1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2016 by Delphix. All rights reserved. 25 * Copyright 2018 Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 #include <sys/machsystm.h> 29 #include <sys/archsystm.h> 30 #include <sys/vm.h> 31 #include <sys/cpu.h> 32 #include <sys/atomic.h> 33 #include <sys/reboot.h> 34 #include <sys/kdi.h> 35 #include <sys/bootconf.h> 36 #include <sys/memlist_plat.h> 37 #include <sys/memlist_impl.h> 38 #include <sys/prom_plat.h> 39 #include <sys/prom_isa.h> 40 #include <sys/autoconf.h> 41 #include <sys/ivintr.h> 42 #include <sys/fpu/fpusystm.h> 43 #include <sys/iommutsb.h> 44 #include <vm/vm_dep.h> 45 #include <vm/seg_dev.h> 46 #include <vm/seg_kmem.h> 47 #include <vm/seg_kpm.h> 48 #include <vm/seg_map.h> 49 #include <vm/seg_kp.h> 50 #include <sys/sysconf.h> 51 #include <vm/hat_sfmmu.h> 52 #include <sys/kobj.h> 53 #include <sys/sun4asi.h> 54 #include <sys/clconf.h> 55 #include <sys/platform_module.h> 56 #include <sys/panic.h> 57 #include <sys/cpu_sgnblk_defs.h> 58 #include <sys/clock.h> 59 #include <sys/cmn_err.h> 60 #include <sys/dumphdr.h> 61 #include <sys/promif.h> 62 #include <sys/prom_debug.h> 63 #include <sys/traptrace.h> 64 #include <sys/memnode.h> 65 #include <sys/mem_cage.h> 66 #include <sys/mmu.h> 67 #include <sys/swap.h> 68 69 extern void setup_trap_table(void); 70 extern int cpu_intrq_setup(struct cpu *); 71 extern void cpu_intrq_register(struct cpu *); 72 extern void contig_mem_init(void); 73 extern caddr_t contig_mem_prealloc(caddr_t, pgcnt_t); 74 extern void mach_dump_buffer_init(void); 75 extern void mach_descrip_init(void); 76 extern void mach_descrip_startup_fini(void); 77 extern void mach_memscrub(void); 78 extern void mach_fpras(void); 79 extern void mach_cpu_halt_idle(void); 80 extern void mach_hw_copy_limit(void); 81 extern void load_mach_drivers(void); 82 extern void load_tod_module(void); 83 #pragma weak load_tod_module 84 85 extern int ndata_alloc_mmfsa(struct memlist *ndata); 86 #pragma weak ndata_alloc_mmfsa 87 88 extern void cif_init(void); 89 #pragma weak cif_init 90 91 extern void parse_idprom(void); 92 extern void add_vx_handler(char *, int, void (*)(cell_t *)); 93 extern void mem_config_init(void); 94 extern void memseg_remap_init(void); 95 96 extern void mach_kpm_init(void); 97 extern void pcf_init(); 98 extern int size_pse_array(pgcnt_t, int); 99 extern void pg_init(); 100 101 /* 102 * External Data: 103 */ 104 extern int vac_size; /* cache size in bytes */ 105 extern uint_t vac_mask; /* VAC alignment consistency mask */ 106 extern uint_t vac_colors; 107 108 /* 109 * Global Data Definitions: 110 */ 111 112 /* 113 * XXX - Don't port this to new architectures 114 * A 3rd party volume manager driver (vxdm) depends on the symbol romp. 115 * 'romp' has no use with a prom with an IEEE 1275 client interface. 116 * The driver doesn't use the value, but it depends on the symbol. 117 */ 118 void *romp; /* veritas driver won't load without romp 4154976 */ 119 /* 120 * Declare these as initialized data so we can patch them. 121 */ 122 pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */ 123 pgcnt_t segkpsize = 124 btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 125 uint_t segmap_percent = 6; /* Size of segmap segment */ 126 127 int use_cache = 1; /* cache not reliable (605 bugs) with MP */ 128 int vac_copyback = 1; 129 char *cache_mode = NULL; 130 int use_mix = 1; 131 int prom_debug = 0; 132 133 caddr_t boot_tba; /* %tba at boot - used by kmdb */ 134 uint_t tba_taken_over = 0; 135 136 caddr_t s_text; /* start of kernel text segment */ 137 caddr_t e_text; /* end of kernel text segment */ 138 caddr_t s_data; /* start of kernel data segment */ 139 caddr_t e_data; /* end of kernel data segment */ 140 141 caddr_t modtext; /* beginning of module text */ 142 size_t modtext_sz; /* size of module text */ 143 caddr_t moddata; /* beginning of module data reserve */ 144 caddr_t e_moddata; /* end of module data reserve */ 145 146 /* 147 * End of first block of contiguous kernel in 32-bit virtual address space 148 */ 149 caddr_t econtig32; /* end of first blk of contiguous kernel */ 150 151 caddr_t ncbase; /* beginning of non-cached segment */ 152 caddr_t ncend; /* end of non-cached segment */ 153 154 size_t ndata_remain_sz; /* bytes from end of data to 4MB boundary */ 155 caddr_t nalloc_base; /* beginning of nucleus allocation */ 156 caddr_t nalloc_end; /* end of nucleus allocatable memory */ 157 caddr_t valloc_base; /* beginning of kvalloc segment */ 158 159 caddr_t kmem64_base; /* base of kernel mem segment in 64-bit space */ 160 caddr_t kmem64_end; /* end of kernel mem segment in 64-bit space */ 161 size_t kmem64_sz; /* bytes in kernel mem segment, 64-bit space */ 162 caddr_t kmem64_aligned_end; /* end of large page, overmaps 64-bit space */ 163 int kmem64_szc; /* page size code */ 164 uint64_t kmem64_pabase = (uint64_t)-1; /* physical address of kmem64_base */ 165 166 uintptr_t shm_alignment; /* VAC address consistency modulus */ 167 struct memlist *phys_install; /* Total installed physical memory */ 168 struct memlist *phys_avail; /* Available (unreserved) physical memory */ 169 struct memlist *virt_avail; /* Available (unmapped?) virtual memory */ 170 struct memlist *nopp_list; /* pages with no backing page structs */ 171 struct memlist ndata; /* memlist of nucleus allocatable memory */ 172 int memexp_flag; /* memory expansion card flag */ 173 uint64_t ecache_flushaddr; /* physical address used for flushing E$ */ 174 pgcnt_t obp_pages; /* Physical pages used by OBP */ 175 176 /* 177 * VM data structures 178 */ 179 long page_hashsz; /* Size of page hash table (power of two) */ 180 unsigned int page_hashsz_shift; /* log2(page_hashsz) */ 181 struct page *pp_base; /* Base of system page struct array */ 182 size_t pp_sz; /* Size in bytes of page struct array */ 183 struct page **page_hash; /* Page hash table */ 184 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 185 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 186 int pse_shift; /* log2(pse_table_size) */ 187 struct seg ktextseg; /* Segment used for kernel executable image */ 188 struct seg kvalloc; /* Segment used for "valloc" mapping */ 189 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 190 struct seg ktexthole; /* Segment used for nucleus text hole */ 191 struct seg kmapseg; /* Segment used for generic kernel mappings */ 192 struct seg kpmseg; /* Segment used for physical mapping */ 193 struct seg kdebugseg; /* Segment used for the kernel debugger */ 194 195 void *kpm_pp_base; /* Base of system kpm_page array */ 196 size_t kpm_pp_sz; /* Size of system kpm_page array */ 197 pgcnt_t kpm_npages; /* How many kpm pages are managed */ 198 199 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 200 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 201 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 202 203 int segzio_fromheap = 0; /* zio allocations occur from heap */ 204 caddr_t segzio_base; /* Base address of segzio */ 205 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 206 207 /* 208 * A static DR page_t VA map is reserved that can map the page structures 209 * for a domain's entire RA space. The pages that backs this space are 210 * dynamically allocated and need not be physically contiguous. The DR 211 * map size is derived from KPM size. 212 */ 213 int ppvm_enable = 0; /* Static virtual map for page structs */ 214 page_t *ppvm_base; /* Base of page struct map */ 215 pgcnt_t ppvm_size = 0; /* Size of page struct map */ 216 217 /* 218 * debugger pages (if allocated) 219 */ 220 struct vnode kdebugvp; 221 222 /* 223 * VA range available to the debugger 224 */ 225 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 226 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 227 228 /* 229 * Segment for relocated kernel structures in 64-bit large RAM kernels 230 */ 231 struct seg kmem64; 232 233 struct memseg *memseg_free; 234 235 struct vnode unused_pages_vp; 236 237 /* 238 * VM data structures allocated early during boot. 239 */ 240 size_t pagehash_sz; 241 uint64_t memlist_sz; 242 243 char tbr_wr_addr_inited = 0; 244 245 caddr_t mpo_heap32_buf = NULL; 246 size_t mpo_heap32_bufsz = 0; 247 248 /* 249 * Static Routines: 250 */ 251 static int ndata_alloc_memseg(struct memlist *, size_t); 252 static void memlist_new(uint64_t, uint64_t, struct memlist **); 253 static void memlist_add(uint64_t, uint64_t, 254 struct memlist **, struct memlist **); 255 static void kphysm_init(void); 256 static void kvm_init(void); 257 static void install_kmem64_tte(void); 258 259 static void startup_init(void); 260 static void startup_memlist(void); 261 static void startup_modules(void); 262 static void startup_bop_gone(void); 263 static void startup_vm(void); 264 static void startup_end(void); 265 static void setup_cage_params(void); 266 static void startup_create_io_node(void); 267 268 static pgcnt_t npages; 269 static struct memlist *memlist; 270 void *memlist_end; 271 272 static pgcnt_t bop_alloc_pages; 273 static caddr_t hblk_base; 274 uint_t hblk_alloc_dynamic = 0; 275 uint_t hblk1_min = H1MIN; 276 277 278 /* 279 * Hooks for unsupported platforms and down-rev firmware 280 */ 281 int iam_positron(void); 282 #pragma weak iam_positron 283 static void do_prom_version_check(void); 284 285 /* 286 * After receiving a thermal interrupt, this is the number of seconds 287 * to delay before shutting off the system, assuming 288 * shutdown fails. Use /etc/system to change the delay if this isn't 289 * large enough. 290 */ 291 int thermal_powerdown_delay = 1200; 292 293 /* 294 * Used to hold off page relocations into the cage until OBP has completed 295 * its boot-time handoff of its resources to the kernel. 296 */ 297 int page_relocate_ready = 0; 298 299 /* 300 * Indicate if kmem64 allocation was done in small chunks 301 */ 302 int kmem64_smchunks = 0; 303 304 /* 305 * Enable some debugging messages concerning memory usage... 306 */ 307 #ifdef DEBUGGING_MEM 308 static int debugging_mem; 309 static void 310 printmemlist(char *title, struct memlist *list) 311 { 312 if (!debugging_mem) 313 return; 314 315 printf("%s\n", title); 316 317 while (list) { 318 prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n", 319 (uint32_t)(list->ml_address >> 32), 320 (uint32_t)list->ml_address, 321 (uint32_t)(list->ml_size >> 32), 322 (uint32_t)(list->ml_size)); 323 list = list->ml_next; 324 } 325 } 326 327 void 328 printmemseg(struct memseg *memseg) 329 { 330 if (!debugging_mem) 331 return; 332 333 printf("memseg\n"); 334 335 while (memseg) { 336 prom_printf("\tpage = 0x%p, epage = 0x%p, " 337 "pfn = 0x%x, epfn = 0x%x\n", 338 memseg->pages, memseg->epages, 339 memseg->pages_base, memseg->pages_end); 340 memseg = memseg->next; 341 } 342 } 343 344 #define debug_pause(str) halt((str)) 345 #define MPRINTF(str) if (debugging_mem) prom_printf((str)) 346 #define MPRINTF1(str, a) if (debugging_mem) prom_printf((str), (a)) 347 #define MPRINTF2(str, a, b) if (debugging_mem) prom_printf((str), (a), (b)) 348 #define MPRINTF3(str, a, b, c) \ 349 if (debugging_mem) prom_printf((str), (a), (b), (c)) 350 #else /* DEBUGGING_MEM */ 351 #define MPRINTF(str) 352 #define MPRINTF1(str, a) 353 #define MPRINTF2(str, a, b) 354 #define MPRINTF3(str, a, b, c) 355 #endif /* DEBUGGING_MEM */ 356 357 358 /* 359 * 360 * Kernel's Virtual Memory Layout. 