support:
  74  *
  75  * NVMe devices can have multiple namespaces, each being a independent data
  76  * store. The driver supports multiple namespaces and creates a blkdev interface
  77  * for each namespace found. Namespaces can have various attributes to support
  78  * thin provisioning and protection information. This driver does not support
  79  * any of this and ignores namespaces that have these attributes.
  80  *
  81  *
  82  * Blkdev Interface:
  83  *
  84  * This driver uses blkdev to do all the heavy lifting involved with presenting
  85  * a disk device to the system. As a result, the processing of I/O requests is
  86  * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
  87  * setup, and splitting of transfers into manageable chunks.
  88  *
  89  * I/O requests coming in from blkdev are turned into NVM commands and posted to
  90  * an I/O queue. The queue is selected by taking the CPU id modulo the number of
  91  * queues. There is currently no timeout handling of I/O commands.
  92  *
  93  * Blkdev also supports querying device/media information and generating a
  94  * devid. The driver reports the best block size as determined by the namespace
  95  * format back to blkdev as physical block size to support partition and block
  96  * alignment. The devid is composed using the device vendor ID, model number,
  97  * serial number, and the namespace ID.
  98  *
  99  *
 100  * Error Handling:
 101  *
 102  * Error handling is currently limited to detecting fatal hardware errors,
 103  * either by asynchronous events, or synchronously through command status or
 104  * admin command timeouts. In case of severe errors the device is fenced off,
 105  * all further requests will return EIO. FMA is then called to fault the device.
 106  *
 107  * The hardware has a limit for outstanding asynchronous event requests. Before
 108  * this limit is known the driver assumes it is at least 1 and posts a single
 109  * asynchronous request. Later when the limit is known more asynchronous event
 110  * requests are posted to allow quicker reception of error information. When an
 111  * asynchronous event is posted by the hardware the driver will parse the error
 112  * status fields and log information or fault the device, depending on the
 113  * severity of the asynchronous event. The asynchronous event request is then
 114  * reused and posted to the admin queue again.
 115  *
 116  * On command completion the command status is checked for errors. In case of
 117  * errors indicating a driver bug the driver panics. Almost all other error
 118  * status values just cause EIO to be returned.
 119  *
 120  * Command timeouts are currently detected for all admin commands except
 121  * asynchronous event requests. If a command times out and the hardware appears
 122  * to be healthy the driver attempts to abort the command. If this fails the
 123  * driver assumes the device to be dead, fences it off, and calls FMA to retire
 124  * it. In general admin commands are issued at attach time only. No timeout
 125  * handling of normal I/O commands is presently done.
 126  *
 127  * In some cases it may be possible that the ABORT command times out, too. In
 128  * that case the device is also declared dead and fenced off.
 129  *
 130  *
 131  * Quiesce / Fast Reboot:
 132  *
 133  * The driver currently does not support fast reboot. A quiesce(9E) entry point
 134  * is still provided which is used to send a shutdown notification to the
 135  * device.
 136  *
 137  *
 138  * Driver Configuration:
 139  *
 140  * The following driver properties can be changed to control some aspects of the
 141  * drivers operation:
 142  * - strict-version: can be set to 0 to allow devices conforming to newer
 143  *   versions to be used
 144  * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
 145  *   specific command status as a fatal error leading device faulting
 146  * - admin-queue-len: the maximum length of the admin queue (16-4096)
 147  * - io-queue-len: the maximum length of the I/O queues (16-65536)
 148  * - async-event-limit: the maximum number of asynchronous event requests to be
 149  *   posted by the driver
 150  *
 151  *
 152  * TODO:
 153  * - figure out sane default for I/O queue depth reported to blkdev
 154  * - polled I/O support to support kernel core dumping
 155  * - FMA handling of media errors
 156  * - support for the Volatile Write Cache
 157  * - support for devices supporting very large I/O requests using chained PRPs
 158  * - support for querying log pages from user space
 159  * - support for configuring hardware parameters like interrupt coalescing
 160  * - support for media formatting and hard partitioning into namespaces
 161  * - support for big-endian systems
 162  * - support for fast reboot
 163  */
 164 
 165 #include <sys/byteorder.h>
 166 #ifdef _BIG_ENDIAN
 167 #error nvme driver needs porting for big-endian platforms
 168 #endif
 169 
 170 #include <sys/modctl.h>
 171 #include <sys/conf.h>
 172 #include <sys/devops.h>
 173 #include <sys/ddi.h>
 174 #include <sys/sunddi.h>
 175 #include <sys/bitmap.h>
 176 #include <sys/sysmacros.h>
 177 #include <sys/param.h>
 178 #include <sys/varargs.h>
 179 #include <sys/cpuvar.h>
 180 #include <sys/disp.h>
 181 #include <sys/blkdev.h>
 182 #include <sys/atomic.h>
 183 #include <sys/archsystm.h>
 184 #include <sys/sata/sata_hba.h>
 185 #include <sys/time.h>
 186 
 187 #include "nvme_reg.h"
 188 #include "nvme_var.h"
 189 
 190 
 191 /* NVMe spec version supported */
 192 static const int nvme_version_major = 1;
 193 static const int nvme_version_minor = 0;
 194 
 195 /* tunable for admin command timeout in seconds, default is 1s */
 196 static volatile int nvme_admin_cmd_timeout = 1;
 197 
 198 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
 199 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
 200 static int nvme_quiesce(dev_info_t *);
 201 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
 202 static int nvme_setup_interrupts(nvme_t *, int, int);
 203 static void nvme_release_interrupts(nvme_t *);
 204 static uint_t nvme_intr(caddr_t, caddr_t);
 205 
 206 static void nvme_shutdown(nvme_t *, int, boolean_t);
 207 static boolean_t nvme_reset(nvme_t *, boolean_t);
 208 static int nvme_init(nvme_t *);
 209 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
 210 static void nvme_free_cmd(nvme_cmd_t *);
 211 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
 212     bd_xfer_t *);
 213 static int nvme_admin_cmd(nvme_cmd_t *, int);
 214 static int nvme_submit_cmd(nvme_qpair_t *, nvme_cmd_t *);
 215 static int nvme_process_cq_cmds(nvme_t *, nvme_qpair_t *);
 216 static boolean_t nvme_wait_cmd(nvme_cmd_t *, uint_t);
 217 static void nvme_wakeup_cmd(void *);
 218 static void nvme_async_event_task(void *);
 219 
 220 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
 221 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
 222 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
 223 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
 224 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
 225 static inline int nvme_check_cmd_status(nvme_cmd_t *);
 226 
 227 static void nvme_abort_cmd(nvme_cmd_t *);
 228 static int nvme_async_event(nvme_t *);
 229 static void *nvme_get_logpage(nvme_t *, uint8_t, ...);
 230 static void *nvme_identify(nvme_t *, uint32_t);
 231 static int nvme_set_nqueues(nvme_t *, uint16_t);
 232 
 233 static void nvme_free_dma(nvme_dma_t *);
 234 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
 235     nvme_dma_t **);
 236 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
 237     nvme_dma_t **);
 238 static void nvme_free_qpair(nvme_qpair_t *);
 239 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int);
 240 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
 241 
 242 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
 243 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
 244 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
 245 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
 246 
 247 static boolean_t nvme_check_regs_hdl(nvme_t *);
 248 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
 249 
 250 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
 251 
 252 static void nvme_bd_xfer_done(void *);
 253 static void nvme_bd_driveinfo(void *, bd_drive_t *);
 254 static int nvme_bd_mediainfo(void *, bd_media_t *);
 255 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
 256 static int nvme_bd_read(void *, bd_xfer_t *);
 257 static int nvme_bd_write(void *, bd_xfer_t *);
 258 static int nvme_bd_sync(void *, bd_xfer_t *);
 259 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
 260 
 261 static void nvme_prepare_devid(nvme_t *, uint32_t);
 262 
 263 static void nvme_intr_monitor(void *arg);
 264 
 265 static void *nvme_state;
 266 static kmem_cache_t *nvme_cmd_cache;
 267 
 268 static list_t nvme_qp_list;
 269 static kmutex_t nvme_global_mutex;
 270 static ddi_periodic_t nvme_cyclic;
 271 int nvme_cyclic_seconds = 5;
 272 hrtime_t nvme_intr_timeout_ns = 3 * NANOSEC;
 273 uint64_t nvme_intr_timeouts = 0;
 274 boolean_t nvme_enable_intr_monitoring = B_TRUE;
 275 
 276 /*
 277  * DMA attributes for queue DMA memory
 278  *
 279  * Queue DMA memory must be page aligned. The maximum length of a queue is
 280  * 65536 entries, and an entry can be 64 bytes long.
 281  */
 282 static ddi_dma_attr_t nvme_queue_dma_attr = {
 283         .dma_attr_version       = DMA_ATTR_V0,
 284         .dma_attr_addr_lo       = 0,
 285         .dma_attr_addr_hi       = 0xffffffffffffffffULL,
 286         .dma_attr_count_max     = (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
 287         .dma_attr_align         = 0x1000,
 288         .dma_attr_burstsizes    = 0x7ff,
 289         .dma_attr_minxfer       = 0x1000,
 290         .dma_attr_maxxfer       = (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
 291         .dma_attr_seg           = 0xffffffffffffffffULL,
 292         .dma_attr_sgllen        = 1,
 293         .dma_attr_granular      = 1,
 294         .dma_attr_flags         = 0,
 295 };
 296 
 297 /*
 298  * DMA attributes for transfers using Physical Region Page (PRP) entries
 299  *
 300  * A PRP entry describes one page of DMA memory using the page size specified
 301  * in the controller configuration's memory page size register (CC.MPS). It uses
 302  * a 64bit base address aligned to this page size. There is no limitation on
 303  * chaining PRPs together for arbitrarily large DMA transfers.
 304  */
 305 static ddi_dma_attr_t nvme_prp_dma_attr = {
 306         .dma_attr_version       = DMA_ATTR_V0,
 307         .dma_attr_addr_lo       = 0,
 308         .dma_attr_addr_hi       = 0xffffffffffffffffULL,
 309         .dma_attr_count_max     = 0xfff,
 310         .dma_attr_align         = 0x1000,
 311         .dma_attr_burstsizes    = 0x7ff,
 312         .dma_attr_minxfer       = 0x1000,
 313         .dma_attr_maxxfer       = 0x1000,
 314         .dma_attr_seg           = 0xfff,
 315         .dma_attr_sgllen        = -1,
 316         .dma_attr_granular      = 1,
 317         .dma_attr_flags         = 0,
 318 };
 319 
 320 /*
 321  * DMA attributes for transfers using scatter/gather lists
 322  *
 323  * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
 324  * 32bit length field. SGL Segment and SGL Last Segment entries require the
 325  * length to be a multiple of 16 bytes.
