Print this page
    
9446 some NVMe controllers get upset about NS ID of 0 when checking "Error Recovery" feature
    
      
        | Split | Close | 
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/common/io/nvme/nvme.c
          +++ new/usr/src/uts/common/io/nvme/nvme.c
   1    1  /*
   2    2   * This file and its contents are supplied under the terms of the
   3    3   * Common Development and Distribution License ("CDDL"), version 1.0.
   4    4   * You may only use this file in accordance with the terms of version
   5    5   * 1.0 of the CDDL.
   6    6   *
   7    7   * A full copy of the text of the CDDL should have accompanied this
   8    8   * source.  A copy of the CDDL is also available via the Internet at
   9    9   * http://www.illumos.org/license/CDDL.
  10   10   */
  11   11  
  12   12  /*
  13   13   * Copyright 2018 Nexenta Systems, Inc.
  14   14   * Copyright 2016 Tegile Systems, Inc. All rights reserved.
  15   15   * Copyright (c) 2016 The MathWorks, Inc.  All rights reserved.
  16   16   * Copyright 2017 Joyent, Inc.
  17   17   */
  18   18  
  19   19  /*
  20   20   * blkdev driver for NVMe compliant storage devices
  21   21   *
  22   22   * This driver was written to conform to version 1.2.1 of the NVMe
  23   23   * specification.  It may work with newer versions, but that is completely
  24   24   * untested and disabled by default.
  25   25   *
  26   26   * The driver has only been tested on x86 systems and will not work on big-
  27   27   * endian systems without changes to the code accessing registers and data
  28   28   * structures used by the hardware.
  29   29   *
  30   30   *
  31   31   * Interrupt Usage:
  32   32   *
  33   33   * The driver will use a single interrupt while configuring the device as the
  34   34   * specification requires, but contrary to the specification it will try to use
  35   35   * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
  36   36   * will switch to multiple-message MSI(-X) if supported. The driver wants to
  37   37   * have one interrupt vector per CPU, but it will work correctly if less are
  38   38   * available. Interrupts can be shared by queues, the interrupt handler will
  39   39   * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
  40   40   * the admin queue will share an interrupt with one I/O queue. The interrupt
  41   41   * handler will retrieve completed commands from all queues sharing an interrupt
  42   42   * vector and will post them to a taskq for completion processing.
  43   43   *
  44   44   *
  45   45   * Command Processing:
  46   46   *
  47   47   * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up
  48   48   * to 65536 I/O commands. The driver will configure one I/O queue pair per
  49   49   * available interrupt vector, with the queue length usually much smaller than
  50   50   * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
  51   51   * interrupt vectors will be used.
  52   52   *
  53   53   * Additionally the hardware provides a single special admin queue pair that can
  54   54   * hold up to 4096 admin commands.
  55   55   *
  56   56   * From the hardware perspective both queues of a queue pair are independent,
  57   57   * but they share some driver state: the command array (holding pointers to
  58   58   * commands currently being processed by the hardware) and the active command
  59   59   * counter. Access to a queue pair and the shared state is protected by
  60   60   * nq_mutex.
  61   61   *
  62   62   * When a command is submitted to a queue pair the active command counter is
  63   63   * incremented and a pointer to the command is stored in the command array. The
  64   64   * array index is used as command identifier (CID) in the submission queue
  65   65   * entry. Some commands may take a very long time to complete, and if the queue
  66   66   * wraps around in that time a submission may find the next array slot to still
  67   67   * be used by a long-running command. In this case the array is sequentially
  68   68   * searched for the next free slot. The length of the command array is the same
  69   69   * as the configured queue length. Queue overrun is prevented by the semaphore,
  70   70   * so a command submission may block if the queue is full.
  71   71   *
  72   72   *
  73   73   * Polled I/O Support:
  74   74   *
  75   75   * For kernel core dump support the driver can do polled I/O. As interrupts are
  76   76   * turned off while dumping the driver will just submit a command in the regular
  77   77   * way, and then repeatedly attempt a command retrieval until it gets the
  78   78   * command back.
  79   79   *
  80   80   *
  81   81   * Namespace Support:
  82   82   *
  83   83   * NVMe devices can have multiple namespaces, each being a independent data
  84   84   * store. The driver supports multiple namespaces and creates a blkdev interface
  85   85   * for each namespace found. Namespaces can have various attributes to support
  86   86   * thin provisioning and protection information. This driver does not support
  87   87   * any of this and ignores namespaces that have these attributes.
  88   88   *
  89   89   * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
  90   90   * (EUI64). This driver uses the EUI64 if present to generate the devid and
  91   91   * passes it to blkdev to use it in the device node names. As this is currently
  92   92   * untested namespaces with EUI64 are ignored by default.
  93   93   *
  94   94   * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
  95   95   * single controller. This is an artificial limit imposed by the driver to be
  96   96   * able to address a reasonable number of controllers and namespaces using a
  97   97   * 32bit minor node number.
  98   98   *
  99   99   *
 100  100   * Minor nodes:
 101  101   *
 102  102   * For each NVMe device the driver exposes one minor node for the controller and
 103  103   * one minor node for each namespace. The only operations supported by those
 104  104   * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
 105  105   * interface for the nvmeadm(1M) utility.
 106  106   *
 107  107   *
 108  108   * Blkdev Interface:
 109  109   *
 110  110   * This driver uses blkdev to do all the heavy lifting involved with presenting
 111  111   * a disk device to the system. As a result, the processing of I/O requests is
 112  112   * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
 113  113   * setup, and splitting of transfers into manageable chunks.
 114  114   *
 115  115   * I/O requests coming in from blkdev are turned into NVM commands and posted to
 116  116   * an I/O queue. The queue is selected by taking the CPU id modulo the number of
 117  117   * queues. There is currently no timeout handling of I/O commands.
 118  118   *
 119  119   * Blkdev also supports querying device/media information and generating a
 120  120   * devid. The driver reports the best block size as determined by the namespace
 121  121   * format back to blkdev as physical block size to support partition and block
 122  122   * alignment. The devid is either based on the namespace EUI64, if present, or
 123  123   * composed using the device vendor ID, model number, serial number, and the
 124  124   * namespace ID.
 125  125   *
 126  126   *
 127  127   * Error Handling:
 128  128   *
 129  129   * Error handling is currently limited to detecting fatal hardware errors,
 130  130   * either by asynchronous events, or synchronously through command status or
 131  131   * admin command timeouts. In case of severe errors the device is fenced off,
 132  132   * all further requests will return EIO. FMA is then called to fault the device.
 133  133   *
 134  134   * The hardware has a limit for outstanding asynchronous event requests. Before
 135  135   * this limit is known the driver assumes it is at least 1 and posts a single
 136  136   * asynchronous request. Later when the limit is known more asynchronous event
 137  137   * requests are posted to allow quicker reception of error information. When an
 138  138   * asynchronous event is posted by the hardware the driver will parse the error
 139  139   * status fields and log information or fault the device, depending on the
 140  140   * severity of the asynchronous event. The asynchronous event request is then
 141  141   * reused and posted to the admin queue again.
 142  142   *
 143  143   * On command completion the command status is checked for errors. In case of
 144  144   * errors indicating a driver bug the driver panics. Almost all other error
 145  145   * status values just cause EIO to be returned.
 146  146   *
 147  147   * Command timeouts are currently detected for all admin commands except
 148  148   * asynchronous event requests. If a command times out and the hardware appears
 149  149   * to be healthy the driver attempts to abort the command. The original command
 150  150   * timeout is also applied to the abort command. If the abort times out too the
 151  151   * driver assumes the device to be dead, fences it off, and calls FMA to retire
 152  152   * it. In all other cases the aborted command should return immediately with a
 153  153   * status indicating it was aborted, and the driver will wait indefinitely for
 154  154   * that to happen. No timeout handling of normal I/O commands is presently done.
 155  155   *
 156  156   * Any command that times out due to the controller dropping dead will be put on
 157  157   * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA
 158  158   * memory being reused by the system and later be written to by a "dead" NVMe
 159  159   * controller.
 160  160   *
 161  161   *
 162  162   * Locking:
 163  163   *
 164  164   * Each queue pair has its own nq_mutex, which must be held when accessing the
 165  165   * associated queue registers or the shared state of the queue pair. Callers of
 166  166   * nvme_unqueue_cmd() must make sure that nq_mutex is held, while
 167  167   * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of this
 168  168   * themselves.
 169  169   *
 170  170   * Each command also has its own nc_mutex, which is associated with the
 171  171   * condition variable nc_cv. It is only used on admin commands which are run
 172  172   * synchronously. In that case it must be held across calls to
 173  173   * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by
 174  174   * nvme_admin_cmd(). It must also be held whenever the completion state of the
 175  175   * command is changed or while a admin command timeout is handled.
 176  176   *
 177  177   * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first.
 178  178   * More than one nc_mutex may only be held when aborting commands. In this case,
 179  179   * the nc_mutex of the command to be aborted must be held across the call to
 180  180   * nvme_abort_cmd() to prevent the command from completing while the abort is in
 181  181   * progress.
 182  182   *
 183  183   * Each minor node has its own nm_mutex, which protects the open count nm_ocnt
 184  184   * and exclusive-open flag nm_oexcl.
 185  185   *
 186  186   *
 187  187   * Quiesce / Fast Reboot:
 188  188   *
 189  189   * The driver currently does not support fast reboot. A quiesce(9E) entry point
 190  190   * is still provided which is used to send a shutdown notification to the
 191  191   * device.
 192  192   *
 193  193   *
 194  194   * Driver Configuration:
 195  195   *
 196  196   * The following driver properties can be changed to control some aspects of the
 197  197   * drivers operation:
 198  198   * - strict-version: can be set to 0 to allow devices conforming to newer
 199  199   *   versions or namespaces with EUI64 to be used
 200  200   * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
 201  201   *   specific command status as a fatal error leading device faulting
 202  202   * - admin-queue-len: the maximum length of the admin queue (16-4096)
 203  203   * - io-queue-len: the maximum length of the I/O queues (16-65536)
 204  204   * - async-event-limit: the maximum number of asynchronous event requests to be
 205  205   *   posted by the driver
 206  206   * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
 207  207   *   cache
 208  208   * - min-phys-block-size: the minimum physical block size to report to blkdev,
 209  209   *   which is among other things the basis for ZFS vdev ashift
 210  210   *
 211  211   *
 212  212   * TODO:
 213  213   * - figure out sane default for I/O queue depth reported to blkdev
 214  214   * - FMA handling of media errors
 215  215   * - support for devices supporting very large I/O requests using chained PRPs
 216  216   * - support for configuring hardware parameters like interrupt coalescing
 217  217   * - support for media formatting and hard partitioning into namespaces
 218  218   * - support for big-endian systems
 219  219   * - support for fast reboot
 220  220   * - support for firmware updates
 221  221   * - support for NVMe Subsystem Reset (1.1)
 222  222   * - support for Scatter/Gather lists (1.1)
 223  223   * - support for Reservations (1.1)
 224  224   * - support for power management
 225  225   */
 226  226  
 227  227  #include <sys/byteorder.h>
 228  228  #ifdef _BIG_ENDIAN
 229  229  #error nvme driver needs porting for big-endian platforms
 230  230  #endif
 231  231  
 232  232  #include <sys/modctl.h>
 233  233  #include <sys/conf.h>
 234  234  #include <sys/devops.h>
 235  235  #include <sys/ddi.h>
 236  236  #include <sys/sunddi.h>
 237  237  #include <sys/sunndi.h>
 238  238  #include <sys/bitmap.h>
 239  239  #include <sys/sysmacros.h>
 240  240  #include <sys/param.h>
 241  241  #include <sys/varargs.h>
 242  242  #include <sys/cpuvar.h>
 243  243  #include <sys/disp.h>
 244  244  #include <sys/blkdev.h>
 245  245  #include <sys/atomic.h>
 246  246  #include <sys/archsystm.h>
 247  247  #include <sys/sata/sata_hba.h>
 248  248  #include <sys/stat.h>
 249  249  #include <sys/policy.h>
 250  250  #include <sys/list.h>
 251  251  
 252  252  #include <sys/nvme.h>
 253  253  
 254  254  #ifdef __x86
 255  255  #include <sys/x86_archext.h>
 256  256  #endif
 257  257  
 258  258  #include "nvme_reg.h"
 259  259  #include "nvme_var.h"
 260  260  
 261  261  
 262  262  /* NVMe spec version supported */
 263  263  static const int nvme_version_major = 1;
 264  264  static const int nvme_version_minor = 2;
 265  265  
 266  266  /* tunable for admin command timeout in seconds, default is 1s */
 267  267  int nvme_admin_cmd_timeout = 1;
 268  268  
 269  269  /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
 270  270  int nvme_format_cmd_timeout = 600;
 271  271  
 272  272  static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
 273  273  static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
 274  274  static int nvme_quiesce(dev_info_t *);
 275  275  static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
 276  276  static int nvme_setup_interrupts(nvme_t *, int, int);
 277  277  static void nvme_release_interrupts(nvme_t *);
 278  278  static uint_t nvme_intr(caddr_t, caddr_t);
 279  279  
 280  280  static void nvme_shutdown(nvme_t *, int, boolean_t);
 281  281  static boolean_t nvme_reset(nvme_t *, boolean_t);
 282  282  static int nvme_init(nvme_t *);
 283  283  static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
 284  284  static void nvme_free_cmd(nvme_cmd_t *);
 285  285  static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
 286  286      bd_xfer_t *);
 287  287  static void nvme_admin_cmd(nvme_cmd_t *, int);
 288  288  static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *);
 289  289  static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *);
 290  290  static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *);
 291  291  static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int);
 292  292  static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
 293  293  static void nvme_wait_cmd(nvme_cmd_t *, uint_t);
 294  294  static void nvme_wakeup_cmd(void *);
 295  295  static void nvme_async_event_task(void *);
 296  296  
 297  297  static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
 298  298  static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
 299  299  static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
 300  300  static int nvme_check_specific_cmd_status(nvme_cmd_t *);
 301  301  static int nvme_check_generic_cmd_status(nvme_cmd_t *);
 302  302  static inline int nvme_check_cmd_status(nvme_cmd_t *);
 303  303  
 304  304  static int nvme_abort_cmd(nvme_cmd_t *, uint_t);
 305  305  static void nvme_async_event(nvme_t *);
 306  306  static int nvme_format_nvm(nvme_t *, uint32_t, uint8_t, boolean_t, uint8_t,
 307  307      boolean_t, uint8_t);
 308  308  static int nvme_get_logpage(nvme_t *, void **, size_t *, uint8_t, ...);
 309  309  static int nvme_identify(nvme_t *, uint32_t, void **);
 310  310  static int nvme_set_features(nvme_t *, uint32_t, uint8_t, uint32_t,
 311  311      uint32_t *);
 312  312  static int nvme_get_features(nvme_t *, uint32_t, uint8_t, uint32_t *,
 313  313      void **, size_t *);
 314  314  static int nvme_write_cache_set(nvme_t *, boolean_t);
 315  315  static int nvme_set_nqueues(nvme_t *, uint16_t *);
 316  316  
 317  317  static void nvme_free_dma(nvme_dma_t *);
 318  318  static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
 319  319      nvme_dma_t **);
 320  320  static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
 321  321      nvme_dma_t **);
 322  322  static void nvme_free_qpair(nvme_qpair_t *);
 323  323  static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int);
 324  324  static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
 325  325  
 326  326  static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
 327  327  static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
 328  328  static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
 329  329  static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
 330  330  
 331  331  static boolean_t nvme_check_regs_hdl(nvme_t *);
 332  332  static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
 333  333  
 334  334  static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
 335  335  
 336  336  static void nvme_bd_xfer_done(void *);
 337  337  static void nvme_bd_driveinfo(void *, bd_drive_t *);
 338  338  static int nvme_bd_mediainfo(void *, bd_media_t *);
 339  339  static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
 340  340  static int nvme_bd_read(void *, bd_xfer_t *);
 341  341  static int nvme_bd_write(void *, bd_xfer_t *);
 342  342  static int nvme_bd_sync(void *, bd_xfer_t *);
 343  343  static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
 344  344  
 345  345  static int nvme_prp_dma_constructor(void *, void *, int);
 346  346  static void nvme_prp_dma_destructor(void *, void *);
 347  347  
 348  348  static void nvme_prepare_devid(nvme_t *, uint32_t);
 349  349  
 350  350  static int nvme_open(dev_t *, int, int, cred_t *);
 351  351  static int nvme_close(dev_t, int, int, cred_t *);
 352  352  static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
 353  353  
 354  354  #define NVME_MINOR_INST_SHIFT   9
 355  355  #define NVME_MINOR(inst, nsid)  (((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
 356  356  #define NVME_MINOR_INST(minor)  ((minor) >> NVME_MINOR_INST_SHIFT)
 357  357  #define NVME_MINOR_NSID(minor)  ((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
 358  358  #define NVME_MINOR_MAX          (NVME_MINOR(1, 0) - 2)
 359  359  
 360  360  static void *nvme_state;
 361  361  static kmem_cache_t *nvme_cmd_cache;
 362  362  
 363  363  /*
 364  364   * DMA attributes for queue DMA memory
 365  365   *
 366  366   * Queue DMA memory must be page aligned. The maximum length of a queue is
 367  367   * 65536 entries, and an entry can be 64 bytes long.
 368  368   */
 369  369  static ddi_dma_attr_t nvme_queue_dma_attr = {
 370  370          .dma_attr_version       = DMA_ATTR_V0,
 371  371          .dma_attr_addr_lo       = 0,
 372  372          .dma_attr_addr_hi       = 0xffffffffffffffffULL,
 373  373          .dma_attr_count_max     = (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
 374  374          .dma_attr_align         = 0x1000,
 375  375          .dma_attr_burstsizes    = 0x7ff,
 376  376          .dma_attr_minxfer       = 0x1000,
 377  377          .dma_attr_maxxfer       = (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
 378  378          .dma_attr_seg           = 0xffffffffffffffffULL,
 379  379          .dma_attr_sgllen        = 1,
 380  380          .dma_attr_granular      = 1,
 381  381          .dma_attr_flags         = 0,
 382  382  };
 383  383  
 384  384  /*
 385  385   * DMA attributes for transfers using Physical Region Page (PRP) entries
 386  386   *
 387  387   * A PRP entry describes one page of DMA memory using the page size specified
 388  388   * in the controller configuration's memory page size register (CC.MPS). It uses
 389  389   * a 64bit base address aligned to this page size. There is no limitation on
 390  390   * chaining PRPs together for arbitrarily large DMA transfers.
 391  391   */
 392  392  static ddi_dma_attr_t nvme_prp_dma_attr = {
 393  393          .dma_attr_version       = DMA_ATTR_V0,
 394  394          .dma_attr_addr_lo       = 0,
 395  395          .dma_attr_addr_hi       = 0xffffffffffffffffULL,
 396  396          .dma_attr_count_max     = 0xfff,
 397  397          .dma_attr_align         = 0x1000,
 398  398          .dma_attr_burstsizes    = 0x7ff,
 399  399          .dma_attr_minxfer       = 0x1000,
 400  400          .dma_attr_maxxfer       = 0x1000,
 401  401          .dma_attr_seg           = 0xfff,
 402  402          .dma_attr_sgllen        = -1,
 403  403          .dma_attr_granular      = 1,
 404  404          .dma_attr_flags         = 0,
 405  405  };
 406  406  
 407  407  /*
 408  408   * DMA attributes for transfers using scatter/gather lists
 409  409   *
 410  410   * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
 411  411   * 32bit length field. SGL Segment and SGL Last Segment entries require the
 412  412   * length to be a multiple of 16 bytes.
