1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2018 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 #include <sys/cpuvar.h> 27 #include <sys/systm.h> 28 #include <sys/sysmacros.h> 29 #include <sys/promif.h> 30 #include <sys/platform_module.h> 31 #include <sys/cmn_err.h> 32 #include <sys/errno.h> 33 #include <sys/machsystm.h> 34 #include <sys/bootconf.h> 35 #include <sys/nvpair.h> 36 #include <sys/kobj.h> 37 #include <sys/mem_cage.h> 38 #include <sys/opl.h> 39 #include <sys/scfd/scfostoescf.h> 40 #include <sys/cpu_sgnblk_defs.h> 41 #include <sys/utsname.h> 42 #include <sys/ddi.h> 43 #include <sys/sunndi.h> 44 #include <sys/lgrp.h> 45 #include <sys/memnode.h> 46 #include <sys/sysmacros.h> 47 #include <sys/time.h> 48 #include <sys/cpu.h> 49 #include <sys/dumphdr.h> 50 #include <vm/vm_dep.h> 51 52 int (*opl_get_mem_unum)(int, uint64_t, char *, int, int *); 53 int (*opl_get_mem_sid)(char *unum, char *buf, int buflen, int *lenp); 54 int (*opl_get_mem_offset)(uint64_t paddr, uint64_t *offp); 55 int (*opl_get_mem_addr)(char *unum, char *sid, 56 uint64_t offset, uint64_t *paddr); 57 58 /* Memory for fcode claims. 16k times # maximum possible IO units */ 59 #define EFCODE_SIZE (OPL_MAX_BOARDS * OPL_MAX_IO_UNITS_PER_BOARD * 0x4000) 60 int efcode_size = EFCODE_SIZE; 61 62 #define OPL_MC_MEMBOARD_SHIFT 38 /* Boards on 256BG boundary */ 63 64 /* Set the maximum number of boards for DR */ 65 int opl_boards = OPL_MAX_BOARDS; 66 67 void sgn_update_all_cpus(ushort_t, uchar_t, uchar_t); 68 69 extern int tsb_lgrp_affinity; 70 71 int opl_tsb_spares = (OPL_MAX_BOARDS) * (OPL_MAX_PCICH_UNITS_PER_BOARD) * 72 (OPL_MAX_TSBS_PER_PCICH); 73 74 pgcnt_t opl_startup_cage_size = 0; 75 76 /* 77 * The length of the delay in seconds in communication with XSCF after 78 * which the warning message will be logged. 79 */ 80 uint_t xscf_connect_delay = 60 * 15; 81 82 static opl_model_info_t opl_models[] = { 83 { "FF1", OPL_MAX_BOARDS_FF1, FF1, STD_DISPATCH_TABLE }, 84 { "FF2", OPL_MAX_BOARDS_FF2, FF2, STD_DISPATCH_TABLE }, 85 { "DC1", OPL_MAX_BOARDS_DC1, DC1, STD_DISPATCH_TABLE }, 86 { "DC2", OPL_MAX_BOARDS_DC2, DC2, EXT_DISPATCH_TABLE }, 87 { "DC3", OPL_MAX_BOARDS_DC3, DC3, EXT_DISPATCH_TABLE }, 88 { "IKKAKU", OPL_MAX_BOARDS_IKKAKU, IKKAKU, STD_DISPATCH_TABLE }, 89 }; 90 static int opl_num_models = sizeof (opl_models)/sizeof (opl_model_info_t); 91 92 /* 93 * opl_cur_model 94 */ 95 static opl_model_info_t *opl_cur_model = NULL; 96 97 static struct memlist *opl_memlist_per_board(struct memlist *ml); 98 static void post_xscf_msg(char *, int); 99 static void pass2xscf_thread(); 100 101 /* 102 * Note FF/DC out-of-order instruction engine takes only a 103 * single cycle to execute each spin loop 104 * for comparison, Panther takes 6 cycles for same loop 105 * OPL_BOFF_SPIN = base spin loop, roughly one memory reference time 106 * OPL_BOFF_TM = approx nsec for OPL sleep instruction (1600 for OPL-C) 107 * OPL_BOFF_SLEEP = approx number of SPIN iterations to equal one sleep 108 * OPL_BOFF_MAX_SCALE - scaling factor for max backoff based on active cpus 109 * Listed values tuned for 2.15GHz to 2.64GHz systems 110 * Value may change for future systems 111 */ 112 #define OPL_BOFF_SPIN 7 113 #define OPL_BOFF_SLEEP 4 114 #define OPL_BOFF_TM 1600 115 #define OPL_BOFF_MAX_SCALE 8 116 117 #define OPL_CLOCK_TICK_THRESHOLD 128 118 #define OPL_CLOCK_TICK_NCPUS 64 119 120 extern int clock_tick_threshold; 121 extern int clock_tick_ncpus; 122 123 int 124 set_platform_max_ncpus(void) 125 { 126 return (OPL_MAX_CPU_PER_BOARD * OPL_MAX_BOARDS); 127 } 128 129 int 130 set_platform_tsb_spares(void) 131 { 132 return (MIN(opl_tsb_spares, MAX_UPA)); 133 } 134 135 static void 136 set_model_info() 137 { 138 extern int ts_dispatch_extended; 139 char name[MAXSYSNAME]; 140 int i; 141 142 /* 143 * Get model name from the root node. 144 * 145 * We are using the prom device tree since, at this point, 146 * the Solaris device tree is not yet setup. 147 */ 148 (void) prom_getprop(prom_rootnode(), "model", (caddr_t)name); 149 150 for (i = 0; i < opl_num_models; i++) { 151 if (strncmp(name, opl_models[i].model_name, MAXSYSNAME) == 0) { 152 opl_cur_model = &opl_models[i]; 153 break; 154 } 155 } 156 157 /* 158 * If model not matched, it's an unknown model. 159 * Just return. It will default to standard dispatch tables. 