 326  */
 327 static ddi_dma_attr_t nvme_sgl_dma_attr = {
 328         .dma_attr_version       = DMA_ATTR_V0,
 329         .dma_attr_addr_lo       = 0,
 330         .dma_attr_addr_hi       = 0xffffffffffffffffULL,
 331         .dma_attr_count_max     = 0xffffffffUL,
 332         .dma_attr_align         = 1,
 333         .dma_attr_burstsizes    = 0x7ff,
 334         .dma_attr_minxfer       = 0x10,
 335         .dma_attr_maxxfer       = 0xfffffffffULL,
 336         .dma_attr_seg           = 0xffffffffffffffffULL,
 337         .dma_attr_sgllen        = -1,
 338         .dma_attr_granular      = 0x10,
 339         .dma_attr_flags         = 0
 340 };
 341 
 342 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
 343         .devacc_attr_version    = DDI_DEVICE_ATTR_V0,
 344         .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
 345         .devacc_attr_dataorder  = DDI_STRICTORDER_ACC
 346 };
 347 
 348 static struct dev_ops nvme_dev_ops = {
 349         .devo_rev       = DEVO_REV,
 350         .devo_refcnt    = 0,
 351         .devo_getinfo   = ddi_no_info,
 352         .devo_identify  = nulldev,
 353         .devo_probe     = nulldev,
 354         .devo_attach    = nvme_attach,
 355         .devo_detach    = nvme_detach,
 356         .devo_reset     = nodev,
 357         .devo_cb_ops    = NULL,
 358         .devo_bus_ops   = NULL,
 359         .devo_power     = NULL,
 360         .devo_quiesce   = nvme_quiesce,
 361 };
 362 
 363 static struct modldrv nvme_modldrv = {
 364         .drv_modops     = &mod_driverops,
 365         .drv_linkinfo   = "NVMe v1.0e",
 366         .drv_dev_ops    = &nvme_dev_ops
 367 };
 368 
 369 static struct modlinkage nvme_modlinkage = {
 370         .ml_rev         = MODREV_1,
 371         .ml_linkage     = { &nvme_modldrv, NULL }
 372 };
 373 
 374 static bd_ops_t nvme_bd_ops = {
 375         .o_version      = BD_OPS_VERSION_0,
 376         .o_drive_info   = nvme_bd_driveinfo,
 377         .o_media_info   = nvme_bd_mediainfo,
 378         .o_devid_init   = nvme_bd_devid,
 379         .o_sync_cache   = nvme_bd_sync,
 380         .o_read         = nvme_bd_read,
 381         .o_write        = nvme_bd_write,
 382 };
 383 
 384 int
 385 _init(void)
 386 {
 387         int error;
 388 
 389         error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
 390         if (error != DDI_SUCCESS)
 391                 return (error);
 392 
 393         nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
 394             sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
 395 
 396         mutex_init(&nvme_global_mutex, NULL, MUTEX_DRIVER, 0);
 397 
 398         list_create(&nvme_qp_list, sizeof (nvme_qpair_t),
 399             offsetof(nvme_qpair_t, nq_list_node));
 400 
 401         nvme_cyclic = ddi_periodic_add(nvme_intr_monitor, NULL,
 402             NANOSEC * nvme_cyclic_seconds, DDI_IPL_0);
 403 
 404         bd_mod_init(&nvme_dev_ops);
 405 
 406         error = mod_install(&nvme_modlinkage);
 407         if (error != DDI_SUCCESS) {
 408                 ddi_soft_state_fini(&nvme_state);
 409                 bd_mod_fini(&nvme_dev_ops);
 410         }
 411 
 412         return (error);
 413 }
 414 
 415 int
 416 _fini(void)
 417 {
 418         int error;
 419 
 420         error = mod_remove(&nvme_modlinkage);
 421         if (error == DDI_SUCCESS) {
 422                 ddi_soft_state_fini(&nvme_state);
 423                 kmem_cache_destroy(nvme_cmd_cache);
 424                 if (nvme_cyclic != NULL) {
 425                         ddi_periodic_delete(nvme_cyclic);
 426                         nvme_cyclic = NULL;
 427                 }
 428                 mutex_destroy(&nvme_global_mutex);
 429                 bd_mod_fini(&nvme_dev_ops);
 430         }
 431 
 432         return (error);
 433 }
 434 
 435 int
 436 _info(struct modinfo *modinfop)
 437 {
 438         return (mod_info(&nvme_modlinkage, modinfop));
 439 }
 440 
 441 static inline void
 442 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
 443 {
 444         ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
 445 
 446         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 447         ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
 448 }
 449 
 450 static inline void
 451 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
 452 {
 453         ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
 454 
 455         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 456         ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
 457 }
 458 
 459 static inline uint64_t
 460 nvme_get64(nvme_t *nvme, uintptr_t reg)
 461 {
 462         uint64_t val;
 463 
 464         ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
 465 
 466         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 467         val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
 468 
 469         return (val);
 470 }
 471 
 472 static inline uint32_t
 473 nvme_get32(nvme_t *nvme, uintptr_t reg)
 474 {
 475         uint32_t val;
 476 
 477         ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
 478 
 479         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 480         val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
 481 
 482         return (val);
 483 }
 484 
 485 static boolean_t
 486 nvme_check_regs_hdl(nvme_t *nvme)
 487 {
 488         ddi_fm_error_t error;
 489 
 490         ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
 491 
 492         if (error.fme_status != DDI_FM_OK)
 493                 return (B_TRUE);
 494 
 495         return (B_FALSE);
 496 }
 497 
 498 static boolean_t
 499 nvme_check_dma_hdl(nvme_dma_t *dma)
 500 {
 501         ddi_fm_error_t error;
 502 
 503         if (dma == NULL)
 504                 return (B_FALSE);
 505 
 506         ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
 507 
 508         if (error.fme_status != DDI_FM_OK)
 509                 return (B_TRUE);
 510 
 511         return (B_FALSE);
 512 }
 513 
 514 static void
 515 nvme_free_dma(nvme_dma_t *dma)
 516 {
 517         if (dma->nd_dmah != NULL)
 518                 (void) ddi_dma_unbind_handle(dma->nd_dmah);
 519         if (dma->nd_acch != NULL)
 520                 ddi_dma_mem_free(&dma->nd_acch);
 521         if (dma->nd_dmah != NULL)
 522                 ddi_dma_free_handle(&dma->nd_dmah);
 523         kmem_free(dma, sizeof (nvme_dma_t));
 524 }
 525 
 526 static int
 527 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
 528     ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
 529 {
 530         nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
 531 
 532         if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
 533             &dma->nd_dmah) != DDI_SUCCESS) {
 534                 /*
 535                  * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
 536                  * the only other possible error is DDI_DMA_BADATTR which
 537                  * indicates a driver bug which should cause a panic.
 538                  */
 539                 dev_err(nvme->n_dip, CE_PANIC,
 540                     "!failed to get DMA handle, check DMA attributes");
 541                 return (DDI_FAILURE);
 542         }
 543 
 544         /*
 545          * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
 546          * or the flags are conflicting, which isn't the case here.
 547          */
 548         (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
 549             DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
 550             &dma->nd_len, &dma->nd_acch);
 551 
 552         if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
 553             dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
 554             &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
 555                 dev_err(nvme->n_dip, CE_WARN,
 556                     "!failed to bind DMA memory");
 557                 atomic_inc_32(&nvme->n_dma_bind_err);
 558                 *ret = NULL;
 559                 nvme_free_dma(dma);
 560                 return (DDI_FAILURE);
 561         }
 562 
 563         bzero(dma->nd_memp, dma->nd_len);
 564 
 565         *ret = dma;
 566         return (DDI_SUCCESS);
 567 }
 568 
 569 static int
 570 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
 571     uint_t flags, nvme_dma_t **dma)
 572 {
 573         uint32_t len = nentry * qe_len;
 574         ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
 575 
 576         len = roundup(len, nvme->n_pagesize);
 577 
 578         q_dma_attr.dma_attr_minxfer = len;
 579 
 580         if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
 581             != DDI_SUCCESS) {
 582                 dev_err(nvme->n_dip, CE_WARN,
 583                     "!failed to get DMA memory for queue");
 584                 goto fail;
 585         }
 586 
 587         if ((*dma)->nd_ncookie != 1) {
 588                 dev_err(nvme->n_dip, CE_WARN,
 589                     "!got too many cookies for queue DMA");
 590                 goto fail;
 591         }
 592 
 593         return (DDI_SUCCESS);
 594 
 595 fail:
 596         if (*dma) {
 597                 nvme_free_dma(*dma);
 598                 *dma = NULL;
 599         }
 600 
 601         return (DDI_FAILURE);
 602 }
 603 
 604 static void
 605 nvme_free_qpair(nvme_qpair_t *qp)
 606 {
 607         int i;
 608 
 609         mutex_destroy(&qp->nq_mutex);
 610 
 611         if (qp->nq_sqdma != NULL)
 612                 nvme_free_dma(qp->nq_sqdma);
 613         if (qp->nq_cqdma != NULL)
 614                 nvme_free_dma(qp->nq_cqdma);
 615 
 616         if (qp->nq_active_cmds > 0)
 617                 for (i = 0; i != qp->nq_nentry; i++)
 618                         if (qp->nq_cmd[i] != NULL)
 619                                 nvme_free_cmd(qp->nq_cmd[i]);
 620 
 621         if (qp->nq_cmd != NULL)
 622                 kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
 623 
 624         kmem_free(qp, sizeof (nvme_qpair_t));
 625 }
 626 
 627 static int
 628 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
 629     int idx)
 630 {
 631         nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
 632 
 633         mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
 634             DDI_INTR_PRI(nvme->n_intr_pri));
 635 
 636         if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
 637             DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
 638                 goto fail;
 639 
 640         if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
 641             DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS)
 642                 goto fail;
 643 
 644         qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
 645         qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp;
 646         qp->nq_nentry = nentry;
 647 
 648         qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
 649         qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx);
 650 
 651         qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
 652         qp->nq_next_cmd = 0;
 653 
 654         *nqp = qp;
 655         return (DDI_SUCCESS);
 656 
 657 fail:
 658         nvme_free_qpair(qp);
 659         *nqp = NULL;
 660 
 661         return (DDI_FAILURE);
 662 }
 663 
 664 static nvme_cmd_t *
 665 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
 666 {
 667         nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
 668 
 669         if (cmd == NULL)
 670                 return (cmd);
 671 
 672         bzero(cmd, sizeof (nvme_cmd_t));
 673 
 674         cmd->nc_nvme = nvme;
 675 
 676         mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
 677             DDI_INTR_PRI(nvme->n_intr_pri));
 678         cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
 679 
 680         return (cmd);
 681 }
 682 
 683 static void
 684 nvme_free_cmd(nvme_cmd_t *cmd)
 685 {
 686         if (cmd->nc_dma) {
 687                 nvme_free_dma(cmd->nc_dma);
 688                 cmd->nc_dma = NULL;
 689         }
 690 
 691         cv_destroy(&cmd->nc_cv);
 692         mutex_destroy(&cmd->nc_mutex);
 693 
 694         kmem_cache_free(nvme_cmd_cache, cmd);
 695 }
 696 
 697 static int
 698 nvme_submit_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
 699 {
 700         nvme_reg_sqtdbl_t tail = { 0 };
 701 
 702         mutex_enter(&qp->nq_mutex);
 703 
 704         if (qp->nq_active_cmds == qp->nq_nentry) {
 705                 mutex_exit(&qp->nq_mutex);
 706                 return (DDI_FAILURE);
 707         }
 708 
 709         cmd->nc_completed = B_FALSE;
 710 
 711         /*
 712          * Try to insert the cmd into the active cmd array at the nq_next_cmd
 713          * slot. If the slot is already occupied advance to the next slot and
 714          * try again. This can happen for long running commands like async event
 715          * requests.
