1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 /*
27 * Copyright 2012 Garrett D'Amore <garrett@damore.org>. All rights reserved.
28 * Copyright 2016 Joyent, Inc.
29 * Copyright (c) 2016 by Delphix. All rights reserved.
30 * Copyright 2018 Nexenta Systems, Inc.
31 */
32
33 #ifndef _SYS_DDI_IMPLDEFS_H
34 #define _SYS_DDI_IMPLDEFS_H
35
36 #include <sys/types.h>
37 #include <sys/param.h>
38 #include <sys/t_lock.h>
39 #include <sys/ddipropdefs.h>
40 #include <sys/devops.h>
41 #include <sys/autoconf.h>
42 #include <sys/mutex.h>
43 #include <vm/page.h>
44 #include <sys/dacf_impl.h>
45 #include <sys/ndifm.h>
46 #include <sys/epm.h>
47 #include <sys/ddidmareq.h>
48 #include <sys/ddi_intr.h>
49 #include <sys/ddi_hp.h>
50 #include <sys/ddi_hp_impl.h>
51 #include <sys/ddi_isa.h>
52 #include <sys/id_space.h>
53 #include <sys/modhash.h>
54 #include <sys/bitset.h>
55
56 #ifdef __cplusplus
57 extern "C" {
58 #endif
59
60 /*
61 * The device id implementation has been switched to be based on properties.
62 * For compatibility with di_devid libdevinfo interface the following
63 * must be defined:
64 */
65 #define DEVID_COMPATIBILITY ((ddi_devid_t)-1)
66
67 /*
68 * Definitions for node class.
69 * DDI_NC_PROM: a node with a nodeid that may be used in a promif call.
70 * DDI_NC_PSEUDO: a software created node with a software assigned nodeid.
71 */
72 typedef enum {
73 DDI_NC_PROM = 0,
74 DDI_NC_PSEUDO
75 } ddi_node_class_t;
76
77 /*
78 * Definitions for generic callback mechanism.
79 */
80 typedef enum {
81 DDI_CB_INTR_ADD, /* More available interrupts */
82 DDI_CB_INTR_REMOVE /* Fewer available interrupts */
83 } ddi_cb_action_t;
84
85 typedef enum {
86 DDI_CB_FLAG_INTR = 0x1 /* Driver is IRM aware */
87 } ddi_cb_flags_t;
88
89 #define DDI_CB_FLAG_VALID(f) ((f) & DDI_CB_FLAG_INTR)
90
91 typedef int (*ddi_cb_func_t)(dev_info_t *dip, ddi_cb_action_t action,
92 void *cbarg, void *arg1, void *arg2);
93
94 typedef struct ddi_cb {
95 uint64_t cb_flags;
96 dev_info_t *cb_dip;
97 ddi_cb_func_t cb_func;
98 void *cb_arg1;
99 void *cb_arg2;
100 } ddi_cb_t;
101
102 /*
103 * dev_info: The main device information structure this is intended to be
104 * opaque to drivers and drivers should use ddi functions to
105 * access *all* driver accessible fields.
106 *
107 * devi_parent_data includes property lists (interrupts, registers, etc.)
108 * devi_driver_data includes whatever the driver wants to place there.
109 */
110 struct devinfo_audit;
111
112 typedef struct devi_port {
113 union {
114 struct {
115 uint32_t type;
116 uint32_t pad;
117 } port;
118 uint64_t type64;
119 } info;
120 void *priv_p;
121 } devi_port_t;
122
123 typedef struct devi_bus_priv {
124 devi_port_t port_up;
125 devi_port_t port_down;
126 } devi_bus_priv_t;
127
128 #if defined(__x86)
129 struct iommulib_unit;
130 typedef struct iommulib_unit *iommulib_handle_t;
131 struct iommulib_nex;
132 typedef struct iommulib_nex *iommulib_nexhandle_t;
133 #endif
134
135 typedef uint8_t ndi_flavor_t;
136 struct ddi_hp_cn_handle;
137
138 struct in_node;
139
140 struct dev_info {
141
142 struct dev_info *devi_parent; /* my parent node in tree */
143 struct dev_info *devi_child; /* my child list head */
144 struct dev_info *devi_sibling; /* next element on my level */
145
146 char *devi_binding_name; /* name used to bind driver: */
147 /* shared storage, points to */
148 /* devi_node_name, devi_compat_names */
149 /* or devi_rebinding_name */
150
151 char *devi_addr; /* address part of name */
152
153 int devi_nodeid; /* device nodeid */
154 int devi_instance; /* device instance number */
155
156 struct dev_ops *devi_ops; /* driver operations */
157
158 void *devi_parent_data; /* parent private data */
159 void *devi_driver_data; /* driver private data */
160
161 ddi_prop_t *devi_drv_prop_ptr; /* head of driver prop list */
162 ddi_prop_t *devi_sys_prop_ptr; /* head of system prop list */
163
164 struct ddi_minor_data *devi_minor; /* head of minor list */
165 struct dev_info *devi_next; /* Next instance of this device */
166 kmutex_t devi_lock; /* Protects per-devinfo data */
167
168 /* logical parents for busop primitives */
169
170 struct dev_info *devi_bus_map_fault; /* bus_map_fault parent */
171 void *devi_obsolete; /* obsolete placeholder */
172 struct dev_info *devi_bus_dma_allochdl; /* bus_dma_newhdl parent */
173 struct dev_info *devi_bus_dma_freehdl; /* bus_dma_freehdl parent */
174 struct dev_info *devi_bus_dma_bindhdl; /* bus_dma_bindhdl parent */
175 struct dev_info *devi_bus_dma_unbindhdl; /* bus_dma_unbindhdl parent */
176 struct dev_info *devi_bus_dma_flush; /* bus_dma_flush parent */
177 struct dev_info *devi_bus_dma_win; /* bus_dma_win parent */
178 struct dev_info *devi_bus_dma_ctl; /* bus_dma_ctl parent */
179 struct dev_info *devi_bus_ctl; /* bus_ctl parent */
180
181 ddi_prop_t *devi_hw_prop_ptr; /* head of hw prop list */
182
183 char *devi_node_name; /* The 'name' of the node */
184 char *devi_compat_names; /* A list of driver names */
185 size_t devi_compat_length; /* Size of compat_names */
186
187 int (*devi_bus_dma_bindfunc)(dev_info_t *, dev_info_t *,
188 ddi_dma_handle_t, struct ddi_dma_req *, ddi_dma_cookie_t *,
189 uint_t *);
190 int (*devi_bus_dma_unbindfunc)(dev_info_t *, dev_info_t *,
191 ddi_dma_handle_t);
192
193 char *devi_devid_str; /* registered device id */
194
195 /*
196 * power management entries
197 * components exist even if the device is not currently power managed
198 */
199 struct pm_info *devi_pm_info; /* 0 => dev not power managed */
200 uint_t devi_pm_flags; /* pm flags */
201 int devi_pm_num_components; /* number of components */
202 size_t devi_pm_comp_size; /* size of devi_components */
203 struct pm_component *devi_pm_components; /* array of pm components */
204 struct dev_info *devi_pm_ppm; /* ppm attached to this one */
205 void *devi_pm_ppm_private; /* for use by ppm driver */
206 int devi_pm_dev_thresh; /* "device" threshold */
