1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright 2018 Nexenta Systems, Inc.  All rights reserved.
  25  * Copyright 2017, Joyent, Inc.
  26  */
  27 /*
  28  * Copyright (c) 2010, Intel Corporation.
  29  * All rights reserved.
  30  */
  31 
  32 #include <sys/types.h>
  33 #include <sys/t_lock.h>
  34 #include <sys/param.h>
  35 #include <sys/segments.h>
  36 #include <sys/sysmacros.h>
  37 #include <sys/signal.h>
  38 #include <sys/systm.h>
  39 #include <sys/user.h>
  40 #include <sys/mman.h>
  41 #include <sys/vm.h>
  42 
  43 #include <sys/disp.h>
  44 #include <sys/class.h>
  45 
  46 #include <sys/proc.h>
  47 #include <sys/buf.h>
  48 #include <sys/kmem.h>
  49 
  50 #include <sys/reboot.h>
  51 #include <sys/uadmin.h>
  52 #include <sys/callb.h>
  53 
  54 #include <sys/cred.h>
  55 #include <sys/vnode.h>
  56 #include <sys/file.h>
  57 
  58 #include <sys/procfs.h>
  59 #include <sys/acct.h>
  60 
  61 #include <sys/vfs.h>
  62 #include <sys/dnlc.h>
  63 #include <sys/var.h>
  64 #include <sys/cmn_err.h>
  65 #include <sys/utsname.h>
  66 #include <sys/debug.h>
  67 
  68 #include <sys/dumphdr.h>
  69 #include <sys/bootconf.h>
  70 #include <sys/varargs.h>
  71 #include <sys/promif.h>
  72 #include <sys/modctl.h>
  73 
  74 #include <sys/consdev.h>
  75 #include <sys/frame.h>
  76 
  77 #include <sys/sunddi.h>
  78 #include <sys/ddidmareq.h>
  79 #include <sys/psw.h>
  80 #include <sys/regset.h>
  81 #include <sys/privregs.h>
  82 #include <sys/clock.h>
  83 #include <sys/tss.h>
  84 #include <sys/cpu.h>
  85 #include <sys/stack.h>
  86 #include <sys/trap.h>
  87 #include <sys/pic.h>
  88 #include <vm/hat.h>
  89 #include <vm/anon.h>
  90 #include <vm/as.h>
  91 #include <vm/page.h>
  92 #include <vm/seg.h>
  93 #include <vm/seg_kmem.h>
  94 #include <vm/seg_map.h>
  95 #include <vm/seg_vn.h>
  96 #include <vm/seg_kp.h>
  97 #include <vm/hat_i86.h>
  98 #include <sys/swap.h>
  99 #include <sys/thread.h>
 100 #include <sys/sysconf.h>
 101 #include <sys/vm_machparam.h>
 102 #include <sys/archsystm.h>
 103 #include <sys/machsystm.h>
 104 #include <sys/machlock.h>
 105 #include <sys/x_call.h>
 106 #include <sys/instance.h>
 107 
 108 #include <sys/time.h>
 109 #include <sys/smp_impldefs.h>
 110 #include <sys/psm_types.h>
 111 #include <sys/atomic.h>
 112 #include <sys/panic.h>
 113 #include <sys/cpuvar.h>
 114 #include <sys/dtrace.h>
 115 #include <sys/bl.h>
 116 #include <sys/nvpair.h>
 117 #include <sys/x86_archext.h>
 118 #include <sys/pool_pset.h>
 119 #include <sys/autoconf.h>
 120 #include <sys/mem.h>
 121 #include <sys/dumphdr.h>
 122 #include <sys/compress.h>
 123 #include <sys/cpu_module.h>
 124 #if defined(__xpv)
 125 #include <sys/hypervisor.h>
 126 #include <sys/xpv_panic.h>
 127 #endif
 128 
 129 #include <sys/fastboot.h>
 130 #include <sys/machelf.h>
 131 #include <sys/kobj.h>
 132 #include <sys/multiboot.h>
 133 
 134 #ifdef  TRAPTRACE
 135 #include <sys/traptrace.h>
 136 #endif  /* TRAPTRACE */
 137 
 138 #include <c2/audit.h>
 139 #include <sys/clock_impl.h>
 140 
 141 extern void audit_enterprom(int);
 142 extern void audit_exitprom(int);
 143 
 144 /*
 145  * Tunable to enable apix PSM; if set to 0, pcplusmp PSM will be used.
 146  */
 147 int     apix_enable = 1;
 148 
 149 int     apic_nvidia_io_max = 0; /* no. of NVIDIA i/o apics */
 150 
 151 /*
 152  * Occassionally the kernel knows better whether to power-off or reboot.
 153  */
 154 int force_shutdown_method = AD_UNKNOWN;
 155 
 156 /*
 157  * The panicbuf array is used to record messages and state:
 158  */
 159 char panicbuf[PANICBUFSIZE];
 160 
 161 /*
 162  * Flags to control Dynamic Reconfiguration features.
 163  */
 164 uint64_t plat_dr_options;
 165 
 166 /*
 167  * Maximum physical address for memory DR operations.
 168  */
 169 uint64_t plat_dr_physmax;
 170 
 171 /*
 172  * maxphys - used during physio
 173  * klustsize - used for klustering by swapfs and specfs
 174  */
 175 int maxphys = 56 * 1024;    /* XXX See vm_subr.c - max b_count in physio */
 176 int klustsize = 56 * 1024;
 177 
 178 caddr_t p0_va;          /* Virtual address for accessing physical page 0 */
 179 
 180 /*
 181  * defined here, though unused on x86,
 182  * to make kstat_fr.c happy.
 183  */
 184 int vac;
 185 
 186 void debug_enter(char *);
 187 
 188 extern void pm_cfb_check_and_powerup(void);
 189 extern void pm_cfb_rele(void);
 190 
 191 extern fastboot_info_t newkernel;
 192 
 193 /*
 194  * Machine dependent code to reboot.
 195  * "mdep" is interpreted as a character pointer; if non-null, it is a pointer
 196  * to a string to be used as the argument string when rebooting.