 716          */
 717         while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
 718                 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
 719         qp->nq_cmd[qp->nq_next_cmd] = cmd;
 720 
 721         qp->nq_active_cmds++;
 722 
 723         cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
 724         bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
 725         (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
 726             sizeof (nvme_sqe_t) * qp->nq_sqtail,
 727             sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
 728         qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
 729 
 730         tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
 731         nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
 732 
 733         if (nvme_enable_intr_monitoring)
 734                 qp->nq_ts = gethrtime();
 735         mutex_exit(&qp->nq_mutex);
 736 
 737         return (DDI_SUCCESS);
 738 }
 739 
 740 static int
 741 nvme_process_cq_cmds(nvme_t *nvme, nvme_qpair_t *qp)
 742 {
 743         nvme_reg_cqhdbl_t head = { 0 };
 744 
 745         nvme_cqe_t *cqe;
 746         nvme_cmd_t *cmd;
 747         int cnt_cmds = 0;
 748 
 749         (void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0,
 750             sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL);
 751 
 752         cqe = &qp->nq_cq[qp->nq_cqhead];
 753         /* Check phase tag of CQE. Hardware inverts it for new entries. */
 754         if (cqe->cqe_sf.sf_p == qp->nq_phase)
 755                 return (cnt_cmds);
 756 
 757         mutex_enter(&qp->nq_mutex);
 758         while (cqe->cqe_sf.sf_p != qp->nq_phase) {
 759                 ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp);
 760                 ASSERT(cqe->cqe_cid < qp->nq_nentry);
 761 
 762                 cmd = qp->nq_cmd[cqe->cqe_cid];
 763                 qp->nq_cmd[cqe->cqe_cid] = NULL;
 764                 qp->nq_active_cmds--;
 765 
 766                 ASSERT(cmd != NULL);
 767                 ASSERT(cmd->nc_nvme == nvme);
 768                 ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
 769                 ASSERT(cmd->nc_sqe.sqe_cid == cqe->cqe_cid);
 770                 bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
 771 
 772                 qp->nq_sqhead = cqe->cqe_sqhd;
 773 
 774                 qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry;
 775 
 776                 /* Toggle phase on wrap-around. */
 777                 if (qp->nq_cqhead == 0)
 778                         qp->nq_phase = qp->nq_phase ? 0 : 1;
 779                 taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq,
 780                      cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
 781                 cnt_cmds++;
 782                 cqe = &qp->nq_cq[qp->nq_cqhead];
 783         }
 784 
 785         if (cnt_cmds != 0) {
 786                 head.b.cqhdbl_cqh = qp->nq_cqhead;
 787                 nvme_put32(nvme, qp->nq_cqhdbl, head.r);
 788                 if (nvme_enable_intr_monitoring)
 789                         qp->nq_ts = gethrtime();
 790         }
 791 
 792         mutex_exit(&qp->nq_mutex);
 793 
 794         return (cnt_cmds);
 795 }
 796 
 797 static int
 798 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
 799 {
 800         nvme_cqe_t *cqe = &cmd->nc_cqe;
 801 
 802         dev_err(cmd->nc_nvme->n_dip, CE_WARN,
 803             "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
 804             "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
 805             cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
 806             cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
 807 
 808         bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
 809 
 810         if (cmd->nc_nvme->n_strict_version) {
 811                 cmd->nc_nvme->n_dead = B_TRUE;
 812                 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
 813         }
 814 
 815         return (EIO);
 816 }
 817 
 818 static int
 819 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
 820 {
 821         nvme_cqe_t *cqe = &cmd->nc_cqe;
 822 
 823         dev_err(cmd->nc_nvme->n_dip, CE_WARN,
 824             "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
 825             "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
 826             cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
 827             cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
 828         if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
 829                 cmd->nc_nvme->n_dead = B_TRUE;
 830                 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
 831         }
 832 
 833         return (EIO);
 834 }
 835 
 836 static int
 837 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
 838 {
 839         nvme_cqe_t *cqe = &cmd->nc_cqe;
 840 
 841         switch (cqe->cqe_sf.sf_sc) {
 842         case NVME_CQE_SC_INT_NVM_WRITE:
 843                 /* write fail */
 844                 /* TODO: post ereport */
 845                 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
 846                 return (EIO);
 847 
 848         case NVME_CQE_SC_INT_NVM_READ:
 849                 /* read fail */
 850                 /* TODO: post ereport */
 851                 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
 852                 return (EIO);
 853 
 854         default:
 855                 return (nvme_check_unknown_cmd_status(cmd));
 856         }
 857 }
 858 
 859 static int
 860 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
 861 {
 862         nvme_cqe_t *cqe = &cmd->nc_cqe;
 863 
 864         switch (cqe->cqe_sf.sf_sc) {
 865         case NVME_CQE_SC_GEN_SUCCESS:
 866                 return (0);
 867 
 868         /*
 869          * Errors indicating a bug in the driver should cause a panic.
 870          */
 871         case NVME_CQE_SC_GEN_INV_OPC:
 872                 /* Invalid Command Opcode */
 873                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
 874                     "invalid opcode in cmd %p", (void *)cmd);
 875                 return (0);
 876 
 877         case NVME_CQE_SC_GEN_INV_FLD:
 878                 /* Invalid Field in Command */
 879                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
 880                     "invalid field in cmd %p", (void *)cmd);
 881                 return (0);
 882 
 883         case NVME_CQE_SC_GEN_ID_CNFL:
 884                 /* Command ID Conflict */
 885                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
 886                     "cmd ID conflict in cmd %p", (void *)cmd);
 887                 return (0);
 888 
 889         case NVME_CQE_SC_GEN_INV_NS:
 890                 /* Invalid Namespace or Format */
 891                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
 892                     "invalid NS/format in cmd %p", (void *)cmd);
 893                 return (0);
 894 
 895         case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
 896                 /* LBA Out Of Range */
 897                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
 898                     "LBA out of range in cmd %p", (void *)cmd);
 899                 return (0);
 900 
 901         /*
 902          * Non-fatal errors, handle gracefully.
 903          */
 904         case NVME_CQE_SC_GEN_DATA_XFR_ERR:
 905                 /* Data Transfer Error (DMA) */
 906                 /* TODO: post ereport */
 907                 atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
 908                 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
 909                 return (EIO);
 910 
 911         case NVME_CQE_SC_GEN_INTERNAL_ERR:
 912                 /*
 913                  * Internal Error. The spec (v1.0, section 4.5.1.2) says
 914                  * detailed error information is returned as async event,
 915                  * so we pretty much ignore the error here and handle it
 916                  * in the async event handler.
 917                  */
 918                 atomic_inc_32(&cmd->nc_nvme->n_internal_err);
 919                 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
 920                 return (EIO);
 921 
 922         case NVME_CQE_SC_GEN_ABORT_REQUEST:
 923                 /*
 924                  * Command Abort Requested. This normally happens only when a
 925                  * command times out.
 926                  */
 927                 /* TODO: post ereport or change blkdev to handle this? */
 928                 atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
 929                 return (ECANCELED);
 930 
 931         case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
 932                 /* Command Aborted due to Power Loss Notification */
 933                 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
 934                 cmd->nc_nvme->n_dead = B_TRUE;
 935                 return (EIO);
 936 
 937         case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
 938                 /* Command Aborted due to SQ Deletion */
 939                 atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
 940                 return (EIO);
 941 
 942         case NVME_CQE_SC_GEN_NVM_CAP_EXC:
 943                 /* Capacity Exceeded */
 944                 atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
 945                 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
 946                 return (EIO);
 947 
 948         case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
 949                 /* Namespace Not Ready */
 950                 atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
 951                 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
 952                 return (EIO);
 953 
 954         default:
 955                 return (nvme_check_unknown_cmd_status(cmd));
 956         }
 957 }
 958 
 959 static int
 960 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
 961 {
 962         nvme_cqe_t *cqe = &cmd->nc_cqe;
 963 
 964         switch (cqe->cqe_sf.sf_sc) {
 965         case NVME_CQE_SC_SPC_INV_CQ:
 966                 /* Completion Queue Invalid */
 967                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
 968                 atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
 969                 return (EINVAL);
 970 
 971         case NVME_CQE_SC_SPC_INV_QID:
 972                 /* Invalid Queue Identifier */
 973                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
 974                     cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
 975                     cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
 976                     cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
 977                 atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
 978                 return (EINVAL);
 979 
 980         case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
 981                 /* Max Queue Size Exceeded */
 982                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
 983                     cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
 984                 atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
 985                 return (EINVAL);
 986 
 987         case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
 988                 /* Abort Command Limit Exceeded */
 989                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
 990                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
 991                     "abort command limit exceeded in cmd %p", (void *)cmd);
 992                 return (0);
 993 
 994         case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
 995                 /* Async Event Request Limit Exceeded */
 996                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
 997                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
 998                     "async event request limit exceeded in cmd %p",
 999                     (void *)cmd);
1000                 return (0);
1001 
1002         case NVME_CQE_SC_SPC_INV_INT_VECT:
1003                 /* Invalid Interrupt Vector */
1004                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1005                 atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1006                 return (EINVAL);
1007 
1008         case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1009                 /* Invalid Log Page */
1010                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1011                 atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1012                 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1013                 return (EINVAL);
1014 
1015         case NVME_CQE_SC_SPC_INV_FORMAT:
1016                 /* Invalid Format */
1017                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1018                 atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1019                 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1020                 return (EINVAL);
1021 
1022         case NVME_CQE_SC_SPC_INV_Q_DEL:
1023                 /* Invalid Queue Deletion */
1024                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1025                 atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1026                 return (EINVAL);
1027 
1028         case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1029                 /* Conflicting Attributes */
1030                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1031                     cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1032                     cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1033                 atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1034                 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1035                 return (EINVAL);
1036 
1037         case NVME_CQE_SC_SPC_NVM_INV_PROT:
1038                 /* Invalid Protection Information */
1039                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1040                     cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1041                     cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1042                 atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1043                 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1044                 return (EINVAL);
1045 
1046         case NVME_CQE_SC_SPC_NVM_READONLY:
1047                 /* Write to Read Only Range */
1048                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1049                 atomic_inc_32(&cmd->nc_nvme->n_readonly);
1050                 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1051                 return (EROFS);
1052 
1053         default:
1054                 return (nvme_check_unknown_cmd_status(cmd));
1055         }
1056 }
1057 
1058 static inline int
1059 nvme_check_cmd_status(nvme_cmd_t *cmd)
1060 {
1061         nvme_cqe_t *cqe = &cmd->nc_cqe;
1062 
1063         /* take a shortcut if everything is alright */
1064         if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1065             cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1066                 return (0);
1067 
1068         if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1069                 return (nvme_check_generic_cmd_status(cmd));
1070         else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1071                 return (nvme_check_specific_cmd_status(cmd));
1072         else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1073                 return (nvme_check_integrity_cmd_status(cmd));
1074         else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1075                 return (nvme_check_vendor_cmd_status(cmd));
1076 
1077         return (nvme_check_unknown_cmd_status(cmd));
1078 }
1079 
1080 /*
1081  * nvme_abort_cmd_cb -- replaces nc_callback of aborted commands
1082  *
1083  * This functions takes care of cleaning up aborted commands. The command
1084  * status is checked to catch any fatal errors.
1085  */
1086 static void
1087 nvme_abort_cmd_cb(void *arg)
1088 {
1089         nvme_cmd_t *cmd = arg;
1090 
1091         /*
1092          * Grab the command mutex. Once we have it we hold the last reference
1093          * to the command and can safely free it.
1094          */
1095         mutex_enter(&cmd->nc_mutex);
1096         (void) nvme_check_cmd_status(cmd);
1097         mutex_exit(&cmd->nc_mutex);
1098 
1099         nvme_free_cmd(cmd);
1100 }
1101 
1102 static void
1103 nvme_abort_cmd(nvme_cmd_t *abort_cmd)
1104 {
1105         nvme_t *nvme = abort_cmd->nc_nvme;
1106         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1107         nvme_abort_cmd_t ac = { 0 };
1108 
1109         sema_p(&nvme->n_abort_sema);
1110 
1111         ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1112         ac.b.ac_sqid = abort_cmd->nc_sqid;
1113 
1114         /*
1115          * Drop the mutex of the aborted command. From this point on
1116          * we must assume that the abort callback has freed the command.
1117          */
1118         mutex_exit(&abort_cmd->nc_mutex);
1119 
1120         cmd->nc_sqid = 0;
1121         cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1122         cmd->nc_callback = nvme_wakeup_cmd;
1123         cmd->nc_sqe.sqe_cdw10 = ac.r;
1124 
1125         /*
1126          * Send the ABORT to the hardware. The ABORT command will return _after_
1127          * the aborted command has completed (aborted or otherwise).
