1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright 2017, Joyent, Inc.
  25  */
  26 /*
  27  * Copyright (c) 2010, Intel Corporation.
  28  * All rights reserved.
  29  */
  30 
  31 #include <sys/types.h>
  32 #include <sys/t_lock.h>
  33 #include <sys/param.h>
  34 #include <sys/segments.h>
  35 #include <sys/sysmacros.h>
  36 #include <sys/signal.h>
  37 #include <sys/systm.h>
  38 #include <sys/user.h>
  39 #include <sys/mman.h>
  40 #include <sys/vm.h>
  41 
  42 #include <sys/disp.h>
  43 #include <sys/class.h>
  44 
  45 #include <sys/proc.h>
  46 #include <sys/buf.h>
  47 #include <sys/kmem.h>
  48 
  49 #include <sys/reboot.h>
  50 #include <sys/uadmin.h>
  51 #include <sys/callb.h>
  52 
  53 #include <sys/cred.h>
  54 #include <sys/vnode.h>
  55 #include <sys/file.h>
  56 
  57 #include <sys/procfs.h>
  58 #include <sys/acct.h>
  59 
  60 #include <sys/vfs.h>
  61 #include <sys/dnlc.h>
  62 #include <sys/var.h>
  63 #include <sys/cmn_err.h>
  64 #include <sys/utsname.h>
  65 #include <sys/debug.h>
  66 
  67 #include <sys/dumphdr.h>
  68 #include <sys/bootconf.h>
  69 #include <sys/varargs.h>
  70 #include <sys/promif.h>
  71 #include <sys/modctl.h>
  72 
  73 #include <sys/consdev.h>
  74 #include <sys/frame.h>
  75 
  76 #include <sys/sunddi.h>
  77 #include <sys/ddidmareq.h>
  78 #include <sys/psw.h>
  79 #include <sys/regset.h>
  80 #include <sys/privregs.h>
  81 #include <sys/clock.h>
  82 #include <sys/tss.h>
  83 #include <sys/cpu.h>
  84 #include <sys/stack.h>
  85 #include <sys/trap.h>
  86 #include <sys/pic.h>
  87 #include <vm/hat.h>
  88 #include <vm/anon.h>
  89 #include <vm/as.h>
  90 #include <vm/page.h>
  91 #include <vm/seg.h>
  92 #include <vm/seg_kmem.h>
  93 #include <vm/seg_map.h>
  94 #include <vm/seg_vn.h>
  95 #include <vm/seg_kp.h>
  96 #include <vm/hat_i86.h>
  97 #include <sys/swap.h>
  98 #include <sys/thread.h>
  99 #include <sys/sysconf.h>
 100 #include <sys/vm_machparam.h>
 101 #include <sys/archsystm.h>
 102 #include <sys/machsystm.h>
 103 #include <sys/machlock.h>
 104 #include <sys/x_call.h>
 105 #include <sys/instance.h>
 106 
 107 #include <sys/time.h>
 108 #include <sys/smp_impldefs.h>
 109 #include <sys/psm_types.h>
 110 #include <sys/atomic.h>
 111 #include <sys/panic.h>
 112 #include <sys/cpuvar.h>
 113 #include <sys/dtrace.h>
 114 #include <sys/bl.h>
 115 #include <sys/nvpair.h>
 116 #include <sys/x86_archext.h>
 117 #include <sys/pool_pset.h>
 118 #include <sys/autoconf.h>
 119 #include <sys/mem.h>
 120 #include <sys/dumphdr.h>
 121 #include <sys/compress.h>
 122 #include <sys/cpu_module.h>
 123 #if defined(__xpv)
 124 #include <sys/hypervisor.h>
 125 #include <sys/xpv_panic.h>
 126 #endif
 127 
 128 #include <sys/fastboot.h>
 129 #include <sys/machelf.h>
 130 #include <sys/kobj.h>
 131 #include <sys/multiboot.h>
 132 
 133 #ifdef  TRAPTRACE
 134 #include <sys/traptrace.h>
 135 #endif  /* TRAPTRACE */
 136 
 137 #include <c2/audit.h>
 138 #include <sys/clock_impl.h>
 139 
 140 extern void audit_enterprom(int);
 141 extern void audit_exitprom(int);
 142 
 143 /*
 144  * Tunable to enable apix PSM; if set to 0, pcplusmp PSM will be used.
 145  */
 146 int     apix_enable = 1;
 147 
 148 int     apic_nvidia_io_max = 0; /* no. of NVIDIA i/o apics */
 149 
 150 /*
 151  * Occassionally the kernel knows better whether to power-off or reboot.
 152  */
 153 int force_shutdown_method = AD_UNKNOWN;
 154 
 155 /*
 156  * The panicbuf array is used to record messages and state:
 157  */
 158 char panicbuf[PANICBUFSIZE];
 159 
 160 /*
 161  * Flags to control Dynamic Reconfiguration features.
 162  */
 163 uint64_t plat_dr_options;
 164 
 165 /*
 166  * Maximum physical address for memory DR operations.
 167  */
 168 uint64_t plat_dr_physmax;
 169 
 170 /*
 171  * maxphys - used during physio
 172  * klustsize - used for klustering by swapfs and specfs
 173  */
 174 int maxphys = 56 * 1024;    /* XXX See vm_subr.c - max b_count in physio */
 175 int klustsize = 56 * 1024;
 176 
 177 caddr_t p0_va;          /* Virtual address for accessing physical page 0 */
 178 
 179 /*
 180  * defined here, though unused on x86,
 181  * to make kstat_fr.c happy.
 182  */
 183 int vac;
 184 
 185 void debug_enter(char *);
 186 
 187 extern void pm_cfb_check_and_powerup(void);
 188 extern void pm_cfb_rele(void);
 189 
 190 extern fastboot_info_t newkernel;
 191 
 192 /*
 193  * Machine dependent code to reboot.
 194  * "mdep" is interpreted as a character pointer; if non-null, it is a pointer
 195  * to a string to be used as the argument string when rebooting.
 196  *
 197  * "invoke_cb" is a boolean. It is set to true when mdboot() can safely
 198  * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when
 199  * we are in a normal shutdown sequence (interrupts are not blocked, the
 200  * system is not panic'ing or being suspended).