207 uint_t devi_pm_kidsupcnt; /* # of kids powered up */
208 struct pm_scan *devi_pm_scan; /* pm scan info */
209 uint_t devi_pm_noinvolpm; /* # of descendents no-invol */
210 uint_t devi_pm_volpmd; /* # of voluntarily pm'ed */
211 kmutex_t devi_pm_lock; /* pm lock for state */
212 kmutex_t devi_pm_busy_lock; /* for component busy count */
213
214 uint_t devi_state; /* device/bus state flags */
215 /* see below for definitions */
216 kcondvar_t devi_cv; /* cv */
217 int devi_ref; /* reference count */
218 int devi_gone; /* devi gone, force clean */
219
220 dacf_rsrvlist_t *devi_dacf_tasks; /* dacf reservation queue */
221
222 ddi_node_class_t devi_node_class; /* Node class */
223 int devi_node_attributes; /* Node attributes: See below */
224
225 char *devi_device_class;
226
227 /*
228 * New mpxio kernel hooks entries
229 */
230 int devi_mdi_component; /* mpxio component type */
231 void *devi_mdi_client; /* mpxio client information */
232 void *devi_mdi_xhci; /* vhci/phci info */
233
234 ddi_prop_list_t *devi_global_prop_list; /* driver global properties */
235 major_t devi_major; /* driver major number */
236 ddi_node_state_t devi_node_state; /* state of node */
237 uint_t devi_flags; /* configuration flags */
238 int devi_circular; /* for recursive operations */
239 void *devi_busy_thread; /* thread operating on node */
240 void *devi_taskq; /* hotplug taskq */
241
242 /* device driver statistical and audit info */
243 struct devinfo_audit *devi_audit; /* last state change */
244
245 /*
246 * FMA support for resource caches and error handlers
247 */
248 struct i_ddi_fmhdl *devi_fmhdl;
249
250 uint_t devi_cpr_flags;
251
252 /* Owned by DDI interrupt framework */
253 devinfo_intr_t *devi_intr_p;
254
255 void *devi_nex_pm; /* nexus PM private */
256
257 char *devi_addr_buf; /* buffer for devi_addr */
258
259 char *devi_rebinding_name; /* binding_name of rebind */
260
261 /* For device contracts that have this dip's minor node as resource */
262 kmutex_t devi_ct_lock; /* contract lock */
263 kcondvar_t devi_ct_cv; /* contract cv */
264 int devi_ct_count; /* # of outstanding responses */
265 int devi_ct_neg; /* neg. occurred on dip */
266 list_t devi_ct;
267
268 /* owned by bus framework */
269 devi_bus_priv_t devi_bus; /* bus private data */
270
271 /* Declarations of the pure dynamic properties to snapshot */
272 struct i_ddi_prop_dyn *devi_prop_dyn_driver; /* prop_op */
273 struct i_ddi_prop_dyn *devi_prop_dyn_parent; /* bus_prop_op */
274
275 #if defined(__x86)
276 /* For x86 (Intel and AMD) IOMMU support */
277 void *devi_iommu;
278 iommulib_handle_t devi_iommulib_handle;
279 iommulib_nexhandle_t devi_iommulib_nex_handle;
280 #endif
281
282 /* Generic callback mechanism */
283 ddi_cb_t *devi_cb_p;
284
285 /* ndi 'flavors' */
286 ndi_flavor_t devi_flavor; /* flavor assigned by parent */
287 ndi_flavor_t devi_flavorv_n; /* number of child-flavors */
288 void **devi_flavorv; /* child-flavor specific data */
289
290 /* Owned by hotplug framework */
291 struct ddi_hp_cn_handle *devi_hp_hdlp; /* hotplug handle list */
292
293 struct in_node *devi_in_node; /* pointer to devinfo node's in_node_t */
294
295 /* detach event data */
296 char *devi_ev_path;
297 int devi_ev_instance;
298 };
299
300 #define DEVI(dev_info_type) ((struct dev_info *)(dev_info_type))
301
302 /*
303 * NB: The 'name' field, for compatibility with old code (both existing
304 * device drivers and userland code), is now defined as the name used
305 * to bind the node to a device driver, and not the device node name.
306 * If the device node name does not define a binding to a device driver,
307 * and the framework uses a different algorithm to create the binding to
308 * the driver, the node name and binding name will be different.
309 *
310 * Note that this implies that the node name plus instance number does
311 * NOT create a unique driver id; only the binding name plus instance
312 * number creates a unique driver id.
313 *
314 * New code should not use 'devi_name'; use 'devi_binding_name' or
315 * 'devi_node_name' and/or the routines that access those fields.
316 */
317
318 #define devi_name devi_binding_name
319
320 /*
321 * DDI_CF1, DDI_CF2 and DDI_DRV_UNLOADED are obsolete. They are kept
322 * around to allow legacy drivers to to compile.
323 */
324 #define DDI_CF1(devi) (DEVI(devi)->devi_addr != NULL)
325 #define DDI_CF2(devi) (DEVI(devi)->devi_ops != NULL)
326 #define DDI_DRV_UNLOADED(devi) (DEVI(devi)->devi_ops == &mod_nodev_ops)
327
328 /*
329 * The device state flags (devi_state) contains information regarding
330 * the state of the device (Online/Offline/Down). For bus nexus
331 * devices, the device state also contains state information regarding
332 * the state of the bus represented by this nexus node.
333 *
334 * Device state information is stored in bits [0-7], bus state in bits
335 * [8-15].
336 *
337 * NOTE: all devi_state updates should be protected by devi_lock.
338 */
339 #define DEVI_DEVICE_OFFLINE 0x00000001
340 #define DEVI_DEVICE_DOWN 0x00000002
341 #define DEVI_DEVICE_DEGRADED 0x00000004
342 #define DEVI_DEVICE_REMOVED 0x00000008 /* hardware removed */
343
344 #define DEVI_BUS_QUIESCED 0x00000100
345 #define DEVI_BUS_DOWN 0x00000200
346 #define DEVI_NDI_CONFIG 0x00000400 /* perform config when attaching */
347
348 #define DEVI_S_ATTACHING 0x00010000
349 #define DEVI_S_DETACHING 0x00020000
350 #define DEVI_S_ONLINING 0x00040000
351 #define DEVI_S_OFFLINING 0x00080000
352
353 #define DEVI_S_INVOKING_DACF 0x00100000 /* busy invoking a dacf task */
354
355 #define DEVI_S_UNBOUND 0x00200000
356 #define DEVI_S_REPORT 0x08000000 /* report status change */
357
358 #define DEVI_S_EVADD 0x10000000 /* state of devfs event */
359 #define DEVI_S_EVREMOVE 0x20000000 /* state of devfs event */
360 #define DEVI_S_NEED_RESET 0x40000000 /* devo_reset should be called */
361
362 /*
363 * Device state macros.
