1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2012 Gary Mills 23 * Copyright 2016 PALO, Richard. 24 * 25 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. 26 * 27 * Copyright 2018 Joyent, Inc. 28 */ 29 30 #include <sys/types.h> 31 #include <sys/clock.h> 32 #include <sys/psm.h> 33 #include <sys/archsystm.h> 34 #include <sys/machsystm.h> 35 #include <sys/compress.h> 36 #include <sys/modctl.h> 37 #include <sys/trap.h> 38 #include <sys/panic.h> 39 #include <sys/regset.h> 40 #include <sys/frame.h> 41 #include <sys/kobj.h> 42 #include <sys/apic.h> 43 #include <sys/apic_timer.h> 44 #include <sys/dumphdr.h> 45 #include <sys/mem.h> 46 #include <sys/x86_archext.h> 47 #include <sys/xpv_panic.h> 48 #include <sys/boot_console.h> 49 #include <sys/bootsvcs.h> 50 #include <sys/consdev.h> 51 #include <vm/hat_pte.h> 52 #include <vm/hat_i86.h> 53 54 /* XXX: need to add a PAE version too, if we ever support both PAE and non */ 55 #if defined(__i386) 56 #define XPV_FILENAME "/boot/xen-syms" 57 #else 58 #define XPV_FILENAME "/boot/amd64/xen-syms" 59 #endif 60 #define XPV_MODNAME "xpv" 61 62 int xpv_panicking = 0; 63 64 struct module *xpv_module; 65 struct modctl *xpv_modctl; 66 67 #define ALIGN(x, a) ((a) == 0 ? (uintptr_t)(x) : \ 68 (((uintptr_t)(x) + (uintptr_t)(a) - 1l) & ~((uintptr_t)(a) - 1l))) 69 70 /* Pointer to the xpv_panic_info structure handed to us by Xen. */ 71 static struct panic_info *xpv_panic_info = NULL; 72 73 /* Timer support */ 74 #define NSEC_SHIFT 5 75 #define T_XPV_TIMER 0xd1 76 #define XPV_TIMER_INTERVAL 1000 /* 1000 microseconds */ 77 static uint32_t *xpv_apicadr = NULL; 78 static uint_t nsec_scale; 79 80 /* IDT support */ 81 #pragma align 16(xpv_panic_idt) 82 static gate_desc_t xpv_panic_idt[NIDT]; /* interrupt descriptor table */ 83 84 /* Xen pagetables mapped into our HAT's ptable windows */ 85 static pfn_t ptable_pfn[MAX_NUM_LEVEL]; 86 87 /* Number of MMU_PAGESIZE pages we're adding to the Solaris dump */ 88 static int xpv_dump_pages; 89 90 /* 91 * There are up to two large swathes of RAM that we don't want to include 92 * in the dump: those that comprise the Xen version of segkpm. On 32-bit 93 * systems there is no such region of memory. On 64-bit systems, there 94 * should be just a single contiguous region that corresponds to all of 95 * physical memory. The tricky bit is that Xen's heap sometimes lives in 96 * the middle of their segkpm, and is mapped using only kpm-like addresses. 97 * In that case, we need to skip the swathes before and after Xen's heap. 98 */ 99 uintptr_t kpm1_low = 0; 100 uintptr_t kpm1_high = 0; 101 uintptr_t kpm2_low = 0; 102 uintptr_t kpm2_high = 0; 103 104 /* 105 * Some commonly used values that we don't want to recompute over and over. 106 */ 107 static int xpv_panic_nptes[MAX_NUM_LEVEL]; 108 static ulong_t xpv_panic_cr3; 109 static uintptr_t xpv_end; 110 111 static void xpv_panic_console_print(const char *fmt, ...); 112 static void (*xpv_panic_printf)(const char *, ...) = xpv_panic_console_print; 113 114 #define CONSOLE_BUF_SIZE 256 115 static char console_buffer[CONSOLE_BUF_SIZE]; 116 static boolean_t use_polledio; 117 118 /* 119 * Pointers to machine check panic info (if any). 120 */ 121 xpv_mca_panic_data_t *xpv_mca_panic_data = NULL; 122 123 static void 124 xpv_panic_putc(int m) 125 { 126 struct cons_polledio *c = cons_polledio; 127 128 /* This really shouldn't happen */ 129 if (boot_console_type(NULL) == CONS_HYPERVISOR) 130 return; 131 132 if (use_polledio == B_TRUE) 133 c->cons_polledio_putchar(c->cons_polledio_argument, m); 134 else 135 bcons_putchar(m); 136 } 137 138 static void 139 xpv_panic_puts(char *msg) 140 { 141 char *m; 142 143 dump_timeleft = dump_timeout; 144 for (m = msg; *m; m++) 145 xpv_panic_putc((int)*m); 146 } 147 148 static void 149 xpv_panic_console_print(const char *fmt, ...) 