 201  */
 202 /*ARGSUSED*/
 203 void
 204 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb)
 205 {
 206         processorid_t bootcpuid = 0;
 207         static int is_first_quiesce = 1;
 208         static int is_first_reset = 1;
 209         int reset_status = 0;
 210         static char fallback_str[] = "Falling back to regular reboot.\n";
 211 
 212         if (fcn == AD_FASTREBOOT && !newkernel.fi_valid)
 213                 fcn = AD_BOOT;
 214 
 215         if (!panicstr) {
 216                 kpreempt_disable();
 217                 if (fcn == AD_FASTREBOOT) {
 218                         mutex_enter(&cpu_lock);
 219                         if (CPU_ACTIVE(cpu_get(bootcpuid))) {
 220                                 affinity_set(bootcpuid);
 221                         }
 222                         mutex_exit(&cpu_lock);
 223                 } else {
 224                         affinity_set(CPU_CURRENT);
 225                 }
 226         }
 227 
 228         if (force_shutdown_method != AD_UNKNOWN)
 229                 fcn = force_shutdown_method;
 230 
 231         /*
 232          * XXX - rconsvp is set to NULL to ensure that output messages
 233          * are sent to the underlying "hardware" device using the
 234          * monitor's printf routine since we are in the process of
 235          * either rebooting or halting the machine.
 236          */
 237         rconsvp = NULL;
 238 
 239         /*
 240          * Print the reboot message now, before pausing other cpus.
 241          * There is a race condition in the printing support that
 242          * can deadlock multiprocessor machines.
 243          */
 244         if (!(fcn == AD_HALT || fcn == AD_POWEROFF))
 245                 prom_printf("rebooting...\n");
 246 
 247         if (IN_XPV_PANIC())
 248                 reset();
 249 
 250         /*
 251          * We can't bring up the console from above lock level, so do it now
 252          */
 253         pm_cfb_check_and_powerup();
 254 
 255         /* make sure there are no more changes to the device tree */
 256         devtree_freeze();
 257 
 258         if (invoke_cb)
 259                 (void) callb_execute_class(CB_CL_MDBOOT, NULL);
 260 
 261         /*
 262          * Clear any unresolved UEs from memory.
 263          */
 264         page_retire_mdboot();
 265 
 266 #if defined(__xpv)
 267         /*
 268          * XXPV Should probably think some more about how we deal
 269          *      with panicing before it's really safe to panic.
 270          *      On hypervisors, we reboot very quickly..  Perhaps panic
 271          *      should only attempt to recover by rebooting if,
 272          *      say, we were able to mount the root filesystem,
 273          *      or if we successfully launched init(1m).
 274          */
 275         if (panicstr && proc_init == NULL)
 276                 (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff);
 277 #endif
 278         /*
 279          * stop other cpus and raise our priority.  since there is only
 280          * one active cpu after this, and our priority will be too high
 281          * for us to be preempted, we're essentially single threaded
 282          * from here on out.
 283          */
 284         (void) spl6();
 285         if (!panicstr) {
 286                 mutex_enter(&cpu_lock);
 287                 pause_cpus(NULL, NULL);
 288                 mutex_exit(&cpu_lock);
 289         }
 290 
 291         /*
 292          * If the system is panicking, the preloaded kernel is valid, and
 293          * fastreboot_onpanic has been set, and the system has been up for
 294          * longer than fastreboot_onpanic_uptime (default to 10 minutes),
 295          * choose Fast Reboot.
 296          */
 297         if (fcn == AD_BOOT && panicstr && newkernel.fi_valid &&
 298             fastreboot_onpanic &&
 299             (panic_lbolt - lbolt_at_boot) > fastreboot_onpanic_uptime) {
 300                 fcn = AD_FASTREBOOT;
 301         }
 302 
 303         /*
 304          * Try to quiesce devices.
 305          */
 306         if (is_first_quiesce) {
 307                 /*
 308                  * Clear is_first_quiesce before calling quiesce_devices()
 309                  * so that if quiesce_devices() causes panics, it will not
 310                  * be invoked again.
 311                  */
 312                 is_first_quiesce = 0;
 313 
 314                 quiesce_active = 1;
 315                 quiesce_devices(ddi_root_node(), &reset_status);
 316                 if (reset_status == -1) {
 317                         if (fcn == AD_FASTREBOOT && !force_fastreboot) {
 318                                 prom_printf("Driver(s) not capable of fast "
 319                                     "reboot.\n");
 320                                 prom_printf(fallback_str);
 321                                 fastreboot_capable = 0;
 322                                 fcn = AD_BOOT;
 323                         } else if (fcn != AD_FASTREBOOT)
 324                                 fastreboot_capable = 0;
 325                 }
 326                 quiesce_active = 0;
 327         }
 328 
 329         /*
 330          * Try to reset devices. reset_leaves() should only be called
 331          * a) when there are no other threads that could be accessing devices,
 332          *    and
 333          * b) on a system that's not capable of fast reboot (fastreboot_capable
 334          *    being 0), or on a system where quiesce_devices() failed to
 335          *    complete (quiesce_active being 1).
 336          */
 337         if (is_first_reset && (!fastreboot_capable || quiesce_active)) {
 338                 /*
 339                  * Clear is_first_reset before calling reset_devices()
 340                  * so that if reset_devices() causes panics, it will not
 341                  * be invoked again.
 342                  */
 343                 is_first_reset = 0;
 344                 reset_leaves();
 345         }
 346 
 347         /* Verify newkernel checksum */
 348         if (fastreboot_capable && fcn == AD_FASTREBOOT &&
 349             fastboot_cksum_verify(&newkernel) != 0) {
 350                 fastreboot_capable = 0;
 351                 prom_printf("Fast reboot: checksum failed for the new "
 352                     "kernel.\n");
 353                 prom_printf(fallback_str);
 354         }
 355 
 356         (void) spl8();
 357 
 358         if (fastreboot_capable && fcn == AD_FASTREBOOT) {
 359                 /*
 360                  * psm_shutdown is called within fast_reboot()
 361                  */
 362                 fast_reboot();
 363         } else {
 364                 (*psm_shutdownf)(cmd, fcn);
 365 
 366                 if (fcn == AD_HALT || fcn == AD_POWEROFF)
 367                         halt((char *)NULL);
 368                 else
 369                         prom_reboot("");
 370         }
 371         /*NOTREACHED*/
 372 }
 373 
 374 /* mdpreboot - may be called prior to mdboot while root fs still mounted */
 375 /*ARGSUSED*/
 376 void
 377 mdpreboot(int cmd, int fcn, char *mdep)
 378 {
 379         if (fcn == AD_FASTREBOOT && !fastreboot_capable) {
 380                 fcn = AD_BOOT;
 381 #ifdef  __xpv
 382                 cmn_err(CE_WARN, "Fast reboot is not supported on xVM");
 383 #else
 384                 cmn_err(CE_WARN,
 385                     "Fast reboot is not supported on this platform%s",
 386                     fastreboot_nosup_message());
 387 #endif
 388         }
 389 
 390         if (fcn == AD_FASTREBOOT) {
 391                 fastboot_load_kernel(mdep);
 392                 if (!newkernel.fi_valid)
 393                         fcn = AD_BOOT;
 394         }
 395 
 396         (*psm_preshutdownf)(cmd, fcn);
 397 }
 398 
 399 static void
 400 stop_other_cpus(void)
 401 {
 402         ulong_t s = clear_int_flag(); /* fast way to keep CPU from changing */
 403         cpuset_t xcset;
 404 
 405         CPUSET_ALL_BUT(xcset, CPU->cpu_id);
 406         xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)mach_cpu_halt);
 407         restore_int_flag(s);
 408 }
 409 
 410 /*
 411  *      Machine dependent abort sequence handling
 412  */
 413 void
 414 abort_sequence_enter(char *msg)
 415 {
 416         if (abort_enable == 0) {
 417                 if (AU_ZONE_AUDITING(GET_KCTX_GZ))
 418                         audit_enterprom(0);
 419                 return;
 420         }
 421         if (AU_ZONE_AUDITING(GET_KCTX_GZ))
 422                 audit_enterprom(1);
 423         debug_enter(msg);
 424         if (AU_ZONE_AUDITING(GET_KCTX_GZ))
 425                 audit_exitprom(1);
 426 }
 427 
 428 /*
 429  * Enter debugger.  Called when the user types ctrl-alt-d or whenever
 430  * code wants to enter the debugger and possibly resume later.
 431  *
 432  * msg: message to print, possibly NULL.
 433  */
 434 void
 435 debug_enter(char *msg)
 436 {
 437         if (dtrace_debugger_init != NULL)
 438                 (*dtrace_debugger_init)();
 439 
 440         if (msg != NULL || (boothowto & RB_DEBUG))
 441                 prom_printf("\n");
 442 
 443         if (msg != NULL)
 444                 prom_printf("%s\n", msg);
 445 
 446         if (boothowto & RB_DEBUG)
 447                 kmdb_enter();
 448 
 449         if (dtrace_debugger_fini != NULL)
 450                 (*dtrace_debugger_fini)();
 451 }
 452 
 453 void
 454 reset(void)
 455 {
 456         extern  void acpi_reset_system();
 457 #if !defined(__xpv)
 458         ushort_t *bios_memchk;
 459 
 460         /*
 461          * Can't use psm_map_phys or acpi_reset_system before the hat is
 462          * initialized.
 463          */
 464         if (khat_running) {
 465                 bios_memchk = (ushort_t *)psm_map_phys(0x472,
 466                     sizeof (ushort_t), PROT_READ | PROT_WRITE);
 467                 if (bios_memchk)
 468                         *bios_memchk = 0x1234;  /* bios memory check disable */
 469 
 470                 if (options_dip != NULL &&
 471                     ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0,
 472                     "efi-systab")) {
 473                         if (bootops == NULL)
 474                                 acpi_reset_system();
 475                         efi_reset();
 476                 }
 477 
 478                 /*
 479                  * The problem with using stubs is that we can call
 480                  * acpi_reset_system only after the kernel is up and running.
 481                  *
 482                  * We should create a global state to keep track of how far
 483                  * up the kernel is but for the time being we will depend on
 484                  * bootops. bootops cleared in startup_end().
 485                  */
 486                 if (bootops == NULL)
 487                         acpi_reset_system();
 488         }
 489 
 490         pc_reset();
 491 #else
 492         if (IN_XPV_PANIC()) {
 493                 if (khat_running && bootops == NULL) {
 494                         acpi_reset_system();
 495                 }
 496 
 497                 pc_reset();
 498         }
 499 
 500         (void) HYPERVISOR_shutdown(SHUTDOWN_reboot);
 501         panic("HYPERVISOR_shutdown() failed");
 502 #endif
 503         /*NOTREACHED*/
 504 }
 505 
 506 /*
 507  * Halt the machine and return to the monitor
 508  */
 509 void
 510 halt(char *s)
 511 {
 512         stop_other_cpus();      /* send stop signal to other CPUs */
 513         if (s)
 514                 prom_printf("(%s) \n", s);
 515         prom_exit_to_mon();
 516         /*NOTREACHED*/
 517 }
 518 
 519 /*
 520  * Initiate interrupt redistribution.
 521  */
 522 void
 523 i_ddi_intr_redist_all_cpus()
 524 {
 525 }
 526 
 527 /*
 528  * XXX These probably ought to live somewhere else
 529  * XXX They are called from mem.c
 530  */
 531 
 532 /*
 533  * Convert page frame number to an OBMEM page frame number
 534  * (i.e. put in the type bits -- zero for this implementation)
 535  */
 536 pfn_t
 537 impl_obmem_pfnum(pfn_t pf)
 538 {
 539         return (pf);
 540 }
 541 
 542 #ifdef  NM_DEBUG
 543 int nmi_test = 0;       /* checked in intentry.s during clock int */
 544 int nmtest = -1;
 545 nmfunc1(int arg, struct regs *rp)
 546 {
 547         printf("nmi called with arg = %x, regs = %x\n", arg, rp);
 548         nmtest += 50;
 549         if (arg == nmtest) {
 550                 printf("ip = %x\n", rp->r_pc);
 551                 return (1);
 552         }
 553         return (0);
 554 }
 555 
 556 #endif
 557 
 558 #include <sys/bootsvcs.h>
 559 
 560 /* Hacked up initialization for initial kernel check out is HERE. */
 561 /* The basic steps are: */
 562 /*      kernel bootfuncs definition/initialization for KADB */
 563 /*      kadb bootfuncs pointer initialization */
 564 /*      putchar/getchar (interrupts disabled) */
 565 
 566 /* kadb bootfuncs pointer initialization */
 567 
 568 int
 569 sysp_getchar()
 570 {
 571         int i;
 572         ulong_t s;
 573 
 574         if (cons_polledio == NULL) {
 575                 /* Uh oh */
 576                 prom_printf("getchar called with no console\n");
 577                 for (;;)
 578                         /* LOOP FOREVER */;
 579         }
 580 
 581         s = clear_int_flag();
 582         i = cons_polledio->cons_polledio_getchar(
 583             cons_polledio->cons_polledio_argument);
 584         restore_int_flag(s);
 585         return (i);
 586 }
 587 
 588 void
 589 sysp_putchar(int c)
 590 {
 591         ulong_t s;
 592 
 593         /*
 594          * We have no alternative but to drop the output on the floor.
 595          */
 596         if (cons_polledio == NULL ||
 597             cons_polledio->cons_polledio_putchar == NULL)
 598                 return;
 599 
 600         s = clear_int_flag();
 601         cons_polledio->cons_polledio_putchar(
 602             cons_polledio->cons_polledio_argument, c);
 603         restore_int_flag(s);
 604 }
 605 
 606 int
 607 sysp_ischar()
 608 {
 609         int i;
 610         ulong_t s;
 611 
 612         if (cons_polledio == NULL ||
 613             cons_polledio->cons_polledio_ischar == NULL)
 614                 return (0);
 615 
 616         s = clear_int_flag();
 617         i = cons_polledio->cons_polledio_ischar(
 618             cons_polledio->cons_polledio_argument);
 619         restore_int_flag(s);
 620         return (i);
 621 }
 622 
 623 int
 624 goany(void)
 625 {
 626         prom_printf("Type any key to continue ");
 627         (void) prom_getchar();
 628         prom_printf("\n");
 629         return (1);
 630 }
 631 
 632 static struct boot_syscalls kern_sysp = {
 633         sysp_getchar,   /*      unchar  (*getchar)();   7  */
 634         sysp_putchar,   /*      int     (*putchar)();   8  */
 635         sysp_ischar,    /*      int     (*ischar)();    9  */
 636 };
 637 
 638 #if defined(__xpv)
 639 int using_kern_polledio;
 640 #endif
 641 
 642 void
 643 kadb_uses_kernel()
 644 {
 645         /*
 646          * This routine is now totally misnamed, since it does not in fact
 647          * control kadb's I/O; it only controls the kernel's prom_* I/O.
 648          */
 649         sysp = &kern_sysp;
 650 #if defined(__xpv)
 651         using_kern_polledio = 1;
 652 #endif
 653 }
 654 
 655 /*
 656  *      the interface to the outside world
 657  */
 658 
 659 /*
 660  * poll_port -- wait for a register to achieve a
 661  *              specific state.  Arguments are a mask of bits we care about,
 662  *              and two sub-masks.  To return normally, all the bits in the
 663  *              first sub-mask must be ON, all the bits in the second sub-
 664  *              mask must be OFF.  If about seconds pass without the register
 665  *              achieving the desired bit configuration, we return 1, else
 666  *              0.
 667  */
 668 int
 669 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits)
 670 {
 671         int i;
 672         ushort_t maskval;
 673 
 674         for (i = 500000; i; i--) {
 675                 maskval = inb(port) & mask;
 676                 if (((maskval & onbits) == onbits) &&
 677                     ((maskval & offbits) == 0))
 678                         return (0);
 679                 drv_usecwait(10);
 680         }
 681         return (1);
 682 }
 683 
 684 /*
 685  * set_idle_cpu is called from idle() when a CPU becomes idle.
 686  */
 687 /*LINTED: static unused */
 688 static uint_t last_idle_cpu;
 689 
 690 /*ARGSUSED*/
 691 void
 692 set_idle_cpu(int cpun)
 693 {
 694         last_idle_cpu = cpun;
 695         (*psm_set_idle_cpuf)(cpun);
 696 }
 697 
 698 /*
 699  * unset_idle_cpu is called from idle() when a CPU is no longer idle.
 700  */
 701 /*ARGSUSED*/
 702 void
 703 unset_idle_cpu(int cpun)
 704 {
 705         (*psm_unset_idle_cpuf)(cpun);
 706 }
 707 
 708 /*
 709  * This routine is almost correct now, but not quite.  It still needs the
 710  * equivalent concept of "hres_last_tick", just like on the sparc side.
 711  * The idea is to take a snapshot of the hi-res timer while doing the
 712  * hrestime_adj updates under hres_lock in locore, so that the small
 713  * interval between interrupt assertion and interrupt processing is
 714  * accounted for correctly.  Once we have this, the code below should
 715  * be modified to subtract off hres_last_tick rather than hrtime_base.
 716  *
 717  * I'd have done this myself, but I don't have source to all of the
 718  * vendor-specific hi-res timer routines (grrr...).  The generic hook I
 719  * need is something like "gethrtime_unlocked()", which would be just like
 720  * gethrtime() but would assume that you're already holding CLOCK_LOCK().
 721  * This is what the GET_HRTIME() macro is for on sparc (although it also
 722  * serves the function of making time available without a function call
 723  * so you don't take a register window overflow while traps are disabled).
 724  */
 725 void
 726 pc_gethrestime(timestruc_t *tp)
 727 {
 728         int lock_prev;
 729         timestruc_t now;
 730         int nslt;               /* nsec since last tick */
 731         int adj;                /* amount of adjustment to apply */
 732 
 733 loop:
 734         lock_prev = hres_lock;
 735         now = hrestime;
 736         nslt = (int)(gethrtime() - hres_last_tick);
 737         if (nslt < 0) {
 738                 /*
 739                  * nslt < 0 means a tick came between sampling
 740                  * gethrtime() and hres_last_tick; restart the loop
 741                  */
 742 
 743                 goto loop;
 744         }
 745         now.tv_nsec += nslt;
 746         if (hrestime_adj != 0) {
 747                 if (hrestime_adj > 0) {
 748                         adj = (nslt >> ADJ_SHIFT);
 749                         if (adj > hrestime_adj)
 750                                 adj = (int)hrestime_adj;
 751                 } else {
 752                         adj = -(nslt >> ADJ_SHIFT);
 753                         if (adj < hrestime_adj)
 754                                 adj = (int)hrestime_adj;
 755                 }
 756                 now.tv_nsec += adj;
 757         }
 758         while ((unsigned long)now.tv_nsec >= NANOSEC) {
 759 
 760                 /*
 761                  * We might have a large adjustment or have been in the
 762                  * debugger for a long time; take care of (at most) four
 763                  * of those missed seconds (tv_nsec is 32 bits, so
 764                  * anything >4s will be wrapping around).  However,
 765                  * anything more than 2 seconds out of sync will trigger
 766                  * timedelta from clock() to go correct the time anyway,
 767                  * so do what we can, and let the big crowbar do the
 768                  * rest.  A similar correction while loop exists inside
 769                  * hres_tick(); in all cases we'd like tv_nsec to
 770                  * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing
 771                  * user processes, but if tv_sec's a little behind for a
 772                  * little while, that's OK; time still monotonically
 773                  * increases.
 774                  */
 775 
 776                 now.tv_nsec -= NANOSEC;
 777                 now.tv_sec++;
 778         }
 779         if ((hres_lock & ~1) != lock_prev)
 780                 goto loop;
 781 
 782         *tp = now;
 783 }
 784 
 785 void
 786 gethrestime_lasttick(timespec_t *tp)
 787 {
 788         int s;
 789 
 790         s = hr_clock_lock();
 791         *tp = hrestime;
 792         hr_clock_unlock(s);
 793 }
 794 
 795 time_t
 796 gethrestime_sec(void)
 797 {
 798         timestruc_t now;
 799 
 800         gethrestime(&now);
 801         return (now.tv_sec);
 802 }
 803 
 804 /*
 805  * Initialize a kernel thread's stack
 806  */
 807 
 808 caddr_t
 809 thread_stk_init(caddr_t stk)
 810 {
 811         ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0);
 812         return (stk - SA(MINFRAME));
 813 }
 814 
 815 /*
 816  * Initialize lwp's kernel stack.
 817  */
 818 
 819 #ifdef TRAPTRACE
 820 /*
 821  * There's a tricky interdependency here between use of sysenter and
 822  * TRAPTRACE which needs recording to avoid future confusion (this is
 823  * about the third time I've re-figured this out ..)
 824  *
 825  * Here's how debugging lcall works with TRAPTRACE.
 826  *
 827  * 1 We're in userland with a breakpoint on the lcall instruction.
 828  * 2 We execute the instruction - the instruction pushes the userland
 829  *   %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel
 830  *   via the call gate.
 831  * 3 The hardware raises a debug trap in kernel mode, the hardware
 832  *   pushes %efl, %cs, %eip and gets to dbgtrap via the idt.
 833  * 4 dbgtrap pushes the error code and trapno and calls cmntrap
 834  * 5 cmntrap finishes building a trap frame
 835  * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk
 836  *   off the stack into the traptrace buffer.
 837  *
 838  * This means that the traptrace buffer contains the wrong values in
 839  * %esp and %ss, but everything else in there is correct.
 840  *
 841  * Here's how debugging sysenter works with TRAPTRACE.
 842  *
 843  * a We're in userland with a breakpoint on the sysenter instruction.
 844  * b We execute the instruction - the instruction pushes -nothing-
 845  *   on the stack, but sets %cs, %eip, %ss, %esp to prearranged
 846  *   values to take us to sys_sysenter, at the top of the lwp's
 847  *   stack.
 848  * c goto 3
 849  *
 850  * At this point, because we got into the kernel without the requisite
 851  * five pushes on the stack, if we didn't make extra room, we'd
 852  * end up with the TRACE_REGS macro fetching the saved %ss and %esp
 853  * values from negative (unmapped) stack addresses -- which really bites.
 854  * That's why we do the '-= 8' below.
 855  *
 856  * XXX  Note that reading "up" lwp0's stack works because t0 is declared
 857  *      right next to t0stack in locore.s
 858  */
 859 #endif
 860 
 861 caddr_t
 862 lwp_stk_init(klwp_t *lwp, caddr_t stk)
 863 {
 864         caddr_t oldstk;
 865         struct pcb *pcb = &lwp->lwp_pcb;
 866 
 867         oldstk = stk;
 868         stk -= SA(sizeof (struct regs) + SA(MINFRAME));
 869 #ifdef TRAPTRACE
 870         stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */
 871 #endif
 872         stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul));
 873         bzero(stk, oldstk - stk);
 874         lwp->lwp_regs = (void *)(stk + SA(MINFRAME));
 875 
 876         /*
 877          * Arrange that the virtualized %fs and %gs GDT descriptors
 878          * have a well-defined initial state (present, ring 3
 879          * and of type data).
 880          */
 881 #if defined(__amd64)
 882         if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE)
 883                 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
 884         else
 885                 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc;
 886 #elif defined(__i386)
 887         pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
 888 #endif  /* __i386 */
 889         lwp_installctx(lwp);
 890         return (stk);
 891 }
 892 
 893 /*
 894  * Use this opportunity to free any dynamically allocated fp storage.
 895  */
 896 void
 897 lwp_stk_fini(klwp_t *lwp)
 898 {
 899         fp_lwp_cleanup(lwp);
 900 }
 901 
 902 void
 903 lwp_fp_init(klwp_t *lwp)
 904 {
 905         fp_lwp_init(lwp);
 906 }
 907 
 908 /*
 909  * If we're not the panic CPU, we wait in panic_idle for reboot.
 910  */
 911 void
 912 panic_idle(void)
 913 {
 914         splx(ipltospl(CLOCK_LEVEL));
 915         (void) setjmp(&curthread->t_pcb);
 916 
 917         dumpsys_helper();
 918 
 919 #ifndef __xpv
 920         for (;;)
 921                 i86_halt();
 922 #else
 923         for (;;)
 924                 ;
 925 #endif
 926 }
 927 
 928 /*
 929  * Stop the other CPUs by cross-calling them and forcing them to enter
 930  * the panic_idle() loop above.
 931  */
 932 /*ARGSUSED*/
 933 void
 934 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl)
 935 {
 936         processorid_t i;
 937         cpuset_t xcset;
 938 
 939         /*
 940          * In the case of a Xen panic, the hypervisor has already stopped
 941          * all of the CPUs.
 942          */
 943         if (!IN_XPV_PANIC()) {
 944                 (void) splzs();
 945 
 946                 CPUSET_ALL_BUT(xcset, cp->cpu_id);
 947                 xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)panic_idle);
 948         }
 949 
 950         for (i = 0; i < NCPU; i++) {
 951                 if (i != cp->cpu_id && cpu[i] != NULL &&
 952                     (cpu[i]->cpu_flags & CPU_EXISTS))
 953                         cpu[i]->cpu_flags |= CPU_QUIESCED;
 954         }
 955 }
 956 
 957 /*
 958  * Platform callback following each entry to panicsys().
 959  */
 960 /*ARGSUSED*/
 961 void
 962 panic_enter_hw(int spl)
 963 {
 964         /* Nothing to do here */
 965 }
 966 
 967 /*
 968  * Platform-specific code to execute after panicstr is set: we invoke
 969  * the PSM entry point to indicate that a panic has occurred.
 970  */
 971 /*ARGSUSED*/
 972 void
 973 panic_quiesce_hw(panic_data_t *pdp)
 974 {
 975         psm_notifyf(PSM_PANIC_ENTER);
 976 
 977         cmi_panic_callback();
 978 
 979 #ifdef  TRAPTRACE
 980         /*
 981          * Turn off TRAPTRACE
 982          */
 983         TRAPTRACE_FREEZE;
 984 #endif  /* TRAPTRACE */
 985 }
 986 
 987 /*
 988  * Platform callback prior to writing crash dump.
 989  */
 990 /*ARGSUSED*/
 991 void
 992 panic_dump_hw(int spl)
 993 {
 994         /* Nothing to do here */
 995 }
 996 
 997 void *
 998 plat_traceback(void *fpreg)
 999 {
1000 #ifdef __xpv
1001         if (IN_XPV_PANIC())
1002                 return (xpv_traceback(fpreg));
1003 #endif
1004         return (fpreg);
1005 }
1006 
1007 /*ARGSUSED*/
1008 void
1009 plat_tod_fault(enum tod_fault_type tod_bad)
1010 {}
1011 
1012 /*ARGSUSED*/
1013 int
1014 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class)
1015 {
1016         return (ENOTSUP);
1017 }
1018 
1019 /*
1020  * The underlying console output routines are protected by raising IPL in case
1021  * we are still calling into the early boot services.  Once we start calling
1022  * the kernel console emulator, it will disable interrupts completely during
1023  * character rendering (see sysp_putchar, for example).  Refer to the comments
1024  * and code in common/os/console.c for more information on these callbacks.
1025  */
1026 /*ARGSUSED*/
1027 int
1028 console_enter(int busy)
1029 {
1030         return (splzs());
1031 }
1032 
1033 /*ARGSUSED*/
1034 void
1035 console_exit(int busy, int spl)
1036 {
1037         splx(spl);
1038 }
1039 
1040 /*
1041  * Allocate a region of virtual address space, unmapped.
1042  * Stubbed out except on sparc, at least for now.
1043  */
1044 /*ARGSUSED*/
1045 void *
1046 boot_virt_alloc(void *addr, size_t size)
1047 {
1048         return (addr);
1049 }
1050 
1051 volatile unsigned long  tenmicrodata;
1052 
1053 void
1054 tenmicrosec(void)
1055 {
1056         extern int gethrtime_hires;
1057 
1058         if (gethrtime_hires) {
1059                 hrtime_t start, end;
1060                 start = end =  gethrtime();
1061                 while ((end - start) < (10 * (NANOSEC / MICROSEC))) {
1062                         SMT_PAUSE();
1063                         end = gethrtime();
1064                 }
1065         } else {
1066 #if defined(__xpv)
1067                 hrtime_t newtime;
1068 
1069                 newtime = xpv_gethrtime() + 10000; /* now + 10 us */
1070                 while (xpv_gethrtime() < newtime)
1071                         SMT_PAUSE();
1072 #else   /* __xpv */
1073                 int i;
1074 
1075                 /*
1076                  * Artificial loop to induce delay.
1077                  */
1078                 for (i = 0; i < microdata; i++)
1079                         tenmicrodata = microdata;
1080 #endif  /* __xpv */
1081         }
1082 }
1083 
1084 /*
1085  * get_cpu_mstate() is passed an array of timestamps, NCMSTATES
1086  * long, and it fills in the array with the time spent on cpu in
1087  * each of the mstates, where time is returned in nsec.
1088  *
1089  * No guarantee is made that the returned values in times[] will
1090  * monotonically increase on sequential calls, although this will
1091  * be true in the long run. Any such guarantee must be handled by
1092  * the caller, if needed. This can happen if we fail to account
1093  * for elapsed time due to a generation counter conflict, yet we
1094  * did account for it on a prior call (see below).
1095  *
1096  * The complication is that the cpu in question may be updating
1097  * its microstate at the same time that we are reading it.
1098  * Because the microstate is only updated when the CPU's state
1099  * changes, the values in cpu_intracct[] can be indefinitely out
1100  * of date. To determine true current values, it is necessary to
1101  * compare the current time with cpu_mstate_start, and add the
1102  * difference to times[cpu_mstate].
1103  *
1104  * This can be a problem if those values are changing out from
1105  * under us. Because the code path in new_cpu_mstate() is
1106  * performance critical, we have not added a lock to it. Instead,
1107  * we have added a generation counter. Before beginning
1108  * modifications, the counter is set to 0. After modifications,
1109  * it is set to the old value plus one.
1110  *
1111  * get_cpu_mstate() will not consider the values of cpu_mstate
1112  * and cpu_mstate_start to be usable unless the value of
1113  * cpu_mstate_gen is both non-zero and unchanged, both before and
1114  * after reading the mstate information. Note that we must
1115  * protect against out-of-order loads around accesses to the
1116  * generation counter. Also, this is a best effort approach in
1117  * that we do not retry should the counter be found to have
1118  * changed.
1119  *
1120  * cpu_intracct[] is used to identify time spent in each CPU
1121  * mstate while handling interrupts. Such time should be reported
1122  * against system time, and so is subtracted out from its
1123  * corresponding cpu_acct[] time and added to
1124  * cpu_acct[CMS_SYSTEM].
1125  */
1126 
1127 void
1128 get_cpu_mstate(cpu_t *cpu, hrtime_t *times)
1129 {
1130         int i;
1131         hrtime_t now, start;
1132         uint16_t gen;
1133         uint16_t state;
1134         hrtime_t intracct[NCMSTATES];
1135 
1136         /*
1137          * Load all volatile state under the protection of membar.
1138          * cpu_acct[cpu_mstate] must be loaded to avoid double counting
1139          * of (now - cpu_mstate_start) by a change in CPU mstate that
1140          * arrives after we make our last check of cpu_mstate_gen.
1141          */
1142 
1143         now = gethrtime_unscaled();
1144         gen = cpu->cpu_mstate_gen;
1145 
1146         membar_consumer();      /* guarantee load ordering */
1147         start = cpu->cpu_mstate_start;
1148         state = cpu->cpu_mstate;
1149         for (i = 0; i < NCMSTATES; i++) {
1150                 intracct[i] = cpu->cpu_intracct[i];
1151                 times[i] = cpu->cpu_acct[i];
1152         }
1153         membar_consumer();      /* guarantee load ordering */
1154 
1155         if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start)
1156                 times[state] += now - start;
1157 
1158         for (i = 0; i < NCMSTATES; i++) {
1159                 if (i == CMS_SYSTEM)
1160                         continue;
1161                 times[i] -= intracct[i];
1162                 if (times[i] < 0) {
1163                         intracct[i] += times[i];
1164                         times[i] = 0;
1165                 }
1166                 times[CMS_SYSTEM] += intracct[i];
1167                 scalehrtime(&times[i]);
1168         }
1169         scalehrtime(&times[CMS_SYSTEM]);
1170 }
1171 
1172 /*
1173  * This is a version of the rdmsr instruction that allows
1174  * an error code to be returned in the case of failure.
1175  */
1176 int
1177 checked_rdmsr(uint_t msr, uint64_t *value)
1178 {
1179         if (!is_x86_feature(x86_featureset, X86FSET_MSR))
1180                 return (ENOTSUP);
1181         *value = rdmsr(msr);
1182         return (0);
1183 }
1184 
1185 /*
1186  * This is a version of the wrmsr instruction that allows
1187  * an error code to be returned in the case of failure.
1188  */
1189 int
1190 checked_wrmsr(uint_t msr, uint64_t value)
1191 {
1192         if (!is_x86_feature(x86_featureset, X86FSET_MSR))
1193                 return (ENOTSUP);
1194         wrmsr(msr, value);
1195         return (0);
1196 }
1197 
1198 /*
1199  * The mem driver's usual method of using hat_devload() to establish a
1200  * temporary mapping will not work for foreign pages mapped into this
1201  * domain or for the special hypervisor-provided pages.  For the foreign
1202  * pages, we often don't know which domain owns them, so we can't ask the
1203  * hypervisor to set up a new mapping.  For the other pages, we don't have
1204  * a pfn, so we can't create a new PTE.  For these special cases, we do a
1205  * direct uiomove() from the existing kernel virtual address.
1206  */
1207 /*ARGSUSED*/
1208 int
1209 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw)
1210 {
1211 #if defined(__xpv)
1212         void *va = (void *)(uintptr_t)uio->uio_loffset;
1213         off_t pageoff = uio->uio_loffset & PAGEOFFSET;
1214         size_t nbytes = MIN((size_t)(PAGESIZE - pageoff),
1215             (size_t)uio->uio_iov->iov_len);
1216 
1217         if ((rw == UIO_READ &&
1218             (va == HYPERVISOR_shared_info || va == xen_info)) ||
1219             (pfn_is_foreign(hat_getpfnum(kas.a_hat, va))))
1220                 return (uiomove(va, nbytes, rw, uio));
1221 #endif
1222         return (ENOTSUP);
1223 }
1224 
1225 pgcnt_t
1226 num_phys_pages()
1227 {
1228         pgcnt_t npages = 0;
1229         struct memlist *mp;
1230 
1231 #if defined(__xpv)
1232         if (DOMAIN_IS_INITDOMAIN(xen_info))
1233                 return (xpv_nr_phys_pages());
1234 #endif /* __xpv */
1235 
1236         for (mp = phys_install; mp != NULL; mp = mp->ml_next)
1237                 npages += mp->ml_size >> PAGESHIFT;
1238 
1239         return (npages);
1240 }
1241 
1242 /* cpu threshold for compressed dumps */
1243 #ifdef _LP64
1244 uint_t dump_plat_mincpu_default = DUMP_PLAT_X86_64_MINCPU;
1245 #else
1246 uint_t dump_plat_mincpu_default = DUMP_PLAT_X86_32_MINCPU;
1247 #endif
1248 
1249 int
1250 dump_plat_addr()
1251 {
1252 #ifdef __xpv
1253         pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1254         mem_vtop_t mem_vtop;
1255         int cnt;
1256 
1257         /*
1258          * On the hypervisor, we want to dump the page with shared_info on it.
1259          */
1260         if (!IN_XPV_PANIC()) {
1261                 mem_vtop.m_as = &kas;
1262                 mem_vtop.m_va = HYPERVISOR_shared_info;
1263                 mem_vtop.m_pfn = pfn;
1264                 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t));
1265                 cnt = 1;
1266         } else {
1267                 cnt = dump_xpv_addr();
1268         }
1269         return (cnt);
1270 #else
1271         return (0);
1272 #endif
1273 }
1274 
1275 void
1276 dump_plat_pfn()
1277 {
1278 #ifdef __xpv
1279         pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1280 
1281         if (!IN_XPV_PANIC())
1282                 dumpvp_write(&pfn, sizeof (pfn));
1283         else
1284                 dump_xpv_pfn();
1285 #endif
1286 }
1287 
1288 /*ARGSUSED*/
1289 int
1290 dump_plat_data(void *dump_cbuf)
1291 {
1292 #ifdef __xpv
1293         uint32_t csize;
1294         int cnt;
1295 
1296         if (!IN_XPV_PANIC()) {
1297                 csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf,
1298                     PAGESIZE);
1299                 dumpvp_write(&csize, sizeof (uint32_t));
1300                 dumpvp_write(dump_cbuf, csize);
1301                 cnt = 1;
1302         } else {
1303                 cnt = dump_xpv_data(dump_cbuf);
1304         }
1305         return (cnt);
1306 #else
1307         return (0);
1308 #endif
1309 }
1310 
1311 /*
1312  * Calculates a linear address, given the CS selector and PC values
1313  * by looking up the %cs selector process's LDT or the CPU's GDT.
1314  * proc->p_ldtlock must be held across this call.
1315  */
1316 int
1317 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1318 {
1319         user_desc_t     *descrp;
1320         caddr_t         baseaddr;
1321         uint16_t        idx = SELTOIDX(rp->r_cs);
1322 
1323         ASSERT(rp->r_cs <= 0xFFFF);
1324         ASSERT(MUTEX_HELD(&p->p_ldtlock));
1325 
1326         if (SELISLDT(rp->r_cs)) {
1327                 /*
1328                  * Currently 64 bit processes cannot have private LDTs.
1329                  */
1330                 ASSERT(p->p_model != DATAMODEL_LP64);
1331 
1332                 if (p->p_ldt == NULL)
1333                         return (-1);
1334 
1335                 descrp = &p->p_ldt[idx];
1336                 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1337 
1338                 /*
1339                  * Calculate the linear address (wraparound is not only ok,
1340                  * it's expected behavior).  The cast to uint32_t is because
1341                  * LDT selectors are only allowed in 32-bit processes.
1342                  */
1343                 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1344                     rp->r_pc);
1345         } else {
1346 #ifdef DEBUG
1347                 descrp = &CPU->cpu_gdt[idx];
1348                 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1349                 /* GDT-based descriptors' base addresses should always be 0 */
1350                 ASSERT(baseaddr == 0);
1351 #endif
1352                 *linearp = (caddr_t)(uintptr_t)rp->r_pc;
1353         }
1354 
1355         return (0);
1356 }
1357 
1358 /*
1359  * The implementation of dtrace_linear_pc is similar to the that of
1360  * linear_pc, above, but here we acquire p_ldtlock before accessing
1361  * p_ldt.  This implementation is used by the pid provider; we prefix
1362  * it with "dtrace_" to avoid inducing spurious tracing events.
1363  */
1364 int
1365 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1366 {
1367         user_desc_t     *descrp;
1368         caddr_t         baseaddr;
1369         uint16_t        idx = SELTOIDX(rp->r_cs);
1370 
1371         ASSERT(rp->r_cs <= 0xFFFF);
1372 
1373         if (SELISLDT(rp->r_cs)) {
1374                 /*
1375                  * Currently 64 bit processes cannot have private LDTs.
1376                  */
1377                 ASSERT(p->p_model != DATAMODEL_LP64);
1378 
1379                 mutex_enter(&p->p_ldtlock);
1380                 if (p->p_ldt == NULL) {
1381                         mutex_exit(&p->p_ldtlock);
1382                         return (-1);
1383                 }
1384                 descrp = &p->p_ldt[idx];
1385                 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1386                 mutex_exit(&p->p_ldtlock);
1387 
1388                 /*
1389                  * Calculate the linear address (wraparound is not only ok,
1390                  * it's expected behavior).  The cast to uint32_t is because
1391                  * LDT selectors are only allowed in 32-bit processes.
1392                  */
1393                 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1394                     rp->r_pc);
1395         } else {
1396 #ifdef DEBUG
1397                 descrp = &CPU->cpu_gdt[idx];
1398                 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1399                 /* GDT-based descriptors' base addresses should always be 0 */
1400                 ASSERT(baseaddr == 0);
1401 #endif
1402                 *linearp = (caddr_t)(uintptr_t)rp->r_pc;
1403         }
1404 
1405         return (0);
1406 }
1407 
1408 /*
1409  * We need to post a soft interrupt to reprogram the lbolt cyclic when
1410  * switching from event to cyclic driven lbolt. The following code adds
1411  * and posts the softint for x86.
1412  */
1413 static ddi_softint_hdl_impl_t lbolt_softint_hdl =
1414         {0, NULL, NULL, NULL, 0, NULL, NULL, NULL};
1415 
1416 void
1417 lbolt_softint_add(void)
1418 {
1419         (void) add_avsoftintr((void *)&lbolt_softint_hdl, LOCK_LEVEL,
1420             (avfunc)lbolt_ev_to_cyclic, "lbolt_ev_to_cyclic", NULL, NULL);
1421 }
1422 
1423 void
1424 lbolt_softint_post(void)
1425 {
1426         (*setsoftint)(CBE_LOCK_PIL, lbolt_softint_hdl.ih_pending);
1427 }
1428 
1429 boolean_t
1430 plat_dr_check_capability(uint64_t features)
1431 {
1432         return ((plat_dr_options & features) == features);
1433 }
1434 
1435 boolean_t
1436 plat_dr_support_cpu(void)
1437 {
1438         return (plat_dr_options & PLAT_DR_FEATURE_CPU);
1439 }
1440 
1441 boolean_t
1442 plat_dr_support_memory(void)
1443 {
1444         return (plat_dr_options & PLAT_DR_FEATURE_MEMORY);
1445 }
1446 
1447 void
1448 plat_dr_enable_capability(uint64_t features)
1449 {
1450         atomic_or_64(&plat_dr_options, features);
1451 }
1452 
1453 void
1454 plat_dr_disable_capability(uint64_t features)
1455 {
1456         atomic_and_64(&plat_dr_options, ~features);
1457 }