 197  *
 198  * "invoke_cb" is a boolean. It is set to true when mdboot() can safely
 199  * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when
 200  * we are in a normal shutdown sequence (interrupts are not blocked, the
 201  * system is not panic'ing or being suspended).
 202  */
 203 /*ARGSUSED*/
 204 void
 205 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb)
 206 {
 207         processorid_t bootcpuid = 0;
 208         static int is_first_quiesce = 1;
 209         static int is_first_reset = 1;
 210         int reset_status = 0;
 211         static char fallback_str[] = "Falling back to regular reboot.\n";
 212 
 213         if (fcn == AD_FASTREBOOT && !newkernel.fi_valid)
 214                 fcn = AD_BOOT;
 215 
 216         if (!panicstr) {
 217                 kpreempt_disable();
 218                 if (fcn == AD_FASTREBOOT) {
 219                         mutex_enter(&cpu_lock);
 220                         if (CPU_ACTIVE(cpu_get(bootcpuid))) {
 221                                 affinity_set(bootcpuid);
 222                         }
 223                         mutex_exit(&cpu_lock);
 224                 } else {
 225                         affinity_set(CPU_CURRENT);
 226                 }
 227         }
 228 
 229         if (force_shutdown_method != AD_UNKNOWN)
 230                 fcn = force_shutdown_method;
 231 
 232         /*
 233          * XXX - rconsvp is set to NULL to ensure that output messages
 234          * are sent to the underlying "hardware" device using the
 235          * monitor's printf routine since we are in the process of
 236          * either rebooting or halting the machine.
 237          */
 238         rconsvp = NULL;
 239 
 240         /*
 241          * Print the reboot message now, before pausing other cpus.
 242          * There is a race condition in the printing support that
 243          * can deadlock multiprocessor machines.
 244          */
 245         if (!(fcn == AD_HALT || fcn == AD_POWEROFF))
 246                 prom_printf("rebooting...\n");
 247 
 248         if (IN_XPV_PANIC())
 249                 reset();
 250 
 251         /*
 252          * We can't bring up the console from above lock level, so do it now
 253          */
 254         pm_cfb_check_and_powerup();
 255 
 256         /* make sure there are no more changes to the device tree */
 257         devtree_freeze();
 258 
 259         if (invoke_cb)
 260                 (void) callb_execute_class(CB_CL_MDBOOT, NULL);
 261 
 262         /*
 263          * Clear any unresolved UEs from memory.
 264          */
 265         page_retire_mdboot();
 266 
 267 #if defined(__xpv)
 268         /*
 269          * XXPV Should probably think some more about how we deal
 270          *      with panicing before it's really safe to panic.
 271          *      On hypervisors, we reboot very quickly..  Perhaps panic
 272          *      should only attempt to recover by rebooting if,
 273          *      say, we were able to mount the root filesystem,
 274          *      or if we successfully launched init(1m).
 275          */
 276         if (panicstr && proc_init == NULL)
 277                 (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff);
 278 #endif
 279         /*
 280          * stop other cpus and raise our priority.  since there is only
 281          * one active cpu after this, and our priority will be too high
 282          * for us to be preempted, we're essentially single threaded
 283          * from here on out.
 284          */
 285         (void) spl6();
 286         if (!panicstr) {
 287                 mutex_enter(&cpu_lock);
 288                 pause_cpus(NULL, NULL);
 289                 mutex_exit(&cpu_lock);
 290         }
 291 
 292         /*
 293          * If the system is panicking, the preloaded kernel is valid, and
 294          * fastreboot_onpanic has been set, and the system has been up for
 295          * longer than fastreboot_onpanic_uptime (default to 10 minutes),
 296          * choose Fast Reboot.
 297          */
 298         if (fcn == AD_BOOT && panicstr && newkernel.fi_valid &&
 299             fastreboot_onpanic &&
 300             (panic_lbolt - lbolt_at_boot) > fastreboot_onpanic_uptime) {
 301                 fcn = AD_FASTREBOOT;
 302         }
 303 
 304         /*
 305          * Try to quiesce devices.
 306          */
 307         if (is_first_quiesce) {
 308                 /*
 309                  * Clear is_first_quiesce before calling quiesce_devices()
 310                  * so that if quiesce_devices() causes panics, it will not
 311                  * be invoked again.
 312                  */
 313                 is_first_quiesce = 0;
 314 
 315                 quiesce_active = 1;
 316                 quiesce_devices(ddi_root_node(), &reset_status);
 317                 if (reset_status == -1) {
 318                         if (fcn == AD_FASTREBOOT && !force_fastreboot) {
 319                                 prom_printf("Driver(s) not capable of fast "
 320                                     "reboot.\n");
 321                                 prom_printf(fallback_str);
 322                                 fastreboot_capable = 0;
 323                                 fcn = AD_BOOT;
 324                         } else if (fcn != AD_FASTREBOOT)
 325                                 fastreboot_capable = 0;
 326                 }
 327                 quiesce_active = 0;
 328         }
 329 
 330         /*
 331          * Try to reset devices. reset_leaves() should only be called
 332          * a) when there are no other threads that could be accessing devices,
 333          *    and
 334          * b) on a system that's not capable of fast reboot (fastreboot_capable
 335          *    being 0), or on a system where quiesce_devices() failed to
 336          *    complete (quiesce_active being 1).
 337          */
 338         if (is_first_reset && (!fastreboot_capable || quiesce_active)) {
 339                 /*
 340                  * Clear is_first_reset before calling reset_devices()
 341                  * so that if reset_devices() causes panics, it will not
 342                  * be invoked again.