150 { 151 va_list ap; 152 153 va_start(ap, fmt); 154 (void) vsnprintf(console_buffer, sizeof (console_buffer), fmt, ap); 155 va_end(ap); 156 157 xpv_panic_puts(console_buffer); 158 } 159 160 static void 161 xpv_panic_map(int level, pfn_t pfn) 162 { 163 x86pte_t pte, *pteptr; 164 165 /* 166 * The provided pfn represents a level 'level' page table. Map it 167 * into the 'level' slot in the list of page table windows. 168 */ 169 pteptr = (x86pte_t *)PWIN_PTE_VA(level); 170 pte = pfn_to_pa(pfn) | PT_VALID; 171 172 XPV_ALLOW_PAGETABLE_UPDATES(); 173 if (mmu.pae_hat) 174 *pteptr = pte; 175 else 176 *(x86pte32_t *)pteptr = pte; 177 XPV_DISALLOW_PAGETABLE_UPDATES(); 178 179 mmu_flush_tlb_page((uintptr_t)PWIN_VA(level)); 180 } 181 182 /* 183 * Walk the page tables to find the pfn mapped by the given va. 184 */ 185 static pfn_t 186 xpv_va_walk(uintptr_t *vaddr) 187 { 188 int l, idx; 189 pfn_t pfn; 190 x86pte_t pte; 191 x86pte_t *ptep; 192 uintptr_t va = *vaddr; 193 uintptr_t scan_va; 194 caddr_t ptable_window; 195 static pfn_t toplevel_pfn; 196 static uintptr_t lastva; 197 198 /* 199 * If we do anything other than a simple scan through memory, don't 200 * trust the mapped page tables. 201 */ 202 if (va != lastva + MMU_PAGESIZE) 203 for (l = mmu.max_level; l >= 0; l--) 204 ptable_pfn[l] = PFN_INVALID; 205 206 toplevel_pfn = mmu_btop(xpv_panic_cr3); 207 208 while (va < xpv_end && va >= *vaddr) { 209 /* Find the lowest table with any entry for va */ 210 pfn = toplevel_pfn; 211 for (l = mmu.max_level; l >= 0; l--) { 212 if (ptable_pfn[l] != pfn) { 213 xpv_panic_map(l, pfn); 214 ptable_pfn[l] = pfn; 215 } 216 217 /* 218 * Search this pagetable for any mapping to an 219 * address >= va. 220 */ 221 ptable_window = PWIN_VA(l); 222 if (l == mmu.max_level && mmu.pae_hat) 223 ptable_window += 224 (xpv_panic_cr3 & MMU_PAGEOFFSET); 225 226 idx = (va >> LEVEL_SHIFT(l)) & (xpv_panic_nptes[l] - 1); 227 scan_va = va; 228 while (idx < xpv_panic_nptes[l] && scan_va < xpv_end && 229 scan_va >= *vaddr) { 230 ptep = (x86pte_t *)(ptable_window + 231 (idx << mmu.pte_size_shift)); 232 pte = GET_PTE(ptep); 233 if (pte & PTE_VALID) 234 break; 235 idx++; 236 scan_va += mmu.level_size[l]; 237 } 238 239 /* 240 * If there are no valid mappings in this table, we 241 * can skip to the end of the VA range it covers. 242 */ 243 if (idx == xpv_panic_nptes[l]) { 244 va = NEXT_ENTRY_VA(va, l + 1); 245 break; 246 } 247 248 va = scan_va; 249 /* 250 * See if we've hit the end of the range. 251 */ 252 if (va >= xpv_end || va < *vaddr) 253 break; 254 255 /* 256 * If this mapping is for a pagetable, we drop down 257 * to the next level in the hierarchy and look for 258 * a mapping in it. 259 */ 260 pfn = PTE2MFN(pte, l); 261 if (!PTE_ISPAGE(pte, l)) 262 continue; 263 264 /* 265 * The APIC page is magic. Nothing to see here; 266 * move along. 267 */ 268 if (((uintptr_t)xpv_apicadr & MMU_PAGEMASK) == 269 (va & MMU_PAGEMASK)) { 270 va += MMU_PAGESIZE; 271 break; 272 } 273 274 /* 275 * See if the address is within one of the two 276 * kpm-like regions we want to skip. 277 */ 278 if (va >= kpm1_low && va < kpm1_high) { 279 va = kpm1_high; 280 break; 281 } 282 if (va >= kpm2_low && va < kpm2_high) { 283 va = kpm2_high; 284 break; 285 } 286 287 /* 288 * The Xen panic code only handles small pages. If 289 * this mapping is for a large page, we need to 290 * identify the consituent page that covers the 291 * specific VA we were looking for. 292 */ 293 if (l > 0) { 294 if (l > 1) 295 panic("Xen panic can't cope with " 296 "giant pages."); 297 idx = (va >> LEVEL_SHIFT(0)) & 298 (xpv_panic_nptes[0] - 1); 299 pfn += idx; 300 } 301 302 *vaddr = va; 303 lastva = va; 304 return (pfn | PFN_IS_FOREIGN_MFN); 305 } 306 } 307 return (PFN_INVALID); 308 } 309 310 /* 311 * Walk through the Xen VA space, finding pages that are mapped in. 312 * 313 * These pages all have MFNs rather than PFNs, meaning they may be outside 314 * the physical address space the kernel knows about, or they may collide 315 * with PFNs the kernel is using. 