1 /* 2 * This file and its contents are supplied under the terms of the 3 * Common Development and Distribution License ("CDDL"), version 1.0. 4 * You may only use this file in accordance with the terms of version 5 * 1.0 of the CDDL. 6 * 7 * A full copy of the text of the CDDL should have accompanied this 8 * source. A copy of the CDDL is also available via the Internet at 9 * http://www.illumos.org/license/CDDL. 10 */ 11 12 /* 13 * Copyright 2016 Nexenta Systems, Inc. All rights reserved. 14 * Copyright 2016 Tegile Systems, Inc. All rights reserved. 15 * Copyright (c) 2016 The MathWorks, Inc. All rights reserved. 16 */ 17 18 /* 19 * blkdev driver for NVMe compliant storage devices 20 * 21 * This driver was written to conform to version 1.0e of the NVMe specification. 22 * It may work with newer versions, but that is completely untested and disabled 23 * by default. 24 * 25 * The driver has only been tested on x86 systems and will not work on big- 26 * endian systems without changes to the code accessing registers and data 27 * structures used by the hardware. 28 * 29 * 30 * Interrupt Usage: 31 * 32 * The driver will use a FIXED interrupt while configuring the device as the 33 * specification requires. Later in the attach process it will switch to MSI-X 34 * or MSI if supported. The driver wants to have one interrupt vector per CPU, 35 * but it will work correctly if less are available. Interrupts can be shared 36 * by queues, the interrupt handler will iterate through the I/O queue array by 37 * steps of n_intr_cnt. Usually only the admin queue will share an interrupt 38 * with one I/O queue. The interrupt handler will retrieve completed commands 39 * from all queues sharing an interrupt vector and will post them to a taskq 40 * for completion processing. 41 * 42 * 43 * Command Processing: 44 * 45 * NVMe devices can have up to 65536 I/O queue pairs, with each queue holding up 46 * to 65536 I/O commands. The driver will configure one I/O queue pair per 47 * available interrupt vector, with the queue length usually much smaller than 48 * the maximum of 65536. If the hardware doesn't provide enough queues, fewer 49 * interrupt vectors will be used. 50 * 51 * Additionally the hardware provides a single special admin queue pair that can 52 * hold up to 4096 admin commands. 53 * 54 * From the hardware perspective both queues of a queue pair are independent, 55 * but they share some driver state: the command array (holding pointers to 56 * commands currently being processed by the hardware) and the active command 57 * counter. Access to the submission side of a queue pair and the shared state 58 * is protected by nq_mutex. The completion side of a queue pair does not need 59 * that protection apart from its access to the shared state; it is called only 60 * in the interrupt handler which does not run concurrently for the same 61 * interrupt vector. 62 * 63 * When a command is submitted to a queue pair the active command counter is 64 * incremented and a pointer to the command is stored in the command array. The 65 * array index is used as command identifier (CID) in the submission queue 66 * entry. Some commands may take a very long time to complete, and if the queue 67 * wraps around in that time a submission may find the next array slot to still 68 * be used by a long-running command. In this case the array is sequentially 69 * searched for the next free slot. The length of the command array is the same 70 * as the configured queue length. 71 * 72 * 73 * Namespace Support: 74 * 75 * NVMe devices can have multiple namespaces, each being a independent data 76 * store. The driver supports multiple namespaces and creates a blkdev interface 77 * for each namespace found. Namespaces can have various attributes to support 78 * thin provisioning and protection information. This driver does not support 79 * any of this and ignores namespaces that have these attributes. 80 * 81 * 82 * Blkdev Interface: 83 * 84 * This driver uses blkdev to do all the heavy lifting involved with presenting 85 * a disk device to the system. As a result, the processing of I/O requests is 86 * relatively simple as blkdev takes care of partitioning, boundary checks, DMA 87 * setup, and splitting of transfers into manageable chunks. 88 * 89 * I/O requests coming in from blkdev are turned into NVM commands and posted to 90 * an I/O queue. The queue is selected by taking the CPU id modulo the number of 91 * queues. There is currently no timeout handling of I/O commands. 92 * 93 * Blkdev also supports querying device/media information and generating a 94 * devid. The driver reports the best block size as determined by the namespace 95 * format back to blkdev as physical block size to support partition and block 96 * alignment. The devid is composed using the device vendor ID, model number, 97 * serial number, and the namespace ID. 98 * 99 * 100 * Error Handling: 101 * 102 * Error handling is currently limited to detecting fatal hardware errors, 103 * either by asynchronous events, or synchronously through command status or 104 * admin command timeouts. In case of severe errors the device is fenced off, 105 * all further requests will return EIO. FMA is then called to fault the device. 106 * 107 * The hardware has a limit for outstanding asynchronous event requests. Before 108 * this limit is known the driver assumes it is at least 1 and posts a single 109 * asynchronous request. Later when the limit is known more asynchronous event 110 * requests are posted to allow quicker reception of error information. When an 111 * asynchronous event is posted by the hardware the driver will parse the error 112 * status fields and log information or fault the device, depending on the 113 * severity of the asynchronous event. The asynchronous event request is then 114 * reused and posted to the admin queue again. 115 * 116 * On command completion the command status is checked for errors. In case of 117 * errors indicating a driver bug the driver panics. Almost all other error 118 * status values just cause EIO to be returned. 119 * 120 * Command timeouts are currently detected for all admin commands except 121 * asynchronous event requests. If a command times out and the hardware appears 122 * to be healthy the driver attempts to abort the command. If this fails the 123 * driver assumes the device to be dead, fences it off, and calls FMA to retire 124 * it. In general admin commands are issued at attach time only. No timeout 125 * handling of normal I/O commands is presently done. 126 * 127 * In some cases it may be possible that the ABORT command times out, too. In 128 * that case the device is also declared dead and fenced off. 129 * 130 * 131 * Quiesce / Fast Reboot: 132 * 133 * The driver currently does not support fast reboot. A quiesce(9E) entry point 134 * is still provided which is used to send a shutdown notification to the 135 * device. 136 * 137 * 138 * Driver Configuration: 139 * 140 * The following driver properties can be changed to control some aspects of the 141 * drivers operation: 142 * - strict-version: can be set to 0 to allow devices conforming to newer 143 * versions to be used 144 * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor 145 * specific command status as a fatal error leading device faulting 146 * - admin-queue-len: the maximum length of the admin queue (16-4096) 147 * - io-queue-len: the maximum length of the I/O queues (16-65536) 148 * - async-event-limit: the maximum number of asynchronous event requests to be 149 * posted by the driver 150 * 151 * 152 * TODO: 153 * - figure out sane default for I/O queue depth reported to blkdev 154 * - polled I/O support to support kernel core dumping 155 * - FMA handling of media errors 156 * - support for the Volatile Write Cache 157 * - support for devices supporting very large I/O requests using chained PRPs 158 * - support for querying log pages from user space 159 * - support for configuring hardware parameters like interrupt coalescing 160 * - support for media formatting and hard partitioning into namespaces 161 * - support for big-endian systems 162 * - support for fast reboot 163 */ 164 165 #include <sys/byteorder.h> 166 #ifdef _BIG_ENDIAN 167 #error nvme driver needs porting for big-endian platforms 168 #endif 169 170 #include <sys/modctl.h> 171 #include <sys/conf.h> 172 #include <sys/devops.h> 173 #include <sys/ddi.h> 174 #include <sys/sunddi.h> 175 #include <sys/bitmap.h> 176 #include <sys/sysmacros.h> 177 #include <sys/param.h> 178 #include <sys/varargs.h> 179 #include <sys/cpuvar.h> 180 #include <sys/disp.h> 181 #include <sys/blkdev.h> 182 #include <sys/atomic.h> 183 #include <sys/archsystm.h> 184 #include <sys/sata/sata_hba.h> 185 186 #include "nvme_reg.h" 187 #include "nvme_var.h" 188 189 190 /* NVMe spec version supported */ 191 static const int nvme_version_major = 1; 192 static const int nvme_version_minor = 0; 193 194 /* tunable for admin command timeout in seconds, default is 1s */ 195 static volatile int nvme_admin_cmd_timeout = 1; 196 197 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t); 198 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t); 199 static int nvme_quiesce(dev_info_t *); 200 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *); 201 static int nvme_setup_interrupts(nvme_t *, int, int); 202 static void nvme_release_interrupts(nvme_t *); 203 static uint_t nvme_intr(caddr_t, caddr_t); 204 205 static void nvme_shutdown(nvme_t *, int, boolean_t); 206 static boolean_t nvme_reset(nvme_t *, boolean_t); 207 static int nvme_init(nvme_t *); 208 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int); 209 static void nvme_free_cmd(nvme_cmd_t *); 210 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t, 211 bd_xfer_t *); 212 static int nvme_admin_cmd(nvme_cmd_t *, int); 213 static int nvme_submit_cmd(nvme_qpair_t *, nvme_cmd_t *); 214 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *); 215 static boolean_t nvme_wait_cmd(nvme_cmd_t *, uint_t); 216 static void nvme_wakeup_cmd(void *); 217 static void nvme_async_event_task(void *); 218 219 static int nvme_check_unknown_cmd_status(nvme_cmd_t *); 220 static int nvme_check_vendor_cmd_status(nvme_cmd_t *); 221 static int nvme_check_integrity_cmd_status(nvme_cmd_t *); 222 static int nvme_check_specific_cmd_status(nvme_cmd_t *); 223 static int nvme_check_generic_cmd_status(nvme_cmd_t *); 224 static inline int nvme_check_cmd_status(nvme_cmd_t *); 225 226 static void nvme_abort_cmd(nvme_cmd_t *); 227 static int nvme_async_event(nvme_t *); 228 static void *nvme_get_logpage(nvme_t *, uint8_t, ...); 229 static void *nvme_identify(nvme_t *, uint32_t); 230 static int nvme_set_nqueues(nvme_t *, uint16_t); 231 232 static void nvme_free_dma(nvme_dma_t *); 233 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *, 234 nvme_dma_t **); 235 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t, 236 nvme_dma_t **); 237 static void nvme_free_qpair(nvme_qpair_t *); 238 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int); 239 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t); 