Print this page
9446 some NVMe controllers get upset about NS ID of 0 when checking "Error Recovery" feature
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/io/nvme/nvme.c
+++ new/usr/src/uts/common/io/nvme/nvme.c
1 1 /*
2 2 * This file and its contents are supplied under the terms of the
3 3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 4 * You may only use this file in accordance with the terms of version
5 5 * 1.0 of the CDDL.
6 6 *
7 7 * A full copy of the text of the CDDL should have accompanied this
8 8 * source. A copy of the CDDL is also available via the Internet at
9 9 * http://www.illumos.org/license/CDDL.
10 10 */
11 11
12 12 /*
13 13 * Copyright 2018 Nexenta Systems, Inc.
14 14 * Copyright 2016 Tegile Systems, Inc. All rights reserved.
15 15 * Copyright (c) 2016 The MathWorks, Inc. All rights reserved.
16 16 * Copyright 2017 Joyent, Inc.
17 17 */
18 18
19 19 /*
20 20 * blkdev driver for NVMe compliant storage devices
21 21 *
22 22 * This driver was written to conform to version 1.2.1 of the NVMe
23 23 * specification. It may work with newer versions, but that is completely
24 24 * untested and disabled by default.
25 25 *
26 26 * The driver has only been tested on x86 systems and will not work on big-
27 27 * endian systems without changes to the code accessing registers and data
28 28 * structures used by the hardware.
29 29 *
30 30 *
31 31 * Interrupt Usage:
32 32 *
33 33 * The driver will use a single interrupt while configuring the device as the
34 34 * specification requires, but contrary to the specification it will try to use
35 35 * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
36 36 * will switch to multiple-message MSI(-X) if supported. The driver wants to
37 37 * have one interrupt vector per CPU, but it will work correctly if less are
38 38 * available. Interrupts can be shared by queues, the interrupt handler will
39 39 * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
40 40 * the admin queue will share an interrupt with one I/O queue. The interrupt
41 41 * handler will retrieve completed commands from all queues sharing an interrupt
42 42 * vector and will post them to a taskq for completion processing.
43 43 *
44 44 *
45 45 * Command Processing:
46 46 *
47 47 * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up
48 48 * to 65536 I/O commands. The driver will configure one I/O queue pair per
49 49 * available interrupt vector, with the queue length usually much smaller than
50 50 * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
51 51 * interrupt vectors will be used.
52 52 *
53 53 * Additionally the hardware provides a single special admin queue pair that can
54 54 * hold up to 4096 admin commands.
55 55 *
56 56 * From the hardware perspective both queues of a queue pair are independent,
57 57 * but they share some driver state: the command array (holding pointers to
58 58 * commands currently being processed by the hardware) and the active command
59 59 * counter. Access to a queue pair and the shared state is protected by
60 60 * nq_mutex.
61 61 *
62 62 * When a command is submitted to a queue pair the active command counter is
63 63 * incremented and a pointer to the command is stored in the command array. The
64 64 * array index is used as command identifier (CID) in the submission queue
65 65 * entry. Some commands may take a very long time to complete, and if the queue
66 66 * wraps around in that time a submission may find the next array slot to still
67 67 * be used by a long-running command. In this case the array is sequentially
68 68 * searched for the next free slot. The length of the command array is the same
69 69 * as the configured queue length. Queue overrun is prevented by the semaphore,
70 70 * so a command submission may block if the queue is full.
71 71 *
72 72 *
73 73 * Polled I/O Support:
74 74 *
75 75 * For kernel core dump support the driver can do polled I/O. As interrupts are
76 76 * turned off while dumping the driver will just submit a command in the regular
77 77 * way, and then repeatedly attempt a command retrieval until it gets the
78 78 * command back.
79 79 *
80 80 *
81 81 * Namespace Support:
82 82 *
83 83 * NVMe devices can have multiple namespaces, each being a independent data
84 84 * store. The driver supports multiple namespaces and creates a blkdev interface
85 85 * for each namespace found. Namespaces can have various attributes to support
86 86 * thin provisioning and protection information. This driver does not support
87 87 * any of this and ignores namespaces that have these attributes.
88 88 *
89 89 * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
90 90 * (EUI64). This driver uses the EUI64 if present to generate the devid and
91 91 * passes it to blkdev to use it in the device node names. As this is currently
92 92 * untested namespaces with EUI64 are ignored by default.
93 93 *
94 94 * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
95 95 * single controller. This is an artificial limit imposed by the driver to be
96 96 * able to address a reasonable number of controllers and namespaces using a
97 97 * 32bit minor node number.
98 98 *
99 99 *
100 100 * Minor nodes:
101 101 *
102 102 * For each NVMe device the driver exposes one minor node for the controller and
103 103 * one minor node for each namespace. The only operations supported by those
104 104 * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
105 105 * interface for the nvmeadm(1M) utility.
106 106 *
107 107 *
108 108 * Blkdev Interface:
109 109 *
110 110 * This driver uses blkdev to do all the heavy lifting involved with presenting
111 111 * a disk device to the system. As a result, the processing of I/O requests is
112 112 * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
113 113 * setup, and splitting of transfers into manageable chunks.
114 114 *
115 115 * I/O requests coming in from blkdev are turned into NVM commands and posted to
116 116 * an I/O queue. The queue is selected by taking the CPU id modulo the number of
117 117 * queues. There is currently no timeout handling of I/O commands.
118 118 *
119 119 * Blkdev also supports querying device/media information and generating a
120 120 * devid. The driver reports the best block size as determined by the namespace
121 121 * format back to blkdev as physical block size to support partition and block
122 122 * alignment. The devid is either based on the namespace EUI64, if present, or
123 123 * composed using the device vendor ID, model number, serial number, and the
124 124 * namespace ID.
125 125 *
126 126 *
127 127 * Error Handling:
128 128 *
129 129 * Error handling is currently limited to detecting fatal hardware errors,
130 130 * either by asynchronous events, or synchronously through command status or
131 131 * admin command timeouts. In case of severe errors the device is fenced off,
132 132 * all further requests will return EIO. FMA is then called to fault the device.
133 133 *
134 134 * The hardware has a limit for outstanding asynchronous event requests. Before
135 135 * this limit is known the driver assumes it is at least 1 and posts a single
136 136 * asynchronous request. Later when the limit is known more asynchronous event
137 137 * requests are posted to allow quicker reception of error information. When an
138 138 * asynchronous event is posted by the hardware the driver will parse the error
139 139 * status fields and log information or fault the device, depending on the
140 140 * severity of the asynchronous event. The asynchronous event request is then
141 141 * reused and posted to the admin queue again.
142 142 *
143 143 * On command completion the command status is checked for errors. In case of
144 144 * errors indicating a driver bug the driver panics. Almost all other error
145 145 * status values just cause EIO to be returned.
146 146 *
147 147 * Command timeouts are currently detected for all admin commands except
148 148 * asynchronous event requests. If a command times out and the hardware appears
149 149 * to be healthy the driver attempts to abort the command. The original command
150 150 * timeout is also applied to the abort command. If the abort times out too the
151 151 * driver assumes the device to be dead, fences it off, and calls FMA to retire
152 152 * it. In all other cases the aborted command should return immediately with a
153 153 * status indicating it was aborted, and the driver will wait indefinitely for
154 154 * that to happen. No timeout handling of normal I/O commands is presently done.
155 155 *
156 156 * Any command that times out due to the controller dropping dead will be put on
157 157 * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA
158 158 * memory being reused by the system and later be written to by a "dead" NVMe
159 159 * controller.
160 160 *
161 161 *
162 162 * Locking:
163 163 *
164 164 * Each queue pair has its own nq_mutex, which must be held when accessing the
165 165 * associated queue registers or the shared state of the queue pair. Callers of
166 166 * nvme_unqueue_cmd() must make sure that nq_mutex is held, while
167 167 * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of this
168 168 * themselves.
169 169 *
170 170 * Each command also has its own nc_mutex, which is associated with the
171 171 * condition variable nc_cv. It is only used on admin commands which are run
172 172 * synchronously. In that case it must be held across calls to
173 173 * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by
174 174 * nvme_admin_cmd(). It must also be held whenever the completion state of the
175 175 * command is changed or while a admin command timeout is handled.
176 176 *
177 177 * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first.
178 178 * More than one nc_mutex may only be held when aborting commands. In this case,
179 179 * the nc_mutex of the command to be aborted must be held across the call to
180 180 * nvme_abort_cmd() to prevent the command from completing while the abort is in
181 181 * progress.
182 182 *
183 183 * Each minor node has its own nm_mutex, which protects the open count nm_ocnt
184 184 * and exclusive-open flag nm_oexcl.
185 185 *
186 186 *
187 187 * Quiesce / Fast Reboot:
188 188 *
189 189 * The driver currently does not support fast reboot. A quiesce(9E) entry point
190 190 * is still provided which is used to send a shutdown notification to the
191 191 * device.
192 192 *
193 193 *
194 194 * Driver Configuration:
195 195 *
196 196 * The following driver properties can be changed to control some aspects of the
197 197 * drivers operation:
198 198 * - strict-version: can be set to 0 to allow devices conforming to newer
199 199 * versions or namespaces with EUI64 to be used
200 200 * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
201 201 * specific command status as a fatal error leading device faulting
202 202 * - admin-queue-len: the maximum length of the admin queue (16-4096)
203 203 * - io-queue-len: the maximum length of the I/O queues (16-65536)
204 204 * - async-event-limit: the maximum number of asynchronous event requests to be
205 205 * posted by the driver
206 206 * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
207 207 * cache
208 208 * - min-phys-block-size: the minimum physical block size to report to blkdev,
209 209 * which is among other things the basis for ZFS vdev ashift
210 210 *
211 211 *
212 212 * TODO:
213 213 * - figure out sane default for I/O queue depth reported to blkdev
214 214 * - FMA handling of media errors
215 215 * - support for devices supporting very large I/O requests using chained PRPs
216 216 * - support for configuring hardware parameters like interrupt coalescing
217 217 * - support for media formatting and hard partitioning into namespaces
218 218 * - support for big-endian systems
219 219 * - support for fast reboot
220 220 * - support for firmware updates
221 221 * - support for NVMe Subsystem Reset (1.1)
222 222 * - support for Scatter/Gather lists (1.1)
223 223 * - support for Reservations (1.1)
224 224 * - support for power management
225 225 */
226 226
227 227 #include <sys/byteorder.h>
228 228 #ifdef _BIG_ENDIAN
229 229 #error nvme driver needs porting for big-endian platforms
230 230 #endif
231 231
232 232 #include <sys/modctl.h>
233 233 #include <sys/conf.h>
234 234 #include <sys/devops.h>
235 235 #include <sys/ddi.h>
236 236 #include <sys/sunddi.h>
237 237 #include <sys/sunndi.h>
238 238 #include <sys/bitmap.h>
239 239 #include <sys/sysmacros.h>
240 240 #include <sys/param.h>
241 241 #include <sys/varargs.h>
242 242 #include <sys/cpuvar.h>
243 243 #include <sys/disp.h>
244 244 #include <sys/blkdev.h>
245 245 #include <sys/atomic.h>
246 246 #include <sys/archsystm.h>
247 247 #include <sys/sata/sata_hba.h>
248 248 #include <sys/stat.h>
249 249 #include <sys/policy.h>
250 250 #include <sys/list.h>
251 251
252 252 #include <sys/nvme.h>
253 253
254 254 #ifdef __x86
255 255 #include <sys/x86_archext.h>
256 256 #endif
257 257
258 258 #include "nvme_reg.h"
259 259 #include "nvme_var.h"
260 260
261 261
262 262 /* NVMe spec version supported */
263 263 static const int nvme_version_major = 1;
264 264 static const int nvme_version_minor = 2;
265 265
266 266 /* tunable for admin command timeout in seconds, default is 1s */
267 267 int nvme_admin_cmd_timeout = 1;
268 268
269 269 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
270 270 int nvme_format_cmd_timeout = 600;
271 271
272 272 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
273 273 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
274 274 static int nvme_quiesce(dev_info_t *);
275 275 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
276 276 static int nvme_setup_interrupts(nvme_t *, int, int);
277 277 static void nvme_release_interrupts(nvme_t *);
278 278 static uint_t nvme_intr(caddr_t, caddr_t);
279 279
280 280 static void nvme_shutdown(nvme_t *, int, boolean_t);
281 281 static boolean_t nvme_reset(nvme_t *, boolean_t);
282 282 static int nvme_init(nvme_t *);
283 283 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
284 284 static void nvme_free_cmd(nvme_cmd_t *);
285 285 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
286 286 bd_xfer_t *);
287 287 static void nvme_admin_cmd(nvme_cmd_t *, int);
288 288 static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *);
289 289 static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *);
290 290 static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *);
291 291 static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int);
292 292 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
293 293 static void nvme_wait_cmd(nvme_cmd_t *, uint_t);
294 294 static void nvme_wakeup_cmd(void *);
295 295 static void nvme_async_event_task(void *);
296 296
297 297 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
298 298 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
299 299 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
300 300 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
301 301 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
302 302 static inline int nvme_check_cmd_status(nvme_cmd_t *);
303 303
304 304 static int nvme_abort_cmd(nvme_cmd_t *, uint_t);
305 305 static void nvme_async_event(nvme_t *);
306 306 static int nvme_format_nvm(nvme_t *, uint32_t, uint8_t, boolean_t, uint8_t,
307 307 boolean_t, uint8_t);
308 308 static int nvme_get_logpage(nvme_t *, void **, size_t *, uint8_t, ...);
309 309 static int nvme_identify(nvme_t *, uint32_t, void **);
310 310 static int nvme_set_features(nvme_t *, uint32_t, uint8_t, uint32_t,
311 311 uint32_t *);
312 312 static int nvme_get_features(nvme_t *, uint32_t, uint8_t, uint32_t *,
313 313 void **, size_t *);
314 314 static int nvme_write_cache_set(nvme_t *, boolean_t);
315 315 static int nvme_set_nqueues(nvme_t *, uint16_t *);
316 316
317 317 static void nvme_free_dma(nvme_dma_t *);
318 318 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
319 319 nvme_dma_t **);
320 320 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
321 321 nvme_dma_t **);
322 322 static void nvme_free_qpair(nvme_qpair_t *);
323 323 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int);
324 324 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
325 325
326 326 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
327 327 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
328 328 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
329 329 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
330 330
331 331 static boolean_t nvme_check_regs_hdl(nvme_t *);
332 332 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
333 333
334 334 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
335 335
336 336 static void nvme_bd_xfer_done(void *);
337 337 static void nvme_bd_driveinfo(void *, bd_drive_t *);
338 338 static int nvme_bd_mediainfo(void *, bd_media_t *);
339 339 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
340 340 static int nvme_bd_read(void *, bd_xfer_t *);
341 341 static int nvme_bd_write(void *, bd_xfer_t *);
342 342 static int nvme_bd_sync(void *, bd_xfer_t *);
343 343 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
344 344
345 345 static int nvme_prp_dma_constructor(void *, void *, int);
346 346 static void nvme_prp_dma_destructor(void *, void *);
347 347
348 348 static void nvme_prepare_devid(nvme_t *, uint32_t);
349 349
350 350 static int nvme_open(dev_t *, int, int, cred_t *);
351 351 static int nvme_close(dev_t, int, int, cred_t *);
352 352 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
353 353
354 354 #define NVME_MINOR_INST_SHIFT 9
355 355 #define NVME_MINOR(inst, nsid) (((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
356 356 #define NVME_MINOR_INST(minor) ((minor) >> NVME_MINOR_INST_SHIFT)
357 357 #define NVME_MINOR_NSID(minor) ((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
358 358 #define NVME_MINOR_MAX (NVME_MINOR(1, 0) - 2)
359 359
360 360 static void *nvme_state;
361 361 static kmem_cache_t *nvme_cmd_cache;
362 362
363 363 /*
364 364 * DMA attributes for queue DMA memory
365 365 *
366 366 * Queue DMA memory must be page aligned. The maximum length of a queue is
367 367 * 65536 entries, and an entry can be 64 bytes long.