 343                  */
 344                 is_first_reset = 0;
 345                 reset_leaves();
 346         }
 347 
 348         /* Verify newkernel checksum */
 349         if (fastreboot_capable && fcn == AD_FASTREBOOT &&
 350             fastboot_cksum_verify(&newkernel) != 0) {
 351                 fastreboot_capable = 0;
 352                 prom_printf("Fast reboot: checksum failed for the new "
 353                     "kernel.\n");
 354                 prom_printf(fallback_str);
 355         }
 356 
 357         (void) spl8();
 358 
 359         if (fastreboot_capable && fcn == AD_FASTREBOOT) {
 360                 /*
 361                  * psm_shutdown is called within fast_reboot()
 362                  */
 363                 fast_reboot();
 364         } else {
 365                 (*psm_shutdownf)(cmd, fcn);
 366 
 367                 if (fcn == AD_HALT || fcn == AD_POWEROFF)
 368                         halt((char *)NULL);
 369                 else
 370                         prom_reboot("");
 371         }
 372         /*NOTREACHED*/
 373 }
 374 
 375 /* mdpreboot - may be called prior to mdboot while root fs still mounted */
 376 /*ARGSUSED*/
 377 void
 378 mdpreboot(int cmd, int fcn, char *mdep)
 379 {
 380         if (fcn == AD_FASTREBOOT && !fastreboot_capable) {
 381                 fcn = AD_BOOT;
 382 #ifdef  __xpv
 383                 cmn_err(CE_WARN, "Fast reboot is not supported on xVM");
 384 #else
 385                 cmn_err(CE_WARN,
 386                     "Fast reboot is not supported on this platform%s",
 387                     fastreboot_nosup_message());
 388 #endif
 389         }
 390 
 391         if (fcn == AD_FASTREBOOT) {
 392                 fastboot_load_kernel(mdep);
 393                 if (!newkernel.fi_valid)
 394                         fcn = AD_BOOT;
 395         }
 396 
 397         (*psm_preshutdownf)(cmd, fcn);
 398 }
 399 
 400 static void
 401 stop_other_cpus(void)
 402 {
 403         ulong_t s = clear_int_flag(); /* fast way to keep CPU from changing */
 404         cpuset_t xcset;
 405 
 406         CPUSET_ALL_BUT(xcset, CPU->cpu_id);
 407         xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)mach_cpu_halt);
 408         restore_int_flag(s);
 409 }
 410 
 411 /*
 412  *      Machine dependent abort sequence handling
 413  */
 414 void
 415 abort_sequence_enter(char *msg)
 416 {
 417         if (abort_enable == 0) {
 418                 if (AU_ZONE_AUDITING(GET_KCTX_GZ))
 419                         audit_enterprom(0);
 420                 return;
 421         }
 422         if (AU_ZONE_AUDITING(GET_KCTX_GZ))
 423                 audit_enterprom(1);
 424         debug_enter(msg);
 425         if (AU_ZONE_AUDITING(GET_KCTX_GZ))
 426                 audit_exitprom(1);
 427 }
 428 
 429 /*
 430  * Enter debugger.  Called when the user types ctrl-alt-d or whenever
 431  * code wants to enter the debugger and possibly resume later.
 432  *
 433  * msg: message to print, possibly NULL.
 434  */
 435 void
 436 debug_enter(char *msg)
 437 {
 438         if (dtrace_debugger_init != NULL)
 439                 (*dtrace_debugger_init)();
 440 
 441         if (msg != NULL || (boothowto & RB_DEBUG))
 442                 prom_printf("\n");
 443 
 444         if (msg != NULL)
 445                 prom_printf("%s\n", msg);
 446 
 447         if (boothowto & RB_DEBUG)
 448                 kmdb_enter();
 449 
 450         if (dtrace_debugger_fini != NULL)
 451                 (*dtrace_debugger_fini)();
 452 }
 453 
 454 void
 455 reset(void)
 456 {
 457         extern  void acpi_reset_system();
 458 #if !defined(__xpv)
 459         ushort_t *bios_memchk;
 460 
 461         /*
 462          * Can't use psm_map_phys or acpi_reset_system before the hat is
 463          * initialized.
 464          */
 465         if (khat_running) {
 466                 bios_memchk = (ushort_t *)psm_map_phys(0x472,
 467                     sizeof (ushort_t), PROT_READ | PROT_WRITE);
 468                 if (bios_memchk)
 469                         *bios_memchk = 0x1234;  /* bios memory check disable */
 470 
 471                 if (options_dip != NULL &&
 472                     ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0,
 473                     "efi-systab")) {
 474                         if (bootops == NULL)
 475                                 acpi_reset_system();
 476                         efi_reset();
 477                 }
 478 
 479                 /*
 480                  * The problem with using stubs is that we can call
 481                  * acpi_reset_system only after the kernel is up and running.
 482                  *
 483                  * We should create a global state to keep track of how far
 484                  * up the kernel is but for the time being we will depend on
 485                  * bootops. bootops cleared in startup_end().
 486                  */
 487                 if (bootops == NULL)
 488                         acpi_reset_system();
 489         }
 490 
 491         pc_reset();
 492 #else
 493         if (IN_XPV_PANIC()) {
 494                 if (khat_running && bootops == NULL) {
 495                         acpi_reset_system();
 496                 }
 497 
 498                 pc_reset();
 499         }
 500 
 501         (void) HYPERVISOR_shutdown(SHUTDOWN_reboot);
 502         panic("HYPERVISOR_shutdown() failed");
 503 #endif
 504         /*NOTREACHED*/
 505 }
 506 
 507 /*
 508  * Halt the machine and return to the monitor
 509  */
 510 void
 511 halt(char *s)
 512 {
 513         stop_other_cpus();      /* send stop signal to other CPUs */
 514         if (s)
 515                 prom_printf("(%s) \n", s);
 516         prom_exit_to_mon();
 517         /*NOTREACHED*/
 518 }
 519 
 520 /*
 521  * Initiate interrupt redistribution.