361 * /-----------------------\ 362 * 0xFFFFFFFF.FFFFFFFF -| |- 363 * | OBP's virtual page | 364 * | tables | 365 * 0xFFFFFFFC.00000000 -|-----------------------|- 366 * : : 367 * : : 368 * -|-----------------------|- 369 * | segzio | (base and size vary) 370 * 0xFFFFFE00.00000000 -|-----------------------|- 371 * | | Ultrasparc I/II support 372 * | segkpm segment | up to 2TB of physical 373 * | (64-bit kernel ONLY) | memory, VAC has 2 colors 374 * | | 375 * 0xFFFFFA00.00000000 -|-----------------------|- 2TB segkpm alignment 376 * : : 377 * : : 378 * 0xFFFFF810.00000000 -|-----------------------|- hole_end 379 * | | ^ 380 * | UltraSPARC I/II call | | 381 * | bug requires an extra | | 382 * | 4 GB of space between | | 383 * | hole and used RAM | | 384 * | | | 385 * 0xFFFFF800.00000000 -|-----------------------|- | 386 * | | | 387 * | Virtual Address Hole | UltraSPARC 388 * | on UltraSPARC I/II | I/II * ONLY * 389 * | | | 390 * 0x00000800.00000000 -|-----------------------|- | 391 * | | | 392 * | UltraSPARC I/II call | | 393 * | bug requires an extra | | 394 * | 4 GB of space between | | 395 * | hole and used RAM | | 396 * | | v 397 * 0x000007FF.00000000 -|-----------------------|- hole_start ----- 398 * : : ^ 399 * : : | 400 * |-----------------------| | 401 * | | | 402 * | ecache flush area | | 403 * | (twice largest e$) | | 404 * | | | 405 * 0x00000XXX.XXX00000 -|-----------------------|- kmem64_ | 406 * | overmapped area | alignend_end | 407 * | (kmem64_alignsize | | 408 * | boundary) | | 409 * 0x00000XXX.XXXXXXXX -|-----------------------|- kmem64_end | 410 * | | | 411 * | 64-bit kernel ONLY | | 412 * | | | 413 * | kmem64 segment | | 414 * | | | 415 * | (Relocated extra HME | Approximately 416 * | block allocations, | 1 TB of virtual 417 * | memnode freelists, | address space 418 * | HME hash buckets, | | 419 * | mml_table, kpmp_table,| | 420 * | page_t array and | | 421 * | hashblock pool to | | 422 * | avoid hard-coded | | 423 * | 32-bit vaddr | | 424 * | limitations) | | 425 * | | v 426 * 0x00000700.00000000 -|-----------------------|- SYSLIMIT (kmem64_base) 427 * | | 428 * | segkmem segment | (SYSLIMIT - SYSBASE = 4TB) 429 * | | 430 * 0x00000300.00000000 -|-----------------------|- SYSBASE 431 * : : 432 * : : 433 * -|-----------------------|- 434 * | | 435 * | segmap segment | SEGMAPSIZE (1/8th physmem, 436 * | | 256G MAX) 437 * 0x000002a7.50000000 -|-----------------------|- SEGMAPBASE 438 * : : 439 * : : 440 * -|-----------------------|- 441 * | | 442 * | segkp | SEGKPSIZE (2GB) 443 * | | 444 * | | 445 * 0x000002a1.00000000 -|-----------------------|- SEGKPBASE 446 * | | 447 * 0x000002a0.00000000 -|-----------------------|- MEMSCRUBBASE 448 * | | (SEGKPBASE - 0x400000) 449 * 0x0000029F.FFE00000 -|-----------------------|- ARGSBASE 450 * | | (MEMSCRUBBASE - NCARGS) 451 * 0x0000029F.FFD80000 -|-----------------------|- PPMAPBASE 452 * | | (ARGSBASE - PPMAPSIZE) 453 * 0x0000029F.FFD00000 -|-----------------------|- PPMAP_FAST_BASE 454 * | | 455 * 0x0000029F.FF980000 -|-----------------------|- PIOMAPBASE 456 * | | 457 * 0x0000029F.FF580000 -|-----------------------|- NARG_BASE 458 * : : 459 * : : 460 * 0x00000000.FFFFFFFF -|-----------------------|- OFW_END_ADDR 461 * | | 462 * | OBP | 463 * | | 464 * 0x00000000.F0000000 -|-----------------------|- OFW_START_ADDR 465 * | kmdb | 466 * 0x00000000.EDD00000 -|-----------------------|- SEGDEBUGBASE 467 * : : 468 * : : 469 * 0x00000000.7c000000 -|-----------------------|- SYSLIMIT32 470 * | | 471 * | segkmem32 segment | (SYSLIMIT32 - SYSBASE32 = 472 * | | ~64MB) 473 * -|-----------------------| 474 * | IVSIZE | 475 * 0x00000000.70004000 -|-----------------------| 476 * | panicbuf | 477 * 0x00000000.70002000 -|-----------------------| 478 * | PAGESIZE | 479 * 0x00000000.70000000 -|-----------------------|- SYSBASE32 480 * | boot-time | 481 * | temporary space | 482 * 0x00000000.4C000000 -|-----------------------|- BOOTTMPBASE 483 * : : 484 * : : 485 * | | 486 * |-----------------------|- econtig32 487 * | vm structures | 488 * 0x00000000.01C00000 |-----------------------|- nalloc_end 489 * | TSBs | 490 * |-----------------------|- end/nalloc_base 491 * | kernel data & bss | 492 * 0x00000000.01800000 -|-----------------------| 493 * : nucleus text hole : 494 * 0x00000000.01400000 -|-----------------------| 495 * : : 496 * |-----------------------| 497 * | module text | 498 * |-----------------------|- e_text/modtext 499 * | kernel text | 500 * |-----------------------| 501 * | trap table (48k) | 502 * 0x00000000.01000000 -|-----------------------|- KERNELBASE 503 * | reserved for trapstat |} TSTAT_TOTAL_SIZE 504 * |-----------------------| 505 * | | 506 * | invalid | 507 * | | 508 * 0x00000000.00000000 _|_______________________| 509 * 510 * 511 * 512 * 32-bit User Virtual Memory Layout. 513 * /-----------------------\ 514 * | | 515 * | invalid | 516 * | | 517 * 0xFFC00000 -|-----------------------|- USERLIMIT 518 * | user stack | 519 * : : 520 * : : 521 * : : 522 * | user data | 523 * -|-----------------------|- 524 * | user text | 525 * 0x00002000 -|-----------------------|- 526 * | invalid | 527 * 0x00000000 _|_______________________| 528 * 529 * 530 * 531 * 64-bit User Virtual Memory Layout. 532 * /-----------------------\ 533 * | | 534 * | invalid | 535 * | | 536 * 0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT 537 * | user stack | 538 * : : 539 * : : 540 * : : 541 * | user data | 542 * -|-----------------------|- 543 * | user text | 544 * 0x00000000.01000000 -|-----------------------|- 545 * | invalid | 546 * 0x00000000.00000000 _|_______________________| 547 */ 548 549 extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base); 550 extern uint64_t ecache_flush_address(void); 551 552 #pragma weak load_platform_modules 553 #pragma weak plat_startup_memlist 554 #pragma weak ecache_init_scrub_flush_area 555 #pragma weak ecache_flush_address 556 557 558 /* 559 * By default the DR Cage is enabled for maximum OS 560 * MPSS performance. Users needing to disable the cage mechanism 561 * can set this variable to zero via /etc/system. 562 * Disabling the cage on systems supporting Dynamic Reconfiguration (DR) 563 * will result in loss of DR functionality. 564 * Platforms wishing to disable kernel Cage by default 565 * should do so in their set_platform_defaults() routine. 566 */ 567 int kernel_cage_enable = 1; 568 569 static void 570 setup_cage_params(void) 571 { 572 void (*func)(void); 573 574 func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0); 575 if (func != NULL) { 576 (*func)(); 577 return; 578 } 579 580 if (kernel_cage_enable == 0) { 581 return; 582 } 583 kcage_range_init(phys_avail, KCAGE_DOWN, total_pages / 256); 584 585 if (kcage_on) { 586 cmn_err(CE_NOTE, "!Kernel Cage is ENABLED"); 587 } else { 588 cmn_err(CE_NOTE, "!Kernel Cage is DISABLED"); 589 } 590 591 } 592 593 /* 594 * Machine-dependent startup code 595 */ 596 void 597 startup(void) 598 { 599 startup_init(); 600 if (&startup_platform) 601 startup_platform(); 602 startup_memlist(); 603 startup_modules(); 604 setup_cage_params(); 605 startup_bop_gone(); 606 startup_vm(); 607 startup_end(); 608 } 609 610 struct regs sync_reg_buf; 611 uint64_t sync_tt; 612 613 void 614 sync_handler(void) 615 { 616 struct panic_trap_info ti; 617 int i; 618 619 /* 620 * Prevent trying to talk to the other CPUs since they are 621 * sitting in the prom and won't reply. 622 */ 623 for (i = 0; i < NCPU; i++) { 624 if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) { 625 cpu[i]->cpu_flags &= ~CPU_READY; 626 cpu[i]->cpu_flags |= CPU_QUIESCED; 627 CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id); 628 } 629 } 630 631 /* 632 * Force a serial dump, since there are no CPUs to help. 633 */ 634 dump_ncpu_low = 0; 635 636 /* 637 * We've managed to get here without going through the 638 * normal panic code path. Try and save some useful 639 * information. 640 */ 641 if (!panicstr && (curthread->t_panic_trap == NULL)) { 642 ti.trap_type = sync_tt; 643 ti.trap_regs = &sync_reg_buf; 644 ti.trap_addr = NULL; 645 ti.trap_mmu_fsr = 0x0; 646 647 curthread->t_panic_trap = &ti; 648 } 649 650 /* 651 * If we're re-entering the panic path, update the signature 652 * block so that the SC knows we're in the second part of panic. 653 */ 654 if (panicstr) 655 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1); 656 657 nopanicdebug = 1; /* do not perform debug_enter() prior to dump */ 658 panic("sync initiated"); 659 } 660 661 662 static void 663 startup_init(void) 664 { 665 /* 666 * We want to save the registers while we're still in OBP 667 * so that we know they haven't been fiddled with since. 668 * (In principle, OBP can't change them just because it 669 * makes a callback, but we'd rather not depend on that 670 * behavior.) 671 */ 672 char sync_str[] = 673 "warning @ warning off : sync " 674 "%%tl-c %%tstate h# %p x! " 675 "%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! " 676 "%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! " 677 "%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! " 678 "%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! " 679 "%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! " 680 "%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! " 681 "%%y h# %p l! %%tl-c %%tt h# %p x! " 682 "sync ; warning !"; 683 684 /* 685 * 20 == num of %p substrings 686 * 16 == max num of chars %p will expand to. 687 */ 688 char bp[sizeof (sync_str) + 16 * 20]; 689 690 /* 691 * Initialize ptl1 stack for the 1st CPU. 692 */ 693 ptl1_init_cpu(&cpu0); 694 695 /* 696 * Initialize the address map for cache consistent mappings 697 * to random pages; must be done after vac_size is set. 698 */ 699 ppmapinit(); 700 701 /* 702 * Initialize the PROM callback handler. 703 */ 704 init_vx_handler(); 705 706 /* 707 * have prom call sync_callback() to handle the sync and 708 * save some useful information which will be stored in the 709 * core file later. 710 */ 711 (void) sprintf((char *)bp, sync_str, 712 (void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1, 713 (void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3, 714 (void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5, 715 (void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7, 716 (void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1, 717 (void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3, 718 (void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5, 719 (void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7, 720 (void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc, 721 (void *)&sync_reg_buf.r_y, (void *)&sync_tt); 722 prom_interpret(bp, 0, 0, 0, 0, 0); 723 add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler); 724 } 725 726 727 size_t 728 calc_pp_sz(pgcnt_t npages) 729 { 730 731 return (npages * sizeof (struct page)); 732 } 733 734 size_t 735 calc_kpmpp_sz(pgcnt_t npages) 736 { 737 738 kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT; 739 kpm_pgsz = 1ull << kpm_pgshft; 740 kpm_pgoff = kpm_pgsz - 1; 741 kpmp2pshft = kpm_pgshft - PAGESHIFT; 742 kpmpnpgs = 1 << kpmp2pshft; 743 744 if (kpm_smallpages == 0) { 745 /* 746 * Avoid fragmentation problems in kphysm_init() 747 * by allocating for all of physical memory 748 */ 749 kpm_npages = ptokpmpr(physinstalled); 750 return (kpm_npages * sizeof (kpm_page_t)); 751 } else { 752 kpm_npages = npages; 753 return (kpm_npages * sizeof (kpm_spage_t)); 754 } 755 } 756 757 size_t 758 calc_pagehash_sz(pgcnt_t npages) 759 { 760 /* LINTED */ 761 ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), (sizeof (struct page)))); 762 /* 763 * The page structure hash table size is a power of 2 764 * such that the average hash chain length is PAGE_HASHAVELEN. 765 */ 766 page_hashsz = npages / PAGE_HASHAVELEN; 767 page_hashsz_shift = MAX((AN_VPSHIFT + VNODE_ALIGN_LOG2 + 1), 768 highbit(page_hashsz)); 769 page_hashsz = 1 << page_hashsz_shift; 770 return (page_hashsz * sizeof (struct page *)); 771 } 772 773 int testkmem64_smchunks = 0; 774 775 int 776 alloc_kmem64(caddr_t base, caddr_t end) 777 { 778 int i; 779 caddr_t aligned_end = NULL; 780 781 if (testkmem64_smchunks) 782 return (1); 783 784 /* 785 * Make one large memory alloc after figuring out the 64-bit size. This 786 * will enable use of the largest page size appropriate for the system 787 * architecture. 788 */ 789 ASSERT(mmu_exported_pagesize_mask & (1 << TTE8K)); 790 ASSERT(IS_P2ALIGNED(base, TTEBYTES(max_bootlp_tteszc))); 791 for (i = max_bootlp_tteszc; i >= TTE8K; i--) { 792 size_t alloc_size, alignsize; 793 #if !defined(C_OBP) 794 unsigned long long pa; 795 #endif /* !C_OBP */ 796 797 if ((mmu_exported_pagesize_mask & (1 << i)) == 0) 798 continue; 799 alignsize = TTEBYTES(i); 800 kmem64_szc = i; 801 802 /* limit page size for small memory */ 803 if (mmu_btop(alignsize) > (npages >> 2)) 804 continue; 805 806 aligned_end = (caddr_t)roundup((uintptr_t)end, alignsize); 807 alloc_size = aligned_end - base; 808 #if !defined(C_OBP) 809 if (prom_allocate_phys(alloc_size, alignsize, &pa) == 0) { 810 if (prom_claim_virt(alloc_size, base) != (caddr_t)-1) { 811 kmem64_pabase = pa; 812 kmem64_aligned_end = aligned_end; 813 install_kmem64_tte(); 814 break; 815 } else { 816 prom_free_phys(alloc_size, pa); 817 } 818 } 819 #else /* !C_OBP */ 820 if (prom_alloc(base, alloc_size, alignsize) == base) { 821 kmem64_pabase = va_to_pa(kmem64_base); 822 kmem64_aligned_end = aligned_end; 823 break; 824 } 825 #endif /* !C_OBP */ 826 if (i == TTE8K) { 827 #ifdef sun4v 828 /* return failure to try small allocations */ 829 return (1); 830 #else 831 prom_panic("kmem64 allocation failure"); 832 #endif 833 } 834 } 835 ASSERT(aligned_end != NULL); 836 return (0); 837 } 838 839 static prom_memlist_t *boot_physinstalled, *boot_physavail, *boot_virtavail; 840 static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len; 841 842 #if !defined(C_OBP) 843 /* 844 * Install a temporary tte handler in OBP for kmem64 area. 845 * 846 * We map kmem64 area with large pages before the trap table is taken 847 * over. Since OBP makes 8K mappings, it can create 8K tlb entries in 848 * the same area. Duplicate tlb entries with different page sizes 849 * cause unpredicatble behavior. To avoid this, we don't create 850 * kmem64 mappings via BOP_ALLOC (ends up as prom_alloc() call to 851 * OBP). Instead, we manage translations with a temporary va>tte-data 852 * handler (kmem64-tte). This handler is replaced by unix-tte when 853 * the trap table is taken over. 854 * 855 * The temporary handler knows the physical address of the kmem64 856 * area. It uses the prom's pgmap@ Forth word for other addresses. 857 * 858 * We have to use BOP_ALLOC() method for C-OBP platforms because 859 * pgmap@ is not defined in C-OBP. C-OBP is only used on serengeti 860 * sun4u platforms. On sun4u we flush tlb after trap table is taken 861 * over if we use large pages for kernel heap and kmem64. Since sun4u 862 * prom (unlike sun4v) calls va>tte-data first for client address 863 * translation prom's ttes for kmem64 can't get into TLB even if we 864 * later switch to prom's trap table again. C-OBP uses 4M pages for 865 * client mappings when possible so on all platforms we get the 866 * benefit from large mappings for kmem64 area immediately during 867 * boot. 868 * 869 * pseudo code: 870 * if (context != 0) { 871 * return false 872 * } else if (miss_va in range[kmem64_base, kmem64_end)) { 873 * tte = tte_template + 874 * (((miss_va & pagemask) - kmem64_base)); 875 * return tte, true 876 * } else { 877 * return pgmap@ result 878 * } 879 */ 880 char kmem64_obp_str[] = 881 "h# %lx constant kmem64-base " 882 "h# %lx constant kmem64-end " 883 "h# %lx constant kmem64-pagemask " 884 "h# %lx constant kmem64-template " 885 886 ": kmem64-tte ( addr cnum -- false | tte-data true ) " 887 " if ( addr ) " 888 " drop false exit then ( false ) " 889 " dup kmem64-base kmem64-end within if ( addr ) " 890 " kmem64-pagemask and ( addr' ) " 891 " kmem64-base - ( addr' ) " 892 " kmem64-template + ( tte ) " 893 " true ( tte true ) " 894 " else ( addr ) " 895 " pgmap@ ( tte ) " 896 " dup 0< if true else drop false then ( tte true | false ) " 897 " then ( tte true | false ) " 898 "; " 899 900 "' kmem64-tte is va>tte-data " 901 ; 902 903 static void 904 install_kmem64_tte() 905 { 906 char b[sizeof (kmem64_obp_str) + (4 * 16)]; 907 tte_t tte; 908 909 PRM_DEBUG(kmem64_pabase); 910 PRM_DEBUG(kmem64_szc); 911 sfmmu_memtte(&tte, kmem64_pabase >> MMU_PAGESHIFT, 912 PROC_DATA | HAT_NOSYNC, kmem64_szc); 913 PRM_DEBUG(tte.ll); 914 (void) sprintf(b, kmem64_obp_str, 915 kmem64_base, kmem64_end, TTE_PAGEMASK(kmem64_szc), tte.ll); 916 ASSERT(strlen(b) < sizeof (b)); 917 prom_interpret(b, 0, 0, 0, 0, 0); 918 } 919 #endif /* !C_OBP */ 920 921 /* 922 * As OBP takes up some RAM when the system boots, pages will already be "lost" 923 * to the system and reflected in npages by the time we see it. 924 * 925 * We only want to allocate kernel structures in the 64-bit virtual address 926 * space on systems with enough RAM to make the overhead of keeping track of 927 * an extra kernel memory segment worthwhile. 928 * 929 * Since OBP has already performed its memory allocations by this point, if we 930 * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map 931 * memory in the 64-bit virtual address space; otherwise keep allocations 932 * contiguous with we've mapped so far in the 32-bit virtual address space. 933 */ 934 #define MINMOVE_RAM_MB ((size_t)1900) 935 #define MB_TO_BYTES(mb) ((mb) * 1048576ul) 936 #define BYTES_TO_MB(b) ((b) / 1048576ul) 937 938 pgcnt_t tune_npages = (pgcnt_t) 939 (MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE); 940 941 #pragma weak page_set_colorequiv_arr_cpu 942 extern void page_set_colorequiv_arr_cpu(void); 943 extern void page_set_colorequiv_arr(void); 944 945 static pgcnt_t ramdisk_npages; 946 static struct memlist *old_phys_avail; 947 948 kcage_dir_t kcage_startup_dir = KCAGE_DOWN; 949 950 static void 951 startup_memlist(void) 952 { 953 size_t hmehash_sz, pagelist_sz, tt_sz; 954 size_t psetable_sz; 955 caddr_t alloc_base; 956 caddr_t memspace; 957 struct memlist *cur; 958 size_t syslimit = (size_t)SYSLIMIT; 959 size_t sysbase = (size_t)SYSBASE; 960 961 /* 962 * Initialize enough of the system to allow kmem_alloc to work by 963 * calling boot to allocate its memory until the time that 964 * kvm_init is completed. The page structs are allocated after 965 * rounding up end to the nearest page boundary; the memsegs are 966 * initialized and the space they use comes from the kernel heap. 967 * With appropriate initialization, they can be reallocated later 968 * to a size appropriate for the machine's configuration. 969 * 970 * At this point, memory is allocated for things that will never 971 * need to be freed, this used to be "valloced". This allows a 972 * savings as the pages don't need page structures to describe 973 * them because them will not be managed by the vm system. 974 */ 975 976 /* 977 * We're loaded by boot with the following configuration (as 978 * specified in the sun4u/conf/Mapfile): 979 * 980 * text: 4 MB chunk aligned on a 4MB boundary 981 * data & bss: 4 MB chunk aligned on a 4MB boundary 982 * 983 * These two chunks will eventually be mapped by 2 locked 4MB 984 * ttes and will represent the nucleus of the kernel. This gives 985 * us some free space that is already allocated, some or all of 986 * which is made available to kernel module text. 987 * 988 * The free space in the data-bss chunk is used for nucleus 989 * allocatable data structures and we reserve it using the 990 * nalloc_base and nalloc_end variables. This space is currently 991 * being used for hat data structures required for tlb miss 992 * handling operations. We align nalloc_base to a l2 cache 993 * linesize because this is the line size the hardware uses to 994 * maintain cache coherency. 995 * 512K is carved out for module data. 996 */ 997 998 moddata = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE); 999 e_moddata = moddata + MODDATA; 1000 nalloc_base = e_moddata; 1001 1002 nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M); 1003 valloc_base = nalloc_base; 1004 1005 /* 1006 * Calculate the start of the data segment. 1007 */ 1008 if (((uintptr_t)e_moddata & MMU_PAGEMASK4M) != (uintptr_t)s_data) 1009 prom_panic("nucleus data overflow"); 1010 1011 PRM_DEBUG(moddata); 1012 PRM_DEBUG(nalloc_base); 1013 PRM_DEBUG(nalloc_end); 1014 1015 /* 1016 * Remember any slop after e_text so we can give it to the modules. 1017 */ 1018 PRM_DEBUG(e_text); 1019 modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE); 1020 if (((uintptr_t)e_text & MMU_PAGEMASK4M) != (uintptr_t)s_text) 1021 prom_panic("nucleus text overflow"); 1022 modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) - 1023 modtext; 1024 PRM_DEBUG(modtext); 1025 PRM_DEBUG(modtext_sz); 1026 1027 init_boot_memlists(); 1028 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1029 &boot_physavail, &boot_physavail_len, 1030 &boot_virtavail, &boot_virtavail_len); 1031 1032 /* 1033 * Remember what the physically available highest page is 1034 * so that dumpsys works properly, and find out how much 1035 * memory is installed. 1036 */ 1037 installed_top_size_memlist_array(boot_physinstalled, 1038 boot_physinstalled_len, &physmax, &physinstalled); 1039 PRM_DEBUG(physinstalled); 1040 PRM_DEBUG(physmax); 1041 1042 /* Fill out memory nodes config structure */ 1043 startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len); 1044 1045 /* 1046 * npages is the maximum of available physical memory possible. 1047 * (ie. it will never be more than this) 1048 * 1049 * When we boot from a ramdisk, the ramdisk memory isn't free, so 1050 * using phys_avail will underestimate what will end up being freed. 1051 * A better initial guess is just total memory minus the kernel text 1052 */ 1053 npages = physinstalled - btop(MMU_PAGESIZE4M); 1054 1055 /* 1056 * First allocate things that can go in the nucleus data page 1057 * (fault status, TSBs, dmv, CPUs) 1058 */ 1059 ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end); 1060 1061 if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0)) 1062 cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc"); 1063 1064 if (ndata_alloc_tsbs(&ndata, npages) != 0) 1065 cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc"); 1066 1067 if (ndata_alloc_dmv(&ndata) != 0) 1068 cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc"); 1069 1070 if (ndata_alloc_page_mutexs(&ndata) != 0) 1071 cmn_err(CE_PANIC, 1072 "no more nucleus memory after page free lists alloc"); 1073 1074 if (ndata_alloc_hat(&ndata) != 0) 1075 cmn_err(CE_PANIC, "no more nucleus memory after hat alloc"); 1076 1077 if (ndata_alloc_memseg(&ndata, boot_physavail_len) != 0) 1078 cmn_err(CE_PANIC, "no more nucleus memory after memseg alloc"); 1079 1080 /* 1081 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING 1082 * 1083 * There are comments all over the SFMMU code warning of dire 1084 * consequences if the TSBs are moved out of 32-bit space. This 1085 * is largely because the asm code uses "sethi %hi(addr)"-type 1086 * instructions which will not provide the expected result if the 1087 * address is a 64-bit one. 1088 * 1089 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING 1090 */ 1091 alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE); 1092 PRM_DEBUG(alloc_base); 1093 1094 alloc_base = sfmmu_ktsb_alloc(alloc_base); 1095 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1096 PRM_DEBUG(alloc_base); 1097 1098 /* 1099 * Allocate IOMMU TSB array. We do this here so that the physical 1100 * memory gets deducted from the PROM's physical memory list. 1101 */ 1102 alloc_base = iommu_tsb_init(alloc_base); 1103 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1104 PRM_DEBUG(alloc_base); 1105 1106 /* 1107 * Allow for an early allocation of physically contiguous memory. 1108 */ 1109 alloc_base = contig_mem_prealloc(alloc_base, npages); 1110 1111 /* 1112 * Platforms like Starcat and OPL need special structures assigned in 1113 * 32-bit virtual address space because their probing routines execute 1114 * FCode, and FCode can't handle 64-bit virtual addresses... 1115 */ 1116 if (&plat_startup_memlist) { 1117 alloc_base = plat_startup_memlist(alloc_base); 1118 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, 1119 ecache_alignsize); 1120 PRM_DEBUG(alloc_base); 1121 } 1122 1123 /* 1124 * Save off where the contiguous allocations to date have ended 1125 * in econtig32. 1126 */ 1127 econtig32 = alloc_base; 1128 PRM_DEBUG(econtig32); 1129 if (econtig32 > (caddr_t)KERNEL_LIMIT32) 1130 cmn_err(CE_PANIC, "econtig32 too big"); 1131 1132 pp_sz = calc_pp_sz(npages); 1133 PRM_DEBUG(pp_sz); 1134 if (kpm_enable) { 1135 kpm_pp_sz = calc_kpmpp_sz(npages); 1136 PRM_DEBUG(kpm_pp_sz); 1137 } 1138 1139 hmehash_sz = calc_hmehash_sz(npages); 1140 PRM_DEBUG(hmehash_sz); 1141 1142 pagehash_sz = calc_pagehash_sz(npages); 1143 PRM_DEBUG(pagehash_sz); 1144 1145 pagelist_sz = calc_free_pagelist_sz(); 1146 PRM_DEBUG(pagelist_sz); 1147 1148 #ifdef TRAPTRACE 1149 tt_sz = calc_traptrace_sz(); 1150 PRM_DEBUG(tt_sz); 1151 #else 1152 tt_sz = 0; 1153 #endif /* TRAPTRACE */ 1154 1155 /* 1156 * Place the array that protects pp->p_selock in the kmem64 wad. 1157 */ 1158 pse_shift = size_pse_array(npages, max_ncpus); 1159 PRM_DEBUG(pse_shift); 1160 pse_table_size = 1 << pse_shift; 1161 PRM_DEBUG(pse_table_size); 1162 psetable_sz = roundup( 1163 pse_table_size * sizeof (pad_mutex_t), ecache_alignsize); 1164 PRM_DEBUG(psetable_sz); 1165 1166 /* 1167 * Now allocate the whole wad 1168 */ 1169 kmem64_sz = pp_sz + kpm_pp_sz + hmehash_sz + pagehash_sz + 1170 pagelist_sz + tt_sz + psetable_sz; 1171 kmem64_sz = roundup(kmem64_sz, PAGESIZE); 1172 kmem64_base = (caddr_t)syslimit; 1173 kmem64_end = kmem64_base + kmem64_sz; 1174 if (alloc_kmem64(kmem64_base, kmem64_end)) { 1175 /* 1176 * Attempt for kmem64 to allocate one big 1177 * contiguous chunk of memory failed. 1178 * We get here because we are sun4v. 1179 * We will proceed by breaking up 1180 * the allocation into two attempts. 1181 * First, we allocate kpm_pp_sz, hmehash_sz, 1182 * pagehash_sz, pagelist_sz, tt_sz & psetable_sz as 1183 * one contiguous chunk. This is a much smaller 1184 * chunk and we should get it, if not we panic. 1185 * Note that hmehash and tt need to be physically 1186 * (in the real address sense) contiguous. 1187 * Next, we use bop_alloc_chunk() to 1188 * to allocate the page_t structures. 1189 * This will allow the page_t to be allocated 1190 * in multiple smaller chunks. 1191 * In doing so, the assumption that page_t is 1192 * physically contiguous no longer hold, this is ok 1193 * for sun4v but not for sun4u. 1194 */ 1195 size_t tmp_size; 1196 caddr_t tmp_base; 1197 1198 pp_sz = roundup(pp_sz, PAGESIZE); 1199 1200 /* 1201 * Allocate kpm_pp_sz, hmehash_sz, 1202 * pagehash_sz, pagelist_sz, tt_sz & psetable_sz 1203 */ 1204 tmp_base = kmem64_base + pp_sz; 1205 tmp_size = roundup(kpm_pp_sz + hmehash_sz + pagehash_sz + 1206 pagelist_sz + tt_sz + psetable_sz, PAGESIZE); 1207 if (prom_alloc(tmp_base, tmp_size, PAGESIZE) == 0) 1208 prom_panic("kmem64 prom_alloc contig failed"); 1209 PRM_DEBUG(tmp_base); 1210 PRM_DEBUG(tmp_size); 1211 1212 /* 1213 * Allocate the page_ts 1214 */ 1215 if (bop_alloc_chunk(kmem64_base, pp_sz, PAGESIZE) == 0) 1216 prom_panic("kmem64 bop_alloc_chunk page_t failed"); 1217 PRM_DEBUG(kmem64_base); 1218 PRM_DEBUG(pp_sz); 1219 1220 kmem64_aligned_end = kmem64_base + pp_sz + tmp_size; 1221 ASSERT(kmem64_aligned_end >= kmem64_end); 1222 1223 kmem64_smchunks = 1; 1224 } else { 1225 1226 /* 1227 * We need to adjust pp_sz for the normal 1228 * case where kmem64 can allocate one large chunk 1229 */ 1230 if (kpm_smallpages == 0) { 1231 npages -= kmem64_sz / (PAGESIZE + sizeof (struct page)); 1232 } else { 1233 npages -= kmem64_sz / (PAGESIZE + sizeof (struct page) + 1234 sizeof (kpm_spage_t)); 1235 } 1236 pp_sz = npages * sizeof (struct page); 1237 } 1238 1239 if (kmem64_aligned_end > (hole_start ? hole_start : kpm_vbase)) 1240 cmn_err(CE_PANIC, "not enough kmem64 space"); 1241 PRM_DEBUG(kmem64_base); 1242 PRM_DEBUG(kmem64_end); 1243 PRM_DEBUG(kmem64_aligned_end); 1244 1245 /* 1246 * ... and divy it up 1247 */ 1248 alloc_base = kmem64_base; 1249 1250 pp_base = (page_t *)alloc_base; 1251 alloc_base += pp_sz; 1252 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1253 PRM_DEBUG(pp_base); 1254 PRM_DEBUG(npages); 1255 1256 if (kpm_enable) { 1257 kpm_pp_base = alloc_base; 1258 if (kpm_smallpages == 0) { 1259 /* kpm_npages based on physinstalled, don't reset */ 1260 kpm_pp_sz = kpm_npages * sizeof (kpm_page_t); 1261 } else { 1262 kpm_npages = ptokpmpr(npages); 1263 kpm_pp_sz = kpm_npages * sizeof (kpm_spage_t); 1264 } 1265 alloc_base += kpm_pp_sz; 1266 alloc_base = 1267 (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1268 PRM_DEBUG(kpm_pp_base); 1269 } 1270 1271 alloc_base = alloc_hmehash(alloc_base); 1272 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1273 PRM_DEBUG(alloc_base); 1274 1275 page_hash = (page_t **)alloc_base; 1276 alloc_base += pagehash_sz; 1277 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1278 PRM_DEBUG(page_hash); 1279 1280 alloc_base = alloc_page_freelists(alloc_base); 1281 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1282 PRM_DEBUG(alloc_base); 1283 1284 #ifdef TRAPTRACE 1285 ttrace_buf = alloc_base; 1286 alloc_base += tt_sz; 1287 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1288 PRM_DEBUG(alloc_base); 1289 #endif /* TRAPTRACE */ 1290 1291 pse_mutex = (pad_mutex_t *)alloc_base; 1292 alloc_base += psetable_sz; 1293 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1294 PRM_DEBUG(alloc_base); 1295 1296 /* 1297 * Note that if we use small chunk allocations for 1298 * kmem64, we need to ensure kmem64_end is the same as 1299 * kmem64_aligned_end to prevent subsequent logic from 1300 * trying to reuse the overmapping. 1301 * Otherwise we adjust kmem64_end to what we really allocated. 1302 */ 1303 if (kmem64_smchunks) { 1304 kmem64_end = kmem64_aligned_end; 1305 } else { 1306 kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base, PAGESIZE); 1307 } 1308 kmem64_sz = kmem64_end - kmem64_base; 1309 1310 if (&ecache_init_scrub_flush_area) { 1311 alloc_base = ecache_init_scrub_flush_area(kmem64_aligned_end); 1312 ASSERT(alloc_base <= (hole_start ? hole_start : kpm_vbase)); 1313 } 1314 1315 /* 1316 * If physmem is patched to be non-zero, use it instead of 1317 * the monitor value unless physmem is larger than the total 1318 * amount of memory on hand. 1319 */ 1320 if (physmem == 0 || physmem > npages) 1321 physmem = npages; 1322 1323 /* 1324 * root_is_ramdisk is set via /etc/system when the ramdisk miniroot 1325 * is mounted as root. This memory is held down by OBP and unlike 1326 * the stub boot_archive is never released. 1327 * 1328 * In order to get things sized correctly on lower memory 1329 * machines (where the memory used by the ramdisk represents 1330 * a significant portion of memory), physmem is adjusted. 1331 * 1332 * This is done by subtracting the ramdisk_size which is set 1333 * to the size of the ramdisk (in Kb) in /etc/system at the 1334 * time the miniroot archive is constructed. 1335 */ 1336 if (root_is_ramdisk == B_TRUE) { 1337 ramdisk_npages = (ramdisk_size * 1024) / PAGESIZE; 1338 physmem -= ramdisk_npages; 1339 } 1340 1341 if (kpm_enable && (ndata_alloc_kpm(&ndata, kpm_npages) != 0)) 1342 cmn_err(CE_PANIC, "no more nucleus memory after kpm alloc"); 1343 1344 /* 1345 * Allocate space for the interrupt vector table. 1346 */ 1347 memspace = prom_alloc((caddr_t)intr_vec_table, IVSIZE, MMU_PAGESIZE); 1348 if (memspace != (caddr_t)intr_vec_table) 1349 prom_panic("interrupt vector table allocation failure"); 1350 1351 /* 1352 * Between now and when we finish copying in the memory lists, 1353 * allocations happen so the space gets fragmented and the 1354 * lists longer. Leave enough space for lists twice as 1355 * long as we have now; then roundup to a pagesize. 1356 */ 1357 memlist_sz = sizeof (struct memlist) * (prom_phys_installed_len() + 1358 prom_phys_avail_len() + prom_virt_avail_len()); 1359 memlist_sz *= 2; 1360 memlist_sz = roundup(memlist_sz, PAGESIZE); 1361 memspace = ndata_alloc(&ndata, memlist_sz, ecache_alignsize); 1362 if (memspace == NULL) 1363 cmn_err(CE_PANIC, "no more nucleus memory after memlist alloc"); 1364 1365 memlist = (struct memlist *)memspace; 1366 memlist_end = (char *)memspace + memlist_sz; 1367 PRM_DEBUG(memlist); 1368 PRM_DEBUG(memlist_end); 1369 1370 PRM_DEBUG(sysbase); 1371 PRM_DEBUG(syslimit); 1372 kernelheap_init((void *)sysbase, (void *)syslimit, 1373 (caddr_t)sysbase + PAGESIZE, NULL, NULL); 1374 1375 /* 1376 * Take the most current snapshot we can by calling mem-update. 1377 */ 1378 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1379 &boot_physavail, &boot_physavail_len, 1380 &boot_virtavail, &boot_virtavail_len); 1381 1382 /* 1383 * Remove the space used by prom_alloc from the kernel heap 1384 * plus the area actually used by the OBP (if any) 1385 * ignoring virtual addresses in virt_avail, above syslimit. 1386 */ 1387 virt_avail = memlist; 1388 copy_memlist(boot_virtavail, boot_virtavail_len, &memlist); 1389 1390 for (cur = virt_avail; cur->ml_next; cur = cur->ml_next) { 1391 uint64_t range_base, range_size; 1392 1393 if ((range_base = cur->ml_address + cur->ml_size) < 1394 (uint64_t)sysbase) 1395 continue; 1396 if (range_base >= (uint64_t)syslimit) 1397 break; 1398 /* 1399 * Limit the range to end at syslimit. 1400 */ 1401 range_size = MIN(cur->ml_next->ml_address, 1402 (uint64_t)syslimit) - range_base; 1403 (void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE, 1404 0, 0, (void *)range_base, (void *)(range_base + range_size), 1405 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1406 } 1407 1408 phys_avail = memlist; 1409 copy_memlist(boot_physavail, boot_physavail_len, &memlist); 1410 1411 /* 1412 * Add any extra memory at the end of the ndata region if there's at 1413 * least a page to add. There might be a few more pages available in 1414 * the middle of the ndata region, but for now they are ignored. 1415 */ 1416 nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE, nalloc_end); 1417 if (nalloc_base == NULL) 1418 nalloc_base = nalloc_end; 1419 ndata_remain_sz = nalloc_end - nalloc_base; 1420 1421 /* 1422 * Copy physinstalled list into kernel space. 1423 */ 1424 phys_install = memlist; 1425 copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist); 1426 1427 /* 1428 * Create list of physical addrs we don't need pp's for: 1429 * kernel text 4M page 1430 * kernel data 4M page - ndata_remain_sz 1431 * kmem64 pages 1432 * 1433 * NB if adding any pages here, make sure no kpm page 1434 * overlaps can occur (see ASSERTs in kphysm_memsegs) 1435 */ 1436 nopp_list = memlist; 1437 memlist_new(va_to_pa(s_text), MMU_PAGESIZE4M, &memlist); 1438 memlist_add(va_to_pa(s_data), MMU_PAGESIZE4M - ndata_remain_sz, 1439 &memlist, &nopp_list); 1440 1441 /* Don't add to nopp_list if kmem64 was allocated in smchunks */ 1442 if (!kmem64_smchunks) 1443 memlist_add(kmem64_pabase, kmem64_sz, &memlist, &nopp_list); 1444 1445 if ((caddr_t)memlist > (memspace + memlist_sz)) 1446 prom_panic("memlist overflow"); 1447 1448 /* 1449 * Size the pcf array based on the number of cpus in the box at 1450 * boot time. 1451 */ 1452 pcf_init(); 1453 1454 /* 1455 * Initialize the page structures from the memory lists. 1456 */ 1457 kphysm_init(); 1458 1459 availrmem_initial = availrmem = freemem; 1460 PRM_DEBUG(availrmem); 1461 1462 /* 1463 * Some of the locks depend on page_hashsz being set! 1464 * kmem_init() depends on this; so, keep it here. 1465 */ 1466 page_lock_init(); 1467 1468 /* 1469 * Initialize kernel memory allocator. 1470 */ 1471 kmem_init(); 1472 1473 /* 1474 * Factor in colorequiv to check additional 'equivalent' bins 1475 */ 1476 if (&page_set_colorequiv_arr_cpu != NULL) 1477 page_set_colorequiv_arr_cpu(); 1478 else 1479 page_set_colorequiv_arr(); 1480 1481 /* 1482 * Initialize bp_mapin(). 1483 */ 1484 bp_init(shm_alignment, HAT_STRICTORDER); 1485 1486 /* 1487 * Reserve space for MPO mblock structs from the 32-bit heap. 1488 */ 1489 1490 if (mpo_heap32_bufsz > (size_t)0) { 1491 (void) vmem_xalloc(heap32_arena, mpo_heap32_bufsz, 1492 PAGESIZE, 0, 0, mpo_heap32_buf, 1493 mpo_heap32_buf + mpo_heap32_bufsz, 1494 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1495 } 1496 mem_config_init(); 1497 } 1498 1499 static void 1500 startup_modules(void) 1501 { 1502 int nhblk1, nhblk8; 1503 size_t nhblksz; 1504 pgcnt_t pages_per_hblk; 1505 size_t hme8blk_sz, hme1blk_sz; 1506 1507 /* 1508 * The system file /etc/system was read already under startup_memlist. 1509 */ 1510 if (&set_platform_defaults) 1511 set_platform_defaults(); 1512 1513 /* 1514 * Calculate default settings of system parameters based upon 1515 * maxusers, yet allow to be overridden via the /etc/system file. 1516 */ 1517 param_calc(0); 1518 1519 mod_setup(); 1520 1521 /* 1522 * If this is a positron, complain and halt. 1523 */ 1524 if (&iam_positron && iam_positron()) { 1525 cmn_err(CE_WARN, "This hardware platform is not supported" 1526 " by this release of Solaris.\n"); 1527 #ifdef DEBUG 1528 prom_enter_mon(); /* Type 'go' to resume */ 1529 cmn_err(CE_WARN, "Booting an unsupported platform.\n"); 1530 cmn_err(CE_WARN, "Booting with down-rev firmware.\n"); 1531 1532 #else /* DEBUG */ 1533 halt(0); 1534 #endif /* DEBUG */ 1535 } 1536 1537 /* 1538 * If we are running firmware that isn't 64-bit ready 1539 * then complain and halt. 1540 */ 1541 do_prom_version_check(); 1542 1543 /* 1544 * Initialize system parameters 1545 */ 1546 param_init(); 1547 1548 /* 1549 * maxmem is the amount of physical memory we're playing with. 1550 */ 1551 maxmem = physmem; 1552 1553 /* Set segkp limits. */ 1554 ncbase = kdi_segdebugbase; 1555 ncend = kdi_segdebugbase; 1556 1557 /* 1558 * Initialize the hat layer. 1559 */ 1560 hat_init(); 1561 1562 /* 1563 * Initialize segment management stuff. 1564 */ 1565 seg_init(); 1566 1567 /* 1568 * Create the va>tte handler, so the prom can understand 1569 * kernel translations. The handler is installed later, just 1570 * as we are about to take over the trap table from the prom. 1571 */ 1572 create_va_to_tte(); 1573 1574 /* 1575 * Load the forthdebugger (optional) 1576 */ 1577 forthdebug_init(); 1578 1579 /* 1580 * Create OBP node for console input callbacks 1581 * if it is needed. 1582 */ 1583 startup_create_io_node(); 1584 1585 if (modloadonly("fs", "specfs") == -1) 1586 halt("Can't load specfs"); 1587 1588 if (modloadonly("fs", "devfs") == -1) 1589 halt("Can't load devfs"); 1590 1591 if (modloadonly("fs", "procfs") == -1) 1592 halt("Can't load procfs"); 1593 1594 if (modloadonly("misc", "swapgeneric") == -1) 1595 halt("Can't load swapgeneric"); 1596 1597 (void) modloadonly("sys", "lbl_edition"); 1598 1599 dispinit(); 1600 1601 /* 1602 * Infer meanings to the members of the idprom buffer. 