316 * 317 * The obvious trick of just adding the PFN_IS_FOREIGN_MFN bit to the MFNs 318 * to avoid collisions doesn't work. The pages need to be written to disk 319 * in PFN-order or savecore gets confused. We can't allocate memory to 320 * contruct a sorted pfn->VA reverse mapping, so we have to write the pages 321 * to disk in VA order. 322 * 323 * To square this circle, we simply make up PFNs for each of Xen's pages. 324 * We assign each mapped page a fake PFN in ascending order. These fake 325 * PFNs each have the FOREIGN bit set, ensuring that they fall outside the 326 * range of Solaris PFNs written by the kernel. 327 */ 328 int 329 dump_xpv_addr() 330 { 331 uintptr_t va; 332 mem_vtop_t mem_vtop; 333 334 xpv_dump_pages = 0; 335 va = xen_virt_start; 336 337 while (xpv_va_walk(&va) != PFN_INVALID) { 338 mem_vtop.m_as = &kas; 339 mem_vtop.m_va = (void *)va; 340 mem_vtop.m_pfn = (pfn_t)xpv_dump_pages | PFN_IS_FOREIGN_MFN; 341 342 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); 343 xpv_dump_pages++; 344 345 va += MMU_PAGESIZE; 346 } 347 348 /* 349 * Add the shared_info page. This page actually ends up in the 350 * dump twice: once for the Xen va and once for the Solaris va. 351 * This isn't ideal, but we don't know the address Xen is using for 352 * the page, so we can't share it. 353 */ 354 mem_vtop.m_as = &kas; 355 mem_vtop.m_va = HYPERVISOR_shared_info; 356 mem_vtop.m_pfn = (pfn_t)xpv_dump_pages | PFN_IS_FOREIGN_MFN; 357 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); 358 xpv_dump_pages++; 359 360 return (xpv_dump_pages); 361 } 362 363 void 364 dump_xpv_pfn() 365 { 366 pfn_t pfn; 367 int cnt; 368 369 for (cnt = 0; cnt < xpv_dump_pages; cnt++) { 370 pfn = (pfn_t)cnt | PFN_IS_FOREIGN_MFN; 371 dumpvp_write(&pfn, sizeof (pfn)); 372 } 373 } 374 375 int 376 dump_xpv_data(void *dump_cbuf) 377 { 378 uintptr_t va; 379 uint32_t csize; 380 int cnt = 0; 381 382 /* 383 * XXX: we should probably run this data through a UE check. The 384 * catch is that the UE code relies on on_trap() and getpfnum() 385 * working. 386 */ 387 va = xen_virt_start; 388 389 while (xpv_va_walk(&va) != PFN_INVALID) { 390 csize = (uint32_t)compress((void *)va, dump_cbuf, PAGESIZE); 391 dumpvp_write(&csize, sizeof (uint32_t)); 392 dumpvp_write(dump_cbuf, csize); 393 if (dump_ioerr) { 394 dumphdr->dump_flags &= ~DF_COMPLETE; 395 return (cnt); 396 } 397 cnt++; 398 va += MMU_PAGESIZE; 399 } 400 401 /* 402 * Finally, dump the shared_info page 403 */ 404 csize = (uint32_t)compress((void *)HYPERVISOR_shared_info, dump_cbuf, 405 PAGESIZE); 406 dumpvp_write(&csize, sizeof (uint32_t)); 407 dumpvp_write(dump_cbuf, csize); 408 if (dump_ioerr) 409 dumphdr->dump_flags &= ~DF_COMPLETE; 410 cnt++; 411 412 return (cnt); 413 } 414 415 static void * 416 showstack(void *fpreg, int xpv_only) 417 { 418 struct frame *fpp; 419 ulong_t off; 420 char *sym; 421 uintptr_t pc, fp, lastfp; 422 uintptr_t minaddr = min(KERNELBASE, xen_virt_start); 423 424 fp = (uintptr_t)fpreg; 425 if (fp < minaddr) { 426 xpv_panic_printf("Bad frame ptr: 0x%p\n", fpreg); 427 return (fpreg); 428 } 429 430 do { 431 fpp = (struct frame *)fp; 432 pc = fpp->fr_savpc; 433 434 if ((xpv_only != 0) && 435 (fp > xpv_end || fp < xen_virt_start)) 436 break; 437 if ((sym = kobj_getsymname(pc, &off)) != NULL) 438 xpv_panic_printf("%08lx %s:%s+%lx\n", fp, 439 mod_containing_pc((caddr_t)pc), sym, off); 440 else if ((pc >= xen_virt_start) && (pc <= xpv_end)) 441 xpv_panic_printf("%08lx 0x%lx (in Xen)\n", fp, pc); 442 else 443 xpv_panic_printf("%08lx %lx\n", fp, pc); 444 445 lastfp = fp; 446 fp = fpp->fr_savfp; 447 448 /* 449 * Xen marks an exception frame by inverting the frame 450 * pointer. 