240 241 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t); 242 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t); 243 static inline uint64_t nvme_get64(nvme_t *, uintptr_t); 244 static inline uint32_t nvme_get32(nvme_t *, uintptr_t); 245 246 static boolean_t nvme_check_regs_hdl(nvme_t *); 247 static boolean_t nvme_check_dma_hdl(nvme_dma_t *); 248 249 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *); 250 251 static void nvme_bd_xfer_done(void *); 252 static void nvme_bd_driveinfo(void *, bd_drive_t *); 253 static int nvme_bd_mediainfo(void *, bd_media_t *); 254 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t); 255 static int nvme_bd_read(void *, bd_xfer_t *); 256 static int nvme_bd_write(void *, bd_xfer_t *); 257 static int nvme_bd_sync(void *, bd_xfer_t *); 258 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *); 259 260 static void nvme_prepare_devid(nvme_t *, uint32_t); 261 262 static void *nvme_state; 263 static kmem_cache_t *nvme_cmd_cache; 264 265 /* 266 * DMA attributes for queue DMA memory 267 * 268 * Queue DMA memory must be page aligned. The maximum length of a queue is 269 * 65536 entries, and an entry can be 64 bytes long. 270 */ 271 static ddi_dma_attr_t nvme_queue_dma_attr = { 272 .dma_attr_version = DMA_ATTR_V0, 273 .dma_attr_addr_lo = 0, 274 .dma_attr_addr_hi = 0xffffffffffffffffULL, 275 .dma_attr_count_max = (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1, 276 .dma_attr_align = 0x1000, 277 .dma_attr_burstsizes = 0x7ff, 278 .dma_attr_minxfer = 0x1000, 279 .dma_attr_maxxfer = (UINT16_MAX + 1) * sizeof (nvme_sqe_t), 280 .dma_attr_seg = 0xffffffffffffffffULL, 281 .dma_attr_sgllen = 1, 282 .dma_attr_granular = 1, 283 .dma_attr_flags = 0, 284 }; 285 286 /* 287 * DMA attributes for transfers using Physical Region Page (PRP) entries 288 * 289 * A PRP entry describes one page of DMA memory using the page size specified 290 * in the controller configuration's memory page size register (CC.MPS). It uses 291 * a 64bit base address aligned to this page size. There is no limitation on 292 * chaining PRPs together for arbitrarily large DMA transfers. 293 */ 294 static ddi_dma_attr_t nvme_prp_dma_attr = { 295 .dma_attr_version = DMA_ATTR_V0, 296 .dma_attr_addr_lo = 0, 297 .dma_attr_addr_hi = 0xffffffffffffffffULL, 298 .dma_attr_count_max = 0xfff, 299 .dma_attr_align = 0x1000, 300 .dma_attr_burstsizes = 0x7ff, 301 .dma_attr_minxfer = 0x1000, 302 .dma_attr_maxxfer = 0x1000, 303 .dma_attr_seg = 0xfff, 304 .dma_attr_sgllen = -1, 305 .dma_attr_granular = 1, 306 .dma_attr_flags = 0, 307 }; 308 309 /* 310 * DMA attributes for transfers using scatter/gather lists 311 * 312 * A SGL entry describes a chunk of DMA memory using a 64bit base address and a 313 * 32bit length field. SGL Segment and SGL Last Segment entries require the 314 * length to be a multiple of 16 bytes. 315 */ 316 static ddi_dma_attr_t nvme_sgl_dma_attr = { 317 .dma_attr_version = DMA_ATTR_V0, 318 .dma_attr_addr_lo = 0, 319 .dma_attr_addr_hi = 0xffffffffffffffffULL, 320 .dma_attr_count_max = 0xffffffffUL, 321 .dma_attr_align = 1, 322 .dma_attr_burstsizes = 0x7ff, 323 .dma_attr_minxfer = 0x10, 324 .dma_attr_maxxfer = 0xfffffffffULL, 325 .dma_attr_seg = 0xffffffffffffffffULL, 326 .dma_attr_sgllen = -1, 327 .dma_attr_granular = 0x10, 328 .dma_attr_flags = 0 329 }; 330 331 static ddi_device_acc_attr_t nvme_reg_acc_attr = { 332 .devacc_attr_version = DDI_DEVICE_ATTR_V0, 333 .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC, 334 .devacc_attr_dataorder = DDI_STRICTORDER_ACC 335 }; 336 337 static struct dev_ops nvme_dev_ops = { 338 .devo_rev = DEVO_REV, 339 .devo_refcnt = 0, 340 .devo_getinfo = ddi_no_info, 341 .devo_identify = nulldev, 342 .devo_probe = nulldev, 343 .devo_attach = nvme_attach, 344 .devo_detach = nvme_detach, 345 .devo_reset = nodev, 346 .devo_cb_ops = NULL, 347 .devo_bus_ops = NULL, 348 .devo_power = NULL, 349 .devo_quiesce = nvme_quiesce, 350 }; 351 352 static struct modldrv nvme_modldrv = { 353 .drv_modops = &mod_driverops, 354 .drv_linkinfo = "NVMe v1.0e", 355 .drv_dev_ops = &nvme_dev_ops 356 }; 357 358 static struct modlinkage nvme_modlinkage = { 359 .ml_rev = MODREV_1, 360 .ml_linkage = { &nvme_modldrv, NULL } 361 }; 362 363 static bd_ops_t nvme_bd_ops = { 364 .o_version = BD_OPS_VERSION_0, 365 .o_drive_info = nvme_bd_driveinfo, 366 .o_media_info = nvme_bd_mediainfo, 367 .o_devid_init = nvme_bd_devid, 368 .o_sync_cache = nvme_bd_sync, 369 .o_read = nvme_bd_read, 370 .o_write = nvme_bd_write, 371 }; 372 373 int 374 _init(void) 375 { 376 int error; 377 378 error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1); 379 if (error != DDI_SUCCESS) 380 return (error); 381 382 nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache", 383 sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0); 384 385 bd_mod_init(&nvme_dev_ops); 386 387 error = mod_install(&nvme_modlinkage); 388 if (error != DDI_SUCCESS) { 389 ddi_soft_state_fini(&nvme_state); 390 bd_mod_fini(&nvme_dev_ops); 391 } 392 393 return (error); 394 } 395 396 int 397 _fini(void) 398 { 399 int error; 400 401 error = mod_remove(&nvme_modlinkage); 402 if (error == DDI_SUCCESS) { 403 ddi_soft_state_fini(&nvme_state); 404 kmem_cache_destroy(nvme_cmd_cache); 405 bd_mod_fini(&nvme_dev_ops); 406 } 407 408 return (error); 409 } 410 411 int 412 _info(struct modinfo *modinfop) 413 { 414 return (mod_info(&nvme_modlinkage, modinfop)); 415 } 416 417 static inline void 418 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val) 419 { 420 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0); 421 422 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 423 ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val); 424 } 425 426 static inline void 427 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val) 428 { 429 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0); 430 431 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 432 ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val); 433 } 434 435 static inline uint64_t 436 nvme_get64(nvme_t *nvme, uintptr_t reg) 437 { 438 uint64_t val; 439 440 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0); 441 442 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 443 val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg)); 444 445 return (val); 446 } 447 448 static inline uint32_t 449 nvme_get32(nvme_t *nvme, uintptr_t reg) 450 { 451 uint32_t val; 452 453 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0); 454 455 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 456 val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg)); 457 458 return (val); 459 } 460 461 static boolean_t 462 nvme_check_regs_hdl(nvme_t *nvme) 463 { 464 ddi_fm_error_t error; 465 466 ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION); 467 468 if (error.fme_status != DDI_FM_OK) 469 return (B_TRUE); 470 471 return (B_FALSE); 472 } 473 474 static boolean_t 475 nvme_check_dma_hdl(nvme_dma_t *dma) 476 { 477 ddi_fm_error_t error; 478 479 if (dma == NULL) 480 return (B_FALSE); 481 482 ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION); 483 484 if (error.fme_status != DDI_FM_OK) 485 return (B_TRUE); 486 487 return (B_FALSE); 488 } 489 490 static void 491 nvme_free_dma(nvme_dma_t *dma) 492 { 493 if (dma->nd_dmah != NULL) 494 (void) ddi_dma_unbind_handle(dma->nd_dmah); 495 if (dma->nd_acch != NULL) 496 ddi_dma_mem_free(&dma->nd_acch); 497 if (dma->nd_dmah != NULL) 498 ddi_dma_free_handle(&dma->nd_dmah); 499 kmem_free(dma, sizeof (nvme_dma_t)); 500 } 501 502 static int 503 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags, 504 ddi_dma_attr_t *dma_attr, nvme_dma_t **ret) 505 { 506 nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP); 507 508 if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL, 509 &dma->nd_dmah) != DDI_SUCCESS) { 510 /* 511 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and 512 * the only other possible error is DDI_DMA_BADATTR which 513 * indicates a driver bug which should cause a panic. 514 */ 515 dev_err(nvme->n_dip, CE_PANIC, 516 "!failed to get DMA handle, check DMA attributes"); 517 return (DDI_FAILURE); 518 } 519 520 /* 521 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified 522 * or the flags are conflicting, which isn't the case here. 523 */ 524 (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr, 525 DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp, 526 &dma->nd_len, &dma->nd_acch); 527 528 if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp, 529 dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, 530 &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) { 531 dev_err(nvme->n_dip, CE_WARN, 532 "!failed to bind DMA memory"); 533 atomic_inc_32(&nvme->n_dma_bind_err); 534 *ret = NULL; 535 nvme_free_dma(dma); 536 return (DDI_FAILURE); 537 } 538 539 bzero(dma->nd_memp, dma->nd_len); 540 541 *ret = dma; 542 return (DDI_SUCCESS); 543 } 544 545 static int 546 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len, 547 uint_t flags, nvme_dma_t **dma) 548 { 549 uint32_t len = nentry * qe_len; 550 ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr; 551 552 len = roundup(len, nvme->n_pagesize); 553 554 q_dma_attr.dma_attr_minxfer = len; 555 556 if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma) 557 != DDI_SUCCESS) { 558 dev_err(nvme->n_dip, CE_WARN, 559 "!failed to get DMA memory for queue"); 560 goto fail; 561 } 562 563 if ((*dma)->nd_ncookie != 1) { 564 dev_err(nvme->n_dip, CE_WARN, 565 "!got too many cookies for queue DMA"); 566 goto fail; 567 } 568 569 return (DDI_SUCCESS); 570 571 fail: 572 if (*dma) { 573 nvme_free_dma(*dma); 574 *dma = NULL; 575 } 576 577 return (DDI_FAILURE); 578 } 579 580 static void 581 nvme_free_qpair(nvme_qpair_t *qp) 582 { 583 int i; 584 585 mutex_destroy(&qp->nq_mutex); 586 587 if (qp->nq_sqdma != NULL) 588 nvme_free_dma(qp->nq_sqdma); 589 if (qp->nq_cqdma != NULL) 590 nvme_free_dma(qp->nq_cqdma); 591 592 if (qp->nq_active_cmds > 0) 593 for (i = 0; i != qp->nq_nentry; i++) 594 if (qp->nq_cmd[i] != NULL) 595 nvme_free_cmd(qp->nq_cmd[i]); 596 597 if (qp->nq_cmd != NULL) 598 kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry); 599 600 kmem_free(qp, sizeof (nvme_qpair_t)); 601 } 602 603 static int 604 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp, 605 int idx) 606 { 607 nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP); 608 609 mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER, 610 DDI_INTR_PRI(nvme->n_intr_pri)); 611 612 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t), 613 DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS) 614 goto fail; 615 616 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t), 617 DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS) 618 goto fail; 619 620 qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp; 621 qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp; 622 qp->nq_nentry = nentry; 623 624 qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx); 625 qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx); 626 627 qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP); 628 qp->nq_next_cmd = 0; 629 630 *nqp = qp; 631 return (DDI_SUCCESS); 632 633 fail: 634 nvme_free_qpair(qp); 635 *nqp = NULL; 636 637 return (DDI_FAILURE); 638 } 639 640 static nvme_cmd_t * 641 nvme_alloc_cmd(nvme_t *nvme, int kmflag) 642 { 643 nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag); 644 645 if (cmd == NULL) 646 return (cmd); 647 648 bzero(cmd, sizeof (nvme_cmd_t)); 649 650 cmd->nc_nvme = nvme; 651 652 mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER, 653 DDI_INTR_PRI(nvme->n_intr_pri)); 654 cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL); 655 656 return (cmd); 657 } 658 659 static void 660 nvme_free_cmd(nvme_cmd_t *cmd) 661 { 662 if (cmd->nc_dma) { 663 nvme_free_dma(cmd->nc_dma); 664 cmd->nc_dma = NULL; 665 } 666 667 cv_destroy(&cmd->nc_cv); 668 mutex_destroy(&cmd->nc_mutex); 669 670 kmem_cache_free(nvme_cmd_cache, cmd); 671 } 672 673 static int 674 nvme_submit_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd) 675 { 676 nvme_reg_sqtdbl_t tail = { 0 }; 677 678 mutex_enter(&qp->nq_mutex); 679 680 if (qp->nq_active_cmds == qp->nq_nentry) { 681 mutex_exit(&qp->nq_mutex); 682 return (DDI_FAILURE); 683 } 684 685 cmd->nc_completed = B_FALSE; 686 687 /* 688 * Try to insert the cmd into the active cmd array at the nq_next_cmd 689 * slot. If the slot is already occupied advance to the next slot and 690 * try again. This can happen for long running commands like async event 691 * requests. 692 */ 693 while (qp->nq_cmd[qp->nq_next_cmd] != NULL) 694 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry; 695 qp->nq_cmd[qp->nq_next_cmd] = cmd; 696 697 qp->nq_active_cmds++; 698 699 cmd->nc_sqe.sqe_cid = qp->nq_next_cmd; 700 bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t)); 701 (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah, 702 sizeof (nvme_sqe_t) * qp->nq_sqtail, 703 sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV); 704 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry; 705 706 tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry; 707 nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r); 708 709 mutex_exit(&qp->nq_mutex); 710 return (DDI_SUCCESS); 711 } 712 713 static nvme_cmd_t * 714 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp) 715 { 716 nvme_reg_cqhdbl_t head = { 0 }; 717 718 nvme_cqe_t *cqe; 719 nvme_cmd_t *cmd; 720 721 (void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0, 722 sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL); 723 724 cqe = &qp->nq_cq[qp->nq_cqhead]; 725 726 /* Check phase tag of CQE. Hardware inverts it for new entries. */ 727 if (cqe->cqe_sf.sf_p == qp->nq_phase) 728 return (NULL); 729 730 ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp); 731 ASSERT(cqe->cqe_cid < qp->nq_nentry); 732 733 mutex_enter(&qp->nq_mutex); 734 cmd = qp->nq_cmd[cqe->cqe_cid]; 735 qp->nq_cmd[cqe->cqe_cid] = NULL; 736 qp->nq_active_cmds--; 737 mutex_exit(&qp->nq_mutex); 738 739 ASSERT(cmd != NULL); 740 ASSERT(cmd->nc_nvme == nvme); 741 ASSERT(cmd->nc_sqid == cqe->cqe_sqid); 742 ASSERT(cmd->nc_sqe.sqe_cid == cqe->cqe_cid); 743 bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t)); 744 745 qp->nq_sqhead = cqe->cqe_sqhd; 746 747 head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry; 748 749 /* Toggle phase on wrap-around. */ 750 if (qp->nq_cqhead == 0) 751 qp->nq_phase = qp->nq_phase ? 0 : 1; 752 753 nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r); 754 755 return (cmd); 756 } 757 758 static int 759 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd) 760 { 761 nvme_cqe_t *cqe = &cmd->nc_cqe; 762 763 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 764 "!unknown command status received: opc = %x, sqid = %d, cid = %d, " 765 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc, 766 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct, 767 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m); 768 769 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 770 771 if (cmd->nc_nvme->n_strict_version) { 772 cmd->nc_nvme->n_dead = B_TRUE; 773 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); 774 } 775 776 return (EIO); 777 } 778 779 static int 780 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd) 781 { 782 nvme_cqe_t *cqe = &cmd->nc_cqe; 783 784 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 785 "!unknown command status received: opc = %x, sqid = %d, cid = %d, " 786 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc, 787 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct, 788 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m); 789 if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) { 790 cmd->nc_nvme->n_dead = B_TRUE; 791 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); 792 } 793 794 return (EIO); 795 } 796 797 static int 798 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd) 799 { 800 nvme_cqe_t *cqe = &cmd->nc_cqe; 801 802 switch (cqe->cqe_sf.sf_sc) { 803 case NVME_CQE_SC_INT_NVM_WRITE: 804 /* write fail */ 805 /* TODO: post ereport */ 806 bd_error(cmd->nc_xfer, BD_ERR_MEDIA); 807 return (EIO); 808 809 case NVME_CQE_SC_INT_NVM_READ: 810 /* read fail */ 811 /* TODO: post ereport */ 812 bd_error(cmd->nc_xfer, BD_ERR_MEDIA); 813 return (EIO); 814 815 default: 816 return (nvme_check_unknown_cmd_status(cmd)); 817 } 818 } 819 820 static int 821 nvme_check_generic_cmd_status(nvme_cmd_t *cmd) 822 { 823 nvme_cqe_t *cqe = &cmd->nc_cqe; 824 825 switch (cqe->cqe_sf.sf_sc) { 826 case NVME_CQE_SC_GEN_SUCCESS: 827 return (0); 828 829 /* 830 * Errors indicating a bug in the driver should cause a panic. 831 */ 832 case NVME_CQE_SC_GEN_INV_OPC: 833 /* Invalid Command Opcode */ 834 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 835 "invalid opcode in cmd %p", (void *)cmd); 836 return (0); 837 838 case NVME_CQE_SC_GEN_INV_FLD: 839 /* Invalid Field in Command */ 840 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 841 "invalid field in cmd %p", (void *)cmd); 842 return (0); 843 844 case NVME_CQE_SC_GEN_ID_CNFL: 845 /* Command ID Conflict */ 846 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 847 "cmd ID conflict in cmd %p", (void *)cmd); 848 return (0); 849 850 case NVME_CQE_SC_GEN_INV_NS: 851 /* Invalid Namespace or Format */ 852 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 853 "invalid NS/format in cmd %p", (void *)cmd); 854 return (0); 855 856 case NVME_CQE_SC_GEN_NVM_LBA_RANGE: 857 /* LBA Out Of Range */ 858 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 859 "LBA out of range in cmd %p", (void *)cmd); 860 return (0); 861 862 /* 863 * Non-fatal errors, handle gracefully. 864 */ 865 case NVME_CQE_SC_GEN_DATA_XFR_ERR: 866 /* Data Transfer Error (DMA) */ 867 /* TODO: post ereport */ 868 atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err); 869 bd_error(cmd->nc_xfer, BD_ERR_NTRDY); 870 return (EIO); 871 872 case NVME_CQE_SC_GEN_INTERNAL_ERR: 873 /* 874 * Internal Error. The spec (v1.0, section 4.5.1.2) says 875 * detailed error information is returned as async event, 876 * so we pretty much ignore the error here and handle it 877 * in the async event handler. 878 */ 879 atomic_inc_32(&cmd->nc_nvme->n_internal_err); 880 bd_error(cmd->nc_xfer, BD_ERR_NTRDY); 881 return (EIO); 882 883 case NVME_CQE_SC_GEN_ABORT_REQUEST: 884 /* 885 * Command Abort Requested. This normally happens only when a 886 * command times out. 887 */ 888 /* TODO: post ereport or change blkdev to handle this? */ 889 atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err); 890 return (ECANCELED); 891 892 case NVME_CQE_SC_GEN_ABORT_PWRLOSS: 893 /* Command Aborted due to Power Loss Notification */ 894 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); 895 cmd->nc_nvme->n_dead = B_TRUE; 896 return (EIO); 897 898 case NVME_CQE_SC_GEN_ABORT_SQ_DEL: 899 /* Command Aborted due to SQ Deletion */ 900 atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del); 901 return (EIO); 902 903 case NVME_CQE_SC_GEN_NVM_CAP_EXC: 904 /* Capacity Exceeded */ 905 atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc); 906 bd_error(cmd->nc_xfer, BD_ERR_MEDIA); 907 return (EIO); 908 909 case NVME_CQE_SC_GEN_NVM_NS_NOTRDY: 910 /* Namespace Not Ready */ 911 atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy); 912 bd_error(cmd->nc_xfer, BD_ERR_NTRDY); 913 return (EIO); 914 915 default: 916 return (nvme_check_unknown_cmd_status(cmd)); 917 } 918 } 919 920 static int 921 nvme_check_specific_cmd_status(nvme_cmd_t *cmd) 922 { 923 nvme_cqe_t *cqe = &cmd->nc_cqe; 924 925 switch (cqe->cqe_sf.sf_sc) { 926 case NVME_CQE_SC_SPC_INV_CQ: 927 /* Completion Queue Invalid */ 928 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE); 929 atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err); 930 return (EINVAL); 931 932 case NVME_CQE_SC_SPC_INV_QID: 933 /* Invalid Queue Identifier */ 934 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE || 935 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE || 936 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE || 937 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE); 938 atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err); 939 return (EINVAL); 940 941 case NVME_CQE_SC_SPC_MAX_QSZ_EXC: 942 /* Max Queue Size Exceeded */ 943 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE || 944 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE); 945 atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc); 946 return (EINVAL); 947 948 case NVME_CQE_SC_SPC_ABRT_CMD_EXC: 949 /* Abort Command Limit Exceeded */ 950 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT); 951 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 952 "abort command limit exceeded in cmd %p", (void *)cmd); 953 return (0); 954 955 case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC: 956 /* Async Event Request Limit Exceeded */ 957 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT); 958 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 959 "async event request limit exceeded in cmd %p", 960 (void *)cmd); 961 return (0); 962 963 case NVME_CQE_SC_SPC_INV_INT_VECT: 964 /* Invalid Interrupt Vector */ 965 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE); 966 atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect); 967 return (EINVAL); 968 969 case NVME_CQE_SC_SPC_INV_LOG_PAGE: 970 /* Invalid Log Page */ 971 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE); 972 atomic_inc_32(&cmd->nc_nvme->n_inv_log_page); 973 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 974 return (EINVAL); 975 976 case NVME_CQE_SC_SPC_INV_FORMAT: 977 /* Invalid Format */ 978 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT); 979 atomic_inc_32(&cmd->nc_nvme->n_inv_format); 980 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 981 return (EINVAL); 982 983 case NVME_CQE_SC_SPC_INV_Q_DEL: 984 /* Invalid Queue Deletion */ 985 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE); 986 atomic_inc_32(&cmd->nc_nvme->n_inv_q_del); 987 return (EINVAL); 988 989 case NVME_CQE_SC_SPC_NVM_CNFL_ATTR: 990 /* Conflicting Attributes */ 991 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT || 992 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ || 993 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); 994 atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr); 995 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 996 return (EINVAL); 997 998 case NVME_CQE_SC_SPC_NVM_INV_PROT: 999 /* Invalid Protection Information */ 1000 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE || 1001 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ || 1002 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); 1003 atomic_inc_32(&cmd->nc_nvme->n_inv_prot); 1004 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1005 return (EINVAL); 1006 1007 case NVME_CQE_SC_SPC_NVM_READONLY: 1008 /* Write to Read Only Range */ 1009 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); 1010 atomic_inc_32(&cmd->nc_nvme->n_readonly); 1011 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1012 return (EROFS); 1013 1014 default: 1015 return (nvme_check_unknown_cmd_status(cmd)); 1016 } 1017 } 1018 1019 static inline int 1020 nvme_check_cmd_status(nvme_cmd_t *cmd) 1021 { 1022 nvme_cqe_t *cqe = &cmd->nc_cqe; 1023 1024 /* take a shortcut if everything is alright */ 1025 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && 1026 cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS) 1027 return (0); 1028 1029 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC) 1030 return (nvme_check_generic_cmd_status(cmd)); 1031 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC) 1032 return (nvme_check_specific_cmd_status(cmd)); 1033 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY) 1034 return (nvme_check_integrity_cmd_status(cmd)); 1035 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR) 1036 return (nvme_check_vendor_cmd_status(cmd)); 1037 1038 return (nvme_check_unknown_cmd_status(cmd)); 1039 } 1040 1041 /* 1042 * nvme_abort_cmd_cb -- replaces nc_callback of aborted commands 1043 * 1044 * This functions takes care of cleaning up aborted commands. The command 1045 * status is checked to catch any fatal errors. 1046 */ 1047 static void 1048 nvme_abort_cmd_cb(void *arg) 1049 { 1050 nvme_cmd_t *cmd = arg; 1051 1052 /* 1053 * Grab the command mutex. Once we have it we hold the last reference 1054 * to the command and can safely free it. 1055 */ 1056 mutex_enter(&cmd->nc_mutex); 1057 (void) nvme_check_cmd_status(cmd); 1058 mutex_exit(&cmd->nc_mutex); 1059 1060 nvme_free_cmd(cmd); 1061 } 1062 1063 static void 1064 nvme_abort_cmd(nvme_cmd_t *abort_cmd) 1065 { 1066 nvme_t *nvme = abort_cmd->nc_nvme; 1067 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1068 nvme_abort_cmd_t ac = { 0 }; 1069 1070 sema_p(&nvme->n_abort_sema); 1071 1072 ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid; 1073 ac.b.ac_sqid = abort_cmd->nc_sqid; 1074 1075 /* 1076 * Drop the mutex of the aborted command. From this point on 1077 * we must assume that the abort callback has freed the command. 1078 */ 1079 mutex_exit(&abort_cmd->nc_mutex); 1080 1081 cmd->nc_sqid = 0; 1082 cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT; 1083 cmd->nc_callback = nvme_wakeup_cmd; 1084 cmd->nc_sqe.sqe_cdw10 = ac.r; 1085 1086 /* 1087 * Send the ABORT to the hardware. The ABORT command will return _after_ 1088 * the aborted command has completed (aborted or otherwise). 1089 */ 1090 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) { 1091 sema_v(&nvme->n_abort_sema); 1092 dev_err(nvme->n_dip, CE_WARN, 1093 "!nvme_admin_cmd failed for ABORT"); 1094 atomic_inc_32(&nvme->n_abort_failed); 1095 return; 1096 } 1097 sema_v(&nvme->n_abort_sema); 1098 1099 if (nvme_check_cmd_status(cmd)) { 1100 dev_err(nvme->n_dip, CE_WARN, 1101 "!ABORT failed with sct = %x, sc = %x", 1102 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 1103 atomic_inc_32(&nvme->n_abort_failed); 1104 } else { 1105 atomic_inc_32(&nvme->n_cmd_aborted); 1106 } 1107 1108 nvme_free_cmd(cmd); 1109 } 1110 1111 /* 1112 * nvme_wait_cmd -- wait for command completion or timeout 1113 * 1114 * Returns B_TRUE if the command completed normally. 1115 * 1116 * Returns B_FALSE if the command timed out and an abort was attempted. The 1117 * command mutex will be dropped and the command must be considered freed. The 1118 * freeing of the command is normally done by the abort command callback. 1119 * 1120 * In case of a serious error or a timeout of the abort command the hardware 1121 * will be declared dead and FMA will be notified. 1122 */ 1123 static boolean_t 1124 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec) 1125 { 1126 clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC); 1127 nvme_t *nvme = cmd->nc_nvme; 1128 nvme_reg_csts_t csts; 1129 1130 ASSERT(mutex_owned(&cmd->nc_mutex)); 1131 1132 while (!cmd->nc_completed) { 1133 if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1) 1134 break; 1135 } 1136 1137 if (cmd->nc_completed) 1138 return (B_TRUE); 1139 1140 /* 1141 * The command timed out. Change the callback to the cleanup function. 1142 */ 1143 cmd->nc_callback = nvme_abort_cmd_cb; 1144 1145 /* 1146 * Check controller for fatal status, any errors associated with the 1147 * register or DMA handle, or for a double timeout (abort command timed 1148 * out). If necessary log a warning and call FMA. 1149 */ 1150 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 1151 dev_err(nvme->n_dip, CE_WARN, "!command timeout, " 1152 "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_opc, csts.b.csts_cfs); 1153 atomic_inc_32(&nvme->n_cmd_timeout); 1154 1155 if (csts.b.csts_cfs || 1156 nvme_check_regs_hdl(nvme) || 1157 nvme_check_dma_hdl(cmd->nc_dma) || 1158 cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) { 1159 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 1160 nvme->n_dead = B_TRUE; 1161 mutex_exit(&cmd->nc_mutex); 1162 } else { 1163 /* 1164 * Try to abort the command. The command mutex is released by 1165 * nvme_abort_cmd(). 1166 * If the abort succeeds it will have freed the aborted command. 1167 * If the abort fails for other reasons we must assume that the 1168 * command may complete at any time, and the callback will free 1169 * it for us. 1170 */ 1171 nvme_abort_cmd(cmd); 1172 } 1173 1174 return (B_FALSE); 1175 } 1176 1177 static void 1178 nvme_wakeup_cmd(void *arg) 1179 { 1180 nvme_cmd_t *cmd = arg; 1181 1182 mutex_enter(&cmd->nc_mutex); 1183 /* 1184 * There is a slight chance that this command completed shortly after 1185 * the timeout was hit in nvme_wait_cmd() but before the callback was 1186 * changed. Catch that case here and clean up accordingly. 1187 */ 1188 if (cmd->nc_callback == nvme_abort_cmd_cb) { 1189 mutex_exit(&cmd->nc_mutex); 1190 nvme_abort_cmd_cb(cmd); 1191 return; 1192 } 1193 1194 cmd->nc_completed = B_TRUE; 1195 cv_signal(&cmd->nc_cv); 1196 mutex_exit(&cmd->nc_mutex); 1197 } 1198 1199 static void 1200 nvme_async_event_task(void *arg) 1201 { 1202 nvme_cmd_t *cmd = arg; 1203 nvme_t *nvme = cmd->nc_nvme; 1204 nvme_error_log_entry_t *error_log = NULL; 1205 nvme_health_log_t *health_log = NULL; 1206 nvme_async_event_t event; 1207 int ret; 1208 1209 /* 1210 * Check for errors associated with the async request itself. The only 1211 * command-specific error is "async event limit exceeded", which 1212 * indicates a programming error in the driver and causes a panic in 1213 * nvme_check_cmd_status(). 1214 * 1215 * Other possible errors are various scenarios where the async request 1216 * was aborted, or internal errors in the device. Internal errors are 1217 * reported to FMA, the command aborts need no special handling here. 1218 */ 1219 if (nvme_check_cmd_status(cmd)) { 1220 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 1221 "!async event request returned failure, sct = %x, " 1222 "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct, 1223 cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr, 1224 cmd->nc_cqe.cqe_sf.sf_m); 1225 1226 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && 1227 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) { 1228 cmd->nc_nvme->n_dead = B_TRUE; 1229 ddi_fm_service_impact(cmd->nc_nvme->n_dip, 1230 DDI_SERVICE_LOST); 1231 } 1232 nvme_free_cmd(cmd); 1233 return; 1234 } 1235 1236 1237 event.r = cmd->nc_cqe.cqe_dw0; 1238 1239 /* Clear CQE and re-submit the async request. */ 1240 bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t)); 1241 ret = nvme_submit_cmd(nvme->n_adminq, cmd); 1242 1243 if (ret != DDI_SUCCESS) { 1244 dev_err(nvme->n_dip, CE_WARN, 1245 "!failed to resubmit async event request"); 1246 atomic_inc_32(&nvme->n_async_resubmit_failed); 1247 nvme_free_cmd(cmd); 1248 } 1249 1250 switch (event.b.ae_type) { 1251 case NVME_ASYNC_TYPE_ERROR: 1252 if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) { 1253 error_log = (nvme_error_log_entry_t *) 1254 nvme_get_logpage(nvme, event.b.ae_logpage); 1255 } else { 1256 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in " 1257 "async event reply: %d", event.b.ae_logpage); 1258 atomic_inc_32(&nvme->n_wrong_logpage); 1259 } 1260 1261 switch (event.b.ae_info) { 1262 case NVME_ASYNC_ERROR_INV_SQ: 1263 dev_err(nvme->n_dip, CE_PANIC, "programming error: " 1264 "invalid submission queue"); 1265 return; 1266 1267 case NVME_ASYNC_ERROR_INV_DBL: 1268 dev_err(nvme->n_dip, CE_PANIC, "programming error: " 1269 "invalid doorbell write value"); 1270 return; 1271 1272 case NVME_ASYNC_ERROR_DIAGFAIL: 1273 dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure"); 1274 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 1275 nvme->n_dead = B_TRUE; 1276 atomic_inc_32(&nvme->n_diagfail_event); 1277 break; 1278 1279 case NVME_ASYNC_ERROR_PERSISTENT: 1280 dev_err(nvme->n_dip, CE_WARN, "!persistent internal " 1281 "device error"); 1282 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 1283 nvme->n_dead = B_TRUE; 1284 atomic_inc_32(&nvme->n_persistent_event); 1285 break; 1286 1287 case NVME_ASYNC_ERROR_TRANSIENT: 1288 dev_err(nvme->n_dip, CE_WARN, "!transient internal " 1289 "device error"); 1290 /* TODO: send ereport */ 1291 atomic_inc_32(&nvme->n_transient_event); 1292 break; 1293 1294 case NVME_ASYNC_ERROR_FW_LOAD: 1295 dev_err(nvme->n_dip, CE_WARN, 1296 "!firmware image load error"); 1297 atomic_inc_32(&nvme->n_fw_load_event); 1298 break; 1299 } 1300 break; 1301 1302 case NVME_ASYNC_TYPE_HEALTH: 1303 if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) { 1304 health_log = (nvme_health_log_t *) 1305 nvme_get_logpage(nvme, event.b.ae_logpage, -1); 1306 } else { 1307 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in " 1308 "async event reply: %d", event.b.ae_logpage); 1309 atomic_inc_32(&nvme->n_wrong_logpage); 1310 } 1311 1312 switch (event.b.ae_info) { 1313 case NVME_ASYNC_HEALTH_RELIABILITY: 1314 dev_err(nvme->n_dip, CE_WARN, 1315 "!device reliability compromised"); 1316 /* TODO: send ereport */ 1317 atomic_inc_32(&nvme->n_reliability_event); 1318 break; 1319 1320 case NVME_ASYNC_HEALTH_TEMPERATURE: 1321 dev_err(nvme->n_dip, CE_WARN, 1322 "!temperature above threshold"); 1323 /* TODO: send ereport */ 1324 atomic_inc_32(&nvme->n_temperature_event); 1325 break; 1326 1327 case NVME_ASYNC_HEALTH_SPARE: 1328 dev_err(nvme->n_dip, CE_WARN, 1329 "!spare space below threshold"); 1330 /* TODO: send ereport */ 1331 atomic_inc_32(&nvme->n_spare_event); 1332 break; 1333 } 1334 break; 1335 1336 case NVME_ASYNC_TYPE_VENDOR: 1337 dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event " 1338 "received, info = %x, logpage = %x", event.b.ae_info, 1339 event.b.ae_logpage); 1340 atomic_inc_32(&nvme->n_vendor_event); 1341 break; 1342 1343 default: 1344 dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, " 1345 "type = %x, info = %x, logpage = %x", event.b.ae_type, 1346 event.b.ae_info, event.b.ae_logpage); 1347 atomic_inc_32(&nvme->n_unknown_event); 1348 break; 1349 } 1350 1351 if (error_log) 1352 kmem_free(error_log, sizeof (nvme_error_log_entry_t) * 1353 nvme->n_error_log_len); 1354 1355 if (health_log) 1356 kmem_free(health_log, sizeof (nvme_health_log_t)); 1357 } 1358 1359 static int 1360 nvme_admin_cmd(nvme_cmd_t *cmd, int sec) 1361 { 1362 int ret; 1363 1364 mutex_enter(&cmd->nc_mutex); 1365 ret = nvme_submit_cmd(cmd->nc_nvme->n_adminq, cmd); 1366 1367 if (ret != DDI_SUCCESS) { 1368 mutex_exit(&cmd->nc_mutex); 1369 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 1370 "!nvme_submit_cmd failed"); 1371 atomic_inc_32(&cmd->nc_nvme->n_admin_queue_full); 1372 nvme_free_cmd(cmd); 1373 return (DDI_FAILURE); 1374 } 1375 1376 if (nvme_wait_cmd(cmd, sec) == B_FALSE) { 1377 /* 1378 * The command timed out. An abort command was posted that 1379 * will take care of the cleanup. 