364 * o All SET/CLR/DONE users must protect context with devi_lock.
365 * o DEVI_SET_DEVICE_ONLINE users must do their own DEVI_SET_REPORT.
366 * o DEVI_SET_DEVICE_{DOWN|DEGRADED|UP} should only be used when !OFFLINE.
367 * o DEVI_SET_DEVICE_UP clears DOWN and DEGRADED.
368 */
369 #define DEVI_IS_DEVICE_OFFLINE(dip) \
370 ((DEVI(dip)->devi_state & DEVI_DEVICE_OFFLINE) == DEVI_DEVICE_OFFLINE)
371
372 #define DEVI_SET_DEVICE_ONLINE(dip) { \
373 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
374 if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) { \
375 mutex_exit(&DEVI(dip)->devi_lock); \
376 e_ddi_undegrade_finalize(dip); \
377 mutex_enter(&DEVI(dip)->devi_lock); \
378 } \
379 /* setting ONLINE clears DOWN, DEGRADED, OFFLINE */ \
380 DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DOWN | \
381 DEVI_DEVICE_DEGRADED | DEVI_DEVICE_OFFLINE); \
382 }
383
384 #define DEVI_SET_DEVICE_OFFLINE(dip) { \
385 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
386 DEVI(dip)->devi_state |= (DEVI_DEVICE_OFFLINE | DEVI_S_REPORT); \
387 }
388
389 #define DEVI_IS_DEVICE_DOWN(dip) \
390 ((DEVI(dip)->devi_state & DEVI_DEVICE_DOWN) == DEVI_DEVICE_DOWN)
391
392 #define DEVI_SET_DEVICE_DOWN(dip) { \
393 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
394 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \
395 DEVI(dip)->devi_state |= (DEVI_DEVICE_DOWN | DEVI_S_REPORT); \
396 }
397
398 #define DEVI_IS_DEVICE_DEGRADED(dip) \
399 ((DEVI(dip)->devi_state & \
400 (DEVI_DEVICE_DEGRADED|DEVI_DEVICE_DOWN)) == DEVI_DEVICE_DEGRADED)
401
402 #define DEVI_SET_DEVICE_DEGRADED(dip) { \
403 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
404 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \
405 mutex_exit(&DEVI(dip)->devi_lock); \
406 e_ddi_degrade_finalize(dip); \
407 mutex_enter(&DEVI(dip)->devi_lock); \
408 DEVI(dip)->devi_state |= (DEVI_DEVICE_DEGRADED | DEVI_S_REPORT); \
409 }
410
411 #define DEVI_SET_DEVICE_UP(dip) { \
412 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
413 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \
414 if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) { \
415 mutex_exit(&DEVI(dip)->devi_lock); \
416 e_ddi_undegrade_finalize(dip); \
417 mutex_enter(&DEVI(dip)->devi_lock); \
418 } \
419 DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DEGRADED | DEVI_DEVICE_DOWN); \
420 DEVI(dip)->devi_state |= DEVI_S_REPORT; \
421 }
422
423 /* Device removal and insertion */
424 #define DEVI_IS_DEVICE_REMOVED(dip) \
425 ((DEVI(dip)->devi_state & DEVI_DEVICE_REMOVED) == DEVI_DEVICE_REMOVED)
426
427 #define DEVI_SET_DEVICE_REMOVED(dip) { \
428 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
429 DEVI(dip)->devi_state |= DEVI_DEVICE_REMOVED | DEVI_S_REPORT; \
430 }
431
432 #define DEVI_SET_DEVICE_REINSERTED(dip) { \
433 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
434 DEVI(dip)->devi_state &= ~DEVI_DEVICE_REMOVED; \
435 DEVI(dip)->devi_state |= DEVI_S_REPORT; \
436 }
437
438 /* Bus state change macros */
439 #define DEVI_IS_BUS_QUIESCED(dip) \
440 ((DEVI(dip)->devi_state & DEVI_BUS_QUIESCED) == DEVI_BUS_QUIESCED)
441
442 #define DEVI_SET_BUS_ACTIVE(dip) { \
443 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
444 DEVI(dip)->devi_state &= ~DEVI_BUS_QUIESCED; \
445 DEVI(dip)->devi_state |= DEVI_S_REPORT; \
446 }
447
448 #define DEVI_SET_BUS_QUIESCE(dip) { \
449 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
450 DEVI(dip)->devi_state |= (DEVI_BUS_QUIESCED | DEVI_S_REPORT); \
451 }
452
453 #define DEVI_IS_BUS_DOWN(dip) \
454 ((DEVI(dip)->devi_state & DEVI_BUS_DOWN) == DEVI_BUS_DOWN)
455
456 #define DEVI_SET_BUS_UP(dip) { \
457 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
458 DEVI(dip)->devi_state &= ~DEVI_BUS_DOWN; \
459 DEVI(dip)->devi_state |= DEVI_S_REPORT; \
460 }
461
462 #define DEVI_SET_BUS_DOWN(dip) { \
463 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
464 DEVI(dip)->devi_state |= (DEVI_BUS_DOWN | DEVI_S_REPORT); \
465 }
466
467 /* Status change report needed */
468 #define DEVI_NEED_REPORT(dip) \
469 ((DEVI(dip)->devi_state & DEVI_S_REPORT) == DEVI_S_REPORT)
470
471 #define DEVI_SET_REPORT(dip) { \
472 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
473 DEVI(dip)->devi_state |= DEVI_S_REPORT; \
474 }
475
476 #define DEVI_REPORT_DONE(dip) { \
477 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
478 DEVI(dip)->devi_state &= ~DEVI_S_REPORT; \
479 }
480
481 /* Do an NDI_CONFIG for its children */
482 #define DEVI_NEED_NDI_CONFIG(dip) \
483 ((DEVI(dip)->devi_state & DEVI_NDI_CONFIG) == DEVI_NDI_CONFIG)
484
485 #define DEVI_SET_NDI_CONFIG(dip) { \
486 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
487 DEVI(dip)->devi_state |= DEVI_NDI_CONFIG; \
488 }
489
490 #define DEVI_CLR_NDI_CONFIG(dip) { \
491 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
492 DEVI(dip)->devi_state &= ~DEVI_NDI_CONFIG; \
493 }
494
495 /* Attaching or detaching state */
496 #define DEVI_IS_ATTACHING(dip) \
497 ((DEVI(dip)->devi_state & DEVI_S_ATTACHING) == DEVI_S_ATTACHING)
498
499 #define DEVI_SET_ATTACHING(dip) { \
500 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
501 DEVI(dip)->devi_state |= DEVI_S_ATTACHING; \
502 }
503
504 #define DEVI_CLR_ATTACHING(dip) { \
505 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
506 DEVI(dip)->devi_state &= ~DEVI_S_ATTACHING; \
507 }
508