368 368 */
369 369 static ddi_dma_attr_t nvme_queue_dma_attr = {
370 370 .dma_attr_version = DMA_ATTR_V0,
371 371 .dma_attr_addr_lo = 0,
372 372 .dma_attr_addr_hi = 0xffffffffffffffffULL,
373 373 .dma_attr_count_max = (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
374 374 .dma_attr_align = 0x1000,
375 375 .dma_attr_burstsizes = 0x7ff,
376 376 .dma_attr_minxfer = 0x1000,
377 377 .dma_attr_maxxfer = (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
378 378 .dma_attr_seg = 0xffffffffffffffffULL,
379 379 .dma_attr_sgllen = 1,
380 380 .dma_attr_granular = 1,
381 381 .dma_attr_flags = 0,
382 382 };
383 383
384 384 /*
385 385 * DMA attributes for transfers using Physical Region Page (PRP) entries
386 386 *
387 387 * A PRP entry describes one page of DMA memory using the page size specified
388 388 * in the controller configuration's memory page size register (CC.MPS). It uses
389 389 * a 64bit base address aligned to this page size. There is no limitation on
390 390 * chaining PRPs together for arbitrarily large DMA transfers.
391 391 */
392 392 static ddi_dma_attr_t nvme_prp_dma_attr = {
393 393 .dma_attr_version = DMA_ATTR_V0,
394 394 .dma_attr_addr_lo = 0,
395 395 .dma_attr_addr_hi = 0xffffffffffffffffULL,
396 396 .dma_attr_count_max = 0xfff,
397 397 .dma_attr_align = 0x1000,
398 398 .dma_attr_burstsizes = 0x7ff,
399 399 .dma_attr_minxfer = 0x1000,
400 400 .dma_attr_maxxfer = 0x1000,
401 401 .dma_attr_seg = 0xfff,
402 402 .dma_attr_sgllen = -1,
403 403 .dma_attr_granular = 1,
404 404 .dma_attr_flags = 0,
405 405 };
406 406
407 407 /*
408 408 * DMA attributes for transfers using scatter/gather lists
409 409 *
410 410 * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
411 411 * 32bit length field. SGL Segment and SGL Last Segment entries require the
412 412 * length to be a multiple of 16 bytes.
413 413 */
414 414 static ddi_dma_attr_t nvme_sgl_dma_attr = {
415 415 .dma_attr_version = DMA_ATTR_V0,
416 416 .dma_attr_addr_lo = 0,
417 417 .dma_attr_addr_hi = 0xffffffffffffffffULL,
418 418 .dma_attr_count_max = 0xffffffffUL,
419 419 .dma_attr_align = 1,
420 420 .dma_attr_burstsizes = 0x7ff,
421 421 .dma_attr_minxfer = 0x10,
422 422 .dma_attr_maxxfer = 0xfffffffffULL,
423 423 .dma_attr_seg = 0xffffffffffffffffULL,
424 424 .dma_attr_sgllen = -1,
425 425 .dma_attr_granular = 0x10,
426 426 .dma_attr_flags = 0
427 427 };
428 428
429 429 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
430 430 .devacc_attr_version = DDI_DEVICE_ATTR_V0,
431 431 .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
432 432 .devacc_attr_dataorder = DDI_STRICTORDER_ACC
433 433 };
434 434
435 435 static struct cb_ops nvme_cb_ops = {
436 436 .cb_open = nvme_open,
437 437 .cb_close = nvme_close,
438 438 .cb_strategy = nodev,
439 439 .cb_print = nodev,
440 440 .cb_dump = nodev,
441 441 .cb_read = nodev,
442 442 .cb_write = nodev,
443 443 .cb_ioctl = nvme_ioctl,
444 444 .cb_devmap = nodev,
445 445 .cb_mmap = nodev,
446 446 .cb_segmap = nodev,
447 447 .cb_chpoll = nochpoll,
448 448 .cb_prop_op = ddi_prop_op,
449 449 .cb_str = 0,
450 450 .cb_flag = D_NEW | D_MP,
451 451 .cb_rev = CB_REV,
452 452 .cb_aread = nodev,
453 453 .cb_awrite = nodev
454 454 };
455 455
456 456 static struct dev_ops nvme_dev_ops = {
457 457 .devo_rev = DEVO_REV,
458 458 .devo_refcnt = 0,
459 459 .devo_getinfo = ddi_no_info,
460 460 .devo_identify = nulldev,
461 461 .devo_probe = nulldev,
462 462 .devo_attach = nvme_attach,
463 463 .devo_detach = nvme_detach,
464 464 .devo_reset = nodev,
465 465 .devo_cb_ops = &nvme_cb_ops,
466 466 .devo_bus_ops = NULL,
467 467 .devo_power = NULL,
468 468 .devo_quiesce = nvme_quiesce,
469 469 };
470 470
471 471 static struct modldrv nvme_modldrv = {
472 472 .drv_modops = &mod_driverops,
473 473 .drv_linkinfo = "NVMe v1.1b",
474 474 .drv_dev_ops = &nvme_dev_ops
475 475 };
476 476
477 477 static struct modlinkage nvme_modlinkage = {
478 478 .ml_rev = MODREV_1,
479 479 .ml_linkage = { &nvme_modldrv, NULL }
480 480 };
481 481
482 482 static bd_ops_t nvme_bd_ops = {
483 483 .o_version = BD_OPS_VERSION_0,
484 484 .o_drive_info = nvme_bd_driveinfo,
485 485 .o_media_info = nvme_bd_mediainfo,
486 486 .o_devid_init = nvme_bd_devid,
487 487 .o_sync_cache = nvme_bd_sync,
488 488 .o_read = nvme_bd_read,
489 489 .o_write = nvme_bd_write,
490 490 };
491 491
492 492 /*
493 493 * This list will hold commands that have timed out and couldn't be aborted.
494 494 * As we don't know what the hardware may still do with the DMA memory we can't
495 495 * free them, so we'll keep them forever on this list where we can easily look
496 496 * at them with mdb.
497 497 */
498 498 static struct list nvme_lost_cmds;
499 499 static kmutex_t nvme_lc_mutex;
500 500
501 501 int
502 502 _init(void)
503 503 {
504 504 int error;
505 505
506 506 error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
507 507 if (error != DDI_SUCCESS)
508 508 return (error);
509 509
510 510 nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
511 511 sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
512 512
513 513 mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL);
514 514 list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t),
515 515 offsetof(nvme_cmd_t, nc_list));
516 516
517 517 bd_mod_init(&nvme_dev_ops);
518 518
519 519 error = mod_install(&nvme_modlinkage);
520 520 if (error != DDI_SUCCESS) {
521 521 ddi_soft_state_fini(&nvme_state);
522 522 mutex_destroy(&nvme_lc_mutex);
523 523 list_destroy(&nvme_lost_cmds);
524 524 bd_mod_fini(&nvme_dev_ops);
525 525 }
526 526
527 527 return (error);
528 528 }
529 529
530 530 int
531 531 _fini(void)
532 532 {
533 533 int error;
534 534
535 535 if (!list_is_empty(&nvme_lost_cmds))
536 536 return (DDI_FAILURE);
537 537
538 538 error = mod_remove(&nvme_modlinkage);
539 539 if (error == DDI_SUCCESS) {
540 540 ddi_soft_state_fini(&nvme_state);
541 541 kmem_cache_destroy(nvme_cmd_cache);
542 542 mutex_destroy(&nvme_lc_mutex);
543 543 list_destroy(&nvme_lost_cmds);
544 544 bd_mod_fini(&nvme_dev_ops);
545 545 }
546 546
547 547 return (error);
548 548 }
549 549
550 550 int
551 551 _info(struct modinfo *modinfop)
552 552 {
553 553 return (mod_info(&nvme_modlinkage, modinfop));
554 554 }
555 555
556 556 static inline void
557 557 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
558 558 {
559 559 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
560 560
561 561 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
562 562 ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
563 563 }
564 564
565 565 static inline void
566 566 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
567 567 {
568 568 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
569 569
570 570 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
571 571 ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
572 572 }
573 573
574 574 static inline uint64_t
575 575 nvme_get64(nvme_t *nvme, uintptr_t reg)
576 576 {
577 577 uint64_t val;
578 578
579 579 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
580 580
581 581 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
582 582 val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
583 583
584 584 return (val);
585 585 }
586 586
587 587 static inline uint32_t
588 588 nvme_get32(nvme_t *nvme, uintptr_t reg)
589 589 {
590 590 uint32_t val;
591 591
592 592 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
593 593
594 594 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
595 595 val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
596 596
597 597 return (val);
598 598 }
599 599
600 600 static boolean_t
601 601 nvme_check_regs_hdl(nvme_t *nvme)
602 602 {
603 603 ddi_fm_error_t error;
604 604
605 605 ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
606 606
607 607 if (error.fme_status != DDI_FM_OK)
608 608 return (B_TRUE);
609 609
610 610 return (B_FALSE);
611 611 }
612 612
613 613 static boolean_t
614 614 nvme_check_dma_hdl(nvme_dma_t *dma)
615 615 {
616 616 ddi_fm_error_t error;
617 617
618 618 if (dma == NULL)
619 619 return (B_FALSE);
620 620
621 621 ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
622 622
623 623 if (error.fme_status != DDI_FM_OK)
624 624 return (B_TRUE);
625 625
626 626 return (B_FALSE);
627 627 }
628 628
629 629 static void
630 630 nvme_free_dma_common(nvme_dma_t *dma)
631 631 {
632 632 if (dma->nd_dmah != NULL)
633 633 (void) ddi_dma_unbind_handle(dma->nd_dmah);
634 634 if (dma->nd_acch != NULL)
635 635 ddi_dma_mem_free(&dma->nd_acch);
636 636 if (dma->nd_dmah != NULL)
637 637 ddi_dma_free_handle(&dma->nd_dmah);
638 638 }
639 639
640 640 static void
641 641 nvme_free_dma(nvme_dma_t *dma)
642 642 {
643 643 nvme_free_dma_common(dma);
644 644 kmem_free(dma, sizeof (*dma));
645 645 }
646 646
647 647 /* ARGSUSED */
648 648 static void
649 649 nvme_prp_dma_destructor(void *buf, void *private)
650 650 {
651 651 nvme_dma_t *dma = (nvme_dma_t *)buf;
652 652
653 653 nvme_free_dma_common(dma);
654 654 }
655 655
656 656 static int
657 657 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
658 658 size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
659 659 {
660 660 if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
661 661 &dma->nd_dmah) != DDI_SUCCESS) {
662 662 /*
663 663 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
664 664 * the only other possible error is DDI_DMA_BADATTR which
665 665 * indicates a driver bug which should cause a panic.
666 666 */
667 667 dev_err(nvme->n_dip, CE_PANIC,
668 668 "!failed to get DMA handle, check DMA attributes");
669 669 return (DDI_FAILURE);
670 670 }
671 671
672 672 /*
673 673 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
674 674 * or the flags are conflicting, which isn't the case here.
675 675 */
676 676 (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
677 677 DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
678 678 &dma->nd_len, &dma->nd_acch);
679 679
680 680 if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
681 681 dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
682 682 &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
683 683 dev_err(nvme->n_dip, CE_WARN,
684 684 "!failed to bind DMA memory");
685 685 atomic_inc_32(&nvme->n_dma_bind_err);
686 686 nvme_free_dma_common(dma);
687 687 return (DDI_FAILURE);
688 688 }
689 689
690 690 return (DDI_SUCCESS);
691 691 }
692 692
693 693 static int
694 694 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
695 695 ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
696 696 {
697 697 nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
698 698
699 699 if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
700 700 DDI_SUCCESS) {
701 701 *ret = NULL;
702 702 kmem_free(dma, sizeof (nvme_dma_t));
703 703 return (DDI_FAILURE);
704 704 }
705 705
706 706 bzero(dma->nd_memp, dma->nd_len);
707 707
708 708 *ret = dma;
709 709 return (DDI_SUCCESS);
710 710 }
711 711
712 712 /* ARGSUSED */
713 713 static int
714 714 nvme_prp_dma_constructor(void *buf, void *private, int flags)
715 715 {
716 716 nvme_dma_t *dma = (nvme_dma_t *)buf;
717 717 nvme_t *nvme = (nvme_t *)private;
718 718
719 719 dma->nd_dmah = NULL;
720 720 dma->nd_acch = NULL;
721 721
722 722 if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
723 723 DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
724 724 return (-1);
725 725 }
726 726
727 727 ASSERT(dma->nd_ncookie == 1);
728 728
729 729 dma->nd_cached = B_TRUE;
730 730
731 731 return (0);
732 732 }
733 733
734 734 static int
735 735 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
736 736 uint_t flags, nvme_dma_t **dma)
737 737 {
738 738 uint32_t len = nentry * qe_len;
739 739 ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
740 740
741 741 len = roundup(len, nvme->n_pagesize);
742 742
743 743 q_dma_attr.dma_attr_minxfer = len;
744 744
745 745 if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
746 746 != DDI_SUCCESS) {
747 747 dev_err(nvme->n_dip, CE_WARN,
748 748 "!failed to get DMA memory for queue");
749 749 goto fail;
750 750 }
751 751
752 752 if ((*dma)->nd_ncookie != 1) {
753 753 dev_err(nvme->n_dip, CE_WARN,
754 754 "!got too many cookies for queue DMA");
755 755 goto fail;
756 756 }
757 757
758 758 return (DDI_SUCCESS);
759 759
760 760 fail:
761 761 if (*dma) {
762 762 nvme_free_dma(*dma);
763 763 *dma = NULL;
764 764 }
765 765
766 766 return (DDI_FAILURE);
767 767 }
768 768
769 769 static void
770 770 nvme_free_qpair(nvme_qpair_t *qp)
771 771 {
772 772 int i;
773 773
774 774 mutex_destroy(&qp->nq_mutex);
775 775 sema_destroy(&qp->nq_sema);
776 776
777 777 if (qp->nq_sqdma != NULL)
778 778 nvme_free_dma(qp->nq_sqdma);
779 779 if (qp->nq_cqdma != NULL)
780 780 nvme_free_dma(qp->nq_cqdma);
781 781
782 782 if (qp->nq_active_cmds > 0)
783 783 for (i = 0; i != qp->nq_nentry; i++)
784 784 if (qp->nq_cmd[i] != NULL)
785 785 nvme_free_cmd(qp->nq_cmd[i]);
786 786
787 787 if (qp->nq_cmd != NULL)
788 788 kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
789 789
790 790 kmem_free(qp, sizeof (nvme_qpair_t));
791 791 }
792 792
793 793 static int
794 794 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
795 795 int idx)
796 796 {
797 797 nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
798 798
799 799 mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
800 800 DDI_INTR_PRI(nvme->n_intr_pri));
801 801 sema_init(&qp->nq_sema, nentry, NULL, SEMA_DRIVER, NULL);
802 802
803 803 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
804 804 DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
805 805 goto fail;
806 806
807 807 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
808 808 DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS)
809 809 goto fail;
810 810
811 811 qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
812 812 qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp;
813 813 qp->nq_nentry = nentry;
814 814
815 815 qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
816 816 qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx);
817 817
818 818 qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
819 819 qp->nq_next_cmd = 0;
820 820
821 821 *nqp = qp;
822 822 return (DDI_SUCCESS);
823 823
824 824 fail:
825 825 nvme_free_qpair(qp);
826 826 *nqp = NULL;
827 827
828 828 return (DDI_FAILURE);
829 829 }
830 830
831 831 static nvme_cmd_t *
832 832 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
833 833 {
834 834 nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
835 835
836 836 if (cmd == NULL)
837 837 return (cmd);
838 838
839 839 bzero(cmd, sizeof (nvme_cmd_t));
840 840
841 841 cmd->nc_nvme = nvme;
842 842
843 843 mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
844 844 DDI_INTR_PRI(nvme->n_intr_pri));
845 845 cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
846 846
847 847 return (cmd);
848 848 }
849 849
850 850 static void
851 851 nvme_free_cmd(nvme_cmd_t *cmd)
852 852 {
853 853 /* Don't free commands on the lost commands list. */
854 854 if (list_link_active(&cmd->nc_list))
855 855 return;
856 856
857 857 if (cmd->nc_dma) {
858 858 if (cmd->nc_dma->nd_cached)
859 859 kmem_cache_free(cmd->nc_nvme->n_prp_cache,
860 860 cmd->nc_dma);
861 861 else
862 862 nvme_free_dma(cmd->nc_dma);
863 863 cmd->nc_dma = NULL;
864 864 }
865 865
866 866 cv_destroy(&cmd->nc_cv);
867 867 mutex_destroy(&cmd->nc_mutex);
868 868
869 869 kmem_cache_free(nvme_cmd_cache, cmd);
870 870 }
871 871
872 872 static void
873 873 nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
874 874 {
875 875 sema_p(&qp->nq_sema);
876 876 nvme_submit_cmd_common(qp, cmd);
877 877 }
878 878
879 879 static int
880 880 nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
881 881 {
882 882 if (sema_tryp(&qp->nq_sema) == 0)
883 883 return (EAGAIN);
884 884
885 885 nvme_submit_cmd_common(qp, cmd);
886 886 return (0);
887 887 }
888 888
889 889 static void
890 890 nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd)
891 891 {
892 892 nvme_reg_sqtdbl_t tail = { 0 };
893 893
894 894 mutex_enter(&qp->nq_mutex);
895 895 cmd->nc_completed = B_FALSE;
896 896
897 897 /*
898 898 * Try to insert the cmd into the active cmd array at the nq_next_cmd
899 899 * slot. If the slot is already occupied advance to the next slot and
900 900 * try again. This can happen for long running commands like async event
901 901 * requests.