1128          */
1129         if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1130                 sema_v(&nvme->n_abort_sema);
1131                 dev_err(nvme->n_dip, CE_WARN,
1132                     "!nvme_admin_cmd failed for ABORT");
1133                 atomic_inc_32(&nvme->n_abort_failed);
1134                 return;
1135         }
1136         sema_v(&nvme->n_abort_sema);
1137 
1138         if (nvme_check_cmd_status(cmd)) {
1139                 dev_err(nvme->n_dip, CE_WARN,
1140                     "!ABORT failed with sct = %x, sc = %x",
1141                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1142                 atomic_inc_32(&nvme->n_abort_failed);
1143         } else {
1144                 atomic_inc_32(&nvme->n_cmd_aborted);
1145         }
1146 
1147         nvme_free_cmd(cmd);
1148 }
1149 
1150 /*
1151  * nvme_wait_cmd -- wait for command completion or timeout
1152  *
1153  * Returns B_TRUE if the command completed normally.
1154  *
1155  * Returns B_FALSE if the command timed out and an abort was attempted. The
1156  * command mutex will be dropped and the command must be considered freed. The
1157  * freeing of the command is normally done by the abort command callback.
1158  *
1159  * In case of a serious error or a timeout of the abort command the hardware
1160  * will be declared dead and FMA will be notified.
1161  */
1162 static boolean_t
1163 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1164 {
1165         clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1166         nvme_t *nvme = cmd->nc_nvme;
1167         nvme_reg_csts_t csts;
1168 
1169         ASSERT(mutex_owned(&cmd->nc_mutex));
1170 
1171         while (!cmd->nc_completed) {
1172                 if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1173                         break;
1174         }
1175 
1176         if (cmd->nc_completed)
1177                 return (B_TRUE);
1178 
1179         /*
1180          * The command timed out. Change the callback to the cleanup function.
1181          */
1182         cmd->nc_callback = nvme_abort_cmd_cb;
1183 
1184         /*
1185          * Check controller for fatal status, any errors associated with the
1186          * register or DMA handle, or for a double timeout (abort command timed
1187          * out). If necessary log a warning and call FMA.
1188          */
1189         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1190         dev_err(nvme->n_dip, CE_WARN, "!command timeout, "
1191             "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1192         atomic_inc_32(&nvme->n_cmd_timeout);
1193 
1194         if (csts.b.csts_cfs ||
1195             nvme_check_regs_hdl(nvme) ||
1196             nvme_check_dma_hdl(cmd->nc_dma) ||
1197             cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1198                 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1199                 nvme->n_dead = B_TRUE;
1200                 mutex_exit(&cmd->nc_mutex);
1201         } else {
1202                 /*
1203                  * Try to abort the command. The command mutex is released by
1204                  * nvme_abort_cmd().
1205                  * If the abort succeeds it will have freed the aborted command.
1206                  * If the abort fails for other reasons we must assume that the
1207                  * command may complete at any time, and the callback will free
1208                  * it for us.
1209                  */
1210                 nvme_abort_cmd(cmd);
1211         }
1212 
1213         return (B_FALSE);
1214 }
1215 
1216 static void
1217 nvme_wakeup_cmd(void *arg)
1218 {
1219         nvme_cmd_t *cmd = arg;
1220 
1221         mutex_enter(&cmd->nc_mutex);
1222         /*
1223          * There is a slight chance that this command completed shortly after
1224          * the timeout was hit in nvme_wait_cmd() but before the callback was
1225          * changed. Catch that case here and clean up accordingly.
1226          */
1227         if (cmd->nc_callback == nvme_abort_cmd_cb) {
1228                 mutex_exit(&cmd->nc_mutex);
1229                 nvme_abort_cmd_cb(cmd);
1230                 return;
1231         }
1232 
1233         cmd->nc_completed = B_TRUE;
1234         cv_signal(&cmd->nc_cv);
1235         mutex_exit(&cmd->nc_mutex);
1236 }
1237 
1238 static void
1239 nvme_async_event_task(void *arg)
1240 {
1241         nvme_cmd_t *cmd = arg;
1242         nvme_t *nvme = cmd->nc_nvme;
1243         nvme_error_log_entry_t *error_log = NULL;
1244         nvme_health_log_t *health_log = NULL;
1245         nvme_async_event_t event;
1246         int ret;
1247 
1248         /*
1249          * Check for errors associated with the async request itself. The only
1250          * command-specific error is "async event limit exceeded", which
1251          * indicates a programming error in the driver and causes a panic in
1252          * nvme_check_cmd_status().
1253          *
1254          * Other possible errors are various scenarios where the async request
1255          * was aborted, or internal errors in the device. Internal errors are
1256          * reported to FMA, the command aborts need no special handling here.
1257          */
1258         if (nvme_check_cmd_status(cmd)) {
1259                 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1260                     "!async event request returned failure, sct = %x, "
1261                     "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1262                     cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1263                     cmd->nc_cqe.cqe_sf.sf_m);
1264 
1265                 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1266                     cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1267                         cmd->nc_nvme->n_dead = B_TRUE;
1268                         ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1269                             DDI_SERVICE_LOST);
1270                 }
1271                 nvme_free_cmd(cmd);
1272                 return;
1273         }
1274 
1275 
1276         event.r = cmd->nc_cqe.cqe_dw0;
1277 
1278         /* Clear CQE and re-submit the async request. */
1279         bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1280         ret = nvme_submit_cmd(nvme->n_adminq, cmd);
1281 
1282         if (ret != DDI_SUCCESS) {
1283                 dev_err(nvme->n_dip, CE_WARN,
1284                     "!failed to resubmit async event request");
1285                 atomic_inc_32(&nvme->n_async_resubmit_failed);
1286                 nvme_free_cmd(cmd);
1287         }
1288 
1289         switch (event.b.ae_type) {
1290         case NVME_ASYNC_TYPE_ERROR:
1291                 if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1292                         error_log = (nvme_error_log_entry_t *)
1293                             nvme_get_logpage(nvme, event.b.ae_logpage);
1294                 } else {
1295                         dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1296                             "async event reply: %d", event.b.ae_logpage);
1297                         atomic_inc_32(&nvme->n_wrong_logpage);
1298                 }
1299 
1300                 switch (event.b.ae_info) {
1301                 case NVME_ASYNC_ERROR_INV_SQ:
1302                         dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1303                             "invalid submission queue");
1304                         return;
1305 
1306                 case NVME_ASYNC_ERROR_INV_DBL:
1307                         dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1308                             "invalid doorbell write value");
1309                         return;
1310 
1311                 case NVME_ASYNC_ERROR_DIAGFAIL:
1312                         dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1313                         ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1314                         nvme->n_dead = B_TRUE;
1315                         atomic_inc_32(&nvme->n_diagfail_event);
1316                         break;
1317 
1318                 case NVME_ASYNC_ERROR_PERSISTENT:
1319                         dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1320                             "device error");
1321                         ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1322                         nvme->n_dead = B_TRUE;
1323                         atomic_inc_32(&nvme->n_persistent_event);
1324                         break;
1325 
1326                 case NVME_ASYNC_ERROR_TRANSIENT:
1327                         dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1328                             "device error");
1329                         /* TODO: send ereport */
1330                         atomic_inc_32(&nvme->n_transient_event);
1331                         break;
1332 
1333                 case NVME_ASYNC_ERROR_FW_LOAD:
1334                         dev_err(nvme->n_dip, CE_WARN,
1335                             "!firmware image load error");
1336                         atomic_inc_32(&nvme->n_fw_load_event);
1337                         break;
1338                 }
1339                 break;
1340 
1341         case NVME_ASYNC_TYPE_HEALTH:
1342                 if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1343                         health_log = (nvme_health_log_t *)
1344                             nvme_get_logpage(nvme, event.b.ae_logpage, -1);
1345                 } else {
1346                         dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1347                             "async event reply: %d", event.b.ae_logpage);
1348                         atomic_inc_32(&nvme->n_wrong_logpage);
1349                 }
1350 
1351                 switch (event.b.ae_info) {
1352                 case NVME_ASYNC_HEALTH_RELIABILITY:
1353                         dev_err(nvme->n_dip, CE_WARN,
1354                             "!device reliability compromised");
1355                         /* TODO: send ereport */
1356                         atomic_inc_32(&nvme->n_reliability_event);
1357                         break;
1358 
1359                 case NVME_ASYNC_HEALTH_TEMPERATURE:
1360                         dev_err(nvme->n_dip, CE_WARN,
1361                             "!temperature above threshold");
1362                         /* TODO: send ereport */
1363                         atomic_inc_32(&nvme->n_temperature_event);
1364                         break;
1365 
1366                 case NVME_ASYNC_HEALTH_SPARE:
1367                         dev_err(nvme->n_dip, CE_WARN,
1368                             "!spare space below threshold");
1369                         /* TODO: send ereport */
1370                         atomic_inc_32(&nvme->n_spare_event);
1371                         break;
1372                 }
1373                 break;
1374 
1375         case NVME_ASYNC_TYPE_VENDOR:
1376                 dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1377                     "received, info = %x, logpage = %x", event.b.ae_info,
1378                     event.b.ae_logpage);
1379                 atomic_inc_32(&nvme->n_vendor_event);
1380                 break;
1381 
1382         default:
1383                 dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1384                     "type = %x, info = %x, logpage = %x", event.b.ae_type,
1385                     event.b.ae_info, event.b.ae_logpage);
1386                 atomic_inc_32(&nvme->n_unknown_event);
1387                 break;
1388         }
1389 
1390         if (error_log)
1391                 kmem_free(error_log, sizeof (nvme_error_log_entry_t) *
1392                     nvme->n_error_log_len);
1393 
1394         if (health_log)
1395                 kmem_free(health_log, sizeof (nvme_health_log_t));
1396 }
1397 
1398 static int
1399 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1400 {
1401         int ret;
1402 
1403         mutex_enter(&cmd->nc_mutex);
1404         ret = nvme_submit_cmd(cmd->nc_nvme->n_adminq, cmd);
1405 
1406         if (ret != DDI_SUCCESS) {
1407                 mutex_exit(&cmd->nc_mutex);
1408                 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1409                     "!nvme_submit_cmd failed");
1410                 atomic_inc_32(&cmd->nc_nvme->n_admin_queue_full);
1411                 nvme_free_cmd(cmd);
1412                 return (DDI_FAILURE);
1413         }
1414 
1415         if (nvme_wait_cmd(cmd, sec) == B_FALSE) {
1416                 /*
1417                  * The command timed out. An abort command was posted that
1418                  * will take care of the cleanup.
1419                  */
1420                 return (DDI_FAILURE);
1421         }
1422         mutex_exit(&cmd->nc_mutex);
1423 
1424         return (DDI_SUCCESS);
1425 }
1426 
1427 static int
1428 nvme_async_event(nvme_t *nvme)
1429 {
1430         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1431         int ret;
1432 
1433         cmd->nc_sqid = 0;
1434         cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1435         cmd->nc_callback = nvme_async_event_task;
1436 
1437         ret = nvme_submit_cmd(nvme->n_adminq, cmd);
1438 
1439         if (ret != DDI_SUCCESS) {
1440                 dev_err(nvme->n_dip, CE_WARN,
1441                     "!nvme_submit_cmd failed for ASYNCHRONOUS EVENT");
1442                 nvme_free_cmd(cmd);
1443                 return (DDI_FAILURE);
1444         }
1445 
1446         return (DDI_SUCCESS);
1447 }
1448 
1449 static void *
1450 nvme_get_logpage(nvme_t *nvme, uint8_t logpage, ...)