509 #define DEVI_IS_DETACHING(dip) \
510 ((DEVI(dip)->devi_state & DEVI_S_DETACHING) == DEVI_S_DETACHING)
511
512 #define DEVI_SET_DETACHING(dip) { \
513 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
514 DEVI(dip)->devi_state |= DEVI_S_DETACHING; \
515 }
516
517 #define DEVI_CLR_DETACHING(dip) { \
518 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
519 DEVI(dip)->devi_state &= ~DEVI_S_DETACHING; \
520 }
521
522 /* Onlining or offlining state */
523 #define DEVI_IS_ONLINING(dip) \
524 ((DEVI(dip)->devi_state & DEVI_S_ONLINING) == DEVI_S_ONLINING)
525
526 #define DEVI_SET_ONLINING(dip) { \
527 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
528 DEVI(dip)->devi_state |= DEVI_S_ONLINING; \
529 }
530
531 #define DEVI_CLR_ONLINING(dip) { \
532 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
533 DEVI(dip)->devi_state &= ~DEVI_S_ONLINING; \
534 }
535
536 #define DEVI_IS_OFFLINING(dip) \
537 ((DEVI(dip)->devi_state & DEVI_S_OFFLINING) == DEVI_S_OFFLINING)
538
539 #define DEVI_SET_OFFLINING(dip) { \
540 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
541 DEVI(dip)->devi_state |= DEVI_S_OFFLINING; \
542 }
543
544 #define DEVI_CLR_OFFLINING(dip) { \
545 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
546 DEVI(dip)->devi_state &= ~DEVI_S_OFFLINING; \
547 }
548
549 #define DEVI_IS_IN_RECONFIG(dip) \
550 (DEVI(dip)->devi_state & (DEVI_S_OFFLINING | DEVI_S_ONLINING))
551
552 /* Busy invoking a dacf task against this node */
553 #define DEVI_IS_INVOKING_DACF(dip) \
554 ((DEVI(dip)->devi_state & DEVI_S_INVOKING_DACF) == DEVI_S_INVOKING_DACF)
555
556 #define DEVI_SET_INVOKING_DACF(dip) { \
557 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
558 DEVI(dip)->devi_state |= DEVI_S_INVOKING_DACF; \
559 }
560
561 #define DEVI_CLR_INVOKING_DACF(dip) { \
562 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
563 DEVI(dip)->devi_state &= ~DEVI_S_INVOKING_DACF; \
564 }
565
566 /* Events for add/remove */
567 #define DEVI_EVADD(dip) \
568 ((DEVI(dip)->devi_state & DEVI_S_EVADD) == DEVI_S_EVADD)
569
570 #define DEVI_SET_EVADD(dip) { \
571 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
572 DEVI(dip)->devi_state &= ~DEVI_S_EVREMOVE; \
573 DEVI(dip)->devi_state |= DEVI_S_EVADD; \
574 }
575
576 #define DEVI_EVREMOVE(dip) \
577 ((DEVI(dip)->devi_state & DEVI_S_EVREMOVE) == DEVI_S_EVREMOVE)
578
579 #define DEVI_SET_EVREMOVE(dip) { \
580 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
581 DEVI(dip)->devi_state &= ~DEVI_S_EVADD; \
582 DEVI(dip)->devi_state |= DEVI_S_EVREMOVE; \
583 }
584
585 #define DEVI_SET_EVUNINIT(dip) { \
586 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
587 DEVI(dip)->devi_state &= ~(DEVI_S_EVADD | DEVI_S_EVREMOVE); \
588 }
589
590 /* Need to call the devo_reset entry point for this device at shutdown */
591 #define DEVI_NEED_RESET(dip) \
592 ((DEVI(dip)->devi_state & DEVI_S_NEED_RESET) == DEVI_S_NEED_RESET)
593
594 #define DEVI_SET_NEED_RESET(dip) { \
595 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
596 DEVI(dip)->devi_state |= DEVI_S_NEED_RESET; \
597 }
598
599 #define DEVI_CLR_NEED_RESET(dip) { \
600 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \
601 DEVI(dip)->devi_state &= ~DEVI_S_NEED_RESET; \
602 }
603
604 /*
605 * devi_flags bits
606 *
607 * NOTE: all devi_state updates should be protected by devi_lock.
608 */
609 #define DEVI_BUSY 0x00000001 /* busy configuring children */
610 #define DEVI_MADE_CHILDREN 0x00000002 /* children made from specs */
611 #define DEVI_ATTACHED_CHILDREN 0x00000004 /* attached all existing children */
612 #define DEVI_BRANCH_HELD 0x00000008 /* branch rooted at this dip held */
613 #define DEVI_NO_BIND 0x00000010 /* prevent driver binding */
614 #define DEVI_CACHED_DEVID 0x00000020 /* devid cached in devid cache */
615 #define DEVI_PHCI_SIGNALS_VHCI 0x00000040 /* pHCI ndi_devi_exit signals vHCI */
616 #define DEVI_REBIND 0x00000080 /* post initchild driver rebind */
617 #define DEVI_RETIRED 0x00000100 /* device is retired */
618 #define DEVI_RETIRING 0x00000200 /* being evaluated for retire */
619 #define DEVI_R_CONSTRAINT 0x00000400 /* constraints have been applied */
620 #define DEVI_R_BLOCKED 0x00000800 /* constraints block retire */
621 #define DEVI_CT_NOP 0x00001000 /* NOP contract event occurred */
622 #define DEVI_PCI_DEVICE 0x00002000 /* dip is PCI */
623
624 #define DEVI_BUSY_CHANGING(dip) (DEVI(dip)->devi_flags & DEVI_BUSY)
625 #define DEVI_BUSY_OWNED(dip) (DEVI_BUSY_CHANGING(dip) && \
626 ((DEVI(dip))->devi_busy_thread == curthread))
627
628 #define DEVI_IS_PCI(dip) (DEVI(dip)->devi_flags & DEVI_PCI_DEVICE)
629 #define DEVI_SET_PCI(dip) (DEVI(dip)->devi_flags |= (DEVI_PCI_DEVICE))
630
631 char *i_ddi_devi_class(dev_info_t *);
632 int i_ddi_set_devi_class(dev_info_t *, char *, int);
633
634 /*
635 * This structure represents one piece of bus space occupied by a given
636 * device. It is used in an array for devices with multiple address windows.
637 */
638 struct regspec {
639 uint_t regspec_bustype; /* cookie for bus type it's on */
640 uint_t regspec_addr; /* address of reg relative to bus */
641 uint_t regspec_size; /* size of this register set */
642 };
643
644 /*
645 * This is a version of the above structure that works for 64-bit mappings and
646 * doesn't rely on overloading of fields as is done on SPARC. Eventually the
647 * struct regspec should be replaced with this.