902 902 */
903 903 while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
904 904 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
905 905 qp->nq_cmd[qp->nq_next_cmd] = cmd;
906 906
907 907 qp->nq_active_cmds++;
908 908
909 909 cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
910 910 bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
911 911 (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
912 912 sizeof (nvme_sqe_t) * qp->nq_sqtail,
913 913 sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
914 914 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
915 915
916 916 tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
917 917 nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
918 918
919 919 mutex_exit(&qp->nq_mutex);
920 920 }
921 921
922 922 static nvme_cmd_t *
923 923 nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid)
924 924 {
925 925 nvme_cmd_t *cmd;
926 926
927 927 ASSERT(mutex_owned(&qp->nq_mutex));
928 928 ASSERT3S(cid, <, qp->nq_nentry);
929 929
930 930 cmd = qp->nq_cmd[cid];
931 931 qp->nq_cmd[cid] = NULL;
932 932 ASSERT3U(qp->nq_active_cmds, >, 0);
933 933 qp->nq_active_cmds--;
934 934 sema_v(&qp->nq_sema);
935 935
936 936 ASSERT3P(cmd, !=, NULL);
937 937 ASSERT3P(cmd->nc_nvme, ==, nvme);
938 938 ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid);
939 939
940 940 return (cmd);
941 941 }
942 942
943 943 static nvme_cmd_t *
944 944 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
945 945 {
946 946 nvme_reg_cqhdbl_t head = { 0 };
947 947
948 948 nvme_cqe_t *cqe;
949 949 nvme_cmd_t *cmd;
950 950
951 951 (void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0,
952 952 sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL);
953 953
954 954 mutex_enter(&qp->nq_mutex);
955 955 cqe = &qp->nq_cq[qp->nq_cqhead];
956 956
957 957 /* Check phase tag of CQE. Hardware inverts it for new entries. */
958 958 if (cqe->cqe_sf.sf_p == qp->nq_phase) {
959 959 mutex_exit(&qp->nq_mutex);
960 960 return (NULL);
961 961 }
962 962
963 963 ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp);
964 964
965 965 cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid);
966 966
967 967 ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
968 968 bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
969 969
970 970 qp->nq_sqhead = cqe->cqe_sqhd;
971 971
972 972 head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry;
973 973
974 974 /* Toggle phase on wrap-around. */
975 975 if (qp->nq_cqhead == 0)
976 976 qp->nq_phase = qp->nq_phase ? 0 : 1;
977 977
978 978 nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r);
979 979 mutex_exit(&qp->nq_mutex);
980 980
981 981 return (cmd);
982 982 }
983 983
984 984 static int
985 985 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
986 986 {
987 987 nvme_cqe_t *cqe = &cmd->nc_cqe;
988 988
989 989 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
990 990 "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
991 991 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
992 992 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
993 993 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
994 994
995 995 if (cmd->nc_xfer != NULL)
996 996 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
997 997
998 998 if (cmd->nc_nvme->n_strict_version) {
999 999 cmd->nc_nvme->n_dead = B_TRUE;
1000 1000 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1001 1001 }
1002 1002
1003 1003 return (EIO);
1004 1004 }
1005 1005
1006 1006 static int
1007 1007 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
1008 1008 {
1009 1009 nvme_cqe_t *cqe = &cmd->nc_cqe;
1010 1010
1011 1011 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1012 1012 "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1013 1013 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1014 1014 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1015 1015 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1016 1016 if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
1017 1017 cmd->nc_nvme->n_dead = B_TRUE;
1018 1018 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1019 1019 }
1020 1020
1021 1021 return (EIO);
1022 1022 }
1023 1023
1024 1024 static int
1025 1025 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
1026 1026 {
1027 1027 nvme_cqe_t *cqe = &cmd->nc_cqe;
1028 1028
1029 1029 switch (cqe->cqe_sf.sf_sc) {
1030 1030 case NVME_CQE_SC_INT_NVM_WRITE:
1031 1031 /* write fail */
1032 1032 /* TODO: post ereport */
1033 1033 if (cmd->nc_xfer != NULL)
1034 1034 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1035 1035 return (EIO);
1036 1036
1037 1037 case NVME_CQE_SC_INT_NVM_READ:
1038 1038 /* read fail */
1039 1039 /* TODO: post ereport */
1040 1040 if (cmd->nc_xfer != NULL)
1041 1041 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1042 1042 return (EIO);
1043 1043
1044 1044 default:
1045 1045 return (nvme_check_unknown_cmd_status(cmd));
1046 1046 }
1047 1047 }
1048 1048
1049 1049 static int
1050 1050 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
1051 1051 {
1052 1052 nvme_cqe_t *cqe = &cmd->nc_cqe;
1053 1053
1054 1054 switch (cqe->cqe_sf.sf_sc) {
1055 1055 case NVME_CQE_SC_GEN_SUCCESS:
1056 1056 return (0);
1057 1057
1058 1058 /*
1059 1059 * Errors indicating a bug in the driver should cause a panic.
1060 1060 */
1061 1061 case NVME_CQE_SC_GEN_INV_OPC:
1062 1062 /* Invalid Command Opcode */
1063 1063 if (!cmd->nc_dontpanic)
1064 1064 dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1065 1065 "programming error: invalid opcode in cmd %p",
1066 1066 (void *)cmd);
1067 1067 return (EINVAL);
1068 1068
1069 1069 case NVME_CQE_SC_GEN_INV_FLD:
1070 1070 /* Invalid Field in Command */
1071 1071 if (!cmd->nc_dontpanic)
1072 1072 dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1073 1073 "programming error: invalid field in cmd %p",
1074 1074 (void *)cmd);
1075 1075 return (EIO);
1076 1076
1077 1077 case NVME_CQE_SC_GEN_ID_CNFL:
1078 1078 /* Command ID Conflict */
1079 1079 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1080 1080 "cmd ID conflict in cmd %p", (void *)cmd);
1081 1081 return (0);
1082 1082
1083 1083 case NVME_CQE_SC_GEN_INV_NS:
1084 1084 /* Invalid Namespace or Format */
1085 1085 if (!cmd->nc_dontpanic)
1086 1086 dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1087 1087 "programming error: invalid NS/format in cmd %p",
1088 1088 (void *)cmd);
1089 1089 return (EINVAL);
1090 1090
1091 1091 case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
1092 1092 /* LBA Out Of Range */
1093 1093 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1094 1094 "LBA out of range in cmd %p", (void *)cmd);
1095 1095 return (0);
1096 1096
1097 1097 /*
1098 1098 * Non-fatal errors, handle gracefully.
1099 1099 */
1100 1100 case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1101 1101 /* Data Transfer Error (DMA) */
1102 1102 /* TODO: post ereport */
1103 1103 atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1104 1104 if (cmd->nc_xfer != NULL)
1105 1105 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1106 1106 return (EIO);
1107 1107
1108 1108 case NVME_CQE_SC_GEN_INTERNAL_ERR:
1109 1109 /*
1110 1110 * Internal Error. The spec (v1.0, section 4.5.1.2) says
1111 1111 * detailed error information is returned as async event,
1112 1112 * so we pretty much ignore the error here and handle it
1113 1113 * in the async event handler.
1114 1114 */
1115 1115 atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1116 1116 if (cmd->nc_xfer != NULL)
1117 1117 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1118 1118 return (EIO);
1119 1119
1120 1120 case NVME_CQE_SC_GEN_ABORT_REQUEST:
1121 1121 /*
1122 1122 * Command Abort Requested. This normally happens only when a
1123 1123 * command times out.
1124 1124 */
1125 1125 /* TODO: post ereport or change blkdev to handle this? */
1126 1126 atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1127 1127 return (ECANCELED);
1128 1128
1129 1129 case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1130 1130 /* Command Aborted due to Power Loss Notification */
1131 1131 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1132 1132 cmd->nc_nvme->n_dead = B_TRUE;
1133 1133 return (EIO);
1134 1134
1135 1135 case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1136 1136 /* Command Aborted due to SQ Deletion */
1137 1137 atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1138 1138 return (EIO);
1139 1139
1140 1140 case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1141 1141 /* Capacity Exceeded */
1142 1142 atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1143 1143 if (cmd->nc_xfer != NULL)
1144 1144 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1145 1145 return (EIO);
1146 1146
1147 1147 case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1148 1148 /* Namespace Not Ready */
1149 1149 atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1150 1150 if (cmd->nc_xfer != NULL)
1151 1151 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1152 1152 return (EIO);
1153 1153
1154 1154 default:
1155 1155 return (nvme_check_unknown_cmd_status(cmd));
1156 1156 }
1157 1157 }
1158 1158
1159 1159 static int
1160 1160 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1161 1161 {
1162 1162 nvme_cqe_t *cqe = &cmd->nc_cqe;
1163 1163
1164 1164 switch (cqe->cqe_sf.sf_sc) {
1165 1165 case NVME_CQE_SC_SPC_INV_CQ:
1166 1166 /* Completion Queue Invalid */
1167 1167 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1168 1168 atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1169 1169 return (EINVAL);
1170 1170
1171 1171 case NVME_CQE_SC_SPC_INV_QID:
1172 1172 /* Invalid Queue Identifier */
1173 1173 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1174 1174 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1175 1175 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1176 1176 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1177 1177 atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1178 1178 return (EINVAL);
1179 1179
1180 1180 case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1181 1181 /* Max Queue Size Exceeded */
1182 1182 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1183 1183 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1184 1184 atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1185 1185 return (EINVAL);
1186 1186
1187 1187 case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1188 1188 /* Abort Command Limit Exceeded */
1189 1189 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1190 1190 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1191 1191 "abort command limit exceeded in cmd %p", (void *)cmd);
1192 1192 return (0);
1193 1193
1194 1194 case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1195 1195 /* Async Event Request Limit Exceeded */
1196 1196 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1197 1197 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1198 1198 "async event request limit exceeded in cmd %p",
1199 1199 (void *)cmd);
1200 1200 return (0);
1201 1201
1202 1202 case NVME_CQE_SC_SPC_INV_INT_VECT:
1203 1203 /* Invalid Interrupt Vector */
1204 1204 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1205 1205 atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1206 1206 return (EINVAL);
1207 1207
1208 1208 case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1209 1209 /* Invalid Log Page */
1210 1210 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1211 1211 atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1212 1212 return (EINVAL);
1213 1213
1214 1214 case NVME_CQE_SC_SPC_INV_FORMAT:
1215 1215 /* Invalid Format */
1216 1216 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1217 1217 atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1218 1218 if (cmd->nc_xfer != NULL)
1219 1219 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1220 1220 return (EINVAL);
1221 1221
1222 1222 case NVME_CQE_SC_SPC_INV_Q_DEL:
1223 1223 /* Invalid Queue Deletion */
1224 1224 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1225 1225 atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1226 1226 return (EINVAL);
1227 1227
1228 1228 case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1229 1229 /* Conflicting Attributes */
1230 1230 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1231 1231 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1232 1232 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1233 1233 atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1234 1234 if (cmd->nc_xfer != NULL)
1235 1235 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1236 1236 return (EINVAL);
1237 1237
1238 1238 case NVME_CQE_SC_SPC_NVM_INV_PROT:
1239 1239 /* Invalid Protection Information */
1240 1240 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1241 1241 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1242 1242 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1243 1243 atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1244 1244 if (cmd->nc_xfer != NULL)
1245 1245 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1246 1246 return (EINVAL);
1247 1247
1248 1248 case NVME_CQE_SC_SPC_NVM_READONLY:
1249 1249 /* Write to Read Only Range */
1250 1250 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1251 1251 atomic_inc_32(&cmd->nc_nvme->n_readonly);
1252 1252 if (cmd->nc_xfer != NULL)
1253 1253 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1254 1254 return (EROFS);
1255 1255
1256 1256 default:
1257 1257 return (nvme_check_unknown_cmd_status(cmd));
1258 1258 }
1259 1259 }
1260 1260
1261 1261 static inline int
1262 1262 nvme_check_cmd_status(nvme_cmd_t *cmd)
1263 1263 {
1264 1264 nvme_cqe_t *cqe = &cmd->nc_cqe;
1265 1265
1266 1266 /*
1267 1267 * Take a shortcut if the controller is dead, or if
1268 1268 * command status indicates no error.