1451 {
1452         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1453         void *buf = NULL;
1454         nvme_getlogpage_t getlogpage = { 0 };
1455         size_t bufsize;
1456         va_list ap;
1457 
1458         va_start(ap, logpage);
1459 
1460         cmd->nc_sqid = 0;
1461         cmd->nc_callback = nvme_wakeup_cmd;
1462         cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1463 
1464         getlogpage.b.lp_lid = logpage;
1465 
1466         switch (logpage) {
1467         case NVME_LOGPAGE_ERROR:
1468                 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1469                 bufsize = nvme->n_error_log_len *
1470                     sizeof (nvme_error_log_entry_t);
1471                 break;
1472 
1473         case NVME_LOGPAGE_HEALTH:
1474                 cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1475                 bufsize = sizeof (nvme_health_log_t);
1476                 break;
1477 
1478         case NVME_LOGPAGE_FWSLOT:
1479                 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1480                 bufsize = sizeof (nvme_fwslot_log_t);
1481                 break;
1482 
1483         default:
1484                 dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1485                     logpage);
1486                 atomic_inc_32(&nvme->n_unknown_logpage);
1487                 goto fail;
1488         }
1489 
1490         va_end(ap);
1491 
1492         getlogpage.b.lp_numd = bufsize / sizeof (uint32_t) - 1;
1493 
1494         cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1495 
1496         if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t),
1497             DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1498                 dev_err(nvme->n_dip, CE_WARN,
1499                     "!nvme_zalloc_dma failed for GET LOG PAGE");
1500                 goto fail;
1501         }
1502 
1503         if (cmd->nc_dma->nd_ncookie > 2) {
1504                 dev_err(nvme->n_dip, CE_WARN,
1505                     "!too many DMA cookies for GET LOG PAGE");
1506                 atomic_inc_32(&nvme->n_too_many_cookies);
1507                 goto fail;
1508         }
1509 
1510         cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1511         if (cmd->nc_dma->nd_ncookie > 1) {
1512                 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1513                     &cmd->nc_dma->nd_cookie);
1514                 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1515                     cmd->nc_dma->nd_cookie.dmac_laddress;
1516         }
1517 
1518         if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1519                 dev_err(nvme->n_dip, CE_WARN,
1520                     "!nvme_admin_cmd failed for GET LOG PAGE");
1521                 return (NULL);
1522         }
1523 
1524         if (nvme_check_cmd_status(cmd)) {
1525                 dev_err(nvme->n_dip, CE_WARN,
1526                     "!GET LOG PAGE failed with sct = %x, sc = %x",
1527                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1528                 goto fail;
1529         }
1530 
1531         buf = kmem_alloc(bufsize, KM_SLEEP);
1532         bcopy(cmd->nc_dma->nd_memp, buf, bufsize);
1533 
1534 fail:
1535         nvme_free_cmd(cmd);
1536 
1537         return (buf);
1538 }
1539 
1540 static void *
1541 nvme_identify(nvme_t *nvme, uint32_t nsid)
1542 {
1543         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1544         void *buf = NULL;
1545 
1546         cmd->nc_sqid = 0;
1547         cmd->nc_callback = nvme_wakeup_cmd;
1548         cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
1549         cmd->nc_sqe.sqe_nsid = nsid;
1550         cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
1551 
1552         if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
1553             &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1554                 dev_err(nvme->n_dip, CE_WARN,
1555                     "!nvme_zalloc_dma failed for IDENTIFY");
1556                 goto fail;
1557         }
1558 
1559         if (cmd->nc_dma->nd_ncookie > 2) {
1560                 dev_err(nvme->n_dip, CE_WARN,
1561                     "!too many DMA cookies for IDENTIFY");
1562                 atomic_inc_32(&nvme->n_too_many_cookies);
1563                 goto fail;
1564         }
1565 
1566         cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1567         if (cmd->nc_dma->nd_ncookie > 1) {
1568                 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1569                     &cmd->nc_dma->nd_cookie);
1570                 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1571                     cmd->nc_dma->nd_cookie.dmac_laddress;
1572         }
1573 
1574         if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1575                 dev_err(nvme->n_dip, CE_WARN,
1576                     "!nvme_admin_cmd failed for IDENTIFY");
1577                 return (NULL);
1578         }
1579 
1580         if (nvme_check_cmd_status(cmd)) {
1581                 dev_err(nvme->n_dip, CE_WARN,
1582                     "!IDENTIFY failed with sct = %x, sc = %x",
1583                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1584                 goto fail;
1585         }
1586 
1587         buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
1588         bcopy(cmd->nc_dma->nd_memp, buf, NVME_IDENTIFY_BUFSIZE);
1589 
1590 fail:
1591         nvme_free_cmd(cmd);
1592 
1593         return (buf);
1594 }
1595 
1596 static int
1597 nvme_set_nqueues(nvme_t *nvme, uint16_t nqueues)
1598 {
1599         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1600         nvme_nqueue_t nq = { 0 };
1601 
1602         nq.b.nq_nsq = nq.b.nq_ncq = nqueues - 1;
1603 
1604         cmd->nc_sqid = 0;
1605         cmd->nc_callback = nvme_wakeup_cmd;
1606         cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
1607         cmd->nc_sqe.sqe_cdw10 = NVME_FEAT_NQUEUES;
1608         cmd->nc_sqe.sqe_cdw11 = nq.r;
1609 
1610         if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1611                 dev_err(nvme->n_dip, CE_WARN,
1612                     "!nvme_admin_cmd failed for SET FEATURES (NQUEUES)");
1613                 return (0);
1614         }
1615 
1616         if (nvme_check_cmd_status(cmd)) {
1617                 dev_err(nvme->n_dip, CE_WARN,
1618                     "!SET FEATURES (NQUEUES) failed with sct = %x, sc = %x",
1619                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1620                 nvme_free_cmd(cmd);
1621                 return (0);
1622         }
1623 
1624         nq.r = cmd->nc_cqe.cqe_dw0;
1625         nvme_free_cmd(cmd);
1626 
1627         /*
1628          * Always use the same number of submission and completion queues, and
1629          * never use more than the requested number of queues.
1630          */
1631         return (MIN(nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1));
1632 }
1633 
1634 static int
1635 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
1636 {
1637         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1638         nvme_create_queue_dw10_t dw10 = { 0 };
1639         nvme_create_cq_dw11_t c_dw11 = { 0 };
1640         nvme_create_sq_dw11_t s_dw11 = { 0 };
1641 
1642         dw10.b.q_qid = idx;
1643         dw10.b.q_qsize = qp->nq_nentry - 1;
1644 
1645         c_dw11.b.cq_pc = 1;
1646         c_dw11.b.cq_ien = 1;
1647         c_dw11.b.cq_iv = idx % nvme->n_intr_cnt;
1648 
1649         cmd->nc_sqid = 0;
1650         cmd->nc_callback = nvme_wakeup_cmd;
1651         cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
1652         cmd->nc_sqe.sqe_cdw10 = dw10.r;
1653         cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
1654         cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress;
1655 
1656         if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1657                 dev_err(nvme->n_dip, CE_WARN,
1658                     "!nvme_admin_cmd failed for CREATE CQUEUE");
1659                 return (DDI_FAILURE);
1660         }
1661 
1662         if (nvme_check_cmd_status(cmd)) {
1663                 dev_err(nvme->n_dip, CE_WARN,
1664                     "!CREATE CQUEUE failed with sct = %x, sc = %x",
1665                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1666                 nvme_free_cmd(cmd);
1667                 return (DDI_FAILURE);
1668         }
1669 
1670         nvme_free_cmd(cmd);
1671 
1672         s_dw11.b.sq_pc = 1;
1673         s_dw11.b.sq_cqid = idx;
1674 
1675         cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1676         cmd->nc_sqid = 0;
1677         cmd->nc_callback = nvme_wakeup_cmd;
1678         cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
1679         cmd->nc_sqe.sqe_cdw10 = dw10.r;
1680         cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
1681         cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
1682 
1683         if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1684                 dev_err(nvme->n_dip, CE_WARN,
1685                     "!nvme_admin_cmd failed for CREATE SQUEUE");
1686                 return (DDI_FAILURE);
1687         }
1688 
1689         if (nvme_check_cmd_status(cmd)) {
1690                 dev_err(nvme->n_dip, CE_WARN,
1691                     "!CREATE SQUEUE failed with sct = %x, sc = %x",
1692                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1693                 nvme_free_cmd(cmd);
1694                 return (DDI_FAILURE);
1695         }
1696 
1697         nvme_free_cmd(cmd);
1698 
1699         mutex_enter(&nvme_global_mutex);
1700         list_insert_head(&nvme_qp_list, qp);
1701         qp->nq_nvme = nvme;
1702         mutex_exit(&nvme_global_mutex);
1703 
1704         return (DDI_SUCCESS);
1705 }
1706 
1707 static boolean_t
1708 nvme_reset(nvme_t *nvme, boolean_t quiesce)
1709 {
1710         nvme_reg_csts_t csts;
1711         int i;
1712 
1713         nvme_put32(nvme, NVME_REG_CC, 0);
1714 
1715         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1716         if (csts.b.csts_rdy == 1) {
1717                 nvme_put32(nvme, NVME_REG_CC, 0);
1718                 for (i = 0; i != nvme->n_timeout * 10; i++) {
1719                         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1720                         if (csts.b.csts_rdy == 0)
1721                                 break;
1722 
1723                         if (quiesce)
1724                                 drv_usecwait(50000);
1725                         else
1726                                 delay(drv_usectohz(50000));
1727                 }
1728         }
1729 
1730         nvme_put32(nvme, NVME_REG_AQA, 0);
1731         nvme_put32(nvme, NVME_REG_ASQ, 0);
1732         nvme_put32(nvme, NVME_REG_ACQ, 0);
1733 
1734         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1735         return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
1736 }
1737 
1738 static void
1739 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
1740 {
1741         nvme_reg_cc_t cc;
1742         nvme_reg_csts_t csts;
1743         int i;
1744 
1745         ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
1746 
1747         cc.r = nvme_get32(nvme, NVME_REG_CC);
1748         cc.b.cc_shn = mode & 0x3;
1749         nvme_put32(nvme, NVME_REG_CC, cc.r);
1750 
1751         for (i = 0; i != 10; i++) {
1752                 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1753                 if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
1754                         break;
1755 
1756                 if (quiesce)
1757                         drv_usecwait(100000);
1758                 else
1759                         delay(drv_usectohz(100000));
1760         }
1761 }
1762 
1763 
1764 static void
1765 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
1766 {
1767         char model[sizeof (nvme->n_idctl->id_model) + 1];
1768         char serial[sizeof (nvme->n_idctl->id_serial) + 1];
1769 
1770         bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
1771         bcopy(nvme->n_idctl->id_serial, serial,
1772             sizeof (nvme->n_idctl->id_serial));
1773 
1774         model[sizeof (nvme->n_idctl->id_model)] = '\0';
1775         serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
1776 
1777         (void) snprintf(nvme->n_ns[nsid - 1].ns_devid,
1778             sizeof (nvme->n_ns[0].ns_devid), "%4X-%s-%s-%X",
1779             nvme->n_idctl->id_vid, model, serial, nsid);
1780 }
1781 
1782 static int
1783 nvme_init(nvme_t *nvme)
1784 {
1785         nvme_reg_cc_t cc = { 0 };
1786         nvme_reg_aqa_t aqa = { 0 };
1787         nvme_reg_asq_t asq = { 0 };
1788         nvme_reg_acq_t acq = { 0 };
1789         nvme_reg_cap_t cap;
1790         nvme_reg_vs_t vs;
1791         nvme_reg_csts_t csts;
1792         int i = 0;
1793         int nqueues;
1794         char model[sizeof (nvme->n_idctl->id_model) + 1];
1795         char *vendor, *product;
1796 
1797         /* Check controller version */
1798         vs.r = nvme_get32(nvme, NVME_REG_VS);
1799         dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
1800             vs.b.vs_mjr, vs.b.vs_mnr);
1801 
1802         if (nvme_version_major < vs.b.vs_mjr ||
1803             (nvme_version_major == vs.b.vs_mjr &&
1804             nvme_version_minor < vs.b.vs_mnr)) {
1805                 dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.%d",
1806                     nvme_version_major, nvme_version_minor);
1807                 if (nvme->n_strict_version)
1808                         goto fail;
1809         }
1810 
1811         /* retrieve controller configuration */
1812         cap.r = nvme_get64(nvme, NVME_REG_CAP);
1813 
1814         if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
1815                 dev_err(nvme->n_dip, CE_WARN,
1816                     "!NVM command set not supported by hardware");
1817                 goto fail;
1818         }
1819 
1820         nvme->n_nssr_supported = cap.b.cap_nssrs;
1821         nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
1822         nvme->n_timeout = cap.b.cap_to;
1823         nvme->n_arbitration_mechanisms = cap.b.cap_ams;
1824         nvme->n_cont_queues_reqd = cap.b.cap_cqr;
1825         nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
1826 
1827         /*
1828          * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
1829          * the base page size of 4k (1<<12), so add 12 here to get the real
1830          * page size value.