648 */
649 struct regspec64 {
650 uint64_t regspec_bustype; /* cookie for bus type it's on */
651 uint64_t regspec_addr; /* address of reg relative to bus */
652 uint64_t regspec_size; /* size of this register set */
653 };
654
655 /*
656 * This structure represents one piece of nexus bus space.
657 * It is used in an array for nexi with multiple bus spaces
658 * to define the childs offsets in the parents bus space.
659 */
660 struct rangespec {
661 uint_t rng_cbustype; /* Child's address, hi order */
662 uint_t rng_coffset; /* Child's address, lo order */
663 uint_t rng_bustype; /* Parent's address, hi order */
664 uint_t rng_offset; /* Parent's address, lo order */
665 uint_t rng_size; /* size of space for this entry */
666 };
667
668 #ifdef _KERNEL
669
670 typedef enum {
671 DDI_PRE = 0,
672 DDI_POST = 1
673 } ddi_pre_post_t;
674
675 /*
676 * This structure represents notification of a child attach event
677 * These could both be the same if attach/detach commands were in the
678 * same name space.
679 * Note that the target dip is passed as an arg already.
680 */
681 struct attachspec {
682 ddi_attach_cmd_t cmd; /* type of event */
683 ddi_pre_post_t when; /* one of DDI_PRE or DDI_POST */
684 dev_info_t *pdip; /* parent of attaching node */
685 int result; /* result of attach op (post command only) */
686 };
687
688 /*
689 * This structure represents notification of a child detach event
690 * Note that the target dip is passed as an arg already.
691 */
692 struct detachspec {
693 ddi_detach_cmd_t cmd; /* type of event */
694 ddi_pre_post_t when; /* one of DDI_PRE or DDI_POST */
695 dev_info_t *pdip; /* parent of detaching node */
696 int result; /* result of detach op (post command only) */
697 };
698
699 #endif /* _KERNEL */
700
701 typedef enum {
702 DDM_MINOR = 0,
703 DDM_ALIAS,
704 DDM_DEFAULT,
705 DDM_INTERNAL_PATH
706 } ddi_minor_type;
707
708 /* implementation flags for driver specified device access control */
709 #define DM_NO_FSPERM 0x1
710
711 struct devplcy;
712
713 struct ddi_minor {
714 char *name; /* name of node */
715 dev_t dev; /* device number */
716 int spec_type; /* block or char */
717 int flags; /* access flags */
718 char *node_type; /* block, byte, serial, network */
719 struct devplcy *node_priv; /* privilege for this minor */
720 mode_t priv_mode; /* default apparent privilege mode */
721 };
722
723 /*
724 * devi_node_attributes contains node attributes private to the
725 * ddi implementation. As a consumer, do not use these bit definitions
726 * directly, use the ndi functions that check for the existence of the
727 * specific node attributes.
728 *
729 * DDI_PERSISTENT indicates a 'persistent' node; one that is not
730 * automatically freed by the framework if the driver is unloaded
731 * or the driver fails to attach to this node.
732 *
733 * DDI_AUTO_ASSIGNED_NODEID indicates that the nodeid was auto-assigned
734 * by the framework and should be auto-freed if the node is removed.
735 *
736 * DDI_VHCI_NODE indicates that the node type is VHCI. This flag
737 * must be set by ndi_devi_config_vhci() routine only.
738 *
739 * DDI_HIDDEN_NODE indicates that the node should not show up in snapshots
740 * or in /devices.
741 *
742 * DDI_HOTPLUG_NODE indicates that the node created by nexus hotplug.
743 */
744 #define DDI_PERSISTENT 0x01
745 #define DDI_AUTO_ASSIGNED_NODEID 0x02
746 #define DDI_VHCI_NODE 0x04
747 #define DDI_HIDDEN_NODE 0x08
748 #define DDI_HOTPLUG_NODE 0x10
749
750 #define DEVI_VHCI_NODE(dip) \
751 (DEVI(dip)->devi_node_attributes & DDI_VHCI_NODE)
752
753 /*
754 * The ddi_minor_data structure gets filled in by ddi_create_minor_node.
755 * It then gets attached to the devinfo node as a property.
756 */
757 struct ddi_minor_data {
758 struct ddi_minor_data *next; /* next one in the chain */
759 dev_info_t *dip; /* pointer to devinfo node */
760 ddi_minor_type type; /* Following data type */
761 struct ddi_minor d_minor; /* Actual minor node data */
762 };
763
764 #define ddm_name d_minor.name
765 #define ddm_dev d_minor.dev
766 #define ddm_flags d_minor.flags
767 #define ddm_spec_type d_minor.spec_type
768 #define ddm_node_type d_minor.node_type
769 #define ddm_node_priv d_minor.node_priv
770 #define ddm_priv_mode d_minor.priv_mode
771
772 /*
773 * parent private data structure contains register, interrupt, property
774 * and range information.
775 */
776 struct ddi_parent_private_data {
777 int par_nreg; /* number of regs */
778 struct regspec *par_reg; /* array of regs */
779 int par_nintr; /* number of interrupts */
780 struct intrspec *par_intr; /* array of possible interrupts */
781 int par_nrng; /* number of ranges */
782 struct rangespec *par_rng; /* array of ranges */
783 };
784 #define DEVI_PD(d) \
785 ((struct ddi_parent_private_data *)DEVI((d))->devi_parent_data)
786
787 #define sparc_pd_getnreg(dev) (DEVI_PD(dev)->par_nreg)
788 #define sparc_pd_getnintr(dev) (DEVI_PD(dev)->par_nintr)
789 #define sparc_pd_getnrng(dev) (DEVI_PD(dev)->par_nrng)
790 #define sparc_pd_getreg(dev, n) (&DEVI_PD(dev)->par_reg[(n)])
791 #define sparc_pd_getintr(dev, n) (&DEVI_PD(dev)->par_intr[(n)])
792 #define sparc_pd_getrng(dev, n) (&DEVI_PD(dev)->par_rng[(n)])
793
794 #ifdef _KERNEL
795 /*
796 * This data structure is private to the indexed soft state allocator.
797 */
798 typedef struct i_ddi_soft_state {
799 void **array; /* the array of pointers */
800 kmutex_t lock; /* serialize access to this struct */
801 size_t size; /* how many bytes per state struct */
802 size_t n_items; /* how many structs herein */
803 struct i_ddi_soft_state *next; /* 'dirty' elements */
804 } i_ddi_soft_state;
805
806 /*
807 * This data structure is private to the stringhashed soft state allocator.
808 */
809 typedef struct i_ddi_soft_state_bystr {
810 size_t ss_size; /* how many bytes per state struct */
811 mod_hash_t *ss_mod_hash; /* hash implementation */
812 } i_ddi_soft_state_bystr;
813
814 /*
815 * This data structure is private to the ddi_strid_* implementation
816 */
817 typedef struct i_ddi_strid {
818 size_t strid_chunksz;
819 size_t strid_spacesz;
820 id_space_t *strid_space;
821 mod_hash_t *strid_byid;
822 mod_hash_t *strid_bystr;
823 } i_ddi_strid;
824 #endif /* _KERNEL */
825
826 /*
827 * Solaris DDI DMA implementation structure and function definitions.