 413  413   */
 414  414  static ddi_dma_attr_t nvme_sgl_dma_attr = {
 415  415          .dma_attr_version       = DMA_ATTR_V0,
 416  416          .dma_attr_addr_lo       = 0,
 417  417          .dma_attr_addr_hi       = 0xffffffffffffffffULL,
 418  418          .dma_attr_count_max     = 0xffffffffUL,
 419  419          .dma_attr_align         = 1,
 420  420          .dma_attr_burstsizes    = 0x7ff,
 421  421          .dma_attr_minxfer       = 0x10,
 422  422          .dma_attr_maxxfer       = 0xfffffffffULL,
 423  423          .dma_attr_seg           = 0xffffffffffffffffULL,
 424  424          .dma_attr_sgllen        = -1,
 425  425          .dma_attr_granular      = 0x10,
 426  426          .dma_attr_flags         = 0
 427  427  };
 428  428  
 429  429  static ddi_device_acc_attr_t nvme_reg_acc_attr = {
 430  430          .devacc_attr_version    = DDI_DEVICE_ATTR_V0,
 431  431          .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
 432  432          .devacc_attr_dataorder  = DDI_STRICTORDER_ACC
 433  433  };
 434  434  
 435  435  static struct cb_ops nvme_cb_ops = {
 436  436          .cb_open        = nvme_open,
 437  437          .cb_close       = nvme_close,
 438  438          .cb_strategy    = nodev,
 439  439          .cb_print       = nodev,
 440  440          .cb_dump        = nodev,
 441  441          .cb_read        = nodev,
 442  442          .cb_write       = nodev,
 443  443          .cb_ioctl       = nvme_ioctl,
 444  444          .cb_devmap      = nodev,
 445  445          .cb_mmap        = nodev,
 446  446          .cb_segmap      = nodev,
 447  447          .cb_chpoll      = nochpoll,
 448  448          .cb_prop_op     = ddi_prop_op,
 449  449          .cb_str         = 0,
 450  450          .cb_flag        = D_NEW | D_MP,
 451  451          .cb_rev         = CB_REV,
 452  452          .cb_aread       = nodev,
 453  453          .cb_awrite      = nodev
 454  454  };
 455  455  
 456  456  static struct dev_ops nvme_dev_ops = {
 457  457          .devo_rev       = DEVO_REV,
 458  458          .devo_refcnt    = 0,
 459  459          .devo_getinfo   = ddi_no_info,
 460  460          .devo_identify  = nulldev,
 461  461          .devo_probe     = nulldev,
 462  462          .devo_attach    = nvme_attach,
 463  463          .devo_detach    = nvme_detach,
 464  464          .devo_reset     = nodev,
 465  465          .devo_cb_ops    = &nvme_cb_ops,
 466  466          .devo_bus_ops   = NULL,
 467  467          .devo_power     = NULL,
 468  468          .devo_quiesce   = nvme_quiesce,
 469  469  };
 470  470  
 471  471  static struct modldrv nvme_modldrv = {
 472  472          .drv_modops     = &mod_driverops,
 473  473          .drv_linkinfo   = "NVMe v1.1b",
 474  474          .drv_dev_ops    = &nvme_dev_ops
 475  475  };
 476  476  
 477  477  static struct modlinkage nvme_modlinkage = {
 478  478          .ml_rev         = MODREV_1,
 479  479          .ml_linkage     = { &nvme_modldrv, NULL }
 480  480  };
 481  481  
 482  482  static bd_ops_t nvme_bd_ops = {
 483  483          .o_version      = BD_OPS_VERSION_0,
 484  484          .o_drive_info   = nvme_bd_driveinfo,
 485  485          .o_media_info   = nvme_bd_mediainfo,
 486  486          .o_devid_init   = nvme_bd_devid,
 487  487          .o_sync_cache   = nvme_bd_sync,
 488  488          .o_read         = nvme_bd_read,
 489  489          .o_write        = nvme_bd_write,
 490  490  };
 491  491  
 492  492  /*
 493  493   * This list will hold commands that have timed out and couldn't be aborted.
 494  494   * As we don't know what the hardware may still do with the DMA memory we can't
 495  495   * free them, so we'll keep them forever on this list where we can easily look
 496  496   * at them with mdb.
 497  497   */
 498  498  static struct list nvme_lost_cmds;
 499  499  static kmutex_t nvme_lc_mutex;
 500  500  
 501  501  int
 502  502  _init(void)
 503  503  {
 504  504          int error;
 505  505  
 506  506          error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
 507  507          if (error != DDI_SUCCESS)
 508  508                  return (error);
 509  509  
 510  510          nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
 511  511              sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
 512  512  
 513  513          mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL);
 514  514          list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t),
 515  515              offsetof(nvme_cmd_t, nc_list));
 516  516  
 517  517          bd_mod_init(&nvme_dev_ops);
 518  518  
 519  519          error = mod_install(&nvme_modlinkage);
 520  520          if (error != DDI_SUCCESS) {
 521  521                  ddi_soft_state_fini(&nvme_state);
 522  522                  mutex_destroy(&nvme_lc_mutex);
 523  523                  list_destroy(&nvme_lost_cmds);
 524  524                  bd_mod_fini(&nvme_dev_ops);
 525  525          }
 526  526  
 527  527          return (error);
 528  528  }
 529  529  
 530  530  int
 531  531  _fini(void)
 532  532  {
 533  533          int error;
 534  534  
 535  535          if (!list_is_empty(&nvme_lost_cmds))
 536  536                  return (DDI_FAILURE);
 537  537  
 538  538          error = mod_remove(&nvme_modlinkage);
 539  539          if (error == DDI_SUCCESS) {
 540  540                  ddi_soft_state_fini(&nvme_state);
 541  541                  kmem_cache_destroy(nvme_cmd_cache);
 542  542                  mutex_destroy(&nvme_lc_mutex);
 543  543                  list_destroy(&nvme_lost_cmds);
 544  544                  bd_mod_fini(&nvme_dev_ops);
 545  545          }
 546  546  
 547  547          return (error);
 548  548  }
 549  549  
 550  550  int
 551  551  _info(struct modinfo *modinfop)
 552  552  {
 553  553          return (mod_info(&nvme_modlinkage, modinfop));
 554  554  }
 555  555  
 556  556  static inline void
 557  557  nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
 558  558  {
 559  559          ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
 560  560  
 561  561          /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 562  562          ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
 563  563  }
 564  564  
 565  565  static inline void
 566  566  nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
 567  567  {
 568  568          ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
 569  569  
 570  570          /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 571  571          ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
 572  572  }
 573  573  
 574  574  static inline uint64_t
 575  575  nvme_get64(nvme_t *nvme, uintptr_t reg)
 576  576  {
 577  577          uint64_t val;
 578  578  
 579  579          ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
 580  580  
 581  581          /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 582  582          val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
 583  583  
 584  584          return (val);
 585  585  }
 586  586  
 587  587  static inline uint32_t
 588  588  nvme_get32(nvme_t *nvme, uintptr_t reg)
 589  589  {
 590  590          uint32_t val;
 591  591  
 592  592          ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
 593  593  
 594  594          /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 595  595          val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
 596  596  
 597  597          return (val);
 598  598  }
 599  599  
 600  600  static boolean_t
 601  601  nvme_check_regs_hdl(nvme_t *nvme)
 602  602  {
 603  603          ddi_fm_error_t error;
 604  604  
 605  605          ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
 606  606  
 607  607          if (error.fme_status != DDI_FM_OK)
 608  608                  return (B_TRUE);
 609  609  
 610  610          return (B_FALSE);
 611  611  }
 612  612  
 613  613  static boolean_t
 614  614  nvme_check_dma_hdl(nvme_dma_t *dma)
 615  615  {
 616  616          ddi_fm_error_t error;
 617  617  
 618  618          if (dma == NULL)
 619  619                  return (B_FALSE);
 620  620  
 621  621          ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
 622  622  
 623  623          if (error.fme_status != DDI_FM_OK)
 624  624                  return (B_TRUE);
 625  625  
 626  626          return (B_FALSE);
 627  627  }
 628  628  
 629  629  static void
 630  630  nvme_free_dma_common(nvme_dma_t *dma)
 631  631  {
 632  632          if (dma->nd_dmah != NULL)
 633  633                  (void) ddi_dma_unbind_handle(dma->nd_dmah);
 634  634          if (dma->nd_acch != NULL)
 635  635                  ddi_dma_mem_free(&dma->nd_acch);
 636  636          if (dma->nd_dmah != NULL)
 637  637                  ddi_dma_free_handle(&dma->nd_dmah);
 638  638  }
 639  639  
 640  640  static void
 641  641  nvme_free_dma(nvme_dma_t *dma)
 642  642  {
 643  643          nvme_free_dma_common(dma);
 644  644          kmem_free(dma, sizeof (*dma));
 645  645  }
 646  646  
 647  647  /* ARGSUSED */
 648  648  static void
 649  649  nvme_prp_dma_destructor(void *buf, void *private)
 650  650  {
 651  651          nvme_dma_t *dma = (nvme_dma_t *)buf;
 652  652  
 653  653          nvme_free_dma_common(dma);
 654  654  }
 655  655  
 656  656  static int
 657  657  nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
 658  658      size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
 659  659  {
 660  660          if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
 661  661              &dma->nd_dmah) != DDI_SUCCESS) {
 662  662                  /*
 663  663                   * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
 664  664                   * the only other possible error is DDI_DMA_BADATTR which
 665  665                   * indicates a driver bug which should cause a panic.
 666  666                   */
 667  667                  dev_err(nvme->n_dip, CE_PANIC,
 668  668                      "!failed to get DMA handle, check DMA attributes");
 669  669                  return (DDI_FAILURE);
 670  670          }
 671  671  
 672  672          /*
 673  673           * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
 674  674           * or the flags are conflicting, which isn't the case here.
 675  675           */
 676  676          (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
 677  677              DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
 678  678              &dma->nd_len, &dma->nd_acch);
 679  679  
 680  680          if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
 681  681              dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
 682  682              &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
 683  683                  dev_err(nvme->n_dip, CE_WARN,
 684  684                      "!failed to bind DMA memory");
 685  685                  atomic_inc_32(&nvme->n_dma_bind_err);
 686  686                  nvme_free_dma_common(dma);
 687  687                  return (DDI_FAILURE);
 688  688          }
 689  689  
 690  690          return (DDI_SUCCESS);
 691  691  }
 692  692  
 693  693  static int
 694  694  nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
 695  695      ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
 696  696  {
 697  697          nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
 698  698  
 699  699          if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
 700  700              DDI_SUCCESS) {
 701  701                  *ret = NULL;
 702  702                  kmem_free(dma, sizeof (nvme_dma_t));
 703  703                  return (DDI_FAILURE);
 704  704          }
 705  705  
 706  706          bzero(dma->nd_memp, dma->nd_len);
 707  707  
 708  708          *ret = dma;
 709  709          return (DDI_SUCCESS);
 710  710  }
 711  711  
 712  712  /* ARGSUSED */
 713  713  static int
 714  714  nvme_prp_dma_constructor(void *buf, void *private, int flags)
 715  715  {
 716  716          nvme_dma_t *dma = (nvme_dma_t *)buf;
 717  717          nvme_t *nvme = (nvme_t *)private;
 718  718  
 719  719          dma->nd_dmah = NULL;
 720  720          dma->nd_acch = NULL;
 721  721  
 722  722          if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
 723  723              DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
 724  724                  return (-1);
 725  725          }
 726  726  
 727  727          ASSERT(dma->nd_ncookie == 1);
 728  728  
 729  729          dma->nd_cached = B_TRUE;
 730  730  
 731  731          return (0);
 732  732  }
 733  733  
 734  734  static int
 735  735  nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
 736  736      uint_t flags, nvme_dma_t **dma)
 737  737  {
 738  738          uint32_t len = nentry * qe_len;
 739  739          ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
 740  740  
 741  741          len = roundup(len, nvme->n_pagesize);
 742  742  
 743  743          q_dma_attr.dma_attr_minxfer = len;
 744  744  
 745  745          if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
 746  746              != DDI_SUCCESS) {
 747  747                  dev_err(nvme->n_dip, CE_WARN,
 748  748                      "!failed to get DMA memory for queue");
 749  749                  goto fail;
 750  750          }
 751  751  
 752  752          if ((*dma)->nd_ncookie != 1) {
 753  753                  dev_err(nvme->n_dip, CE_WARN,
 754  754                      "!got too many cookies for queue DMA");
 755  755                  goto fail;
 756  756          }
 757  757  
 758  758          return (DDI_SUCCESS);
 759  759  
 760  760  fail:
 761  761          if (*dma) {
 762  762                  nvme_free_dma(*dma);
 763  763                  *dma = NULL;
 764  764          }
 765  765  
 766  766          return (DDI_FAILURE);
 767  767  }
 768  768  
 769  769  static void
 770  770  nvme_free_qpair(nvme_qpair_t *qp)
 771  771  {
 772  772          int i;
 773  773  
 774  774          mutex_destroy(&qp->nq_mutex);
 775  775          sema_destroy(&qp->nq_sema);
 776  776  
 777  777          if (qp->nq_sqdma != NULL)
 778  778                  nvme_free_dma(qp->nq_sqdma);
 779  779          if (qp->nq_cqdma != NULL)
 780  780                  nvme_free_dma(qp->nq_cqdma);
 781  781  
 782  782          if (qp->nq_active_cmds > 0)
 783  783                  for (i = 0; i != qp->nq_nentry; i++)
 784  784                          if (qp->nq_cmd[i] != NULL)
 785  785                                  nvme_free_cmd(qp->nq_cmd[i]);
 786  786  
 787  787          if (qp->nq_cmd != NULL)
 788  788                  kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
 789  789  
 790  790          kmem_free(qp, sizeof (nvme_qpair_t));
 791  791  }
 792  792  
 793  793  static int
 794  794  nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
 795  795      int idx)
 796  796  {
 797  797          nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
 798  798  
 799  799          mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
 800  800              DDI_INTR_PRI(nvme->n_intr_pri));
 801  801          sema_init(&qp->nq_sema, nentry, NULL, SEMA_DRIVER, NULL);
 802  802  
 803  803          if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
 804  804              DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
 805  805                  goto fail;
 806  806  
 807  807          if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
 808  808              DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS)
 809  809                  goto fail;
 810  810  
 811  811          qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
 812  812          qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp;
 813  813          qp->nq_nentry = nentry;
 814  814  
 815  815          qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
 816  816          qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx);
 817  817  
 818  818          qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
 819  819          qp->nq_next_cmd = 0;
 820  820  
 821  821          *nqp = qp;
 822  822          return (DDI_SUCCESS);
 823  823  
 824  824  fail:
 825  825          nvme_free_qpair(qp);
 826  826          *nqp = NULL;
 827  827  
 828  828          return (DDI_FAILURE);
 829  829  }
 830  830  
 831  831  static nvme_cmd_t *
 832  832  nvme_alloc_cmd(nvme_t *nvme, int kmflag)
 833  833  {
 834  834          nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
 835  835  
 836  836          if (cmd == NULL)
 837  837                  return (cmd);
 838  838  
 839  839          bzero(cmd, sizeof (nvme_cmd_t));
 840  840  
 841  841          cmd->nc_nvme = nvme;
 842  842  
 843  843          mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
 844  844              DDI_INTR_PRI(nvme->n_intr_pri));
 845  845          cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
 846  846  
 847  847          return (cmd);
 848  848  }
 849  849  
 850  850  static void
 851  851  nvme_free_cmd(nvme_cmd_t *cmd)
 852  852  {
 853  853          /* Don't free commands on the lost commands list. */
 854  854          if (list_link_active(&cmd->nc_list))
 855  855                  return;
 856  856  
 857  857          if (cmd->nc_dma) {
 858  858                  if (cmd->nc_dma->nd_cached)
 859  859                          kmem_cache_free(cmd->nc_nvme->n_prp_cache,
 860  860                              cmd->nc_dma);
 861  861                  else
 862  862                          nvme_free_dma(cmd->nc_dma);
 863  863                  cmd->nc_dma = NULL;
 864  864          }
 865  865  
 866  866          cv_destroy(&cmd->nc_cv);
 867  867          mutex_destroy(&cmd->nc_mutex);
 868  868  
 869  869          kmem_cache_free(nvme_cmd_cache, cmd);
 870  870  }
 871  871  
 872  872  static void
 873  873  nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
 874  874  {
 875  875          sema_p(&qp->nq_sema);
 876  876          nvme_submit_cmd_common(qp, cmd);
 877  877  }
 878  878  
 879  879  static int
 880  880  nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
 881  881  {
 882  882          if (sema_tryp(&qp->nq_sema) == 0)
 883  883                  return (EAGAIN);
 884  884  
 885  885          nvme_submit_cmd_common(qp, cmd);
 886  886          return (0);
 887  887  }
 888  888  
 889  889  static void
 890  890  nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd)
 891  891  {
 892  892          nvme_reg_sqtdbl_t tail = { 0 };
 893  893  
 894  894          mutex_enter(&qp->nq_mutex);
 895  895          cmd->nc_completed = B_FALSE;
 896  896  
 897  897          /*
 898  898           * Try to insert the cmd into the active cmd array at the nq_next_cmd
 899  899           * slot. If the slot is already occupied advance to the next slot and
 900  900           * try again. This can happen for long running commands like async event
 901  901           * requests.