160 */ 161 if (i == opl_num_models) 162 return; 163 164 if ((opl_cur_model->model_cmds & EXT_DISPATCH_TABLE) && 165 (ts_dispatch_extended == -1)) { 166 /* 167 * Based on a platform model, select a dispatch table. 168 * Only DC2 and DC3 systems uses the alternate/extended 169 * TS dispatch table. 170 * IKKAKU, FF1, FF2 and DC1 systems use standard dispatch 171 * tables. 172 */ 173 ts_dispatch_extended = 1; 174 } 175 176 } 177 178 static void 179 set_max_mmu_ctxdoms() 180 { 181 extern uint_t max_mmu_ctxdoms; 182 int max_boards; 183 184 /* 185 * From the model, get the maximum number of boards 186 * supported and set the value accordingly. If the model 187 * could not be determined or recognized, we assume the max value. 188 */ 189 if (opl_cur_model == NULL) 190 max_boards = OPL_MAX_BOARDS; 191 else 192 max_boards = opl_cur_model->model_max_boards; 193 194 /* 195 * On OPL, cores and MMUs are one-to-one. 196 */ 197 max_mmu_ctxdoms = OPL_MAX_CORE_UNITS_PER_BOARD * max_boards; 198 } 199 200 #pragma weak mmu_init_large_pages 201 202 void 203 set_platform_defaults(void) 204 { 205 extern char *tod_module_name; 206 extern void cpu_sgn_update(ushort_t, uchar_t, uchar_t, int); 207 extern void mmu_init_large_pages(size_t); 208 209 /* Set the CPU signature function pointer */ 210 cpu_sgn_func = cpu_sgn_update; 211 212 /* Set appropriate tod module for OPL platform */ 213 ASSERT(tod_module_name == NULL); 214 tod_module_name = "todopl"; 215 216 if ((mmu_page_sizes == max_mmu_page_sizes) && 217 (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) { 218 if (&mmu_init_large_pages) 219 mmu_init_large_pages(mmu_ism_pagesize); 220 } 221 222 tsb_lgrp_affinity = 1; 223 224 set_max_mmu_ctxdoms(); 225 } 226 227 /* 228 * Convert logical a board number to a physical one. 229 */ 230 231 #define LSBPROP "board#" 232 #define PSBPROP "physical-board#" 233 234 int 235 opl_get_physical_board(int id) 236 { 237 dev_info_t *root_dip, *dip = NULL; 238 char *dname = NULL; 239 int circ; 240 241 pnode_t pnode; 242 char pname[MAXSYSNAME] = {0}; 243 244 int lsb_id; /* Logical System Board ID */ 245 int psb_id; /* Physical System Board ID */ 246 247 248 /* 249 * This function is called on early stage of bootup when the 250 * kernel device tree is not initialized yet, and also 251 * later on when the device tree is up. We want to try 252 * the fast track first. 253 */ 254 root_dip = ddi_root_node(); 255 if (root_dip) { 256 /* Get from devinfo node */ 257 ndi_devi_enter(root_dip, &circ); 258 for (dip = ddi_get_child(root_dip); dip; 259 dip = ddi_get_next_sibling(dip)) { 260 261 dname = ddi_node_name(dip); 262 if (strncmp(dname, "pseudo-mc", 9) != 0) 263 continue; 264 265 if ((lsb_id = (int)ddi_getprop(DDI_DEV_T_ANY, dip, 266 DDI_PROP_DONTPASS, LSBPROP, -1)) == -1) 267 continue; 268 269 if (id == lsb_id) { 270 if ((psb_id = (int)ddi_getprop(DDI_DEV_T_ANY, 271 dip, DDI_PROP_DONTPASS, PSBPROP, -1)) 272 == -1) { 273 ndi_devi_exit(root_dip, circ); 274 return (-1); 275 } else { 276 ndi_devi_exit(root_dip, circ); 277 return (psb_id); 278 } 279 } 280 } 281 ndi_devi_exit(root_dip, circ); 282 } 283 284 /* 285 * We do not have the kernel device tree, or we did not 286 * find the node for some reason (let's say the kernel 287 * device tree was modified), let's try the OBP tree. 288 */ 289 pnode = prom_rootnode(); 290 for (pnode = prom_childnode(pnode); pnode; 291 pnode = prom_nextnode(pnode)) { 292 293 if ((prom_getprop(pnode, "name", (caddr_t)pname) == -1) || 294 (strncmp(pname, "pseudo-mc", 9) != 0)) 295 continue; 296 297 if (prom_getprop(pnode, LSBPROP, (caddr_t)&lsb_id) == -1) 298 continue; 299 300 if (id == lsb_id) { 301 if (prom_getprop(pnode, PSBPROP, 302 (caddr_t)&psb_id) == -1) { 303 return (-1); 304 } else { 305 return (psb_id); 306 } 307 } 308 } 309 310 return (-1); 311 } 312 313 /* 314 * For OPL it's possible that memory from two or more successive boards 315 * will be contiguous across the boards, and therefore represented as a 316 * single chunk. 317 * This function splits such chunks down the board boundaries. 318 */ 319 static struct memlist * 320 opl_memlist_per_board(struct memlist *ml) 321 { 322 uint64_t ssize, low, high, boundary; 323 struct memlist *head, *tail, *new; 324 325 ssize = (1ull << OPL_MC_MEMBOARD_SHIFT); 326 327 head = tail = NULL; 328 329 for (; ml; ml = ml->ml_next) { 330 low = (uint64_t)ml->ml_address; 331 high = low+(uint64_t)(ml->ml_size); 332 while (low < high) { 333 boundary = roundup(low+1, ssize); 334 boundary = MIN(high, boundary); 335 new = kmem_zalloc(sizeof (struct memlist), KM_SLEEP); 336 new->ml_address = low; 337 new->ml_size = boundary - low; 338 if (head == NULL) 339 head = new; 340 if (tail) { 341 tail->ml_next = new; 342 new->ml_prev = tail; 343 } 344 tail = new; 345 low = boundary; 346 } 347 } 348 return (head); 349 } 350 351 void 352 set_platform_cage_params(void) 353 { 354 extern pgcnt_t total_pages; 355 extern struct memlist *phys_avail; 356 struct memlist *ml, *tml; 357 358 if (kernel_cage_enable) { 359 pgcnt_t preferred_cage_size; 360 361 preferred_cage_size = MAX(opl_startup_cage_size, 362 total_pages / 256); 363 364 ml = opl_memlist_per_board(phys_avail); 365 366 /* 367 * Note: we are assuming that post has load the 368 * whole show in to the high end of memory. Having 369 * taken this leap, we copy the whole of phys_avail 370 * the glist and arrange for the cage to grow 371 * downward (descending pfns). 372 */ 373 kcage_range_init(ml, KCAGE_DOWN, preferred_cage_size); 374 375 /* free the memlist */ 376 do { 377 tml = ml->ml_next; 378 kmem_free(ml, sizeof (struct memlist)); 379 ml = tml; 380 } while (ml != NULL); 381 } 382 383 if (kcage_on) 384 cmn_err(CE_NOTE, "!DR Kernel Cage is ENABLED"); 385 else 386 cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED"); 387 } 388 389 /*ARGSUSED*/ 390 int 391 plat_cpu_poweron(struct cpu *cp) 392 { 393 int (*opl_cpu_poweron)(struct cpu *) = NULL; 394 395 opl_cpu_poweron = 396 (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweron", 0); 397 398 if (opl_cpu_poweron == NULL) 399 return (ENOTSUP); 400 else 401 return ((opl_cpu_poweron)(cp)); 402 403 } 404 405 /*ARGSUSED*/ 406 int 407 plat_cpu_poweroff(struct cpu *cp) 408 { 409 int (*opl_cpu_poweroff)(struct cpu *) = NULL; 410 411 opl_cpu_poweroff = 412 (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweroff", 0); 413 414 if (opl_cpu_poweroff == NULL) 415 return (ENOTSUP); 416 else 417 return ((opl_cpu_poweroff)(cp)); 418 419 } 420 421 int 422 plat_max_boards(void) 423 { 424 /* 425 * If the model cannot be determined, default to the max value. 426 * Otherwise, Ikkaku model only supports 1 system board. 427 */ 428 if ((opl_cur_model != NULL) && (opl_cur_model->model_type == IKKAKU)) 429 return (OPL_MAX_BOARDS_IKKAKU); 430 else 431 return (OPL_MAX_BOARDS); 432 } 433 434 int 435 plat_max_cpu_units_per_board(void) 436 { 437 return (OPL_MAX_CPU_PER_BOARD); 438 } 439 440 int 441 plat_max_mem_units_per_board(void) 442 { 443 return (OPL_MAX_MEM_UNITS_PER_BOARD); 444 } 445 446 int 447 plat_max_io_units_per_board(void) 448 { 449 return (OPL_MAX_IO_UNITS_PER_BOARD); 450 } 451 452 int 453 plat_max_cmp_units_per_board(void) 454 { 455 return (OPL_MAX_CMP_UNITS_PER_BOARD); 456 } 457 458 int 459 plat_max_core_units_per_board(void) 460 { 461 return (OPL_MAX_CORE_UNITS_PER_BOARD); 462 } 463 464 int 465 plat_pfn_to_mem_node(pfn_t pfn) 466 { 467 return (pfn >> mem_node_pfn_shift); 468 } 469 470 /* ARGSUSED */ 471 void 472 plat_build_mem_nodes(prom_memlist_t *list, size_t nelems) 473 { 474 size_t elem; 475 pfn_t basepfn; 476 pgcnt_t npgs; 477 uint64_t boundary, ssize; 478 uint64_t low, high; 479 480 /* 481 * OPL mem slices are always aligned on a 256GB boundary. 482 */ 483 mem_node_pfn_shift = OPL_MC_MEMBOARD_SHIFT - MMU_PAGESHIFT; 484 mem_node_physalign = 0; 485 486 /* 487 * Boot install lists are arranged <addr, len>, <addr, len>, ... 488 */ 489 ssize = (1ull << OPL_MC_MEMBOARD_SHIFT); 490 for (elem = 0; elem < nelems; list++, elem++) { 491 low = list->addr; 492 high = low + list->size; 493 while (low < high) { 494 boundary = roundup(low+1, ssize); 495 boundary = MIN(high, boundary); 496 basepfn = btop(low); 497 npgs = btop(boundary - low); 498 mem_node_add_slice(basepfn, basepfn + npgs - 1); 499 low = boundary; 500 } 501 } 502 } 503 504 /* 505 * Find the CPU associated with a slice at boot-time. 506 */ 507 void 508 plat_fill_mc(pnode_t nodeid) 509 { 510 int board; 511 int memnode; 512 struct { 513 uint64_t addr; 514 uint64_t size; 515 } mem_range; 516 517 if (prom_getprop(nodeid, "board#", (caddr_t)&board) < 0) { 518 panic("Can not find board# property in mc node %x", nodeid); 519 } 520 if (prom_getprop(nodeid, "sb-mem-ranges", (caddr_t)&mem_range) < 0) { 521 panic("Can not find sb-mem-ranges property in mc node %x", 522 nodeid); 523 } 524 memnode = mem_range.addr >> OPL_MC_MEMBOARD_SHIFT; 525 plat_assign_lgrphand_to_mem_node(board, memnode); 526 } 527 528 /* 529 * Return the platform handle for the lgroup containing the given CPU 530 * 531 * For OPL, lgroup platform handle == board #. 532 */ 533 534 extern int mpo_disabled; 535 extern lgrp_handle_t lgrp_default_handle; 536 537 lgrp_handle_t 538 plat_lgrp_cpu_to_hand(processorid_t id) 539 { 540 lgrp_handle_t plathand; 541 542 /* 543 * Return the real platform handle for the CPU until 544 * such time as we know that MPO should be disabled. 545 * At that point, we set the "mpo_disabled" flag to true, 546 * and from that point on, return the default handle. 547 * 548 * By the time we know that MPO should be disabled, the 549 * first CPU will have already been added to a leaf 550 * lgroup, but that's ok. The common lgroup code will 551 * double check that the boot CPU is in the correct place, 552 * and in the case where mpo should be disabled, will move 553 * it to the root if necessary. 554 */ 555 if (mpo_disabled) { 556 /* If MPO is disabled, return the default (UMA) handle */ 557 plathand = lgrp_default_handle; 558 } else 559 plathand = (lgrp_handle_t)LSB_ID(id); 560 return (plathand); 561 } 562 563 /* 564 * Platform specific lgroup initialization 565 */ 566 void 567 plat_lgrp_init(void) 568 { 569 extern uint32_t lgrp_expand_proc_thresh; 570 extern uint32_t lgrp_expand_proc_diff; 571 const uint_t m = LGRP_LOADAVG_THREAD_MAX; 572 573 /* 574 * Set tuneables for the OPL architecture 575 * 576 * lgrp_expand_proc_thresh is the threshold load on the set of 577 * lgroups a process is currently using on before considering 578 * adding another lgroup to the set. For Oly-C and Jupiter 579 * systems, there are four sockets per lgroup. Setting 580 * lgrp_expand_proc_thresh to add lgroups when the load reaches 581 * four threads will spread the load when it exceeds one thread 582 * per socket, optimizing memory bandwidth and L2 cache space. 583 * 584 * lgrp_expand_proc_diff determines how much less another lgroup 585 * must be loaded before shifting the start location of a thread 586 * to it. 587 * 588 * lgrp_loadavg_tolerance is the threshold where two lgroups are 589 * considered to have different loads. It is set to be less than 590 * 1% so that even a small residual load will be considered different 591 * from no residual load. 592 * 593 * We note loadavg values are not precise. 594 * Every 1/10 of a second loadavg values are reduced by 5%. 595 * This adjustment can come in the middle of the lgroup selection 596 * process, and for larger parallel apps with many threads can 597 * frequently occur between the start of the second thread 598 * placement and the finish of the last thread placement. 599 * We also must be careful to not use too small of a threshold 600 * since the cumulative decay for 1 second idle time is 40%. 601 * That is, the residual load from completed threads will still 602 * be 60% one second after the proc goes idle or 8% after 5 seconds. 603 * 604 * To allow for lag time in loadavg calculations 605 * remote thresh = 3.75 * LGRP_LOADAVG_THREAD_MAX 606 * local thresh = 0.75 * LGRP_LOADAVG_THREAD_MAX 607 * tolerance = 0.0078 * LGRP_LOADAVG_THREAD_MAX 608 * 609 * The load placement algorithms consider LGRP_LOADAVG_THREAD_MAX 610 * as the equivalent of a load of 1. To make the code more compact, 611 * we set m = LGRP_LOADAVG_THREAD_MAX. 612 */ 613 lgrp_expand_proc_thresh = (m * 3) + (m >> 1) + (m >> 2); 614 lgrp_expand_proc_diff = (m >> 1) + (m >> 2); 615 lgrp_loadavg_tolerance = (m >> 7); 616 } 617 618 /* 619 * Platform notification of lgroup (re)configuration changes 620 */ 621 /*ARGSUSED*/ 622 void 623 plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg) 624 { 625 update_membounds_t *umb; 626 lgrp_config_mem_rename_t lmr; 627 int sbd, tbd; 628 lgrp_handle_t hand, shand, thand; 629 int mnode, snode, tnode; 630 pfn_t start, end; 631 632 if (mpo_disabled) 633 return; 634 635 switch (evt) { 636 637 case LGRP_CONFIG_MEM_ADD: 638 /* 639 * Establish the lgroup handle to memnode translation. 640 */ 641 umb = (update_membounds_t *)arg; 642 643 hand = umb->u_board; 644 mnode = plat_pfn_to_mem_node(umb->u_base >> MMU_PAGESHIFT); 645 plat_assign_lgrphand_to_mem_node(hand, mnode); 646 647 break; 648 649 case LGRP_CONFIG_MEM_DEL: 650 /* 651 * Special handling for possible memory holes. 652 */ 653 umb = (update_membounds_t *)arg; 654 hand = umb->u_board; 655 if ((mnode = plat_lgrphand_to_mem_node(hand)) != -1) { 656 if (mem_node_config[mnode].exists) { 657 start = mem_node_config[mnode].physbase; 658 end = mem_node_config[mnode].physmax; 659 mem_node_del_slice(start, end); 660 } 661 } 662 663 break; 664 665 case LGRP_CONFIG_MEM_RENAME: 666 /* 667 * During a DR copy-rename operation, all of the memory 668 * on one board is moved to another board -- but the 669 * addresses/pfns and memnodes don't change. This means 670 * the memory has changed locations without changing identity. 671 * 672 * Source is where we are copying from and target is where we 673 * are copying to. After source memnode is copied to target 674 * memnode, the physical addresses of the target memnode are 675 * renamed to match what the source memnode had. Then target 676 * memnode can be removed and source memnode can take its 677 * place. 678 * 679 * To do this, swap the lgroup handle to memnode mappings for 680 * the boards, so target lgroup will have source memnode and 681 * source lgroup will have empty target memnode which is where 682 * its memory will go (if any is added to it later). 683 * 684 * Then source memnode needs to be removed from its lgroup 685 * and added to the target lgroup where the memory was living 686 * but under a different name/memnode. The memory was in the 687 * target memnode and now lives in the source memnode with 688 * different physical addresses even though it is the same 689 * memory. 690 */ 691 sbd = arg & 0xffff; 692 tbd = (arg & 0xffff0000) >> 16; 693 shand = sbd; 694 thand = tbd; 695 snode = plat_lgrphand_to_mem_node(shand); 696 tnode = plat_lgrphand_to_mem_node(thand); 697 698 /* 699 * Special handling for possible memory holes. 700 */ 701 if (tnode != -1 && mem_node_config[tnode].exists) { 702 start = mem_node_config[tnode].physbase; 703 end = mem_node_config[tnode].physmax; 704 mem_node_del_slice(start, end); 705 } 706 707 plat_assign_lgrphand_to_mem_node(thand, snode); 708 plat_assign_lgrphand_to_mem_node(shand, tnode); 709 710 lmr.lmem_rename_from = shand; 711 lmr.lmem_rename_to = thand; 712 713 /* 714 * Remove source memnode of copy rename from its lgroup 715 * and add it to its new target lgroup 716 */ 717 lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode, 718 (uintptr_t)&lmr); 719 720 break; 721 722 default: 723 break; 724 } 725 } 726 727 /* 728 * Return latency between "from" and "to" lgroups 729 * 730 * This latency number can only be used for relative comparison 731 * between lgroups on the running system, cannot be used across platforms, 732 * and may not reflect the actual latency. It is platform and implementation 733 * specific, so platform gets to decide its value. It would be nice if the 734 * number was at least proportional to make comparisons more meaningful though. 735 * NOTE: The numbers below are supposed to be load latencies for uncached 736 * memory divided by 10. 737 * 738 */ 739 int 740 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to) 741 { 742 /* 743 * Return min remote latency when there are more than two lgroups 744 * (root and child) and getting latency between two different lgroups 745 * or root is involved 746 */ 747 if (lgrp_optimizations() && (from != to || 748 from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE)) 749 return (42); 750 else 751 return (35); 752 } 753 754 /* 755 * Return platform handle for root lgroup 756 */ 757 lgrp_handle_t 758 plat_lgrp_root_hand(void) 759 { 760 if (mpo_disabled) 761 return (lgrp_default_handle); 762 763 return (LGRP_DEFAULT_HANDLE); 764 } 765 766 /*ARGSUSED*/ 767 void 768 plat_freelist_process(int mnode) 769 { 770 } 771 772 void 773 load_platform_drivers(void) 774 { 775 (void) i_ddi_attach_pseudo_node("dr"); 776 } 777 778 /* 779 * No platform drivers on this platform 780 */ 781 char *platform_module_list[] = { 782 (char *)0 783 }; 784 785 /*ARGSUSED*/ 786 void 787 plat_tod_fault(enum tod_fault_type tod_bad) 788 { 789 } 790 791 /*ARGSUSED*/ 792 void 793 cpu_sgn_update(ushort_t sgn, uchar_t state, uchar_t sub_state, int cpuid) 794 { 795 static void (*scf_panic_callback)(int); 796 static void (*scf_shutdown_callback)(int); 797 798 /* 799 * This is for notifing system panic/shutdown to SCF. 800 * In case of shutdown and panic, SCF call back 801 * function should be called. 802 * <SCF call back functions> 803 * scf_panic_callb() : panicsys()->panic_quiesce_hw() 804 * scf_shutdown_callb(): halt() or power_down() or reboot_machine() 805 * cpuid should be -1 and state should be SIGST_EXIT. 806 */ 807 if (state == SIGST_EXIT && cpuid == -1) { 808 809 /* 810 * find the symbol for the SCF panic callback routine in driver 811 */ 812 if (scf_panic_callback == NULL) 813 scf_panic_callback = (void (*)(int)) 814 modgetsymvalue("scf_panic_callb", 0); 815 if (scf_shutdown_callback == NULL) 816 scf_shutdown_callback = (void (*)(int)) 817 modgetsymvalue("scf_shutdown_callb", 0); 818 819 switch (sub_state) { 820 case SIGSUBST_PANIC: 821 if (scf_panic_callback == NULL) { 822 cmn_err(CE_NOTE, "!cpu_sgn_update: " 823 "scf_panic_callb not found\n"); 824 return; 825 } 826 scf_panic_callback(SIGSUBST_PANIC); 827 break; 828 829 case SIGSUBST_HALT: 830 if (scf_shutdown_callback == NULL) { 831 cmn_err(CE_NOTE, "!cpu_sgn_update: " 832 "scf_shutdown_callb not found\n"); 833 return; 834 } 835 scf_shutdown_callback(SIGSUBST_HALT); 836 break; 837 838 case SIGSUBST_ENVIRON: 839 if (scf_shutdown_callback == NULL) { 840 cmn_err(CE_NOTE, "!cpu_sgn_update: " 841 "scf_shutdown_callb not found\n"); 842 return; 843 } 844 scf_shutdown_callback(SIGSUBST_ENVIRON); 845 break; 846 847 case SIGSUBST_REBOOT: 848 if (scf_shutdown_callback == NULL) { 849 cmn_err(CE_NOTE, "!cpu_sgn_update: " 850 "scf_shutdown_callb not found\n"); 851 return; 852 } 853 scf_shutdown_callback(SIGSUBST_REBOOT); 854 break; 855 } 856 } 857 } 858 859 /*ARGSUSED*/ 860 int 861 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id, 862 int flt_in_memory, ushort_t flt_status, char *buf, int buflen, int *lenp) 863 { 864 /* 865 * check if it's a Memory error. 866 */ 867 if (flt_in_memory) { 868 if (opl_get_mem_unum != NULL) { 869 return (opl_get_mem_unum(synd_code, flt_addr, buf, 870 buflen, lenp)); 871 } else { 872 return (ENOTSUP); 873 } 874 } else { 875 return (ENOTSUP); 876 } 877 } 878 879 /*ARGSUSED*/ 880 int 881 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp) 882 { 883 int ret = 0; 884 int sb; 885 int plen; 886 887 sb = opl_get_physical_board(LSB_ID(cpuid)); 888 if (sb == -1) { 889 return (ENXIO); 890 } 891 892 /* 893 * opl_cur_model is assigned here 894 */ 895 if (opl_cur_model == NULL) { 896 set_model_info(); 897 898 /* 899 * if not matched, return 900 */ 901 if (opl_cur_model == NULL) 902 return (ENODEV); 903 } 904 905 ASSERT((opl_cur_model - opl_models) == (opl_cur_model->model_type)); 906 907 switch (opl_cur_model->model_type) { 908 case FF1: 909 plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_A", 910 CHIP_ID(cpuid) / 2); 911 break; 912 913 case FF2: 914 plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_B", 915 (CHIP_ID(cpuid) / 2) + (sb * 2)); 916 break; 917 918 case DC1: 919 case DC2: 920 case DC3: 921 plen = snprintf(buf, buflen, "/%s%02d/CPUM%d", "CMU", sb, 922 CHIP_ID(cpuid)); 923 break; 924 925 case IKKAKU: 926 plen = snprintf(buf, buflen, "/%s", "MBU_A"); 927 break; 928 929 default: 930 /* This should never happen */ 931 return (ENODEV); 932 } 933 934 if (plen >= buflen) { 935 ret = ENOSPC; 936 } else { 937 if (lenp) 938 *lenp = strlen(buf); 939 } 940 return (ret); 941 } 942 943 void 944 plat_nodename_set(void) 945 { 946 post_xscf_msg((char *)&utsname, sizeof (struct utsname)); 947 } 948 949 caddr_t efcode_vaddr = NULL; 950 951 /* 952 * Preallocate enough memory for fcode claims. 953 */ 954 955 caddr_t 956 efcode_alloc(caddr_t alloc_base) 957 { 958 caddr_t efcode_alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, 959 MMU_PAGESIZE); 960 caddr_t vaddr; 961 962 /* 963 * allocate the physical memory for the Oberon fcode. 964 */ 965 if ((vaddr = (caddr_t)BOP_ALLOC(bootops, efcode_alloc_base, 966 efcode_size, MMU_PAGESIZE)) == NULL) 967 cmn_err(CE_PANIC, "Cannot allocate Efcode Memory"); 968 969 efcode_vaddr = vaddr; 970 971 return (efcode_alloc_base + efcode_size); 972 } 973 974 caddr_t 975 plat_startup_memlist(caddr_t alloc_base) 976 { 977 caddr_t tmp_alloc_base; 978 979 tmp_alloc_base = efcode_alloc(alloc_base); 980 tmp_alloc_base = 981 (caddr_t)roundup((uintptr_t)tmp_alloc_base, ecache_alignsize); 982 return (tmp_alloc_base); 983 } 984 985 /* need to forward declare these */ 986 static void plat_lock_delay(uint_t); 987 988 void 989 startup_platform(void) 990 { 991 if (clock_tick_threshold == 0) 992 clock_tick_threshold = OPL_CLOCK_TICK_THRESHOLD; 993 if (clock_tick_ncpus == 0) 994 clock_tick_ncpus = OPL_CLOCK_TICK_NCPUS; 995 mutex_lock_delay = plat_lock_delay; 996 mutex_cap_factor = OPL_BOFF_MAX_SCALE; 997 } 998 999 static uint_t 1000 get_mmu_id(processorid_t cpuid) 1001 { 1002 int pb = opl_get_physical_board(LSB_ID(cpuid)); 1003 1004 if (pb == -1) { 1005 cmn_err(CE_PANIC, 1006 "opl_get_physical_board failed (cpu %d LSB %u)", 1007 cpuid, LSB_ID(cpuid)); 1008 } 1009 return (pb * OPL_MAX_COREID_PER_BOARD) + (CHIP_ID(cpuid) * 1010 OPL_MAX_COREID_PER_CMP) + CORE_ID(cpuid); 1011 } 1012 1013 void 1014 plat_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *info) 1015 { 1016 int impl; 1017 1018 impl = cpunodes[cpuid].implementation; 1019 if (IS_OLYMPUS_C(impl) || IS_JUPITER(impl)) { 1020 info->mmu_idx = get_mmu_id(cpuid); 1021 info->mmu_nctxs = 8192; 1022 } else { 1023 cmn_err(CE_PANIC, "Unknown processor %d", impl); 1024 } 1025 } 1026 1027 int 1028 plat_get_mem_sid(char *unum, char *buf, int buflen, int *lenp) 1029 { 1030 if (opl_get_mem_sid == NULL) { 1031 return (ENOTSUP); 1032 } 1033 return (opl_get_mem_sid(unum, buf, buflen, lenp)); 1034 } 1035 1036 int 1037 plat_get_mem_offset(uint64_t paddr, uint64_t *offp) 1038 { 1039 if (opl_get_mem_offset == NULL) { 1040 return (ENOTSUP); 1041 } 1042 return (opl_get_mem_offset(paddr, offp)); 1043 } 1044 1045 int 1046 plat_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp) 1047 { 1048 if (opl_get_mem_addr == NULL) { 1049 return (ENOTSUP); 1050 } 1051 return (opl_get_mem_addr(unum, sid, offset, addrp)); 1052 } 1053 1054 void 1055 plat_lock_delay(uint_t backoff) 1056 { 1057 int i; 1058 uint_t cnt, remcnt; 1059 int ctr; 1060 hrtime_t delay_start, rem_delay; 1061 /* 1062 * Platform specific lock delay code for OPL 1063 * 1064 * Using staged linear increases in the delay. 1065 * The sleep instruction is the preferred method of delay, 1066 * but is too large of granularity for the initial backoff. 1067 */ 1068 1069 if (backoff < 100) { 1070 /* 1071 * If desired backoff is long enough, 1072 * use sleep for most of it 1073 */ 1074 for (cnt = backoff; 1075 cnt >= OPL_BOFF_SLEEP; 1076 cnt -= OPL_BOFF_SLEEP) { 1077 cpu_smt_pause(); 1078 } 1079 /* 1080 * spin for small remainder of backoff 1081 */ 1082 for (ctr = cnt * OPL_BOFF_SPIN; ctr; ctr--) { 1083 mutex_delay_default(); 1084 } 1085 } else { 1086 /* backoff is large. Fill it by sleeping */ 1087 delay_start = gethrtime_waitfree(); 1088 cnt = backoff / OPL_BOFF_SLEEP; 1089 /* 1090 * use sleep instructions for delay 1091 */ 1092 for (i = 0; i < cnt; i++) { 1093 cpu_smt_pause(); 1094 } 1095 1096 /* 1097 * Note: if the other strand executes a sleep instruction, 1098 * then the sleep ends immediately with a minimum time of 1099 * 42 clocks. We check gethrtime to insure we have 1100 * waited long enough. And we include both a short 1101 * spin loop and a sleep for repeated delay times. 1102 */ 1103 1104 rem_delay = gethrtime_waitfree() - delay_start; 1105 while (rem_delay < cnt * OPL_BOFF_TM) { 1106 remcnt = cnt - (rem_delay / OPL_BOFF_TM); 1107 for (i = 0; i < remcnt; i++) { 1108 cpu_smt_pause(); 1109 for (ctr = OPL_BOFF_SPIN; ctr; ctr--) { 1110 mutex_delay_default(); 1111 } 1112 } 1113 rem_delay = gethrtime_waitfree() - delay_start; 1114 } 1115 } 1116 } 1117 1118 /* 1119 * The following code implements asynchronous call to XSCF to setup the 1120 * domain node name. 1121 */ 1122 1123 #define FREE_MSG(m) kmem_free((m), NM_LEN((m)->len)) 1124 1125 /* 1126 * The following three macros define the all operations on the request 1127 * list we are using here, and hide the details of the list 1128 * implementation from the code. 1129 */ 1130 #define PUSH(m) \ 1131 { \ 1132 (m)->next = ctl_msg.head; \ 1133 (m)->prev = NULL; \ 1134 if ((m)->next != NULL) \ 1135 (m)->next->prev = (m); \ 1136 ctl_msg.head = (m); \ 1137 } 1138 1139 #define REMOVE(m) \ 1140 { \ 1141 if ((m)->prev != NULL) \ 1142 (m)->prev->next = (m)->next; \ 1143 else \ 1144 ctl_msg.head = (m)->next; \ 1145 if ((m)->next != NULL) \ 1146 (m)->next->prev = (m)->prev; \ 1147 } 1148 1149 #define FREE_THE_TAIL(head) \ 1150 { \ 1151 nm_msg_t *n_msg, *m; \ 1152 m = (head)->next; \ 1153 (head)->next = NULL; \ 1154 while (m != NULL) { \ 1155 n_msg = m->next; \ 1156 FREE_MSG(m); \ 1157 m = n_msg; \ 1158 } \ 1159 } 1160 1161 #define SCF_PUTINFO(f, s, p) \ 1162 f(KEY_ESCF, 0x01, 0, s, p) 1163 1164 #define PASS2XSCF(m, r) ((r = SCF_PUTINFO(ctl_msg.scf_service_function, \ 1165 (m)->len, (m)->data)) == 0) 1166 1167 /* 1168 * The value of the following macro loosely depends on the 1169 * value of the "device busy" timeout used in the SCF driver. 1170 * (See pass2xscf_thread()). 1171 */ 1172 #define SCF_DEVBUSY_DELAY 10 1173 1174 /* 1175 * The default number of attempts to contact the scf driver 1176 * if we cannot fetch any information about the timeout value 1177 * it uses. 1178 */ 1179 1180 #define REPEATS 4 1181 1182 typedef struct nm_msg { 1183 struct nm_msg *next; 1184 struct nm_msg *prev; 1185 int len; 1186 char data[1]; 1187 } nm_msg_t; 1188 1189 #define NM_LEN(len) (sizeof (nm_msg_t) + (len) - 1) 1190 1191 static struct ctlmsg { 1192 nm_msg_t *head; 1193 nm_msg_t *now_serving; 1194 kmutex_t nm_lock; 1195 kthread_t *nmt; 1196 int cnt; 1197 int (*scf_service_function)(uint32_t, uint8_t, 1198 uint32_t, uint32_t, void *); 1199 } ctl_msg; 1200 1201 static void 1202 post_xscf_msg(char *dp, int len) 1203 { 1204 nm_msg_t *msg; 1205 1206 msg = (nm_msg_t *)kmem_zalloc(NM_LEN(len), KM_SLEEP); 1207 1208 bcopy(dp, msg->data, len); 1209 msg->len = len; 1210 1211 mutex_enter(&ctl_msg.nm_lock); 1212 if (ctl_msg.nmt == NULL) { 1213 ctl_msg.nmt = thread_create(NULL, 0, pass2xscf_thread, 1214 NULL, 0, &p0, TS_RUN, minclsyspri); 1215 } 1216 1217 PUSH(msg); 1218 ctl_msg.cnt++; 1219 mutex_exit(&ctl_msg.nm_lock); 1220 } 1221 1222 static void 1223 pass2xscf_thread() 1224 { 1225 nm_msg_t *msg; 1226 int ret; 1227 uint_t i, msg_sent, xscf_driver_delay; 1228 static uint_t repeat_cnt; 1229 uint_t *scf_wait_cnt; 1230 1231 mutex_enter(&ctl_msg.nm_lock); 1232 1233 /* 1234 * Find the address of the SCF put routine if it's not done yet. 1235 */ 1236 if (ctl_msg.scf_service_function == NULL) { 1237 if ((ctl_msg.scf_service_function = 1238 (int (*)(uint32_t, uint8_t, uint32_t, uint32_t, void *)) 1239 modgetsymvalue("scf_service_putinfo", 0)) == NULL) { 1240 cmn_err(CE_NOTE, "pass2xscf_thread: " 1241 "scf_service_putinfo not found\n"); 1242 ctl_msg.nmt = NULL; 1243 mutex_exit(&ctl_msg.nm_lock); 1244 return; 1245 } 1246 } 1247 1248 /* 1249 * Calculate the number of attempts to connect XSCF based on the 1250 * scf driver delay (which is 1251 * SCF_DEVBUSY_DELAY*scf_online_wait_rcnt seconds) and the value 1252 * of xscf_connect_delay (the total number of seconds to wait 1253 * till xscf get ready.) 1254 */ 1255 if (repeat_cnt == 0) { 1256 if ((scf_wait_cnt = 1257 (uint_t *) 1258 modgetsymvalue("scf_online_wait_rcnt", 0)) == NULL) { 1259 repeat_cnt = REPEATS; 1260 } else { 1261 1262 xscf_driver_delay = *scf_wait_cnt * 1263 SCF_DEVBUSY_DELAY; 1264 repeat_cnt = (xscf_connect_delay/xscf_driver_delay) + 1; 1265 } 1266 } 1267 1268 while (ctl_msg.cnt != 0) { 1269 1270 /* 1271 * Take the very last request from the queue, 1272 */ 1273 ctl_msg.now_serving = ctl_msg.head; 1274 ASSERT(ctl_msg.now_serving != NULL); 1275 1276 /* 1277 * and discard all the others if any. 1278 */ 1279 FREE_THE_TAIL(ctl_msg.now_serving); 1280 ctl_msg.cnt = 1; 1281 mutex_exit(&ctl_msg.nm_lock); 1282 1283 /* 1284 * Pass the name to XSCF. Note please, we do not hold the 1285 * mutex while we are doing this. 1286 */ 1287 msg_sent = 0; 1288 for (i = 0; i < repeat_cnt; i++) { 1289 if (PASS2XSCF(ctl_msg.now_serving, ret)) { 1290 msg_sent = 1; 1291 break; 1292 } else { 1293 if (ret != EBUSY) { 1294 cmn_err(CE_NOTE, "pass2xscf_thread:" 1295 " unexpected return code" 1296 " from scf_service_putinfo():" 1297 " %d\n", ret); 1298 } 1299 } 1300 } 1301 1302 if (msg_sent) { 1303 1304 /* 1305 * Remove the request from the list 1306 */ 1307 mutex_enter(&ctl_msg.nm_lock); 1308 msg = ctl_msg.now_serving; 1309 ctl_msg.now_serving = NULL; 1310 REMOVE(msg); 1311 ctl_msg.cnt--; 1312 mutex_exit(&ctl_msg.nm_lock); 1313 FREE_MSG(msg); 1314 } else { 1315 1316 /* 1317 * If while we have tried to communicate with 1318 * XSCF there were any other requests we are 1319 * going to drop this one and take the latest 1320 * one. Otherwise we will try to pass this one 1321 * again. 1322 */ 1323 cmn_err(CE_NOTE, 1324 "pass2xscf_thread: " 1325 "scf_service_putinfo " 1326 "not responding\n"); 1327 } 1328 mutex_enter(&ctl_msg.nm_lock); 1329 } 1330 1331 /* 1332 * The request queue is empty, exit. 1333 */ 1334 ctl_msg.nmt = NULL; 1335 mutex_exit(&ctl_msg.nm_lock); 1336 }