828 *
829 * Note: no callers of DDI functions must depend upon data structures
830 * declared below. They are not guaranteed to remain constant.
831 */
832
833 /*
834 * Implementation DMA mapping structure.
835 *
836 * The publicly visible ddi_dma_req structure is filled
837 * in by a caller that wishes to map a memory object
838 * for DMA. Internal to this implementation of the public
839 * DDI DMA functions this request structure is put together
840 * with bus nexus specific functions that have additional
841 * information and constraints as to how to go about doing
842 * the requested mapping function
843 *
844 * In this implementation, some of the information from the
845 * original requester is retained throughout the lifetime
846 * of the I/O mapping being active.
847 */
848
849 /*
850 * This is the implementation specific description
851 * of how we've mapped an object for DMA.
852 */
853 #if defined(__sparc)
854 typedef struct ddi_dma_impl {
855 /*
856 * DMA mapping information
857 */
858 ulong_t dmai_mapping; /* mapping cookie */
859
860 /*
861 * Size of the current mapping, in bytes.
862 *
863 * Note that this is distinct from the size of the object being mapped
864 * for DVMA. We might have only a portion of the object mapped at any
865 * given point in time.
866 */
867 uint_t dmai_size;
868
869 /*
870 * Offset, in bytes, into object that is currently mapped.
871 */
872 off_t dmai_offset;
873
874 /*
875 * Information gathered from the original DMA mapping
876 * request and saved for the lifetime of the mapping.
877 */
878 uint_t dmai_minxfer;
879 uint_t dmai_burstsizes;
880 uint_t dmai_ndvmapages;
881 uint_t dmai_pool; /* cached DVMA space */
882 uint_t dmai_rflags; /* requester's flags + ours */
883 uint_t dmai_inuse; /* active handle? */
884 uint_t dmai_nwin;
885 uint_t dmai_winsize;
886 caddr_t dmai_nexus_private;
887 void *dmai_iopte;
888 uint_t *dmai_sbi;
889 void *dmai_minfo; /* random mapping information */
890 dev_info_t *dmai_rdip; /* original requester's dev_info_t */
891 ddi_dma_obj_t dmai_object; /* requester's object */
892 ddi_dma_attr_t dmai_attr; /* DMA attributes */
893 ddi_dma_cookie_t *dmai_cookie; /* pointer to first DMA cookie */
894
895 int (*dmai_fault_check)(struct ddi_dma_impl *handle);
896 void (*dmai_fault_notify)(struct ddi_dma_impl *handle);
897 int dmai_fault;
898 ndi_err_t dmai_error;
899
900 } ddi_dma_impl_t;
901
902 #elif defined(__x86)
903
904 /*
905 * ddi_dma_impl portion that genunix (sunddi.c) depends on. x86 rootnex
906 * implementation specific state is in dmai_private.
907 */
908 typedef struct ddi_dma_impl {
909 ddi_dma_cookie_t *dmai_cookie; /* array of DMA cookies */
910 void *dmai_private;
911
912 /*
913 * Information gathered from the original dma mapping
914 * request and saved for the lifetime of the mapping.
915 */
916 uint_t dmai_minxfer;
917 uint_t dmai_burstsizes;
918 uint_t dmai_rflags; /* requester's flags + ours */
919 int dmai_nwin;
920 dev_info_t *dmai_rdip; /* original requester's dev_info_t */
921
922 ddi_dma_attr_t dmai_attr; /* DMA attributes */
923
924 int (*dmai_fault_check)(struct ddi_dma_impl *handle);
925 void (*dmai_fault_notify)(struct ddi_dma_impl *handle);
926 int dmai_fault;
927 ndi_err_t dmai_error;
928 } ddi_dma_impl_t;
929
930 #else
931 #error "struct ddi_dma_impl not defined for this architecture"
932 #endif /* defined(__sparc) */
933
934 /*
935 * For now DMA segments share state with the DMA handle
936 */
937 typedef ddi_dma_impl_t ddi_dma_seg_impl_t;
938
939 /*
940 * These flags use reserved bits from the dma request flags.
941 *
942 * A note about the DMP_NOSYNC flags: the root nexus will
943 * set these as it sees best. If an intermediate nexus
944 * actually needs these operations, then during the unwind
945 * from the call to ddi_dma_bind, the nexus driver *must*
946 * clear the appropriate flag(s). This is because, as an
947 * optimization, ddi_dma_sync(9F) looks at these flags before
948 * deciding to spend the time going back up the tree.
949 */
950
951 #define _DMCM1 DDI_DMA_RDWR|DDI_DMA_REDZONE|DDI_DMA_PARTIAL
952 #define _DMCM2 DDI_DMA_CONSISTENT|DMP_VMEREQ
953 #define DMP_DDIFLAGS (_DMCM1|_DMCM2)
954 #define DMP_SHADOW 0x20
955 #define DMP_LKIOPB 0x40
956 #define DMP_LKSYSV 0x80
957 #define DMP_IOCACHE 0x100
958 #define DMP_USEHAT 0x200
959 #define DMP_PHYSADDR 0x400
960 #define DMP_INVALID 0x800
961 #define DMP_NOLIMIT 0x1000
962 #define DMP_VMEREQ 0x10000000
963 #define DMP_BYPASSNEXUS 0x20000000
964 #define DMP_NODEVSYNC 0x40000000
965 #define DMP_NOCPUSYNC 0x80000000
966 #define DMP_NOSYNC (DMP_NODEVSYNC|DMP_NOCPUSYNC)
967
968 /*
969 * In order to complete a device to device mapping that
970 * has percolated as high as an IU nexus (gone that high
971 * because the DMA request is a VADDR type), we define
972 * structure to use with the DDI_CTLOPS_DMAPMAPC request
973 * that re-traverses the request tree to finish the
974 * DMA 'mapping' for a device.
975 */
976 struct dma_phys_mapc {
977 struct ddi_dma_req *dma_req; /* original request */
978 ddi_dma_impl_t *mp; /* current handle, or none */
979 int nptes; /* number of ptes */
980 void *ptes; /* ptes already read */
981 };
982
983 #define MAXCALLBACK 20
984
985 /*
986 * Callback definitions
987 */
988 struct ddi_callback {
989 struct ddi_callback *c_nfree;
990 struct ddi_callback *c_nlist;
991 int (*c_call)();
992 int c_count;
993 caddr_t c_arg;
994 size_t c_size;
995 };
996
997 /*
998 * Pure dynamic property declaration. A pure dynamic property is a property
999 * for which a driver's prop_op(9E) implementation will return a value on
1000 * demand, but the property name does not exist on a property list (global,
1001 * driver, system, or hardware) - the person asking for the value must know
1002 * the name and type information.
1003 *
1004 * For a pure dynamic property to show up in a di_init() devinfo shapshot, the
1005 * devinfo driver must know name and type. The i_ddi_prop_dyn_t mechanism
1006 * allows a driver to define an array of the name/type information of its
1007 * dynamic properties. When a driver declares its dynamic properties in a
1008 * i_ddi_prop_dyn_t array, and registers that array using
1009 * i_ddi_prop_dyn_driver_set() the devinfo driver has sufficient information
1010 * to represent the properties in a snapshot - calling the driver's
1011 * prop_op(9E) to obtain values.
1012 *
1013 * The last element of a i_ddi_prop_dyn_t is detected via a NULL dp_name value.
1014 *
1015 * A pure dynamic property name associated with a minor_node/dev_t should be
1016 * defined with a dp_spec_type of S_IFCHR or S_IFBLK, as appropriate. The
1017 * driver's prop_op(9E) entry point will be called for all
1018 * ddi_create_minor_node(9F) nodes of the specified spec_type. For a driver
1019 * where not all minor_node/dev_t combinations support the same named
1020 * properties, it is the responsibility of the prop_op(9E) implementation to
1021 * sort out what combinations are appropriate.
1022 *
1023 * A pure dynamic property of a devinfo node should be defined with a
1024 * dp_spec_type of 0.
1025 *
1026 * NB: Public DDI property interfaces no longer support pure dynamic
1027 * properties, but they are still still used. A prime example is the cmlb
1028 * implementation of size(9P) properties. Using pure dynamic properties
1029 * reduces the space required to maintain per-partition information. Since
1030 * there are no public interfaces to create pure dynamic properties,
1031 * the i_ddi_prop_dyn_t mechanism should remain private.
1032 */
1033 typedef struct i_ddi_prop_dyn {
1034 char *dp_name; /* name of dynamic property */
1035 int dp_type; /* DDI_PROP_TYPE_ of property */
1036 int dp_spec_type; /* 0, S_IFCHR, S_IFBLK */
1037 } i_ddi_prop_dyn_t;
1038 void i_ddi_prop_dyn_driver_set(dev_info_t *,
1039 i_ddi_prop_dyn_t *);
1040 i_ddi_prop_dyn_t *i_ddi_prop_dyn_driver_get(dev_info_t *);
1041 void i_ddi_prop_dyn_parent_set(dev_info_t *,
1042 i_ddi_prop_dyn_t *);
1043 i_ddi_prop_dyn_t *i_ddi_prop_dyn_parent_get(dev_info_t *);
1044 void i_ddi_prop_dyn_cache_invalidate(dev_info_t *,
1045 i_ddi_prop_dyn_t *);
1046
1047 /*
1048 * Device id - Internal definition.
1049 */
1050 #define DEVID_MAGIC_MSB 0x69
1051 #define DEVID_MAGIC_LSB 0x64
1052 #define DEVID_REV_MSB 0x00
1053 #define DEVID_REV_LSB 0x01
1054 #define DEVID_HINT_SIZE 4
1055
1056 typedef struct impl_devid {
1057 uchar_t did_magic_hi; /* device id magic # (msb) */
1058 uchar_t did_magic_lo; /* device id magic # (lsb) */
1059 uchar_t did_rev_hi; /* device id revision # (msb) */
1060 uchar_t did_rev_lo; /* device id revision # (lsb) */
1061 uchar_t did_type_hi; /* device id type (msb) */
1062 uchar_t did_type_lo; /* device id type (lsb) */
1063 uchar_t did_len_hi; /* length of devid data (msb) */
1064 uchar_t did_len_lo; /* length of devid data (lsb) */
1065 char did_driver[DEVID_HINT_SIZE]; /* driver name - HINT */
1066 char did_id[1]; /* start of device id data */
1067 } impl_devid_t;
1068
1069 #define DEVID_GETTYPE(devid) ((ushort_t) \
1070 (((devid)->did_type_hi << NBBY) + \
1071 (devid)->did_type_lo))
1072
1073 #define DEVID_FORMTYPE(devid, type) (devid)->did_type_hi = hibyte((type)); \
1074 (devid)->did_type_lo = lobyte((type));
1075
1076 #define DEVID_GETLEN(devid) ((ushort_t) \
1077 (((devid)->did_len_hi << NBBY) + \
1078 (devid)->did_len_lo))
1079
1080 #define DEVID_FORMLEN(devid, len) (devid)->did_len_hi = hibyte((len)); \
1081 (devid)->did_len_lo = lobyte((len));
1082
1083 /*
1084 * Per PSARC/1995/352, a binary devid contains fields for <magic number>,
1085 * <revision>, <driver_hint>, <type>, <id_length>, and the <id> itself.
1086 * This proposal would encode the binary devid into a string consisting
1087 * of "<magic><revision>,<driver_hint>@<type><id>" as indicated below
1088 * (<id_length> is rederived from the length of the string
1089 * representation of the <id>):
1090 *
1091 * <magic> ->"id"
1092 *
1093 * <rev> ->"%d" // "0" -> type of DEVID_NONE "id0"
1094 * // NOTE: PSARC/1995/352 <revision> is "1".
1095 * // NOTE: support limited to 10 revisions
1096 * // in current implementation
1097 *
1098 * <driver_hint> ->"%s" // "sd"/"ssd"
1099 * // NOTE: driver names limited to 4
1100 * // characters for <revision> "1"
1101 *
1102 * <type> ->'w' | // DEVID_SCSI3_WWN <hex_id>
1103 * 'W' | // DEVID_SCSI3_WWN <ascii_id>
1104 * 't' | // DEVID_SCSI3_VPD_T10 <hex_id>
1105 * 'T' | // DEVID_SCSI3_VPD_T10 <ascii_id>
1106 * 'x' | // DEVID_SCSI3_VPD_EUI <hex_id>
1107 * 'X' | // DEVID_SCSI3_VPD_EUI <ascii_id>
1108 * 'n' | // DEVID_SCSI3_VPD_NAA <hex_id>
1109 * 'N' | // DEVID_SCSI3_VPD_NAA <ascii_id>
1110 * 's' | // DEVID_SCSI_SERIAL <hex_id>
1111 * 'S' | // DEVID_SCSI_SERIAL <ascii_id>
1112 * 'f' | // DEVID_FAB <hex_id>
1113 * 'F' | // DEVID_FAB <ascii_id>
1114 * 'e' | // DEVID_ENCAP <hex_id>
1115 * 'E' | // DEVID_ENCAP <ascii_id>
1116 * 'a' | // DEVID_ATA_SERIAL <hex_id>
1117 * 'A' | // DEVID_ATA_SERIAL <ascii_id>
1118 * 'u' | // unknown <hex_id>
1119 * 'U' // unknown <ascii_id>
1120 * // NOTE:lower case -> <hex_id>
1121 * // upper case -> <ascii_id>
1122 * // NOTE:this covers all types currently
1123 * // defined for <revision> 1.
1124 * // NOTE:a <type> can be added
1125 * // without changing the <revision>.
1126 *
1127 * <id> -> <ascii_id> | // <type> is upper case
1128 * <hex_id> // <type> is lower case
1129 *
1130 * <ascii_id> // only if all bytes of binary <id> field
1131 * // are in the set:
1132 * // [A-Z][a-z][0-9]+-.= and space and 0x00
1133 * // the encoded form is:
1134 * // [A-Z][a-z][0-9]+-.= and _ and ~
1135 * // NOTE: ' ' <=> '_', 0x00 <=> '~'
1136 * // these sets are chosen to avoid shell
1137 * // and conflicts with DDI node names.
1138 *
1139 * <hex_id> // if not <ascii_id>; each byte of binary
1140 * // <id> maps a to 2 digit ascii hex
1141 * // representation in the string.
1142 *
1143 * This encoding provides a meaningful correlation between the /devices
1144 * path and the devid string where possible.
1145 *
1146 * Fibre:
1147 * sbus@6,0/SUNW,socal@d,10000/sf@1,0/ssd@w21000020370bb488,0:c,raw
1148 * id1,ssd@w20000020370bb488:c,raw
1149 *
1150 * Copper:
1151 * sbus@7,0/SUNW,fas@3,8800000/sd@a,0:c
1152 * id1,sd@SIBM_____1XY210__________:c
1153 */
1154 /* determine if a byte of an id meets ASCII representation requirements */
1155 #define DEVID_IDBYTE_ISASCII(b) ( \
1156 (((b) >= 'a') && ((b) <= 'z')) || \
1157 (((b) >= 'A') && ((b) <= 'Z')) || \
1158 (((b) >= '0') && ((b) <= '9')) || \
1159 (b == '+') || (b == '-') || (b == '.') || (b == '=') || \
1160 (b == ' ') || (b == 0x00))
1161
1162 /* set type to lower case to indicate that the did_id field is ascii */
1163 #define DEVID_TYPE_SETASCII(c) (c - 0x20) /* 'a' -> 'A' */
1164
1165 /* determine from type if did_id field is binary or ascii */
1166 #define DEVID_TYPE_ISASCII(c) (((c) >= 'A') && ((c) <= 'Z'))
1167
1168 /* convert type field from binary to ascii */
1169 #define DEVID_TYPE_BINTOASCII(b) ( \
1170 ((b) == DEVID_SCSI3_WWN) ? 'w' : \
1171 ((b) == DEVID_SCSI3_VPD_T10) ? 't' : \
1172 ((b) == DEVID_SCSI3_VPD_EUI) ? 'x' : \
1173 ((b) == DEVID_SCSI3_VPD_NAA) ? 'n' : \
1174 ((b) == DEVID_SCSI_SERIAL) ? 's' : \
1175 ((b) == DEVID_FAB) ? 'f' : \
1176 ((b) == DEVID_ENCAP) ? 'e' : \
1177 ((b) == DEVID_ATA_SERIAL) ? 'a' : \
1178 'u') /* unknown */
1179
1180 /* convert type field from ascii to binary */
1181 #define DEVID_TYPE_ASCIITOBIN(c) ( \
1182 (((c) == 'w') || ((c) == 'W')) ? DEVID_SCSI3_WWN : \
1183 (((c) == 't') || ((c) == 'T')) ? DEVID_SCSI3_VPD_T10 : \
1184 (((c) == 'x') || ((c) == 'X')) ? DEVID_SCSI3_VPD_EUI : \
1185 (((c) == 'n') || ((c) == 'N')) ? DEVID_SCSI3_VPD_NAA : \
1186 (((c) == 's') || ((c) == 'S')) ? DEVID_SCSI_SERIAL : \
1187 (((c) == 'f') || ((c) == 'F')) ? DEVID_FAB : \
1188 (((c) == 'e') || ((c) == 'E')) ? DEVID_ENCAP : \
1189 (((c) == 'a') || ((c) == 'A')) ? DEVID_ATA_SERIAL : \
1190 DEVID_MAXTYPE +1) /* unknown */
1191
1192 /* determine if the type should be forced to hex encoding (non-ascii) */
1193 #define DEVID_TYPE_BIN_FORCEHEX(b) ( \
1194 ((b) == DEVID_SCSI3_WWN) || \
1195 ((b) == DEVID_SCSI3_VPD_EUI) || \
1196 ((b) == DEVID_SCSI3_VPD_NAA) || \
1197 ((b) == DEVID_FAB))
1198
1199 /* determine if the type is from a scsi3 vpd */
1200 #define IS_DEVID_SCSI3_VPD_TYPE(b) ( \
1201 ((b) == DEVID_SCSI3_VPD_T10) || \
1202 ((b) == DEVID_SCSI3_VPD_EUI) || \
1203 ((b) == DEVID_SCSI3_VPD_NAA))
1204
1205 /* convert rev field from binary to ascii (only supports 10 revs) */
1206 #define DEVID_REV_BINTOASCII(b) (b + '0')
1207
1208 /* convert rev field from ascii to binary (only supports 10 revs) */
1209 #define DEVID_REV_ASCIITOBIN(c) (c - '0')
1210
1211 /* name of devid property */
1212 #define DEVID_PROP_NAME "devid"
1213
1214 /*
1215 * prop_name used by pci_{save,restore}_config_regs()
1216 */
1217 #define SAVED_CONFIG_REGS "pci-config-regs"
1218 #define SAVED_CONFIG_REGS_MASK "pcie-config-regs-mask"
1219 #define SAVED_CONFIG_REGS_CAPINFO "pci-cap-info"
1220
1221 typedef struct pci_config_header_state {
1222 uint16_t chs_command;
1223 uint8_t chs_cache_line_size;
1224 uint8_t chs_latency_timer;
1225 uint8_t chs_header_type;
1226 uint8_t chs_sec_latency_timer;
1227 uint8_t chs_bridge_control;
1228 uint32_t chs_base0;
1229 uint32_t chs_base1;
1230 uint32_t chs_base2;
1231 uint32_t chs_base3;
1232 uint32_t chs_base4;
1233 uint32_t chs_base5;
1234 } pci_config_header_state_t;
1235
1236 #ifdef _KERNEL
1237
1238 typedef struct pci_cap_save_desc {
1239 uint16_t cap_offset;
1240 uint16_t cap_id;
1241 uint32_t cap_nregs;
1242 } pci_cap_save_desc_t;
1243
1244 typedef struct pci_cap_entry {
1245 uint16_t cap_id;
1246 uint16_t cap_reg;
1247 uint16_t cap_mask;
1248 uint32_t cap_ndwords;
1249 uint32_t (*cap_save_func)(ddi_acc_handle_t confhdl, uint16_t cap_ptr,
1250 uint32_t *regbuf, uint32_t ndwords);
1251 } pci_cap_entry_t;
1252
1253 #endif /* _KERNEL */
1254
1255 #ifdef __cplusplus
1256 }
1257 #endif
1258
1259 #endif /* _SYS_DDI_IMPLDEFS_H */