1269 1269 */
1270 1270 if (cmd->nc_nvme->n_dead)
1271 1271 return (EIO);
1272 1272
1273 1273 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1274 1274 cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1275 1275 return (0);
1276 1276
1277 1277 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1278 1278 return (nvme_check_generic_cmd_status(cmd));
1279 1279 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1280 1280 return (nvme_check_specific_cmd_status(cmd));
1281 1281 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1282 1282 return (nvme_check_integrity_cmd_status(cmd));
1283 1283 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1284 1284 return (nvme_check_vendor_cmd_status(cmd));
1285 1285
1286 1286 return (nvme_check_unknown_cmd_status(cmd));
1287 1287 }
1288 1288
1289 1289 static int
1290 1290 nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec)
1291 1291 {
1292 1292 nvme_t *nvme = abort_cmd->nc_nvme;
1293 1293 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1294 1294 nvme_abort_cmd_t ac = { 0 };
1295 1295 int ret = 0;
1296 1296
1297 1297 sema_p(&nvme->n_abort_sema);
1298 1298
1299 1299 ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1300 1300 ac.b.ac_sqid = abort_cmd->nc_sqid;
1301 1301
1302 1302 cmd->nc_sqid = 0;
1303 1303 cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1304 1304 cmd->nc_callback = nvme_wakeup_cmd;
1305 1305 cmd->nc_sqe.sqe_cdw10 = ac.r;
1306 1306
1307 1307 /*
1308 1308 * Send the ABORT to the hardware. The ABORT command will return _after_
1309 1309 * the aborted command has completed (aborted or otherwise), but since
1310 1310 * we still hold the aborted command's mutex its callback hasn't been
1311 1311 * processed yet.
1312 1312 */
1313 1313 nvme_admin_cmd(cmd, sec);
1314 1314 sema_v(&nvme->n_abort_sema);
1315 1315
1316 1316 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1317 1317 dev_err(nvme->n_dip, CE_WARN,
1318 1318 "!ABORT failed with sct = %x, sc = %x",
1319 1319 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1320 1320 atomic_inc_32(&nvme->n_abort_failed);
1321 1321 } else {
1322 1322 dev_err(nvme->n_dip, CE_WARN,
1323 1323 "!ABORT of command %d/%d %ssuccessful",
1324 1324 abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid,
1325 1325 cmd->nc_cqe.cqe_dw0 & 1 ? "un" : "");
1326 1326 if ((cmd->nc_cqe.cqe_dw0 & 1) == 0)
1327 1327 atomic_inc_32(&nvme->n_cmd_aborted);
1328 1328 }
1329 1329
1330 1330 nvme_free_cmd(cmd);
1331 1331 return (ret);
1332 1332 }
1333 1333
1334 1334 /*
1335 1335 * nvme_wait_cmd -- wait for command completion or timeout
1336 1336 *
1337 1337 * In case of a serious error or a timeout of the abort command the hardware
1338 1338 * will be declared dead and FMA will be notified.
1339 1339 */
1340 1340 static void
1341 1341 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1342 1342 {
1343 1343 clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1344 1344 nvme_t *nvme = cmd->nc_nvme;
1345 1345 nvme_reg_csts_t csts;
1346 1346 nvme_qpair_t *qp;
1347 1347
1348 1348 ASSERT(mutex_owned(&cmd->nc_mutex));
1349 1349
1350 1350 while (!cmd->nc_completed) {
1351 1351 if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1352 1352 break;
1353 1353 }
1354 1354
1355 1355 if (cmd->nc_completed)
1356 1356 return;
1357 1357
1358 1358 /*
1359 1359 * The command timed out.
1360 1360 *
1361 1361 * Check controller for fatal status, any errors associated with the
1362 1362 * register or DMA handle, or for a double timeout (abort command timed
1363 1363 * out). If necessary log a warning and call FMA.
1364 1364 */
1365 1365 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1366 1366 dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, "
1367 1367 "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
1368 1368 cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1369 1369 atomic_inc_32(&nvme->n_cmd_timeout);
1370 1370
1371 1371 if (csts.b.csts_cfs ||
1372 1372 nvme_check_regs_hdl(nvme) ||
1373 1373 nvme_check_dma_hdl(cmd->nc_dma) ||
1374 1374 cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1375 1375 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1376 1376 nvme->n_dead = B_TRUE;
1377 1377 } else if (nvme_abort_cmd(cmd, sec) == 0) {
1378 1378 /*
1379 1379 * If the abort succeeded the command should complete
1380 1380 * immediately with an appropriate status.
1381 1381 */
1382 1382 while (!cmd->nc_completed)
1383 1383 cv_wait(&cmd->nc_cv, &cmd->nc_mutex);
1384 1384
1385 1385 return;
1386 1386 }
1387 1387
1388 1388 qp = nvme->n_ioq[cmd->nc_sqid];
1389 1389
1390 1390 mutex_enter(&qp->nq_mutex);
1391 1391 (void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
1392 1392 mutex_exit(&qp->nq_mutex);
1393 1393
1394 1394 /*
1395 1395 * As we don't know what the presumed dead hardware might still do with
1396 1396 * the DMA memory, we'll put the command on the lost commands list if it
1397 1397 * has any DMA memory.
1398 1398 */
1399 1399 if (cmd->nc_dma != NULL) {
1400 1400 mutex_enter(&nvme_lc_mutex);
1401 1401 list_insert_head(&nvme_lost_cmds, cmd);
1402 1402 mutex_exit(&nvme_lc_mutex);
1403 1403 }
1404 1404 }
1405 1405
1406 1406 static void
1407 1407 nvme_wakeup_cmd(void *arg)
1408 1408 {
1409 1409 nvme_cmd_t *cmd = arg;
1410 1410
1411 1411 mutex_enter(&cmd->nc_mutex);
1412 1412 cmd->nc_completed = B_TRUE;
1413 1413 cv_signal(&cmd->nc_cv);
1414 1414 mutex_exit(&cmd->nc_mutex);
1415 1415 }
1416 1416
1417 1417 static void
1418 1418 nvme_async_event_task(void *arg)
1419 1419 {
1420 1420 nvme_cmd_t *cmd = arg;
1421 1421 nvme_t *nvme = cmd->nc_nvme;
1422 1422 nvme_error_log_entry_t *error_log = NULL;
1423 1423 nvme_health_log_t *health_log = NULL;
1424 1424 size_t logsize = 0;
1425 1425 nvme_async_event_t event;
1426 1426
1427 1427 /*
1428 1428 * Check for errors associated with the async request itself. The only
1429 1429 * command-specific error is "async event limit exceeded", which
1430 1430 * indicates a programming error in the driver and causes a panic in
1431 1431 * nvme_check_cmd_status().
1432 1432 *
1433 1433 * Other possible errors are various scenarios where the async request
1434 1434 * was aborted, or internal errors in the device. Internal errors are
1435 1435 * reported to FMA, the command aborts need no special handling here.
1436 1436 *
1437 1437 * And finally, at least qemu nvme does not support async events,
1438 1438 * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we
1439 1439 * will avoid posting async events.
1440 1440 */
1441 1441
1442 1442 if (nvme_check_cmd_status(cmd) != 0) {
1443 1443 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1444 1444 "!async event request returned failure, sct = %x, "
1445 1445 "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1446 1446 cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1447 1447 cmd->nc_cqe.cqe_sf.sf_m);
1448 1448
1449 1449 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1450 1450 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1451 1451 cmd->nc_nvme->n_dead = B_TRUE;
1452 1452 ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1453 1453 DDI_SERVICE_LOST);
1454 1454 }
1455 1455
1456 1456 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1457 1457 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC &&
1458 1458 cmd->nc_cqe.cqe_sf.sf_dnr == 1) {
1459 1459 nvme->n_async_event_supported = B_FALSE;
1460 1460 }
1461 1461
1462 1462 nvme_free_cmd(cmd);
1463 1463 return;
1464 1464 }
1465 1465
1466 1466
1467 1467 event.r = cmd->nc_cqe.cqe_dw0;
1468 1468
1469 1469 /* Clear CQE and re-submit the async request. */
1470 1470 bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1471 1471 nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1472 1472
1473 1473 switch (event.b.ae_type) {
1474 1474 case NVME_ASYNC_TYPE_ERROR:
1475 1475 if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1476 1476 (void) nvme_get_logpage(nvme, (void **)&error_log,
1477 1477 &logsize, event.b.ae_logpage);
1478 1478 } else {
1479 1479 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1480 1480 "async event reply: %d", event.b.ae_logpage);
1481 1481 atomic_inc_32(&nvme->n_wrong_logpage);
1482 1482 }
1483 1483
1484 1484 switch (event.b.ae_info) {
1485 1485 case NVME_ASYNC_ERROR_INV_SQ:
1486 1486 dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1487 1487 "invalid submission queue");
1488 1488 return;
1489 1489
1490 1490 case NVME_ASYNC_ERROR_INV_DBL:
1491 1491 dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1492 1492 "invalid doorbell write value");
1493 1493 return;
1494 1494
1495 1495 case NVME_ASYNC_ERROR_DIAGFAIL:
1496 1496 dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1497 1497 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1498 1498 nvme->n_dead = B_TRUE;
1499 1499 atomic_inc_32(&nvme->n_diagfail_event);
1500 1500 break;
1501 1501
1502 1502 case NVME_ASYNC_ERROR_PERSISTENT:
1503 1503 dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1504 1504 "device error");
1505 1505 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1506 1506 nvme->n_dead = B_TRUE;
1507 1507 atomic_inc_32(&nvme->n_persistent_event);
1508 1508 break;
1509 1509
1510 1510 case NVME_ASYNC_ERROR_TRANSIENT:
1511 1511 dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1512 1512 "device error");
1513 1513 /* TODO: send ereport */
1514 1514 atomic_inc_32(&nvme->n_transient_event);
1515 1515 break;
1516 1516
1517 1517 case NVME_ASYNC_ERROR_FW_LOAD:
1518 1518 dev_err(nvme->n_dip, CE_WARN,
1519 1519 "!firmware image load error");
1520 1520 atomic_inc_32(&nvme->n_fw_load_event);
1521 1521 break;
1522 1522 }
1523 1523 break;
1524 1524
1525 1525 case NVME_ASYNC_TYPE_HEALTH:
1526 1526 if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1527 1527 (void) nvme_get_logpage(nvme, (void **)&health_log,
1528 1528 &logsize, event.b.ae_logpage, -1);
1529 1529 } else {
1530 1530 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1531 1531 "async event reply: %d", event.b.ae_logpage);
1532 1532 atomic_inc_32(&nvme->n_wrong_logpage);
1533 1533 }
1534 1534
1535 1535 switch (event.b.ae_info) {
1536 1536 case NVME_ASYNC_HEALTH_RELIABILITY:
1537 1537 dev_err(nvme->n_dip, CE_WARN,
1538 1538 "!device reliability compromised");
1539 1539 /* TODO: send ereport */
1540 1540 atomic_inc_32(&nvme->n_reliability_event);
1541 1541 break;
1542 1542
1543 1543 case NVME_ASYNC_HEALTH_TEMPERATURE:
1544 1544 dev_err(nvme->n_dip, CE_WARN,
1545 1545 "!temperature above threshold");
1546 1546 /* TODO: send ereport */
1547 1547 atomic_inc_32(&nvme->n_temperature_event);
1548 1548 break;
1549 1549
1550 1550 case NVME_ASYNC_HEALTH_SPARE:
1551 1551 dev_err(nvme->n_dip, CE_WARN,
1552 1552 "!spare space below threshold");
1553 1553 /* TODO: send ereport */
1554 1554 atomic_inc_32(&nvme->n_spare_event);
1555 1555 break;
1556 1556 }
1557 1557 break;
1558 1558
1559 1559 case NVME_ASYNC_TYPE_VENDOR:
1560 1560 dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1561 1561 "received, info = %x, logpage = %x", event.b.ae_info,
1562 1562 event.b.ae_logpage);
1563 1563 atomic_inc_32(&nvme->n_vendor_event);
1564 1564 break;
1565 1565
1566 1566 default:
1567 1567 dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1568 1568 "type = %x, info = %x, logpage = %x", event.b.ae_type,
1569 1569 event.b.ae_info, event.b.ae_logpage);
1570 1570 atomic_inc_32(&nvme->n_unknown_event);
1571 1571 break;
1572 1572 }
1573 1573
1574 1574 if (error_log)
1575 1575 kmem_free(error_log, logsize);
1576 1576
1577 1577 if (health_log)
1578 1578 kmem_free(health_log, logsize);
1579 1579 }
1580 1580
1581 1581 static void
1582 1582 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1583 1583 {
1584 1584 mutex_enter(&cmd->nc_mutex);
1585 1585 nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd);
1586 1586 nvme_wait_cmd(cmd, sec);
1587 1587 mutex_exit(&cmd->nc_mutex);
1588 1588 }
1589 1589
1590 1590 static void
1591 1591 nvme_async_event(nvme_t *nvme)
1592 1592 {
1593 1593 nvme_cmd_t *cmd;
1594 1594
1595 1595 cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1596 1596 cmd->nc_sqid = 0;
1597 1597 cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1598 1598 cmd->nc_callback = nvme_async_event_task;
1599 1599 cmd->nc_dontpanic = B_TRUE;
1600 1600
1601 1601 nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1602 1602 }
1603 1603
1604 1604 static int
1605 1605 nvme_format_nvm(nvme_t *nvme, uint32_t nsid, uint8_t lbaf, boolean_t ms,
1606 1606 uint8_t pi, boolean_t pil, uint8_t ses)
1607 1607 {
1608 1608 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1609 1609 nvme_format_nvm_t format_nvm = { 0 };
1610 1610 int ret;
1611 1611
1612 1612 format_nvm.b.fm_lbaf = lbaf & 0xf;
1613 1613 format_nvm.b.fm_ms = ms ? 1 : 0;
1614 1614 format_nvm.b.fm_pi = pi & 0x7;
1615 1615 format_nvm.b.fm_pil = pil ? 1 : 0;
1616 1616 format_nvm.b.fm_ses = ses & 0x7;
1617 1617
1618 1618 cmd->nc_sqid = 0;
1619 1619 cmd->nc_callback = nvme_wakeup_cmd;
1620 1620 cmd->nc_sqe.sqe_nsid = nsid;
1621 1621 cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
1622 1622 cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
1623 1623
1624 1624 /*
1625 1625 * Some devices like Samsung SM951 don't allow formatting of all
1626 1626 * namespaces in one command. Handle that gracefully.
1627 1627 */
1628 1628 if (nsid == (uint32_t)-1)
1629 1629 cmd->nc_dontpanic = B_TRUE;
1630 1630
1631 1631 nvme_admin_cmd(cmd, nvme_format_cmd_timeout);
1632 1632
1633 1633 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1634 1634 dev_err(nvme->n_dip, CE_WARN,
1635 1635 "!FORMAT failed with sct = %x, sc = %x",
1636 1636 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1637 1637 }
1638 1638
1639 1639 nvme_free_cmd(cmd);
1640 1640 return (ret);
1641 1641 }
1642 1642
1643 1643 static int
1644 1644 nvme_get_logpage(nvme_t *nvme, void **buf, size_t *bufsize, uint8_t logpage,
1645 1645 ...)
1646 1646 {
1647 1647 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1648 1648 nvme_getlogpage_t getlogpage = { 0 };
1649 1649 va_list ap;
1650 1650 int ret;
1651 1651
1652 1652 va_start(ap, logpage);
1653 1653
1654 1654 cmd->nc_sqid = 0;
1655 1655 cmd->nc_callback = nvme_wakeup_cmd;
1656 1656 cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1657 1657
1658 1658 getlogpage.b.lp_lid = logpage;
1659 1659
1660 1660 switch (logpage) {
1661 1661 case NVME_LOGPAGE_ERROR:
1662 1662 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1663 1663 /*
1664 1664 * The GET LOG PAGE command can use at most 2 pages to return
1665 1665 * data, PRP lists are not supported.