 902  902           */
 903  903          while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
 904  904                  qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
 905  905          qp->nq_cmd[qp->nq_next_cmd] = cmd;
 906  906  
 907  907          qp->nq_active_cmds++;
 908  908  
 909  909          cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
 910  910          bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
 911  911          (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
 912  912              sizeof (nvme_sqe_t) * qp->nq_sqtail,
 913  913              sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
 914  914          qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
 915  915  
 916  916          tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
 917  917          nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
 918  918  
 919  919          mutex_exit(&qp->nq_mutex);
 920  920  }
 921  921  
 922  922  static nvme_cmd_t *
 923  923  nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid)
 924  924  {
 925  925          nvme_cmd_t *cmd;
 926  926  
 927  927          ASSERT(mutex_owned(&qp->nq_mutex));
 928  928          ASSERT3S(cid, <, qp->nq_nentry);
 929  929  
 930  930          cmd = qp->nq_cmd[cid];
 931  931          qp->nq_cmd[cid] = NULL;
 932  932          ASSERT3U(qp->nq_active_cmds, >, 0);
 933  933          qp->nq_active_cmds--;
 934  934          sema_v(&qp->nq_sema);
 935  935  
 936  936          ASSERT3P(cmd, !=, NULL);
 937  937          ASSERT3P(cmd->nc_nvme, ==, nvme);
 938  938          ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid);
 939  939  
 940  940          return (cmd);
 941  941  }
 942  942  
 943  943  static nvme_cmd_t *
 944  944  nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
 945  945  {
 946  946          nvme_reg_cqhdbl_t head = { 0 };
 947  947  
 948  948          nvme_cqe_t *cqe;
 949  949          nvme_cmd_t *cmd;
 950  950  
 951  951          (void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0,
 952  952              sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL);
 953  953  
 954  954          mutex_enter(&qp->nq_mutex);
 955  955          cqe = &qp->nq_cq[qp->nq_cqhead];
 956  956  
 957  957          /* Check phase tag of CQE. Hardware inverts it for new entries. */
 958  958          if (cqe->cqe_sf.sf_p == qp->nq_phase) {
 959  959                  mutex_exit(&qp->nq_mutex);
 960  960                  return (NULL);
 961  961          }
 962  962  
 963  963          ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp);
 964  964  
 965  965          cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid);
 966  966  
 967  967          ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
 968  968          bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
 969  969  
 970  970          qp->nq_sqhead = cqe->cqe_sqhd;
 971  971  
 972  972          head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry;
 973  973  
 974  974          /* Toggle phase on wrap-around. */
 975  975          if (qp->nq_cqhead == 0)
 976  976                  qp->nq_phase = qp->nq_phase ? 0 : 1;
 977  977  
 978  978          nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r);
 979  979          mutex_exit(&qp->nq_mutex);
 980  980  
 981  981          return (cmd);
 982  982  }
 983  983  
 984  984  static int
 985  985  nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
 986  986  {
 987  987          nvme_cqe_t *cqe = &cmd->nc_cqe;
 988  988  
 989  989          dev_err(cmd->nc_nvme->n_dip, CE_WARN,
 990  990              "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
 991  991              "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
 992  992              cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
 993  993              cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
 994  994  
 995  995          if (cmd->nc_xfer != NULL)
 996  996                  bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
 997  997  
 998  998          if (cmd->nc_nvme->n_strict_version) {
 999  999                  cmd->nc_nvme->n_dead = B_TRUE;
1000 1000                  ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1001 1001          }
1002 1002  
1003 1003          return (EIO);
1004 1004  }
1005 1005  
1006 1006  static int
1007 1007  nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
1008 1008  {
1009 1009          nvme_cqe_t *cqe = &cmd->nc_cqe;
1010 1010  
1011 1011          dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1012 1012              "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1013 1013              "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1014 1014              cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1015 1015              cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1016 1016          if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
1017 1017                  cmd->nc_nvme->n_dead = B_TRUE;
1018 1018                  ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1019 1019          }
1020 1020  
1021 1021          return (EIO);
1022 1022  }
1023 1023  
1024 1024  static int
1025 1025  nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
1026 1026  {
1027 1027          nvme_cqe_t *cqe = &cmd->nc_cqe;
1028 1028  
1029 1029          switch (cqe->cqe_sf.sf_sc) {
1030 1030          case NVME_CQE_SC_INT_NVM_WRITE:
1031 1031                  /* write fail */
1032 1032                  /* TODO: post ereport */
1033 1033                  if (cmd->nc_xfer != NULL)
1034 1034                          bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1035 1035                  return (EIO);
1036 1036  
1037 1037          case NVME_CQE_SC_INT_NVM_READ:
1038 1038                  /* read fail */
1039 1039                  /* TODO: post ereport */
1040 1040                  if (cmd->nc_xfer != NULL)
1041 1041                          bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1042 1042                  return (EIO);
1043 1043  
1044 1044          default:
1045 1045                  return (nvme_check_unknown_cmd_status(cmd));
1046 1046          }
1047 1047  }
1048 1048  
1049 1049  static int
1050 1050  nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
1051 1051  {
1052 1052          nvme_cqe_t *cqe = &cmd->nc_cqe;
1053 1053  
1054 1054          switch (cqe->cqe_sf.sf_sc) {
1055 1055          case NVME_CQE_SC_GEN_SUCCESS:
1056 1056                  return (0);
1057 1057  
1058 1058          /*
1059 1059           * Errors indicating a bug in the driver should cause a panic.
1060 1060           */
1061 1061          case NVME_CQE_SC_GEN_INV_OPC:
1062 1062                  /* Invalid Command Opcode */
1063 1063                  if (!cmd->nc_dontpanic)
1064 1064                          dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1065 1065                              "programming error: invalid opcode in cmd %p",
1066 1066                              (void *)cmd);
1067 1067                  return (EINVAL);
1068 1068  
1069 1069          case NVME_CQE_SC_GEN_INV_FLD:
1070 1070                  /* Invalid Field in Command */
1071 1071                  if (!cmd->nc_dontpanic)
1072 1072                          dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1073 1073                              "programming error: invalid field in cmd %p",
1074 1074                              (void *)cmd);
1075 1075                  return (EIO);
1076 1076  
1077 1077          case NVME_CQE_SC_GEN_ID_CNFL:
1078 1078                  /* Command ID Conflict */
1079 1079                  dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1080 1080                      "cmd ID conflict in cmd %p", (void *)cmd);
1081 1081                  return (0);
1082 1082  
1083 1083          case NVME_CQE_SC_GEN_INV_NS:
1084 1084                  /* Invalid Namespace or Format */
1085 1085                  if (!cmd->nc_dontpanic)
1086 1086                          dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1087 1087                              "programming error: invalid NS/format in cmd %p",
1088 1088                              (void *)cmd);
1089 1089                  return (EINVAL);
1090 1090  
1091 1091          case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
1092 1092                  /* LBA Out Of Range */
1093 1093                  dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1094 1094                      "LBA out of range in cmd %p", (void *)cmd);
1095 1095                  return (0);
1096 1096  
1097 1097          /*
1098 1098           * Non-fatal errors, handle gracefully.
1099 1099           */
1100 1100          case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1101 1101                  /* Data Transfer Error (DMA) */
1102 1102                  /* TODO: post ereport */
1103 1103                  atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1104 1104                  if (cmd->nc_xfer != NULL)
1105 1105                          bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1106 1106                  return (EIO);
1107 1107  
1108 1108          case NVME_CQE_SC_GEN_INTERNAL_ERR:
1109 1109                  /*
1110 1110                   * Internal Error. The spec (v1.0, section 4.5.1.2) says
1111 1111                   * detailed error information is returned as async event,
1112 1112                   * so we pretty much ignore the error here and handle it
1113 1113                   * in the async event handler.
1114 1114                   */
1115 1115                  atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1116 1116                  if (cmd->nc_xfer != NULL)
1117 1117                          bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1118 1118                  return (EIO);
1119 1119  
1120 1120          case NVME_CQE_SC_GEN_ABORT_REQUEST:
1121 1121                  /*
1122 1122                   * Command Abort Requested. This normally happens only when a
1123 1123                   * command times out.
1124 1124                   */
1125 1125                  /* TODO: post ereport or change blkdev to handle this? */
1126 1126                  atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1127 1127                  return (ECANCELED);
1128 1128  
1129 1129          case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1130 1130                  /* Command Aborted due to Power Loss Notification */
1131 1131                  ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1132 1132                  cmd->nc_nvme->n_dead = B_TRUE;
1133 1133                  return (EIO);
1134 1134  
1135 1135          case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1136 1136                  /* Command Aborted due to SQ Deletion */
1137 1137                  atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1138 1138                  return (EIO);
1139 1139  
1140 1140          case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1141 1141                  /* Capacity Exceeded */
1142 1142                  atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1143 1143                  if (cmd->nc_xfer != NULL)
1144 1144                          bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1145 1145                  return (EIO);
1146 1146  
1147 1147          case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1148 1148                  /* Namespace Not Ready */
1149 1149                  atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1150 1150                  if (cmd->nc_xfer != NULL)
1151 1151                          bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1152 1152                  return (EIO);
1153 1153  
1154 1154          default:
1155 1155                  return (nvme_check_unknown_cmd_status(cmd));
1156 1156          }
1157 1157  }
1158 1158  
1159 1159  static int
1160 1160  nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1161 1161  {
1162 1162          nvme_cqe_t *cqe = &cmd->nc_cqe;
1163 1163  
1164 1164          switch (cqe->cqe_sf.sf_sc) {
1165 1165          case NVME_CQE_SC_SPC_INV_CQ:
1166 1166                  /* Completion Queue Invalid */
1167 1167                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1168 1168                  atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1169 1169                  return (EINVAL);
1170 1170  
1171 1171          case NVME_CQE_SC_SPC_INV_QID:
1172 1172                  /* Invalid Queue Identifier */
1173 1173                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1174 1174                      cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1175 1175                      cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1176 1176                      cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1177 1177                  atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1178 1178                  return (EINVAL);
1179 1179  
1180 1180          case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1181 1181                  /* Max Queue Size Exceeded */
1182 1182                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1183 1183                      cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1184 1184                  atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1185 1185                  return (EINVAL);
1186 1186  
1187 1187          case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1188 1188                  /* Abort Command Limit Exceeded */
1189 1189                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1190 1190                  dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1191 1191                      "abort command limit exceeded in cmd %p", (void *)cmd);
1192 1192                  return (0);
1193 1193  
1194 1194          case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1195 1195                  /* Async Event Request Limit Exceeded */
1196 1196                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1197 1197                  dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1198 1198                      "async event request limit exceeded in cmd %p",
1199 1199                      (void *)cmd);
1200 1200                  return (0);
1201 1201  
1202 1202          case NVME_CQE_SC_SPC_INV_INT_VECT:
1203 1203                  /* Invalid Interrupt Vector */
1204 1204                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1205 1205                  atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1206 1206                  return (EINVAL);
1207 1207  
1208 1208          case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1209 1209                  /* Invalid Log Page */
1210 1210                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1211 1211                  atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1212 1212                  return (EINVAL);
1213 1213  
1214 1214          case NVME_CQE_SC_SPC_INV_FORMAT:
1215 1215                  /* Invalid Format */
1216 1216                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1217 1217                  atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1218 1218                  if (cmd->nc_xfer != NULL)
1219 1219                          bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1220 1220                  return (EINVAL);
1221 1221  
1222 1222          case NVME_CQE_SC_SPC_INV_Q_DEL:
1223 1223                  /* Invalid Queue Deletion */
1224 1224                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1225 1225                  atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1226 1226                  return (EINVAL);
1227 1227  
1228 1228          case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1229 1229                  /* Conflicting Attributes */
1230 1230                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1231 1231                      cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1232 1232                      cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1233 1233                  atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1234 1234                  if (cmd->nc_xfer != NULL)
1235 1235                          bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1236 1236                  return (EINVAL);
1237 1237  
1238 1238          case NVME_CQE_SC_SPC_NVM_INV_PROT:
1239 1239                  /* Invalid Protection Information */
1240 1240                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1241 1241                      cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1242 1242                      cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1243 1243                  atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1244 1244                  if (cmd->nc_xfer != NULL)
1245 1245                          bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1246 1246                  return (EINVAL);
1247 1247  
1248 1248          case NVME_CQE_SC_SPC_NVM_READONLY:
1249 1249                  /* Write to Read Only Range */
1250 1250                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1251 1251                  atomic_inc_32(&cmd->nc_nvme->n_readonly);
1252 1252                  if (cmd->nc_xfer != NULL)
1253 1253                          bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1254 1254                  return (EROFS);
1255 1255  
1256 1256          default:
1257 1257                  return (nvme_check_unknown_cmd_status(cmd));
1258 1258          }
1259 1259  }
1260 1260  
1261 1261  static inline int
1262 1262  nvme_check_cmd_status(nvme_cmd_t *cmd)
1263 1263  {
1264 1264          nvme_cqe_t *cqe = &cmd->nc_cqe;
1265 1265  
1266 1266          /*
1267 1267           * Take a shortcut if the controller is dead, or if
1268 1268           * command status indicates no error.
1269 1269           */
1270 1270          if (cmd->nc_nvme->n_dead)
1271 1271                  return (EIO);
1272 1272  
1273 1273          if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1274 1274              cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1275 1275                  return (0);
1276 1276  
1277 1277          if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1278 1278                  return (nvme_check_generic_cmd_status(cmd));
1279 1279          else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1280 1280                  return (nvme_check_specific_cmd_status(cmd));
1281 1281          else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1282 1282                  return (nvme_check_integrity_cmd_status(cmd));
1283 1283          else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1284 1284                  return (nvme_check_vendor_cmd_status(cmd));
1285 1285  
1286 1286          return (nvme_check_unknown_cmd_status(cmd));
1287 1287  }
1288 1288  
1289 1289  static int
1290 1290  nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec)
1291 1291  {
1292 1292          nvme_t *nvme = abort_cmd->nc_nvme;
1293 1293          nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1294 1294          nvme_abort_cmd_t ac = { 0 };
1295 1295          int ret = 0;
1296 1296  
1297 1297          sema_p(&nvme->n_abort_sema);
1298 1298  
1299 1299          ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1300 1300          ac.b.ac_sqid = abort_cmd->nc_sqid;
1301 1301  
1302 1302          cmd->nc_sqid = 0;
1303 1303          cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1304 1304          cmd->nc_callback = nvme_wakeup_cmd;
1305 1305          cmd->nc_sqe.sqe_cdw10 = ac.r;
1306 1306  
1307 1307          /*
1308 1308           * Send the ABORT to the hardware. The ABORT command will return _after_
1309 1309           * the aborted command has completed (aborted or otherwise), but since
1310 1310           * we still hold the aborted command's mutex its callback hasn't been
1311 1311           * processed yet.
1312 1312           */
1313 1313          nvme_admin_cmd(cmd, sec);
1314 1314          sema_v(&nvme->n_abort_sema);
1315 1315  
1316 1316          if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1317 1317                  dev_err(nvme->n_dip, CE_WARN,
1318 1318                      "!ABORT failed with sct = %x, sc = %x",
1319 1319                      cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1320 1320                  atomic_inc_32(&nvme->n_abort_failed);
1321 1321          } else {
1322 1322                  dev_err(nvme->n_dip, CE_WARN,
1323 1323                      "!ABORT of command %d/%d %ssuccessful",
1324 1324                      abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid,
1325 1325                      cmd->nc_cqe.cqe_dw0 & 1 ? "un" : "");
1326 1326                  if ((cmd->nc_cqe.cqe_dw0 & 1) == 0)
1327 1327                          atomic_inc_32(&nvme->n_cmd_aborted);
1328 1328          }
1329 1329  
1330 1330          nvme_free_cmd(cmd);
1331 1331          return (ret);
1332 1332  }
1333 1333  
1334 1334  /*
1335 1335   * nvme_wait_cmd -- wait for command completion or timeout
1336 1336   *
1337 1337   * In case of a serious error or a timeout of the abort command the hardware
1338 1338   * will be declared dead and FMA will be notified.
1339 1339   */
1340 1340  static void
1341 1341  nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1342 1342  {
1343 1343          clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1344 1344          nvme_t *nvme = cmd->nc_nvme;
1345 1345          nvme_reg_csts_t csts;
1346 1346          nvme_qpair_t *qp;
1347 1347  
1348 1348          ASSERT(mutex_owned(&cmd->nc_mutex));
1349 1349  
1350 1350          while (!cmd->nc_completed) {
1351 1351                  if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1352 1352                          break;
1353 1353          }
1354 1354  
1355 1355          if (cmd->nc_completed)
1356 1356                  return;
1357 1357  
1358 1358          /*
1359 1359           * The command timed out.
1360 1360           *
1361 1361           * Check controller for fatal status, any errors associated with the
1362 1362           * register or DMA handle, or for a double timeout (abort command timed
1363 1363           * out). If necessary log a warning and call FMA.
1364 1364           */
1365 1365          csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1366 1366          dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, "
1367 1367              "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
1368 1368              cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1369 1369          atomic_inc_32(&nvme->n_cmd_timeout);
1370 1370  
1371 1371          if (csts.b.csts_cfs ||
1372 1372              nvme_check_regs_hdl(nvme) ||
1373 1373              nvme_check_dma_hdl(cmd->nc_dma) ||
1374 1374              cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1375 1375                  ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1376 1376                  nvme->n_dead = B_TRUE;
1377 1377          } else if (nvme_abort_cmd(cmd, sec) == 0) {
1378 1378                  /*
1379 1379                   * If the abort succeeded the command should complete
1380 1380                   * immediately with an appropriate status.
1381 1381                   */
1382 1382                  while (!cmd->nc_completed)
1383 1383                          cv_wait(&cmd->nc_cv, &cmd->nc_mutex);
1384 1384  
1385 1385                  return;
1386 1386          }
1387 1387  
1388 1388          qp = nvme->n_ioq[cmd->nc_sqid];
1389 1389  
1390 1390          mutex_enter(&qp->nq_mutex);
1391 1391          (void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
1392 1392          mutex_exit(&qp->nq_mutex);
1393 1393  
1394 1394          /*
1395 1395           * As we don't know what the presumed dead hardware might still do with
1396 1396           * the DMA memory, we'll put the command on the lost commands list if it
1397 1397           * has any DMA memory.
1398 1398           */
1399 1399          if (cmd->nc_dma != NULL) {
1400 1400                  mutex_enter(&nvme_lc_mutex);
1401 1401                  list_insert_head(&nvme_lost_cmds, cmd);
1402 1402                  mutex_exit(&nvme_lc_mutex);
1403 1403          }
1404 1404  }
1405 1405  
1406 1406  static void
1407 1407  nvme_wakeup_cmd(void *arg)
1408 1408  {
1409 1409          nvme_cmd_t *cmd = arg;
1410 1410  
1411 1411          mutex_enter(&cmd->nc_mutex);
1412 1412          cmd->nc_completed = B_TRUE;
1413 1413          cv_signal(&cmd->nc_cv);
1414 1414          mutex_exit(&cmd->nc_mutex);
1415 1415  }
1416 1416  
1417 1417  static void
1418 1418  nvme_async_event_task(void *arg)
1419 1419  {
1420 1420          nvme_cmd_t *cmd = arg;
1421 1421          nvme_t *nvme = cmd->nc_nvme;
1422 1422          nvme_error_log_entry_t *error_log = NULL;
1423 1423          nvme_health_log_t *health_log = NULL;
1424 1424          size_t logsize = 0;
1425 1425          nvme_async_event_t event;
1426 1426  
1427 1427          /*
1428 1428           * Check for errors associated with the async request itself. The only
1429 1429           * command-specific error is "async event limit exceeded", which
1430 1430           * indicates a programming error in the driver and causes a panic in
1431 1431           * nvme_check_cmd_status().
1432 1432           *
1433 1433           * Other possible errors are various scenarios where the async request
1434 1434           * was aborted, or internal errors in the device. Internal errors are
1435 1435           * reported to FMA, the command aborts need no special handling here.
1436 1436           *
1437 1437           * And finally, at least qemu nvme does not support async events,
1438 1438           * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we
1439 1439           * will avoid posting async events.