451 */ 452 if (fp < lastfp) { 453 if ((~fp > minaddr) && ((~fp) ^ lastfp) < 0xfff) 454 fp = ~fp; 455 } 456 } while (fp > lastfp); 457 return ((void *)fp); 458 } 459 460 void * 461 xpv_traceback(void *fpreg) 462 { 463 return (showstack(fpreg, 1)); 464 } 465 466 #if defined(__amd64) 467 static void 468 xpv_panic_hypercall(ulong_t call) 469 { 470 panic("Illegally issued hypercall %d during panic!\n", (int)call); 471 } 472 #endif 473 474 void 475 xpv_die(struct regs *rp) 476 { 477 struct panic_trap_info ti; 478 struct cregs creg; 479 480 ti.trap_regs = rp; 481 ti.trap_type = rp->r_trapno; 482 483 curthread->t_panic_trap = &ti; 484 if (ti.trap_type == T_PGFLT) { 485 getcregs(&creg); 486 ti.trap_addr = (caddr_t)creg.cr_cr2; 487 panic("Fatal pagefault at 0x%lx. fault addr=0x%p rp=0x%p", 488 rp->r_pc, (void *)ti.trap_addr, (void *)rp); 489 } else { 490 ti.trap_addr = (caddr_t)rp->r_pc; 491 panic("Fatal trap %ld at 0x%lx. rp=0x%p", rp->r_trapno, 492 rp->r_pc, (void *)rp); 493 } 494 } 495 496 /* 497 * Build IDT to handle a Xen panic 498 */ 499 static void 500 switch_to_xpv_panic_idt() 501 { 502 int i; 503 desctbr_t idtr; 504 gate_desc_t *idt = xpv_panic_idt; 505 selector_t cs = get_cs_register(); 506 507 for (i = 0; i < 32; i++) 508 set_gatesegd(&idt[i], &xpv_invaltrap, cs, SDT_SYSIGT, TRP_XPL, 509 0); 510 511 set_gatesegd(&idt[T_ZERODIV], &xpv_div0trap, cs, SDT_SYSIGT, TRP_XPL, 512 0); 513 set_gatesegd(&idt[T_SGLSTP], &xpv_dbgtrap, cs, SDT_SYSIGT, TRP_XPL, 0); 514 set_gatesegd(&idt[T_NMIFLT], &xpv_nmiint, cs, SDT_SYSIGT, TRP_XPL, 0); 515 set_gatesegd(&idt[T_BOUNDFLT], &xpv_boundstrap, cs, SDT_SYSIGT, 516 TRP_XPL, 0); 517 set_gatesegd(&idt[T_ILLINST], &xpv_invoptrap, cs, SDT_SYSIGT, TRP_XPL, 518 0); 519 set_gatesegd(&idt[T_NOEXTFLT], &xpv_ndptrap, cs, SDT_SYSIGT, TRP_XPL, 520 0); 521 set_gatesegd(&idt[T_TSSFLT], &xpv_invtsstrap, cs, SDT_SYSIGT, TRP_XPL, 522 0); 523 set_gatesegd(&idt[T_SEGFLT], &xpv_segnptrap, cs, SDT_SYSIGT, TRP_XPL, 524 0); 525 set_gatesegd(&idt[T_STKFLT], &xpv_stktrap, cs, SDT_SYSIGT, TRP_XPL, 0); 526 set_gatesegd(&idt[T_GPFLT], &xpv_gptrap, cs, SDT_SYSIGT, TRP_XPL, 0); 527 set_gatesegd(&idt[T_PGFLT], &xpv_pftrap, cs, SDT_SYSIGT, TRP_XPL, 0); 528 set_gatesegd(&idt[T_EXTERRFLT], &xpv_ndperr, cs, SDT_SYSIGT, TRP_XPL, 529 0); 530 set_gatesegd(&idt[T_ALIGNMENT], &xpv_achktrap, cs, SDT_SYSIGT, TRP_XPL, 531 0); 532 set_gatesegd(&idt[T_MCE], &xpv_mcetrap, cs, SDT_SYSIGT, TRP_XPL, 0); 533 set_gatesegd(&idt[T_SIMDFPE], &xpv_xmtrap, cs, SDT_SYSIGT, TRP_XPL, 0); 534 535 /* 536 * We have no double fault handler. Any single fault represents a 537 * catastrophic failure for us, so there is no attempt to handle 538 * them cleanly: we just print a message and reboot. If we 539 * encounter a second fault while doing that, there is nothing 540 * else we can do. 541 */ 542 543 /* 544 * Be prepared to absorb any stray device interrupts received 545 * while writing the core to disk. 546 */ 547 for (i = 33; i < NIDT; i++) 548 set_gatesegd(&idt[i], &xpv_surprise_intr, cs, SDT_SYSIGT, 549 TRP_XPL, 0); 550 551 /* The one interrupt we expect to get is from the APIC timer. */ 552 set_gatesegd(&idt[T_XPV_TIMER], &xpv_timer_trap, cs, SDT_SYSIGT, 553 TRP_XPL, 0); 554 555 idtr.dtr_base = (uintptr_t)xpv_panic_idt; 