1666 1666 */
1667 1667 *bufsize = MIN(2 * nvme->n_pagesize,
1668 1668 nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
1669 1669 break;
1670 1670
1671 1671 case NVME_LOGPAGE_HEALTH:
1672 1672 cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1673 1673 *bufsize = sizeof (nvme_health_log_t);
1674 1674 break;
1675 1675
1676 1676 case NVME_LOGPAGE_FWSLOT:
1677 1677 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1678 1678 *bufsize = sizeof (nvme_fwslot_log_t);
1679 1679 break;
1680 1680
1681 1681 default:
1682 1682 dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1683 1683 logpage);
1684 1684 atomic_inc_32(&nvme->n_unknown_logpage);
1685 1685 ret = EINVAL;
1686 1686 goto fail;
1687 1687 }
1688 1688
1689 1689 va_end(ap);
1690 1690
1691 1691 getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
1692 1692
1693 1693 cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1694 1694
1695 1695 if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t),
1696 1696 DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1697 1697 dev_err(nvme->n_dip, CE_WARN,
1698 1698 "!nvme_zalloc_dma failed for GET LOG PAGE");
1699 1699 ret = ENOMEM;
1700 1700 goto fail;
1701 1701 }
1702 1702
1703 1703 if (cmd->nc_dma->nd_ncookie > 2) {
1704 1704 dev_err(nvme->n_dip, CE_WARN,
1705 1705 "!too many DMA cookies for GET LOG PAGE");
1706 1706 atomic_inc_32(&nvme->n_too_many_cookies);
1707 1707 ret = ENOMEM;
1708 1708 goto fail;
1709 1709 }
1710 1710
1711 1711 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1712 1712 if (cmd->nc_dma->nd_ncookie > 1) {
1713 1713 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1714 1714 &cmd->nc_dma->nd_cookie);
1715 1715 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1716 1716 cmd->nc_dma->nd_cookie.dmac_laddress;
1717 1717 }
1718 1718
1719 1719 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1720 1720
1721 1721 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1722 1722 dev_err(nvme->n_dip, CE_WARN,
1723 1723 "!GET LOG PAGE failed with sct = %x, sc = %x",
1724 1724 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1725 1725 goto fail;
1726 1726 }
1727 1727
1728 1728 *buf = kmem_alloc(*bufsize, KM_SLEEP);
1729 1729 bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1730 1730
1731 1731 fail:
1732 1732 nvme_free_cmd(cmd);
1733 1733
1734 1734 return (ret);
1735 1735 }
1736 1736
1737 1737 static int
1738 1738 nvme_identify(nvme_t *nvme, uint32_t nsid, void **buf)
1739 1739 {
1740 1740 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1741 1741 int ret;
1742 1742
1743 1743 if (buf == NULL)
1744 1744 return (EINVAL);
1745 1745
1746 1746 cmd->nc_sqid = 0;
1747 1747 cmd->nc_callback = nvme_wakeup_cmd;
1748 1748 cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
1749 1749 cmd->nc_sqe.sqe_nsid = nsid;
1750 1750 cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
1751 1751
1752 1752 if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
1753 1753 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1754 1754 dev_err(nvme->n_dip, CE_WARN,
1755 1755 "!nvme_zalloc_dma failed for IDENTIFY");
1756 1756 ret = ENOMEM;
1757 1757 goto fail;
1758 1758 }
1759 1759
1760 1760 if (cmd->nc_dma->nd_ncookie > 2) {
1761 1761 dev_err(nvme->n_dip, CE_WARN,
1762 1762 "!too many DMA cookies for IDENTIFY");
1763 1763 atomic_inc_32(&nvme->n_too_many_cookies);
1764 1764 ret = ENOMEM;
1765 1765 goto fail;
1766 1766 }
1767 1767
1768 1768 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1769 1769 if (cmd->nc_dma->nd_ncookie > 1) {
1770 1770 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1771 1771 &cmd->nc_dma->nd_cookie);
1772 1772 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1773 1773 cmd->nc_dma->nd_cookie.dmac_laddress;
1774 1774 }
1775 1775
1776 1776 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1777 1777
1778 1778 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1779 1779 dev_err(nvme->n_dip, CE_WARN,
1780 1780 "!IDENTIFY failed with sct = %x, sc = %x",
1781 1781 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1782 1782 goto fail;
1783 1783 }
1784 1784
1785 1785 *buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
1786 1786 bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE);
1787 1787
1788 1788 fail:
1789 1789 nvme_free_cmd(cmd);
1790 1790
1791 1791 return (ret);
1792 1792 }
1793 1793
1794 1794 static int
1795 1795 nvme_set_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t val,
1796 1796 uint32_t *res)
1797 1797 {
1798 1798 _NOTE(ARGUNUSED(nsid));
1799 1799 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1800 1800 int ret = EINVAL;
1801 1801
1802 1802 ASSERT(res != NULL);
1803 1803
1804 1804 cmd->nc_sqid = 0;
1805 1805 cmd->nc_callback = nvme_wakeup_cmd;
1806 1806 cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
1807 1807 cmd->nc_sqe.sqe_cdw10 = feature;
1808 1808 cmd->nc_sqe.sqe_cdw11 = val;
1809 1809
1810 1810 switch (feature) {
1811 1811 case NVME_FEAT_WRITE_CACHE:
1812 1812 if (!nvme->n_write_cache_present)
1813 1813 goto fail;
1814 1814 break;
1815 1815
1816 1816 case NVME_FEAT_NQUEUES:
1817 1817 break;
1818 1818
1819 1819 default:
1820 1820 goto fail;
1821 1821 }
1822 1822
1823 1823 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1824 1824
1825 1825 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1826 1826 dev_err(nvme->n_dip, CE_WARN,
1827 1827 "!SET FEATURES %d failed with sct = %x, sc = %x",
1828 1828 feature, cmd->nc_cqe.cqe_sf.sf_sct,
1829 1829 cmd->nc_cqe.cqe_sf.sf_sc);
1830 1830 goto fail;
1831 1831 }
1832 1832
1833 1833 *res = cmd->nc_cqe.cqe_dw0;
1834 1834
1835 1835 fail:
1836 1836 nvme_free_cmd(cmd);
1837 1837 return (ret);
1838 1838 }
1839 1839
1840 1840 static int
1841 1841 nvme_get_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t *res,
1842 1842 void **buf, size_t *bufsize)
1843 1843 {
1844 1844 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1845 1845 int ret = EINVAL;
1846 1846
1847 1847 ASSERT(res != NULL);
1848 1848
1849 1849 if (bufsize != NULL)
1850 1850 *bufsize = 0;
1851 1851
1852 1852 cmd->nc_sqid = 0;
1853 1853 cmd->nc_callback = nvme_wakeup_cmd;
1854 1854 cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
1855 1855 cmd->nc_sqe.sqe_cdw10 = feature;
1856 1856 cmd->nc_sqe.sqe_cdw11 = *res;
1857 1857
1858 1858 /*
↓ open down ↓ |
1858 lines elided |
↑ open up ↑ |
1859 1859 * For some of the optional features there doesn't seem to be a method
1860 1860 * of detecting whether it is supported other than using it. This will
1861 1861 * cause "Invalid Field in Command" error, which is normally considered
1862 1862 * a programming error. Set the nc_dontpanic flag to override the panic
1863 1863 * in nvme_check_generic_cmd_status().
1864 1864 */
1865 1865 switch (feature) {
1866 1866 case NVME_FEAT_ARBITRATION:
1867 1867 case NVME_FEAT_POWER_MGMT:
1868 1868 case NVME_FEAT_TEMPERATURE:
1869 - case NVME_FEAT_ERROR:
1870 1869 case NVME_FEAT_NQUEUES:
1871 1870 case NVME_FEAT_INTR_COAL:
1872 1871 case NVME_FEAT_INTR_VECT:
1873 1872 case NVME_FEAT_WRITE_ATOM:
1874 1873 case NVME_FEAT_ASYNC_EVENT:
1875 1874 break;
1876 1875
1876 + case NVME_FEAT_ERROR:
1877 + /*
1878 + * Some controllers (e.g. INTEL SSDPE2KX010T7) get upset if
1879 + * namespace ID of 0 is specified. As we don't currently report
1880 + * the "Deallocated or Unwritten Logical Block Error Enable",
1881 + * simply set the NS ID to 1.
1882 + */
1883 + cmd->nc_sqe.sqe_nsid = 1;
1884 + break;
1885 +
1877 1886 case NVME_FEAT_WRITE_CACHE:
1878 1887 if (!nvme->n_write_cache_present)
1879 1888 goto fail;
1880 1889 break;
1881 1890
1882 1891 case NVME_FEAT_LBA_RANGE:
1883 1892 if (!nvme->n_lba_range_supported)
1884 1893 goto fail;
1885 1894
1886 1895 cmd->nc_dontpanic = B_TRUE;
1887 1896 cmd->nc_sqe.sqe_nsid = nsid;
1888 1897 ASSERT(bufsize != NULL);
1889 1898 *bufsize = NVME_LBA_RANGE_BUFSIZE;
1890 1899 break;
1891 1900
1892 1901 case NVME_FEAT_AUTO_PST:
1893 1902 if (!nvme->n_auto_pst_supported)
1894 1903 goto fail;
1895 1904
1896 1905 ASSERT(bufsize != NULL);
1897 1906 *bufsize = NVME_AUTO_PST_BUFSIZE;
1898 1907 break;
1899 1908
1900 1909 case NVME_FEAT_PROGRESS:
1901 1910 if (!nvme->n_progress_supported)
1902 1911 goto fail;
1903 1912
1904 1913 cmd->nc_dontpanic = B_TRUE;
1905 1914 break;
1906 1915
1907 1916 default:
1908 1917 goto fail;
1909 1918 }
1910 1919
1911 1920 if (bufsize != NULL && *bufsize != 0) {
1912 1921 if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
1913 1922 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1914 1923 dev_err(nvme->n_dip, CE_WARN,
1915 1924 "!nvme_zalloc_dma failed for GET FEATURES");
1916 1925 ret = ENOMEM;
1917 1926 goto fail;
1918 1927 }
1919 1928
1920 1929 if (cmd->nc_dma->nd_ncookie > 2) {
1921 1930 dev_err(nvme->n_dip, CE_WARN,
1922 1931 "!too many DMA cookies for GET FEATURES");
1923 1932 atomic_inc_32(&nvme->n_too_many_cookies);
1924 1933 ret = ENOMEM;
1925 1934 goto fail;
1926 1935 }
1927 1936
1928 1937 cmd->nc_sqe.sqe_dptr.d_prp[0] =
1929 1938 cmd->nc_dma->nd_cookie.dmac_laddress;
1930 1939 if (cmd->nc_dma->nd_ncookie > 1) {
1931 1940 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1932 1941 &cmd->nc_dma->nd_cookie);
1933 1942 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1934 1943 cmd->nc_dma->nd_cookie.dmac_laddress;
1935 1944 }
1936 1945 }
1937 1946
1938 1947 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1939 1948
1940 1949 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1941 1950 boolean_t known = B_TRUE;
1942 1951
1943 1952 /* Check if this is unsupported optional feature */
1944 1953 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1945 1954 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD) {
1946 1955 switch (feature) {
1947 1956 case NVME_FEAT_LBA_RANGE:
1948 1957 nvme->n_lba_range_supported = B_FALSE;
1949 1958 break;
1950 1959 case NVME_FEAT_PROGRESS:
1951 1960 nvme->n_progress_supported = B_FALSE;
1952 1961 break;
1953 1962 default:
1954 1963 known = B_FALSE;
1955 1964 break;
1956 1965 }
1957 1966 } else {
1958 1967 known = B_FALSE;
1959 1968 }
1960 1969
1961 1970 /* Report the error otherwise */
1962 1971 if (!known) {
1963 1972 dev_err(nvme->n_dip, CE_WARN,
1964 1973 "!GET FEATURES %d failed with sct = %x, sc = %x",
1965 1974 feature, cmd->nc_cqe.cqe_sf.sf_sct,
1966 1975 cmd->nc_cqe.cqe_sf.sf_sc);
1967 1976 }
1968 1977
1969 1978 goto fail;
1970 1979 }
1971 1980
1972 1981 if (bufsize != NULL && *bufsize != 0) {
1973 1982 ASSERT(buf != NULL);
1974 1983 *buf = kmem_alloc(*bufsize, KM_SLEEP);
1975 1984 bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1976 1985 }
1977 1986
1978 1987 *res = cmd->nc_cqe.cqe_dw0;
1979 1988
1980 1989 fail:
1981 1990 nvme_free_cmd(cmd);
1982 1991 return (ret);
1983 1992 }
1984 1993
1985 1994 static int
1986 1995 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
1987 1996 {
1988 1997 nvme_write_cache_t nwc = { 0 };
1989 1998
1990 1999 if (enable)
1991 2000 nwc.b.wc_wce = 1;
1992 2001
1993 2002 return (nvme_set_features(nvme, 0, NVME_FEAT_WRITE_CACHE, nwc.r,
1994 2003 &nwc.r));
1995 2004 }
1996 2005
1997 2006 static int
1998 2007 nvme_set_nqueues(nvme_t *nvme, uint16_t *nqueues)
1999 2008 {
2000 2009 nvme_nqueues_t nq = { 0 };
2001 2010 int ret;
2002 2011
2003 2012 nq.b.nq_nsq = nq.b.nq_ncq = *nqueues - 1;
2004 2013
2005 2014 ret = nvme_set_features(nvme, 0, NVME_FEAT_NQUEUES, nq.r, &nq.r);
2006 2015
2007 2016 if (ret == 0) {
2008 2017 /*
2009 2018 * Always use the same number of submission and completion
2010 2019 * queues, and never use more than the requested number of
2011 2020 * queues.
2012 2021 */
2013 2022 *nqueues = MIN(*nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1);
2014 2023 }
2015 2024
2016 2025 return (ret);
2017 2026 }
2018 2027
2019 2028 static int
2020 2029 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
2021 2030 {
2022 2031 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2023 2032 nvme_create_queue_dw10_t dw10 = { 0 };
2024 2033 nvme_create_cq_dw11_t c_dw11 = { 0 };
2025 2034 nvme_create_sq_dw11_t s_dw11 = { 0 };
2026 2035 int ret;
2027 2036
2028 2037 dw10.b.q_qid = idx;
2029 2038 dw10.b.q_qsize = qp->nq_nentry - 1;
2030 2039
2031 2040 c_dw11.b.cq_pc = 1;
2032 2041 c_dw11.b.cq_ien = 1;
2033 2042 c_dw11.b.cq_iv = idx % nvme->n_intr_cnt;
2034 2043
2035 2044 cmd->nc_sqid = 0;
2036 2045 cmd->nc_callback = nvme_wakeup_cmd;
2037 2046 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
2038 2047 cmd->nc_sqe.sqe_cdw10 = dw10.r;
2039 2048 cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
2040 2049 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress;
2041 2050
2042 2051 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2043 2052
2044 2053 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2045 2054 dev_err(nvme->n_dip, CE_WARN,
2046 2055 "!CREATE CQUEUE failed with sct = %x, sc = %x",
2047 2056 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2048 2057 goto fail;
2049 2058 }
2050 2059
2051 2060 nvme_free_cmd(cmd);
2052 2061
2053 2062 s_dw11.b.sq_pc = 1;
2054 2063 s_dw11.b.sq_cqid = idx;
2055 2064
2056 2065 cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2057 2066 cmd->nc_sqid = 0;
2058 2067 cmd->nc_callback = nvme_wakeup_cmd;
2059 2068 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2060 2069 cmd->nc_sqe.sqe_cdw10 = dw10.r;
2061 2070 cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2062 2071 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2063 2072
2064 2073 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2065 2074
2066 2075 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2067 2076 dev_err(nvme->n_dip, CE_WARN,
2068 2077 "!CREATE SQUEUE failed with sct = %x, sc = %x",
2069 2078 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2070 2079 goto fail;
2071 2080 }
2072 2081
2073 2082 fail:
2074 2083 nvme_free_cmd(cmd);
2075 2084
2076 2085 return (ret);
2077 2086 }
2078 2087
2079 2088 static boolean_t
2080 2089 nvme_reset(nvme_t *nvme, boolean_t quiesce)
2081 2090 {
2082 2091 nvme_reg_csts_t csts;
2083 2092 int i;
2084 2093
2085 2094 nvme_put32(nvme, NVME_REG_CC, 0);
2086 2095
2087 2096 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2088 2097 if (csts.b.csts_rdy == 1) {
2089 2098 nvme_put32(nvme, NVME_REG_CC, 0);
2090 2099 for (i = 0; i != nvme->n_timeout * 10; i++) {
2091 2100 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2092 2101 if (csts.b.csts_rdy == 0)
2093 2102 break;
2094 2103
2095 2104 if (quiesce)
2096 2105 drv_usecwait(50000);
2097 2106 else
2098 2107 delay(drv_usectohz(50000));
2099 2108 }
2100 2109 }
2101 2110
2102 2111 nvme_put32(nvme, NVME_REG_AQA, 0);
2103 2112 nvme_put32(nvme, NVME_REG_ASQ, 0);
2104 2113 nvme_put32(nvme, NVME_REG_ACQ, 0);
2105 2114
2106 2115 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2107 2116 return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2108 2117 }
2109 2118
2110 2119 static void
2111 2120 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2112 2121 {
2113 2122 nvme_reg_cc_t cc;
2114 2123 nvme_reg_csts_t csts;
2115 2124 int i;
2116 2125
2117 2126 ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2118 2127
2119 2128 cc.r = nvme_get32(nvme, NVME_REG_CC);
2120 2129 cc.b.cc_shn = mode & 0x3;
2121 2130 nvme_put32(nvme, NVME_REG_CC, cc.r);
2122 2131
2123 2132 for (i = 0; i != 10; i++) {
2124 2133 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2125 2134 if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2126 2135 break;
2127 2136
2128 2137 if (quiesce)
2129 2138 drv_usecwait(100000);
2130 2139 else
2131 2140 delay(drv_usectohz(100000));
2132 2141 }
2133 2142 }
2134 2143
2135 2144
2136 2145 static void
2137 2146 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2138 2147 {
2139 2148 /*
2140 2149 * Section 7.7 of the spec describes how to get a unique ID for
2141 2150 * the controller: the vendor ID, the model name and the serial
2142 2151 * number shall be unique when combined.
2143 2152 *
2144 2153 * If a namespace has no EUI64 we use the above and add the hex
2145 2154 * namespace ID to get a unique ID for the namespace.
2146 2155 */
2147 2156 char model[sizeof (nvme->n_idctl->id_model) + 1];
2148 2157 char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2149 2158
2150 2159 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2151 2160 bcopy(nvme->n_idctl->id_serial, serial,
2152 2161 sizeof (nvme->n_idctl->id_serial));
2153 2162
2154 2163 model[sizeof (nvme->n_idctl->id_model)] = '\0';
2155 2164 serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2156 2165
2157 2166 nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2158 2167 nvme->n_idctl->id_vid, model, serial, nsid);
2159 2168 }
2160 2169
2161 2170 static int
2162 2171 nvme_init_ns(nvme_t *nvme, int nsid)
2163 2172 {
2164 2173 nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2165 2174 nvme_identify_nsid_t *idns;
2166 2175 int last_rp;
2167 2176
2168 2177 ns->ns_nvme = nvme;
2169 2178
2170 2179 if (nvme_identify(nvme, nsid, (void **)&idns) != 0) {
2171 2180 dev_err(nvme->n_dip, CE_WARN,
2172 2181 "!failed to identify namespace %d", nsid);
2173 2182 return (DDI_FAILURE);
2174 2183 }
2175 2184
2176 2185 ns->ns_idns = idns;
2177 2186 ns->ns_id = nsid;
2178 2187 ns->ns_block_count = idns->id_nsize;
2179 2188 ns->ns_block_size =
2180 2189 1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2181 2190 ns->ns_best_block_size = ns->ns_block_size;
2182 2191
2183 2192 /*
2184 2193 * Get the EUI64 if present. Use it for devid and device node names.
2185 2194 */
2186 2195 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2187 2196 bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2188 2197
2189 2198 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
2190 2199 if (*(uint64_t *)ns->ns_eui64 != 0) {
2191 2200 uint8_t *eui64 = ns->ns_eui64;
2192 2201
2193 2202 (void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2194 2203 "%02x%02x%02x%02x%02x%02x%02x%02x",
2195 2204 eui64[0], eui64[1], eui64[2], eui64[3],
2196 2205 eui64[4], eui64[5], eui64[6], eui64[7]);
2197 2206 } else {
2198 2207 (void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2199 2208 ns->ns_id);
2200 2209
2201 2210 nvme_prepare_devid(nvme, ns->ns_id);
2202 2211 }
2203 2212
2204 2213 /*
2205 2214 * Find the LBA format with no metadata and the best relative
2206 2215 * performance. A value of 3 means "degraded", 0 is best.
2207 2216 */
2208 2217 last_rp = 3;
2209 2218 for (int j = 0; j <= idns->id_nlbaf; j++) {
2210 2219 if (idns->id_lbaf[j].lbaf_lbads == 0)
2211 2220 break;
2212 2221 if (idns->id_lbaf[j].lbaf_ms != 0)
2213 2222 continue;
2214 2223 if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2215 2224 continue;
2216 2225 last_rp = idns->id_lbaf[j].lbaf_rp;
2217 2226 ns->ns_best_block_size =
2218 2227 1 << idns->id_lbaf[j].lbaf_lbads;
2219 2228 }
2220 2229
2221 2230 if (ns->ns_best_block_size < nvme->n_min_block_size)
2222 2231 ns->ns_best_block_size = nvme->n_min_block_size;
2223 2232
2224 2233 /*
2225 2234 * We currently don't support namespaces that use either:
2226 2235 * - thin provisioning
2227 2236 * - protection information
2228 2237 * - illegal block size (< 512)
2229 2238 */
2230 2239 if (idns->id_nsfeat.f_thin ||
2231 2240 idns->id_dps.dp_pinfo) {
2232 2241 dev_err(nvme->n_dip, CE_WARN,
2233 2242 "!ignoring namespace %d, unsupported features: "
2234 2243 "thin = %d, pinfo = %d", nsid,
2235 2244 idns->id_nsfeat.f_thin, idns->id_dps.dp_pinfo);
2236 2245 ns->ns_ignore = B_TRUE;
2237 2246 } else if (ns->ns_block_size < 512) {
2238 2247 dev_err(nvme->n_dip, CE_WARN,
2239 2248 "!ignoring namespace %d, unsupported block size %"PRIu64,
2240 2249 nsid, (uint64_t)ns->ns_block_size);
2241 2250 ns->ns_ignore = B_TRUE;
2242 2251 } else {
2243 2252 ns->ns_ignore = B_FALSE;
2244 2253 }
2245 2254
2246 2255 return (DDI_SUCCESS);
2247 2256 }
2248 2257
2249 2258 static int
2250 2259 nvme_init(nvme_t *nvme)
2251 2260 {
2252 2261 nvme_reg_cc_t cc = { 0 };
2253 2262 nvme_reg_aqa_t aqa = { 0 };
2254 2263 nvme_reg_asq_t asq = { 0 };
2255 2264 nvme_reg_acq_t acq = { 0 };
2256 2265 nvme_reg_cap_t cap;
2257 2266 nvme_reg_vs_t vs;
2258 2267 nvme_reg_csts_t csts;
2259 2268 int i = 0;
2260 2269 uint16_t nqueues;
2261 2270 char model[sizeof (nvme->n_idctl->id_model) + 1];
2262 2271 char *vendor, *product;
2263 2272
2264 2273 /* Check controller version */
2265 2274 vs.r = nvme_get32(nvme, NVME_REG_VS);
2266 2275 nvme->n_version.v_major = vs.b.vs_mjr;
2267 2276 nvme->n_version.v_minor = vs.b.vs_mnr;
2268 2277 dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2269 2278 nvme->n_version.v_major, nvme->n_version.v_minor);
2270 2279
2271 2280 if (NVME_VERSION_HIGHER(&nvme->n_version,
2272 2281 nvme_version_major, nvme_version_minor)) {
2273 2282 dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.%d",
2274 2283 nvme_version_major, nvme_version_minor);
2275 2284 if (nvme->n_strict_version)
2276 2285 goto fail;
2277 2286 }
2278 2287
2279 2288 /* retrieve controller configuration */
2280 2289 cap.r = nvme_get64(nvme, NVME_REG_CAP);
2281 2290
2282 2291 if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2283 2292 dev_err(nvme->n_dip, CE_WARN,
2284 2293 "!NVM command set not supported by hardware");
2285 2294 goto fail;
2286 2295 }
2287 2296
2288 2297 nvme->n_nssr_supported = cap.b.cap_nssrs;
2289 2298 nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2290 2299 nvme->n_timeout = cap.b.cap_to;
2291 2300 nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2292 2301 nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2293 2302 nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2294 2303
2295 2304 /*
2296 2305 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2297 2306 * the base page size of 4k (1<<12), so add 12 here to get the real
2298 2307 * page size value.
2299 2308 */
2300 2309 nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2301 2310 cap.b.cap_mpsmax + 12);
2302 2311 nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2303 2312
2304 2313 /*
2305 2314 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2306 2315 */
2307 2316 nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2308 2317 nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2309 2318
2310 2319 /*
2311 2320 * Set up PRP DMA to transfer 1 page-aligned page at a time.
2312 2321 * Maxxfer may be increased after we identified the controller limits.
2313 2322 */
2314 2323 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2315 2324 nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2316 2325 nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2317 2326 nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2318 2327
2319 2328 /*
2320 2329 * Reset controller if it's still in ready state.
2321 2330 */
2322 2331 if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2323 2332 dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2324 2333 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2325 2334 nvme->n_dead = B_TRUE;
2326 2335 goto fail;
2327 2336 }
2328 2337
2329 2338 /*
2330 2339 * Create the admin queue pair.
2331 2340 */
2332 2341 if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2333 2342 != DDI_SUCCESS) {
2334 2343 dev_err(nvme->n_dip, CE_WARN,
2335 2344 "!unable to allocate admin qpair");
2336 2345 goto fail;
2337 2346 }
2338 2347 nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2339 2348 nvme->n_ioq[0] = nvme->n_adminq;
2340 2349
2341 2350 nvme->n_progress |= NVME_ADMIN_QUEUE;
2342 2351
2343 2352 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2344 2353 "admin-queue-len", nvme->n_admin_queue_len);
2345 2354
2346 2355 aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
2347 2356 asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
2348 2357 acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress;
2349 2358
2350 2359 ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
2351 2360 ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
2352 2361
2353 2362 nvme_put32(nvme, NVME_REG_AQA, aqa.r);
2354 2363 nvme_put64(nvme, NVME_REG_ASQ, asq);
2355 2364 nvme_put64(nvme, NVME_REG_ACQ, acq);
2356 2365
2357 2366 cc.b.cc_ams = 0; /* use Round-Robin arbitration */
2358 2367 cc.b.cc_css = 0; /* use NVM command set */
2359 2368 cc.b.cc_mps = nvme->n_pageshift - 12;
2360 2369 cc.b.cc_shn = 0; /* no shutdown in progress */
2361 2370 cc.b.cc_en = 1; /* enable controller */
2362 2371 cc.b.cc_iosqes = 6; /* submission queue entry is 2^6 bytes long */
2363 2372 cc.b.cc_iocqes = 4; /* completion queue entry is 2^4 bytes long */
2364 2373
2365 2374 nvme_put32(nvme, NVME_REG_CC, cc.r);
2366 2375
2367 2376 /*
2368 2377 * Wait for the controller to become ready.
2369 2378 */
2370 2379 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2371 2380 if (csts.b.csts_rdy == 0) {
2372 2381 for (i = 0; i != nvme->n_timeout * 10; i++) {
2373 2382 delay(drv_usectohz(50000));
2374 2383 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2375 2384
2376 2385 if (csts.b.csts_cfs == 1) {
2377 2386 dev_err(nvme->n_dip, CE_WARN,
2378 2387 "!controller fatal status at init");
2379 2388 ddi_fm_service_impact(nvme->n_dip,
2380 2389 DDI_SERVICE_LOST);
2381 2390 nvme->n_dead = B_TRUE;
2382 2391 goto fail;
2383 2392 }
2384 2393
2385 2394 if (csts.b.csts_rdy == 1)
2386 2395 break;
2387 2396 }
2388 2397 }
2389 2398
2390 2399 if (csts.b.csts_rdy == 0) {
2391 2400 dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
2392 2401 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2393 2402 nvme->n_dead = B_TRUE;
2394 2403 goto fail;
2395 2404 }
2396 2405
2397 2406 /*
2398 2407 * Assume an abort command limit of 1. We'll destroy and re-init
2399 2408 * that later when we know the true abort command limit.
2400 2409 */
2401 2410 sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
2402 2411
2403 2412 /*
2404 2413 * Setup initial interrupt for admin queue.
2405 2414 */
2406 2415 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
2407 2416 != DDI_SUCCESS) &&
2408 2417 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
2409 2418 != DDI_SUCCESS) &&
2410 2419 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
2411 2420 != DDI_SUCCESS)) {
2412 2421 dev_err(nvme->n_dip, CE_WARN,
2413 2422 "!failed to setup initial interrupt");
2414 2423 goto fail;
2415 2424 }
2416 2425
2417 2426 /*
2418 2427 * Post an asynchronous event command to catch errors.
2419 2428 * We assume the asynchronous events are supported as required by
2420 2429 * specification (Figure 40 in section 5 of NVMe 1.2).
2421 2430 * However, since at least qemu does not follow the specification,
2422 2431 * we need a mechanism to protect ourselves.
2423 2432 */
2424 2433 nvme->n_async_event_supported = B_TRUE;
2425 2434 nvme_async_event(nvme);
2426 2435
2427 2436 /*
2428 2437 * Identify Controller
2429 2438 */
2430 2439 if (nvme_identify(nvme, 0, (void **)&nvme->n_idctl) != 0) {
2431 2440 dev_err(nvme->n_dip, CE_WARN,
2432 2441 "!failed to identify controller");
2433 2442 goto fail;
2434 2443 }
2435 2444
2436 2445 /*
2437 2446 * Get Vendor & Product ID
2438 2447 */
2439 2448 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2440 2449 model[sizeof (nvme->n_idctl->id_model)] = '\0';
2441 2450 sata_split_model(model, &vendor, &product);
2442 2451
2443 2452 if (vendor == NULL)
2444 2453 nvme->n_vendor = strdup("NVMe");
2445 2454 else
2446 2455 nvme->n_vendor = strdup(vendor);
2447 2456
2448 2457 nvme->n_product = strdup(product);
2449 2458
2450 2459 /*
2451 2460 * Get controller limits.
2452 2461 */
2453 2462 nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
2454 2463 MIN(nvme->n_admin_queue_len / 10,
2455 2464 MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
2456 2465
2457 2466 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2458 2467 "async-event-limit", nvme->n_async_event_limit);
2459 2468
2460 2469 nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
2461 2470
2462 2471 /*
2463 2472 * Reinitialize the semaphore with the true abort command limit
2464 2473 * supported by the hardware. It's not necessary to disable interrupts
2465 2474 * as only command aborts use the semaphore, and no commands are
2466 2475 * executed or aborted while we're here.
2467 2476 */
2468 2477 sema_destroy(&nvme->n_abort_sema);
2469 2478 sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
2470 2479 SEMA_DRIVER, NULL);
2471 2480
2472 2481 nvme->n_progress |= NVME_CTRL_LIMITS;
2473 2482
2474 2483 if (nvme->n_idctl->id_mdts == 0)
2475 2484 nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
2476 2485 else
2477 2486 nvme->n_max_data_transfer_size =
2478 2487 1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
2479 2488
2480 2489 nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
2481 2490
2482 2491 /*
2483 2492 * Limit n_max_data_transfer_size to what we can handle in one PRP.
2484 2493 * Chained PRPs are currently unsupported.
2485 2494 *
2486 2495 * This is a no-op on hardware which doesn't support a transfer size
2487 2496 * big enough to require chained PRPs.
2488 2497 */
2489 2498 nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
2490 2499 (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
2491 2500
2492 2501 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
2493 2502
2494 2503 /*
2495 2504 * Make sure the minimum/maximum queue entry sizes are not
2496 2505 * larger/smaller than the default.
2497 2506 */
2498 2507
2499 2508 if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
2500 2509 ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
2501 2510 ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
2502 2511 ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
2503 2512 goto fail;
2504 2513
2505 2514 /*
2506 2515 * Check for the presence of a Volatile Write Cache. If present,
2507 2516 * enable or disable based on the value of the property
2508 2517 * volatile-write-cache-enable (default is enabled).
2509 2518 */
2510 2519 nvme->n_write_cache_present =
2511 2520 nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
2512 2521
2513 2522 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2514 2523 "volatile-write-cache-present",
2515 2524 nvme->n_write_cache_present ? 1 : 0);
2516 2525
2517 2526 if (!nvme->n_write_cache_present) {
2518 2527 nvme->n_write_cache_enabled = B_FALSE;
2519 2528 } else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)
2520 2529 != 0) {
2521 2530 dev_err(nvme->n_dip, CE_WARN,
2522 2531 "!failed to %sable volatile write cache",
2523 2532 nvme->n_write_cache_enabled ? "en" : "dis");
2524 2533 /*
2525 2534 * Assume the cache is (still) enabled.
2526 2535 */
2527 2536 nvme->n_write_cache_enabled = B_TRUE;
2528 2537 }
2529 2538
2530 2539 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2531 2540 "volatile-write-cache-enable",
2532 2541 nvme->n_write_cache_enabled ? 1 : 0);
2533 2542
2534 2543 /*
2535 2544 * Assume LBA Range Type feature is supported. If it isn't this
2536 2545 * will be set to B_FALSE by nvme_get_features().
2537 2546 */
2538 2547 nvme->n_lba_range_supported = B_TRUE;
2539 2548
2540 2549 /*
2541 2550 * Check support for Autonomous Power State Transition.
2542 2551 */
2543 2552 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2544 2553 nvme->n_auto_pst_supported =
2545 2554 nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
2546 2555
2547 2556 /*
2548 2557 * Assume Software Progress Marker feature is supported. If it isn't
2549 2558 * this will be set to B_FALSE by nvme_get_features().
2550 2559 */
2551 2560 nvme->n_progress_supported = B_TRUE;
2552 2561
2553 2562 /*
2554 2563 * Identify Namespaces
2555 2564 */
2556 2565 nvme->n_namespace_count = nvme->n_idctl->id_nn;
2557 2566 if (nvme->n_namespace_count > NVME_MINOR_MAX) {
2558 2567 dev_err(nvme->n_dip, CE_WARN,
2559 2568 "!too many namespaces: %d, limiting to %d\n",
2560 2569 nvme->n_namespace_count, NVME_MINOR_MAX);
2561 2570 nvme->n_namespace_count = NVME_MINOR_MAX;
2562 2571 }
2563 2572
2564 2573 nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2565 2574 nvme->n_namespace_count, KM_SLEEP);
2566 2575
2567 2576 for (i = 0; i != nvme->n_namespace_count; i++) {
2568 2577 mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER,
2569 2578 NULL);
2570 2579 if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
2571 2580 goto fail;
2572 2581 }
2573 2582
2574 2583 /*
2575 2584 * Try to set up MSI/MSI-X interrupts.
2576 2585 */
2577 2586 if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2578 2587 != 0) {
2579 2588 nvme_release_interrupts(nvme);
2580 2589
2581 2590 nqueues = MIN(UINT16_MAX, ncpus);
2582 2591
2583 2592 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2584 2593 nqueues) != DDI_SUCCESS) &&
2585 2594 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2586 2595 nqueues) != DDI_SUCCESS)) {
2587 2596 dev_err(nvme->n_dip, CE_WARN,
2588 2597 "!failed to setup MSI/MSI-X interrupts");
2589 2598 goto fail;
2590 2599 }
2591 2600 }
2592 2601
2593 2602 nqueues = nvme->n_intr_cnt;
2594 2603
2595 2604 /*
2596 2605 * Create I/O queue pairs.
2597 2606 */
2598 2607
2599 2608 if (nvme_set_nqueues(nvme, &nqueues) != 0) {
2600 2609 dev_err(nvme->n_dip, CE_WARN,
2601 2610 "!failed to set number of I/O queues to %d",
2602 2611 nvme->n_intr_cnt);
2603 2612 goto fail;
2604 2613 }
2605 2614
2606 2615 /*
2607 2616 * Reallocate I/O queue array
2608 2617 */
2609 2618 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
2610 2619 nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
2611 2620 (nqueues + 1), KM_SLEEP);
2612 2621 nvme->n_ioq[0] = nvme->n_adminq;
2613 2622
2614 2623 nvme->n_ioq_count = nqueues;
2615 2624
2616 2625 /*
2617 2626 * If we got less queues than we asked for we might as well give
2618 2627 * some of the interrupt vectors back to the system.
2619 2628 */
2620 2629 if (nvme->n_ioq_count < nvme->n_intr_cnt) {
2621 2630 nvme_release_interrupts(nvme);
2622 2631
2623 2632 if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
2624 2633 nvme->n_ioq_count) != DDI_SUCCESS) {
2625 2634 dev_err(nvme->n_dip, CE_WARN,
2626 2635 "!failed to reduce number of interrupts");
2627 2636 goto fail;
2628 2637 }
2629 2638 }
2630 2639
2631 2640 /*
2632 2641 * Alloc & register I/O queue pairs
2633 2642 */
2634 2643 nvme->n_io_queue_len =
2635 2644 MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries);
2636 2645 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len",
2637 2646 nvme->n_io_queue_len);
2638 2647
2639 2648 for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2640 2649 if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len,
2641 2650 &nvme->n_ioq[i], i) != DDI_SUCCESS) {
2642 2651 dev_err(nvme->n_dip, CE_WARN,
2643 2652 "!unable to allocate I/O qpair %d", i);
2644 2653 goto fail;
2645 2654 }
2646 2655
2647 2656 if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) {
2648 2657 dev_err(nvme->n_dip, CE_WARN,
2649 2658 "!unable to create I/O qpair %d", i);
2650 2659 goto fail;
2651 2660 }
2652 2661 }
2653 2662
2654 2663 /*
2655 2664 * Post more asynchronous events commands to reduce event reporting
2656 2665 * latency as suggested by the spec.
2657 2666 */
2658 2667 if (nvme->n_async_event_supported) {
2659 2668 for (i = 1; i != nvme->n_async_event_limit; i++)
2660 2669 nvme_async_event(nvme);
2661 2670 }
2662 2671
2663 2672 return (DDI_SUCCESS);
2664 2673
2665 2674 fail:
2666 2675 (void) nvme_reset(nvme, B_FALSE);
2667 2676 return (DDI_FAILURE);
2668 2677 }
2669 2678
2670 2679 static uint_t
2671 2680 nvme_intr(caddr_t arg1, caddr_t arg2)
2672 2681 {
2673 2682 /*LINTED: E_PTR_BAD_CAST_ALIGN*/
2674 2683 nvme_t *nvme = (nvme_t *)arg1;
2675 2684 int inum = (int)(uintptr_t)arg2;
2676 2685 int ccnt = 0;
2677 2686 int qnum;
2678 2687 nvme_cmd_t *cmd;
2679 2688
2680 2689 if (inum >= nvme->n_intr_cnt)
2681 2690 return (DDI_INTR_UNCLAIMED);
2682 2691
2683 2692 if (nvme->n_dead)
2684 2693 return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ?
2685 2694 DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED);
2686 2695
2687 2696 /*
2688 2697 * The interrupt vector a queue uses is calculated as queue_idx %
2689 2698 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
2690 2699 * in steps of n_intr_cnt to process all queues using this vector.
2691 2700 */
2692 2701 for (qnum = inum;
2693 2702 qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL;
2694 2703 qnum += nvme->n_intr_cnt) {
2695 2704 while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) {
2696 2705 taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq,
2697 2706 cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
2698 2707 ccnt++;
2699 2708 }
2700 2709 }
2701 2710
2702 2711 return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2703 2712 }
2704 2713
2705 2714 static void
2706 2715 nvme_release_interrupts(nvme_t *nvme)
2707 2716 {
2708 2717 int i;
2709 2718
2710 2719 for (i = 0; i < nvme->n_intr_cnt; i++) {
2711 2720 if (nvme->n_inth[i] == NULL)
2712 2721 break;
2713 2722
2714 2723 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2715 2724 (void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
2716 2725 else
2717 2726 (void) ddi_intr_disable(nvme->n_inth[i]);
2718 2727
2719 2728 (void) ddi_intr_remove_handler(nvme->n_inth[i]);
2720 2729 (void) ddi_intr_free(nvme->n_inth[i]);
2721 2730 }
2722 2731
2723 2732 kmem_free(nvme->n_inth, nvme->n_inth_sz);
2724 2733 nvme->n_inth = NULL;
2725 2734 nvme->n_inth_sz = 0;
2726 2735
2727 2736 nvme->n_progress &= ~NVME_INTERRUPTS;
2728 2737 }
2729 2738
2730 2739 static int
2731 2740 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
2732 2741 {
2733 2742 int nintrs, navail, count;
2734 2743 int ret;
2735 2744 int i;
2736 2745
2737 2746 if (nvme->n_intr_types == 0) {
2738 2747 ret = ddi_intr_get_supported_types(nvme->n_dip,
2739 2748 &nvme->n_intr_types);
2740 2749 if (ret != DDI_SUCCESS) {
2741 2750 dev_err(nvme->n_dip, CE_WARN,
2742 2751 "!%s: ddi_intr_get_supported types failed",
2743 2752 __func__);
2744 2753 return (ret);
2745 2754 }
2746 2755 #ifdef __x86
2747 2756 if (get_hwenv() == HW_VMWARE)
2748 2757 nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
2749 2758 #endif
2750 2759 }
2751 2760
2752 2761 if ((nvme->n_intr_types & intr_type) == 0)
2753 2762 return (DDI_FAILURE);
2754 2763
2755 2764 ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
2756 2765 if (ret != DDI_SUCCESS) {
2757 2766 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
2758 2767 __func__);
2759 2768 return (ret);
2760 2769 }
2761 2770
2762 2771 ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
2763 2772 if (ret != DDI_SUCCESS) {
2764 2773 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
2765 2774 __func__);
2766 2775 return (ret);
2767 2776 }
2768 2777
2769 2778 /* We want at most one interrupt per queue pair. */
2770 2779 if (navail > nqpairs)
2771 2780 navail = nqpairs;
2772 2781
2773 2782 nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
2774 2783 nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
2775 2784
2776 2785 ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
2777 2786 &count, 0);
2778 2787 if (ret != DDI_SUCCESS) {
2779 2788 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
2780 2789 __func__);
2781 2790 goto fail;
2782 2791 }
2783 2792
2784 2793 nvme->n_intr_cnt = count;
2785 2794
2786 2795 ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
2787 2796 if (ret != DDI_SUCCESS) {
2788 2797 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
2789 2798 __func__);
2790 2799 goto fail;
2791 2800 }
2792 2801
2793 2802 for (i = 0; i < count; i++) {
2794 2803 ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
2795 2804 (void *)nvme, (void *)(uintptr_t)i);
2796 2805 if (ret != DDI_SUCCESS) {
2797 2806 dev_err(nvme->n_dip, CE_WARN,
2798 2807 "!%s: ddi_intr_add_handler failed", __func__);
2799 2808 goto fail;
2800 2809 }
2801 2810 }
2802 2811
2803 2812 (void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
2804 2813
2805 2814 for (i = 0; i < count; i++) {
2806 2815 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2807 2816 ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
2808 2817 else
2809 2818 ret = ddi_intr_enable(nvme->n_inth[i]);
2810 2819
2811 2820 if (ret != DDI_SUCCESS) {
2812 2821 dev_err(nvme->n_dip, CE_WARN,
2813 2822 "!%s: enabling interrupt %d failed", __func__, i);
2814 2823 goto fail;
2815 2824 }
2816 2825 }
2817 2826
2818 2827 nvme->n_intr_type = intr_type;
2819 2828
2820 2829 nvme->n_progress |= NVME_INTERRUPTS;
2821 2830
2822 2831 return (DDI_SUCCESS);
2823 2832
2824 2833 fail:
2825 2834 nvme_release_interrupts(nvme);
2826 2835
2827 2836 return (ret);
2828 2837 }
2829 2838
2830 2839 static int
2831 2840 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
2832 2841 {
2833 2842 _NOTE(ARGUNUSED(arg));
2834 2843
2835 2844 pci_ereport_post(dip, fm_error, NULL);
2836 2845 return (fm_error->fme_status);
2837 2846 }
2838 2847
2839 2848 static int
2840 2849 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2841 2850 {
2842 2851 nvme_t *nvme;
2843 2852 int instance;
2844 2853 int nregs;
2845 2854 off_t regsize;
2846 2855 int i;
2847 2856 char name[32];
2848 2857
2849 2858 if (cmd != DDI_ATTACH)
2850 2859 return (DDI_FAILURE);
2851 2860
2852 2861 instance = ddi_get_instance(dip);
2853 2862
2854 2863 if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
2855 2864 return (DDI_FAILURE);
2856 2865
2857 2866 nvme = ddi_get_soft_state(nvme_state, instance);
2858 2867 ddi_set_driver_private(dip, nvme);
2859 2868 nvme->n_dip = dip;
2860 2869
2861 2870 mutex_init(&nvme->n_minor.nm_mutex, NULL, MUTEX_DRIVER, NULL);
2862 2871
2863 2872 nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2864 2873 DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
2865 2874 nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
2866 2875 dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
2867 2876 B_TRUE : B_FALSE;
2868 2877 nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2869 2878 DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
2870 2879 nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2871 2880 DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN);
2872 2881 nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2873 2882 DDI_PROP_DONTPASS, "async-event-limit",
2874 2883 NVME_DEFAULT_ASYNC_EVENT_LIMIT);
2875 2884 nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2876 2885 DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
2877 2886 B_TRUE : B_FALSE;
2878 2887 nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2879 2888 DDI_PROP_DONTPASS, "min-phys-block-size",
2880 2889 NVME_DEFAULT_MIN_BLOCK_SIZE);
2881 2890
2882 2891 if (!ISP2(nvme->n_min_block_size) ||
2883 2892 (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
2884 2893 dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
2885 2894 "using default %d", ISP2(nvme->n_min_block_size) ?