1440 1440           */
1441 1441  
1442 1442          if (nvme_check_cmd_status(cmd) != 0) {
1443 1443                  dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1444 1444                      "!async event request returned failure, sct = %x, "
1445 1445                      "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1446 1446                      cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1447 1447                      cmd->nc_cqe.cqe_sf.sf_m);
1448 1448  
1449 1449                  if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1450 1450                      cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1451 1451                          cmd->nc_nvme->n_dead = B_TRUE;
1452 1452                          ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1453 1453                              DDI_SERVICE_LOST);
1454 1454                  }
1455 1455  
1456 1456                  if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1457 1457                      cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC &&
1458 1458                      cmd->nc_cqe.cqe_sf.sf_dnr == 1) {
1459 1459                          nvme->n_async_event_supported = B_FALSE;
1460 1460                  }
1461 1461  
1462 1462                  nvme_free_cmd(cmd);
1463 1463                  return;
1464 1464          }
1465 1465  
1466 1466  
1467 1467          event.r = cmd->nc_cqe.cqe_dw0;
1468 1468  
1469 1469          /* Clear CQE and re-submit the async request. */
1470 1470          bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1471 1471          nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1472 1472  
1473 1473          switch (event.b.ae_type) {
1474 1474          case NVME_ASYNC_TYPE_ERROR:
1475 1475                  if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1476 1476                          (void) nvme_get_logpage(nvme, (void **)&error_log,
1477 1477                              &logsize, event.b.ae_logpage);
1478 1478                  } else {
1479 1479                          dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1480 1480                              "async event reply: %d", event.b.ae_logpage);
1481 1481                          atomic_inc_32(&nvme->n_wrong_logpage);
1482 1482                  }
1483 1483  
1484 1484                  switch (event.b.ae_info) {
1485 1485                  case NVME_ASYNC_ERROR_INV_SQ:
1486 1486                          dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1487 1487                              "invalid submission queue");
1488 1488                          return;
1489 1489  
1490 1490                  case NVME_ASYNC_ERROR_INV_DBL:
1491 1491                          dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1492 1492                              "invalid doorbell write value");
1493 1493                          return;
1494 1494  
1495 1495                  case NVME_ASYNC_ERROR_DIAGFAIL:
1496 1496                          dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1497 1497                          ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1498 1498                          nvme->n_dead = B_TRUE;
1499 1499                          atomic_inc_32(&nvme->n_diagfail_event);
1500 1500                          break;
1501 1501  
1502 1502                  case NVME_ASYNC_ERROR_PERSISTENT:
1503 1503                          dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1504 1504                              "device error");
1505 1505                          ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1506 1506                          nvme->n_dead = B_TRUE;
1507 1507                          atomic_inc_32(&nvme->n_persistent_event);
1508 1508                          break;
1509 1509  
1510 1510                  case NVME_ASYNC_ERROR_TRANSIENT:
1511 1511                          dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1512 1512                              "device error");
1513 1513                          /* TODO: send ereport */
1514 1514                          atomic_inc_32(&nvme->n_transient_event);
1515 1515                          break;
1516 1516  
1517 1517                  case NVME_ASYNC_ERROR_FW_LOAD:
1518 1518                          dev_err(nvme->n_dip, CE_WARN,
1519 1519                              "!firmware image load error");
1520 1520                          atomic_inc_32(&nvme->n_fw_load_event);
1521 1521                          break;
1522 1522                  }
1523 1523                  break;
1524 1524  
1525 1525          case NVME_ASYNC_TYPE_HEALTH:
1526 1526                  if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1527 1527                          (void) nvme_get_logpage(nvme, (void **)&health_log,
1528 1528                              &logsize, event.b.ae_logpage, -1);
1529 1529                  } else {
1530 1530                          dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1531 1531                              "async event reply: %d", event.b.ae_logpage);
1532 1532                          atomic_inc_32(&nvme->n_wrong_logpage);
1533 1533                  }
1534 1534  
1535 1535                  switch (event.b.ae_info) {
1536 1536                  case NVME_ASYNC_HEALTH_RELIABILITY:
1537 1537                          dev_err(nvme->n_dip, CE_WARN,
1538 1538                              "!device reliability compromised");
1539 1539                          /* TODO: send ereport */
1540 1540                          atomic_inc_32(&nvme->n_reliability_event);
1541 1541                          break;
1542 1542  
1543 1543                  case NVME_ASYNC_HEALTH_TEMPERATURE:
1544 1544                          dev_err(nvme->n_dip, CE_WARN,
1545 1545                              "!temperature above threshold");
1546 1546                          /* TODO: send ereport */
1547 1547                          atomic_inc_32(&nvme->n_temperature_event);
1548 1548                          break;
1549 1549  
1550 1550                  case NVME_ASYNC_HEALTH_SPARE:
1551 1551                          dev_err(nvme->n_dip, CE_WARN,
1552 1552                              "!spare space below threshold");
1553 1553                          /* TODO: send ereport */
1554 1554                          atomic_inc_32(&nvme->n_spare_event);
1555 1555                          break;
1556 1556                  }
1557 1557                  break;
1558 1558  
1559 1559          case NVME_ASYNC_TYPE_VENDOR:
1560 1560                  dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1561 1561                      "received, info = %x, logpage = %x", event.b.ae_info,
1562 1562                      event.b.ae_logpage);
1563 1563                  atomic_inc_32(&nvme->n_vendor_event);
1564 1564                  break;
1565 1565  
1566 1566          default:
1567 1567                  dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1568 1568                      "type = %x, info = %x, logpage = %x", event.b.ae_type,
1569 1569                      event.b.ae_info, event.b.ae_logpage);
1570 1570                  atomic_inc_32(&nvme->n_unknown_event);
1571 1571                  break;
1572 1572          }
1573 1573  
1574 1574          if (error_log)
1575 1575                  kmem_free(error_log, logsize);
1576 1576  
1577 1577          if (health_log)
1578 1578                  kmem_free(health_log, logsize);
1579 1579  }
1580 1580  
1581 1581  static void
1582 1582  nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1583 1583  {
1584 1584          mutex_enter(&cmd->nc_mutex);
1585 1585          nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd);
1586 1586          nvme_wait_cmd(cmd, sec);
1587 1587          mutex_exit(&cmd->nc_mutex);
1588 1588  }
1589 1589  
1590 1590  static void
1591 1591  nvme_async_event(nvme_t *nvme)
1592 1592  {
1593 1593          nvme_cmd_t *cmd;
1594 1594  
1595 1595          cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1596 1596          cmd->nc_sqid = 0;
1597 1597          cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1598 1598          cmd->nc_callback = nvme_async_event_task;
1599 1599          cmd->nc_dontpanic = B_TRUE;
1600 1600  
1601 1601          nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1602 1602  }
1603 1603  
1604 1604  static int
1605 1605  nvme_format_nvm(nvme_t *nvme, uint32_t nsid, uint8_t lbaf, boolean_t ms,
1606 1606      uint8_t pi, boolean_t pil, uint8_t ses)
1607 1607  {
1608 1608          nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1609 1609          nvme_format_nvm_t format_nvm = { 0 };
1610 1610          int ret;
1611 1611  
1612 1612          format_nvm.b.fm_lbaf = lbaf & 0xf;
1613 1613          format_nvm.b.fm_ms = ms ? 1 : 0;
1614 1614          format_nvm.b.fm_pi = pi & 0x7;
1615 1615          format_nvm.b.fm_pil = pil ? 1 : 0;
1616 1616          format_nvm.b.fm_ses = ses & 0x7;
1617 1617  
1618 1618          cmd->nc_sqid = 0;
1619 1619          cmd->nc_callback = nvme_wakeup_cmd;
1620 1620          cmd->nc_sqe.sqe_nsid = nsid;
1621 1621          cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
1622 1622          cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
1623 1623  
1624 1624          /*
1625 1625           * Some devices like Samsung SM951 don't allow formatting of all
1626 1626           * namespaces in one command. Handle that gracefully.
1627 1627           */
1628 1628          if (nsid == (uint32_t)-1)
1629 1629                  cmd->nc_dontpanic = B_TRUE;
1630 1630  
1631 1631          nvme_admin_cmd(cmd, nvme_format_cmd_timeout);
1632 1632  
1633 1633          if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1634 1634                  dev_err(nvme->n_dip, CE_WARN,
1635 1635                      "!FORMAT failed with sct = %x, sc = %x",
1636 1636                      cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1637 1637          }
1638 1638  
1639 1639          nvme_free_cmd(cmd);
1640 1640          return (ret);
1641 1641  }
1642 1642  
1643 1643  static int
1644 1644  nvme_get_logpage(nvme_t *nvme, void **buf, size_t *bufsize, uint8_t logpage,
1645 1645      ...)
1646 1646  {
1647 1647          nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1648 1648          nvme_getlogpage_t getlogpage = { 0 };
1649 1649          va_list ap;
1650 1650          int ret;
1651 1651  
1652 1652          va_start(ap, logpage);
1653 1653  
1654 1654          cmd->nc_sqid = 0;
1655 1655          cmd->nc_callback = nvme_wakeup_cmd;
1656 1656          cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1657 1657  
1658 1658          getlogpage.b.lp_lid = logpage;
1659 1659  
1660 1660          switch (logpage) {
1661 1661          case NVME_LOGPAGE_ERROR:
1662 1662                  cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1663 1663                  /*
1664 1664                   * The GET LOG PAGE command can use at most 2 pages to return
1665 1665                   * data, PRP lists are not supported.
1666 1666                   */
1667 1667                  *bufsize = MIN(2 * nvme->n_pagesize,
1668 1668                      nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
1669 1669                  break;
1670 1670  
1671 1671          case NVME_LOGPAGE_HEALTH:
1672 1672                  cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1673 1673                  *bufsize = sizeof (nvme_health_log_t);
1674 1674                  break;
1675 1675  
1676 1676          case NVME_LOGPAGE_FWSLOT:
1677 1677                  cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1678 1678                  *bufsize = sizeof (nvme_fwslot_log_t);
1679 1679                  break;
1680 1680  
1681 1681          default:
1682 1682                  dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1683 1683                      logpage);
1684 1684                  atomic_inc_32(&nvme->n_unknown_logpage);
1685 1685                  ret = EINVAL;
1686 1686                  goto fail;
1687 1687          }
1688 1688  
1689 1689          va_end(ap);
1690 1690  
1691 1691          getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
1692 1692  
1693 1693          cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1694 1694  
1695 1695          if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t),
1696 1696              DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1697 1697                  dev_err(nvme->n_dip, CE_WARN,
1698 1698                      "!nvme_zalloc_dma failed for GET LOG PAGE");
1699 1699                  ret = ENOMEM;
1700 1700                  goto fail;
1701 1701          }
1702 1702  
1703 1703          if (cmd->nc_dma->nd_ncookie > 2) {
1704 1704                  dev_err(nvme->n_dip, CE_WARN,
1705 1705                      "!too many DMA cookies for GET LOG PAGE");
1706 1706                  atomic_inc_32(&nvme->n_too_many_cookies);
1707 1707                  ret = ENOMEM;
1708 1708                  goto fail;
1709 1709          }
1710 1710  
1711 1711          cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1712 1712          if (cmd->nc_dma->nd_ncookie > 1) {
1713 1713                  ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1714 1714                      &cmd->nc_dma->nd_cookie);
1715 1715                  cmd->nc_sqe.sqe_dptr.d_prp[1] =
1716 1716                      cmd->nc_dma->nd_cookie.dmac_laddress;
1717 1717          }
1718 1718  
1719 1719          nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1720 1720  
1721 1721          if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1722 1722                  dev_err(nvme->n_dip, CE_WARN,
1723 1723                      "!GET LOG PAGE failed with sct = %x, sc = %x",
1724 1724                      cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1725 1725                  goto fail;
1726 1726          }
1727 1727  
1728 1728          *buf = kmem_alloc(*bufsize, KM_SLEEP);
1729 1729          bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1730 1730  
1731 1731  fail:
1732 1732          nvme_free_cmd(cmd);
1733 1733  
1734 1734          return (ret);
1735 1735  }
1736 1736  
1737 1737  static int
1738 1738  nvme_identify(nvme_t *nvme, uint32_t nsid, void **buf)
1739 1739  {
1740 1740          nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1741 1741          int ret;
1742 1742  
1743 1743          if (buf == NULL)
1744 1744                  return (EINVAL);
1745 1745  
1746 1746          cmd->nc_sqid = 0;
1747 1747          cmd->nc_callback = nvme_wakeup_cmd;
1748 1748          cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
1749 1749          cmd->nc_sqe.sqe_nsid = nsid;
1750 1750          cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
1751 1751  
1752 1752          if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
1753 1753              &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1754 1754                  dev_err(nvme->n_dip, CE_WARN,
1755 1755                      "!nvme_zalloc_dma failed for IDENTIFY");
1756 1756                  ret = ENOMEM;
1757 1757                  goto fail;
1758 1758          }
1759 1759  
1760 1760          if (cmd->nc_dma->nd_ncookie > 2) {
1761 1761                  dev_err(nvme->n_dip, CE_WARN,
1762 1762                      "!too many DMA cookies for IDENTIFY");
1763 1763                  atomic_inc_32(&nvme->n_too_many_cookies);
1764 1764                  ret = ENOMEM;
1765 1765                  goto fail;
1766 1766          }
1767 1767  
1768 1768          cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1769 1769          if (cmd->nc_dma->nd_ncookie > 1) {
1770 1770                  ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1771 1771                      &cmd->nc_dma->nd_cookie);
1772 1772                  cmd->nc_sqe.sqe_dptr.d_prp[1] =
1773 1773                      cmd->nc_dma->nd_cookie.dmac_laddress;
1774 1774          }
1775 1775  
1776 1776          nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1777 1777  
1778 1778          if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1779 1779                  dev_err(nvme->n_dip, CE_WARN,
1780 1780                      "!IDENTIFY failed with sct = %x, sc = %x",
1781 1781                      cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1782 1782                  goto fail;
1783 1783          }
1784 1784  
1785 1785          *buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
1786 1786          bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE);
1787 1787  
1788 1788  fail:
1789 1789          nvme_free_cmd(cmd);
1790 1790  
1791 1791          return (ret);
1792 1792  }
1793 1793  
1794 1794  static int
1795 1795  nvme_set_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t val,
1796 1796      uint32_t *res)
1797 1797  {
1798 1798          _NOTE(ARGUNUSED(nsid));
1799 1799          nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1800 1800          int ret = EINVAL;
1801 1801  
1802 1802          ASSERT(res != NULL);
1803 1803  
1804 1804          cmd->nc_sqid = 0;
1805 1805          cmd->nc_callback = nvme_wakeup_cmd;
1806 1806          cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
1807 1807          cmd->nc_sqe.sqe_cdw10 = feature;
1808 1808          cmd->nc_sqe.sqe_cdw11 = val;
1809 1809  
1810 1810          switch (feature) {
1811 1811          case NVME_FEAT_WRITE_CACHE:
1812 1812                  if (!nvme->n_write_cache_present)
1813 1813                          goto fail;
1814 1814                  break;
1815 1815  
1816 1816          case NVME_FEAT_NQUEUES:
1817 1817                  break;
1818 1818  
1819 1819          default:
1820 1820                  goto fail;
1821 1821          }
1822 1822  
1823 1823          nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1824 1824  
1825 1825          if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1826 1826                  dev_err(nvme->n_dip, CE_WARN,
1827 1827                      "!SET FEATURES %d failed with sct = %x, sc = %x",
1828 1828                      feature, cmd->nc_cqe.cqe_sf.sf_sct,
1829 1829                      cmd->nc_cqe.cqe_sf.sf_sc);
1830 1830                  goto fail;
1831 1831          }
1832 1832  
1833 1833          *res = cmd->nc_cqe.cqe_dw0;
1834 1834  
1835 1835  fail:
1836 1836          nvme_free_cmd(cmd);
1837 1837          return (ret);
1838 1838  }
1839 1839  
1840 1840  static int
1841 1841  nvme_get_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t *res,
1842 1842      void **buf, size_t *bufsize)
1843 1843  {
1844 1844          nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1845 1845          int ret = EINVAL;
1846 1846  
1847 1847          ASSERT(res != NULL);
1848 1848  
1849 1849          if (bufsize != NULL)
1850 1850                  *bufsize = 0;
1851 1851  
1852 1852          cmd->nc_sqid = 0;
1853 1853          cmd->nc_callback = nvme_wakeup_cmd;
1854 1854          cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
1855 1855          cmd->nc_sqe.sqe_cdw10 = feature;
1856 1856          cmd->nc_sqe.sqe_cdw11 = *res;
1857 1857  
1858 1858          /*
  
    | ↓ open down ↓ | 1858 lines elided | ↑ open up ↑ | 
1859 1859           * For some of the optional features there doesn't seem to be a method
1860 1860           * of detecting whether it is supported other than using it.  This will
1861 1861           * cause "Invalid Field in Command" error, which is normally considered
1862 1862           * a programming error.  Set the nc_dontpanic flag to override the panic
1863 1863           * in nvme_check_generic_cmd_status().
1864 1864           */
1865 1865          switch (feature) {
1866 1866          case NVME_FEAT_ARBITRATION:
1867 1867          case NVME_FEAT_POWER_MGMT:
1868 1868          case NVME_FEAT_TEMPERATURE:
1869      -        case NVME_FEAT_ERROR:
1870 1869          case NVME_FEAT_NQUEUES:
1871 1870          case NVME_FEAT_INTR_COAL:
1872 1871          case NVME_FEAT_INTR_VECT:
1873 1872          case NVME_FEAT_WRITE_ATOM:
1874 1873          case NVME_FEAT_ASYNC_EVENT:
1875 1874                  break;
1876 1875  
     1876 +        case NVME_FEAT_ERROR:
     1877 +                /*
     1878 +                 * Some controllers (e.g. INTEL SSDPE2KX010T7) get upset if
     1879 +                 * namespace ID of 0 is specified.  As we don't currently report
     1880 +                 * the "Deallocated or Unwritten Logical Block Error Enable",
     1881 +                 * simply set the NS ID to 1.