 522  */
 523 void
 524 i_ddi_intr_redist_all_cpus()
 525 {
 526 }
 527 
 528 /*
 529  * XXX These probably ought to live somewhere else
 530  * XXX They are called from mem.c
 531  */
 532 
 533 /*
 534  * Convert page frame number to an OBMEM page frame number
 535  * (i.e. put in the type bits -- zero for this implementation)
 536  */
 537 pfn_t
 538 impl_obmem_pfnum(pfn_t pf)
 539 {
 540         return (pf);
 541 }
 542 
 543 #ifdef  NM_DEBUG
 544 int nmi_test = 0;       /* checked in intentry.s during clock int */
 545 int nmtest = -1;
 546 nmfunc1(int arg, struct regs *rp)
 547 {
 548         printf("nmi called with arg = %x, regs = %x\n", arg, rp);
 549         nmtest += 50;
 550         if (arg == nmtest) {
 551                 printf("ip = %x\n", rp->r_pc);
 552                 return (1);
 553         }
 554         return (0);
 555 }
 556 
 557 #endif
 558 
 559 #include <sys/bootsvcs.h>
 560 
 561 /* Hacked up initialization for initial kernel check out is HERE. */
 562 /* The basic steps are: */
 563 /*      kernel bootfuncs definition/initialization for KADB */
 564 /*      kadb bootfuncs pointer initialization */
 565 /*      putchar/getchar (interrupts disabled) */
 566 
 567 /* kadb bootfuncs pointer initialization */
 568 
 569 int
 570 sysp_getchar()
 571 {
 572         int i;
 573         ulong_t s;
 574 
 575         if (cons_polledio == NULL) {
 576                 /* Uh oh */
 577                 prom_printf("getchar called with no console\n");
 578                 for (;;)
 579                         /* LOOP FOREVER */;
 580         }
 581 
 582         s = clear_int_flag();
 583         i = cons_polledio->cons_polledio_getchar(
 584             cons_polledio->cons_polledio_argument);
 585         restore_int_flag(s);
 586         return (i);
 587 }
 588 
 589 void
 590 sysp_putchar(int c)
 591 {
 592         ulong_t s;
 593 
 594         /*
 595          * We have no alternative but to drop the output on the floor.
 596          */
 597         if (cons_polledio == NULL ||
 598             cons_polledio->cons_polledio_putchar == NULL)
 599                 return;
 600 
 601         s = clear_int_flag();
 602         cons_polledio->cons_polledio_putchar(
 603             cons_polledio->cons_polledio_argument, c);
 604         restore_int_flag(s);
 605 }
 606 
 607 int
 608 sysp_ischar()
 609 {
 610         int i;
 611         ulong_t s;
 612 
 613         if (cons_polledio == NULL ||
 614             cons_polledio->cons_polledio_ischar == NULL)
 615                 return (0);
 616 
 617         s = clear_int_flag();
 618         i = cons_polledio->cons_polledio_ischar(
 619             cons_polledio->cons_polledio_argument);
 620         restore_int_flag(s);
 621         return (i);
 622 }
 623 
 624 int
 625 goany(void)
 626 {
 627         prom_printf("Type any key to continue ");
 628         (void) prom_getchar();
 629         prom_printf("\n");
 630         return (1);
 631 }
 632 
 633 static struct boot_syscalls kern_sysp = {
 634         sysp_getchar,   /*      unchar  (*getchar)();   7  */
 635         sysp_putchar,   /*      int     (*putchar)();   8  */
 636         sysp_ischar,    /*      int     (*ischar)();    9  */
 637 };
 638 
 639 #if defined(__xpv)
 640 int using_kern_polledio;
 641 #endif
 642 
 643 void
 644 kadb_uses_kernel()
 645 {
 646         /*
 647          * This routine is now totally misnamed, since it does not in fact
 648          * control kadb's I/O; it only controls the kernel's prom_* I/O.
 649          */
 650         sysp = &kern_sysp;
 651 #if defined(__xpv)
 652         using_kern_polledio = 1;
 653 #endif
 654 }
 655 
 656 /*
 657  *      the interface to the outside world
 658  */
 659 
 660 /*
 661  * poll_port -- wait for a register to achieve a
 662  *              specific state.  Arguments are a mask of bits we care about,
 663  *              and two sub-masks.  To return normally, all the bits in the
 664  *              first sub-mask must be ON, all the bits in the second sub-
 665  *              mask must be OFF.  If about seconds pass without the register
 666  *              achieving the desired bit configuration, we return 1, else
 667  *              0.
 668  */
 669 int
 670 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits)
 671 {
 672         int i;
 673         ushort_t maskval;
 674 
 675         for (i = 500000; i; i--) {
 676                 maskval = inb(port) & mask;
 677                 if (((maskval & onbits) == onbits) &&
 678                     ((maskval & offbits) == 0))
 679                         return (0);
 680                 drv_usecwait(10);
 681         }
 682         return (1);
 683 }
 684 
 685 /*
 686  * set_idle_cpu is called from idle() when a CPU becomes idle.
 687  */
 688 /*LINTED: static unused */
 689 static uint_t last_idle_cpu;
 690 
 691 /*ARGSUSED*/
 692 void
 693 set_idle_cpu(int cpun)
 694 {
 695         last_idle_cpu = cpun;
 696         (*psm_set_idle_cpuf)(cpun);
 697 }
 698 
 699 /*
 700  * unset_idle_cpu is called from idle() when a CPU is no longer idle.
 701  */
 702 /*ARGSUSED*/
 703 void
 704 unset_idle_cpu(int cpun)
 705 {
 706         (*psm_unset_idle_cpuf)(cpun);
 707 }
 708 
 709 /*
 710  * This routine is almost correct now, but not quite.  It still needs the
 711  * equivalent concept of "hres_last_tick", just like on the sparc side.
 712  * The idea is to take a snapshot of the hi-res timer while doing the
 713  * hrestime_adj updates under hres_lock in locore, so that the small
 714  * interval between interrupt assertion and interrupt processing is
 715  * accounted for correctly.  Once we have this, the code below should
 716  * be modified to subtract off hres_last_tick rather than hrtime_base.
 717  *
 718  * I'd have done this myself, but I don't have source to all of the
 719  * vendor-specific hi-res timer routines (grrr...).  The generic hook I
 720  * need is something like "gethrtime_unlocked()", which would be just like
 721  * gethrtime() but would assume that you're already holding CLOCK_LOCK().
 722  * This is what the GET_HRTIME() macro is for on sparc (although it also
 723  * serves the function of making time available without a function call
 724  * so you don't take a register window overflow while traps are disabled).
 725  */
 726 void
 727 pc_gethrestime(timestruc_t *tp)
 728 {
 729         int lock_prev;
 730         timestruc_t now;
 731         int nslt;               /* nsec since last tick */
 732         int adj;                /* amount of adjustment to apply */
 733 
 734 loop:
 735         lock_prev = hres_lock;
 736         now = hrestime;
 737         nslt = (int)(gethrtime() - hres_last_tick);
 738         if (nslt < 0) {
 739                 /*
 740                  * nslt < 0 means a tick came between sampling
 741                  * gethrtime() and hres_last_tick; restart the loop
 742                  */
 743 
 744                 goto loop;
 745         }
 746         now.tv_nsec += nslt;
 747         if (hrestime_adj != 0) {
 748                 if (hrestime_adj > 0) {
 749                         adj = (nslt >> ADJ_SHIFT);
 750                         if (adj > hrestime_adj)
 751                                 adj = (int)hrestime_adj;
 752                 } else {
 753                         adj = -(nslt >> ADJ_SHIFT);
 754                         if (adj < hrestime_adj)
 755                                 adj = (int)hrestime_adj;
 756                 }
 757                 now.tv_nsec += adj;
 758         }
 759         while ((unsigned long)now.tv_nsec >= NANOSEC) {
 760 
 761                 /*
 762                  * We might have a large adjustment or have been in the
 763                  * debugger for a long time; take care of (at most) four
 764                  * of those missed seconds (tv_nsec is 32 bits, so
 765                  * anything >4s will be wrapping around).  However,
 766                  * anything more than 2 seconds out of sync will trigger
 767                  * timedelta from clock() to go correct the time anyway,
 768                  * so do what we can, and let the big crowbar do the
 769                  * rest.  A similar correction while loop exists inside
 770                  * hres_tick(); in all cases we'd like tv_nsec to
 771                  * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing
 772                  * user processes, but if tv_sec's a little behind for a
 773                  * little while, that's OK; time still monotonically
 774                  * increases.
 775                  */
 776 
 777                 now.tv_nsec -= NANOSEC;
 778                 now.tv_sec++;
 779         }
 780         if ((hres_lock & ~1) != lock_prev)
 781                 goto loop;
 782 
 783         *tp = now;
 784 }
 785 
 786 void
 787 gethrestime_lasttick(timespec_t *tp)
 788 {
 789         int s;
 790 
 791         s = hr_clock_lock();
 792         *tp = hrestime;
 793         hr_clock_unlock(s);
 794 }
 795 
 796 time_t
 797 gethrestime_sec(void)
 798 {
 799         timestruc_t now;
 800 
 801         gethrestime(&now);
 802         return (now.tv_sec);
 803 }
 804 
 805 /*
 806  * Initialize a kernel thread's stack
 807  */
 808 
 809 caddr_t
 810 thread_stk_init(caddr_t stk)
 811 {
 812         ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0);
 813         return (stk - SA(MINFRAME));
 814 }
 815 
 816 /*
 817  * Initialize lwp's kernel stack.
 818  */
 819 
 820 #ifdef TRAPTRACE
 821 /*
 822  * There's a tricky interdependency here between use of sysenter and
 823  * TRAPTRACE which needs recording to avoid future confusion (this is
 824  * about the third time I've re-figured this out ..)
 825  *
 826  * Here's how debugging lcall works with TRAPTRACE.
 827  *
 828  * 1 We're in userland with a breakpoint on the lcall instruction.
 829  * 2 We execute the instruction - the instruction pushes the userland
 830  *   %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel
 831  *   via the call gate.
 832  * 3 The hardware raises a debug trap in kernel mode, the hardware
 833  *   pushes %efl, %cs, %eip and gets to dbgtrap via the idt.
 834  * 4 dbgtrap pushes the error code and trapno and calls cmntrap
 835  * 5 cmntrap finishes building a trap frame
 836  * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk
 837  *   off the stack into the traptrace buffer.
 838  *
 839  * This means that the traptrace buffer contains the wrong values in
 840  * %esp and %ss, but everything else in there is correct.
 841  *
 842  * Here's how debugging sysenter works with TRAPTRACE.
 843  *
 844  * a We're in userland with a breakpoint on the sysenter instruction.
 845  * b We execute the instruction - the instruction pushes -nothing-
 846  *   on the stack, but sets %cs, %eip, %ss, %esp to prearranged
 847  *   values to take us to sys_sysenter, at the top of the lwp's
 848  *   stack.
 849  * c goto 3
 850  *
 851  * At this point, because we got into the kernel without the requisite
 852  * five pushes on the stack, if we didn't make extra room, we'd
 853  * end up with the TRACE_REGS macro fetching the saved %ss and %esp
 854  * values from negative (unmapped) stack addresses -- which really bites.
 855  * That's why we do the '-= 8' below.
 856  *
 857  * XXX  Note that reading "up" lwp0's stack works because t0 is declared
 858  *      right next to t0stack in locore.s
 859  */
 860 #endif
 861 
 862 caddr_t
 863 lwp_stk_init(klwp_t *lwp, caddr_t stk)
 864 {
 865         caddr_t oldstk;
 866         struct pcb *pcb = &lwp->lwp_pcb;
 867 
 868         oldstk = stk;
 869         stk -= SA(sizeof (struct regs) + SA(MINFRAME));
 870 #ifdef TRAPTRACE
 871         stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */
 872 #endif
 873         stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul));
 874         bzero(stk, oldstk - stk);
 875         lwp->lwp_regs = (void *)(stk + SA(MINFRAME));
 876 
 877         /*
 878          * Arrange that the virtualized %fs and %gs GDT descriptors
 879          * have a well-defined initial state (present, ring 3
 880          * and of type data).
 881          */
 882 #if defined(__amd64)
 883         if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE)
 884                 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
 885         else
 886                 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc;
 887 #elif defined(__i386)
 888         pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
 889 #endif  /* __i386 */
 890         lwp_installctx(lwp);
 891         return (stk);
 892 }
 893 
 894 /*
 895  * Use this opportunity to free any dynamically allocated fp storage.
 896  */
 897 void
 898 lwp_stk_fini(klwp_t *lwp)
 899 {
 900         fp_lwp_cleanup(lwp);
 901 }
 902 
 903 void
 904 lwp_fp_init(klwp_t *lwp)
 905 {
 906         fp_lwp_init(lwp);
 907 }
 908 
 909 /*
 910  * If we're not the panic CPU, we wait in panic_idle for reboot.
 911  */
 912 void
 913 panic_idle(void)
 914 {
 915         splx(ipltospl(CLOCK_LEVEL));
 916         (void) setjmp(&curthread->t_pcb);
 917 
 918         dumpsys_helper();
 919 
 920 #ifndef __xpv
 921         for (;;)
 922                 i86_halt();
 923 #else
 924         for (;;)
 925                 ;
 926 #endif
 927 }
 928 
 929 /*
 930  * Stop the other CPUs by cross-calling them and forcing them to enter
 931  * the panic_idle() loop above.
 932  */
 933 /*ARGSUSED*/
 934 void
 935 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl)
 936 {
 937         processorid_t i;
 938         cpuset_t xcset;
 939 
 940         /*
 941          * In the case of a Xen panic, the hypervisor has already stopped
 942          * all of the CPUs.
 943          */
 944         if (!IN_XPV_PANIC()) {
 945                 (void) splzs();
 946 
 947                 CPUSET_ALL_BUT(xcset, cp->cpu_id);
 948                 xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)panic_idle);
 949         }
 950 
 951         for (i = 0; i < NCPU; i++) {
 952                 if (i != cp->cpu_id && cpu[i] != NULL &&
 953                     (cpu[i]->cpu_flags & CPU_EXISTS))
 954                         cpu[i]->cpu_flags |= CPU_QUIESCED;
 955         }
 956 }
 957 
 958 /*
 959  * Platform callback following each entry to panicsys().
 960  */
 961 /*ARGSUSED*/
 962 void
 963 panic_enter_hw(int spl)
 964 {
 965         /* Nothing to do here */
 966 }
 967 
 968 /*
 969  * Platform-specific code to execute after panicstr is set: we invoke
 970  * the PSM entry point to indicate that a panic has occurred.
 971  */
 972 /*ARGSUSED*/
 973 void
 974 panic_quiesce_hw(panic_data_t *pdp)
 975 {
 976         psm_notifyf(PSM_PANIC_ENTER);
 977 
 978         cmi_panic_callback();
 979 
 980 #ifdef  TRAPTRACE
 981         /*
 982          * Turn off TRAPTRACE
 983          */
 984         TRAPTRACE_FREEZE;
 985 #endif  /* TRAPTRACE */
 986 }
 987 
 988 /*
 989  * Platform callback prior to writing crash dump.
 990  */
 991 /*ARGSUSED*/
 992 void
 993 panic_dump_hw(int spl)
 994 {
 995         /* Nothing to do here */
 996 }
 997 
 998 void *
 999 plat_traceback(void *fpreg)
1000 {
1001 #ifdef __xpv
1002         if (IN_XPV_PANIC())
1003                 return (xpv_traceback(fpreg));
1004 #endif
1005         return (fpreg);
1006 }
1007 
1008 /*ARGSUSED*/
1009 void
1010 plat_tod_fault(enum tod_fault_type tod_bad)
1011 {}
1012 
1013 /*ARGSUSED*/
1014 int
1015 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class)
1016 {
1017         return (ENOTSUP);
1018 }
1019 
1020 /*
1021  * The underlying console output routines are protected by raising IPL in case
1022  * we are still calling into the early boot services.  Once we start calling
1023  * the kernel console emulator, it will disable interrupts completely during
1024  * character rendering (see sysp_putchar, for example).  Refer to the comments
1025  * and code in common/os/console.c for more information on these callbacks.
1026  */
1027 /*ARGSUSED*/
1028 int
1029 console_enter(int busy)
1030 {
1031         return (splzs());
1032 }
1033 
1034 /*ARGSUSED*/
1035 void
1036 console_exit(int busy, int spl)
1037 {
1038         splx(spl);
1039 }
1040 
1041 /*
1042  * Allocate a region of virtual address space, unmapped.
1043  * Stubbed out except on sparc, at least for now.
1044  */
1045 /*ARGSUSED*/
1046 void *
1047 boot_virt_alloc(void *addr, size_t size)
1048 {
1049         return (addr);
1050 }
1051 
1052 volatile unsigned long  tenmicrodata;
1053 
1054 void
1055 tenmicrosec(void)
1056 {
1057         extern int gethrtime_hires;
1058 
1059         if (gethrtime_hires) {
1060                 hrtime_t start, end;
1061                 start = end =  gethrtime();
1062                 while ((end - start) < (10 * (NANOSEC / MICROSEC))) {
1063                         SMT_PAUSE();
1064                         end = gethrtime();
1065                 }
1066         } else {
1067 #if defined(__xpv)
1068                 hrtime_t newtime;
1069 
1070                 newtime = xpv_gethrtime() + 10000; /* now + 10 us */
1071                 while (xpv_gethrtime() < newtime)
1072                         SMT_PAUSE();
1073 #else   /* __xpv */
1074                 int i;
1075 
1076                 /*
1077                  * Artificial loop to induce delay.
1078                  */
1079                 for (i = 0; i < microdata; i++)
1080                         tenmicrodata = microdata;
1081 #endif  /* __xpv */
1082         }
1083 }
1084 
1085 /*
1086  * get_cpu_mstate() is passed an array of timestamps, NCMSTATES
1087  * long, and it fills in the array with the time spent on cpu in
1088  * each of the mstates, where time is returned in nsec.
1089  *
1090  * No guarantee is made that the returned values in times[] will
1091  * monotonically increase on sequential calls, although this will
1092  * be true in the long run. Any such guarantee must be handled by
1093  * the caller, if needed. This can happen if we fail to account
1094  * for elapsed time due to a generation counter conflict, yet we
1095  * did account for it on a prior call (see below).
1096  *
1097  * The complication is that the cpu in question may be updating
1098  * its microstate at the same time that we are reading it.
1099  * Because the microstate is only updated when the CPU's state
1100  * changes, the values in cpu_intracct[] can be indefinitely out
1101  * of date. To determine true current values, it is necessary to
1102  * compare the current time with cpu_mstate_start, and add the
1103  * difference to times[cpu_mstate].
1104  *
1105  * This can be a problem if those values are changing out from
1106  * under us. Because the code path in new_cpu_mstate() is
1107  * performance critical, we have not added a lock to it. Instead,
1108  * we have added a generation counter. Before beginning
1109  * modifications, the counter is set to 0. After modifications,
1110  * it is set to the old value plus one.
1111  *
1112  * get_cpu_mstate() will not consider the values of cpu_mstate
1113  * and cpu_mstate_start to be usable unless the value of
1114  * cpu_mstate_gen is both non-zero and unchanged, both before and
1115  * after reading the mstate information. Note that we must
1116  * protect against out-of-order loads around accesses to the
1117  * generation counter. Also, this is a best effort approach in
1118  * that we do not retry should the counter be found to have
1119  * changed.
1120  *
1121  * cpu_intracct[] is used to identify time spent in each CPU
1122  * mstate while handling interrupts. Such time should be reported
1123  * against system time, and so is subtracted out from its
1124  * corresponding cpu_acct[] time and added to
1125  * cpu_acct[CMS_SYSTEM].
1126  */
1127 
1128 void
1129 get_cpu_mstate(cpu_t *cpu, hrtime_t *times)
1130 {
1131         int i;
1132         hrtime_t now, start;
1133         uint16_t gen;
1134         uint16_t state;
1135         hrtime_t intracct[NCMSTATES];
1136 
1137         /*
1138          * Load all volatile state under the protection of membar.
1139          * cpu_acct[cpu_mstate] must be loaded to avoid double counting
1140          * of (now - cpu_mstate_start) by a change in CPU mstate that
1141          * arrives after we make our last check of cpu_mstate_gen.
1142          */
1143 
1144         now = gethrtime_unscaled();
1145         gen = cpu->cpu_mstate_gen;
1146 
1147         membar_consumer();      /* guarantee load ordering */
1148         start = cpu->cpu_mstate_start;
1149         state = cpu->cpu_mstate;
1150         for (i = 0; i < NCMSTATES; i++) {
1151                 intracct[i] = cpu->cpu_intracct[i];
1152                 times[i] = cpu->cpu_acct[i];
1153         }
1154         membar_consumer();      /* guarantee load ordering */
1155 
1156         if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start)
1157                 times[state] += now - start;
1158 
1159         for (i = 0; i < NCMSTATES; i++) {
1160                 if (i == CMS_SYSTEM)
1161                         continue;
1162                 times[i] -= intracct[i];
1163                 if (times[i] < 0) {
1164                         intracct[i] += times[i];
1165                         times[i] = 0;
1166                 }
1167                 times[CMS_SYSTEM] += intracct[i];
1168                 scalehrtime(&times[i]);
1169         }
1170         scalehrtime(&times[CMS_SYSTEM]);
1171 }
1172 
1173 /*
1174  * This is a version of the rdmsr instruction that allows
1175  * an error code to be returned in the case of failure.
1176  */
1177 int
1178 checked_rdmsr(uint_t msr, uint64_t *value)
1179 {
1180         if (!is_x86_feature(x86_featureset, X86FSET_MSR))
1181                 return (ENOTSUP);
1182         *value = rdmsr(msr);
1183         return (0);
1184 }
1185 
1186 /*
1187  * This is a version of the wrmsr instruction that allows
1188  * an error code to be returned in the case of failure.
1189  */
1190 int
1191 checked_wrmsr(uint_t msr, uint64_t value)
1192 {
1193         if (!is_x86_feature(x86_featureset, X86FSET_MSR))
1194                 return (ENOTSUP);
1195         wrmsr(msr, value);
1196         return (0);
1197 }
1198 
1199 /*
1200  * The mem driver's usual method of using hat_devload() to establish a
1201  * temporary mapping will not work for foreign pages mapped into this
1202  * domain or for the special hypervisor-provided pages.  For the foreign
1203  * pages, we often don't know which domain owns them, so we can't ask the
1204  * hypervisor to set up a new mapping.  For the other pages, we don't have
1205  * a pfn, so we can't create a new PTE.  For these special cases, we do a
1206  * direct uiomove() from the existing kernel virtual address.
1207  */
1208 /*ARGSUSED*/
1209 int
1210 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw)
1211 {
1212 #if defined(__xpv)
1213         void *va = (void *)(uintptr_t)uio->uio_loffset;
1214         off_t pageoff = uio->uio_loffset & PAGEOFFSET;
1215         size_t nbytes = MIN((size_t)(PAGESIZE - pageoff),
1216             (size_t)uio->uio_iov->iov_len);
1217 
1218         if ((rw == UIO_READ &&
1219             (va == HYPERVISOR_shared_info || va == xen_info)) ||
1220             (pfn_is_foreign(hat_getpfnum(kas.a_hat, va))))
1221                 return (uiomove(va, nbytes, rw, uio));
1222 #endif
1223         return (ENOTSUP);
1224 }
1225 
1226 pgcnt_t
1227 num_phys_pages()
1228 {
1229         pgcnt_t npages = 0;
1230         struct memlist *mp;
1231 
1232 #if defined(__xpv)
1233         if (DOMAIN_IS_INITDOMAIN(xen_info))
1234                 return (xpv_nr_phys_pages());
1235 #endif /* __xpv */
1236 
1237         for (mp = phys_install; mp != NULL; mp = mp->ml_next)
1238                 npages += mp->ml_size >> PAGESHIFT;
1239 
1240         return (npages);
1241 }
1242 
1243 int
1244 dump_plat_addr()
1245 {
1246 #ifdef __xpv
1247         pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1248         mem_vtop_t mem_vtop;
1249         int cnt;
1250 
1251         /*
1252          * On the hypervisor, we want to dump the page with shared_info on it.
1253          */
1254         if (!IN_XPV_PANIC()) {
1255                 mem_vtop.m_as = &kas;
1256                 mem_vtop.m_va = HYPERVISOR_shared_info;
1257                 mem_vtop.m_pfn = pfn;
1258                 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t));
1259                 cnt = 1;
1260         } else {
1261                 cnt = dump_xpv_addr();
1262         }
1263         return (cnt);
1264 #else
1265         return (0);
1266 #endif
1267 }
1268 
1269 void
1270 dump_plat_pfn()
1271 {
1272 #ifdef __xpv
1273         pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1274 
1275         if (!IN_XPV_PANIC())
1276                 dumpvp_write(&pfn, sizeof (pfn));
1277         else
1278                 dump_xpv_pfn();
1279 #endif
1280 }
1281 
1282 /*ARGSUSED*/
1283 int
1284 dump_plat_data(void *dump_cbuf)
1285 {
1286 #ifdef __xpv
1287         uint32_t csize;
1288         int cnt;
1289 
1290         if (!IN_XPV_PANIC()) {
1291                 csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf,
1292                     PAGESIZE);
1293                 dumpvp_write(&csize, sizeof (uint32_t));
1294                 dumpvp_write(dump_cbuf, csize);
1295                 cnt = 1;
1296         } else {
1297                 cnt = dump_xpv_data(dump_cbuf);
1298         }
1299         return (cnt);
1300 #else
1301         return (0);
1302 #endif
1303 }
1304 
1305 /*
1306  * Calculates a linear address, given the CS selector and PC values
1307  * by looking up the %cs selector process's LDT or the CPU's GDT.
1308  * proc->p_ldtlock must be held across this call.
1309  */
1310 int
1311 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1312 {
1313         user_desc_t     *descrp;
1314         caddr_t         baseaddr;
1315         uint16_t        idx = SELTOIDX(rp->r_cs);
1316 
1317         ASSERT(rp->r_cs <= 0xFFFF);
1318         ASSERT(MUTEX_HELD(&p->p_ldtlock));
1319 
1320         if (SELISLDT(rp->r_cs)) {
1321                 /*
1322                  * Currently 64 bit processes cannot have private LDTs.
1323                  */
1324                 ASSERT(p->p_model != DATAMODEL_LP64);
1325 
1326                 if (p->p_ldt == NULL)
1327                         return (-1);
1328 
1329                 descrp = &p->p_ldt[idx];
1330                 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1331 
1332                 /*
1333                  * Calculate the linear address (wraparound is not only ok,
1334                  * it's expected behavior).  The cast to uint32_t is because
1335                  * LDT selectors are only allowed in 32-bit processes.
1336                  */
1337                 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1338                     rp->r_pc);
1339         } else {
1340 #ifdef DEBUG
1341                 descrp = &CPU->cpu_gdt[idx];
1342                 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1343                 /* GDT-based descriptors' base addresses should always be 0 */
1344                 ASSERT(baseaddr == 0);
1345 #endif
1346                 *linearp = (caddr_t)(uintptr_t)rp->r_pc;
1347         }
1348 
1349         return (0);
1350 }
1351 
1352 /*
1353  * The implementation of dtrace_linear_pc is similar to the that of
1354  * linear_pc, above, but here we acquire p_ldtlock before accessing
1355  * p_ldt.  This implementation is used by the pid provider; we prefix
1356  * it with "dtrace_" to avoid inducing spurious tracing events.
1357  */
1358 int
1359 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1360 {
1361         user_desc_t     *descrp;
1362         caddr_t         baseaddr;
1363         uint16_t        idx = SELTOIDX(rp->r_cs);
1364 
1365         ASSERT(rp->r_cs <= 0xFFFF);
1366 
1367         if (SELISLDT(rp->r_cs)) {
1368                 /*
1369                  * Currently 64 bit processes cannot have private LDTs.
1370                  */
1371                 ASSERT(p->p_model != DATAMODEL_LP64);
1372 
1373                 mutex_enter(&p->p_ldtlock);
1374                 if (p->p_ldt == NULL) {
1375                         mutex_exit(&p->p_ldtlock);
1376                         return (-1);
1377                 }
1378                 descrp = &p->p_ldt[idx];
1379                 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1380                 mutex_exit(&p->p_ldtlock);
1381 
1382                 /*
1383                  * Calculate the linear address (wraparound is not only ok,
1384                  * it's expected behavior).  The cast to uint32_t is because
1385                  * LDT selectors are only allowed in 32-bit processes.
1386                  */
1387                 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1388                     rp->r_pc);
1389         } else {
1390 #ifdef DEBUG
1391                 descrp = &CPU->cpu_gdt[idx];
1392                 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1393                 /* GDT-based descriptors' base addresses should always be 0 */
1394                 ASSERT(baseaddr == 0);
1395 #endif
1396                 *linearp = (caddr_t)(uintptr_t)rp->r_pc;
1397         }
1398 
1399         return (0);
1400 }
1401 
1402 /*
1403  * We need to post a soft interrupt to reprogram the lbolt cyclic when
1404  * switching from event to cyclic driven lbolt. The following code adds
1405  * and posts the softint for x86.
1406  */
1407 static ddi_softint_hdl_impl_t lbolt_softint_hdl =
1408         {0, NULL, NULL, NULL, 0, NULL, NULL, NULL};
1409 
1410 void
1411 lbolt_softint_add(void)
1412 {
1413         (void) add_avsoftintr((void *)&lbolt_softint_hdl, LOCK_LEVEL,
1414             (avfunc)lbolt_ev_to_cyclic, "lbolt_ev_to_cyclic", NULL, NULL);
1415 }
1416 
1417 void
1418 lbolt_softint_post(void)
1419 {
1420         (*setsoftint)(CBE_LOCK_PIL, lbolt_softint_hdl.ih_pending);
1421 }
1422 
1423 boolean_t
1424 plat_dr_check_capability(uint64_t features)
1425 {
1426         return ((plat_dr_options & features) == features);
1427 }
1428 
1429 boolean_t
1430 plat_dr_support_cpu(void)
1431 {
1432         return (plat_dr_options & PLAT_DR_FEATURE_CPU);
1433 }
1434 
1435 boolean_t
1436 plat_dr_support_memory(void)
1437 {
1438         return (plat_dr_options & PLAT_DR_FEATURE_MEMORY);
1439 }
1440 
1441 void
1442 plat_dr_enable_capability(uint64_t features)
1443 {
1444         atomic_or_64(&plat_dr_options, features);
1445 }
1446 
1447 void
1448 plat_dr_disable_capability(uint64_t features)
1449 {
1450         atomic_and_64(&plat_dr_options, ~features);
1451 }