1603 */ 1604 parse_idprom(); 1605 1606 /* Read cluster configuration data. */ 1607 clconf_init(); 1608 1609 setup_ddi(); 1610 1611 /* 1612 * Lets take this opportunity to load the root device. 1613 */ 1614 if (loadrootmodules() != 0) 1615 debug_enter("Can't load the root filesystem"); 1616 1617 /* 1618 * Load tod driver module for the tod part found on this system. 1619 * Recompute the cpu frequency/delays based on tod as tod part 1620 * tends to keep time more accurately. 1621 */ 1622 if (&load_tod_module) 1623 load_tod_module(); 1624 1625 /* 1626 * Allow platforms to load modules which might 1627 * be needed after bootops are gone. 1628 */ 1629 if (&load_platform_modules) 1630 load_platform_modules(); 1631 1632 setcpudelay(); 1633 1634 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1635 &boot_physavail, &boot_physavail_len, 1636 &boot_virtavail, &boot_virtavail_len); 1637 1638 /* 1639 * Calculation and allocation of hmeblks needed to remap 1640 * the memory allocated by PROM till now. 1641 * Overestimate the number of hblk1 elements by assuming 1642 * worst case of TTE64K mappings. 1643 * sfmmu_hblk_alloc will panic if this calculation is wrong. 1644 */ 1645 bop_alloc_pages = btopr(kmem64_end - kmem64_base); 1646 pages_per_hblk = btop(HMEBLK_SPAN(TTE64K)); 1647 bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk); 1648 nhblk1 = bop_alloc_pages / pages_per_hblk + hblk1_min; 1649 1650 bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len); 1651 1652 /* sfmmu_init_nucleus_hblks expects properly aligned data structures */ 1653 hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t)); 1654 hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t)); 1655 1656 bop_alloc_pages += btopr(nhblk1 * hme1blk_sz); 1657 1658 pages_per_hblk = btop(HMEBLK_SPAN(TTE8K)); 1659 nhblk8 = 0; 1660 while (bop_alloc_pages > 1) { 1661 bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk); 1662 nhblk8 += bop_alloc_pages /= pages_per_hblk; 1663 bop_alloc_pages *= hme8blk_sz; 1664 bop_alloc_pages = btopr(bop_alloc_pages); 1665 } 1666 nhblk8 += 2; 1667 1668 /* 1669 * Since hblk8's can hold up to 64k of mappings aligned on a 64k 1670 * boundary, the number of hblk8's needed to map the entries in the 1671 * boot_virtavail list needs to be adjusted to take this into 1672 * consideration. Thus, we need to add additional hblk8's since it 1673 * is possible that an hblk8 will not have all 8 slots used due to 1674 * alignment constraints. Since there were boot_virtavail_len entries 1675 * in that list, we need to add that many hblk8's to the number 1676 * already calculated to make sure we don't underestimate. 1677 */ 1678 nhblk8 += boot_virtavail_len; 1679 nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz; 1680 1681 /* Allocate in pagesize chunks */ 1682 nhblksz = roundup(nhblksz, MMU_PAGESIZE); 1683 hblk_base = kmem_zalloc(nhblksz, KM_SLEEP); 1684 sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1); 1685 } 1686 1687 static void 1688 startup_bop_gone(void) 1689 { 1690 1691 /* 1692 * Destroy the MD initialized at startup 1693 * The startup initializes the MD framework 1694 * using prom and BOP alloc free it now. 1695 */ 1696 mach_descrip_startup_fini(); 1697 1698 /* 1699 * We're done with prom allocations. 1700 */ 1701 bop_fini(); 1702 1703 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1704 &boot_physavail, &boot_physavail_len, 1705 &boot_virtavail, &boot_virtavail_len); 1706 1707 /* 1708 * setup physically contiguous area twice as large as the ecache. 1709 * this is used while doing displacement flush of ecaches 1710 */ 1711 if (&ecache_flush_address) { 1712 ecache_flushaddr = ecache_flush_address(); 1713 if (ecache_flushaddr == (uint64_t)-1) { 1714 cmn_err(CE_PANIC, 1715 "startup: no memory to set ecache_flushaddr"); 1716 } 1717 } 1718 1719 /* 1720 * Virtual available next. 1721 */ 1722 ASSERT(virt_avail != NULL); 1723 memlist_free_list(virt_avail); 1724 virt_avail = memlist; 1725 copy_memlist(boot_virtavail, boot_virtavail_len, &memlist); 1726 1727 } 1728 1729 1730 /* 1731 * startup_fixup_physavail - called from mach_sfmmu.c after the final 1732 * allocations have been performed. We can't call it in startup_bop_gone 1733 * since later operations can cause obp to allocate more memory. 1734 */ 1735 void 1736 startup_fixup_physavail(void) 1737 { 1738 struct memlist *cur; 1739 size_t kmem64_overmap_size = kmem64_aligned_end - kmem64_end; 1740 1741 PRM_DEBUG(kmem64_overmap_size); 1742 1743 /* 1744 * take the most current snapshot we can by calling mem-update 1745 */ 1746 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1747 &boot_physavail, &boot_physavail_len, 1748 &boot_virtavail, &boot_virtavail_len); 1749 1750 /* 1751 * Copy phys_avail list, again. 1752 * Both the kernel/boot and the prom have been allocating 1753 * from the original list we copied earlier. 1754 */ 1755 cur = memlist; 1756 copy_memlist(boot_physavail, boot_physavail_len, &memlist); 1757 1758 /* 1759 * Add any unused kmem64 memory from overmapped page 1760 * (Note: va_to_pa does not work for kmem64_end) 1761 */ 1762 if (kmem64_overmap_size) { 1763 memlist_add(kmem64_pabase + (kmem64_end - kmem64_base), 1764 kmem64_overmap_size, &memlist, &cur); 1765 } 1766 1767 /* 1768 * Add any extra memory after e_data we added to the phys_avail list 1769 * back to the old list. 1770 */ 1771 if (ndata_remain_sz >= MMU_PAGESIZE) 1772 memlist_add(va_to_pa(nalloc_base), 1773 (uint64_t)ndata_remain_sz, &memlist, &cur); 1774 1775 /* 1776 * There isn't any bounds checking on the memlist area 1777 * so ensure it hasn't overgrown. 1778 */ 1779 if ((caddr_t)memlist > (caddr_t)memlist_end) 1780 cmn_err(CE_PANIC, "startup: memlist size exceeded"); 1781 1782 /* 1783 * The kernel removes the pages that were allocated for it from 1784 * the freelist, but we now have to find any -extra- pages that 1785 * the prom has allocated for it's own book-keeping, and remove 1786 * them from the freelist too. sigh. 1787 */ 1788 sync_memlists(phys_avail, cur); 1789 1790 ASSERT(phys_avail != NULL); 1791 1792 old_phys_avail = phys_avail; 1793 phys_avail = cur; 1794 } 1795 1796 void 1797 update_kcage_ranges(uint64_t addr, uint64_t len) 1798 { 1799 pfn_t base = btop(addr); 1800 pgcnt_t num = btop(len); 1801 int rv; 1802 1803 rv = kcage_range_add(base, num, kcage_startup_dir); 1804 1805 if (rv == ENOMEM) { 1806 cmn_err(CE_WARN, "%ld megabytes not available to kernel cage", 1807 (len == 0 ? 0 : BYTES_TO_MB(len))); 1808 } else if (rv != 0) { 1809 /* catch this in debug kernels */ 1810 ASSERT(0); 1811 1812 cmn_err(CE_WARN, "unexpected kcage_range_add" 1813 " return value %d", rv); 1814 } 1815 } 1816 1817 static void 1818 startup_vm(void) 1819 { 1820 size_t i; 1821 struct segmap_crargs a; 1822 struct segkpm_crargs b; 1823 1824 uint64_t avmem; 1825 caddr_t va; 1826 pgcnt_t max_phys_segkp; 1827 int mnode; 1828 1829 extern int use_brk_lpg, use_stk_lpg; 1830 1831 /* 1832 * get prom's mappings, create hments for them and switch 1833 * to the kernel context. 1834 */ 1835 hat_kern_setup(); 1836 1837 /* 1838 * Take over trap table 1839 */ 1840 setup_trap_table(); 1841 1842 /* 1843 * Install the va>tte handler, so that the prom can handle 1844 * misses and understand the kernel table layout in case 1845 * we need call into the prom. 1846 */ 1847 install_va_to_tte(); 1848 1849 /* 1850 * Set a flag to indicate that the tba has been taken over. 1851 */ 1852 tba_taken_over = 1; 1853 1854 /* initialize MMU primary context register */ 1855 mmu_init_kcontext(); 1856 1857 /* 1858 * The boot cpu can now take interrupts, x-calls, x-traps 1859 */ 1860 CPUSET_ADD(cpu_ready_set, CPU->cpu_id); 1861 CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS); 1862 1863 /* 1864 * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR. 1865 */ 1866 tbr_wr_addr_inited = 1; 1867 1868 /* 1869 * Initialize VM system, and map kernel address space. 1870 */ 1871 kvm_init(); 1872 1873 ASSERT(old_phys_avail != NULL && phys_avail != NULL); 1874 if (kernel_cage_enable) { 1875 diff_memlists(phys_avail, old_phys_avail, update_kcage_ranges); 1876 } 1877 memlist_free_list(old_phys_avail); 1878 1879 /* 1880 * If the following is true, someone has patched 1881 * phsymem to be less than the number of pages that 1882 * the system actually has. Remove pages until system 1883 * memory is limited to the requested amount. Since we 1884 * have allocated page structures for all pages, we 1885 * correct the amount of memory we want to remove 1886 * by the size of the memory used to hold page structures 1887 * for the non-used pages. 1888 */ 1889 if (physmem + ramdisk_npages < npages) { 1890 pgcnt_t diff, off; 1891 struct page *pp; 1892 struct seg kseg; 1893 1894 cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem); 1895 1896 off = 0; 1897 diff = npages - (physmem + ramdisk_npages); 1898 diff -= mmu_btopr(diff * sizeof (struct page)); 1899 kseg.s_as = &kas; 1900 while (diff--) { 1901 pp = page_create_va(&unused_pages_vp, (offset_t)off, 1902 MMU_PAGESIZE, PG_WAIT | PG_EXCL, 1903 &kseg, (caddr_t)off); 1904 if (pp == NULL) 1905 cmn_err(CE_PANIC, "limited physmem too much!"); 1906 page_io_unlock(pp); 1907 page_downgrade(pp); 1908 availrmem--; 1909 off += MMU_PAGESIZE; 1910 } 1911 } 1912 1913 /* 1914 * When printing memory, show the total as physmem less 1915 * that stolen by a debugger. 1916 */ 1917 cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n", 1918 (ulong_t)(physinstalled) << (PAGESHIFT - 10), 1919 (ulong_t)(physinstalled) << (PAGESHIFT - 12)); 1920 1921 avmem = (uint64_t)freemem << PAGESHIFT; 1922 cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem); 1923 1924 /* 1925 * For small memory systems disable automatic large pages. 1926 */ 1927 if (physmem < privm_lpg_min_physmem) { 1928 use_brk_lpg = 0; 1929 use_stk_lpg = 0; 1930 } 1931 1932 /* 1933 * Perform platform specific freelist processing 1934 */ 1935 if (&plat_freelist_process) { 1936 for (mnode = 0; mnode < max_mem_nodes; mnode++) 1937 if (mem_node_config[mnode].exists) 1938 plat_freelist_process(mnode); 1939 } 1940 1941 /* 1942 * Initialize the segkp segment type. We position it 1943 * after the configured tables and buffers (whose end 1944 * is given by econtig) and before V_WKBASE_ADDR. 1945 * Also in this area is segkmap (size SEGMAPSIZE). 1946 */ 1947 1948 /* XXX - cache alignment? */ 1949 va = (caddr_t)SEGKPBASE; 1950 ASSERT(((uintptr_t)va & PAGEOFFSET) == 0); 1951 1952 max_phys_segkp = (physmem * 2); 1953 1954 if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) { 1955 segkpsize = btop(SEGKPDEFSIZE); 1956 cmn_err(CE_WARN, "Illegal value for segkpsize. " 1957 "segkpsize has been reset to %ld pages", segkpsize); 1958 } 1959 1960 i = ptob(MIN(segkpsize, max_phys_segkp)); 1961 1962 rw_enter(&kas.a_lock, RW_WRITER); 1963 if (seg_attach(&kas, va, i, segkp) < 0) 1964 cmn_err(CE_PANIC, "startup: cannot attach segkp"); 1965 if (segkp_create(segkp) != 0) 1966 cmn_err(CE_PANIC, "startup: segkp_create failed"); 1967 rw_exit(&kas.a_lock); 1968 1969 /* 1970 * kpm segment 1971 */ 1972 segmap_kpm = kpm_enable && 1973 segmap_kpm && PAGESIZE == MAXBSIZE; 1974 1975 if (kpm_enable) { 1976 rw_enter(&kas.a_lock, RW_WRITER); 1977 1978 /* 1979 * The segkpm virtual range range is larger than the 1980 * actual physical memory size and also covers gaps in 1981 * the physical address range for the following reasons: 1982 * . keep conversion between segkpm and physical addresses 1983 * simple, cheap and unambiguous. 1984 * . avoid extension/shrink of the the segkpm in case of DR. 1985 * . avoid complexity for handling of virtual addressed 1986 * caches, segkpm and the regular mapping scheme must be 1987 * kept in sync wrt. the virtual color of mapped pages. 1988 * Any accesses to virtual segkpm ranges not backed by 1989 * physical memory will fall through the memseg pfn hash 1990 * and will be handled in segkpm_fault. 1991 * Additional kpm_size spaces needed for vac alias prevention. 