     1882 +                 */
     1883 +                cmd->nc_sqe.sqe_nsid = 1;
     1884 +                break;
     1885 +
1877 1886          case NVME_FEAT_WRITE_CACHE:
1878 1887                  if (!nvme->n_write_cache_present)
1879 1888                          goto fail;
1880 1889                  break;
1881 1890  
1882 1891          case NVME_FEAT_LBA_RANGE:
1883 1892                  if (!nvme->n_lba_range_supported)
1884 1893                          goto fail;
1885 1894  
1886 1895                  cmd->nc_dontpanic = B_TRUE;
1887 1896                  cmd->nc_sqe.sqe_nsid = nsid;
1888 1897                  ASSERT(bufsize != NULL);
1889 1898                  *bufsize = NVME_LBA_RANGE_BUFSIZE;
1890 1899                  break;
1891 1900  
1892 1901          case NVME_FEAT_AUTO_PST:
1893 1902                  if (!nvme->n_auto_pst_supported)
1894 1903                          goto fail;
1895 1904  
1896 1905                  ASSERT(bufsize != NULL);
1897 1906                  *bufsize = NVME_AUTO_PST_BUFSIZE;
1898 1907                  break;
1899 1908  
1900 1909          case NVME_FEAT_PROGRESS:
1901 1910                  if (!nvme->n_progress_supported)
1902 1911                          goto fail;
1903 1912  
1904 1913                  cmd->nc_dontpanic = B_TRUE;
1905 1914                  break;
1906 1915  
1907 1916          default:
1908 1917                  goto fail;
1909 1918          }
1910 1919  
1911 1920          if (bufsize != NULL && *bufsize != 0) {
1912 1921                  if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
1913 1922                      &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1914 1923                          dev_err(nvme->n_dip, CE_WARN,
1915 1924                              "!nvme_zalloc_dma failed for GET FEATURES");
1916 1925                          ret = ENOMEM;
1917 1926                          goto fail;
1918 1927                  }
1919 1928  
1920 1929                  if (cmd->nc_dma->nd_ncookie > 2) {
1921 1930                          dev_err(nvme->n_dip, CE_WARN,
1922 1931                              "!too many DMA cookies for GET FEATURES");
1923 1932                          atomic_inc_32(&nvme->n_too_many_cookies);
1924 1933                          ret = ENOMEM;
1925 1934                          goto fail;
1926 1935                  }
1927 1936  
1928 1937                  cmd->nc_sqe.sqe_dptr.d_prp[0] =
1929 1938                      cmd->nc_dma->nd_cookie.dmac_laddress;
1930 1939                  if (cmd->nc_dma->nd_ncookie > 1) {
1931 1940                          ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1932 1941                              &cmd->nc_dma->nd_cookie);
1933 1942                          cmd->nc_sqe.sqe_dptr.d_prp[1] =
1934 1943                              cmd->nc_dma->nd_cookie.dmac_laddress;
1935 1944                  }
1936 1945          }
1937 1946  
1938 1947          nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1939 1948  
1940 1949          if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1941 1950                  boolean_t known = B_TRUE;
1942 1951  
1943 1952                  /* Check if this is unsupported optional feature */
1944 1953                  if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1945 1954                      cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD) {
1946 1955                          switch (feature) {
1947 1956                          case NVME_FEAT_LBA_RANGE:
1948 1957                                  nvme->n_lba_range_supported = B_FALSE;
1949 1958                                  break;
1950 1959                          case NVME_FEAT_PROGRESS:
1951 1960                                  nvme->n_progress_supported = B_FALSE;
1952 1961                                  break;
1953 1962                          default:
1954 1963                                  known = B_FALSE;
1955 1964                                  break;
1956 1965                          }
1957 1966                  } else {
1958 1967                          known = B_FALSE;
1959 1968                  }
1960 1969  
1961 1970                  /* Report the error otherwise */
1962 1971                  if (!known) {
1963 1972                          dev_err(nvme->n_dip, CE_WARN,
1964 1973                              "!GET FEATURES %d failed with sct = %x, sc = %x",
1965 1974                              feature, cmd->nc_cqe.cqe_sf.sf_sct,
1966 1975                              cmd->nc_cqe.cqe_sf.sf_sc);
1967 1976                  }
1968 1977  
1969 1978                  goto fail;
1970 1979          }
1971 1980  
1972 1981          if (bufsize != NULL && *bufsize != 0) {
1973 1982                  ASSERT(buf != NULL);
1974 1983                  *buf = kmem_alloc(*bufsize, KM_SLEEP);
1975 1984                  bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1976 1985          }
1977 1986  
1978 1987          *res = cmd->nc_cqe.cqe_dw0;
1979 1988  
1980 1989  fail:
1981 1990          nvme_free_cmd(cmd);
1982 1991          return (ret);
1983 1992  }
1984 1993  
1985 1994  static int
1986 1995  nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
1987 1996  {
1988 1997          nvme_write_cache_t nwc = { 0 };
1989 1998  
1990 1999          if (enable)
1991 2000                  nwc.b.wc_wce = 1;
1992 2001  
1993 2002          return (nvme_set_features(nvme, 0, NVME_FEAT_WRITE_CACHE, nwc.r,
1994 2003              &nwc.r));
1995 2004  }
1996 2005  
1997 2006  static int
1998 2007  nvme_set_nqueues(nvme_t *nvme, uint16_t *nqueues)
1999 2008  {
2000 2009          nvme_nqueues_t nq = { 0 };
2001 2010          int ret;
2002 2011  
2003 2012          nq.b.nq_nsq = nq.b.nq_ncq = *nqueues - 1;
2004 2013  
2005 2014          ret = nvme_set_features(nvme, 0, NVME_FEAT_NQUEUES, nq.r, &nq.r);
2006 2015  
2007 2016          if (ret == 0) {
2008 2017                  /*
2009 2018                   * Always use the same number of submission and completion
2010 2019                   * queues, and never use more than the requested number of
2011 2020                   * queues.
2012 2021                   */
2013 2022                  *nqueues = MIN(*nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1);
2014 2023          }
2015 2024  
2016 2025          return (ret);
2017 2026  }
2018 2027  
2019 2028  static int
2020 2029  nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
2021 2030  {
2022 2031          nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2023 2032          nvme_create_queue_dw10_t dw10 = { 0 };
2024 2033          nvme_create_cq_dw11_t c_dw11 = { 0 };
2025 2034          nvme_create_sq_dw11_t s_dw11 = { 0 };
2026 2035          int ret;
2027 2036  
2028 2037          dw10.b.q_qid = idx;
2029 2038          dw10.b.q_qsize = qp->nq_nentry - 1;
2030 2039  
2031 2040          c_dw11.b.cq_pc = 1;
2032 2041          c_dw11.b.cq_ien = 1;
2033 2042          c_dw11.b.cq_iv = idx % nvme->n_intr_cnt;
2034 2043  
2035 2044          cmd->nc_sqid = 0;
2036 2045          cmd->nc_callback = nvme_wakeup_cmd;
2037 2046          cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
2038 2047          cmd->nc_sqe.sqe_cdw10 = dw10.r;
2039 2048          cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
2040 2049          cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress;
2041 2050  
2042 2051          nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2043 2052  
2044 2053          if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2045 2054                  dev_err(nvme->n_dip, CE_WARN,
2046 2055                      "!CREATE CQUEUE failed with sct = %x, sc = %x",
2047 2056                      cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2048 2057                  goto fail;
2049 2058          }
2050 2059  
2051 2060          nvme_free_cmd(cmd);
2052 2061  
2053 2062          s_dw11.b.sq_pc = 1;
2054 2063          s_dw11.b.sq_cqid = idx;
2055 2064  
2056 2065          cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2057 2066          cmd->nc_sqid = 0;
2058 2067          cmd->nc_callback = nvme_wakeup_cmd;
2059 2068          cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2060 2069          cmd->nc_sqe.sqe_cdw10 = dw10.r;
2061 2070          cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2062 2071          cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2063 2072  
2064 2073          nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2065 2074  
2066 2075          if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2067 2076                  dev_err(nvme->n_dip, CE_WARN,
2068 2077                      "!CREATE SQUEUE failed with sct = %x, sc = %x",
2069 2078                      cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2070 2079                  goto fail;
2071 2080          }
2072 2081  
2073 2082  fail:
2074 2083          nvme_free_cmd(cmd);
2075 2084  
2076 2085          return (ret);
2077 2086  }
2078 2087  
2079 2088  static boolean_t
2080 2089  nvme_reset(nvme_t *nvme, boolean_t quiesce)
2081 2090  {
2082 2091          nvme_reg_csts_t csts;
2083 2092          int i;
2084 2093  
2085 2094          nvme_put32(nvme, NVME_REG_CC, 0);
2086 2095  
2087 2096          csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2088 2097          if (csts.b.csts_rdy == 1) {
2089 2098                  nvme_put32(nvme, NVME_REG_CC, 0);
2090 2099                  for (i = 0; i != nvme->n_timeout * 10; i++) {
2091 2100                          csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2092 2101                          if (csts.b.csts_rdy == 0)
2093 2102                                  break;
2094 2103  
2095 2104                          if (quiesce)
2096 2105                                  drv_usecwait(50000);
2097 2106                          else
2098 2107                                  delay(drv_usectohz(50000));
2099 2108                  }
2100 2109          }
2101 2110  
2102 2111          nvme_put32(nvme, NVME_REG_AQA, 0);
2103 2112          nvme_put32(nvme, NVME_REG_ASQ, 0);
2104 2113          nvme_put32(nvme, NVME_REG_ACQ, 0);
2105 2114  
2106 2115          csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2107 2116          return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2108 2117  }
2109 2118  
2110 2119  static void
2111 2120  nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2112 2121  {
2113 2122          nvme_reg_cc_t cc;
2114 2123          nvme_reg_csts_t csts;
2115 2124          int i;
2116 2125  
2117 2126          ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2118 2127  
2119 2128          cc.r = nvme_get32(nvme, NVME_REG_CC);
2120 2129          cc.b.cc_shn = mode & 0x3;
2121 2130          nvme_put32(nvme, NVME_REG_CC, cc.r);
2122 2131  
2123 2132          for (i = 0; i != 10; i++) {
2124 2133                  csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2125 2134                  if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2126 2135                          break;
2127 2136  
2128 2137                  if (quiesce)
2129 2138                          drv_usecwait(100000);
2130 2139                  else
2131 2140                          delay(drv_usectohz(100000));
2132 2141          }
2133 2142  }
2134 2143  
2135 2144  
2136 2145  static void
2137 2146  nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2138 2147  {
2139 2148          /*
2140 2149           * Section 7.7 of the spec describes how to get a unique ID for
2141 2150           * the controller: the vendor ID, the model name and the serial
2142 2151           * number shall be unique when combined.
2143 2152           *
2144 2153           * If a namespace has no EUI64 we use the above and add the hex
2145 2154           * namespace ID to get a unique ID for the namespace.
2146 2155           */
2147 2156          char model[sizeof (nvme->n_idctl->id_model) + 1];
2148 2157          char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2149 2158  
2150 2159          bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2151 2160          bcopy(nvme->n_idctl->id_serial, serial,
2152 2161              sizeof (nvme->n_idctl->id_serial));
2153 2162  
2154 2163          model[sizeof (nvme->n_idctl->id_model)] = '\0';
2155 2164          serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2156 2165  
2157 2166          nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2158 2167              nvme->n_idctl->id_vid, model, serial, nsid);
2159 2168  }
2160 2169  
2161 2170  static int
2162 2171  nvme_init_ns(nvme_t *nvme, int nsid)
2163 2172  {
2164 2173          nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2165 2174          nvme_identify_nsid_t *idns;
2166 2175          int last_rp;
2167 2176  
2168 2177          ns->ns_nvme = nvme;
2169 2178  
2170 2179          if (nvme_identify(nvme, nsid, (void **)&idns) != 0) {
2171 2180                  dev_err(nvme->n_dip, CE_WARN,
2172 2181                      "!failed to identify namespace %d", nsid);
2173 2182                  return (DDI_FAILURE);
2174 2183          }
2175 2184  
2176 2185          ns->ns_idns = idns;
2177 2186          ns->ns_id = nsid;
2178 2187          ns->ns_block_count = idns->id_nsize;
2179 2188          ns->ns_block_size =
2180 2189              1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2181 2190          ns->ns_best_block_size = ns->ns_block_size;
2182 2191  
2183 2192          /*
2184 2193           * Get the EUI64 if present. Use it for devid and device node names.
2185 2194           */
2186 2195          if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2187 2196                  bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2188 2197  
2189 2198          /*LINTED: E_BAD_PTR_CAST_ALIGN*/
2190 2199          if (*(uint64_t *)ns->ns_eui64 != 0) {
2191 2200                  uint8_t *eui64 = ns->ns_eui64;
2192 2201  
2193 2202                  (void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2194 2203                      "%02x%02x%02x%02x%02x%02x%02x%02x",
2195 2204                      eui64[0], eui64[1], eui64[2], eui64[3],
2196 2205                      eui64[4], eui64[5], eui64[6], eui64[7]);
2197 2206          } else {
2198 2207                  (void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2199 2208                      ns->ns_id);
2200 2209  
2201 2210                  nvme_prepare_devid(nvme, ns->ns_id);
2202 2211          }
2203 2212  
2204 2213          /*
2205 2214           * Find the LBA format with no metadata and the best relative
2206 2215           * performance. A value of 3 means "degraded", 0 is best.
2207 2216           */
2208 2217          last_rp = 3;
2209 2218          for (int j = 0; j <= idns->id_nlbaf; j++) {
2210 2219                  if (idns->id_lbaf[j].lbaf_lbads == 0)
2211 2220                          break;
2212 2221                  if (idns->id_lbaf[j].lbaf_ms != 0)
2213 2222                          continue;
2214 2223                  if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2215 2224                          continue;
2216 2225                  last_rp = idns->id_lbaf[j].lbaf_rp;
2217 2226                  ns->ns_best_block_size =
2218 2227                      1 << idns->id_lbaf[j].lbaf_lbads;
2219 2228          }
2220 2229  
2221 2230          if (ns->ns_best_block_size < nvme->n_min_block_size)
2222 2231                  ns->ns_best_block_size = nvme->n_min_block_size;
2223 2232  
2224 2233          /*
2225 2234           * We currently don't support namespaces that use either:
2226 2235           * - thin provisioning
2227 2236           * - protection information
2228 2237           * - illegal block size (< 512)
2229 2238           */
2230 2239          if (idns->id_nsfeat.f_thin ||
2231 2240              idns->id_dps.dp_pinfo) {
2232 2241                  dev_err(nvme->n_dip, CE_WARN,
2233 2242                      "!ignoring namespace %d, unsupported features: "
2234 2243                      "thin = %d, pinfo = %d", nsid,
2235 2244                      idns->id_nsfeat.f_thin, idns->id_dps.dp_pinfo);
2236 2245                  ns->ns_ignore = B_TRUE;
2237 2246          } else if (ns->ns_block_size < 512) {
2238 2247                  dev_err(nvme->n_dip, CE_WARN,
2239 2248                      "!ignoring namespace %d, unsupported block size %"PRIu64,
2240 2249                      nsid, (uint64_t)ns->ns_block_size);
2241 2250                  ns->ns_ignore = B_TRUE;
2242 2251          } else {
2243 2252                  ns->ns_ignore = B_FALSE;
2244 2253          }
2245 2254  
2246 2255          return (DDI_SUCCESS);
2247 2256  }
2248 2257  
2249 2258  static int
2250 2259  nvme_init(nvme_t *nvme)
2251 2260  {
2252 2261          nvme_reg_cc_t cc = { 0 };
2253 2262          nvme_reg_aqa_t aqa = { 0 };
2254 2263          nvme_reg_asq_t asq = { 0 };
2255 2264          nvme_reg_acq_t acq = { 0 };
2256 2265          nvme_reg_cap_t cap;
2257 2266          nvme_reg_vs_t vs;
2258 2267          nvme_reg_csts_t csts;
2259 2268          int i = 0;
2260 2269          uint16_t nqueues;
2261 2270          char model[sizeof (nvme->n_idctl->id_model) + 1];
2262 2271          char *vendor, *product;
2263 2272  
2264 2273          /* Check controller version */
2265 2274          vs.r = nvme_get32(nvme, NVME_REG_VS);
2266 2275          nvme->n_version.v_major = vs.b.vs_mjr;
2267 2276          nvme->n_version.v_minor = vs.b.vs_mnr;
2268 2277          dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2269 2278              nvme->n_version.v_major, nvme->n_version.v_minor);
2270 2279  
2271 2280          if (NVME_VERSION_HIGHER(&nvme->n_version,
2272 2281              nvme_version_major, nvme_version_minor)) {
2273 2282                  dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.%d",
2274 2283                      nvme_version_major, nvme_version_minor);
2275 2284                  if (nvme->n_strict_version)
2276 2285                          goto fail;
2277 2286          }
2278 2287  
2279 2288          /* retrieve controller configuration */
2280 2289          cap.r = nvme_get64(nvme, NVME_REG_CAP);
2281 2290  
2282 2291          if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2283 2292                  dev_err(nvme->n_dip, CE_WARN,
2284 2293                      "!NVM command set not supported by hardware");
2285 2294                  goto fail;
2286 2295          }
2287 2296  
2288 2297          nvme->n_nssr_supported = cap.b.cap_nssrs;
2289 2298          nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2290 2299          nvme->n_timeout = cap.b.cap_to;
2291 2300          nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2292 2301          nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2293 2302          nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2294 2303  
2295 2304          /*
2296 2305           * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2297 2306           * the base page size of 4k (1<<12), so add 12 here to get the real
2298 2307           * page size value.
2299 2308           */
2300 2309          nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2301 2310              cap.b.cap_mpsmax + 12);
2302 2311          nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2303 2312  
2304 2313          /*
2305 2314           * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2306 2315           */
2307 2316          nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2308 2317          nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2309 2318  
2310 2319          /*
2311 2320           * Set up PRP DMA to transfer 1 page-aligned page at a time.
2312 2321           * Maxxfer may be increased after we identified the controller limits.
2313 2322           */
2314 2323          nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2315 2324          nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2316 2325          nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2317 2326          nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2318 2327  
2319 2328          /*
2320 2329           * Reset controller if it's still in ready state.
2321 2330           */
2322 2331          if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2323 2332                  dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2324 2333                  ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2325 2334                  nvme->n_dead = B_TRUE;
2326 2335                  goto fail;
2327 2336          }
2328 2337  
2329 2338          /*
2330 2339           * Create the admin queue pair.
2331 2340           */
2332 2341          if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2333 2342              != DDI_SUCCESS) {
2334 2343                  dev_err(nvme->n_dip, CE_WARN,
2335 2344                      "!unable to allocate admin qpair");
2336 2345                  goto fail;
2337 2346          }
2338 2347          nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2339 2348          nvme->n_ioq[0] = nvme->n_adminq;
2340 2349  
2341 2350          nvme->n_progress |= NVME_ADMIN_QUEUE;
2342 2351  
2343 2352          (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2344 2353              "admin-queue-len", nvme->n_admin_queue_len);
2345 2354  
2346 2355          aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
2347 2356          asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
2348 2357          acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress;
2349 2358  
2350 2359          ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
2351 2360          ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
2352 2361  
2353 2362          nvme_put32(nvme, NVME_REG_AQA, aqa.r);
2354 2363          nvme_put64(nvme, NVME_REG_ASQ, asq);
2355 2364          nvme_put64(nvme, NVME_REG_ACQ, acq);
2356 2365  
2357 2366          cc.b.cc_ams = 0;        /* use Round-Robin arbitration */
2358 2367          cc.b.cc_css = 0;        /* use NVM command set */
2359 2368          cc.b.cc_mps = nvme->n_pageshift - 12;
2360 2369          cc.b.cc_shn = 0;        /* no shutdown in progress */
2361 2370          cc.b.cc_en = 1;         /* enable controller */
2362 2371          cc.b.cc_iosqes = 6;     /* submission queue entry is 2^6 bytes long */
2363 2372          cc.b.cc_iocqes = 4;     /* completion queue entry is 2^4 bytes long */
2364 2373  
2365 2374          nvme_put32(nvme, NVME_REG_CC, cc.r);
2366 2375  
2367 2376          /*
2368 2377           * Wait for the controller to become ready.
2369 2378           */
2370 2379          csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2371 2380          if (csts.b.csts_rdy == 0) {
2372 2381                  for (i = 0; i != nvme->n_timeout * 10; i++) {
2373 2382                          delay(drv_usectohz(50000));
2374 2383                          csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2375 2384  
2376 2385                          if (csts.b.csts_cfs == 1) {
2377 2386                                  dev_err(nvme->n_dip, CE_WARN,
2378 2387                                      "!controller fatal status at init");
2379 2388                                  ddi_fm_service_impact(nvme->n_dip,
2380 2389                                      DDI_SERVICE_LOST);
2381 2390                                  nvme->n_dead = B_TRUE;
2382 2391                                  goto fail;
2383 2392                          }
2384 2393  
2385 2394                          if (csts.b.csts_rdy == 1)
2386 2395                                  break;
2387 2396                  }
2388 2397          }
2389 2398  
2390 2399          if (csts.b.csts_rdy == 0) {
2391 2400                  dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
2392 2401                  ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2393 2402                  nvme->n_dead = B_TRUE;
2394 2403                  goto fail;
2395 2404          }
2396 2405  
2397 2406          /*
2398 2407           * Assume an abort command limit of 1. We'll destroy and re-init
2399 2408           * that later when we know the true abort command limit.
2400 2409           */
2401 2410          sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
2402 2411  
2403 2412          /*
2404 2413           * Setup initial interrupt for admin queue.