1831          */
1832         nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
1833             cap.b.cap_mpsmax + 12);
1834         nvme->n_pagesize = 1UL << (nvme->n_pageshift);
1835 
1836         /*
1837          * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
1838          */
1839         nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
1840         nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
1841 
1842         /*
1843          * Set up PRP DMA to transfer 1 page-aligned page at a time.
1844          * Maxxfer may be increased after we identified the controller limits.
1845          */
1846         nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
1847         nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
1848         nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
1849         nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
1850 
1851         /*
1852          * Reset controller if it's still in ready state.
1853          */
1854         if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
1855                 dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
1856                 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1857                 nvme->n_dead = B_TRUE;
1858                 goto fail;
1859         }
1860 
1861         /*
1862          * Create the admin queue pair.
1863          */
1864         if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
1865             != DDI_SUCCESS) {
1866                 dev_err(nvme->n_dip, CE_WARN,
1867                     "!unable to allocate admin qpair");
1868                 goto fail;
1869         }
1870         nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
1871         nvme->n_ioq[0] = nvme->n_adminq;
1872 
1873         nvme->n_progress |= NVME_ADMIN_QUEUE;
1874 
1875         (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
1876             "admin-queue-len", nvme->n_admin_queue_len);
1877 
1878         aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
1879         asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
1880         acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress;
1881 
1882         ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
1883         ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
1884 
1885         nvme_put32(nvme, NVME_REG_AQA, aqa.r);
1886         nvme_put64(nvme, NVME_REG_ASQ, asq);
1887         nvme_put64(nvme, NVME_REG_ACQ, acq);
1888 
1889         cc.b.cc_ams = 0;        /* use Round-Robin arbitration */
1890         cc.b.cc_css = 0;        /* use NVM command set */
1891         cc.b.cc_mps = nvme->n_pageshift - 12;
1892         cc.b.cc_shn = 0;        /* no shutdown in progress */
1893         cc.b.cc_en = 1;         /* enable controller */
1894         cc.b.cc_iosqes = 6;     /* submission queue entry is 2^6 bytes long */
1895         cc.b.cc_iocqes = 4;     /* completion queue entry is 2^4 bytes long */
1896 
1897         nvme_put32(nvme, NVME_REG_CC, cc.r);
1898 
1899         /*
1900          * Wait for the controller to become ready.
1901          */
1902         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1903         if (csts.b.csts_rdy == 0) {
1904                 for (i = 0; i != nvme->n_timeout * 10; i++) {
1905                         delay(drv_usectohz(50000));
1906                         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1907 
1908                         if (csts.b.csts_cfs == 1) {
1909                                 dev_err(nvme->n_dip, CE_WARN,
1910                                     "!controller fatal status at init");
1911                                 ddi_fm_service_impact(nvme->n_dip,
1912                                     DDI_SERVICE_LOST);
1913                                 nvme->n_dead = B_TRUE;
1914                                 goto fail;
1915                         }
1916 
1917                         if (csts.b.csts_rdy == 1)
1918                                 break;
1919                 }
1920         }
1921 
1922         if (csts.b.csts_rdy == 0) {
1923                 dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
1924                 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1925                 nvme->n_dead = B_TRUE;
1926                 goto fail;
1927         }
1928 
1929         /*
1930          * Assume an abort command limit of 1. We'll destroy and re-init
1931          * that later when we know the true abort command limit.
1932          */
1933         sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
1934 
1935         /*
1936          * Setup initial interrupt for admin queue.
1937          */
1938         if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
1939             != DDI_SUCCESS) &&
1940             (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
1941             != DDI_SUCCESS) &&
1942             (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
1943             != DDI_SUCCESS)) {
1944                 dev_err(nvme->n_dip, CE_WARN,
1945                     "!failed to setup initial interrupt");
1946                 goto fail;
1947         }
1948 
1949         /*
1950          * Post an asynchronous event command to catch errors.
1951          */
1952         if (nvme_async_event(nvme) != DDI_SUCCESS) {
1953                 dev_err(nvme->n_dip, CE_WARN,
1954                     "!failed to post async event");
1955                 goto fail;
1956         }
1957 
1958         /*
1959          * Identify Controller
1960          */
1961         nvme->n_idctl = nvme_identify(nvme, 0);
1962         if (nvme->n_idctl == NULL) {
1963                 dev_err(nvme->n_dip, CE_WARN,
1964                     "!failed to identify controller");
1965                 goto fail;
1966         }
1967 
1968         /*
1969          * Get Vendor & Product ID
1970          */
1971         bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
1972         model[sizeof (nvme->n_idctl->id_model)] = '\0';
1973         sata_split_model(model, &vendor, &product);
1974 
1975         if (vendor == NULL)
1976                 nvme->n_vendor = strdup("NVMe");
1977         else
1978                 nvme->n_vendor = strdup(vendor);
1979 
1980         nvme->n_product = strdup(product);
1981 
1982         /*
1983          * Get controller limits.
1984          */
1985         nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
1986             MIN(nvme->n_admin_queue_len / 10,
1987             MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
1988 
1989         (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
1990             "async-event-limit", nvme->n_async_event_limit);
1991 
1992         nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
1993 
1994         /*
1995          * Reinitialize the semaphore with the true abort command limit
1996          * supported by the hardware. It's not necessary to disable interrupts
1997          * as only command aborts use the semaphore, and no commands are
1998          * executed or aborted while we're here.
1999          */
2000         sema_destroy(&nvme->n_abort_sema);
2001         sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
2002             SEMA_DRIVER, NULL);
2003 
2004         nvme->n_progress |= NVME_CTRL_LIMITS;
2005 
2006         if (nvme->n_idctl->id_mdts == 0)
2007                 nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
2008         else
2009                 nvme->n_max_data_transfer_size =
2010                     1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
2011 
2012         nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
2013 
2014         /*
2015          * Limit n_max_data_transfer_size to what we can handle in one PRP.
2016          * Chained PRPs are currently unsupported.
2017          *
2018          * This is a no-op on hardware which doesn't support a transfer size
2019          * big enough to require chained PRPs.
2020          */
2021         nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
2022             (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
2023 
2024         nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
2025 
2026         /*
2027          * Make sure the minimum/maximum queue entry sizes are not
2028          * larger/smaller than the default.
2029          */
2030 
2031         if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
2032             ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
2033             ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
2034             ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
2035                 goto fail;
2036 
2037         /*
2038          * Check for the presence of a Volatile Write Cache. If present,
2039          * enable it by default.
2040          */
2041         if (nvme->n_idctl->id_vwc.vwc_present == 0) {
2042                 nvme->n_volatile_write_cache_enabled = B_FALSE;
2043                 nvme_bd_ops.o_sync_cache = NULL;
2044         } else {
2045                 /*
2046                  * TODO: send SET FEATURES to enable VWC
2047                  * (have no hardware to test this)
2048                  */
2049                 nvme->n_volatile_write_cache_enabled = B_FALSE;
2050                 nvme_bd_ops.o_sync_cache = NULL;
2051         }
2052 
2053         /*
2054          * Grab a copy of all mandatory log pages.
2055          *
2056          * TODO: should go away once user space tool exists to print logs
2057          */
2058         nvme->n_error_log = (nvme_error_log_entry_t *)
2059             nvme_get_logpage(nvme, NVME_LOGPAGE_ERROR);
2060         nvme->n_health_log = (nvme_health_log_t *)
2061             nvme_get_logpage(nvme, NVME_LOGPAGE_HEALTH, -1);
2062         nvme->n_fwslot_log = (nvme_fwslot_log_t *)
2063             nvme_get_logpage(nvme, NVME_LOGPAGE_FWSLOT);
2064 
2065         /*
2066          * Identify Namespaces
2067          */
2068         nvme->n_namespace_count = nvme->n_idctl->id_nn;
2069         nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2070             nvme->n_namespace_count, KM_SLEEP);
2071 
2072         for (i = 0; i != nvme->n_namespace_count; i++) {
2073                 nvme_identify_nsid_t *idns;
2074                 int last_rp;
2075 
2076                 nvme->n_ns[i].ns_nvme = nvme;
2077                 nvme->n_ns[i].ns_idns = idns = nvme_identify(nvme, i + 1);
2078 
2079                 if (idns == NULL) {
2080                         dev_err(nvme->n_dip, CE_WARN,
2081                             "!failed to identify namespace %d", i + 1);
2082                         goto fail;
2083                 }
2084 
2085                 nvme->n_ns[i].ns_id = i + 1;
2086                 nvme->n_ns[i].ns_block_count = idns->id_nsize;
2087                 nvme->n_ns[i].ns_block_size =
2088                     1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2089                 nvme->n_ns[i].ns_best_block_size = nvme->n_ns[i].ns_block_size;
2090 
2091                 nvme_prepare_devid(nvme, nvme->n_ns[i].ns_id);
2092 
2093                 /*
2094                  * Find the LBA format with no metadata and the best relative
2095                  * performance. A value of 3 means "degraded", 0 is best.
2096                  */
2097                 last_rp = 3;
2098                 for (int j = 0; j <= idns->id_nlbaf; j++) {
2099                         if (idns->id_lbaf[j].lbaf_lbads == 0)
2100                                 break;
2101                         if (idns->id_lbaf[j].lbaf_ms != 0)
2102                                 continue;
2103                         if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2104                                 continue;
2105                         last_rp = idns->id_lbaf[j].lbaf_rp;
2106                         nvme->n_ns[i].ns_best_block_size =
2107                             1 << idns->id_lbaf[j].lbaf_lbads;
2108                 }
2109 
2110                 /*
2111                  * We currently don't support namespaces that use either:
2112                  * - thin provisioning
2113                  * - protection information
2114                  */
2115                 if (idns->id_nsfeat.f_thin ||
2116                     idns->id_dps.dp_pinfo) {
2117                         dev_err(nvme->n_dip, CE_WARN,
2118                             "!ignoring namespace %d, unsupported features: "
2119                             "thin = %d, pinfo = %d", i + 1,
2120                             idns->id_nsfeat.f_thin, idns->id_dps.dp_pinfo);
2121                         nvme->n_ns[i].ns_ignore = B_TRUE;
2122                 }
2123         }
2124 
2125         /*
2126          * Try to set up MSI/MSI-X interrupts.
2127          */
2128         if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2129             != 0) {
2130                 nvme_release_interrupts(nvme);
2131 
2132                 nqueues = MIN(UINT16_MAX, ncpus);
2133 
2134                 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2135                     nqueues) != DDI_SUCCESS) &&
2136                     (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2137                     nqueues) != DDI_SUCCESS)) {
2138                         dev_err(nvme->n_dip, CE_WARN,
2139                             "!failed to setup MSI/MSI-X interrupts");
2140                         goto fail;
2141                 }
2142         }
2143 
2144         nqueues = nvme->n_intr_cnt;
2145 
2146         /*
2147          * Create I/O queue pairs.