556 idtr.dtr_limit = sizeof (xpv_panic_idt) - 1; 557 wr_idtr(&idtr); 558 559 #if defined(__amd64) 560 /* Catch any hypercalls. */ 561 wrmsr(MSR_AMD_LSTAR, (uintptr_t)xpv_panic_hypercall); 562 wrmsr(MSR_AMD_CSTAR, (uintptr_t)xpv_panic_hypercall); 563 #endif 564 } 565 566 static void 567 xpv_apic_clkinit() 568 { 569 uint_t apic_ticks = 0; 570 571 /* 572 * Measure how many APIC ticks there are within a fixed time 573 * period. We're going to be fairly coarse here. This timer is 574 * just being used to detect a stalled panic, so as long as we have 575 * the right order of magnitude, everything should be fine. 576 */ 577 xpv_apicadr[APIC_SPUR_INT_REG] = AV_UNIT_ENABLE | APIC_SPUR_INTR; 578 xpv_apicadr[APIC_LOCAL_TIMER] = AV_MASK; 579 xpv_apicadr[APIC_INT_VECT0] = AV_MASK; /* local intr reg 0 */ 580 581 xpv_apicadr[APIC_DIVIDE_REG] = 0; 582 xpv_apicadr[APIC_INIT_COUNT] = APIC_MAXVAL; 583 drv_usecwait(XPV_TIMER_INTERVAL); 584 apic_ticks = APIC_MAXVAL - xpv_apicadr[APIC_CURR_COUNT]; 585 586 /* 587 * apic_ticks now represents roughly how many apic ticks comprise 588 * one timeout interval. Program the timer to send us an interrupt 589 * every time that interval expires. 590 */ 591 xpv_apicadr[APIC_LOCAL_TIMER] = T_XPV_TIMER | AV_PERIODIC; 592 xpv_apicadr[APIC_INIT_COUNT] = apic_ticks; 593 xpv_apicadr[APIC_EOI_REG] = 0; 594 } 595 596 void 597 xpv_timer_tick(void) 598 { 599 static int ticks = 0; 600 601 if (ticks++ >= MICROSEC / XPV_TIMER_INTERVAL) { 602 ticks = 0; 603 if (dump_timeleft && (--dump_timeleft == 0)) 604 panic("Xen panic timeout\n"); 605 } 606 xpv_apicadr[APIC_EOI_REG] = 0; 607 } 608 609 void 610 xpv_interrupt(void) 611 { 612 #ifdef DEBUG 613 static int cnt = 0; 614 615 if (cnt++ < 10) 616 xpv_panic_printf("Unexpected interrupt received.\n"); 617 if ((cnt < 1000) && ((cnt % 100) == 0)) 618 xpv_panic_printf("%d unexpected interrupts received.\n", cnt); 619 #endif 620 621 xpv_apicadr[APIC_EOI_REG] = 0; 622 } 623 624 /* 625 * Managing time in panic context is trivial. We only have a single CPU, 626 * we never get rescheduled, we never get suspended. We just need to 627 * convert clock ticks into nanoseconds. 628 */ 629 static hrtime_t 630 xpv_panic_gethrtime(void) 631 { 632 hrtime_t tsc, hrt; 633 unsigned int *l = (unsigned int *)&(tsc); 634 635 tsc = __rdtsc_insn(); 636 hrt = (mul32(l[1], nsec_scale) << NSEC_SHIFT) + 637 (mul32(l[0], nsec_scale) >> (32 - NSEC_SHIFT)); 638 639 return (hrt); 640 } 641 642 static void 643 xpv_panic_time_init() 644 { 645 nsec_scale = 646 CPU->cpu_m.mcpu_vcpu_info->time.tsc_to_system_mul >> NSEC_SHIFT; 647 648 gethrtimef = xpv_panic_gethrtime; 649 } 650 651 static void 652 xpv_panicsys(struct regs *rp, char *fmt, ...) 653 { 654 extern void panicsys(const char *, va_list, struct regs *, int); 655 va_list alist; 656 657 va_start(alist, fmt); 658 panicsys(fmt, alist, rp, 1); 659 va_end(alist); 660 } 661 662 void 663 xpv_do_panic(void *arg) 664 { 665 struct panic_info *pip = (struct panic_info *)arg; 666 int l; 667 struct cregs creg; 668 #if defined(__amd64) 669 extern uintptr_t postbootkernelbase; 670 #endif 671 672 if (xpv_panicking++ > 0) 673 panic("multiple calls to xpv_do_panic()"); 674 675 /* 676 * Indicate to the underlying panic framework that a panic has been 677 * initiated. This is ordinarily done as part of vpanic(). Since 678 * we already have all the register state saved by the hypervisor, 679 * we skip that and jump straight into the panic processing code. 680 * 681 * XXX If another thread grabs and wins the panic_quiesce trigger 682 * then we'll have two threads in panicsys believing they are in 683 * charge of the panic attempt! 684 */ 685 (void) panic_trigger(&panic_quiesce); 686 687 #if defined(__amd64) 688 /* 689 * bzero() and bcopy() get unhappy when asked to operate on 690 * addresses outside of the kernel. At this point Xen is really a 691 * part of the kernel, so we update the routines' notion of where 692 * the kernel starts. 693 */ 694 postbootkernelbase = xen_virt_start; 695 #endif 696 697 #if defined(HYPERVISOR_VIRT_END) 698 xpv_end = HYPERVISOR_VIRT_END; 699 #else 700 xpv_end = (uintptr_t)UINTPTR_MAX - sizeof (uintptr_t); 701 #endif 702 703 /* 704 * If we were redirecting console output to the hypervisor, we have 705 * to stop. 706 */ 707 use_polledio = B_FALSE; 708 if (boot_console_type(NULL) == CONS_HYPERVISOR) { 709 bcons_device_change(CONS_HYPERVISOR); 710 } else if (cons_polledio != NULL && 711 cons_polledio->cons_polledio_putchar != NULL) { 712 if (cons_polledio->cons_polledio_enter != NULL) 713 cons_polledio->cons_polledio_enter( 714 cons_polledio->cons_polledio_argument); 715 use_polledio = 1; 716 } 717 718 /* Make sure we handle all console output from here on. */ 719 sysp->bsvc_putchar = xpv_panic_putc; 720 721 /* 722 * If we find an unsupported panic_info structure, there's not much 723 * we can do other than complain, plow on, and hope for the best. 724 */ 725 if (pip->pi_version != PANIC_INFO_VERSION) 726 xpv_panic_printf("Warning: Xen is using an unsupported " 727 "version of the panic_info structure.\n"); 728 729 xpv_panic_info = pip; 730 731 #if defined(__amd64) 732 kpm1_low = (uintptr_t)xpv_panic_info->pi_ram_start; 733 if (xpv_panic_info->pi_xen_start == NULL) { 734 kpm1_high = (uintptr_t)xpv_panic_info->pi_ram_end; 735 } else { 736 kpm1_high = (uintptr_t)xpv_panic_info->pi_xen_start; 737 kpm2_low = (uintptr_t)xpv_panic_info->pi_xen_end; 738 kpm2_high = (uintptr_t)xpv_panic_info->pi_ram_end; 739 } 740 #endif 741 742 /* 743 * Make sure we are running on the Solaris %gs. The Xen panic code 744 * should already have set up the GDT properly. 745 */ 746 xpv_panic_resetgs(); 747 #if defined(__amd64) 748 wrmsr(MSR_AMD_GSBASE, (uint64_t)&cpus[0]); 749 #endif 750 751 xpv_panic_time_init(); 752 753 /* 754 * Switch to our own IDT, avoiding any accidental returns to Xen 755 * world. 756 */ 757 switch_to_xpv_panic_idt(); 758 759 /* 760 * Initialize the APIC timer, which is used to detect a hung dump 761 * attempt. 762 */ 763 xpv_apicadr = pip->pi_apic; 764 xpv_apic_clkinit(); 765 766 /* 767 * Set up a few values that we'll need repeatedly. 768 */ 769 getcregs(&creg); 770 xpv_panic_cr3 = creg.cr_cr3; 771 for (l = mmu.max_level; l >= 0; l--) 772 xpv_panic_nptes[l] = mmu.ptes_per_table; 773 #ifdef __i386 774 if (mmu.pae_hat) 775 xpv_panic_nptes[mmu.max_level] = 4; 776 #endif 777 778 /* Add the fake Xen module to the module list */ 779 if (xpv_module != NULL) { 780 extern int last_module_id; 781 782 xpv_modctl->mod_id = last_module_id++; 783 xpv_modctl->mod_next = &modules; 784 xpv_modctl->mod_prev = modules.mod_prev; 785 modules.mod_prev->mod_next = xpv_modctl; 786 modules.mod_prev = xpv_modctl; 787 } 788 789 if (pip->pi_mca.mpd_magic == MCA_PANICDATA_MAGIC) 790 xpv_mca_panic_data = &pip->pi_mca; 791 792 xpv_panic_printf = printf; 793 xpv_panicsys((struct regs *)pip->pi_regs, pip->pi_panicstr); 794 xpv_panic_printf("Failed to reboot following panic.\n"); 795 for (;;) 796 ; 797 } 798 799 /* 800 * Set up the necessary data structures to pretend that the Xen hypervisor 801 * is a loadable module, allowing mdb to find the Xen symbols in a crash 802 * dump. Since these symbols all map to VA space Solaris doesn't normally 803 * have access to, we don't link these structures into the kernel's lists 804 * until/unless we hit a Xen panic. 805 * 806 * The observant reader will note a striking amount of overlap between this 807 * code and that found in krtld. While it would be handy if we could just 808 * ask krtld to do this work for us, it's not that simple. Among the 809 * complications: we're not actually loading the text here (grub did it at 810 * boot), the .text section is writable, there are no relocations to do, 811 * none of the module text/data is in readable memory, etc. Training krtld 812 * to deal with this weird module is as complicated, and more risky, than 813 * reimplementing the necessary subset of it here. 814 */ 815 static void 816 init_xen_module() 817 { 818 struct _buf *file = NULL; 819 struct module *mp; 820 struct modctl *mcp; 821 int i, shn; 822 Shdr *shp, *ctf_shp; 823 char *names = NULL; 824 size_t n, namesize, text_align, data_align; 825 #if defined(__amd64) 826 const char machine = EM_AMD64; 827 #else 828 const char machine = EM_386; 829 #endif 830 831 /* Allocate and init the module structure */ 832 mp = kmem_zalloc(sizeof (*mp), KM_SLEEP); 833 mp->filename = kobj_zalloc(strlen(XPV_FILENAME) + 1, KM_SLEEP); 834 (void) strcpy(mp->filename, XPV_FILENAME); 835 836 /* Allocate and init the modctl structure */ 837 mcp = kmem_zalloc(sizeof (*mcp), KM_SLEEP); 838 mcp->mod_modname = kobj_zalloc(strlen(XPV_MODNAME) + 1, KM_SLEEP); 839 (void) strcpy(mcp->mod_modname, XPV_MODNAME); 840 mcp->mod_filename = kobj_zalloc(strlen(XPV_FILENAME) + 1, KM_SLEEP); 841 (void) strcpy(mcp->mod_filename, XPV_FILENAME); 842 mcp->mod_inprogress_thread = (kthread_id_t)-1; 843 mcp->mod_ref = 1; 844 mcp->mod_loaded = 1; 845 mcp->mod_loadcnt = 1; 846 mcp->mod_mp = mp; 847 848 /* 849 * Try to open a Xen image that hasn't had its symbol and CTF 850 * information stripped off. 851 */ 852 file = kobj_open_file(XPV_FILENAME); 853 if (file == (struct _buf *)-1) { 854 file = NULL; 855 goto err; 856 } 857 858 /* 859 * Read the header and ensure that this is an ELF file for the 860 * proper ISA. If it's not, somebody has done something very 861 * stupid. Why bother? See Mencken. 862 */ 863 if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) 864 goto err; 865 for (i = 0; i < SELFMAG; i++) 866 if (mp->hdr.e_ident[i] != ELFMAG[i]) 867 goto err; 868 if ((mp->hdr.e_ident[EI_DATA] != ELFDATA2LSB) || 869 (mp->hdr.e_machine != machine)) 870 goto err; 871 872 /* Read in the section headers */ 873 n = mp->hdr.e_shentsize * mp->hdr.e_shnum; 874 mp->shdrs = kmem_zalloc(n, KM_SLEEP); 875 if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) 876 goto err; 877 878 /* Read the section names */ 879 shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize); 880 namesize = shp->sh_size; 881 names = kmem_zalloc(shp->sh_size, KM_SLEEP); 882 if (kobj_read_file(file, names, shp->sh_size, shp->sh_offset) < 0) 883 goto err; 884 885 /* 886 * Fill in the text and data size fields. 887 */ 888 ctf_shp = NULL; 889 text_align = data_align = 0; 890 for (shn = 1; shn < mp->hdr.e_shnum; shn++) { 891 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 892 893 /* Sanity check the offset of the section name */ 894 if (shp->sh_name >= namesize) 895 continue; 896 897 /* If we find the symtab section, remember it for later. */ 898 if (shp->sh_type == SHT_SYMTAB) { 899 mp->symtbl_section = shn; 900 mp->symhdr = shp; 901 continue; 902 } 903 904 /* If we find the CTF section, remember it for later. */ 905 if ((shp->sh_size != 0) && 906 (strcmp(names + shp->sh_name, ".SUNW_ctf") == 0)) { 907 ctf_shp = shp; 908 continue; 909 } 910 911 if (!