2405 2414           */
2406 2415          if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
2407 2416              != DDI_SUCCESS) &&
2408 2417              (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
2409 2418              != DDI_SUCCESS) &&
2410 2419              (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
2411 2420              != DDI_SUCCESS)) {
2412 2421                  dev_err(nvme->n_dip, CE_WARN,
2413 2422                      "!failed to setup initial interrupt");
2414 2423                  goto fail;
2415 2424          }
2416 2425  
2417 2426          /*
2418 2427           * Post an asynchronous event command to catch errors.
2419 2428           * We assume the asynchronous events are supported as required by
2420 2429           * specification (Figure 40 in section 5 of NVMe 1.2).
2421 2430           * However, since at least qemu does not follow the specification,
2422 2431           * we need a mechanism to protect ourselves.
2423 2432           */
2424 2433          nvme->n_async_event_supported = B_TRUE;
2425 2434          nvme_async_event(nvme);
2426 2435  
2427 2436          /*
2428 2437           * Identify Controller
2429 2438           */
2430 2439          if (nvme_identify(nvme, 0, (void **)&nvme->n_idctl) != 0) {
2431 2440                  dev_err(nvme->n_dip, CE_WARN,
2432 2441                      "!failed to identify controller");
2433 2442                  goto fail;
2434 2443          }
2435 2444  
2436 2445          /*
2437 2446           * Get Vendor & Product ID
2438 2447           */
2439 2448          bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2440 2449          model[sizeof (nvme->n_idctl->id_model)] = '\0';
2441 2450          sata_split_model(model, &vendor, &product);
2442 2451  
2443 2452          if (vendor == NULL)
2444 2453                  nvme->n_vendor = strdup("NVMe");
2445 2454          else
2446 2455                  nvme->n_vendor = strdup(vendor);
2447 2456  
2448 2457          nvme->n_product = strdup(product);
2449 2458  
2450 2459          /*
2451 2460           * Get controller limits.
2452 2461           */
2453 2462          nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
2454 2463              MIN(nvme->n_admin_queue_len / 10,
2455 2464              MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
2456 2465  
2457 2466          (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2458 2467              "async-event-limit", nvme->n_async_event_limit);
2459 2468  
2460 2469          nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
2461 2470  
2462 2471          /*
2463 2472           * Reinitialize the semaphore with the true abort command limit
2464 2473           * supported by the hardware. It's not necessary to disable interrupts
2465 2474           * as only command aborts use the semaphore, and no commands are
2466 2475           * executed or aborted while we're here.
2467 2476           */
2468 2477          sema_destroy(&nvme->n_abort_sema);
2469 2478          sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
2470 2479              SEMA_DRIVER, NULL);
2471 2480  
2472 2481          nvme->n_progress |= NVME_CTRL_LIMITS;
2473 2482  
2474 2483          if (nvme->n_idctl->id_mdts == 0)
2475 2484                  nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
2476 2485          else
2477 2486                  nvme->n_max_data_transfer_size =
2478 2487                      1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
2479 2488  
2480 2489          nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
2481 2490  
2482 2491          /*
2483 2492           * Limit n_max_data_transfer_size to what we can handle in one PRP.
2484 2493           * Chained PRPs are currently unsupported.
2485 2494           *
2486 2495           * This is a no-op on hardware which doesn't support a transfer size
2487 2496           * big enough to require chained PRPs.
2488 2497           */
2489 2498          nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
2490 2499              (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
2491 2500  
2492 2501          nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
2493 2502  
2494 2503          /*
2495 2504           * Make sure the minimum/maximum queue entry sizes are not
2496 2505           * larger/smaller than the default.
2497 2506           */
2498 2507  
2499 2508          if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
2500 2509              ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
2501 2510              ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
2502 2511              ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
2503 2512                  goto fail;
2504 2513  
2505 2514          /*
2506 2515           * Check for the presence of a Volatile Write Cache. If present,
2507 2516           * enable or disable based on the value of the property
2508 2517           * volatile-write-cache-enable (default is enabled).
2509 2518           */
2510 2519          nvme->n_write_cache_present =
2511 2520              nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
2512 2521  
2513 2522          (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2514 2523              "volatile-write-cache-present",
2515 2524              nvme->n_write_cache_present ? 1 : 0);
2516 2525  
2517 2526          if (!nvme->n_write_cache_present) {
2518 2527                  nvme->n_write_cache_enabled = B_FALSE;
2519 2528          } else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)
2520 2529              != 0) {
2521 2530                  dev_err(nvme->n_dip, CE_WARN,
2522 2531                      "!failed to %sable volatile write cache",
2523 2532                      nvme->n_write_cache_enabled ? "en" : "dis");
2524 2533                  /*
2525 2534                   * Assume the cache is (still) enabled.
2526 2535                   */
2527 2536                  nvme->n_write_cache_enabled = B_TRUE;
2528 2537          }
2529 2538  
2530 2539          (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2531 2540              "volatile-write-cache-enable",
2532 2541              nvme->n_write_cache_enabled ? 1 : 0);
2533 2542  
2534 2543          /*
2535 2544           * Assume LBA Range Type feature is supported. If it isn't this
2536 2545           * will be set to B_FALSE by nvme_get_features().
2537 2546           */
2538 2547          nvme->n_lba_range_supported = B_TRUE;
2539 2548  
2540 2549          /*
2541 2550           * Check support for Autonomous Power State Transition.
2542 2551           */
2543 2552          if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2544 2553                  nvme->n_auto_pst_supported =
2545 2554                      nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
2546 2555  
2547 2556          /*
2548 2557           * Assume Software Progress Marker feature is supported.  If it isn't
2549 2558           * this will be set to B_FALSE by nvme_get_features().
2550 2559           */
2551 2560          nvme->n_progress_supported = B_TRUE;
2552 2561  
2553 2562          /*
2554 2563           * Identify Namespaces
2555 2564           */
2556 2565          nvme->n_namespace_count = nvme->n_idctl->id_nn;
2557 2566          if (nvme->n_namespace_count > NVME_MINOR_MAX) {
2558 2567                  dev_err(nvme->n_dip, CE_WARN,
2559 2568                      "!too many namespaces: %d, limiting to %d\n",
2560 2569                      nvme->n_namespace_count, NVME_MINOR_MAX);
2561 2570                  nvme->n_namespace_count = NVME_MINOR_MAX;
2562 2571          }
2563 2572  
2564 2573          nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2565 2574              nvme->n_namespace_count, KM_SLEEP);
2566 2575  
2567 2576          for (i = 0; i != nvme->n_namespace_count; i++) {
2568 2577                  mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER,
2569 2578                      NULL);
2570 2579                  if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
2571 2580                          goto fail;
2572 2581          }
2573 2582  
2574 2583          /*
2575 2584           * Try to set up MSI/MSI-X interrupts.
2576 2585           */
2577 2586          if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2578 2587              != 0) {
2579 2588                  nvme_release_interrupts(nvme);
2580 2589  
2581 2590                  nqueues = MIN(UINT16_MAX, ncpus);
2582 2591  
2583 2592                  if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2584 2593                      nqueues) != DDI_SUCCESS) &&
2585 2594                      (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2586 2595                      nqueues) != DDI_SUCCESS)) {
2587 2596                          dev_err(nvme->n_dip, CE_WARN,
2588 2597                              "!failed to setup MSI/MSI-X interrupts");
2589 2598                          goto fail;
2590 2599                  }
2591 2600          }
2592 2601  
2593 2602          nqueues = nvme->n_intr_cnt;
2594 2603  
2595 2604          /*
2596 2605           * Create I/O queue pairs.
2597 2606           */
2598 2607  
2599 2608          if (nvme_set_nqueues(nvme, &nqueues) != 0) {
2600 2609                  dev_err(nvme->n_dip, CE_WARN,
2601 2610                      "!failed to set number of I/O queues to %d",
2602 2611                      nvme->n_intr_cnt);
2603 2612                  goto fail;
2604 2613          }
2605 2614  
2606 2615          /*
2607 2616           * Reallocate I/O queue array
2608 2617           */
2609 2618          kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
2610 2619          nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
2611 2620              (nqueues + 1), KM_SLEEP);
2612 2621          nvme->n_ioq[0] = nvme->n_adminq;
2613 2622  
2614 2623          nvme->n_ioq_count = nqueues;
2615 2624  
2616 2625          /*
2617 2626           * If we got less queues than we asked for we might as well give
2618 2627           * some of the interrupt vectors back to the system.
2619 2628           */
2620 2629          if (nvme->n_ioq_count < nvme->n_intr_cnt) {
2621 2630                  nvme_release_interrupts(nvme);
2622 2631  
2623 2632                  if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
2624 2633                      nvme->n_ioq_count) != DDI_SUCCESS) {
2625 2634                          dev_err(nvme->n_dip, CE_WARN,
2626 2635                              "!failed to reduce number of interrupts");
2627 2636                          goto fail;
2628 2637                  }
2629 2638          }
2630 2639  
2631 2640          /*
2632 2641           * Alloc & register I/O queue pairs
2633 2642           */
2634 2643          nvme->n_io_queue_len =
2635 2644              MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries);
2636 2645          (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len",
2637 2646              nvme->n_io_queue_len);
2638 2647  
2639 2648          for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2640 2649                  if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len,
2641 2650                      &nvme->n_ioq[i], i) != DDI_SUCCESS) {
2642 2651                          dev_err(nvme->n_dip, CE_WARN,
2643 2652                              "!unable to allocate I/O qpair %d", i);
2644 2653                          goto fail;
2645 2654                  }
2646 2655  
2647 2656                  if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) {
2648 2657                          dev_err(nvme->n_dip, CE_WARN,
2649 2658                              "!unable to create I/O qpair %d", i);
2650 2659                          goto fail;
2651 2660                  }
2652 2661          }
2653 2662  
2654 2663          /*
2655 2664           * Post more asynchronous events commands to reduce event reporting
2656 2665           * latency as suggested by the spec.
2657 2666           */
2658 2667          if (nvme->n_async_event_supported) {
2659 2668                  for (i = 1; i != nvme->n_async_event_limit; i++)
2660 2669                          nvme_async_event(nvme);
2661 2670          }
2662 2671  
2663 2672          return (DDI_SUCCESS);
2664 2673  
2665 2674  fail:
2666 2675          (void) nvme_reset(nvme, B_FALSE);
2667 2676          return (DDI_FAILURE);
2668 2677  }
2669 2678  
2670 2679  static uint_t
2671 2680  nvme_intr(caddr_t arg1, caddr_t arg2)
2672 2681  {
2673 2682          /*LINTED: E_PTR_BAD_CAST_ALIGN*/
2674 2683          nvme_t *nvme = (nvme_t *)arg1;
2675 2684          int inum = (int)(uintptr_t)arg2;
2676 2685          int ccnt = 0;
2677 2686          int qnum;
2678 2687          nvme_cmd_t *cmd;
2679 2688  
2680 2689          if (inum >= nvme->n_intr_cnt)
2681 2690                  return (DDI_INTR_UNCLAIMED);
2682 2691  
2683 2692          if (nvme->n_dead)
2684 2693                  return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ?
2685 2694                      DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED);
2686 2695  
2687 2696          /*
2688 2697           * The interrupt vector a queue uses is calculated as queue_idx %
2689 2698           * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
2690 2699           * in steps of n_intr_cnt to process all queues using this vector.
2691 2700           */
2692 2701          for (qnum = inum;
2693 2702              qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL;
2694 2703              qnum += nvme->n_intr_cnt) {
2695 2704                  while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) {
2696 2705                          taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq,
2697 2706                              cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
2698 2707                          ccnt++;
2699 2708                  }
2700 2709          }
2701 2710  
2702 2711          return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2703 2712  }
2704 2713  
2705 2714  static void
2706 2715  nvme_release_interrupts(nvme_t *nvme)
2707 2716  {
2708 2717          int i;
2709 2718  
2710 2719          for (i = 0; i < nvme->n_intr_cnt; i++) {
2711 2720                  if (nvme->n_inth[i] == NULL)
2712 2721                          break;
2713 2722  
2714 2723                  if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2715 2724                          (void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
2716 2725                  else
2717 2726                          (void) ddi_intr_disable(nvme->n_inth[i]);
2718 2727  
2719 2728                  (void) ddi_intr_remove_handler(nvme->n_inth[i]);
2720 2729                  (void) ddi_intr_free(nvme->n_inth[i]);
2721 2730          }
2722 2731  
2723 2732          kmem_free(nvme->n_inth, nvme->n_inth_sz);
2724 2733          nvme->n_inth = NULL;
2725 2734          nvme->n_inth_sz = 0;
2726 2735  
2727 2736          nvme->n_progress &= ~NVME_INTERRUPTS;
2728 2737  }
2729 2738  
2730 2739  static int
2731 2740  nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
2732 2741  {
2733 2742          int nintrs, navail, count;
2734 2743          int ret;
2735 2744          int i;
2736 2745  
2737 2746          if (nvme->n_intr_types == 0) {
2738 2747                  ret = ddi_intr_get_supported_types(nvme->n_dip,
2739 2748                      &nvme->n_intr_types);
2740 2749                  if (ret != DDI_SUCCESS) {
2741 2750                          dev_err(nvme->n_dip, CE_WARN,
2742 2751                              "!%s: ddi_intr_get_supported types failed",
2743 2752                              __func__);
2744 2753                          return (ret);
2745 2754                  }
2746 2755  #ifdef __x86
2747 2756                  if (get_hwenv() == HW_VMWARE)
2748 2757                          nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
2749 2758  #endif
2750 2759          }
2751 2760  
2752 2761          if ((nvme->n_intr_types & intr_type) == 0)
2753 2762                  return (DDI_FAILURE);
2754 2763  
2755 2764          ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
2756 2765          if (ret != DDI_SUCCESS) {
2757 2766                  dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
2758 2767                      __func__);
2759 2768                  return (ret);
2760 2769          }
2761 2770  
2762 2771          ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
2763 2772          if (ret != DDI_SUCCESS) {
2764 2773                  dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
2765 2774                      __func__);
2766 2775                  return (ret);
2767 2776          }
2768 2777  
2769 2778          /* We want at most one interrupt per queue pair. */
2770 2779          if (navail > nqpairs)
2771 2780                  navail = nqpairs;
2772 2781  
2773 2782          nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
2774 2783          nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
2775 2784  
2776 2785          ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
2777 2786              &count, 0);
2778 2787          if (ret != DDI_SUCCESS) {
2779 2788                  dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
2780 2789                      __func__);
2781 2790                  goto fail;
2782 2791          }
2783 2792  
2784 2793          nvme->n_intr_cnt = count;
2785 2794  
2786 2795          ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
2787 2796          if (ret != DDI_SUCCESS) {
2788 2797                  dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
2789 2798                      __func__);
2790 2799                  goto fail;
2791 2800          }
2792 2801  
2793 2802          for (i = 0; i < count; i++) {
2794 2803                  ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
2795 2804                      (void *)nvme, (void *)(uintptr_t)i);
2796 2805                  if (ret != DDI_SUCCESS) {
2797 2806                          dev_err(nvme->n_dip, CE_WARN,
2798 2807                              "!%s: ddi_intr_add_handler failed", __func__);
2799 2808                          goto fail;
2800 2809                  }
2801 2810          }
2802 2811  
2803 2812          (void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
2804 2813  
2805 2814          for (i = 0; i < count; i++) {
2806 2815                  if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2807 2816                          ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
2808 2817                  else
2809 2818                          ret = ddi_intr_enable(nvme->n_inth[i]);
2810 2819  
2811 2820                  if (ret != DDI_SUCCESS) {
2812 2821                          dev_err(nvme->n_dip, CE_WARN,
2813 2822                              "!%s: enabling interrupt %d failed", __func__, i);
2814 2823                          goto fail;
2815 2824                  }
2816 2825          }
2817 2826  
2818 2827          nvme->n_intr_type = intr_type;
2819 2828  
2820 2829          nvme->n_progress |= NVME_INTERRUPTS;
2821 2830  
2822 2831          return (DDI_SUCCESS);
2823 2832  
2824 2833  fail:
2825 2834          nvme_release_interrupts(nvme);
2826 2835  
2827 2836          return (ret);
2828 2837  }
2829 2838  
2830 2839  static int
2831 2840  nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
2832 2841  {
2833 2842          _NOTE(ARGUNUSED(arg));
2834 2843  
2835 2844          pci_ereport_post(dip, fm_error, NULL);
2836 2845          return (fm_error->fme_status);
2837 2846  }
2838 2847  
2839 2848  static int
2840 2849  nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2841 2850  {
2842 2851          nvme_t *nvme;
2843 2852          int instance;
2844 2853          int nregs;
2845 2854          off_t regsize;
2846 2855          int i;
2847 2856          char name[32];
2848 2857  
2849 2858          if (cmd != DDI_ATTACH)
2850 2859                  return (DDI_FAILURE);
2851 2860  
2852 2861          instance = ddi_get_instance(dip);
2853 2862  
2854 2863          if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
2855 2864                  return (DDI_FAILURE);
2856 2865  
2857 2866          nvme = ddi_get_soft_state(nvme_state, instance);
2858 2867          ddi_set_driver_private(dip, nvme);
2859 2868          nvme->n_dip = dip;
2860 2869  
2861 2870          mutex_init(&nvme->n_minor.nm_mutex, NULL, MUTEX_DRIVER, NULL);
2862 2871  
2863 2872          nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2864 2873              DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
2865 2874          nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
2866 2875              dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
2867 2876              B_TRUE : B_FALSE;
2868 2877          nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2869 2878              DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
2870 2879          nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2871 2880              DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN);
2872 2881          nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2873 2882              DDI_PROP_DONTPASS, "async-event-limit",
2874 2883              NVME_DEFAULT_ASYNC_EVENT_LIMIT);
2875 2884          nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2876 2885              DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
2877 2886              B_TRUE : B_FALSE;
2878 2887          nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2879 2888              DDI_PROP_DONTPASS, "min-phys-block-size",
2880 2889              NVME_DEFAULT_MIN_BLOCK_SIZE);
2881 2890  
2882 2891          if (!ISP2(nvme->n_min_block_size) ||
2883 2892              (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
2884 2893                  dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
2885 2894                      "using default %d", ISP2(nvme->n_min_block_size) ?
2886 2895                      "too low" : "not a power of 2",
2887 2896                      NVME_DEFAULT_MIN_BLOCK_SIZE);
2888 2897                  nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
2889 2898          }
2890 2899  
2891 2900          if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
2892 2901                  nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
2893 2902          else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
2894 2903                  nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
2895 2904  
2896 2905          if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN)
2897 2906                  nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN;
2898 2907  
2899 2908          if (nvme->n_async_event_limit < 1)
2900 2909                  nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
2901 2910  
2902 2911          nvme->n_reg_acc_attr = nvme_reg_acc_attr;
2903 2912          nvme->n_queue_dma_attr = nvme_queue_dma_attr;
2904 2913          nvme->n_prp_dma_attr = nvme_prp_dma_attr;
2905 2914          nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
2906 2915  
2907 2916          /*
2908 2917           * Setup FMA support.