1380 */ 1381 return (DDI_FAILURE); 1382 } 1383 mutex_exit(&cmd->nc_mutex); 1384 1385 return (DDI_SUCCESS); 1386 } 1387 1388 static int 1389 nvme_async_event(nvme_t *nvme) 1390 { 1391 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1392 int ret; 1393 1394 cmd->nc_sqid = 0; 1395 cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT; 1396 cmd->nc_callback = nvme_async_event_task; 1397 1398 ret = nvme_submit_cmd(nvme->n_adminq, cmd); 1399 1400 if (ret != DDI_SUCCESS) { 1401 dev_err(nvme->n_dip, CE_WARN, 1402 "!nvme_submit_cmd failed for ASYNCHRONOUS EVENT"); 1403 nvme_free_cmd(cmd); 1404 return (DDI_FAILURE); 1405 } 1406 1407 return (DDI_SUCCESS); 1408 } 1409 1410 static void * 1411 nvme_get_logpage(nvme_t *nvme, uint8_t logpage, ...) 1412 { 1413 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1414 void *buf = NULL; 1415 nvme_getlogpage_t getlogpage = { 0 }; 1416 size_t bufsize; 1417 va_list ap; 1418 1419 va_start(ap, logpage); 1420 1421 cmd->nc_sqid = 0; 1422 cmd->nc_callback = nvme_wakeup_cmd; 1423 cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE; 1424 1425 getlogpage.b.lp_lid = logpage; 1426 1427 switch (logpage) { 1428 case NVME_LOGPAGE_ERROR: 1429 cmd->nc_sqe.sqe_nsid = (uint32_t)-1; 1430 bufsize = nvme->n_error_log_len * 1431 sizeof (nvme_error_log_entry_t); 1432 break; 1433 1434 case NVME_LOGPAGE_HEALTH: 1435 cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t); 1436 bufsize = sizeof (nvme_health_log_t); 1437 break; 1438 1439 case NVME_LOGPAGE_FWSLOT: 1440 cmd->nc_sqe.sqe_nsid = (uint32_t)-1; 1441 bufsize = sizeof (nvme_fwslot_log_t); 1442 break; 1443 1444 default: 1445 dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d", 1446 logpage); 1447 atomic_inc_32(&nvme->n_unknown_logpage); 1448 goto fail; 1449 } 1450 1451 va_end(ap); 1452 1453 getlogpage.b.lp_numd = bufsize / sizeof (uint32_t) - 1; 1454 1455 cmd->nc_sqe.sqe_cdw10 = getlogpage.r; 1456 1457 if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t), 1458 DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { 1459 dev_err(nvme->n_dip, CE_WARN, 1460 "!nvme_zalloc_dma failed for GET LOG PAGE"); 1461 goto fail; 1462 } 1463 1464 if (cmd->nc_dma->nd_ncookie > 2) { 1465 dev_err(nvme->n_dip, CE_WARN, 1466 "!too many DMA cookies for GET LOG PAGE"); 1467 atomic_inc_32(&nvme->n_too_many_cookies); 1468 goto fail; 1469 } 1470 1471 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress; 1472 if (cmd->nc_dma->nd_ncookie > 1) { 1473 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, 1474 &cmd->nc_dma->nd_cookie); 1475 cmd->nc_sqe.sqe_dptr.d_prp[1] = 1476 cmd->nc_dma->nd_cookie.dmac_laddress; 1477 } 1478 1479 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) { 1480 dev_err(nvme->n_dip, CE_WARN, 1481 "!nvme_admin_cmd failed for GET LOG PAGE"); 1482 return (NULL); 1483 } 1484 1485 if (nvme_check_cmd_status(cmd)) { 1486 dev_err(nvme->n_dip, CE_WARN, 1487 "!GET LOG PAGE failed with sct = %x, sc = %x", 1488 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 1489 goto fail; 1490 } 1491 1492 buf = kmem_alloc(bufsize, KM_SLEEP); 1493 bcopy(cmd->nc_dma->nd_memp, buf, bufsize); 1494 1495 fail: 1496 nvme_free_cmd(cmd); 1497 1498 return (buf); 1499 } 1500 1501 static void * 1502 nvme_identify(nvme_t *nvme, uint32_t nsid) 1503 { 1504 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1505 void *buf = NULL; 1506 1507 cmd->nc_sqid = 0; 1508 cmd->nc_callback = nvme_wakeup_cmd; 1509 cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY; 1510 cmd->nc_sqe.sqe_nsid = nsid; 1511 cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL; 1512 1513 if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ, 1514 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { 1515 dev_err(nvme->n_dip, CE_WARN, 1516 "!nvme_zalloc_dma failed for IDENTIFY"); 1517 goto fail; 1518 } 1519 1520 if (cmd->nc_dma->nd_ncookie > 2) { 1521 dev_err(nvme->n_dip, CE_WARN, 1522 "!too many DMA cookies for IDENTIFY"); 1523 atomic_inc_32(&nvme->n_too_many_cookies); 1524 goto fail; 1525 } 1526 1527 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress; 1528 if (cmd->nc_dma->nd_ncookie > 1) { 1529 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, 1530 &cmd->nc_dma->nd_cookie); 1531 cmd->nc_sqe.sqe_dptr.d_prp[1] = 1532 cmd->nc_dma->nd_cookie.dmac_laddress; 1533 } 1534 1535 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) { 1536 dev_err(nvme->n_dip, CE_WARN, 1537 "!nvme_admin_cmd failed for IDENTIFY"); 1538 return (NULL); 1539 } 1540 1541 if (nvme_check_cmd_status(cmd)) { 1542 dev_err(nvme->n_dip, CE_WARN, 1543 "!IDENTIFY failed with sct = %x, sc = %x", 1544 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 1545 goto fail; 1546 } 1547 1548 buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP); 1549 bcopy(cmd->nc_dma->nd_memp, buf, NVME_IDENTIFY_BUFSIZE); 1550 1551 fail: 1552 nvme_free_cmd(cmd); 1553 1554 return (buf); 1555 } 1556 1557 static int 1558 nvme_set_nqueues(nvme_t *nvme, uint16_t nqueues) 1559 { 1560 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1561 nvme_nqueue_t nq = { 0 }; 1562 1563 nq.b.nq_nsq = nq.b.nq_ncq = nqueues - 1; 1564 1565 cmd->nc_sqid = 0; 1566 cmd->nc_callback = nvme_wakeup_cmd; 1567 cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES; 1568 cmd->nc_sqe.sqe_cdw10 = NVME_FEAT_NQUEUES; 1569 cmd->nc_sqe.sqe_cdw11 = nq.r; 1570 1571 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) { 1572 dev_err(nvme->n_dip, CE_WARN, 1573 "!nvme_admin_cmd failed for SET FEATURES (NQUEUES)"); 1574 return (0); 1575 } 1576 1577 if (nvme_check_cmd_status(cmd)) { 1578 dev_err(nvme->n_dip, CE_WARN, 1579 "!SET FEATURES (NQUEUES) failed with sct = %x, sc = %x", 1580 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 1581 nvme_free_cmd(cmd); 1582 return (0); 1583 } 1584 1585 nq.r = cmd->nc_cqe.cqe_dw0; 1586 nvme_free_cmd(cmd); 1587 1588 /* 1589 * Always use the same number of submission and completion queues, and 1590 * never use more than the requested number of queues. 1591 */ 1592 return (MIN(nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1)); 1593 } 1594 1595 static int 1596 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx) 1597 { 1598 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1599 nvme_create_queue_dw10_t dw10 = { 0 }; 1600 nvme_create_cq_dw11_t c_dw11 = { 0 }; 1601 nvme_create_sq_dw11_t s_dw11 = { 0 }; 1602 1603 dw10.b.q_qid = idx; 1604 dw10.b.q_qsize = qp->nq_nentry - 1; 1605 1606 c_dw11.b.cq_pc = 1; 1607 c_dw11.b.cq_ien = 1; 1608 c_dw11.b.cq_iv = idx % nvme->n_intr_cnt; 1609 1610 cmd->nc_sqid = 0; 1611 cmd->nc_callback = nvme_wakeup_cmd; 1612 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE; 1613 cmd->nc_sqe.sqe_cdw10 = dw10.r; 1614 cmd->nc_sqe.sqe_cdw11 = c_dw11.r; 1615 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress; 1616 1617 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) { 1618 dev_err(nvme->n_dip, CE_WARN, 1619 "!nvme_admin_cmd failed for CREATE CQUEUE"); 1620 return (DDI_FAILURE); 1621 } 1622 1623 if (nvme_check_cmd_status(cmd)) { 1624 dev_err(nvme->n_dip, CE_WARN, 1625 "!CREATE CQUEUE failed with sct = %x, sc = %x", 1626 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 1627 nvme_free_cmd(cmd); 1628 return (DDI_FAILURE); 1629 } 1630 1631 nvme_free_cmd(cmd); 1632 1633 s_dw11.b.sq_pc = 1; 1634 s_dw11.b.sq_cqid = idx; 1635 1636 cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1637 cmd->nc_sqid = 0; 1638 cmd->nc_callback = nvme_wakeup_cmd; 1639 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE; 1640 cmd->nc_sqe.sqe_cdw10 = dw10.r; 1641 cmd->nc_sqe.sqe_cdw11 = s_dw11.r; 1642 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress; 1643 1644 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) { 1645 dev_err(nvme->n_dip, CE_WARN, 1646 "!nvme_admin_cmd failed for CREATE SQUEUE"); 1647 return (DDI_FAILURE); 1648 } 1649 1650 if (nvme_check_cmd_status(cmd)) { 1651 dev_err(nvme->n_dip, CE_WARN, 1652 "!CREATE SQUEUE failed with sct = %x, sc = %x", 1653 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 1654 nvme_free_cmd(cmd); 1655 return (DDI_FAILURE); 1656 } 1657 1658 nvme_free_cmd(cmd); 1659 1660 return (DDI_SUCCESS); 1661 } 1662 1663 static boolean_t 1664 nvme_reset(nvme_t *nvme, boolean_t quiesce) 1665 { 1666 nvme_reg_csts_t csts; 1667 int i; 1668 1669 nvme_put32(nvme, NVME_REG_CC, 0); 1670 1671 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 1672 if (csts.b.csts_rdy == 1) { 1673 nvme_put32(nvme, NVME_REG_CC, 0); 1674 for (i = 0; i != nvme->n_timeout * 10; i++) { 1675 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 1676 if (csts.b.csts_rdy == 0) 1677 break; 1678 1679 if (quiesce) 1680 drv_usecwait(50000); 1681 else 1682 delay(drv_usectohz(50000)); 1683 } 1684 } 1685 1686 nvme_put32(nvme, NVME_REG_AQA, 0); 1687 nvme_put32(nvme, NVME_REG_ASQ, 0); 1688 nvme_put32(nvme, NVME_REG_ACQ, 0); 1689 1690 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 1691 return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE); 1692 } 1693 1694 static void 1695 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce) 1696 { 1697 nvme_reg_cc_t cc; 1698 nvme_reg_csts_t csts; 1699 int i; 1700 1701 ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT); 1702 1703 cc.r = nvme_get32(nvme, NVME_REG_CC); 1704 cc.b.cc_shn = mode & 0x3; 1705 nvme_put32(nvme, NVME_REG_CC, cc.r); 1706 1707 for (i = 0; i != 10; i++) { 1708 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 1709 if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE) 1710 break; 1711 1712 if (quiesce) 1713 drv_usecwait(100000); 1714 else 1715 delay(drv_usectohz(100000)); 1716 } 1717 } 1718 1719 1720 static void 1721 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid) 1722 { 1723 char model[sizeof (nvme->n_idctl->id_model) + 1]; 1724 char serial[sizeof (nvme->n_idctl->id_serial) + 1]; 1725 1726 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model)); 1727 bcopy(nvme->n_idctl->id_serial, serial, 1728 sizeof (nvme->n_idctl->id_serial)); 1729 1730 model[sizeof (nvme->n_idctl->id_model)] = '\0'; 1731 serial[sizeof (nvme->n_idctl->id_serial)] = '\0'; 1732 1733 (void) snprintf(nvme->n_ns[nsid - 1].ns_devid, 1734 sizeof (nvme->n_ns[0].ns_devid), "%4X-%s-%s-%X", 1735 nvme->n_idctl->id_vid, model, serial, nsid); 1736 } 1737 1738 static int 1739 nvme_init(nvme_t *nvme) 1740 { 1741 nvme_reg_cc_t cc = { 0 }; 1742 nvme_reg_aqa_t aqa = { 0 }; 1743 nvme_reg_asq_t asq = { 0 }; 1744 nvme_reg_acq_t acq = { 0 }; 1745 nvme_reg_cap_t cap; 1746 nvme_reg_vs_t vs; 1747 nvme_reg_csts_t csts; 1748 int i = 0; 1749 int nqueues; 1750 char model[sizeof (nvme->n_idctl->id_model) + 1]; 1751 char *vendor, *product; 1752 1753 /* Check controller version */ 1754 vs.r = nvme_get32(nvme, NVME_REG_VS); 1755 dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d", 1756 vs.b.vs_mjr, vs.b.vs_mnr); 1757 1758 if (nvme_version_major < vs.b.vs_mjr || 1759 (nvme_version_major == vs.b.vs_mjr && 1760 nvme_version_minor < vs.b.vs_mnr)) { 1761 dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.%d", 1762 nvme_version_major, nvme_version_minor); 1763 if (nvme->n_strict_version) 1764 goto fail; 1765 } 1766 1767 /* retrieve controller configuration */ 1768 cap.r = nvme_get64(nvme, NVME_REG_CAP); 1769 1770 if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) { 1771 dev_err(nvme->n_dip, CE_WARN, 1772 "!NVM command set not supported by hardware"); 1773 goto fail; 1774 } 1775 1776 nvme->n_nssr_supported = cap.b.cap_nssrs; 1777 nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd; 1778 nvme->n_timeout = cap.b.cap_to; 1779 nvme->n_arbitration_mechanisms = cap.b.cap_ams; 1780 nvme->n_cont_queues_reqd = cap.b.cap_cqr; 1781 nvme->n_max_queue_entries = cap.b.cap_mqes + 1; 1782 1783 /* 1784 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify 1785 * the base page size of 4k (1<<12), so add 12 here to get the real 1786 * page size value. 1787 */ 1788 nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT), 1789 cap.b.cap_mpsmax + 12); 1790 nvme->n_pagesize = 1UL << (nvme->n_pageshift); 1791 1792 /* 1793 * Set up Queue DMA to transfer at least 1 page-aligned page at a time. 1794 */ 1795 nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize; 1796 nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize; 1797 1798 /* 1799 * Set up PRP DMA to transfer 1 page-aligned page at a time. 1800 * Maxxfer may be increased after we identified the controller limits. 1801 */ 1802 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize; 1803 nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize; 1804 nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize; 1805 nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1; 1806 1807 /* 1808 * Reset controller if it's still in ready state. 1809 */ 1810 if (nvme_reset(nvme, B_FALSE) == B_FALSE) { 1811 dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller"); 1812 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 1813 nvme->n_dead = B_TRUE; 1814 goto fail; 1815 } 1816 1817 /* 1818 * Create the admin queue pair. 1819 */ 1820 if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0) 1821 != DDI_SUCCESS) { 1822 dev_err(nvme->n_dip, CE_WARN, 1823 "!unable to allocate admin qpair"); 1824 goto fail; 1825 } 1826 nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP); 1827 nvme->n_ioq[0] = nvme->n_adminq; 1828 1829 nvme->n_progress |= NVME_ADMIN_QUEUE; 1830 1831 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, 1832 "admin-queue-len", nvme->n_admin_queue_len); 1833 1834 aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1; 1835 asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress; 1836 acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress; 1837 1838 ASSERT((asq & (nvme->n_pagesize - 1)) == 0); 1839 ASSERT((acq & (nvme->n_pagesize - 1)) == 0); 1840 1841 nvme_put32(nvme, NVME_REG_AQA, aqa.r); 1842 nvme_put64(nvme, NVME_REG_ASQ, asq); 1843 nvme_put64(nvme, NVME_REG_ACQ, acq); 1844 1845 cc.b.cc_ams = 0; /* use Round-Robin arbitration */ 1846 cc.b.cc_css = 0; /* use NVM command set */ 1847 cc.b.cc_mps = nvme->n_pageshift - 12; 1848 cc.b.cc_shn = 0; /* no shutdown in progress */ 1849 cc.b.cc_en = 1; /* enable controller */ 1850 cc.b.cc_iosqes = 6; /* submission queue entry is 2^6 bytes long */ 1851 cc.b.cc_iocqes = 4; /* completion queue entry is 2^4 bytes long */ 1852 1853 nvme_put32(nvme, NVME_REG_CC, cc.r); 1854 1855 /* 1856 * Wait for the controller to become ready. 1857 */ 1858 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 1859 if (csts.b.csts_rdy == 0) { 1860 for (i = 0; i != nvme->n_timeout * 10; i++) { 1861 delay(drv_usectohz(50000)); 1862 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 1863 1864 if (csts.b.csts_cfs == 1) { 1865 dev_err(nvme->n_dip, CE_WARN, 1866 "!controller fatal status at init"); 1867 ddi_fm_service_impact(nvme->n_dip, 1868 DDI_SERVICE_LOST); 1869 nvme->n_dead = B_TRUE; 1870 goto fail; 1871 } 1872 1873 if (csts.b.csts_rdy == 1) 1874 break; 1875 } 1876 } 1877 1878 if (csts.b.csts_rdy == 0) { 1879 dev_err(nvme->n_dip, CE_WARN, "!controller not ready"); 1880 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 1881 nvme->n_dead = B_TRUE; 1882 goto fail; 1883 } 1884 1885 /* 1886 * Assume an abort command limit of 1. We'll destroy and re-init 1887 * that later when we know the true abort command limit. 1888 */ 1889 sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL); 1890 1891 /* 1892 * Setup initial interrupt for admin queue. 1893 */ 1894 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1) 1895 != DDI_SUCCESS) && 1896 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1) 1897 != DDI_SUCCESS) && 1898 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1) 1899 != DDI_SUCCESS)) { 1900 dev_err(nvme->n_dip, CE_WARN, 1901 "!failed to setup initial interrupt"); 1902 goto fail; 1903 } 1904 1905 /* 1906 * Post an asynchronous event command to catch errors. 1907 */ 1908 if (nvme_async_event(nvme) != DDI_SUCCESS) { 1909 dev_err(nvme->n_dip, CE_WARN, 1910 "!failed to post async event"); 1911 goto fail; 1912 } 1913 1914 /* 1915 * Identify Controller 1916 */ 1917 nvme->n_idctl = nvme_identify(nvme, 0); 1918 if (nvme->n_idctl == NULL) { 1919 dev_err(nvme->n_dip, CE_WARN, 1920 "!failed to identify controller"); 1921 goto fail; 1922 } 1923 1924 /* 1925 * Get Vendor & Product ID 1926 */ 1927 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model)); 1928 model[sizeof (nvme->n_idctl->id_model)] = '\0'; 1929 sata_split_model(model, &vendor, &product); 1930 1931 if (vendor == NULL) 1932 nvme->n_vendor = strdup("NVMe"); 1933 else 1934 nvme->n_vendor = strdup(vendor); 1935 1936 nvme->n_product = strdup(product); 1937 1938 /* 1939 * Get controller limits. 1940 */ 1941 nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT, 1942 MIN(nvme->n_admin_queue_len / 10, 1943 MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit))); 1944 1945 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, 1946 "async-event-limit", nvme->n_async_event_limit); 1947 1948 nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1; 1949 1950 /* 1951 * Reinitialize the semaphore with the true abort command limit 1952 * supported by the hardware. It's not necessary to disable interrupts 1953 * as only command aborts use the semaphore, and no commands are 1954 * executed or aborted while we're here. 1955 */ 1956 sema_destroy(&nvme->n_abort_sema); 1957 sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL, 1958 SEMA_DRIVER, NULL); 1959 1960 nvme->n_progress |= NVME_CTRL_LIMITS; 1961 1962 if (nvme->n_idctl->id_mdts == 0) 1963 nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536; 1964 else 1965 nvme->n_max_data_transfer_size = 1966 1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts); 1967 1968 nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1; 1969 1970 /* 1971 * Limit n_max_data_transfer_size to what we can handle in one PRP. 1972 * Chained PRPs are currently unsupported. 1973 * 1974 * This is a no-op on hardware which doesn't support a transfer size 1975 * big enough to require chained PRPs. 1976 */ 1977 nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size, 1978 (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize)); 1979 1980 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size; 1981 1982 /* 1983 * Make sure the minimum/maximum queue entry sizes are not 1984 * larger/smaller than the default. 1985 */ 1986 1987 if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) || 1988 ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) || 1989 ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) || 1990 ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t))) 1991 goto fail; 1992 1993 /* 1994 * Check for the presence of a Volatile Write Cache. If present, 1995 * enable it by default. 1996 */ 1997 if (nvme->n_idctl->id_vwc.vwc_present == 0) { 1998 nvme->n_volatile_write_cache_enabled = B_FALSE; 1999 nvme_bd_ops.o_sync_cache = NULL; 2000 } else { 2001 /* 2002 * TODO: send SET FEATURES to enable VWC 2003 * (have no hardware to test this) 2004 */ 2005 nvme->n_volatile_write_cache_enabled = B_FALSE; 2006 nvme_bd_ops.o_sync_cache = NULL; 2007 } 2008 2009 /* 2010 * Grab a copy of all mandatory log pages. 2011 * 2012 * TODO: should go away once user space tool exists to print logs 2013 */ 2014 nvme->n_error_log = (nvme_error_log_entry_t *) 2015 nvme_get_logpage(nvme, NVME_LOGPAGE_ERROR); 2016 nvme->n_health_log = (nvme_health_log_t *) 2017 nvme_get_logpage(nvme, NVME_LOGPAGE_HEALTH, -1); 2018 nvme->n_fwslot_log = (nvme_fwslot_log_t *) 2019 nvme_get_logpage(nvme, NVME_LOGPAGE_FWSLOT); 2020 2021 /* 2022 * Identify Namespaces 2023 */ 2024 nvme->n_namespace_count = nvme->n_idctl->id_nn; 2025 nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) * 2026 nvme->n_namespace_count, KM_SLEEP); 2027 2028 for (i = 0; i != nvme->n_namespace_count; i++) { 2029 nvme_identify_nsid_t *idns; 2030 int last_rp; 2031 2032 nvme->n_ns[i].ns_nvme = nvme; 2033 nvme->n_ns[i].ns_idns = idns = nvme_identify(nvme, i + 1); 2034 2035 if (idns == NULL) { 2036 dev_err(nvme->n_dip, CE_WARN, 2037 "!failed to identify namespace %d", i + 1); 2038 goto fail; 2039 } 2040 2041 nvme->n_ns[i].ns_id = i + 1; 2042 nvme->n_ns[i].ns_block_count = idns->id_nsize; 2043 nvme->n_ns[i].ns_block_size = 2044 1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads; 2045 nvme->n_ns[i].ns_best_block_size = nvme->n_ns[i].ns_block_size; 2046 2047 nvme_prepare_devid(nvme, nvme->n_ns[i].ns_id); 2048 2049 /* 2050 * Find the LBA format with no metadata and the best relative 2051 * performance. A value of 3 means "degraded", 0 is best. 2052 */ 2053 last_rp = 3; 2054 for (int j = 0; j <= idns->id_nlbaf; j++) { 2055 if (idns->id_lbaf[j].lbaf_lbads == 0) 2056 break; 2057 if (idns->id_lbaf[j].lbaf_ms != 0) 2058 continue; 2059 if (idns->id_lbaf[j].lbaf_rp >= last_rp) 2060 continue; 2061 last_rp = idns->id_lbaf[j].lbaf_rp; 2062 nvme->n_ns[i].ns_best_block_size = 2063 1 << idns->id_lbaf[j].lbaf_lbads; 2064 } 2065 2066 /* 2067 * We currently don't support namespaces that use either: 2068 * - thin provisioning 2069 * - protection information 2070 */ 2071 if (idns->id_nsfeat.f_thin || 2072 idns->id_dps.dp_pinfo) { 2073 dev_err(nvme->n_dip, CE_WARN, 2074 "!ignoring namespace %d, unsupported features: " 2075 "thin = %d, pinfo = %d", i + 1, 2076 idns->id_nsfeat.f_thin, idns->id_dps.dp_pinfo); 2077 nvme->n_ns[i].ns_ignore = B_TRUE; 2078 } 2079 } 2080 2081 /* 2082 * Try to set up MSI/MSI-X interrupts. 2083 */ 2084 if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX)) 2085 != 0) { 2086 nvme_release_interrupts(nvme); 2087 2088 nqueues = MIN(UINT16_MAX, ncpus); 2089 2090 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 2091 nqueues) != DDI_SUCCESS) && 2092 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 2093 nqueues) != DDI_SUCCESS)) { 2094 dev_err(nvme->n_dip, CE_WARN, 2095 "!failed to setup MSI/MSI-X interrupts"); 2096 goto fail; 2097 } 2098 } 2099 2100 nqueues = nvme->n_intr_cnt; 2101 2102 /* 2103 * Create I/O queue pairs. 2104 */ 2105 nvme->n_ioq_count = nvme_set_nqueues(nvme, nqueues); 2106 if (nvme->n_ioq_count == 0) { 2107 dev_err(nvme->n_dip, CE_WARN, 2108 "!failed to set number of I/O queues to %d", nqueues); 2109 goto fail; 2110 } 2111 2112 /* 2113 * Reallocate I/O queue array 2114 */ 2115 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *)); 2116 nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) * 2117 (nvme->n_ioq_count + 1), KM_SLEEP); 2118 nvme->n_ioq[0] = nvme->n_adminq; 2119 2120 /* 2121 * If we got less queues than we asked for we might as well give 2122 * some of the interrupt vectors back to the system. 2123 */ 2124 if (nvme->n_ioq_count < nqueues) { 2125 nvme_release_interrupts(nvme); 2126 2127 if (nvme_setup_interrupts(nvme, nvme->n_intr_type, 2128 nvme->n_ioq_count) != DDI_SUCCESS) { 2129 dev_err(nvme->n_dip, CE_WARN, 2130 "!failed to reduce number of interrupts"); 2131 goto fail; 2132 } 2133 } 2134 2135 /* 2136 * Alloc & register I/O queue pairs 2137 */ 2138 nvme->n_io_queue_len = 2139 MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries); 2140 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len", 2141 nvme->n_io_queue_len); 2142 2143 for (i = 1; i != nvme->n_ioq_count + 1; i++) { 2144 if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len, 2145 &nvme->n_ioq[i], i) != DDI_SUCCESS) { 2146 dev_err(nvme->n_dip, CE_WARN, 2147 "!unable to allocate I/O qpair %d", i); 2148 goto fail; 2149 } 2150 2151 if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) 2152 != DDI_SUCCESS) { 2153 dev_err(nvme->n_dip, CE_WARN, 2154 "!unable to create I/O qpair %d", i); 2155 goto fail; 2156 } 2157 } 2158 2159 /* 2160 * Post more asynchronous events commands to reduce event reporting 2161 * latency as suggested by the spec. 2162 */ 2163 for (i = 1; i != nvme->n_async_event_limit; i++) { 2164 if (nvme_async_event(nvme) != DDI_SUCCESS) { 2165 dev_err(nvme->n_dip, CE_WARN, 2166 "!failed to post async event %d", i); 2167 goto fail; 2168 } 2169 } 2170 2171 return (DDI_SUCCESS); 2172 2173 fail: 2174 (void) nvme_reset(nvme, B_FALSE); 2175 return (DDI_FAILURE); 2176 } 2177 2178 static uint_t 2179 nvme_intr(caddr_t arg1, caddr_t arg2) 2180 { 2181 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 2182 nvme_t *nvme = (nvme_t *)arg1; 2183 int inum = (int)(uintptr_t)arg2; 2184 int ccnt = 0; 2185 int qnum; 2186 nvme_cmd_t *cmd; 2187 2188 if (inum >= nvme->n_intr_cnt) 2189 return (DDI_INTR_UNCLAIMED); 2190 2191 /* 2192 * The interrupt vector a queue uses is calculated as queue_idx % 2193 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array 2194 * in steps of n_intr_cnt to process all queues using this vector. 2195 */ 2196 for (qnum = inum; 2197 qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL; 2198 qnum += nvme->n_intr_cnt) { 2199 while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) { 2200 taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq, 2201 cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent); 2202 ccnt++; 2203 } 2204 } 2205 2206 return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED); 2207 } 2208 2209 static void 2210 nvme_release_interrupts(nvme_t *nvme) 2211 { 2212 int i; 2213 2214 for (i = 0; i < nvme->n_intr_cnt; i++) { 2215 if (nvme->n_inth[i] == NULL) 2216 break; 2217 2218 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK) 2219 (void) ddi_intr_block_disable(&nvme->n_inth[i], 1); 2220 else 2221 (void) ddi_intr_disable(nvme->n_inth[i]); 2222 2223 (void) ddi_intr_remove_handler(nvme->n_inth[i]); 2224 (void) ddi_intr_free(nvme->n_inth[i]); 2225 } 2226 2227 kmem_free(nvme->n_inth, nvme->n_inth_sz); 2228 nvme->n_inth = NULL; 2229 nvme->n_inth_sz = 0; 2230 2231 nvme->n_progress &= ~NVME_INTERRUPTS; 2232 } 2233 2234 static int 2235 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs) 2236 { 2237 int nintrs, navail, count; 2238 int ret; 2239 int i; 2240 2241 if (nvme->n_intr_types == 0) { 2242 ret = ddi_intr_get_supported_types(nvme->n_dip, 2243 &nvme->n_intr_types); 2244 if (ret != DDI_SUCCESS) { 2245 dev_err(nvme->n_dip, CE_WARN, 2246 "!%s: ddi_intr_get_supported types failed", 2247 __func__); 2248 return (ret); 2249 } 2250 } 2251 2252 if ((nvme->n_intr_types & intr_type) == 0) 2253 return (DDI_FAILURE); 2254 2255 ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs); 2256 if (ret != DDI_SUCCESS) { 2257 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed", 2258 __func__); 2259 return (ret); 2260 } 2261 2262 ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail); 2263 if (ret != DDI_SUCCESS) { 2264 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed", 2265 __func__); 2266 return (ret); 2267 } 2268 2269 /* We want at most one interrupt per queue pair. */ 2270 if (navail > nqpairs) 2271 navail = nqpairs; 2272 2273 nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail; 2274 nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP); 2275 2276 ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail, 2277 &count, 0); 2278 if (ret != DDI_SUCCESS) { 2279 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed", 2280 __func__); 2281 goto fail; 2282 } 2283 2284 nvme->n_intr_cnt = count; 2285 2286 ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri); 2287 if (ret != DDI_SUCCESS) { 2288 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed", 2289 __func__); 2290 goto fail; 2291 } 2292 2293 for (i = 0; i < count; i++) { 2294 ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr, 2295 (void *)nvme, (void *)(uintptr_t)i); 2296 if (ret != DDI_SUCCESS) { 2297 dev_err(nvme->n_dip, CE_WARN, 2298 "!%s: ddi_intr_add_handler failed", __func__); 2299 goto fail; 2300 } 2301 } 2302 2303 (void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap); 2304 2305 for (i = 0; i < count; i++) { 2306 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK) 2307 ret = ddi_intr_block_enable(&nvme->n_inth[i], 1); 2308 else 2309 ret = ddi_intr_enable(nvme->n_inth[i]); 2310 2311 if (ret != DDI_SUCCESS) { 2312 dev_err(nvme->n_dip, CE_WARN, 2313 "!%s: enabling interrupt %d failed", __func__, i); 2314 goto fail; 2315 } 2316 } 2317 2318 nvme->n_intr_type = intr_type; 2319 2320 nvme->n_progress |= NVME_INTERRUPTS; 2321 2322 return (DDI_SUCCESS); 2323 2324 fail: 2325 nvme_release_interrupts(nvme); 2326 2327 return (ret); 2328 } 2329 2330 static int 2331 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg) 2332 { 2333 _NOTE(ARGUNUSED(arg)); 2334 2335 pci_ereport_post(dip, fm_error, NULL); 2336 return (fm_error->fme_status); 2337 } 2338 2339 static int 2340 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 2341 { 2342 nvme_t *nvme; 2343 int instance; 2344 int nregs; 2345 off_t regsize; 2346 int i; 2347 char name[32]; 2348 2349 if (cmd != DDI_ATTACH) 2350 return (DDI_FAILURE); 2351 2352 instance = ddi_get_instance(dip); 2353 2354 if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS) 2355 return (DDI_FAILURE); 2356 2357 nvme = ddi_get_soft_state(nvme_state, instance); 2358 ddi_set_driver_private(dip, nvme); 2359 nvme->n_dip = dip; 2360 2361 nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 2362 DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE; 2363 nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY, 2364 dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ? 2365 B_TRUE : B_FALSE; 2366 nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 2367 DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN); 2368 nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 2369 DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN); 2370 nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 2371 DDI_PROP_DONTPASS, "async-event-limit", 2372 NVME_DEFAULT_ASYNC_EVENT_LIMIT); 2373 2374 if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN) 2375 nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN; 2376 else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN) 2377 nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN; 2378 2379 if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN) 2380 nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN; 2381 2382 if (nvme->n_async_event_limit < 1) 2383 nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT; 2384 2385 nvme->n_reg_acc_attr = nvme_reg_acc_attr; 2386 nvme->n_queue_dma_attr = nvme_queue_dma_attr; 2387 nvme->n_prp_dma_attr = nvme_prp_dma_attr; 2388 nvme->n_sgl_dma_attr = nvme_sgl_dma_attr; 2389 2390 /* 2391 * Setup FMA support. 2392 */ 2393 nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip, 2394 DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable", 2395 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE | 2396 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE); 2397 2398 ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc); 2399 2400 if (nvme->n_fm_cap) { 2401 if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE) 2402 nvme->n_reg_acc_attr.devacc_attr_access = 2403 DDI_FLAGERR_ACC; 2404 2405 if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) { 2406 nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR; 2407 nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR; 2408 } 2409 2410 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) || 2411 DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 2412 pci_ereport_setup(dip); 2413 2414 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 2415 ddi_fm_handler_register(dip, nvme_fm_errcb, 2416 (void *)nvme); 2417 } 2418 2419 nvme->n_progress |= NVME_FMA_INIT; 2420 2421 /* 2422 * The spec defines several register sets. Only the controller 2423 * registers (set 1) are currently used. 2424 */ 2425 if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE || 2426 nregs < 2 || 2427 ddi_dev_regsize(dip, 1, ®size) == DDI_FAILURE) 2428 goto fail; 2429 2430 if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize, 2431 &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) { 2432 dev_err(dip, CE_WARN, "!failed to map regset 1"); 2433 goto fail; 2434 } 2435 2436 nvme->n_progress |= NVME_REGS_MAPPED; 2437 2438 /* 2439 * Create taskq for command completion. 2440 */ 2441 (void) snprintf(name, sizeof (name), "%s%d_cmd_taskq", 2442 ddi_driver_name(dip), ddi_get_instance(dip)); 2443 nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus), 2444 TASKQ_DEFAULTPRI, 0); 2445 if (nvme->n_cmd_taskq == NULL) { 2446 dev_err(dip, CE_WARN, "!failed to create cmd taskq"); 2447 goto fail; 2448 } 2449 2450 2451 if (nvme_init(nvme) != DDI_SUCCESS) 2452 goto fail; 2453 2454 /* 2455 * Attach the blkdev driver for each namespace. 2456 */ 2457 for (i = 0; i != nvme->n_namespace_count; i++) { 2458 if (nvme->n_ns[i].ns_ignore) 2459 continue; 2460 2461 nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i], 2462 &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP); 2463 2464 if (nvme->n_ns[i].ns_bd_hdl == NULL) { 2465 dev_err(dip, CE_WARN, 2466 "!failed to get blkdev handle for namespace %d", i); 2467 goto fail; 2468 } 2469 2470 if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl) 2471 != DDI_SUCCESS) { 2472 dev_err(dip, CE_WARN, 2473 "!failed to attach blkdev handle for namespace %d", 2474 i); 2475 goto fail; 2476 } 2477 } 2478 2479 return (DDI_SUCCESS); 2480 2481 fail: 2482 /* attach successful anyway so that FMA can retire the device */ 2483 if (nvme->n_dead) 2484 return (DDI_SUCCESS); 2485 2486 (void) nvme_detach(dip, DDI_DETACH); 2487 2488 return (DDI_FAILURE); 2489 } 2490 2491 static int 2492 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 2493 { 2494 int instance, i; 2495 nvme_t *nvme; 2496 2497 if (cmd != DDI_DETACH) 2498 return (DDI_FAILURE); 2499 2500 instance = ddi_get_instance(dip); 2501 2502 nvme = ddi_get_soft_state(nvme_state, instance); 2503 2504 if (nvme == NULL) 2505 return (DDI_FAILURE); 2506 2507 if (nvme->n_ns) { 2508 for (i = 0; i != nvme->n_namespace_count; i++) { 2509 if (nvme->n_ns[i].ns_bd_hdl) { 2510 (void) bd_detach_handle( 2511 nvme->n_ns[i].ns_bd_hdl); 2512 bd_free_handle(nvme->n_ns[i].ns_bd_hdl); 2513 } 2514 2515 if (nvme->n_ns[i].ns_idns) 2516 kmem_free(nvme->n_ns[i].ns_idns, 2517 sizeof (nvme_identify_nsid_t)); 2518 } 2519 2520 kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) * 2521 nvme->n_namespace_count); 2522 } 2523 2524 if (nvme->n_progress & NVME_INTERRUPTS) 2525 nvme_release_interrupts(nvme); 2526 2527 if (nvme->n_cmd_taskq) 2528 ddi_taskq_wait(nvme->n_cmd_taskq); 2529 2530 if (nvme->n_ioq_count > 0) { 2531 for (i = 1; i != nvme->n_ioq_count + 1; i++) { 2532 if (nvme->n_ioq[i] != NULL) { 2533 /* TODO: send destroy queue commands */ 2534 nvme_free_qpair(nvme->n_ioq[i]); 2535 } 2536 } 2537 2538 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) * 2539 (nvme->n_ioq_count + 1)); 2540 } 2541 2542 if (nvme->n_progress & NVME_REGS_MAPPED) { 2543 nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE); 2544 (void) nvme_reset(nvme, B_FALSE); 2545 } 2546 2547 if (nvme->n_cmd_taskq) 2548 ddi_taskq_destroy(nvme->n_cmd_taskq); 2549 2550 if (nvme->n_progress & NVME_CTRL_LIMITS) 2551 sema_destroy(&nvme->n_abort_sema); 2552 2553 if (nvme->n_progress & NVME_ADMIN_QUEUE) 2554 nvme_free_qpair(nvme->n_adminq); 2555 2556 if (nvme->n_idctl) 2557 kmem_free(nvme->n_idctl, sizeof (nvme_identify_ctrl_t)); 2558 2559 if (nvme->n_progress & NVME_REGS_MAPPED) 2560 ddi_regs_map_free(&nvme->n_regh); 2561 2562 if (nvme->n_progress & NVME_FMA_INIT) { 2563 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 2564 ddi_fm_handler_unregister(nvme->n_dip); 2565 2566 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) || 2567 DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 2568 pci_ereport_teardown(nvme->n_dip); 2569 2570 ddi_fm_fini(nvme->n_dip); 2571 } 2572 2573 if (nvme->n_vendor != NULL) 2574 strfree(nvme->n_vendor); 2575 2576 if (nvme->n_product != NULL) 2577 strfree(nvme->n_product); 2578 2579 ddi_soft_state_free(nvme_state, instance); 2580 2581 return (DDI_SUCCESS); 2582 } 2583 2584 static int 2585 nvme_quiesce(dev_info_t *dip) 2586 { 2587 int instance; 2588 nvme_t *nvme; 2589 2590 instance = ddi_get_instance(dip); 2591 2592 nvme = ddi_get_soft_state(nvme_state, instance); 2593 2594 if (nvme == NULL) 2595 return (DDI_FAILURE); 2596 2597 nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE); 2598 2599 (void) nvme_reset(nvme, B_TRUE); 2600 2601 return (DDI_FAILURE); 2602 } 2603 2604 static int 2605 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer) 2606 { 2607 nvme_t *nvme = cmd->nc_nvme; 2608 int nprp_page, nprp; 2609 uint64_t *prp; 2610 2611 if (xfer->x_ndmac == 0) 2612 return (DDI_FAILURE); 2613 2614 cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress; 2615 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac); 2616 2617 if (xfer->x_ndmac == 1) { 2618 cmd->nc_sqe.sqe_dptr.d_prp[1] = 0; 2619 return (DDI_SUCCESS); 2620 } else if (xfer->x_ndmac == 2) { 2621 cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress; 2622 return (DDI_SUCCESS); 2623 } 2624 2625 xfer->x_ndmac--; 2626 2627 nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1; 2628 ASSERT(nprp_page > 0); 2629 nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page; 2630 2631 /* 2632 * We currently don't support chained PRPs and set up our DMA 2633 * attributes to reflect that. If we still get an I/O request 2634 * that needs a chained PRP something is very wrong. 2635 */ 2636 VERIFY(nprp == 1); 2637 2638 if (nvme_zalloc_dma(nvme, nvme->n_pagesize * nprp, DDI_DMA_READ, 2639 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { 2640 dev_err(nvme->n_dip, CE_WARN, "!%s: nvme_zalloc_dma failed", 2641 __func__); 2642 return (DDI_FAILURE); 2643 } 2644 2645 cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress; 2646 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, &cmd->nc_dma->nd_cookie); 2647 2648 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 2649 for (prp = (uint64_t *)cmd->nc_dma->nd_memp; 2650 xfer->x_ndmac > 0; 2651 prp++, xfer->x_ndmac--) { 2652 *prp = xfer->x_dmac.dmac_laddress; 2653 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac); 2654 } 2655 2656 (void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len, 2657 DDI_DMA_SYNC_FORDEV); 2658 return (DDI_SUCCESS); 2659 } 2660 2661 static nvme_cmd_t * 2662 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer) 2663 { 2664 nvme_t *nvme = ns->ns_nvme; 2665 nvme_cmd_t *cmd; 2666 2667 /* 2668 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep. 2669 */ 2670 cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ? 2671 KM_NOSLEEP : KM_SLEEP); 2672 2673 if (cmd == NULL) 2674 return (NULL); 2675 2676 cmd->nc_sqe.sqe_opc = opc; 2677 cmd->nc_callback = nvme_bd_xfer_done; 2678 cmd->nc_xfer = xfer; 2679 2680 switch (opc) { 2681 case NVME_OPC_NVM_WRITE: 2682 case NVME_OPC_NVM_READ: 2683 VERIFY(xfer->x_nblks <= 0x10000); 2684 2685 cmd->nc_sqe.sqe_nsid = ns->ns_id; 2686 2687 cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu; 2688 cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32); 2689 cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1); 2690 2691 if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS) 2692 goto fail; 2693 break; 2694 2695 case NVME_OPC_NVM_FLUSH: 2696 cmd->nc_sqe.sqe_nsid = ns->ns_id; 2697 break; 2698 2699 default: 2700 goto fail; 2701 } 2702 2703 return (cmd); 2704 2705 fail: 2706 nvme_free_cmd(cmd); 2707 return (NULL); 2708 } 2709 2710 static void 2711 nvme_bd_xfer_done(void *arg) 2712 { 2713 nvme_cmd_t *cmd = arg; 2714 bd_xfer_t *xfer = cmd->nc_xfer; 2715 int error = 0; 2716 2717 error = nvme_check_cmd_status(cmd); 2718 nvme_free_cmd(cmd); 2719 2720 bd_xfer_done(xfer, error); 2721 } 2722 2723 static void 2724 nvme_bd_driveinfo(void *arg, bd_drive_t *drive) 2725 { 2726 nvme_namespace_t *ns = arg; 2727 nvme_t *nvme = ns->ns_nvme; 2728 2729 /* 2730 * blkdev maintains one queue size per instance (namespace), 2731 * but all namespace share the I/O queues. 2732 * TODO: need to figure out a sane default, or use per-NS I/O queues, 2733 * or change blkdev to handle EAGAIN 2734 */ 2735 drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len 2736 / nvme->n_namespace_count; 2737 2738 /* 2739 * d_maxxfer is not set, which means the value is taken from the DMA 2740 * attributes specified to bd_alloc_handle. 2741 */ 2742 2743 drive->d_removable = B_FALSE; 2744 drive->d_hotpluggable = B_FALSE; 2745 2746 drive->d_target = ns->ns_id; 2747 drive->d_lun = 0; 2748 2749 drive->d_model = nvme->n_idctl->id_model; 2750 drive->d_model_len = sizeof (nvme->n_idctl->id_model); 2751 drive->d_vendor = nvme->n_vendor; 2752 drive->d_vendor_len = strlen(nvme->n_vendor); 2753 drive->d_product = nvme->n_product; 2754 drive->d_product_len = strlen(nvme->n_product); 2755 drive->d_serial = nvme->n_idctl->id_serial; 2756 drive->d_serial_len = sizeof (nvme->n_idctl->id_serial); 2757 drive->d_revision = nvme->n_idctl->id_fwrev; 2758 drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev); 2759 } 2760 2761 static int 2762 nvme_bd_mediainfo(void *arg, bd_media_t *media) 2763 { 2764 nvme_namespace_t *ns = arg; 2765 2766 media->m_nblks = ns->ns_block_count; 2767 media->m_blksize = ns->ns_block_size; 2768 media->m_readonly = B_FALSE; 2769 media->m_solidstate = B_TRUE; 2770 2771 media->m_pblksize = ns->ns_best_block_size; 2772 2773 return (0); 2774 } 2775 2776 static int 2777 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc) 2778 { 2779 nvme_t *nvme = ns->ns_nvme; 2780 nvme_cmd_t *cmd; 2781 2782 if (nvme->n_dead) 2783 return (EIO); 2784 2785 /* No polling for now */ 2786 if (xfer->x_flags & BD_XFER_POLL) 2787 return (EIO); 2788 2789 cmd = nvme_create_nvm_cmd(ns, opc, xfer); 2790 if (cmd == NULL) 2791 return (ENOMEM); 2792 2793 cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1; 2794 ASSERT(cmd->nc_sqid <= nvme->n_ioq_count); 2795 2796 if (nvme_submit_cmd(nvme->n_ioq[cmd->nc_sqid], cmd) 2797 != DDI_SUCCESS) 2798 return (EAGAIN); 2799 2800 return (0); 2801 } 2802 2803 static int 2804 nvme_bd_read(void *arg, bd_xfer_t *xfer) 2805 { 2806 nvme_namespace_t *ns = arg; 2807 2808 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ)); 2809 } 2810 2811 static int 2812 nvme_bd_write(void *arg, bd_xfer_t *xfer) 2813 { 2814 nvme_namespace_t *ns = arg; 2815 2816 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE)); 2817 } 2818 2819 static int 2820 nvme_bd_sync(void *arg, bd_xfer_t *xfer) 2821 { 2822 nvme_namespace_t *ns = arg; 2823 2824 if (ns->ns_nvme->n_dead) 2825 return (EIO); 2826 2827 /* 2828 * If the volatile write cache isn't enabled the FLUSH command is a 2829 * no-op, so we can take a shortcut here. 2830 */ 2831 if (ns->ns_nvme->n_volatile_write_cache_enabled == B_FALSE) { 2832 bd_xfer_done(xfer, ENOTSUP); 2833 return (0); 2834 } 2835 2836 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH)); 2837 } 2838 2839 static int 2840 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid) 2841 { 2842 nvme_namespace_t *ns = arg; 2843 2844 return (ddi_devid_init(devinfo, DEVID_ENCAP, strlen(ns->ns_devid), 2845 ns->ns_devid, devid)); 2846 }