(shp->sh_flags & SHF_ALLOC)) 912 continue; 913 914 /* 915 * Xen marks its text section as writable, so we need to 916 * look for the name - not just the flag. 917 */ 918 if ((strcmp(&names[shp->sh_name], ".text") != 0) && 919 (shp->sh_flags & SHF_WRITE) != 0) { 920 if (shp->sh_addralign > data_align) 921 data_align = shp->sh_addralign; 922 mp->data_size = ALIGN(mp->data_size, data_align); 923 mp->data_size += ALIGN(shp->sh_size, 8); 924 if (mp->data == NULL || mp->data > (char *)shp->sh_addr) 925 mp->data = (char *)shp->sh_addr; 926 } else { 927 if (shp->sh_addralign > text_align) 928 text_align = shp->sh_addralign; 929 mp->text_size = ALIGN(mp->text_size, text_align); 930 mp->text_size += ALIGN(shp->sh_size, 8); 931 if (mp->text == NULL || mp->text > (char *)shp->sh_addr) 932 mp->text = (char *)shp->sh_addr; 933 } 934 } 935 kmem_free(names, namesize); 936 names = NULL; 937 shp = NULL; 938 mcp->mod_text = mp->text; 939 mcp->mod_text_size = mp->text_size; 940 941 /* 942 * If we have symbol table and string table sections, read them in 943 * now. If we don't, we just plow on. We'll still get a valid 944 * core dump, but finding anything useful will be just a bit 945 * harder. 946 * 947 * Note: we don't bother with a hash table. We'll never do a 948 * symbol lookup unless we crash, and then mdb creates its own. We 949 * also don't try to perform any relocations. Xen should be loaded 950 * exactly where the ELF file indicates, and the symbol information 951 * in the file should be complete and correct already. Static 952 * linking ain't all bad. 953 */ 954 if ((mp->symhdr != NULL) && (mp->symhdr->sh_link < mp->hdr.e_shnum)) { 955 mp->strhdr = (Shdr *) 956 (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize); 957 mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize; 958 959 /* Allocate space for the symbol table and strings. */ 960 mp->symsize = mp->symhdr->sh_size + 961 mp->nsyms * sizeof (symid_t) + mp->strhdr->sh_size; 962 mp->symspace = kmem_zalloc(mp->symsize, KM_SLEEP); 963 mp->symtbl = mp->symspace; 964 mp->strings = (char *)(mp->symtbl + mp->symhdr->sh_size); 965 966 if ((kobj_read_file(file, mp->symtbl, 967 mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0) || 968 (kobj_read_file(file, mp->strings, 969 mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0)) 970 goto err; 971 } 972 973 /* 974 * Read in the CTF section 975 */ 976 if ((ctf_shp != NULL) && ((moddebug & MODDEBUG_NOCTF) == 0)) { 977 mp->ctfdata = kmem_zalloc(ctf_shp->sh_size, KM_SLEEP); 978 mp->ctfsize = ctf_shp->sh_size; 979 if (kobj_read_file(file, mp->ctfdata, mp->ctfsize, 980 ctf_shp->sh_offset) < 0) 981 goto err; 982 } 983 984 kobj_close_file(file); 985 986 xpv_module = mp; 987 xpv_modctl = mcp; 988 return; 989 990 err: 991 cmn_err(CE_WARN, "Failed to initialize xpv module."); 992 if (file != NULL) 993 kobj_close_file(file); 994 995 kmem_free(mp->filename, strlen(XPV_FILENAME) + 1); 996 if (mp->shdrs != NULL) 997 kmem_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum); 998 if (mp->symspace != NULL) 999 kmem_free(mp->symspace, mp->symsize); 1000 if (mp->ctfdata != NULL) 1001 kmem_free(mp->ctfdata, mp->ctfsize); 1002 kmem_free(mp, sizeof (*mp)); 1003 kmem_free(mcp->mod_filename, strlen(XPV_FILENAME) + 1); 1004 kmem_free(mcp->mod_modname, strlen(XPV_MODNAME) + 1); 1005 kmem_free(mcp, sizeof (*mcp)); 1006 if (names != NULL) 1007 kmem_free(names, namesize); 1008 } 1009 1010 void 1011 xpv_panic_init() 1012 { 1013 xen_platform_op_t op; 1014 int i; 1015 1016 ASSERT(DOMAIN_IS_INITDOMAIN(xen_info)); 1017 1018 for (i = 0; i < mmu.num_level; i++) 1019 ptable_pfn[i] = PFN_INVALID; 1020 1021 /* Let Xen know where to jump if/when it panics. */ 1022 op.cmd = XENPF_panic_init; 1023 op.interface_version = XENPF_INTERFACE_VERSION; 1024 op.u.panic_init.panic_addr = (unsigned long)xpv_panic_hdlr; 1025 1026 (void) HYPERVISOR_platform_op(&op); 1027 1028 init_xen_module(); 1029 }