2909 2918           */
2910 2919          nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
2911 2920              DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
2912 2921              DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
2913 2922              DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
2914 2923  
2915 2924          ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
2916 2925  
2917 2926          if (nvme->n_fm_cap) {
2918 2927                  if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
2919 2928                          nvme->n_reg_acc_attr.devacc_attr_access =
2920 2929                              DDI_FLAGERR_ACC;
2921 2930  
2922 2931                  if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
2923 2932                          nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2924 2933                          nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2925 2934                  }
2926 2935  
2927 2936                  if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2928 2937                      DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2929 2938                          pci_ereport_setup(dip);
2930 2939  
2931 2940                  if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2932 2941                          ddi_fm_handler_register(dip, nvme_fm_errcb,
2933 2942                              (void *)nvme);
2934 2943          }
2935 2944  
2936 2945          nvme->n_progress |= NVME_FMA_INIT;
2937 2946  
2938 2947          /*
2939 2948           * The spec defines several register sets. Only the controller
2940 2949           * registers (set 1) are currently used.
2941 2950           */
2942 2951          if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
2943 2952              nregs < 2 ||
2944 2953              ddi_dev_regsize(dip, 1, ®size) == DDI_FAILURE)
2945 2954                  goto fail;
2946 2955  
2947 2956          if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
2948 2957              &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
2949 2958                  dev_err(dip, CE_WARN, "!failed to map regset 1");
2950 2959                  goto fail;
2951 2960          }
2952 2961  
2953 2962          nvme->n_progress |= NVME_REGS_MAPPED;
2954 2963  
2955 2964          /*
2956 2965           * Create taskq for command completion.
2957 2966           */
2958 2967          (void) snprintf(name, sizeof (name), "%s%d_cmd_taskq",
2959 2968              ddi_driver_name(dip), ddi_get_instance(dip));
2960 2969          nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus),
2961 2970              TASKQ_DEFAULTPRI, 0);
2962 2971          if (nvme->n_cmd_taskq == NULL) {
2963 2972                  dev_err(dip, CE_WARN, "!failed to create cmd taskq");
2964 2973                  goto fail;
2965 2974          }
2966 2975  
2967 2976          /*
2968 2977           * Create PRP DMA cache
2969 2978           */
2970 2979          (void) snprintf(name, sizeof (name), "%s%d_prp_cache",
2971 2980              ddi_driver_name(dip), ddi_get_instance(dip));
2972 2981          nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
2973 2982              0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
2974 2983              NULL, (void *)nvme, NULL, 0);
2975 2984  
2976 2985          if (nvme_init(nvme) != DDI_SUCCESS)
2977 2986                  goto fail;
2978 2987  
2979 2988          /*
2980 2989           * Attach the blkdev driver for each namespace.
2981 2990           */
2982 2991          for (i = 0; i != nvme->n_namespace_count; i++) {
2983 2992                  if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name,
2984 2993                      S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1),
2985 2994                      DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
2986 2995                          dev_err(dip, CE_WARN,
2987 2996                              "!failed to create minor node for namespace %d", i);
2988 2997                          goto fail;
2989 2998                  }
2990 2999  
2991 3000                  if (nvme->n_ns[i].ns_ignore)
2992 3001                          continue;
2993 3002  
2994 3003                  nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
2995 3004                      &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP);
2996 3005  
2997 3006                  if (nvme->n_ns[i].ns_bd_hdl == NULL) {
2998 3007                          dev_err(dip, CE_WARN,
2999 3008                              "!failed to get blkdev handle for namespace %d", i);
3000 3009                          goto fail;
3001 3010                  }
3002 3011  
3003 3012                  if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
3004 3013                      != DDI_SUCCESS) {
3005 3014                          dev_err(dip, CE_WARN,
3006 3015                              "!failed to attach blkdev handle for namespace %d",
3007 3016                              i);
3008 3017                          goto fail;
3009 3018                  }
3010 3019          }
3011 3020  
3012 3021          if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
3013 3022              NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
3014 3023              != DDI_SUCCESS) {
3015 3024                  dev_err(dip, CE_WARN, "nvme_attach: "
3016 3025                      "cannot create devctl minor node");
3017 3026                  goto fail;
3018 3027          }
3019 3028  
3020 3029          return (DDI_SUCCESS);
3021 3030  
3022 3031  fail:
3023 3032          /* attach successful anyway so that FMA can retire the device */
3024 3033          if (nvme->n_dead)
3025 3034                  return (DDI_SUCCESS);
3026 3035  
3027 3036          (void) nvme_detach(dip, DDI_DETACH);
3028 3037  
3029 3038          return (DDI_FAILURE);
3030 3039  }
3031 3040  
3032 3041  static int
3033 3042  nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3034 3043  {
3035 3044          int instance, i;
3036 3045          nvme_t *nvme;
3037 3046  
3038 3047          if (cmd != DDI_DETACH)
3039 3048                  return (DDI_FAILURE);
3040 3049  
3041 3050          instance = ddi_get_instance(dip);
3042 3051  
3043 3052          nvme = ddi_get_soft_state(nvme_state, instance);
3044 3053  
3045 3054          if (nvme == NULL)
3046 3055                  return (DDI_FAILURE);
3047 3056  
3048 3057          ddi_remove_minor_node(dip, "devctl");
3049 3058          mutex_destroy(&nvme->n_minor.nm_mutex);
3050 3059  
3051 3060          if (nvme->n_ns) {
3052 3061                  for (i = 0; i != nvme->n_namespace_count; i++) {
3053 3062                          ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name);
3054 3063                          mutex_destroy(&nvme->n_ns[i].ns_minor.nm_mutex);
3055 3064  
3056 3065                          if (nvme->n_ns[i].ns_bd_hdl) {
3057 3066                                  (void) bd_detach_handle(
3058 3067                                      nvme->n_ns[i].ns_bd_hdl);
3059 3068                                  bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
3060 3069                          }
3061 3070  
3062 3071                          if (nvme->n_ns[i].ns_idns)
3063 3072                                  kmem_free(nvme->n_ns[i].ns_idns,
3064 3073                                      sizeof (nvme_identify_nsid_t));
3065 3074                          if (nvme->n_ns[i].ns_devid)
3066 3075                                  strfree(nvme->n_ns[i].ns_devid);
3067 3076                  }
3068 3077  
3069 3078                  kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3070 3079                      nvme->n_namespace_count);
3071 3080          }
3072 3081  
3073 3082          if (nvme->n_progress & NVME_INTERRUPTS)
3074 3083                  nvme_release_interrupts(nvme);
3075 3084  
3076 3085          if (nvme->n_cmd_taskq)
3077 3086                  ddi_taskq_wait(nvme->n_cmd_taskq);
3078 3087  
3079 3088          if (nvme->n_ioq_count > 0) {
3080 3089                  for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3081 3090                          if (nvme->n_ioq[i] != NULL) {
3082 3091                                  /* TODO: send destroy queue commands */
3083 3092                                  nvme_free_qpair(nvme->n_ioq[i]);
3084 3093                          }
3085 3094                  }
3086 3095  
3087 3096                  kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3088 3097                      (nvme->n_ioq_count + 1));
3089 3098          }
3090 3099  
3091 3100          if (nvme->n_prp_cache != NULL) {
3092 3101                  kmem_cache_destroy(nvme->n_prp_cache);
3093 3102          }
3094 3103  
3095 3104          if (nvme->n_progress & NVME_REGS_MAPPED) {
3096 3105                  nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3097 3106                  (void) nvme_reset(nvme, B_FALSE);
3098 3107          }
3099 3108  
3100 3109          if (nvme->n_cmd_taskq)
3101 3110                  ddi_taskq_destroy(nvme->n_cmd_taskq);
3102 3111  
3103 3112          if (nvme->n_progress & NVME_CTRL_LIMITS)
3104 3113                  sema_destroy(&nvme->n_abort_sema);
3105 3114  
3106 3115          if (nvme->n_progress & NVME_ADMIN_QUEUE)
3107 3116                  nvme_free_qpair(nvme->n_adminq);
3108 3117  
3109 3118          if (nvme->n_idctl)
3110 3119                  kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3111 3120  
3112 3121          if (nvme->n_progress & NVME_REGS_MAPPED)
3113 3122                  ddi_regs_map_free(&nvme->n_regh);
3114 3123  
3115 3124          if (nvme->n_progress & NVME_FMA_INIT) {
3116 3125                  if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3117 3126                          ddi_fm_handler_unregister(nvme->n_dip);
3118 3127  
3119 3128                  if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3120 3129                      DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3121 3130                          pci_ereport_teardown(nvme->n_dip);
3122 3131  
3123 3132                  ddi_fm_fini(nvme->n_dip);
3124 3133          }
3125 3134  
3126 3135          if (nvme->n_vendor != NULL)
3127 3136                  strfree(nvme->n_vendor);
3128 3137  
3129 3138          if (nvme->n_product != NULL)
3130 3139                  strfree(nvme->n_product);
3131 3140  
3132 3141          ddi_soft_state_free(nvme_state, instance);
3133 3142  
3134 3143          return (DDI_SUCCESS);
3135 3144  }
3136 3145  
3137 3146  static int
3138 3147  nvme_quiesce(dev_info_t *dip)
3139 3148  {
3140 3149          int instance;
3141 3150          nvme_t *nvme;
3142 3151  
3143 3152          instance = ddi_get_instance(dip);
3144 3153  
3145 3154          nvme = ddi_get_soft_state(nvme_state, instance);
3146 3155  
3147 3156          if (nvme == NULL)
3148 3157                  return (DDI_FAILURE);
3149 3158  
3150 3159          nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3151 3160  
3152 3161          (void) nvme_reset(nvme, B_TRUE);
3153 3162  
3154 3163          return (DDI_FAILURE);
3155 3164  }
3156 3165  
3157 3166  static int
3158 3167  nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
3159 3168  {
3160 3169          nvme_t *nvme = cmd->nc_nvme;
3161 3170          int nprp_page, nprp;
3162 3171          uint64_t *prp;
3163 3172  
3164 3173          if (xfer->x_ndmac == 0)
3165 3174                  return (DDI_FAILURE);
3166 3175  
3167 3176          cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
3168 3177          ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3169 3178  
3170 3179          if (xfer->x_ndmac == 1) {
3171 3180                  cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3172 3181                  return (DDI_SUCCESS);
3173 3182          } else if (xfer->x_ndmac == 2) {
3174 3183                  cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
3175 3184                  return (DDI_SUCCESS);
3176 3185          }
3177 3186  
3178 3187          xfer->x_ndmac--;
3179 3188  
3180 3189          nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1;
3181 3190          ASSERT(nprp_page > 0);
3182 3191          nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
3183 3192  
3184 3193          /*
3185 3194           * We currently don't support chained PRPs and set up our DMA
3186 3195           * attributes to reflect that. If we still get an I/O request
3187 3196           * that needs a chained PRP something is very wrong.
3188 3197           */
3189 3198          VERIFY(nprp == 1);
3190 3199  
3191 3200          cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
3192 3201          bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
3193 3202  
3194 3203          cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
3195 3204  
3196 3205          /*LINTED: E_PTR_BAD_CAST_ALIGN*/
3197 3206          for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
3198 3207              xfer->x_ndmac > 0;
3199 3208              prp++, xfer->x_ndmac--) {
3200 3209                  *prp = xfer->x_dmac.dmac_laddress;
3201 3210                  ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3202 3211          }
3203 3212  
3204 3213          (void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
3205 3214              DDI_DMA_SYNC_FORDEV);
3206 3215          return (DDI_SUCCESS);
3207 3216  }
3208 3217  
3209 3218  static nvme_cmd_t *
3210 3219  nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
3211 3220  {
3212 3221          nvme_t *nvme = ns->ns_nvme;
3213 3222          nvme_cmd_t *cmd;
3214 3223  
3215 3224          /*
3216 3225           * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
3217 3226           */
3218 3227          cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ?
3219 3228              KM_NOSLEEP : KM_SLEEP);
3220 3229  
3221 3230          if (cmd == NULL)
3222 3231                  return (NULL);
3223 3232  
3224 3233          cmd->nc_sqe.sqe_opc = opc;
3225 3234          cmd->nc_callback = nvme_bd_xfer_done;
3226 3235          cmd->nc_xfer = xfer;
3227 3236  
3228 3237          switch (opc) {
3229 3238          case NVME_OPC_NVM_WRITE:
3230 3239          case NVME_OPC_NVM_READ:
3231 3240                  VERIFY(xfer->x_nblks <= 0x10000);
3232 3241  
3233 3242                  cmd->nc_sqe.sqe_nsid = ns->ns_id;
3234 3243  
3235 3244                  cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
3236 3245                  cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
3237 3246                  cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
3238 3247  
3239 3248                  if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
3240 3249                          goto fail;
3241 3250                  break;
3242 3251  
3243 3252          case NVME_OPC_NVM_FLUSH:
3244 3253                  cmd->nc_sqe.sqe_nsid = ns->ns_id;
3245 3254                  break;
3246 3255  
3247 3256          default:
3248 3257                  goto fail;
3249 3258          }
3250 3259  
3251 3260          return (cmd);
3252 3261  
3253 3262  fail:
3254 3263          nvme_free_cmd(cmd);
3255 3264          return (NULL);
3256 3265  }
3257 3266  
3258 3267  static void
3259 3268  nvme_bd_xfer_done(void *arg)
3260 3269  {
3261 3270          nvme_cmd_t *cmd = arg;
3262 3271          bd_xfer_t *xfer = cmd->nc_xfer;
3263 3272          int error = 0;
3264 3273  
3265 3274          error = nvme_check_cmd_status(cmd);
3266 3275          nvme_free_cmd(cmd);
3267 3276  
3268 3277          bd_xfer_done(xfer, error);
3269 3278  }
3270 3279  
3271 3280  static void
3272 3281  nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
3273 3282  {
3274 3283          nvme_namespace_t *ns = arg;
3275 3284          nvme_t *nvme = ns->ns_nvme;
3276 3285  
3277 3286          /*
3278 3287           * blkdev maintains one queue size per instance (namespace),
3279 3288           * but all namespace share the I/O queues.
3280 3289           * TODO: need to figure out a sane default, or use per-NS I/O queues,
3281 3290           * or change blkdev to handle EAGAIN
3282 3291           */
3283 3292          drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len
3284 3293              / nvme->n_namespace_count;
3285 3294  
3286 3295          /*
3287 3296           * d_maxxfer is not set, which means the value is taken from the DMA
3288 3297           * attributes specified to bd_alloc_handle.
3289 3298           */
3290 3299  
3291 3300          drive->d_removable = B_FALSE;
3292 3301          drive->d_hotpluggable = B_FALSE;
3293 3302  
3294 3303          bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
3295 3304          drive->d_target = ns->ns_id;
3296 3305          drive->d_lun = 0;
3297 3306  
3298 3307          drive->d_model = nvme->n_idctl->id_model;
3299 3308          drive->d_model_len = sizeof (nvme->n_idctl->id_model);
3300 3309          drive->d_vendor = nvme->n_vendor;
3301 3310          drive->d_vendor_len = strlen(nvme->n_vendor);
3302 3311          drive->d_product = nvme->n_product;
3303 3312          drive->d_product_len = strlen(nvme->n_product);
3304 3313          drive->d_serial = nvme->n_idctl->id_serial;
3305 3314          drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
3306 3315          drive->d_revision = nvme->n_idctl->id_fwrev;
3307 3316          drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
3308 3317  }
3309 3318  
3310 3319  static int
3311 3320  nvme_bd_mediainfo(void *arg, bd_media_t *media)
3312 3321  {
3313 3322          nvme_namespace_t *ns = arg;
3314 3323  
3315 3324          media->m_nblks = ns->ns_block_count;
3316 3325          media->m_blksize = ns->ns_block_size;
3317 3326          media->m_readonly = B_FALSE;
3318 3327          media->m_solidstate = B_TRUE;
3319 3328  
3320 3329          media->m_pblksize = ns->ns_best_block_size;
3321 3330  
3322 3331          return (0);
3323 3332  }
3324 3333  
3325 3334  static int
3326 3335  nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
3327 3336  {
3328 3337          nvme_t *nvme = ns->ns_nvme;
3329 3338          nvme_cmd_t *cmd;
3330 3339          nvme_qpair_t *ioq;
3331 3340          boolean_t poll;
3332 3341          int ret;
3333 3342  
3334 3343          if (nvme->n_dead)
3335 3344                  return (EIO);
3336 3345  
3337 3346          cmd = nvme_create_nvm_cmd(ns, opc, xfer);
3338 3347          if (cmd == NULL)
3339 3348                  return (ENOMEM);
3340 3349  
3341 3350          cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
3342 3351          ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
3343 3352          ioq = nvme->n_ioq[cmd->nc_sqid];
3344 3353  
3345 3354          /*
3346 3355           * Get the polling flag before submitting the command. The command may
3347 3356           * complete immediately after it was submitted, which means we must
3348 3357           * treat both cmd and xfer as if they have been freed already.
3349 3358           */
3350 3359          poll = (xfer->x_flags & BD_XFER_POLL) != 0;
3351 3360  
3352 3361          ret = nvme_submit_io_cmd(ioq, cmd);
3353 3362  
3354 3363          if (ret != 0)
3355 3364                  return (ret);
3356 3365  
3357 3366          if (!poll)
3358 3367                  return (0);
3359 3368  
3360 3369          do {
3361 3370                  cmd = nvme_retrieve_cmd(nvme, ioq);
3362 3371                  if (cmd != NULL)
3363 3372                          nvme_bd_xfer_done(cmd);
3364 3373                  else
3365 3374                          drv_usecwait(10);
3366 3375          } while (ioq->nq_active_cmds != 0);
3367 3376  
3368 3377          return (0);
3369 3378  }
3370 3379  
3371 3380  static int
3372 3381  nvme_bd_read(void *arg, bd_xfer_t *xfer)
3373 3382  {
3374 3383          nvme_namespace_t *ns = arg;
3375 3384  
3376 3385          return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
3377 3386  }
3378 3387  
3379 3388  static int
3380 3389  nvme_bd_write(void *arg, bd_xfer_t *xfer)
3381 3390  {
3382 3391          nvme_namespace_t *ns = arg;
3383 3392  
3384 3393          return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
3385 3394  }
3386 3395  
3387 3396  static int
3388 3397  nvme_bd_sync(void *arg, bd_xfer_t *xfer)
3389 3398  {
3390 3399          nvme_namespace_t *ns = arg;
3391 3400  
3392 3401          if (ns->ns_nvme->n_dead)
3393 3402                  return (EIO);
3394 3403  
3395 3404          /*
3396 3405           * If the volatile write cache is not present or not enabled the FLUSH
3397 3406           * command is a no-op, so we can take a shortcut here.