2148          */
2149         nvme->n_ioq_count = nvme_set_nqueues(nvme, nqueues);
2150         if (nvme->n_ioq_count == 0) {
2151                 dev_err(nvme->n_dip, CE_WARN,
2152                     "!failed to set number of I/O queues to %d", nqueues);
2153                 goto fail;
2154         }
2155 
2156         /*
2157          * Reallocate I/O queue array
2158          */
2159         kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
2160         nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
2161             (nvme->n_ioq_count + 1), KM_SLEEP);
2162         nvme->n_ioq[0] = nvme->n_adminq;
2163 
2164         /*
2165          * If we got less queues than we asked for we might as well give
2166          * some of the interrupt vectors back to the system.
2167          */
2168         if (nvme->n_ioq_count < nqueues) {
2169                 nvme_release_interrupts(nvme);
2170 
2171                 if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
2172                     nvme->n_ioq_count) != DDI_SUCCESS) {
2173                         dev_err(nvme->n_dip, CE_WARN,
2174                             "!failed to reduce number of interrupts");
2175                         goto fail;
2176                 }
2177         }
2178 
2179         /*
2180          * Alloc & register I/O queue pairs
2181          */
2182         nvme->n_io_queue_len =
2183             MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries);
2184         (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len",
2185             nvme->n_io_queue_len);
2186 
2187         for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2188                 if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len,
2189                     &nvme->n_ioq[i], i) != DDI_SUCCESS) {
2190                         dev_err(nvme->n_dip, CE_WARN,
2191                             "!unable to allocate I/O qpair %d", i);
2192                         goto fail;
2193                 }
2194 
2195                 if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i)
2196                     != DDI_SUCCESS) {
2197                         dev_err(nvme->n_dip, CE_WARN,
2198                             "!unable to create I/O qpair %d", i);
2199                         goto fail;
2200                 }
2201         }
2202 
2203         /*
2204          * Post more asynchronous events commands to reduce event reporting
2205          * latency as suggested by the spec.
2206          */
2207         for (i = 1; i != nvme->n_async_event_limit; i++) {
2208                 if (nvme_async_event(nvme) != DDI_SUCCESS) {
2209                         dev_err(nvme->n_dip, CE_WARN,
2210                             "!failed to post async event %d", i);
2211                         goto fail;
2212                 }
2213         }
2214 
2215         return (DDI_SUCCESS);
2216 
2217 fail:
2218         (void) nvme_reset(nvme, B_FALSE);
2219         return (DDI_FAILURE);
2220 }
2221 
2222 static uint_t
2223 nvme_intr(caddr_t arg1, caddr_t arg2)
2224 {
2225         /*LINTED: E_PTR_BAD_CAST_ALIGN*/
2226         nvme_t *nvme = (nvme_t *)arg1;
2227         int inum = (int)(uintptr_t)arg2;
2228         int ccnt = 0;
2229         int qnum;
2230         nvme_cmd_t *cmd;
2231         int cnt_cmds;
2232 
2233         if (inum >= nvme->n_intr_cnt)
2234                 return (DDI_INTR_UNCLAIMED);
2235 
2236         /*
2237          * The interrupt vector a queue uses is calculated as queue_idx %
2238          * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
2239          * in steps of n_intr_cnt to process all queues using this vector.
2240          */
2241         for (qnum = inum;
2242             qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL;
2243             qnum += nvme->n_intr_cnt) {
2244                 cnt_cmds =  nvme_process_cq_cmds(nvme, nvme->n_ioq[qnum]);
2245                 ccnt += cnt_cmds;
2246         }
2247 
2248         return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2249 }
2250 
2251 static void
2252 nvme_release_interrupts(nvme_t *nvme)
2253 {
2254         int i;
2255 
2256         for (i = 0; i < nvme->n_intr_cnt; i++) {
2257                 if (nvme->n_inth[i] == NULL)
2258                         break;
2259 
2260                 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2261                         (void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
2262                 else
2263                         (void) ddi_intr_disable(nvme->n_inth[i]);
2264 
2265                 (void) ddi_intr_remove_handler(nvme->n_inth[i]);
2266                 (void) ddi_intr_free(nvme->n_inth[i]);
2267         }
2268 
2269         kmem_free(nvme->n_inth, nvme->n_inth_sz);
2270         nvme->n_inth = NULL;
2271         nvme->n_inth_sz = 0;
2272 
2273         nvme->n_progress &= ~NVME_INTERRUPTS;
2274 }
2275 
2276 static int
2277 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
2278 {
2279         int nintrs, navail, count;
2280         int ret;
2281         int i;
2282 
2283         if (nvme->n_intr_types == 0) {
2284                 ret = ddi_intr_get_supported_types(nvme->n_dip,
2285                     &nvme->n_intr_types);
2286                 if (ret != DDI_SUCCESS) {
2287                         dev_err(nvme->n_dip, CE_WARN,
2288                             "!%s: ddi_intr_get_supported types failed",
2289                             __func__);
2290                         return (ret);
2291                 }
2292         }
2293 
2294         if ((nvme->n_intr_types & intr_type) == 0)
2295                 return (DDI_FAILURE);
2296 
2297         ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
2298         if (ret != DDI_SUCCESS) {
2299                 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
2300                     __func__);
2301                 return (ret);
2302         }
2303 
2304         ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
2305         if (ret != DDI_SUCCESS) {
2306                 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
2307                     __func__);
2308                 return (ret);
2309         }
2310 
2311         /* We want at most one interrupt per queue pair. */
2312         if (navail > nqpairs)
2313                 navail = nqpairs;
2314 
2315         nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
2316         nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
2317 
2318         ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
2319             &count, 0);
2320         if (ret != DDI_SUCCESS) {
2321                 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
2322                     __func__);
2323                 goto fail;
2324         }
2325 
2326         nvme->n_intr_cnt = count;
2327 
2328         ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
2329         if (ret != DDI_SUCCESS) {
2330                 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
2331                     __func__);
2332                 goto fail;
2333         }
2334 
2335         for (i = 0; i < count; i++) {
2336                 ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
2337                     (void *)nvme, (void *)(uintptr_t)i);
2338                 if (ret != DDI_SUCCESS) {
2339                         dev_err(nvme->n_dip, CE_WARN,
2340                             "!%s: ddi_intr_add_handler failed", __func__);
2341                         goto fail;
2342                 }
2343         }
2344 
2345         (void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
2346 
2347         for (i = 0; i < count; i++) {
2348                 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2349                         ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
2350                 else
2351                         ret = ddi_intr_enable(nvme->n_inth[i]);
2352 
2353                 if (ret != DDI_SUCCESS) {
2354                         dev_err(nvme->n_dip, CE_WARN,
2355                             "!%s: enabling interrupt %d failed", __func__, i);
2356                         goto fail;
2357                 }
2358         }
2359 
2360         nvme->n_intr_type = intr_type;
2361 
2362         nvme->n_progress |= NVME_INTERRUPTS;
2363 
2364         return (DDI_SUCCESS);
2365 
2366 fail:
2367         nvme_release_interrupts(nvme);
2368 
2369         return (ret);
2370 }
2371 
2372 static int
2373 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
2374 {
2375         _NOTE(ARGUNUSED(arg));
2376 
2377         pci_ereport_post(dip, fm_error, NULL);
2378         return (fm_error->fme_status);
2379 }
2380 
2381 static int
2382 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2383 {
2384         nvme_t *nvme;
2385         int instance;
2386         int nregs;
2387         off_t regsize;
2388         int i;
2389         char name[32];
2390 
2391         if (cmd != DDI_ATTACH)
2392                 return (DDI_FAILURE);
2393 
2394         instance = ddi_get_instance(dip);
2395 
2396         if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
2397                 return (DDI_FAILURE);
2398 
2399         nvme = ddi_get_soft_state(nvme_state, instance);
2400         ddi_set_driver_private(dip, nvme);
2401         nvme->n_dip = dip;
2402 
2403         nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2404             DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
2405         nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
2406             dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
2407             B_TRUE : B_FALSE;
2408         nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2409             DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
2410         nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2411             DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN);
2412         nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2413             DDI_PROP_DONTPASS, "async-event-limit",
2414             NVME_DEFAULT_ASYNC_EVENT_LIMIT);
2415 
2416         if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
2417                 nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
2418         else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
2419                 nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
2420 
2421         if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN)
2422                 nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN;
2423 
2424         if (nvme->n_async_event_limit < 1)
2425                 nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
2426 
2427         nvme->n_reg_acc_attr = nvme_reg_acc_attr;
2428         nvme->n_queue_dma_attr = nvme_queue_dma_attr;
2429         nvme->n_prp_dma_attr = nvme_prp_dma_attr;
2430         nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
2431 
2432         /*
2433          * Setup FMA support.
2434          */
2435         nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
2436             DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
2437             DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
2438             DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
2439 
2440         ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
2441 
2442         if (nvme->n_fm_cap) {
2443                 if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
2444                         nvme->n_reg_acc_attr.devacc_attr_access =
2445                             DDI_FLAGERR_ACC;
2446 
2447                 if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
2448                         nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2449                         nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2450                 }
2451 
2452                 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2453                     DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2454                         pci_ereport_setup(dip);
2455 
2456                 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2457                         ddi_fm_handler_register(dip, nvme_fm_errcb,
2458                             (void *)nvme);
2459         }
2460 
2461         nvme->n_progress |= NVME_FMA_INIT;
2462 
2463         /*
2464          * The spec defines several register sets. Only the controller
2465          * registers (set 1) are currently used.
2466          */
2467         if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
2468             nregs < 2 ||
2469             ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
2470                 goto fail;
2471 
2472         if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
2473             &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
2474                 dev_err(dip, CE_WARN, "!failed to map regset 1");
2475                 goto fail;
2476         }
2477 
2478         nvme->n_progress |= NVME_REGS_MAPPED;
2479 
2480         /*
2481          * Create taskq for command completion.
2482          */
2483         (void) snprintf(name, sizeof (name), "%s%d_cmd_taskq",
2484             ddi_driver_name(dip), ddi_get_instance(dip));
2485         nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus),
2486             TASKQ_DEFAULTPRI, 0);
2487         if (nvme->n_cmd_taskq == NULL) {
2488                 dev_err(dip, CE_WARN, "!failed to create cmd taskq");
2489                 goto fail;
2490         }
2491 
2492 
2493         if (nvme_init(nvme) != DDI_SUCCESS)
2494                 goto fail;
2495 
2496         /*
2497          * Attach the blkdev driver for each namespace.
2498          */
2499         for (i = 0; i != nvme->n_namespace_count; i++) {
2500                 if (nvme->n_ns[i].ns_ignore)
2501                         continue;
2502 
2503                 nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
2504                     &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP);
2505 
2506                 if (nvme->n_ns[i].ns_bd_hdl == NULL) {
2507                         dev_err(dip, CE_WARN,
2508                             "!failed to get blkdev handle for namespace %d", i);
2509                         goto fail;
2510                 }
2511 
2512                 if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
2513                     != DDI_SUCCESS) {
2514                         dev_err(dip, CE_WARN,
2515                             "!failed to attach blkdev handle for namespace %d",
2516                             i);
2517                         goto fail;
2518                 }
2519         }
2520 
2521         return (DDI_SUCCESS);
2522 
2523 fail:
2524         /* attach successful anyway so that FMA can retire the device */
2525         if (nvme->n_dead)
2526                 return (DDI_SUCCESS);
2527 
2528         (void) nvme_detach(dip, DDI_DETACH);
2529 
2530         return (DDI_FAILURE);
2531 }
2532 
2533 static int
2534 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2535 {
2536         int instance, i;
2537         nvme_t *nvme;
2538 
2539         if (cmd != DDI_DETACH)
2540                 return (DDI_FAILURE);
2541 
2542         instance = ddi_get_instance(dip);
2543 
2544         nvme = ddi_get_soft_state(nvme_state, instance);
2545 
2546         if (nvme == NULL)
2547                 return (DDI_FAILURE);
2548 
2549         if (nvme->n_ns) {
2550                 for (i = 0; i != nvme->n_namespace_count; i++) {
2551                         if (nvme->n_ns[i].ns_bd_hdl) {
2552                                 (void) bd_detach_handle(
2553                                     nvme->n_ns[i].ns_bd_hdl);
2554                                 bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
2555                         }
2556 
2557                         if (nvme->n_ns[i].ns_idns)
2558                                 kmem_free(nvme->n_ns[i].ns_idns,
2559                                     sizeof (nvme_identify_nsid_t));
2560                 }
2561 
2562                 kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
2563                     nvme->n_namespace_count);
2564         }
2565 
2566         if (nvme->n_progress & NVME_INTERRUPTS)
2567                 nvme_release_interrupts(nvme);
2568 
2569         if (nvme->n_cmd_taskq)
2570                 ddi_taskq_wait(nvme->n_cmd_taskq);
2571 
2572         if (nvme->n_ioq_count > 0) {
2573                 for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2574                         if (nvme->n_ioq[i] != NULL) {
2575                                 /* TODO: send destroy queue commands */
2576                                 mutex_enter(&nvme_global_mutex);
2577                                 list_remove(&nvme_qp_list, nvme->n_ioq[i]);
2578                                 mutex_exit(&nvme_global_mutex);
2579                                 nvme_free_qpair(nvme->n_ioq[i]);
2580                         }
2581                 }
2582 
2583                 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
2584                     (nvme->n_ioq_count + 1));
2585         }
2586 
2587         if (nvme->n_progress & NVME_REGS_MAPPED) {
2588                 nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
2589                 (void) nvme_reset(nvme, B_FALSE);
2590         }
2591 
2592         if (nvme->n_cmd_taskq)
2593                 ddi_taskq_destroy(nvme->n_cmd_taskq);
2594 
2595         if (nvme->n_progress & NVME_CTRL_LIMITS)
2596                 sema_destroy(&nvme->n_abort_sema);
2597 
2598         if (nvme->n_progress & NVME_ADMIN_QUEUE)
2599                 nvme_free_qpair(nvme->n_adminq);
2600 
2601         if (nvme->n_idctl)
2602                 kmem_free(nvme->n_idctl, sizeof (nvme_identify_ctrl_t));
2603 
2604         if (nvme->n_progress & NVME_REGS_MAPPED)
2605                 ddi_regs_map_free(&nvme->n_regh);
2606 
2607         if (nvme->n_progress & NVME_FMA_INIT) {
2608                 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2609                         ddi_fm_handler_unregister(nvme->n_dip);
2610 
2611                 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2612                     DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2613                         pci_ereport_teardown(nvme->n_dip);
2614 
2615                 ddi_fm_fini(nvme->n_dip);
2616         }
2617 
2618         if (nvme->n_vendor != NULL)
2619                 strfree(nvme->n_vendor);
2620 
2621         if (nvme->n_product != NULL)
2622                 strfree(nvme->n_product);
2623 
2624         ddi_soft_state_free(nvme_state, instance);
2625 
2626         return (DDI_SUCCESS);
2627 }
2628 
2629 static int
2630 nvme_quiesce(dev_info_t *dip)
2631 {
2632         int instance;
2633         nvme_t *nvme;
2634 
2635         instance = ddi_get_instance(dip);
2636 
2637         nvme = ddi_get_soft_state(nvme_state, instance);
2638 
2639         if (nvme == NULL)
2640                 return (DDI_FAILURE);
2641 
2642         nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
2643 
2644         (void) nvme_reset(nvme, B_TRUE);
2645 
2646         return (DDI_FAILURE);
2647 }
2648 
2649 static int
2650 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
2651 {
2652         nvme_t *nvme = cmd->nc_nvme;
2653         int nprp_page, nprp;
2654         uint64_t *prp;
2655 
2656         if (xfer->x_ndmac == 0)
2657                 return (DDI_FAILURE);
2658 
2659         cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
2660         ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
2661 
2662         if (xfer->x_ndmac == 1) {
2663                 cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
2664                 return (DDI_SUCCESS);
2665         } else if (xfer->x_ndmac == 2) {
2666                 cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
2667                 return (DDI_SUCCESS);
2668         }
2669 
2670         xfer->x_ndmac--;
2671 
2672         nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1;
2673         ASSERT(nprp_page > 0);
2674         nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
2675 
2676         /*
2677          * We currently don't support chained PRPs and set up our DMA
2678          * attributes to reflect that. If we still get an I/O request
2679          * that needs a chained PRP something is very wrong.
2680          */
2681         VERIFY(nprp == 1);
2682 
2683         if (nvme_zalloc_dma(nvme, nvme->n_pagesize * nprp, DDI_DMA_READ,
2684             &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2685                 dev_err(nvme->n_dip, CE_WARN, "!%s: nvme_zalloc_dma failed",
2686                     __func__);
2687                 return (DDI_FAILURE);
2688         }
2689 
2690         cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
2691         ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, &cmd->nc_dma->nd_cookie);
2692 
2693         /*LINTED: E_PTR_BAD_CAST_ALIGN*/
2694         for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
2695             xfer->x_ndmac > 0;
2696             prp++, xfer->x_ndmac--) {
2697                 *prp = xfer->x_dmac.dmac_laddress;
2698                 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
2699         }
2700 
2701         (void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
2702             DDI_DMA_SYNC_FORDEV);
2703         return (DDI_SUCCESS);
2704 }
2705 
2706 static nvme_cmd_t *
2707 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
2708 {
2709         nvme_t *nvme = ns->ns_nvme;
2710         nvme_cmd_t *cmd;
2711 
2712         /*
2713          * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
2714          */
2715         cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ?
2716             KM_NOSLEEP : KM_SLEEP);
2717 
2718         if (cmd == NULL)
2719                 return (NULL);
2720 
2721         cmd->nc_sqe.sqe_opc = opc;
2722         cmd->nc_callback = nvme_bd_xfer_done;
2723         cmd->nc_xfer = xfer;
2724 
2725         switch (opc) {
2726         case NVME_OPC_NVM_WRITE:
2727         case NVME_OPC_NVM_READ:
2728                 VERIFY(xfer->x_nblks <= 0x10000);
2729 
2730                 cmd->nc_sqe.sqe_nsid = ns->ns_id;
2731 
2732                 cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
2733                 cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
2734                 cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
2735 
2736                 if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
2737                         goto fail;
2738                 break;
2739 
2740         case NVME_OPC_NVM_FLUSH:
2741                 cmd->nc_sqe.sqe_nsid = ns->ns_id;
2742                 break;
2743 
2744         default:
2745                 goto fail;
2746         }
2747 
2748         return (cmd);
2749 
2750 fail:
2751         nvme_free_cmd(cmd);
2752         return (NULL);
2753 }
2754 
2755 static void
2756 nvme_bd_xfer_done(void *arg)
2757 {
2758         nvme_cmd_t *cmd = arg;
2759         bd_xfer_t *xfer = cmd->nc_xfer;
2760         int error = 0;
2761 
2762         error = nvme_check_cmd_status(cmd);
2763         nvme_free_cmd(cmd);
2764 
2765         bd_xfer_done(xfer, error);
2766 }
2767 
2768 static void
2769 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
2770 {
2771         nvme_namespace_t *ns = arg;
2772         nvme_t *nvme = ns->ns_nvme;
2773 
2774         /*
2775          * blkdev maintains one queue size per instance (namespace),
2776          * but all namespace share the I/O queues.
2777          * TODO: need to figure out a sane default, or use per-NS I/O queues,
2778          * or change blkdev to handle EAGAIN
2779          */
2780         drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len
2781             / nvme->n_namespace_count;
2782 
2783         /*
2784          * d_maxxfer is not set, which means the value is taken from the DMA
2785          * attributes specified to bd_alloc_handle.
2786          */
2787 
2788         drive->d_removable = B_FALSE;
2789         drive->d_hotpluggable = B_FALSE;
2790 
2791         drive->d_target = ns->ns_id;
2792         drive->d_lun = 0;
2793 
2794         drive->d_model = nvme->n_idctl->id_model;
2795         drive->d_model_len = sizeof (nvme->n_idctl->id_model);
2796         drive->d_vendor = nvme->n_vendor;
2797         drive->d_vendor_len = strlen(nvme->n_vendor);
2798         drive->d_product = nvme->n_product;
2799         drive->d_product_len = strlen(nvme->n_product);
2800         drive->d_serial = nvme->n_idctl->id_serial;
2801         drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
2802         drive->d_revision = nvme->n_idctl->id_fwrev;
2803         drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
2804 }
2805 
2806 static int
2807 nvme_bd_mediainfo(void *arg, bd_media_t *media)
2808 {
2809         nvme_namespace_t *ns = arg;
2810 
2811         media->m_nblks = ns->ns_block_count;
2812         media->m_blksize = ns->ns_block_size;
2813         media->m_readonly = B_FALSE;
2814         media->m_solidstate = B_TRUE;
2815 
2816         media->m_pblksize = ns->ns_best_block_size;
2817 
2818         return (0);
2819 }
2820 
2821 static int
2822 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
2823 {
2824         nvme_t *nvme = ns->ns_nvme;
2825         nvme_cmd_t *cmd;
2826 
2827         if (nvme->n_dead)
2828                 return (EIO);
2829 
2830         /* No polling for now */
2831         if (xfer->x_flags & BD_XFER_POLL)
2832                 return (EIO);
2833 
2834         cmd = nvme_create_nvm_cmd(ns, opc, xfer);
2835         if (cmd == NULL)
2836                 return (ENOMEM);
2837 
2838         cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
2839         ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
2840 
2841         if (nvme_submit_cmd(nvme->n_ioq[cmd->nc_sqid], cmd)
2842             != DDI_SUCCESS)
2843                 return (EAGAIN);
2844 
2845         return (0);
2846 }
2847 
2848 static int
2849 nvme_bd_read(void *arg, bd_xfer_t *xfer)
2850 {
2851         nvme_namespace_t *ns = arg;
2852 
2853         return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
2854 }
2855 
2856 static int
2857 nvme_bd_write(void *arg, bd_xfer_t *xfer)
2858 {
2859         nvme_namespace_t *ns = arg;
2860 
2861         return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
2862 }
2863 
2864 static int
2865 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
2866 {
2867         nvme_namespace_t *ns = arg;
2868 
2869         if (ns->ns_nvme->n_dead)
2870                 return (EIO);
2871 
2872         /*
2873          * If the volatile write cache isn't enabled the FLUSH command is a
2874          * no-op, so we can take a shortcut here.
2875          */
2876         if (ns->ns_nvme->n_volatile_write_cache_enabled == B_FALSE) {
2877                 bd_xfer_done(xfer, ENOTSUP);
2878                 return (0);
2879         }
2880 
2881         return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
2882 }
2883 
2884 static int
2885 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
2886 {
2887         nvme_namespace_t *ns = arg;
2888 
2889         return (ddi_devid_init(devinfo, DEVID_ENCAP, strlen(ns->ns_devid),
2890             ns->ns_devid, devid));
2891 }
2892 
2893 static void
2894 nvme_intr_monitor(void *arg)
2895 {
2896         nvme_qpair_t *qp;
2897         hrtime_t diff, now_ns;
2898 
2899         if (!nvme_enable_intr_monitoring)
2900                 return;
2901         mutex_enter(&nvme_global_mutex);
2902         now_ns = gethrtime();
2903         for (qp = list_head(&nvme_qp_list); qp != NULL;
2904             qp = list_next(&nvme_qp_list, qp)) {
2905                 diff = now_ns - qp->nq_ts;
2906                 if (diff >= nvme_intr_timeout_ns && qp->nq_active_cmds > 0) {
2907                         if (nvme_process_cq_cmds(qp->nq_nvme, qp)) {
2908                                 nvme_intr_timeouts++;
2909                                 qp->nq_nvme->n_intr_timeouts++;
2910                         }
2911                 }
2912         }
2913         mutex_exit(&nvme_global_mutex);
2914 }