1992 */ 1993 if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors, 1994 segkpm) < 0) 1995 cmn_err(CE_PANIC, "cannot attach segkpm"); 1996 1997 b.prot = PROT_READ | PROT_WRITE; 1998 b.nvcolors = shm_alignment >> MMU_PAGESHIFT; 1999 2000 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 2001 panic("segkpm_create segkpm"); 2002 2003 rw_exit(&kas.a_lock); 2004 2005 mach_kpm_init(); 2006 } 2007 2008 va = kpm_vbase + (kpm_size * vac_colors); 2009 2010 if (!segzio_fromheap) { 2011 size_t size; 2012 size_t physmem_b = mmu_ptob(physmem); 2013 2014 /* size is in bytes, segziosize is in pages */ 2015 if (segziosize == 0) { 2016 size = physmem_b; 2017 } else { 2018 size = mmu_ptob(segziosize); 2019 } 2020 2021 if (size < SEGZIOMINSIZE) { 2022 size = SEGZIOMINSIZE; 2023 } else if (size > SEGZIOMAXSIZE) { 2024 size = SEGZIOMAXSIZE; 2025 /* 2026 * On 64-bit x86, we only have 2TB of KVA. This exists 2027 * for parity with x86. 2028 * 2029 * SEGZIOMAXSIZE is capped at 512gb so that segzio 2030 * doesn't consume all of KVA. However, if we have a 2031 * system that has more thant 512gb of physical memory, 2032 * we can actually consume about half of the difference 2033 * between 512gb and the rest of the available physical 2034 * memory. 2035 */ 2036 if (physmem_b > SEGZIOMAXSIZE) { 2037 size += (physmem_b - SEGZIOMAXSIZE) / 2; 2038 } 2039 } 2040 segziosize = mmu_btop(roundup(size, MMU_PAGESIZE)); 2041 /* put the base of the ZIO segment after the kpm segment */ 2042 segzio_base = va; 2043 va += mmu_ptob(segziosize); 2044 PRM_DEBUG(segziosize); 2045 PRM_DEBUG(segzio_base); 2046 2047 /* 2048 * On some platforms, kvm_init is called after the kpm 2049 * sizes have been determined. On SPARC, kvm_init is called 2050 * before, so we have to attach the kzioseg after kvm is 2051 * initialized, otherwise we'll try to allocate from the boot 2052 * area since the kernel heap hasn't yet been configured. 2053 */ 2054 rw_enter(&kas.a_lock, RW_WRITER); 2055 2056 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2057 &kzioseg); 2058 (void) segkmem_zio_create(&kzioseg); 2059 2060 /* create zio area covering new segment */ 2061 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2062 2063 rw_exit(&kas.a_lock); 2064 } 2065 2066 if (ppvm_enable) { 2067 caddr_t ppvm_max; 2068 2069 /* 2070 * ppvm refers to the static VA space used to map 2071 * the page_t's for dynamically added memory. 2072 * 2073 * ppvm_base should not cross a potential VA hole. 2074 * 2075 * ppvm_size should be large enough to map the 2076 * page_t's needed to manage all of KPM range. 2077 */ 2078 ppvm_size = 2079 roundup(mmu_btop(kpm_size * vac_colors) * sizeof (page_t), 2080 MMU_PAGESIZE); 2081 ppvm_max = (caddr_t)(0ull - ppvm_size); 2082 ppvm_base = (page_t *)va; 2083 2084 if ((caddr_t)ppvm_base <= hole_end) { 2085 cmn_err(CE_WARN, 2086 "Memory DR disabled: invalid DR map base: 0x%p\n", 2087 (void *)ppvm_base); 2088 ppvm_enable = 0; 2089 } else if ((caddr_t)ppvm_base > ppvm_max) { 2090 uint64_t diff = (caddr_t)ppvm_base - ppvm_max; 2091 2092 cmn_err(CE_WARN, 2093 "Memory DR disabled: insufficient DR map size:" 2094 " 0x%lx (needed 0x%lx)\n", 2095 ppvm_size - diff, ppvm_size); 2096 ppvm_enable = 0; 2097 } 2098 PRM_DEBUG(ppvm_size); 2099 PRM_DEBUG(ppvm_base); 2100 } 2101 2102 /* 2103 * Now create generic mapping segment. This mapping 2104 * goes SEGMAPSIZE beyond SEGMAPBASE. But if the total 2105 * virtual address is greater than the amount of free 2106 * memory that is available, then we trim back the 2107 * segment size to that amount 2108 */ 2109 va = (caddr_t)SEGMAPBASE; 2110 2111 /* 2112 * 1201049: segkmap base address must be MAXBSIZE aligned 2113 */ 2114 ASSERT(((uintptr_t)va & MAXBOFFSET) == 0); 2115 2116 /* 2117 * Set size of segmap to percentage of freemem at boot, 2118 * but stay within the allowable range 2119 * Note we take percentage before converting from pages 2120 * to bytes to avoid an overflow on 32-bit kernels. 2121 */ 2122 i = mmu_ptob((freemem * segmap_percent) / 100); 2123 2124 if (i < MINMAPSIZE) 2125 i = MINMAPSIZE; 2126 2127 if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem))) 2128 i = MIN(SEGMAPSIZE, mmu_ptob(freemem)); 2129 2130 i &= MAXBMASK; /* 1201049: segkmap size must be MAXBSIZE aligned */ 2131 2132 rw_enter(&kas.a_lock, RW_WRITER); 2133 if (seg_attach(&kas, va, i, segkmap) < 0) 2134 cmn_err(CE_PANIC, "cannot attach segkmap"); 2135 2136 a.prot = PROT_READ | PROT_WRITE; 2137 a.shmsize = shm_alignment; 2138 a.nfreelist = 0; /* use segmap driver defaults */ 2139 2140 if (segmap_create(segkmap, (caddr_t)&a) != 0) 2141 panic("segmap_create segkmap"); 2142 rw_exit(&kas.a_lock); 2143 2144 segdev_init(); 2145 } 2146 2147 static void 2148 startup_end(void) 2149 { 2150 if ((caddr_t)memlist > (caddr_t)memlist_end) 2151 panic("memlist overflow 2"); 2152 memlist_free_block((caddr_t)memlist, 2153 ((caddr_t)memlist_end - (caddr_t)memlist)); 2154 memlist = NULL; 2155 2156 /* enable page_relocation since OBP is now done */ 2157 page_relocate_ready = 1; 2158 2159 /* 2160 * Perform tasks that get done after most of the VM 2161 * initialization has been done but before the clock 2162 * and other devices get started. 2163 */ 2164 kern_setup1(); 2165 2166 /* 2167 * Perform CPC initialization for this CPU. 2168 */ 2169 kcpc_hw_init(); 2170 2171 /* 2172 * Intialize the VM arenas for allocating physically 2173 * contiguus memory chunk for interrupt queues snd 2174 * allocate/register boot cpu's queues, if any and 2175 * allocate dump buffer for sun4v systems to store 2176 * extra crash information during crash dump 2177 */ 2178 contig_mem_init(); 2179 mach_descrip_init(); 2180 2181 if (cpu_intrq_setup(CPU)) { 2182 cmn_err(CE_PANIC, "cpu%d: setup failed", CPU->cpu_id); 2183 } 2184 cpu_intrq_register(CPU); 2185 mach_htraptrace_setup(CPU->cpu_id); 2186 mach_htraptrace_configure(CPU->cpu_id); 2187 mach_dump_buffer_init(); 2188 2189 /* 2190 * Initialize interrupt related stuff 2191 */ 2192 cpu_intr_alloc(CPU, NINTR_THREADS); 2193 2194 (void) splzs(); /* allow hi clock ints but not zs */ 2195 2196 /* 2197 * Initialize errors. 2198 */ 2199 error_init(); 2200 2201 /* 2202 * Note that we may have already used kernel bcopy before this 2203 * point - but if you really care about this, adb the use_hw_* 2204 * variables to 0 before rebooting. 2205 */ 2206 mach_hw_copy_limit(); 2207 2208 /* 2209 * Install the "real" preemption guards before DDI services 2210 * are available. 2211 */ 2212 (void) prom_set_preprom(kern_preprom); 2213 (void) prom_set_postprom(kern_postprom); 2214 CPU->cpu_m.mutex_ready = 1; 2215 2216 /* 2217 * Initialize segnf (kernel support for non-faulting loads). 2218 */ 2219 segnf_init(); 2220 2221 /* 2222 * Configure the root devinfo node. 2223 */ 2224 configure(); /* set up devices */ 2225 mach_cpu_halt_idle(); 2226 } 2227 2228 2229 void 2230 post_startup(void) 2231 { 2232 #ifdef PTL1_PANIC_DEBUG 2233 extern void init_ptl1_thread(void); 2234 #endif /* PTL1_PANIC_DEBUG */ 2235 extern void abort_sequence_init(void); 2236 2237 /* 2238 * Set the system wide, processor-specific flags to be passed 2239 * to userland via the aux vector for performance hints and 2240 * instruction set extensions. 2241 */ 2242 bind_hwcap(); 2243 2244 /* 2245 * Startup memory scrubber (if any) 2246 */ 2247 mach_memscrub(); 2248 2249 /* 2250 * Allocate soft interrupt to handle abort sequence. 2251 */ 2252 abort_sequence_init(); 2253 2254 /* 2255 * Configure the rest of the system. 2256 * Perform forceloading tasks for /etc/system. 2257 */ 2258 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2259 /* 2260 * ON4.0: Force /proc module in until clock interrupt handle fixed 2261 * ON4.0: This must be fixed or restated in /etc/systems. 2262 */ 2263 (void) modload("fs", "procfs"); 2264 2265 /* load machine class specific drivers */ 2266 load_mach_drivers(); 2267 2268 /* load platform specific drivers */ 2269 if (&load_platform_drivers) 2270 load_platform_drivers(); 2271 2272 /* load vis simulation module, if we are running w/fpu off */ 2273 if (!fpu_exists) { 2274 if (modload("misc", "vis") == -1) 2275 halt("Can't load vis"); 2276 } 2277 2278 mach_fpras(); 2279 2280 maxmem = freemem; 2281 2282 pg_init(); 2283 2284 #ifdef PTL1_PANIC_DEBUG 2285 init_ptl1_thread(); 2286 #endif /* PTL1_PANIC_DEBUG */ 2287 } 2288 2289 #ifdef PTL1_PANIC_DEBUG 2290 int ptl1_panic_test = 0; 2291 int ptl1_panic_xc_one_test = 0; 2292 int ptl1_panic_xc_all_test = 0; 2293 int ptl1_panic_xt_one_test = 0; 2294 int ptl1_panic_xt_all_test = 0; 2295 kthread_id_t ptl1_thread_p = NULL; 2296 kcondvar_t ptl1_cv; 2297 kmutex_t ptl1_mutex; 2298 int ptl1_recurse_count_threshold = 0x40; 2299 int ptl1_recurse_trap_threshold = 0x3d; 2300 extern void ptl1_recurse(int, int); 2301 extern void ptl1_panic_xt(int, int); 2302 2303 /* 2304 * Called once per second by timeout() to wake up 2305 * the ptl1_panic thread to see if it should cause 2306 * a trap to the ptl1_panic() code. 2307 */ 2308 /* ARGSUSED */ 2309 static void 2310 ptl1_wakeup(void *arg) 2311 { 2312 mutex_enter(&ptl1_mutex); 2313 cv_signal(&ptl1_cv); 2314 mutex_exit(&ptl1_mutex); 2315 } 2316 2317 /* 2318 * ptl1_panic cross call function: 2319 * Needed because xc_one() and xc_some() can pass 2320 * 64 bit args but ptl1_recurse() expects ints. 2321 */ 2322 static void 2323 ptl1_panic_xc(void) 2324 { 2325 ptl1_recurse(ptl1_recurse_count_threshold, 2326 ptl1_recurse_trap_threshold); 2327 } 2328 2329 /* 2330 * The ptl1 thread waits for a global flag to be set 2331 * and uses the recurse thresholds to set the stack depth 2332 * to cause a ptl1_panic() directly via a call to ptl1_recurse 2333 * or indirectly via the cross call and cross trap functions. 2334 * 2335 * This is useful testing stack overflows and normal 2336 * ptl1_panic() states with a know stack frame. 2337 * 2338 * ptl1_recurse() is an asm function in ptl1_panic.s that 2339 * sets the {In, Local, Out, and Global} registers to a 2340 * know state on the stack and just prior to causing a 2341 * test ptl1_panic trap. 2342 */ 2343 static void 2344 ptl1_thread(void) 2345 { 2346 mutex_enter(&ptl1_mutex); 2347 while (ptl1_thread_p) { 2348 cpuset_t other_cpus; 2349 int cpu_id; 2350 int my_cpu_id; 2351 int target_cpu_id; 2352 int target_found; 2353 2354 if (ptl1_panic_test) { 2355 ptl1_recurse(ptl1_recurse_count_threshold, 2356 ptl1_recurse_trap_threshold); 2357 } 2358 2359 /* 2360 * Find potential targets for x-call and x-trap, 2361 * if any exist while preempt is disabled we 2362 * start a ptl1_panic if requested via a 2363 * globals. 2364 */ 2365 kpreempt_disable(); 2366 my_cpu_id = CPU->cpu_id; 2367 other_cpus = cpu_ready_set; 2368 CPUSET_DEL(other_cpus, CPU->cpu_id); 2369 target_found = 0; 2370 if (!CPUSET_ISNULL(other_cpus)) { 2371 /* 2372 * Pick the first one 2373 */ 2374 for (cpu_id = 0; cpu_id < NCPU; cpu_id++) { 2375 if (cpu_id == my_cpu_id) 2376 continue; 2377 2378 if (CPU_XCALL_READY(cpu_id)) { 2379 target_cpu_id = cpu_id; 2380 target_found = 1; 2381 break; 2382 } 2383 } 2384 ASSERT(target_found); 2385 2386 if (ptl1_panic_xc_one_test) { 2387 xc_one(target_cpu_id, 2388 (xcfunc_t *)ptl1_panic_xc, 0, 0); 2389 } 2390 if (ptl1_panic_xc_all_test) { 2391 xc_some(other_cpus, 2392 (xcfunc_t *)ptl1_panic_xc, 0, 0); 2393 } 2394 if (ptl1_panic_xt_one_test) { 2395 xt_one(target_cpu_id, 2396 (xcfunc_t *)ptl1_panic_xt, 0, 0); 2397 } 2398 if (ptl1_panic_xt_all_test) { 2399 xt_some(other_cpus, 2400 (xcfunc_t *)ptl1_panic_xt, 0, 0); 2401 } 2402 } 2403 kpreempt_enable(); 2404 (void) timeout(ptl1_wakeup, NULL, hz); 2405 (void) cv_wait(&ptl1_cv, &ptl1_mutex); 2406 } 2407 mutex_exit(&ptl1_mutex); 2408 } 2409 2410 /* 2411 * Called during early startup to create the ptl1_thread 2412 */ 2413 void 2414 init_ptl1_thread(void) 2415 { 2416 ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0, 2417 &p0, TS_RUN, 0); 2418 } 2419 #endif /* PTL1_PANIC_DEBUG */ 2420 2421 2422 static void 2423 memlist_new(uint64_t start, uint64_t len, struct memlist **memlistp) 2424 { 2425 struct memlist *new; 2426 2427 new = *memlistp; 2428 new->ml_address = start; 2429 new->ml_size = len; 2430 *memlistp = new + 1; 2431 } 2432 2433 /* 2434 * Add to a memory list. 2435 * start = start of new memory segment 2436 * len = length of new memory segment in bytes 2437 * memlistp = pointer to array of available memory segment structures 2438 * curmemlistp = memory list to which to add segment. 2439 */ 2440 static void 2441 memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp, 2442 struct memlist **curmemlistp) 2443 { 2444 struct memlist *new = *memlistp; 2445 2446 memlist_new(start, len, memlistp); 2447 memlist_insert(new, curmemlistp); 2448 } 2449 2450 static int 2451 ndata_alloc_memseg(struct memlist *ndata, size_t avail) 2452 { 2453 int nseg; 2454 size_t memseg_sz; 2455 struct memseg *msp; 2456 2457 /* 2458 * The memseg list is for the chunks of physical memory that 2459 * will be managed by the vm system. The number calculated is 2460 * a guess as boot may fragment it more when memory allocations 2461 * are made before kphysm_init(). 2462 */ 2463 memseg_sz = (avail + 10) * sizeof (struct memseg); 2464 memseg_sz = roundup(memseg_sz, PAGESIZE); 2465 nseg = memseg_sz / sizeof (struct memseg); 2466 msp = ndata_alloc(ndata, memseg_sz, ecache_alignsize); 2467 if (msp == NULL) 2468 return (1); 2469 PRM_DEBUG(memseg_free); 2470 2471 while (nseg--) { 2472 msp->next = memseg_free; 2473 memseg_free = msp; 2474 msp++; 2475 } 2476 return (0); 2477 } 2478 2479 /* 2480 * In the case of architectures that support dynamic addition of 2481 * memory at run-time there are two cases where memsegs need to 2482 * be initialized and added to the memseg list. 2483 * 1) memsegs that are constructed at startup. 2484 * 2) memsegs that are constructed at run-time on 2485 * hot-plug capable architectures. 2486 * This code was originally part of the function kphysm_init(). 2487 */ 2488 2489 static void 2490 memseg_list_add(struct memseg *memsegp) 2491 { 2492 struct memseg **prev_memsegp; 2493 pgcnt_t num; 2494 2495 /* insert in memseg list, decreasing number of pages order */ 2496 2497 num = MSEG_NPAGES(memsegp); 2498 2499 for (prev_memsegp = &memsegs; *prev_memsegp; 2500 prev_memsegp = &((*prev_memsegp)->next)) { 2501 if (num > MSEG_NPAGES(*prev_memsegp)) 2502 break; 2503 } 2504 2505 memsegp->next = *prev_memsegp; 2506 *prev_memsegp = memsegp; 2507 2508 if (kpm_enable) { 2509 memsegp->nextpa = (memsegp->next) ? 2510 va_to_pa(memsegp->next) : MSEG_NULLPTR_PA; 2511 2512 if (prev_memsegp != &memsegs) { 2513 struct memseg *msp; 2514 msp = (struct memseg *)((caddr_t)prev_memsegp - 2515 offsetof(struct memseg, next)); 2516 msp->nextpa = va_to_pa(memsegp); 2517 } else { 2518 memsegspa = va_to_pa(memsegs); 2519 } 2520 } 2521 } 2522 2523 /* 2524 * PSM add_physmem_cb(). US-II and newer processors have some 2525 * flavor of the prefetch capability implemented. We exploit 2526 * this capability for optimum performance. 2527 */ 2528 #define PREFETCH_BYTES 64 2529 2530 void 2531 add_physmem_cb(page_t *pp, pfn_t pnum) 2532 { 2533 extern void prefetch_page_w(void *); 2534 2535 pp->p_pagenum = pnum; 2536 2537 /* 2538 * Prefetch one more page_t into E$. To prevent future 2539 * mishaps with the sizeof(page_t) changing on us, we 2540 * catch this on debug kernels if we can't bring in the 2541 * entire hpage with 2 PREFETCH_BYTES reads. See 2542 * also, sun4u/cpu/cpu_module.c 2543 */ 2544 /*LINTED*/ 2545 ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES); 2546 prefetch_page_w((char *)pp); 2547 } 2548 2549 /* 2550 * Find memseg with given pfn 2551 */ 2552 static struct memseg * 2553 memseg_find(pfn_t base, pfn_t *next) 2554 { 2555 struct memseg *seg; 2556 2557 if (next != NULL) 2558 *next = LONG_MAX; 2559 for (seg = memsegs; seg != NULL; seg = seg->next) { 2560 if (base >= seg->pages_base && base < seg->pages_end) 2561 return (seg); 2562 if (next != NULL && seg->pages_base > base && 2563 seg->pages_base < *next) 2564 *next = seg->pages_base; 2565 } 2566 return (NULL); 2567 } 2568 2569 /* 2570 * Put page allocated by OBP on prom_ppages 2571 */ 2572 static void 2573 kphysm_erase(uint64_t addr, uint64_t len) 2574 { 2575 struct page *pp; 2576 struct memseg *seg; 2577 pfn_t base = btop(addr), next; 2578 pgcnt_t num = btop(len); 2579 2580 while (num != 0) { 2581 pgcnt_t off, left; 2582 2583 seg = memseg_find(base, &next); 2584 if (seg == NULL) { 2585 if (next == LONG_MAX) 2586 break; 2587 left = MIN(next - base, num); 2588 base += left, num -= left; 2589 continue; 2590 } 2591 off = base - seg->pages_base; 2592 pp = seg->pages + off; 2593 left = num - MIN(num, (seg->pages_end - seg->pages_base) - off); 2594 while (num != left) { 2595 /* 2596 * init it, lock it, and hashin on prom_pages vp. 2597 * 2598 * Mark it as NONRELOC to let DR know the page 2599 * is locked long term, otherwise DR hangs when 2600 * trying to remove those pages. 2601 * 2602 * XXX vnode offsets on the prom_ppages vnode 2603 * are page numbers (gack) for >32 bit 2604 * physical memory machines. 2605 */ 2606 PP_SETNORELOC(pp); 2607 add_physmem_cb(pp, base); 2608 if (page_trylock(pp, SE_EXCL) == 0) 2609 cmn_err(CE_PANIC, "prom page locked"); 2610 (void) page_hashin(pp, &promvp, 2611 (offset_t)base, NULL); 2612 (void) page_pp_lock(pp, 0, 1); 2613 pp++, base++, num--; 2614 } 2615 } 2616 } 2617 2618 static page_t *ppnext; 2619 static pgcnt_t ppleft; 2620 2621 static void *kpm_ppnext; 2622 static pgcnt_t kpm_ppleft; 2623 2624 /* 2625 * Create a memseg 2626 */ 2627 static void 2628 kphysm_memseg(uint64_t addr, uint64_t len) 2629 { 2630 pfn_t base = btop(addr); 2631 pgcnt_t num = btop(len); 2632 struct memseg *seg; 2633 2634 seg = memseg_free; 2635 memseg_free = seg->next; 2636 ASSERT(seg != NULL); 2637 2638 seg->pages = ppnext; 2639 seg->epages = ppnext + num; 2640 seg->pages_base = base; 2641 seg->pages_end = base + num; 2642 ppnext += num; 2643 ppleft -= num; 2644 2645 if (kpm_enable) { 2646 pgcnt_t kpnum = ptokpmpr(num); 2647 2648 if (kpnum > kpm_ppleft) 2649 panic("kphysm_memseg: kpm_pp overflow"); 2650 seg->pagespa = va_to_pa(seg->pages); 2651 seg->epagespa = va_to_pa(seg->epages); 2652 seg->kpm_pbase = kpmptop(ptokpmp(base)); 2653 seg->kpm_nkpmpgs = kpnum; 2654 /* 2655 * In the kpm_smallpage case, the kpm array 2656 * is 1-1 wrt the page array 2657 */ 2658 if (kpm_smallpages) { 2659 kpm_spage_t *kpm_pp = kpm_ppnext; 2660 2661 kpm_ppnext = kpm_pp + kpnum; 2662 seg->kpm_spages = kpm_pp; 2663 seg->kpm_pagespa = va_to_pa(seg->kpm_spages); 2664 } else { 2665 kpm_page_t *kpm_pp = kpm_ppnext; 2666 2667 kpm_ppnext = kpm_pp + kpnum; 2668 seg->kpm_pages = kpm_pp; 2669 seg->kpm_pagespa = va_to_pa(seg->kpm_pages); 2670 /* ASSERT no kpm overlaps */ 2671 ASSERT( 2672 memseg_find(base - pmodkpmp(base), NULL) == NULL); 2673 ASSERT(memseg_find( 2674 roundup(base + num, kpmpnpgs) - 1, NULL) == NULL); 2675 } 2676 kpm_ppleft -= kpnum; 2677 } 2678 2679 memseg_list_add(seg); 2680 } 2681 2682 /* 2683 * Add range to free list 2684 */ 2685 void 2686 kphysm_add(uint64_t addr, uint64_t len, int reclaim) 2687 { 2688 struct page *pp; 2689 struct memseg *seg; 2690 pfn_t base = btop(addr); 2691 pgcnt_t num = btop(len); 2692 2693 seg = memseg_find(base, NULL); 2694 ASSERT(seg != NULL); 2695 pp = seg->pages + (base - seg->pages_base); 2696 2697 if (reclaim) { 2698 struct page *rpp = pp; 2699 struct page *lpp = pp + num; 2700 2701 /* 2702 * page should be locked on prom_ppages 2703 * unhash and unlock it 2704 */ 2705 while (rpp < lpp) { 2706 ASSERT(PAGE_EXCL(rpp) && rpp->p_vnode == &promvp); 2707 ASSERT(PP_ISNORELOC(rpp)); 2708 PP_CLRNORELOC(rpp); 2709 page_pp_unlock(rpp, 0, 1); 2710 page_hashout(rpp, NULL); 2711 page_unlock(rpp); 2712 rpp++; 2713 } 2714 } 2715 2716 /* 2717 * add_physmem() initializes the PSM part of the page 2718 * struct by calling the PSM back with add_physmem_cb(). 2719 * In addition it coalesces pages into larger pages as 2720 * it initializes them. 2721 */ 2722 add_physmem(pp, num, base); 2723 } 2724 2725 /* 2726 * kphysm_init() tackles the problem of initializing physical memory. 2727 */ 2728 static void 2729 kphysm_init(void) 2730 { 2731 struct memlist *pmem; 2732 2733 ASSERT(page_hash != NULL && page_hashsz != 0); 2734 2735 ppnext = pp_base; 2736 ppleft = npages; 2737 kpm_ppnext = kpm_pp_base; 2738 kpm_ppleft = kpm_npages; 2739 2740 /* 2741 * installed pages not on nopp_memlist go in memseg list 2742 */ 2743 diff_memlists(phys_install, nopp_list, kphysm_memseg); 2744 2745 /* 2746 * Free the avail list 2747 */ 2748 for (pmem = phys_avail; pmem != NULL; pmem = pmem->ml_next) 2749 kphysm_add(pmem->ml_address, pmem->ml_size, 0); 2750 2751 /* 2752 * Erase pages that aren't available 2753 */ 2754 diff_memlists(phys_install, phys_avail, kphysm_erase); 2755 2756 build_pfn_hash(); 2757 } 2758 2759 /* 2760 * Kernel VM initialization. 2761 * Assumptions about kernel address space ordering: 2762 * (1) gap (user space) 2763 * (2) kernel text 2764 * (3) kernel data/bss 2765 * (4) gap 2766 * (5) kernel data structures 2767 * (6) gap 2768 * (7) debugger (optional) 2769 * (8) monitor 2770 * (9) gap (possibly null) 2771 * (10) dvma 2772 * (11) devices 2773 */ 2774 static void 2775 kvm_init(void) 2776 { 2777 /* 2778 * Put the kernel segments in kernel address space. 2779 */ 2780 rw_enter(&kas.a_lock, RW_WRITER); 2781 as_avlinit(&kas); 2782 2783 (void) seg_attach(&kas, (caddr_t)KERNELBASE, 2784 (size_t)(e_moddata - KERNELBASE), &ktextseg); 2785 (void) segkmem_create(&ktextseg); 2786 2787 (void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M), 2788 (size_t)(MMU_PAGESIZE4M), &ktexthole); 2789 (void) segkmem_create(&ktexthole); 2790 2791 (void) seg_attach(&kas, (caddr_t)valloc_base, 2792 (size_t)(econtig32 - valloc_base), &kvalloc); 2793 (void) segkmem_create(&kvalloc); 2794 2795 if (kmem64_base) { 2796 (void) seg_attach(&kas, (caddr_t)kmem64_base, 2797 (size_t)(kmem64_end - kmem64_base), &kmem64); 2798 (void) segkmem_create(&kmem64); 2799 } 2800 2801 /* 2802 * We're about to map out /boot. This is the beginning of the 2803 * system resource management transition. We can no longer 2804 * call into /boot for I/O or memory allocations. 2805 */ 2806 (void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg); 2807 (void) segkmem_create(&kvseg); 2808 hblk_alloc_dynamic = 1; 2809 2810 /* 2811 * we need to preallocate pages for DR operations before enabling large 2812 * page kernel heap because of memseg_remap_init() hat_unload() hack. 2813 */ 2814 memseg_remap_init(); 2815 2816 /* at this point we are ready to use large page heap */ 2817 segkmem_heap_lp_init(); 2818 2819 (void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32, 2820 &kvseg32); 2821 (void) segkmem_create(&kvseg32); 2822 2823 /* 2824 * Create a segment for the debugger. 2825 */ 2826 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2827 (void) segkmem_create(&kdebugseg); 2828 2829 rw_exit(&kas.a_lock); 2830 } 2831 2832 char obp_tte_str[] = 2833 "h# %x constant MMU_PAGESHIFT " 2834 "h# %x constant TTE8K " 2835 "h# %x constant SFHME_SIZE " 2836 "h# %x constant SFHME_TTE " 2837 "h# %x constant HMEBLK_TAG " 2838 "h# %x constant HMEBLK_NEXT " 2839 "h# %x constant HMEBLK_MISC " 2840 "h# %x constant HMEBLK_HME1 " 2841 "h# %x constant NHMENTS " 2842 "h# %x constant HBLK_SZMASK " 2843 "h# %x constant HBLK_RANGE_SHIFT " 2844 "h# %x constant HMEBP_HBLK " 2845 "h# %x constant HMEBLK_ENDPA " 2846 "h# %x constant HMEBUCKET_SIZE " 2847 "h# %x constant HTAG_SFMMUPSZ " 2848 "h# %x constant HTAG_BSPAGE_SHIFT " 2849 "h# %x constant HTAG_REHASH_SHIFT " 2850 "h# %x constant SFMMU_INVALID_SHMERID " 2851 "h# %x constant mmu_hashcnt " 2852 "h# %p constant uhme_hash " 2853 "h# %p constant khme_hash " 2854 "h# %x constant UHMEHASH_SZ " 2855 "h# %x constant KHMEHASH_SZ " 2856 "h# %p constant KCONTEXT " 2857 "h# %p constant KHATID " 2858 "h# %x constant ASI_MEM " 2859 2860 ": PHYS-X@ ( phys -- data ) " 2861 " ASI_MEM spacex@ " 2862 "; " 2863 2864 ": PHYS-W@ ( phys -- data ) " 2865 " ASI_MEM spacew@ " 2866 "; " 2867 2868 ": PHYS-L@ ( phys -- data ) " 2869 " ASI_MEM spaceL@ " 2870 "; " 2871 2872 ": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) " 2873 " 3 * MMU_PAGESHIFT + " 2874 "; " 2875 2876 ": TTE_IS_VALID ( ttep -- flag ) " 2877 " PHYS-X@ 0< " 2878 "; " 2879 2880 ": HME_HASH_SHIFT ( ttesz -- hmeshift ) " 2881 " dup TTE8K = if " 2882 " drop HBLK_RANGE_SHIFT " 2883 " else " 2884 " TTE_PAGE_SHIFT " 2885 " then " 2886 "; " 2887 2888 ": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) " 2889 " tuck >> swap MMU_PAGESHIFT - << " 2890 "; " 2891 2892 ": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) " 2893 " >> over xor swap ( hash sfmmup ) " 2894 " KHATID <> if ( hash ) " 2895 " UHMEHASH_SZ and ( bucket ) " 2896 " HMEBUCKET_SIZE * uhme_hash + ( hmebp ) " 2897 " else ( hash ) " 2898 " KHMEHASH_SZ and ( bucket ) " 2899 " HMEBUCKET_SIZE * khme_hash + ( hmebp ) " 2900 " then ( hmebp ) " 2901 "; " 2902 2903 ": HME_HASH_TABLE_SEARCH " 2904 " ( sfmmup hmebp hblktag -- sfmmup null | sfmmup hmeblkp ) " 2905 " >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) " 2906 " dup HMEBLK_ENDPA <> if ( sfmmup hmeblkp ) ( r: hblktag ) " 2907 " dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp ) " 2908 " dup hmeblk_tag + 8 + phys-x@ 2 pick = if " 2909 " true ( sfmmup hmeblkp true ) ( r: hblktag ) " 2910 " else " 2911 " hmeblk_next + phys-x@ false " 2912 " ( sfmmup hmeblkp false ) ( r: hblktag ) " 2913 " then " 2914 " else " 2915 " hmeblk_next + phys-x@ false " 2916 " ( sfmmup hmeblkp false ) ( r: hblktag ) " 2917 " then " 2918 " else " 2919 " drop 0 true " 2920 " then " 2921 " until r> drop " 2922 "; " 2923 2924 ": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) " 2925 " over HME_HASH_SHIFT HME_HASH_BSPAGE ( sfmmup rehash bspage ) " 2926 " HTAG_BSPAGE_SHIFT << ( sfmmup rehash htag-bspage )" 2927 " swap HTAG_REHASH_SHIFT << or ( sfmmup htag-bspage-rehash )" 2928 " SFMMU_INVALID_SHMERID or nip ( hblktag ) " 2929 "; " 2930 2931 ": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) " 2932 " over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and ( hmeblkp addr ttesz ) " 2933 " TTE8K = if ( hmeblkp addr ) " 2934 " MMU_PAGESHIFT >> NHMENTS 1- and ( hmeblkp hme-index ) " 2935 " else ( hmeblkp addr ) " 2936 " drop 0 ( hmeblkp 0 ) " 2937 " then ( hmeblkp hme-index ) " 2938 " SFHME_SIZE * + HMEBLK_HME1 + ( hmep ) " 2939 " SFHME_TTE + ( ttep ) " 2940 "; " 2941 2942 ": unix-tte ( addr cnum -- false | tte-data true ) " 2943 " KCONTEXT = if ( addr ) " 2944 " KHATID ( addr khatid ) " 2945 " else ( addr ) " 2946 " drop false exit ( false ) " 2947 " then " 2948 " ( addr khatid ) " 2949 " mmu_hashcnt 1+ 1 do ( addr sfmmup ) " 2950 " 2dup swap i HME_HASH_SHIFT " 2951 "( addr sfmmup sfmmup addr hmeshift ) " 2952 " HME_HASH_FUNCTION ( addr sfmmup hmebp ) " 2953 " over i 4 pick " 2954 "( addr sfmmup hmebp sfmmup rehash addr ) " 2955 " HME_HASH_TAG ( addr sfmmup hmebp hblktag ) " 2956 " HME_HASH_TABLE_SEARCH " 2957 "( addr sfmmup { null | hmeblkp } ) " 2958 " ?dup if ( addr sfmmup hmeblkp ) " 2959 " nip swap HBLK_TO_TTEP ( ttep ) " 2960 " dup TTE_IS_VALID if ( valid-ttep ) " 2961 " PHYS-X@ true ( tte-data true ) " 2962 " else ( invalid-tte ) " 2963 " drop false ( false ) " 2964 " then ( false | tte-data true ) " 2965 " unloop exit ( false | tte-data true ) " 2966 " then ( addr sfmmup ) " 2967 " loop ( addr sfmmup ) " 2968 " 2drop false ( false ) " 2969 "; " 2970 ; 2971 2972 void 2973 create_va_to_tte(void) 2974 { 2975 char *bp; 2976 extern int khmehash_num, uhmehash_num; 2977 extern struct hmehash_bucket *khme_hash, *uhme_hash; 2978 2979 #define OFFSET(type, field) ((uintptr_t)(&((type *)0)->field)) 2980 2981 bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP); 2982 2983 /* 2984 * Teach obp how to parse our sw ttes. 2985 */ 2986 (void) sprintf(bp, obp_tte_str, 2987 MMU_PAGESHIFT, 2988 TTE8K, 2989 sizeof (struct sf_hment), 2990 OFFSET(struct sf_hment, hme_tte), 2991 OFFSET(struct hme_blk, hblk_tag), 2992 OFFSET(struct hme_blk, hblk_nextpa), 2993 OFFSET(struct hme_blk, hblk_misc), 2994 OFFSET(struct hme_blk, hblk_hme), 2995 NHMENTS, 2996 HBLK_SZMASK, 2997 HBLK_RANGE_SHIFT, 2998 OFFSET(struct hmehash_bucket, hmeh_nextpa), 2999 HMEBLK_ENDPA, 3000 sizeof (struct hmehash_bucket), 3001 HTAG_SFMMUPSZ, 3002 HTAG_BSPAGE_SHIFT, 3003 HTAG_REHASH_SHIFT, 3004 SFMMU_INVALID_SHMERID, 3005 mmu_hashcnt, 3006 (caddr_t)va_to_pa((caddr_t)uhme_hash), 3007 (caddr_t)va_to_pa((caddr_t)khme_hash), 3008 UHMEHASH_SZ, 3009 KHMEHASH_SZ, 3010 KCONTEXT, 3011 KHATID, 3012 ASI_MEM); 3013 prom_interpret(bp, 0, 0, 0, 0, 0); 3014 3015 kobj_free(bp, MMU_PAGESIZE); 3016 } 3017 3018 void 3019 install_va_to_tte(void) 3020 { 3021 /* 3022 * advise prom that it can use unix-tte 3023 */ 3024 prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0); 3025 } 3026 3027 /* 3028 * Here we add "device-type=console" for /os-io node, for currently 3029 * our kernel console output only supports displaying text and 3030 * performing cursor-positioning operations (through kernel framebuffer 3031 * driver) and it doesn't support other functionalities required for a 3032 * standard "display" device as specified in 1275 spec. The main missing 3033 * interface defined by the 1275 spec is "draw-logo". 3034 * also see the comments above prom_stdout_is_framebuffer(). 3035 */ 3036 static char *create_node = 3037 "\" /\" find-device " 3038 "new-device " 3039 "\" os-io\" device-name " 3040 "\" "OBP_DISPLAY_CONSOLE"\" device-type " 3041 ": cb-r/w ( adr,len method$ -- #read/#written ) " 3042 " 2>r swap 2 2r> ['] $callback catch if " 3043 " 2drop 3drop 0 " 3044 " then " 3045 "; " 3046 ": read ( adr,len -- #read ) " 3047 " \" read\" ['] cb-r/w catch if 2drop 2drop -2 exit then " 3048 " ( retN ... ret1 N ) " 3049 " ?dup if " 3050 " swap >r 1- 0 ?do drop loop r> " 3051 " else " 3052 " -2 " 3053 " then " 3054 "; " 3055 ": write ( adr,len -- #written ) " 3056 " \" write\" ['] cb-r/w catch if 2drop 2drop 0 exit then " 3057 " ( retN ... ret1 N ) " 3058 " ?dup if " 3059 " swap >r 1- 0 ?do drop loop r> " 3060 " else " 3061 " 0 " 3062 " then " 3063 "; " 3064 ": poll-tty ( -- ) ; " 3065 ": install-abort ( -- ) ['] poll-tty d# 10 alarm ; " 3066 ": remove-abort ( -- ) ['] poll-tty 0 alarm ; " 3067 ": cb-give/take ( $method -- ) " 3068 " 0 -rot ['] $callback catch ?dup if " 3069 " >r 2drop 2drop r> throw " 3070 " else " 3071 " 0 ?do drop loop " 3072 " then " 3073 "; " 3074 ": give ( -- ) \" exit-input\" cb-give/take ; " 3075 ": take ( -- ) \" enter-input\" cb-give/take ; " 3076 ": open ( -- ok? ) true ; " 3077 ": close ( -- ) ; " 3078 "finish-device " 3079 "device-end "; 3080 3081 /* 3082 * Create the OBP input/output node (FCode serial driver). 3083 * It is needed for both USB console keyboard and for 3084 * the kernel terminal emulator. It is too early to check for a 3085 * kernel console compatible framebuffer now, so we create this 3086 * so that we're ready if we need to enable kernel terminal emulation. 3087 * 3088 * When the USB software takes over the input device at the time 3089 * consconfig runs, OBP's stdin is redirected to this node. 3090 * Whenever the FORTH user interface is used after this switch, 3091 * the node will call back into the kernel for console input. 3092 * If a serial device such as ttya or a UART with a Type 5 keyboard 3093 * attached is used, OBP takes over the serial device when the system 3094 * goes to the debugger after the system is booted. This sharing 3095 * of the relatively simple serial device is difficult but possible. 3096 * Sharing the USB host controller is impossible due its complexity. 3097 * 3098 * Similarly to USB keyboard input redirection, after consconfig_dacf 3099 * configures a kernel console framebuffer as the standard output 3100 * device, OBP's stdout is switched to to vector through the 3101 * /os-io node into the kernel terminal emulator. 3102 */ 3103 static void 3104 startup_create_io_node(void) 3105 { 3106 prom_interpret(create_node, 0, 0, 0, 0, 0); 3107 } 3108 3109 3110 static void 3111 do_prom_version_check(void) 3112 { 3113 int i; 3114 pnode_t node; 3115 char buf[64]; 3116 static char drev[] = "Down-rev firmware detected%s\n" 3117 "\tPlease upgrade to the following minimum version:\n" 3118 "\t\t%s\n"; 3119 3120 i = prom_version_check(buf, sizeof (buf), &node); 3121 3122 if (i == PROM_VER64_OK) 3123 return; 3124 3125 if (i == PROM_VER64_UPGRADE) { 3126 cmn_err(CE_WARN, drev, "", buf); 3127 3128 #ifdef DEBUG 3129 prom_enter_mon(); /* Type 'go' to continue */ 3130 cmn_err(CE_WARN, "Booting with down-rev firmware\n"); 3131 return; 3132 #else 3133 halt(0); 3134 #endif 3135 } 3136 3137 /* 3138 * The other possibility is that this is a server running 3139 * good firmware, but down-rev firmware was detected on at 3140 * least one other cpu board. We just complain if we see 3141 * that. 3142 */ 3143 cmn_err(CE_WARN, drev, " on one or more CPU boards", buf); 3144 } 3145 3146 3147 /* 3148 * Must be defined in platform dependent code. 3149 */ 3150 extern caddr_t modtext; 3151 extern size_t modtext_sz; 3152 extern caddr_t moddata; 3153 3154 #define HEAPTEXT_ARENA(addr) \ 3155 ((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \ 3156 (((uintptr_t)(addr) - HEAPTEXT_BASE) / \ 3157 (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1)) 3158 3159 #define HEAPTEXT_OVERSIZED(addr) \ 3160 ((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE) 3161 3162 #define HEAPTEXT_IN_NUCLEUSDATA(addr) \ 3163 (((uintptr_t)(addr) >= KERNELBASE + 2 * MMU_PAGESIZE4M) && \ 3164 ((uintptr_t)(addr) < KERNELBASE + 3 * MMU_PAGESIZE4M)) 3165 3166 vmem_t *texthole_source[HEAPTEXT_NARENAS]; 3167 vmem_t *texthole_arena[HEAPTEXT_NARENAS]; 3168 kmutex_t texthole_lock; 3169 3170 char kern_bootargs[OBP_MAXPATHLEN]; 3171 char kern_bootfile[OBP_MAXPATHLEN]; 3172 3173 void 3174 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 3175 { 3176 uintptr_t addr, limit; 3177 3178 addr = HEAPTEXT_BASE; 3179 limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE; 3180 3181 /* 3182 * Before we initialize the text_arena, we want to punch holes in the 3183 * underlying heaptext_arena. This guarantees that for any text 3184 * address we can find a text hole less than HEAPTEXT_MAPPED away. 3185 */ 3186 for (; addr + HEAPTEXT_UNMAPPED <= limit; 3187 addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) { 3188 (void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE, 3189 0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED), 3190 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 3191 } 3192 3193 /* 3194 * Allocate one page at the oversize to break up the text region 3195 * from the oversized region. 3196 */ 3197 (void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0, 3198 (void *)limit, (void *)(limit + PAGESIZE), 3199 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 3200 3201 *text_arena = vmem_create("module_text", modtext_sz ? modtext : NULL, 3202 modtext_sz, sizeof (uintptr_t), segkmem_alloc, segkmem_free, 3203 heaptext_arena, 0, VM_SLEEP); 3204 *data_arena = vmem_create("module_data", moddata, MODDATA, 1, 3205 segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 3206 } 3207 3208 caddr_t 3209 kobj_text_alloc(vmem_t *arena, size_t size) 3210 { 3211 caddr_t rval, better; 3212 3213 /* 3214 * First, try a sleeping allocation. 3215 */ 3216 rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT); 3217 3218 if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval)) 3219 return (rval); 3220 3221 /* 3222 * We didn't get the area that we wanted. We're going to try to do an 3223 * allocation with explicit constraints. 3224 */ 3225 better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL, 3226 (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE), 3227 VM_NOSLEEP | VM_BESTFIT); 3228 3229 if (better != NULL) { 3230 /* 3231 * That worked. Free our first attempt and return. 3232 */ 3233 vmem_free(arena, rval, size); 3234 return (better); 3235 } 3236 3237 /* 3238 * That didn't work; we'll have to return our first attempt. 3239 */ 3240 return (rval); 3241 } 3242 3243 caddr_t 3244 kobj_texthole_alloc(caddr_t addr, size_t size) 3245 { 3246 int arena = HEAPTEXT_ARENA(addr); 3247 char c[30]; 3248 uintptr_t base; 3249 3250 if (HEAPTEXT_OVERSIZED(addr) || HEAPTEXT_IN_NUCLEUSDATA(addr)) { 3251 /* 3252 * If this is an oversized allocation or it is allocated in 3253 * the nucleus data page, there is no text hole available for 3254 * it; return NULL. 3255 */ 3256 return (NULL); 3257 } 3258 3259 mutex_enter(&texthole_lock); 3260 3261 if (texthole_arena[arena] == NULL) { 3262 ASSERT(texthole_source[arena] == NULL); 3263 3264 if (arena == 0) { 3265 texthole_source[0] = vmem_create("module_text_holesrc", 3266 (void *)(KERNELBASE + MMU_PAGESIZE4M), 3267 MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL, 3268 0, VM_SLEEP); 3269 } else { 3270 base = HEAPTEXT_BASE + 3271 (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED); 3272 3273 (void) snprintf(c, sizeof (c), 3274 "heaptext_holesrc_%d", arena); 3275 3276 texthole_source[arena] = vmem_create(c, (void *)base, 3277 HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL, 3278 0, VM_SLEEP); 3279 } 3280 3281 (void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena); 3282 3283 texthole_arena[arena] = vmem_create(c, NULL, 0, 3284 sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free, 3285 texthole_source[arena], 0, VM_SLEEP); 3286 } 3287 3288 mutex_exit(&texthole_lock); 3289 3290 ASSERT(texthole_arena[arena] != NULL); 3291 ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS); 3292 return (vmem_alloc(texthole_arena[arena], size, 3293 VM_BESTFIT | VM_NOSLEEP)); 3294 } 3295 3296 void 3297 kobj_texthole_free(caddr_t addr, size_t size) 3298 { 3299 int arena = HEAPTEXT_ARENA(addr); 3300 3301 ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS); 3302 ASSERT(texthole_arena[arena] != NULL); 3303 vmem_free(texthole_arena[arena], addr, size); 3304 } 3305 3306 void 3307 release_bootstrap(void) 3308 { 3309 if (&cif_init) 3310 cif_init(); 3311 }