3398 3407           */
3399 3408          if (!ns->ns_nvme->n_write_cache_present) {
3400 3409                  bd_xfer_done(xfer, ENOTSUP);
3401 3410                  return (0);
3402 3411          }
3403 3412  
3404 3413          if (!ns->ns_nvme->n_write_cache_enabled) {
3405 3414                  bd_xfer_done(xfer, 0);
3406 3415                  return (0);
3407 3416          }
3408 3417  
3409 3418          return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
3410 3419  }
3411 3420  
3412 3421  static int
3413 3422  nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
3414 3423  {
3415 3424          nvme_namespace_t *ns = arg;
3416 3425  
3417 3426          /*LINTED: E_BAD_PTR_CAST_ALIGN*/
3418 3427          if (*(uint64_t *)ns->ns_eui64 != 0) {
3419 3428                  return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
3420 3429                      sizeof (ns->ns_eui64), ns->ns_eui64, devid));
3421 3430          } else {
3422 3431                  return (ddi_devid_init(devinfo, DEVID_ENCAP,
3423 3432                      strlen(ns->ns_devid), ns->ns_devid, devid));
3424 3433          }
3425 3434  }
3426 3435  
3427 3436  static int
3428 3437  nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
3429 3438  {
3430 3439  #ifndef __lock_lint
3431 3440          _NOTE(ARGUNUSED(cred_p));
3432 3441  #endif
3433 3442          minor_t minor = getminor(*devp);
3434 3443          nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3435 3444          int nsid = NVME_MINOR_NSID(minor);
3436 3445          nvme_minor_state_t *nm;
3437 3446          int rv = 0;
3438 3447  
3439 3448          if (otyp != OTYP_CHR)
3440 3449                  return (EINVAL);
3441 3450  
3442 3451          if (nvme == NULL)
3443 3452                  return (ENXIO);
3444 3453  
3445 3454          if (nsid > nvme->n_namespace_count)
3446 3455                  return (ENXIO);
3447 3456  
3448 3457          if (nvme->n_dead)
3449 3458                  return (EIO);
3450 3459  
3451 3460          nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3452 3461  
3453 3462          mutex_enter(&nm->nm_mutex);
3454 3463          if (nm->nm_oexcl) {
3455 3464                  rv = EBUSY;
3456 3465                  goto out;
3457 3466          }
3458 3467  
3459 3468          if (flag & FEXCL) {
3460 3469                  if (nm->nm_ocnt != 0) {
3461 3470                          rv = EBUSY;
3462 3471                          goto out;
3463 3472                  }
3464 3473                  nm->nm_oexcl = B_TRUE;
3465 3474          }
3466 3475  
3467 3476          nm->nm_ocnt++;
3468 3477  
3469 3478  out:
3470 3479          mutex_exit(&nm->nm_mutex);
3471 3480          return (rv);
3472 3481  
3473 3482  }
3474 3483  
3475 3484  static int
3476 3485  nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
3477 3486  {
3478 3487  #ifndef __lock_lint
3479 3488          _NOTE(ARGUNUSED(cred_p));
3480 3489          _NOTE(ARGUNUSED(flag));
3481 3490  #endif
3482 3491          minor_t minor = getminor(dev);
3483 3492          nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3484 3493          int nsid = NVME_MINOR_NSID(minor);
3485 3494          nvme_minor_state_t *nm;
3486 3495  
3487 3496          if (otyp != OTYP_CHR)
3488 3497                  return (ENXIO);
3489 3498  
3490 3499          if (nvme == NULL)
3491 3500                  return (ENXIO);
3492 3501  
3493 3502          if (nsid > nvme->n_namespace_count)
3494 3503                  return (ENXIO);
3495 3504  
3496 3505          nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3497 3506  
3498 3507          mutex_enter(&nm->nm_mutex);
3499 3508          if (nm->nm_oexcl)
3500 3509                  nm->nm_oexcl = B_FALSE;
3501 3510  
3502 3511          ASSERT(nm->nm_ocnt > 0);
3503 3512          nm->nm_ocnt--;
3504 3513          mutex_exit(&nm->nm_mutex);
3505 3514  
3506 3515          return (0);
3507 3516  }
3508 3517  
3509 3518  static int
3510 3519  nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3511 3520      cred_t *cred_p)
3512 3521  {
3513 3522          _NOTE(ARGUNUSED(cred_p));
3514 3523          int rv = 0;
3515 3524          void *idctl;
3516 3525  
3517 3526          if ((mode & FREAD) == 0)
3518 3527                  return (EPERM);
3519 3528  
3520 3529          if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
3521 3530                  return (EINVAL);
3522 3531  
3523 3532          if ((rv = nvme_identify(nvme, nsid, (void **)&idctl)) != 0)
3524 3533                  return (rv);
3525 3534  
3526 3535          if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
3527 3536              != 0)
3528 3537                  rv = EFAULT;
3529 3538  
3530 3539          kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
3531 3540  
3532 3541          return (rv);
3533 3542  }
3534 3543  
3535 3544  static int
3536 3545  nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3537 3546      int mode, cred_t *cred_p)
3538 3547  {
3539 3548          _NOTE(ARGUNUSED(nsid, cred_p));
3540 3549          int rv = 0;
3541 3550          nvme_reg_cap_t cap = { 0 };
3542 3551          nvme_capabilities_t nc;
3543 3552  
3544 3553          if ((mode & FREAD) == 0)
3545 3554                  return (EPERM);
3546 3555  
3547 3556          if (nioc->n_len < sizeof (nc))
3548 3557                  return (EINVAL);
3549 3558  
3550 3559          cap.r = nvme_get64(nvme, NVME_REG_CAP);
3551 3560  
3552 3561          /*
3553 3562           * The MPSMIN and MPSMAX fields in the CAP register use 0 to
3554 3563           * specify the base page size of 4k (1<<12), so add 12 here to
3555 3564           * get the real page size value.
3556 3565           */
3557 3566          nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
3558 3567          nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
3559 3568  
3560 3569          if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
3561 3570                  rv = EFAULT;
3562 3571  
3563 3572          return (rv);
3564 3573  }
3565 3574  
3566 3575  static int
3567 3576  nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3568 3577      int mode, cred_t *cred_p)
3569 3578  {
3570 3579          _NOTE(ARGUNUSED(cred_p));
3571 3580          void *log = NULL;
3572 3581          size_t bufsize = 0;
3573 3582          int rv = 0;
3574 3583  
3575 3584          if ((mode & FREAD) == 0)
3576 3585                  return (EPERM);
3577 3586  
3578 3587          switch (nioc->n_arg) {
3579 3588          case NVME_LOGPAGE_ERROR:
3580 3589                  if (nsid != 0)
3581 3590                          return (EINVAL);
3582 3591                  break;
3583 3592          case NVME_LOGPAGE_HEALTH:
3584 3593                  if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
3585 3594                          return (EINVAL);
3586 3595  
3587 3596                  if (nsid == 0)
3588 3597                          nsid = (uint32_t)-1;
3589 3598  
3590 3599                  break;
3591 3600          case NVME_LOGPAGE_FWSLOT:
3592 3601                  if (nsid != 0)
3593 3602                          return (EINVAL);
3594 3603                  break;
3595 3604          default:
3596 3605                  return (EINVAL);
3597 3606          }
3598 3607  
3599 3608          if (nvme_get_logpage(nvme, &log, &bufsize, nioc->n_arg, nsid)
3600 3609              != DDI_SUCCESS)
3601 3610                  return (EIO);
3602 3611  
3603 3612          if (nioc->n_len < bufsize) {
3604 3613                  kmem_free(log, bufsize);
3605 3614                  return (EINVAL);
3606 3615          }
3607 3616  
3608 3617          if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
3609 3618                  rv = EFAULT;
3610 3619  
3611 3620          nioc->n_len = bufsize;
3612 3621          kmem_free(log, bufsize);
3613 3622  
3614 3623          return (rv);
3615 3624  }
3616 3625  
3617 3626  static int
3618 3627  nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3619 3628      int mode, cred_t *cred_p)
3620 3629  {
3621 3630          _NOTE(ARGUNUSED(cred_p));
3622 3631          void *buf = NULL;
3623 3632          size_t bufsize = 0;
3624 3633          uint32_t res = 0;
3625 3634          uint8_t feature;
3626 3635          int rv = 0;
3627 3636  
3628 3637          if ((mode & FREAD) == 0)
3629 3638                  return (EPERM);
3630 3639  
3631 3640          if ((nioc->n_arg >> 32) > 0xff)
3632 3641                  return (EINVAL);
3633 3642  
3634 3643          feature = (uint8_t)(nioc->n_arg >> 32);
3635 3644  
3636 3645          switch (feature) {
3637 3646          case NVME_FEAT_ARBITRATION:
3638 3647          case NVME_FEAT_POWER_MGMT:
3639 3648          case NVME_FEAT_TEMPERATURE:
3640 3649          case NVME_FEAT_ERROR:
3641 3650          case NVME_FEAT_NQUEUES:
3642 3651          case NVME_FEAT_INTR_COAL:
3643 3652          case NVME_FEAT_WRITE_ATOM:
3644 3653          case NVME_FEAT_ASYNC_EVENT:
3645 3654          case NVME_FEAT_PROGRESS:
3646 3655                  if (nsid != 0)
3647 3656                          return (EINVAL);
3648 3657                  break;
3649 3658  
3650 3659          case NVME_FEAT_INTR_VECT:
3651 3660                  if (nsid != 0)
3652 3661                          return (EINVAL);
3653 3662  
3654 3663                  res = nioc->n_arg & 0xffffffffUL;
3655 3664                  if (res >= nvme->n_intr_cnt)
3656 3665                          return (EINVAL);
3657 3666                  break;
3658 3667  
3659 3668          case NVME_FEAT_LBA_RANGE:
3660 3669                  if (nvme->n_lba_range_supported == B_FALSE)
3661 3670                          return (EINVAL);
3662 3671  
3663 3672                  if (nsid == 0 ||
3664 3673                      nsid > nvme->n_namespace_count)
3665 3674                          return (EINVAL);
3666 3675  
3667 3676                  break;
3668 3677  
3669 3678          case NVME_FEAT_WRITE_CACHE:
3670 3679                  if (nsid != 0)
3671 3680                          return (EINVAL);
3672 3681  
3673 3682                  if (!nvme->n_write_cache_present)
3674 3683                          return (EINVAL);
3675 3684  
3676 3685                  break;
3677 3686  
3678 3687          case NVME_FEAT_AUTO_PST:
3679 3688                  if (nsid != 0)
3680 3689                          return (EINVAL);
3681 3690  
3682 3691                  if (!nvme->n_auto_pst_supported)
3683 3692                          return (EINVAL);
3684 3693  
3685 3694                  break;
3686 3695  
3687 3696          default:
3688 3697                  return (EINVAL);
3689 3698          }
3690 3699  
3691 3700          rv = nvme_get_features(nvme, nsid, feature, &res, &buf, &bufsize);
3692 3701          if (rv != 0)
3693 3702                  return (rv);
3694 3703  
3695 3704          if (nioc->n_len < bufsize) {
3696 3705                  kmem_free(buf, bufsize);
3697 3706                  return (EINVAL);
3698 3707          }
3699 3708  
3700 3709          if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
3701 3710                  rv = EFAULT;
3702 3711  
3703 3712          kmem_free(buf, bufsize);
3704 3713          nioc->n_arg = res;
3705 3714          nioc->n_len = bufsize;
3706 3715  
3707 3716          return (rv);
3708 3717  }
3709 3718  
3710 3719  static int
3711 3720  nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3712 3721      cred_t *cred_p)
3713 3722  {
3714 3723          _NOTE(ARGUNUSED(nsid, mode, cred_p));
3715 3724  
3716 3725          if ((mode & FREAD) == 0)
3717 3726                  return (EPERM);
3718 3727  
3719 3728          nioc->n_arg = nvme->n_intr_cnt;
3720 3729          return (0);
3721 3730  }
3722 3731  
3723 3732  static int
3724 3733  nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3725 3734      cred_t *cred_p)
3726 3735  {
3727 3736          _NOTE(ARGUNUSED(nsid, cred_p));
3728 3737          int rv = 0;
3729 3738  
3730 3739          if ((mode & FREAD) == 0)
3731 3740                  return (EPERM);
3732 3741  
3733 3742          if (nioc->n_len < sizeof (nvme->n_version))
3734 3743                  return (ENOMEM);
3735 3744  
3736 3745          if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
3737 3746              sizeof (nvme->n_version), mode) != 0)
3738 3747                  rv = EFAULT;
3739 3748  
3740 3749          return (rv);
3741 3750  }
3742 3751  
3743 3752  static int
3744 3753  nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3745 3754      cred_t *cred_p)
3746 3755  {
3747 3756          _NOTE(ARGUNUSED(mode));
3748 3757          nvme_format_nvm_t frmt = { 0 };
3749 3758          int c_nsid = nsid != 0 ? nsid - 1 : 0;
3750 3759  
3751 3760          if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3752 3761                  return (EPERM);
3753 3762  
3754 3763          frmt.r = nioc->n_arg & 0xffffffff;
3755 3764  
3756 3765          /*
3757 3766           * Check whether the FORMAT NVM command is supported.
3758 3767           */
3759 3768          if (nvme->n_idctl->id_oacs.oa_format == 0)
3760 3769                  return (EINVAL);
3761 3770  
3762 3771          /*
3763 3772           * Don't allow format or secure erase of individual namespace if that
3764 3773           * would cause a format or secure erase of all namespaces.
3765 3774           */
3766 3775          if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
3767 3776                  return (EINVAL);
3768 3777  
3769 3778          if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
3770 3779              nvme->n_idctl->id_fna.fn_sec_erase != 0)
3771 3780                  return (EINVAL);
3772 3781  
3773 3782          /*
3774 3783           * Don't allow formatting with Protection Information.
3775 3784           */
3776 3785          if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
3777 3786                  return (EINVAL);
3778 3787  
3779 3788          /*
3780 3789           * Don't allow formatting using an illegal LBA format, or any LBA format
3781 3790           * that uses metadata.
3782 3791           */
3783 3792          if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf ||
3784 3793              nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
3785 3794                  return (EINVAL);
3786 3795  
3787 3796          /*
3788 3797           * Don't allow formatting using an illegal Secure Erase setting.
3789 3798           */
3790 3799          if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
3791 3800              (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
3792 3801              nvme->n_idctl->id_fna.fn_crypt_erase == 0))
3793 3802                  return (EINVAL);
3794 3803  
3795 3804          if (nsid == 0)
3796 3805                  nsid = (uint32_t)-1;
3797 3806  
3798 3807          return (nvme_format_nvm(nvme, nsid, frmt.b.fm_lbaf, B_FALSE, 0, B_FALSE,
3799 3808              frmt.b.fm_ses));
3800 3809  }
3801 3810  
3802 3811  static int
3803 3812  nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3804 3813      cred_t *cred_p)
3805 3814  {
3806 3815          _NOTE(ARGUNUSED(nioc, mode));
3807 3816          int rv = 0;
3808 3817  
3809 3818          if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3810 3819                  return (EPERM);
3811 3820  
3812 3821          if (nsid == 0)
3813 3822                  return (EINVAL);
3814 3823  
3815 3824          rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl);
3816 3825          if (rv != DDI_SUCCESS)
3817 3826                  rv = EBUSY;
3818 3827  
3819 3828          return (rv);
3820 3829  }
3821 3830  
3822 3831  static int
3823 3832  nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3824 3833      cred_t *cred_p)
3825 3834  {
3826 3835          _NOTE(ARGUNUSED(nioc, mode));
3827 3836          nvme_identify_nsid_t *idns;
3828 3837          int rv = 0;
3829 3838  
3830 3839          if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3831 3840                  return (EPERM);
3832 3841  
3833 3842          if (nsid == 0)
3834 3843                  return (EINVAL);
3835 3844  
3836 3845          /*
3837 3846           * Identify namespace again, free old identify data.
3838 3847           */
3839 3848          idns = nvme->n_ns[nsid - 1].ns_idns;
3840 3849          if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
3841 3850                  return (EIO);
3842 3851  
3843 3852          kmem_free(idns, sizeof (nvme_identify_nsid_t));
3844 3853  
3845 3854          rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl);
3846 3855          if (rv != DDI_SUCCESS)
3847 3856                  rv = EBUSY;
3848 3857  
3849 3858          return (rv);
3850 3859  }
3851 3860  
3852 3861  static int
3853 3862  nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
3854 3863      int *rval_p)
3855 3864  {
3856 3865  #ifndef __lock_lint
3857 3866          _NOTE(ARGUNUSED(rval_p));
3858 3867  #endif
3859 3868          minor_t minor = getminor(dev);
3860 3869          nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3861 3870          int nsid = NVME_MINOR_NSID(minor);
3862 3871          int rv = 0;
3863 3872          nvme_ioctl_t nioc;
3864 3873  
3865 3874          int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
3866 3875                  NULL,
3867 3876                  nvme_ioctl_identify,
3868 3877                  nvme_ioctl_identify,
3869 3878                  nvme_ioctl_capabilities,
3870 3879                  nvme_ioctl_get_logpage,
3871 3880                  nvme_ioctl_get_features,
3872 3881                  nvme_ioctl_intr_cnt,
3873 3882                  nvme_ioctl_version,
3874 3883                  nvme_ioctl_format,
3875 3884                  nvme_ioctl_detach,
3876 3885                  nvme_ioctl_attach
3877 3886          };
3878 3887  
3879 3888          if (nvme == NULL)
3880 3889                  return (ENXIO);
3881 3890  
3882 3891          if (nsid > nvme->n_namespace_count)
3883 3892                  return (ENXIO);
3884 3893  
3885 3894          if (IS_DEVCTL(cmd))
3886 3895                  return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
3887 3896  
3888 3897  #ifdef _MULTI_DATAMODEL
3889 3898          switch (ddi_model_convert_from(mode & FMODELS)) {
3890 3899          case DDI_MODEL_ILP32: {
3891 3900                  nvme_ioctl32_t nioc32;
3892 3901                  if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
3893 3902                      mode) != 0)
3894 3903                          return (EFAULT);
3895 3904                  nioc.n_len = nioc32.n_len;
3896 3905                  nioc.n_buf = nioc32.n_buf;
3897 3906                  nioc.n_arg = nioc32.n_arg;
3898 3907                  break;
3899 3908          }
3900 3909          case DDI_MODEL_NONE:
3901 3910  #endif
3902 3911                  if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
3903 3912                      != 0)
3904 3913                          return (EFAULT);
3905 3914  #ifdef _MULTI_DATAMODEL
3906 3915                  break;
3907 3916          }
3908 3917  #endif
3909 3918  
3910 3919          if (nvme->n_dead && cmd != NVME_IOC_DETACH)
3911 3920                  return (EIO);
3912 3921  
3913 3922  
3914 3923          if (cmd == NVME_IOC_IDENTIFY_CTRL) {
3915 3924                  /*
3916 3925                   * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
3917 3926                   * attachment point nodes.
3918 3927                   */
3919 3928                  nsid = 0;
3920 3929          } else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
3921 3930                  /*
3922 3931                   * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
3923 3932                   * will always return identify data for namespace 1.
3924 3933                   */
3925 3934                  nsid = 1;
3926 3935          }
3927 3936  
3928 3937          if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
3929 3938                  rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
3930 3939                      cred_p);
3931 3940          else
3932 3941                  rv = EINVAL;
3933 3942  
3934 3943  #ifdef _MULTI_DATAMODEL
3935 3944          switch (ddi_model_convert_from(mode & FMODELS)) {
3936 3945          case DDI_MODEL_ILP32: {
3937 3946                  nvme_ioctl32_t nioc32;
3938 3947  
3939 3948                  nioc32.n_len = (size32_t)nioc.n_len;
3940 3949                  nioc32.n_buf = (uintptr32_t)nioc.n_buf;
3941 3950                  nioc32.n_arg = nioc.n_arg;
3942 3951  
3943 3952                  if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
3944 3953                      mode) != 0)
3945 3954                          return (EFAULT);
3946 3955                  break;
3947 3956          }
3948 3957          case DDI_MODEL_NONE:
3949 3958  #endif
3950 3959                  if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
3951 3960                      != 0)
3952 3961                          return (EFAULT);
3953 3962  #ifdef _MULTI_DATAMODEL
3954 3963                  break;
3955 3964          }
3956 3965  #endif
3957 3966  
3958 3967          return (rv);
3959 3968  }
  
    | ↓ open down ↓ | 2073 lines elided | ↑ open up ↑ | 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX