1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2017 Joyent, Inc.
24 */
25
26 #include <mdb/mdb_param.h>
27 #include <mdb/mdb_modapi.h>
28 #include <mdb/mdb_ks.h>
29 #include <sys/types.h>
30 #include <sys/memlist.h>
31 #include <sys/swap.h>
32 #include <sys/systm.h>
33 #include <sys/thread.h>
34 #include <vm/anon.h>
35 #include <vm/as.h>
36 #include <vm/page.h>
37 #include <sys/thread.h>
38 #include <sys/swap.h>
39 #include <sys/memlist.h>
40 #include <sys/vnode.h>
41 #include <vm/seg_map.h>
42 #include <vm/seg_vn.h>
43 #include <vm/seg_hole.h>
44 #if defined(__i386) || defined(__amd64)
45 #include <sys/balloon_impl.h>
46 #endif
47
48 #include "avl.h"
49 #include "memory.h"
50
51 /*
52 * Page walker.
53 * By default, this will walk all pages in the system. If given an
54 * address, it will walk all pages belonging to the vnode at that
55 * address.
56 */
57
58 /*
59 * page_walk_data
60 *
61 * pw_hashleft is set to -1 when walking a vnode's pages, and holds the
62 * number of hash locations remaining in the page hash table when
63 * walking all pages.
64 *
65 * The astute reader will notice that pw_hashloc is only used when
66 * reading all pages (to hold a pointer to our location in the page
67 * hash table), and that pw_first is only used when reading the pages
68 * belonging to a particular vnode (to hold a pointer to the first
69 * page). While these could be combined to be a single pointer, they
70 * are left separate for clarity.
71 */
72 typedef struct page_walk_data {
73 long pw_hashleft;
74 void **pw_hashloc;
75 uintptr_t pw_first;
76 } page_walk_data_t;
77
78 int
79 page_walk_init(mdb_walk_state_t *wsp)
80 {
81 page_walk_data_t *pwd;
82 void **ptr;
83 size_t hashsz;
84 vnode_t vn;
85
86 if (wsp->walk_addr == NULL) {
87
88 /*
89 * Walk all pages
90 */
91
92 if ((mdb_readvar(&ptr, "page_hash") == -1) ||
93 (mdb_readvar(&hashsz, "page_hashsz") == -1) ||
94 (ptr == NULL) || (hashsz == 0)) {
95 mdb_warn("page_hash, page_hashsz not found or invalid");
96 return (WALK_ERR);
97 }
98
99 /*
100 * Since we are walking all pages, initialize hashleft
101 * to be the remaining number of entries in the page
102 * hash. hashloc is set the start of the page hash
103 * table. Setting the walk address to 0 indicates that
104 * we aren't currently following a hash chain, and that
105 * we need to scan the page hash table for a page.
106 */
107 pwd = mdb_alloc(sizeof (page_walk_data_t), UM_SLEEP);
108 pwd->pw_hashleft = hashsz;
109 pwd->pw_hashloc = ptr;
110 wsp->walk_addr = 0;
111 } else {
112
113 /*
114 * Walk just this vnode
115 */
116
117 if (mdb_vread(&vn, sizeof (vnode_t), wsp->walk_addr) == -1) {
118 mdb_warn("unable to read vnode_t at %#lx",
119 wsp->walk_addr);
120 return (WALK_ERR);
121 }
122
123 /*
124 * We set hashleft to -1 to indicate that we are
125 * walking a vnode, and initialize first to 0 (it is
126 * used to terminate the walk, so it must not be set
127 * until after we have walked the first page). The
128 * walk address is set to the first page.
129 */
130 pwd = mdb_alloc(sizeof (page_walk_data_t), UM_SLEEP);
131 pwd->pw_hashleft = -1;
132 pwd->pw_first = 0;
133
134 wsp->walk_addr = (uintptr_t)vn.v_pages;
135 }
136
137 wsp->walk_data = pwd;
138
139 return (WALK_NEXT);
140 }
141
142 int
143 page_walk_step(mdb_walk_state_t *wsp)
144 {
145 page_walk_data_t *pwd = wsp->walk_data;
146 page_t page;
147 uintptr_t pp;
148
149 pp = wsp->walk_addr;
150
151 if (pwd->pw_hashleft < 0) {
152
153 /* We're walking a vnode's pages */
154
155 /*
156 * If we don't have any pages to walk, we have come
157 * back around to the first one (we finished), or we
158 * can't read the page we're looking at, we are done.
159 */
160 if (pp == NULL || pp == pwd->pw_first)
161 return (WALK_DONE);
162 if (mdb_vread(&page, sizeof (page_t), pp) == -1) {
163 mdb_warn("unable to read page_t at %#lx", pp);
164 return (WALK_ERR);
165 }
166
167 /*
168 * Set the walk address to the next page, and if the
169 * first page hasn't been set yet (i.e. we are on the
170 * first page), set it.
171 */
172 wsp->walk_addr = (uintptr_t)page.p_vpnext;
173 if (pwd->pw_first == NULL)
174 pwd->pw_first = pp;
175
176 } else if (pwd->pw_hashleft > 0) {
177
178 /* We're walking all pages */
179
180 /*
181 * If pp (the walk address) is NULL, we scan through
182 * the page hash table until we find a page.
183 */
184 if (pp == NULL) {
185
186 /*
187 * Iterate through the page hash table until we
188 * find a page or reach the end.
189 */
190 do {
191 if (mdb_vread(&pp, sizeof (uintptr_t),
192 (uintptr_t)pwd->pw_hashloc) == -1) {
193 mdb_warn("unable to read from %#p",
194 pwd->pw_hashloc);
195 return (WALK_ERR);
196 }
197 pwd->pw_hashleft--;
198 pwd->pw_hashloc++;
199 } while (pwd->pw_hashleft && (pp == NULL));
200
201 /*
202 * We've reached the end; exit.
203 */
204 if (pp == NULL)
205 return (WALK_DONE);
206 }
207
208 if (mdb_vread(&page, sizeof (page_t), pp) == -1) {
209 mdb_warn("unable to read page_t at %#lx", pp);
210 return (WALK_ERR);
211 }
212
213 /*
214 * Set the walk address to the next page.
215 */
216 wsp->walk_addr = (uintptr_t)page.p_hash;
217
218 } else {
219 /* We've finished walking all pages. */
220 return (WALK_DONE);
221 }
222
223 return (wsp->walk_callback(pp, &page, wsp->walk_cbdata));
224 }
225
226 void
227 page_walk_fini(mdb_walk_state_t *wsp)
228 {
229 mdb_free(wsp->walk_data, sizeof (page_walk_data_t));
230 }
231
232 /*
233 * allpages walks all pages in the system in order they appear in
234 * the memseg structure
235 */
236
237 #define PAGE_BUFFER 128
238
239 int
240 allpages_walk_init(mdb_walk_state_t *wsp)
241 {
242 if (wsp->walk_addr != 0) {
243 mdb_warn("allpages only supports global walks.\n");
244 return (WALK_ERR);
245 }
246
247 if (mdb_layered_walk("memseg", wsp) == -1) {
248 mdb_warn("couldn't walk 'memseg'");
249 return (WALK_ERR);
250 }
251
252 wsp->walk_data = mdb_alloc(sizeof (page_t) * PAGE_BUFFER, UM_SLEEP);
253 return (WALK_NEXT);
254 }
255
256 int
257 allpages_walk_step(mdb_walk_state_t *wsp)
258 {
259 const struct memseg *msp = wsp->walk_layer;
260 page_t *buf = wsp->walk_data;
261 size_t pg_read, i;
262 size_t pg_num = msp->pages_end - msp->pages_base;
263 const page_t *pg_addr = msp->pages;
264
265 while (pg_num > 0) {
266 pg_read = MIN(pg_num, PAGE_BUFFER);
267
268 if (mdb_vread(buf, pg_read * sizeof (page_t),
269 (uintptr_t)pg_addr) == -1) {
270 mdb_warn("can't read page_t's at %#lx", pg_addr);
271 return (WALK_ERR);
272 }
273 for (i = 0; i < pg_read; i++) {
274 int ret = wsp->walk_callback((uintptr_t)&pg_addr[i],
275 &buf[i], wsp->walk_cbdata);
276
277 if (ret != WALK_NEXT)
278 return (ret);
279 }
280 pg_num -= pg_read;
281 pg_addr += pg_read;
282 }
283
284 return (WALK_NEXT);
285 }
286
287 void
288 allpages_walk_fini(mdb_walk_state_t *wsp)
289 {
290 mdb_free(wsp->walk_data, sizeof (page_t) * PAGE_BUFFER);
291 }
292
293 /*
294 * Hash table + LRU queue.
295 * This table is used to cache recently read vnodes for the memstat
296 * command, to reduce the number of mdb_vread calls. This greatly
297 * speeds the memstat command on on live, large CPU count systems.
298 */
299
300 #define VN_SMALL 401
301 #define VN_LARGE 10007
302 #define VN_HTABLE_KEY(p, hp) ((p) % ((hp)->vn_htable_buckets))
303
304 struct vn_htable_list {
305 uint_t vn_flag; /* v_flag from vnode */
306 uintptr_t vn_ptr; /* pointer to vnode */
307 struct vn_htable_list *vn_q_next; /* queue next pointer */
308 struct vn_htable_list *vn_q_prev; /* queue prev pointer */
309 struct vn_htable_list *vn_h_next; /* hash table pointer */
310 };
311
312 /*
313 * vn_q_first -> points to to head of queue: the vnode that was most
314 * recently used
315 * vn_q_last -> points to the oldest used vnode, and is freed once a new
316 * vnode is read.
317 * vn_htable -> hash table
318 * vn_htable_buf -> contains htable objects
319 * vn_htable_size -> total number of items in the hash table
320 * vn_htable_buckets -> number of buckets in the hash table
321 */
322 typedef struct vn_htable {
323 struct vn_htable_list *vn_q_first;
324 struct vn_htable_list *vn_q_last;
325 struct vn_htable_list **vn_htable;
326 struct vn_htable_list *vn_htable_buf;
327 int vn_htable_size;
328 int vn_htable_buckets;
329 } vn_htable_t;
330
331
332 /* allocate memory, initilize hash table and LRU queue */
333 static void
334 vn_htable_init(vn_htable_t *hp, size_t vn_size)
335 {
336 int i;
337 int htable_size = MAX(vn_size, VN_LARGE);
338
339 if ((hp->vn_htable_buf = mdb_zalloc(sizeof (struct vn_htable_list)
340 * htable_size, UM_NOSLEEP|UM_GC)) == NULL) {
341 htable_size = VN_SMALL;
342 hp->vn_htable_buf = mdb_zalloc(sizeof (struct vn_htable_list)
343 * htable_size, UM_SLEEP|UM_GC);
344 }
345
346 hp->vn_htable = mdb_zalloc(sizeof (struct vn_htable_list *)
347 * htable_size, UM_SLEEP|UM_GC);
348
349 hp->vn_q_first = &hp->vn_htable_buf[0];
350 hp->vn_q_last = &hp->vn_htable_buf[htable_size - 1];
351 hp->vn_q_first->vn_q_next = &hp->vn_htable_buf[1];
352 hp->vn_q_last->vn_q_prev = &hp->vn_htable_buf[htable_size - 2];
353
354 for (i = 1; i < (htable_size-1); i++) {
355 hp->vn_htable_buf[i].vn_q_next = &hp->vn_htable_buf[i + 1];
356 hp->vn_htable_buf[i].vn_q_prev = &hp->vn_htable_buf[i - 1];
357 }
358
359 hp->vn_htable_size = htable_size;
360 hp->vn_htable_buckets = htable_size;
361 }
362
363
364 /*
365 * Find the vnode whose address is ptr, and return its v_flag in vp->v_flag.
366 * The function tries to find needed information in the following order:
367 *
368 * 1. check if ptr is the first in queue
369 * 2. check if ptr is in hash table (if so move it to the top of queue)
370 * 3. do mdb_vread, remove last queue item from queue and hash table.
371 * Insert new information to freed object, and put this object in to the
372 * top of the queue.
373 */
374 static int
375 vn_get(vn_htable_t *hp, struct vnode *vp, uintptr_t ptr)
376 {
377 int hkey;
378 struct vn_htable_list *hent, **htmp, *q_next, *q_prev;
379 struct vn_htable_list *q_first = hp->vn_q_first;
380
381 /* 1. vnode ptr is the first in queue, just get v_flag and return */
382 if (q_first->vn_ptr == ptr) {
383 vp->v_flag = q_first->vn_flag;
384
385 return (0);
386 }
387
388 /* 2. search the hash table for this ptr */
389 hkey = VN_HTABLE_KEY(ptr, hp);
390 hent = hp->vn_htable[hkey];
391 while (hent && (hent->vn_ptr != ptr))
392 hent = hent->vn_h_next;
393
394 /* 3. if hent is NULL, we did not find in hash table, do mdb_vread */
395 if (hent == NULL) {
396 struct vnode vn;
397
398 if (mdb_vread(&vn, sizeof (vnode_t), ptr) == -1) {
399 mdb_warn("unable to read vnode_t at %#lx", ptr);
400 return (-1);
401 }
402
403 /* we will insert read data into the last element in queue */
404 hent = hp->vn_q_last;
405
406 /* remove last hp->vn_q_last object from hash table */
407 if (hent->vn_ptr) {
408 htmp = &hp->vn_htable[VN_HTABLE_KEY(hent->vn_ptr, hp)];
409 while (*htmp != hent)
410 htmp = &(*htmp)->vn_h_next;
411 *htmp = hent->vn_h_next;
412 }
413
414 /* insert data into new free object */
415 hent->vn_ptr = ptr;
416 hent->vn_flag = vn.v_flag;
417
418 /* insert new object into hash table */
419 hent->vn_h_next = hp->vn_htable[hkey];
420 hp->vn_htable[hkey] = hent;
421 }
422
423 /* Remove from queue. hent is not first, vn_q_prev is not NULL */
424 q_next = hent->vn_q_next;
425 q_prev = hent->vn_q_prev;
426 if (q_next == NULL)
427 hp->vn_q_last = q_prev;
428 else
429 q_next->vn_q_prev = q_prev;
430 q_prev->vn_q_next = q_next;
431
432 /* Add to the front of queue */
433 hent->vn_q_prev = NULL;
434 hent->vn_q_next = q_first;
435 q_first->vn_q_prev = hent;
436 hp->vn_q_first = hent;
437
438 /* Set v_flag in vnode pointer from hent */
439 vp->v_flag = hent->vn_flag;
440
441 return (0);
442 }
443
444 /* Summary statistics of pages */
445 typedef struct memstat {
446 struct vnode *ms_kvp; /* Cached address of kernel vnode */
447 struct vnode *ms_unused_vp; /* Unused pages vnode pointer */
448 struct vnode *ms_zvp; /* Cached address of zio vnode */
449 uint64_t ms_kmem; /* Pages of kernel memory */
450 uint64_t ms_zfs_data; /* Pages of zfs data */
451 uint64_t ms_anon; /* Pages of anonymous memory */
452 uint64_t ms_vnode; /* Pages of named (vnode) memory */
453 uint64_t ms_exec; /* Pages of exec/library memory */
454 uint64_t ms_cachelist; /* Pages on the cachelist (free) */
455 uint64_t ms_bootpages; /* Pages on the bootpages list */
456 uint64_t ms_total; /* Pages on page hash */
457 vn_htable_t *ms_vn_htable; /* Pointer to hash table */
458 struct vnode ms_vn; /* vnode buffer */
459 } memstat_t;
460
461 #define MS_PP_ISKAS(pp, stats) \
462 ((pp)->p_vnode == (stats)->ms_kvp)
463
464 #define MS_PP_ISZFS_DATA(pp, stats) \
465 (((stats)->ms_zvp != NULL) && ((pp)->p_vnode == (stats)->ms_zvp))
466
467 /*
468 * Summarize pages by type and update stat information
469 */
470
471 /* ARGSUSED */
472 static int
473 memstat_callback(page_t *page, page_t *pp, memstat_t *stats)
474 {
475 struct vnode *vp = &stats->ms_vn;
476
477 if (PP_ISBOOTPAGES(pp))
478 stats->ms_bootpages++;
479 else if (pp->p_vnode == NULL || pp->p_vnode == stats->ms_unused_vp)
480 return (WALK_NEXT);
481 else if (MS_PP_ISKAS(pp, stats))
482 stats->ms_kmem++;
483 else if (MS_PP_ISZFS_DATA(pp, stats))
484 stats->ms_zfs_data++;
485 else if (PP_ISFREE(pp))
486 stats->ms_cachelist++;
487 else if (vn_get(stats->ms_vn_htable, vp, (uintptr_t)pp->p_vnode))
488 return (WALK_ERR);
489 else if (IS_SWAPFSVP(vp))
490 stats->ms_anon++;
491 else if ((vp->v_flag & VVMEXEC) != 0)
492 stats->ms_exec++;
493 else
494 stats->ms_vnode++;
495
496 stats->ms_total++;
497
498 return (WALK_NEXT);
499 }
500
501 /* ARGSUSED */
502 int
503 memstat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
504 {
505 pgcnt_t total_pages, physmem;
506 ulong_t freemem;
507 memstat_t stats;
508 GElf_Sym sym;
509 vn_htable_t ht;
510 struct vnode *kvps;
511 uintptr_t vn_size = 0;
512 #if defined(__i386) || defined(__amd64)
513 bln_stats_t bln_stats;
514 ssize_t bln_size;
515 #endif
516
517 bzero(&stats, sizeof (memstat_t));
518
519 /*
520 * -s size, is an internal option. It specifies the size of vn_htable.
521 * Hash table size is set in the following order:
522 * If user has specified the size that is larger than VN_LARGE: try it,
523 * but if malloc failed default to VN_SMALL. Otherwise try VN_LARGE, if
524 * failed to allocate default to VN_SMALL.
525 * For a better efficiency of hash table it is highly recommended to
526 * set size to a prime number.
527 */
528 if ((flags & DCMD_ADDRSPEC) || mdb_getopts(argc, argv,
529 's', MDB_OPT_UINTPTR, &vn_size, NULL) != argc)
530 return (DCMD_USAGE);
531
532 /* Initialize vnode hash list and queue */
533 vn_htable_init(&ht, vn_size);
534 stats.ms_vn_htable = &ht;
535
536 /* Total physical memory */
537 if (mdb_readvar(&total_pages, "total_pages") == -1) {
538 mdb_warn("unable to read total_pages");
539 return (DCMD_ERR);
540 }
541
542 /* Artificially limited memory */
543 if (mdb_readvar(&physmem, "physmem") == -1) {
544 mdb_warn("unable to read physmem");
545 return (DCMD_ERR);
546 }
547
548 /* read kernel vnode array pointer */
549 if (mdb_lookup_by_obj(MDB_OBJ_EXEC, "kvps",
550 (GElf_Sym *)&sym) == -1) {
551 mdb_warn("unable to read kvps");
552 return (DCMD_ERR);
553 }
554 kvps = (struct vnode *)(uintptr_t)sym.st_value;
555 stats.ms_kvp = &kvps[KV_KVP];
556
557 /*
558 * Read the zio vnode pointer.
559 */
560 stats.ms_zvp = &kvps[KV_ZVP];
561
562 /*
563 * If physmem != total_pages, then the administrator has limited the
564 * number of pages available in the system. Excluded pages are
565 * associated with the unused pages vnode. Read this vnode so the
566 * pages can be excluded in the page accounting.
567 */
568 if (mdb_lookup_by_obj(MDB_OBJ_EXEC, "unused_pages_vp",
569 (GElf_Sym *)&sym) == -1) {
570 mdb_warn("unable to read unused_pages_vp");
571 return (DCMD_ERR);
572 }
573 stats.ms_unused_vp = (struct vnode *)(uintptr_t)sym.st_value;
574
575 /* walk all pages, collect statistics */
576 if (mdb_walk("allpages", (mdb_walk_cb_t)memstat_callback,
577 &stats) == -1) {
578 mdb_warn("can't walk memseg");
579 return (DCMD_ERR);
580 }
581
582 #define MS_PCT_TOTAL(x) ((ulong_t)((((5 * total_pages) + ((x) * 1000ull))) / \
583 ((physmem) * 10)))
584
585 mdb_printf("Page Summary Pages MB"
586 " %%Tot\n");
587 mdb_printf("------------ ---------------- ----------------"
588 " ----\n");
589 mdb_printf("Kernel %16llu %16llu %3lu%%\n",
590 stats.ms_kmem,
591 (uint64_t)stats.ms_kmem * PAGESIZE / (1024 * 1024),
592 MS_PCT_TOTAL(stats.ms_kmem));
593
594 if (stats.ms_bootpages != 0) {
595 mdb_printf("Boot pages %16llu %16llu %3lu%%\n",
596 stats.ms_bootpages,
597 (uint64_t)stats.ms_bootpages * PAGESIZE / (1024 * 1024),
598 MS_PCT_TOTAL(stats.ms_bootpages));
599 }
600
601 if (stats.ms_zfs_data != 0) {
602 mdb_printf("ZFS File Data %16llu %16llu %3lu%%\n",
603 stats.ms_zfs_data,
604 (uint64_t)stats.ms_zfs_data * PAGESIZE / (1024 * 1024),
605 MS_PCT_TOTAL(stats.ms_zfs_data));
606 }
607
608 mdb_printf("Anon %16llu %16llu %3lu%%\n",
609 stats.ms_anon,
610 (uint64_t)stats.ms_anon * PAGESIZE / (1024 * 1024),
611 MS_PCT_TOTAL(stats.ms_anon));
612 mdb_printf("Exec and libs %16llu %16llu %3lu%%\n",
613 stats.ms_exec,
614 (uint64_t)stats.ms_exec * PAGESIZE / (1024 * 1024),
615 MS_PCT_TOTAL(stats.ms_exec));
616 mdb_printf("Page cache %16llu %16llu %3lu%%\n",
617 stats.ms_vnode,
618 (uint64_t)stats.ms_vnode * PAGESIZE / (1024 * 1024),
619 MS_PCT_TOTAL(stats.ms_vnode));
620 mdb_printf("Free (cachelist) %16llu %16llu %3lu%%\n",
621 stats.ms_cachelist,
622 (uint64_t)stats.ms_cachelist * PAGESIZE / (1024 * 1024),
623 MS_PCT_TOTAL(stats.ms_cachelist));
624
625 /*
626 * occasionally, we double count pages above. To avoid printing
627 * absurdly large values for freemem, we clamp it at zero.
628 */
629 if (physmem > stats.ms_total)
630 freemem = physmem - stats.ms_total;
631 else
632 freemem = 0;
633
634 #if defined(__i386) || defined(__amd64)
635 /* Are we running under Xen? If so, get balloon memory usage. */
636 if ((bln_size = mdb_readvar(&bln_stats, "bln_stats")) != -1) {
637 if (freemem > bln_stats.bln_hv_pages)
638 freemem -= bln_stats.bln_hv_pages;
639 else
640 freemem = 0;
641 }
642 #endif
643
644 mdb_printf("Free (freelist) %16lu %16llu %3lu%%\n", freemem,
645 (uint64_t)freemem * PAGESIZE / (1024 * 1024),
646 MS_PCT_TOTAL(freemem));
647
648 #if defined(__i386) || defined(__amd64)
649 if (bln_size != -1) {
650 mdb_printf("Balloon %16lu %16llu %3lu%%\n",
651 bln_stats.bln_hv_pages,
652 (uint64_t)bln_stats.bln_hv_pages * PAGESIZE / (1024 * 1024),
653 MS_PCT_TOTAL(bln_stats.bln_hv_pages));
654 }
655 #endif
656
657 mdb_printf("\nTotal %16lu %16lu\n",
658 physmem,
659 (uint64_t)physmem * PAGESIZE / (1024 * 1024));
660
661 if (physmem != total_pages) {
662 mdb_printf("Physical %16lu %16lu\n",
663 total_pages,
664 (uint64_t)total_pages * PAGESIZE / (1024 * 1024));
665 }
666
667 #undef MS_PCT_TOTAL
668
669 return (DCMD_OK);
670 }
671
672 void
673 pagelookup_help(void)
674 {
675 mdb_printf(
676 "Finds the page with name { %<b>vp%</b>, %<b>offset%</b> }.\n"
677 "\n"
678 "Can be invoked three different ways:\n\n"
679 " ::pagelookup -v %<b>vp%</b> -o %<b>offset%</b>\n"
680 " %<b>vp%</b>::pagelookup -o %<b>offset%</b>\n"
681 " %<b>offset%</b>::pagelookup -v %<b>vp%</b>\n"
682 "\n"
683 "The latter two forms are useful in pipelines.\n");
684 }
685
686 int
687 pagelookup(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
688 {
689 uintptr_t vp = -(uintptr_t)1;
690 uint64_t offset = -(uint64_t)1;
691
692 uintptr_t pageaddr;
693 int hasaddr = (flags & DCMD_ADDRSPEC);
694 int usedaddr = 0;
695
696 if (mdb_getopts(argc, argv,
697 'v', MDB_OPT_UINTPTR, &vp,
698 'o', MDB_OPT_UINT64, &offset,
699 0) != argc) {
700 return (DCMD_USAGE);
701 }
702
703 if (vp == -(uintptr_t)1) {
704 if (offset == -(uint64_t)1) {
705 mdb_warn(
706 "pagelookup: at least one of -v vp or -o offset "
707 "required.\n");
708 return (DCMD_USAGE);
709 }
710 vp = addr;
711 usedaddr = 1;
712 } else if (offset == -(uint64_t)1) {
713 offset = mdb_get_dot();
714 usedaddr = 1;
715 }
716 if (usedaddr && !hasaddr) {
717 mdb_warn("pagelookup: address required\n");
718 return (DCMD_USAGE);
719 }
720 if (!usedaddr && hasaddr) {
721 mdb_warn(
722 "pagelookup: address specified when both -v and -o were "
723 "passed");
724 return (DCMD_USAGE);
725 }
726
727 pageaddr = mdb_page_lookup(vp, offset);
728 if (pageaddr == 0) {
729 mdb_warn("pagelookup: no page for {vp = %p, offset = %llp)\n",
730 vp, offset);
731 return (DCMD_OK);
732 }
733 mdb_printf("%#lr\n", pageaddr); /* this is PIPE_OUT friendly */
734 return (DCMD_OK);
735 }
736
737 /*ARGSUSED*/
738 int
739 page_num2pp(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
740 {
741 uintptr_t pp;
742
743 if (argc != 0 || !(flags & DCMD_ADDRSPEC)) {
744 return (DCMD_USAGE);
745 }
746
747 pp = mdb_pfn2page((pfn_t)addr);
748 if (pp == 0) {
749 return (DCMD_ERR);
750 }
751
752 if (flags & DCMD_PIPE_OUT) {
753 mdb_printf("%#lr\n", pp);
754 } else {
755 mdb_printf("%lx has page_t at %#lx\n", (pfn_t)addr, pp);
756 }
757
758 return (DCMD_OK);
759 }
760
761 int
762 page(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
763 {
764 page_t p;
765
766 if (!(flags & DCMD_ADDRSPEC)) {
767 if (mdb_walk_dcmd("page", "page", argc, argv) == -1) {
768 mdb_warn("can't walk pages");
769 return (DCMD_ERR);
770 }
771 return (DCMD_OK);
772 }
773
774 if (DCMD_HDRSPEC(flags)) {
775 mdb_printf("%<u>%?s %?s %16s %8s %3s %3s %2s %2s %2s%</u>\n",
776 "PAGE", "VNODE", "OFFSET", "SELOCK",
777 "LCT", "COW", "IO", "FS", "ST");
778 }
779
780 if (mdb_vread(&p, sizeof (page_t), addr) == -1) {
781 mdb_warn("can't read page_t at %#lx", addr);
782 return (DCMD_ERR);
783 }
784
785 mdb_printf("%0?lx %?p %16llx %8x %3d %3d %2x %2x %2x\n",
786 addr, p.p_vnode, p.p_offset, p.p_selock, p.p_lckcnt, p.p_cowcnt,
787 p.p_iolock_state, p.p_fsdata, p.p_state);
788
789 return (DCMD_OK);
790 }
791
792 int
793 swap_walk_init(mdb_walk_state_t *wsp)
794 {
795 void *ptr;
796
797 if ((mdb_readvar(&ptr, "swapinfo") == -1) || ptr == NULL) {
798 mdb_warn("swapinfo not found or invalid");
799 return (WALK_ERR);
800 }
801
802 wsp->walk_addr = (uintptr_t)ptr;
803
804 return (WALK_NEXT);
805 }
806
807 int
808 swap_walk_step(mdb_walk_state_t *wsp)
809 {
810 uintptr_t sip;
811 struct swapinfo si;
812
813 sip = wsp->walk_addr;
814
815 if (sip == NULL)
816 return (WALK_DONE);
817
818 if (mdb_vread(&si, sizeof (struct swapinfo), sip) == -1) {
819 mdb_warn("unable to read swapinfo at %#lx", sip);
820 return (WALK_ERR);
821 }
822
823 wsp->walk_addr = (uintptr_t)si.si_next;
824
825 return (wsp->walk_callback(sip, &si, wsp->walk_cbdata));
826 }
827
828 int
829 swapinfof(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
830 {
831 struct swapinfo si;
832 char *name;
833
834 if (!(flags & DCMD_ADDRSPEC)) {
835 if (mdb_walk_dcmd("swapinfo", "swapinfo", argc, argv) == -1) {
836 mdb_warn("can't walk swapinfo");
837 return (DCMD_ERR);
838 }
839 return (DCMD_OK);
840 }
841
842 if (DCMD_HDRSPEC(flags)) {
843 mdb_printf("%<u>%?s %?s %9s %9s %s%</u>\n",
844 "ADDR", "VNODE", "PAGES", "FREE", "NAME");
845 }
846
847 if (mdb_vread(&si, sizeof (struct swapinfo), addr) == -1) {
848 mdb_warn("can't read swapinfo at %#lx", addr);
849 return (DCMD_ERR);
850 }
851
852 name = mdb_alloc(si.si_pnamelen, UM_SLEEP | UM_GC);
853 if (mdb_vread(name, si.si_pnamelen, (uintptr_t)si.si_pname) == -1)
854 name = "*error*";
855
856 mdb_printf("%0?lx %?p %9d %9d %s\n",
857 addr, si.si_vp, si.si_npgs, si.si_nfpgs, name);
858
859 return (DCMD_OK);
860 }
861
862 int
863 memlist_walk_step(mdb_walk_state_t *wsp)
864 {
865 uintptr_t mlp;
866 struct memlist ml;
867
868 mlp = wsp->walk_addr;
869
870 if (mlp == NULL)
871 return (WALK_DONE);
872
873 if (mdb_vread(&ml, sizeof (struct memlist), mlp) == -1) {
874 mdb_warn("unable to read memlist at %#lx", mlp);
875 return (WALK_ERR);
876 }
877
878 wsp->walk_addr = (uintptr_t)ml.ml_next;
879
880 return (wsp->walk_callback(mlp, &ml, wsp->walk_cbdata));
881 }
882
883 int
884 memlist(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
885 {
886 struct memlist ml;
887
888 if (!(flags & DCMD_ADDRSPEC)) {
889 uintptr_t ptr;
890 uint_t list = 0;
891 int i;
892 static const char *lists[] = {
893 "phys_install",
894 "phys_avail",
895 "virt_avail"
896 };
897
898 if (mdb_getopts(argc, argv,
899 'i', MDB_OPT_SETBITS, (1 << 0), &list,
900 'a', MDB_OPT_SETBITS, (1 << 1), &list,
901 'v', MDB_OPT_SETBITS, (1 << 2), &list, NULL) != argc)
902 return (DCMD_USAGE);
903
904 if (!list)
905 list = 1;
906
907 for (i = 0; list; i++, list >>= 1) {
908 if (!(list & 1))
909 continue;
910 if ((mdb_readvar(&ptr, lists[i]) == -1) ||
911 (ptr == NULL)) {
912 mdb_warn("%s not found or invalid", lists[i]);
913 return (DCMD_ERR);
914 }
915
916 mdb_printf("%s:\n", lists[i]);
917 if (mdb_pwalk_dcmd("memlist", "memlist", 0, NULL,
918 ptr) == -1) {
919 mdb_warn("can't walk memlist");
920 return (DCMD_ERR);
921 }
922 }
923 return (DCMD_OK);
924 }
925
926 if (DCMD_HDRSPEC(flags))
927 mdb_printf("%<u>%?s %16s %16s%</u>\n", "ADDR", "BASE", "SIZE");
928
929 if (mdb_vread(&ml, sizeof (struct memlist), addr) == -1) {
930 mdb_warn("can't read memlist at %#lx", addr);
931 return (DCMD_ERR);
932 }
933
934 mdb_printf("%0?lx %16llx %16llx\n", addr, ml.ml_address, ml.ml_size);
935
936 return (DCMD_OK);
937 }
938
939 int
940 seg_walk_init(mdb_walk_state_t *wsp)
941 {
942 if (wsp->walk_addr == NULL) {
943 mdb_warn("seg walk must begin at struct as *\n");
944 return (WALK_ERR);
945 }
946
947 /*
948 * this is really just a wrapper to AVL tree walk
949 */
950 wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree;
951 return (avl_walk_init(wsp));
952 }
953
954 /*ARGSUSED*/
955 int
956 seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
957 {
958 struct seg s;
959
960 if (argc != 0)
961 return (DCMD_USAGE);
962
963 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) {
964 mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n",
965 "SEG", "BASE", "SIZE", "DATA", "OPS");
966 }
967
968 if (mdb_vread(&s, sizeof (s), addr) == -1) {
969 mdb_warn("failed to read seg at %p", addr);
970 return (DCMD_ERR);
971 }
972
973 mdb_printf("%?p %?p %?lx %?p %a\n",
974 addr, s.s_base, s.s_size, s.s_data, s.s_ops);
975
976 return (DCMD_OK);
977 }
978
979 typedef struct pmap_walk_types {
980 uintptr_t pwt_segvn;
981 uintptr_t pwt_seghole;
982 } pmap_walk_types_t;
983
984 /*ARGSUSED*/
985 static int
986 pmap_walk_count_pages(uintptr_t addr, const void *data, void *out)
987 {
988 pgcnt_t *nres = out;
989
990 (*nres)++;
991
992 return (WALK_NEXT);
993 }
994
995 static int
996 pmap_walk_seg(uintptr_t addr, const struct seg *seg,
997 const pmap_walk_types_t *types)
998 {
999 const uintptr_t ops = (uintptr_t)seg->s_ops;
1000
1001 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024);
1002
1003 if (ops == types->pwt_segvn && seg->s_data != NULL) {
1004 struct segvn_data svn;
1005 pgcnt_t nres = 0;
1006
1007 svn.vp = NULL;
1008 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data);
1009
1010 /*
1011 * Use the segvn_pages walker to find all of the in-core pages
1012 * for this mapping.
1013 */
1014 if (mdb_pwalk("segvn_pages", pmap_walk_count_pages, &nres,
1015 (uintptr_t)seg->s_data) == -1) {
1016 mdb_warn("failed to walk segvn_pages (s_data=%p)",
1017 seg->s_data);
1018 }
1019 mdb_printf(" %7ldk", (nres * PAGESIZE) / 1024);
1020
1021 if (svn.vp != NULL) {
1022 char buf[29];
1023
1024 mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf));
1025 mdb_printf(" %s", buf);
1026 } else {
1027 mdb_printf(" [ anon ]");
1028 }
1029 } else if (ops == types->pwt_seghole && seg->s_data != NULL) {
1030 seghole_data_t shd;
1031 char name[16];
1032
1033 (void) mdb_vread(&shd, sizeof (shd), (uintptr_t)seg->s_data);
1034 if (shd.shd_name == NULL || mdb_readstr(name, sizeof (name),
1035 (uintptr_t)shd.shd_name) == 0) {
1036 name[0] = '\0';
1037 }
1038
1039 mdb_printf(" %8s [ hole%s%s ]", "-",
1040 name[0] == '0' ? "" : ":", name);
1041 } else {
1042 mdb_printf(" %8s [ &%a ]", "?", seg->s_ops);
1043 }
1044
1045 mdb_printf("\n");
1046 return (WALK_NEXT);
1047 }
1048
1049 static int
1050 pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg,
1051 const pmap_walk_types_t *types)
1052 {
1053 const uintptr_t ops = (uintptr_t)seg->s_ops;
1054
1055 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024);
1056
1057 if (ops == types->pwt_segvn && seg->s_data != NULL) {
1058 struct segvn_data svn;
1059
1060 svn.vp = NULL;
1061 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data);
1062
1063 if (svn.vp != NULL) {
1064 mdb_printf(" %0?p", svn.vp);
1065 } else {
1066 mdb_printf(" [ anon ]");
1067 }
1068 } else {
1069 mdb_printf(" [ &%a ]", seg->s_ops);
1070 }
1071
1072 mdb_printf("\n");
1073 return (WALK_NEXT);
1074 }
1075
1076 /*ARGSUSED*/
1077 int
1078 pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1079 {
1080 proc_t proc;
1081 uint_t quick = FALSE;
1082 mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg;
1083 pmap_walk_types_t wtypes = { 0 };
1084
1085 GElf_Sym sym;
1086
1087 if (!(flags & DCMD_ADDRSPEC))
1088 return (DCMD_USAGE);
1089
1090 if (mdb_getopts(argc, argv,
1091 'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc)
1092 return (DCMD_USAGE);
1093
1094 if (mdb_vread(&proc, sizeof (proc), addr) == -1) {
1095 mdb_warn("failed to read proc at %p", addr);
1096 return (DCMD_ERR);
1097 }
1098
1099 if (mdb_lookup_by_name("segvn_ops", &sym) == 0)
1100 wtypes.pwt_segvn = (uintptr_t)sym.st_value;
1101 if (mdb_lookup_by_name("seghole_ops", &sym) == 0)
1102 wtypes.pwt_seghole = (uintptr_t)sym.st_value;
1103
1104 mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE");
1105
1106 if (quick) {
1107 mdb_printf("VNODE\n");
1108 cb = (mdb_walk_cb_t)pmap_walk_seg_quick;
1109 } else {
1110 mdb_printf("%8s %s\n", "RES", "PATH");
1111 }
1112
1113 if (mdb_pwalk("seg", cb, (void *)&wtypes, (uintptr_t)proc.p_as) == -1) {
1114 mdb_warn("failed to walk segments of as %p", proc.p_as);
1115 return (DCMD_ERR);
1116 }
1117
1118 return (DCMD_OK);
1119 }
1120
1121 typedef struct anon_walk_data {
1122 uintptr_t *aw_levone;
1123 uintptr_t *aw_levtwo;
1124 size_t aw_minslot;
1125 size_t aw_maxslot;
1126 pgcnt_t aw_nlevone;
1127 pgcnt_t aw_levone_ndx;
1128 size_t aw_levtwo_ndx;
1129 struct anon_map *aw_ampp;
1130 struct anon_map aw_amp;
1131 struct anon_hdr aw_ahp;
1132 int aw_all; /* report all anon pointers, even NULLs */
1133 } anon_walk_data_t;
1134
1135 int
1136 anon_walk_init_common(mdb_walk_state_t *wsp, ulong_t minslot, ulong_t maxslot)
1137 {
1138 anon_walk_data_t *aw;
1139
1140 if (wsp->walk_addr == NULL) {
1141 mdb_warn("anon walk doesn't support global walks\n");
1142 return (WALK_ERR);
1143 }
1144
1145 aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP);
1146 aw->aw_ampp = (struct anon_map *)wsp->walk_addr;
1147
1148 if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) {
1149 mdb_warn("failed to read anon map at %p", wsp->walk_addr);
1150 mdb_free(aw, sizeof (anon_walk_data_t));
1151 return (WALK_ERR);
1152 }
1153
1154 if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp),
1155 (uintptr_t)(aw->aw_amp.ahp)) == -1) {
1156 mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp);
1157 mdb_free(aw, sizeof (anon_walk_data_t));
1158 return (WALK_ERR);
1159 }
1160
1161 /* update min and maxslot with the given constraints */
1162 maxslot = MIN(maxslot, aw->aw_ahp.size);
1163 minslot = MIN(minslot, maxslot);
1164
1165 if (aw->aw_ahp.size <= ANON_CHUNK_SIZE ||
1166 (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) {
1167 aw->aw_nlevone = maxslot;
1168 aw->aw_levone_ndx = minslot;
1169 aw->aw_levtwo = NULL;
1170 } else {
1171 aw->aw_nlevone =
1172 (maxslot + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
1173 aw->aw_levone_ndx = 0;
1174 aw->aw_levtwo =
1175 mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP);
1176 }
1177
1178 aw->aw_levone =
1179 mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP);
1180 aw->aw_all = (wsp->walk_arg == ANON_WALK_ALL);
1181
1182 mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t),
1183 (uintptr_t)aw->aw_ahp.array_chunk);
1184
1185 aw->aw_levtwo_ndx = 0;
1186 aw->aw_minslot = minslot;
1187 aw->aw_maxslot = maxslot;
1188
1189 out:
1190 wsp->walk_data = aw;
1191 return (0);
1192 }
1193
1194 int
1195 anon_walk_step(mdb_walk_state_t *wsp)
1196 {
1197 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data;
1198 struct anon anon;
1199 uintptr_t anonptr;
1200 ulong_t slot;
1201
1202 /*
1203 * Once we've walked through level one, we're done.
1204 */
1205 if (aw->aw_levone_ndx >= aw->aw_nlevone) {
1206 return (WALK_DONE);
1207 }
1208
1209 if (aw->aw_levtwo == NULL) {
1210 anonptr = aw->aw_levone[aw->aw_levone_ndx];
1211 aw->aw_levone_ndx++;
1212 } else {
1213 if (aw->aw_levtwo_ndx == 0) {
1214 uintptr_t levtwoptr;
1215
1216 /* The first time through, skip to our first index. */
1217 if (aw->aw_levone_ndx == 0) {
1218 aw->aw_levone_ndx =
1219 aw->aw_minslot / ANON_CHUNK_SIZE;
1220 aw->aw_levtwo_ndx =
1221 aw->aw_minslot % ANON_CHUNK_SIZE;
1222 }
1223
1224 levtwoptr = (uintptr_t)aw->aw_levone[aw->aw_levone_ndx];
1225
1226 if (levtwoptr == NULL) {
1227 if (!aw->aw_all) {
1228 aw->aw_levtwo_ndx = 0;
1229 aw->aw_levone_ndx++;
1230 return (WALK_NEXT);
1231 }
1232 bzero(aw->aw_levtwo,
1233 ANON_CHUNK_SIZE * sizeof (uintptr_t));
1234
1235 } else if (mdb_vread(aw->aw_levtwo,
1236 ANON_CHUNK_SIZE * sizeof (uintptr_t), levtwoptr) ==
1237 -1) {
1238 mdb_warn("unable to read anon_map %p's "
1239 "second-level map %d at %p",
1240 aw->aw_ampp, aw->aw_levone_ndx,
1241 levtwoptr);
1242 return (WALK_ERR);
1243 }
1244 }
1245 slot = aw->aw_levone_ndx * ANON_CHUNK_SIZE + aw->aw_levtwo_ndx;
1246 anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx];
1247
1248 /* update the indices for next time */
1249 aw->aw_levtwo_ndx++;
1250 if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) {
1251 aw->aw_levtwo_ndx = 0;
1252 aw->aw_levone_ndx++;
1253 }
1254
1255 /* make sure the slot # is in the requested range */
1256 if (slot >= aw->aw_maxslot) {
1257 return (WALK_DONE);
1258 }
1259 }
1260
1261 if (anonptr != NULL) {
1262 mdb_vread(&anon, sizeof (anon), anonptr);
1263 return (wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata));
1264 }
1265 if (aw->aw_all) {
1266 return (wsp->walk_callback(NULL, NULL, wsp->walk_cbdata));
1267 }
1268 return (WALK_NEXT);
1269 }
1270
1271 void
1272 anon_walk_fini(mdb_walk_state_t *wsp)
1273 {
1274 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data;
1275
1276 if (aw->aw_levtwo != NULL)
1277 mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t));
1278
1279 mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t));
1280 mdb_free(aw, sizeof (anon_walk_data_t));
1281 }
1282
1283 int
1284 anon_walk_init(mdb_walk_state_t *wsp)
1285 {
1286 return (anon_walk_init_common(wsp, 0, ULONG_MAX));
1287 }
1288
1289 int
1290 segvn_anon_walk_init(mdb_walk_state_t *wsp)
1291 {
1292 const uintptr_t svd_addr = wsp->walk_addr;
1293 uintptr_t amp_addr;
1294 uintptr_t seg_addr;
1295 struct segvn_data svd;
1296 struct anon_map amp;
1297 struct seg seg;
1298
1299 if (svd_addr == NULL) {
1300 mdb_warn("segvn_anon walk doesn't support global walks\n");
1301 return (WALK_ERR);
1302 }
1303 if (mdb_vread(&svd, sizeof (svd), svd_addr) == -1) {
1304 mdb_warn("segvn_anon walk: unable to read segvn_data at %p",
1305 svd_addr);
1306 return (WALK_ERR);
1307 }
1308 if (svd.amp == NULL) {
1309 mdb_warn("segvn_anon walk: segvn_data at %p has no anon map\n",
1310 svd_addr);
1311 return (WALK_ERR);
1312 }
1313 amp_addr = (uintptr_t)svd.amp;
1314 if (mdb_vread(&, sizeof (amp), amp_addr) == -1) {
1315 mdb_warn("segvn_anon walk: unable to read amp %p for "
1316 "segvn_data %p", amp_addr, svd_addr);
1317 return (WALK_ERR);
1318 }
1319 seg_addr = (uintptr_t)svd.seg;
1320 if (mdb_vread(&seg, sizeof (seg), seg_addr) == -1) {
1321 mdb_warn("segvn_anon walk: unable to read seg %p for "
1322 "segvn_data %p", seg_addr, svd_addr);
1323 return (WALK_ERR);
1324 }
1325 if ((seg.s_size + (svd.anon_index << PAGESHIFT)) > amp.size) {
1326 mdb_warn("anon map %p is too small for segment %p\n",
1327 amp_addr, seg_addr);
1328 return (WALK_ERR);
1329 }
1330
1331 wsp->walk_addr = amp_addr;
1332 return (anon_walk_init_common(wsp,
1333 svd.anon_index, svd.anon_index + (seg.s_size >> PAGESHIFT)));
1334 }
1335
1336
1337 typedef struct {
1338 u_offset_t svs_offset;
1339 uintptr_t svs_page;
1340 } segvn_sparse_t;
1341 #define SEGVN_MAX_SPARSE ((128 * 1024) / sizeof (segvn_sparse_t))
1342
1343 typedef struct {
1344 uintptr_t svw_svdp;
1345 struct segvn_data svw_svd;
1346 struct seg svw_seg;
1347 size_t svw_walkoff;
1348 ulong_t svw_anonskip;
1349 segvn_sparse_t *svw_sparse;
1350 size_t svw_sparse_idx;
1351 size_t svw_sparse_count;
1352 size_t svw_sparse_size;
1353 uint8_t svw_sparse_overflow;
1354 uint8_t svw_all;
1355 } segvn_walk_data_t;
1356
1357 static int
1358 segvn_sparse_fill(uintptr_t addr, const void *pp_arg, void *arg)
1359 {
1360 segvn_walk_data_t *const svw = arg;
1361 const page_t *const pp = pp_arg;
1362 const u_offset_t offset = pp->p_offset;
1363 segvn_sparse_t *const cur =
1364 &svw->svw_sparse[svw->svw_sparse_count];
1365
1366 /* See if the page is of interest */
1367 if ((u_offset_t)(offset - svw->svw_svd.offset) >= svw->svw_seg.s_size) {
1368 return (WALK_NEXT);
1369 }
1370 /* See if we have space for the new entry, then add it. */
1371 if (svw->svw_sparse_count >= svw->svw_sparse_size) {
1372 svw->svw_sparse_overflow = 1;
1373 return (WALK_DONE);
1374 }
1375 svw->svw_sparse_count++;
1376 cur->svs_offset = offset;
1377 cur->svs_page = addr;
1378 return (WALK_NEXT);
1379 }
1380
1381 static int
1382 segvn_sparse_cmp(const void *lp, const void *rp)
1383 {
1384 const segvn_sparse_t *const l = lp;
1385 const segvn_sparse_t *const r = rp;
1386
1387 if (l->svs_offset < r->svs_offset) {
1388 return (-1);
1389 }
1390 if (l->svs_offset > r->svs_offset) {
1391 return (1);
1392 }
1393 return (0);
1394 }
1395
1396 /*
1397 * Builds on the "anon_all" walker to walk all resident pages in a segvn_data
1398 * structure. For segvn_datas without an anon structure, it just looks up
1399 * pages in the vnode. For segvn_datas with an anon structure, NULL slots
1400 * pass through to the vnode, and non-null slots are checked for residency.
1401 */
1402 int
1403 segvn_pages_walk_init(mdb_walk_state_t *wsp)
1404 {
1405 segvn_walk_data_t *svw;
1406 struct segvn_data *svd;
1407
1408 if (wsp->walk_addr == NULL) {
1409 mdb_warn("segvn walk doesn't support global walks\n");
1410 return (WALK_ERR);
1411 }
1412
1413 svw = mdb_zalloc(sizeof (*svw), UM_SLEEP);
1414 svw->svw_svdp = wsp->walk_addr;
1415 svw->svw_anonskip = 0;
1416 svw->svw_sparse_idx = 0;
1417 svw->svw_walkoff = 0;
1418 svw->svw_all = (wsp->walk_arg == SEGVN_PAGES_ALL);
1419
1420 if (mdb_vread(&svw->svw_svd, sizeof (svw->svw_svd), wsp->walk_addr) ==
1421 -1) {
1422 mdb_warn("failed to read segvn_data at %p", wsp->walk_addr);
1423 mdb_free(svw, sizeof (*svw));
1424 return (WALK_ERR);
1425 }
1426
1427 svd = &svw->svw_svd;
1428 if (mdb_vread(&svw->svw_seg, sizeof (svw->svw_seg),
1429 (uintptr_t)svd->seg) == -1) {
1430 mdb_warn("failed to read seg at %p (from %p)",
1431 svd->seg, &((struct segvn_data *)(wsp->walk_addr))->seg);
1432 mdb_free(svw, sizeof (*svw));
1433 return (WALK_ERR);
1434 }
1435
1436 if (svd->amp == NULL && svd->vp == NULL) {
1437 /* make the walk terminate immediately; no pages */
1438 svw->svw_walkoff = svw->svw_seg.s_size;
1439
1440 } else if (svd->amp == NULL &&
1441 (svw->svw_seg.s_size >> PAGESHIFT) >= SEGVN_MAX_SPARSE) {
1442 /*
1443 * If we don't have an anon pointer, and the segment is large,
1444 * we try to load the in-memory pages into a fixed-size array,
1445 * which is then sorted and reported directly. This is much
1446 * faster than doing a mdb_page_lookup() for each possible
1447 * offset.
1448 *
1449 * If the allocation fails, or there are too many pages
1450 * in-core, we fall back to looking up the pages individually.
1451 */
1452 svw->svw_sparse = mdb_alloc(
1453 SEGVN_MAX_SPARSE * sizeof (*svw->svw_sparse), UM_NOSLEEP);
1454 if (svw->svw_sparse != NULL) {
1455 svw->svw_sparse_size = SEGVN_MAX_SPARSE;
1456
1457 if (mdb_pwalk("page", segvn_sparse_fill, svw,
1458 (uintptr_t)svd->vp) == -1 ||
1459 svw->svw_sparse_overflow) {
1460 mdb_free(svw->svw_sparse, SEGVN_MAX_SPARSE *
1461 sizeof (*svw->svw_sparse));
1462 svw->svw_sparse = NULL;
1463 } else {
1464 qsort(svw->svw_sparse, svw->svw_sparse_count,
1465 sizeof (*svw->svw_sparse),
1466 segvn_sparse_cmp);
1467 }
1468 }
1469
1470 } else if (svd->amp != NULL) {
1471 const char *const layer = (!svw->svw_all && svd->vp == NULL) ?
1472 "segvn_anon" : "segvn_anon_all";
1473 /*
1474 * If we're not printing all offsets, and the segvn_data has
1475 * no backing VP, we can use the "segvn_anon" walker, which
1476 * efficiently skips NULL slots.
1477 *
1478 * Otherwise, we layer over the "segvn_anon_all" walker
1479 * (which reports all anon slots, even NULL ones), so that
1480 * segvn_pages_walk_step() knows the precise offset for each
1481 * element. It uses that offset information to look up the
1482 * backing pages for NULL anon slots.
1483 */
1484 if (mdb_layered_walk(layer, wsp) == -1) {
1485 mdb_warn("segvn_pages: failed to layer \"%s\" "
1486 "for segvn_data %p", layer, svw->svw_svdp);
1487 mdb_free(svw, sizeof (*svw));
1488 return (WALK_ERR);
1489 }
1490 }
1491
1492 wsp->walk_data = svw;
1493 return (WALK_NEXT);
1494 }
1495
1496 int
1497 segvn_pages_walk_step(mdb_walk_state_t *wsp)
1498 {
1499 segvn_walk_data_t *const svw = wsp->walk_data;
1500 struct seg *const seg = &svw->svw_seg;
1501 struct segvn_data *const svd = &svw->svw_svd;
1502 uintptr_t pp;
1503 page_t page;
1504
1505 /* If we've walked off the end of the segment, we're done. */
1506 if (svw->svw_walkoff >= seg->s_size) {
1507 return (WALK_DONE);
1508 }
1509
1510 /*
1511 * If we've got a sparse page array, just send it directly.
1512 */
1513 if (svw->svw_sparse != NULL) {
1514 u_offset_t off;
1515
1516 if (svw->svw_sparse_idx >= svw->svw_sparse_count) {
1517 pp = NULL;
1518 if (!svw->svw_all) {
1519 return (WALK_DONE);
1520 }
1521 } else {
1522 segvn_sparse_t *const svs =
1523 &svw->svw_sparse[svw->svw_sparse_idx];
1524 off = svs->svs_offset - svd->offset;
1525 if (svw->svw_all && svw->svw_walkoff != off) {
1526 pp = NULL;
1527 } else {
1528 pp = svs->svs_page;
1529 svw->svw_sparse_idx++;
1530 }
1531 }
1532
1533 } else if (svd->amp == NULL || wsp->walk_addr == NULL) {
1534 /*
1535 * If there's no anon, or the anon slot is NULL, look up
1536 * <vp, offset>.
1537 */
1538 if (svd->vp != NULL) {
1539 pp = mdb_page_lookup((uintptr_t)svd->vp,
1540 svd->offset + svw->svw_walkoff);
1541 } else {
1542 pp = NULL;
1543 }
1544
1545 } else {
1546 const struct anon *const anon = wsp->walk_layer;
1547
1548 /*
1549 * We have a "struct anon"; if it's not swapped out,
1550 * look up the page.
1551 */
1552 if (anon->an_vp != NULL || anon->an_off != 0) {
1553 pp = mdb_page_lookup((uintptr_t)anon->an_vp,
1554 anon->an_off);
1555 if (pp == 0 && mdb_get_state() != MDB_STATE_RUNNING) {
1556 mdb_warn("walk segvn_pages: segvn_data %p "
1557 "offset %ld, anon page <%p, %llx> not "
1558 "found.\n", svw->svw_svdp, svw->svw_walkoff,
1559 anon->an_vp, anon->an_off);
1560 }
1561 } else {
1562 if (anon->an_pvp == NULL) {
1563 mdb_warn("walk segvn_pages: useless struct "
1564 "anon at %p\n", wsp->walk_addr);
1565 }
1566 pp = NULL; /* nothing at this offset */
1567 }
1568 }
1569
1570 svw->svw_walkoff += PAGESIZE; /* Update for the next call */
1571 if (pp != NULL) {
1572 if (mdb_vread(&page, sizeof (page_t), pp) == -1) {
1573 mdb_warn("unable to read page_t at %#lx", pp);
1574 return (WALK_ERR);
1575 }
1576 return (wsp->walk_callback(pp, &page, wsp->walk_cbdata));
1577 }
1578 if (svw->svw_all) {
1579 return (wsp->walk_callback(NULL, NULL, wsp->walk_cbdata));
1580 }
1581 return (WALK_NEXT);
1582 }
1583
1584 void
1585 segvn_pages_walk_fini(mdb_walk_state_t *wsp)
1586 {
1587 segvn_walk_data_t *const svw = wsp->walk_data;
1588
1589 if (svw->svw_sparse != NULL) {
1590 mdb_free(svw->svw_sparse, SEGVN_MAX_SPARSE *
1591 sizeof (*svw->svw_sparse));
1592 }
1593 mdb_free(svw, sizeof (*svw));
1594 }
1595
1596 /*
1597 * Grumble, grumble.
1598 */
1599 #define SMAP_HASHFUNC(vp, off) \
1600 ((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \
1601 ((off) >> MAXBSHIFT)) & smd_hashmsk)
1602
1603 int
1604 vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1605 {
1606 long smd_hashmsk;
1607 int hash;
1608 uintptr_t offset = 0;
1609 struct smap smp;
1610 uintptr_t saddr, kaddr;
1611 uintptr_t smd_hash, smd_smap;
1612 struct seg seg;
1613
1614 if (!(flags & DCMD_ADDRSPEC))
1615 return (DCMD_USAGE);
1616
1617 if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) {
1618 mdb_warn("failed to read smd_hashmsk");
1619 return (DCMD_ERR);
1620 }
1621
1622 if (mdb_readvar(&smd_hash, "smd_hash") == -1) {
1623 mdb_warn("failed to read smd_hash");
1624 return (DCMD_ERR);
1625 }
1626
1627 if (mdb_readvar(&smd_smap, "smd_smap") == -1) {
1628 mdb_warn("failed to read smd_hash");
1629 return (DCMD_ERR);
1630 }
1631
1632 if (mdb_readvar(&kaddr, "segkmap") == -1) {
1633 mdb_warn("failed to read segkmap");
1634 return (DCMD_ERR);
1635 }
1636
1637 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) {
1638 mdb_warn("failed to read segkmap at %p", kaddr);
1639 return (DCMD_ERR);
1640 }
1641
1642 if (argc != 0) {
1643 const mdb_arg_t *arg = &argv[0];
1644
1645 if (arg->a_type == MDB_TYPE_IMMEDIATE)
1646 offset = arg->a_un.a_val;
1647 else
1648 offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str);
1649 }
1650
1651 hash = SMAP_HASHFUNC(addr, offset);
1652
1653 if (mdb_vread(&saddr, sizeof (saddr),
1654 smd_hash + hash * sizeof (uintptr_t)) == -1) {
1655 mdb_warn("couldn't read smap at %p",
1656 smd_hash + hash * sizeof (uintptr_t));
1657 return (DCMD_ERR);
1658 }
1659
1660 do {
1661 if (mdb_vread(&smp, sizeof (smp), saddr) == -1) {
1662 mdb_warn("couldn't read smap at %p", saddr);
1663 return (DCMD_ERR);
1664 }
1665
1666 if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) {
1667 mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n",
1668 addr, offset, saddr, ((saddr - smd_smap) /
1669 sizeof (smp)) * MAXBSIZE + seg.s_base);
1670 return (DCMD_OK);
1671 }
1672
1673 saddr = (uintptr_t)smp.sm_hash;
1674 } while (saddr != NULL);
1675
1676 mdb_printf("no smap for vnode %p, offs %p\n", addr, offset);
1677 return (DCMD_OK);
1678 }
1679
1680 /*ARGSUSED*/
1681 int
1682 addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1683 {
1684 uintptr_t kaddr;
1685 struct seg seg;
1686 struct segmap_data sd;
1687
1688 if (!(flags & DCMD_ADDRSPEC))
1689 return (DCMD_USAGE);
1690
1691 if (mdb_readvar(&kaddr, "segkmap") == -1) {
1692 mdb_warn("failed to read segkmap");
1693 return (DCMD_ERR);
1694 }
1695
1696 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) {
1697 mdb_warn("failed to read segkmap at %p", kaddr);
1698 return (DCMD_ERR);
1699 }
1700
1701 if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) {
1702 mdb_warn("failed to read segmap_data at %p", seg.s_data);
1703 return (DCMD_ERR);
1704 }
1705
1706 mdb_printf("%p is smap %p\n", addr,
1707 ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) *
1708 sizeof (struct smap) + (uintptr_t)sd.smd_sm);
1709
1710 return (DCMD_OK);
1711 }