2886 2895 "too low" : "not a power of 2",
2887 2896 NVME_DEFAULT_MIN_BLOCK_SIZE);
2888 2897 nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
2889 2898 }
2890 2899
2891 2900 if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
2892 2901 nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
2893 2902 else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
2894 2903 nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
2895 2904
2896 2905 if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN)
2897 2906 nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN;
2898 2907
2899 2908 if (nvme->n_async_event_limit < 1)
2900 2909 nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
2901 2910
2902 2911 nvme->n_reg_acc_attr = nvme_reg_acc_attr;
2903 2912 nvme->n_queue_dma_attr = nvme_queue_dma_attr;
2904 2913 nvme->n_prp_dma_attr = nvme_prp_dma_attr;
2905 2914 nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
2906 2915
2907 2916 /*
2908 2917 * Setup FMA support.
2909 2918 */
2910 2919 nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
2911 2920 DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
2912 2921 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
2913 2922 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
2914 2923
2915 2924 ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
2916 2925
2917 2926 if (nvme->n_fm_cap) {
2918 2927 if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
2919 2928 nvme->n_reg_acc_attr.devacc_attr_access =
2920 2929 DDI_FLAGERR_ACC;
2921 2930
2922 2931 if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
2923 2932 nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2924 2933 nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2925 2934 }
2926 2935
2927 2936 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2928 2937 DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2929 2938 pci_ereport_setup(dip);
2930 2939
2931 2940 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2932 2941 ddi_fm_handler_register(dip, nvme_fm_errcb,
2933 2942 (void *)nvme);
2934 2943 }
2935 2944
2936 2945 nvme->n_progress |= NVME_FMA_INIT;
2937 2946
2938 2947 /*
2939 2948 * The spec defines several register sets. Only the controller
2940 2949 * registers (set 1) are currently used.
2941 2950 */
2942 2951 if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
2943 2952 nregs < 2 ||
2944 2953 ddi_dev_regsize(dip, 1, ®size) == DDI_FAILURE)
2945 2954 goto fail;
2946 2955
2947 2956 if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
2948 2957 &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
2949 2958 dev_err(dip, CE_WARN, "!failed to map regset 1");
2950 2959 goto fail;
2951 2960 }
2952 2961
2953 2962 nvme->n_progress |= NVME_REGS_MAPPED;
2954 2963
2955 2964 /*
2956 2965 * Create taskq for command completion.
2957 2966 */
2958 2967 (void) snprintf(name, sizeof (name), "%s%d_cmd_taskq",
2959 2968 ddi_driver_name(dip), ddi_get_instance(dip));
2960 2969 nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus),
2961 2970 TASKQ_DEFAULTPRI, 0);
2962 2971 if (nvme->n_cmd_taskq == NULL) {
2963 2972 dev_err(dip, CE_WARN, "!failed to create cmd taskq");
2964 2973 goto fail;
2965 2974 }
2966 2975
2967 2976 /*
2968 2977 * Create PRP DMA cache
2969 2978 */
2970 2979 (void) snprintf(name, sizeof (name), "%s%d_prp_cache",
2971 2980 ddi_driver_name(dip), ddi_get_instance(dip));
2972 2981 nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
2973 2982 0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
2974 2983 NULL, (void *)nvme, NULL, 0);
2975 2984
2976 2985 if (nvme_init(nvme) != DDI_SUCCESS)
2977 2986 goto fail;
2978 2987
2979 2988 /*
2980 2989 * Attach the blkdev driver for each namespace.
2981 2990 */
2982 2991 for (i = 0; i != nvme->n_namespace_count; i++) {
2983 2992 if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name,
2984 2993 S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1),
2985 2994 DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
2986 2995 dev_err(dip, CE_WARN,
2987 2996 "!failed to create minor node for namespace %d", i);
2988 2997 goto fail;
2989 2998 }
2990 2999
2991 3000 if (nvme->n_ns[i].ns_ignore)
2992 3001 continue;
2993 3002
2994 3003 nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
2995 3004 &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP);
2996 3005
2997 3006 if (nvme->n_ns[i].ns_bd_hdl == NULL) {
2998 3007 dev_err(dip, CE_WARN,
2999 3008 "!failed to get blkdev handle for namespace %d", i);
3000 3009 goto fail;
3001 3010 }
3002 3011
3003 3012 if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
3004 3013 != DDI_SUCCESS) {
3005 3014 dev_err(dip, CE_WARN,
3006 3015 "!failed to attach blkdev handle for namespace %d",
3007 3016 i);
3008 3017 goto fail;
3009 3018 }
3010 3019 }
3011 3020
3012 3021 if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
3013 3022 NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
3014 3023 != DDI_SUCCESS) {
3015 3024 dev_err(dip, CE_WARN, "nvme_attach: "
3016 3025 "cannot create devctl minor node");
3017 3026 goto fail;
3018 3027 }
3019 3028
3020 3029 return (DDI_SUCCESS);
3021 3030
3022 3031 fail:
3023 3032 /* attach successful anyway so that FMA can retire the device */
3024 3033 if (nvme->n_dead)
3025 3034 return (DDI_SUCCESS);
3026 3035
3027 3036 (void) nvme_detach(dip, DDI_DETACH);
3028 3037
3029 3038 return (DDI_FAILURE);
3030 3039 }
3031 3040
3032 3041 static int
3033 3042 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3034 3043 {
3035 3044 int instance, i;
3036 3045 nvme_t *nvme;
3037 3046
3038 3047 if (cmd != DDI_DETACH)
3039 3048 return (DDI_FAILURE);
3040 3049
3041 3050 instance = ddi_get_instance(dip);
3042 3051
3043 3052 nvme = ddi_get_soft_state(nvme_state, instance);
3044 3053
3045 3054 if (nvme == NULL)
3046 3055 return (DDI_FAILURE);
3047 3056
3048 3057 ddi_remove_minor_node(dip, "devctl");
3049 3058 mutex_destroy(&nvme->n_minor.nm_mutex);
3050 3059
3051 3060 if (nvme->n_ns) {
3052 3061 for (i = 0; i != nvme->n_namespace_count; i++) {
3053 3062 ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name);
3054 3063 mutex_destroy(&nvme->n_ns[i].ns_minor.nm_mutex);
3055 3064
3056 3065 if (nvme->n_ns[i].ns_bd_hdl) {
3057 3066 (void) bd_detach_handle(
3058 3067 nvme->n_ns[i].ns_bd_hdl);
3059 3068 bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
3060 3069 }
3061 3070
3062 3071 if (nvme->n_ns[i].ns_idns)
3063 3072 kmem_free(nvme->n_ns[i].ns_idns,
3064 3073 sizeof (nvme_identify_nsid_t));
3065 3074 if (nvme->n_ns[i].ns_devid)
3066 3075 strfree(nvme->n_ns[i].ns_devid);
3067 3076 }
3068 3077
3069 3078 kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3070 3079 nvme->n_namespace_count);
3071 3080 }
3072 3081
3073 3082 if (nvme->n_progress & NVME_INTERRUPTS)
3074 3083 nvme_release_interrupts(nvme);
3075 3084
3076 3085 if (nvme->n_cmd_taskq)
3077 3086 ddi_taskq_wait(nvme->n_cmd_taskq);
3078 3087
3079 3088 if (nvme->n_ioq_count > 0) {
3080 3089 for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3081 3090 if (nvme->n_ioq[i] != NULL) {
3082 3091 /* TODO: send destroy queue commands */
3083 3092 nvme_free_qpair(nvme->n_ioq[i]);
3084 3093 }
3085 3094 }
3086 3095
3087 3096 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3088 3097 (nvme->n_ioq_count + 1));
3089 3098 }
3090 3099
3091 3100 if (nvme->n_prp_cache != NULL) {
3092 3101 kmem_cache_destroy(nvme->n_prp_cache);
3093 3102 }
3094 3103
3095 3104 if (nvme->n_progress & NVME_REGS_MAPPED) {
3096 3105 nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3097 3106 (void) nvme_reset(nvme, B_FALSE);
3098 3107 }
3099 3108
3100 3109 if (nvme->n_cmd_taskq)
3101 3110 ddi_taskq_destroy(nvme->n_cmd_taskq);
3102 3111
3103 3112 if (nvme->n_progress & NVME_CTRL_LIMITS)
3104 3113 sema_destroy(&nvme->n_abort_sema);
3105 3114
3106 3115 if (nvme->n_progress & NVME_ADMIN_QUEUE)
3107 3116 nvme_free_qpair(nvme->n_adminq);
3108 3117
3109 3118 if (nvme->n_idctl)
3110 3119 kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3111 3120
3112 3121 if (nvme->n_progress & NVME_REGS_MAPPED)
3113 3122 ddi_regs_map_free(&nvme->n_regh);
3114 3123
3115 3124 if (nvme->n_progress & NVME_FMA_INIT) {
3116 3125 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3117 3126 ddi_fm_handler_unregister(nvme->n_dip);
3118 3127
3119 3128 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3120 3129 DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3121 3130 pci_ereport_teardown(nvme->n_dip);
3122 3131
3123 3132 ddi_fm_fini(nvme->n_dip);
3124 3133 }
3125 3134
3126 3135 if (nvme->n_vendor != NULL)
3127 3136 strfree(nvme->n_vendor);
3128 3137
3129 3138 if (nvme->n_product != NULL)
3130 3139 strfree(nvme->n_product);
3131 3140
3132 3141 ddi_soft_state_free(nvme_state, instance);
3133 3142
3134 3143 return (DDI_SUCCESS);
3135 3144 }
3136 3145
3137 3146 static int
3138 3147 nvme_quiesce(dev_info_t *dip)
3139 3148 {
3140 3149 int instance;
3141 3150 nvme_t *nvme;
3142 3151
3143 3152 instance = ddi_get_instance(dip);
3144 3153
3145 3154 nvme = ddi_get_soft_state(nvme_state, instance);
3146 3155
3147 3156 if (nvme == NULL)
3148 3157 return (DDI_FAILURE);
3149 3158
3150 3159 nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3151 3160
3152 3161 (void) nvme_reset(nvme, B_TRUE);
3153 3162
3154 3163 return (DDI_FAILURE);
3155 3164 }
3156 3165
3157 3166 static int
3158 3167 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
3159 3168 {
3160 3169 nvme_t *nvme = cmd->nc_nvme;
3161 3170 int nprp_page, nprp;
3162 3171 uint64_t *prp;
3163 3172
3164 3173 if (xfer->x_ndmac == 0)
3165 3174 return (DDI_FAILURE);
3166 3175
3167 3176 cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
3168 3177 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3169 3178
3170 3179 if (xfer->x_ndmac == 1) {
3171 3180 cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3172 3181 return (DDI_SUCCESS);
3173 3182 } else if (xfer->x_ndmac == 2) {
3174 3183 cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
3175 3184 return (DDI_SUCCESS);
3176 3185 }
3177 3186
3178 3187 xfer->x_ndmac--;
3179 3188
3180 3189 nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1;
3181 3190 ASSERT(nprp_page > 0);
3182 3191 nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
3183 3192
3184 3193 /*
3185 3194 * We currently don't support chained PRPs and set up our DMA
3186 3195 * attributes to reflect that. If we still get an I/O request
3187 3196 * that needs a chained PRP something is very wrong.
3188 3197 */
3189 3198 VERIFY(nprp == 1);
3190 3199
3191 3200 cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
3192 3201 bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
3193 3202
3194 3203 cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
3195 3204
3196 3205 /*LINTED: E_PTR_BAD_CAST_ALIGN*/
3197 3206 for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
3198 3207 xfer->x_ndmac > 0;
3199 3208 prp++, xfer->x_ndmac--) {
3200 3209 *prp = xfer->x_dmac.dmac_laddress;
3201 3210 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3202 3211 }
3203 3212
3204 3213 (void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
3205 3214 DDI_DMA_SYNC_FORDEV);
3206 3215 return (DDI_SUCCESS);
3207 3216 }
3208 3217
3209 3218 static nvme_cmd_t *
3210 3219 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
3211 3220 {
3212 3221 nvme_t *nvme = ns->ns_nvme;
3213 3222 nvme_cmd_t *cmd;
3214 3223
3215 3224 /*
3216 3225 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
3217 3226 */
3218 3227 cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ?
3219 3228 KM_NOSLEEP : KM_SLEEP);
3220 3229
3221 3230 if (cmd == NULL)
3222 3231 return (NULL);
3223 3232
3224 3233 cmd->nc_sqe.sqe_opc = opc;
3225 3234 cmd->nc_callback = nvme_bd_xfer_done;
3226 3235 cmd->nc_xfer = xfer;
3227 3236
3228 3237 switch (opc) {
3229 3238 case NVME_OPC_NVM_WRITE:
3230 3239 case NVME_OPC_NVM_READ:
3231 3240 VERIFY(xfer->x_nblks <= 0x10000);
3232 3241
3233 3242 cmd->nc_sqe.sqe_nsid = ns->ns_id;
3234 3243
3235 3244 cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
3236 3245 cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
3237 3246 cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
3238 3247
3239 3248 if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
3240 3249 goto fail;
3241 3250 break;
3242 3251
3243 3252 case NVME_OPC_NVM_FLUSH:
3244 3253 cmd->nc_sqe.sqe_nsid = ns->ns_id;
3245 3254 break;
3246 3255
3247 3256 default:
3248 3257 goto fail;
3249 3258 }
3250 3259
3251 3260 return (cmd);
3252 3261
3253 3262 fail:
3254 3263 nvme_free_cmd(cmd);
3255 3264 return (NULL);
3256 3265 }
3257 3266
3258 3267 static void
3259 3268 nvme_bd_xfer_done(void *arg)
3260 3269 {
3261 3270 nvme_cmd_t *cmd = arg;
3262 3271 bd_xfer_t *xfer = cmd->nc_xfer;
3263 3272 int error = 0;
3264 3273
3265 3274 error = nvme_check_cmd_status(cmd);
3266 3275 nvme_free_cmd(cmd);
3267 3276
3268 3277 bd_xfer_done(xfer, error);
3269 3278 }
3270 3279
3271 3280 static void
3272 3281 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
3273 3282 {
3274 3283 nvme_namespace_t *ns = arg;
3275 3284 nvme_t *nvme = ns->ns_nvme;
3276 3285
3277 3286 /*
3278 3287 * blkdev maintains one queue size per instance (namespace),
3279 3288 * but all namespace share the I/O queues.
3280 3289 * TODO: need to figure out a sane default, or use per-NS I/O queues,
3281 3290 * or change blkdev to handle EAGAIN
3282 3291 */
3283 3292 drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len
3284 3293 / nvme->n_namespace_count;
3285 3294
3286 3295 /*
3287 3296 * d_maxxfer is not set, which means the value is taken from the DMA
3288 3297 * attributes specified to bd_alloc_handle.
3289 3298 */
3290 3299
3291 3300 drive->d_removable = B_FALSE;
3292 3301 drive->d_hotpluggable = B_FALSE;
3293 3302
3294 3303 bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
3295 3304 drive->d_target = ns->ns_id;
3296 3305 drive->d_lun = 0;
3297 3306
3298 3307 drive->d_model = nvme->n_idctl->id_model;
3299 3308 drive->d_model_len = sizeof (nvme->n_idctl->id_model);
3300 3309 drive->d_vendor = nvme->n_vendor;
3301 3310 drive->d_vendor_len = strlen(nvme->n_vendor);
3302 3311 drive->d_product = nvme->n_product;
3303 3312 drive->d_product_len = strlen(nvme->n_product);
3304 3313 drive->d_serial = nvme->n_idctl->id_serial;
3305 3314 drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
3306 3315 drive->d_revision = nvme->n_idctl->id_fwrev;
3307 3316 drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
3308 3317 }
3309 3318
3310 3319 static int
3311 3320 nvme_bd_mediainfo(void *arg, bd_media_t *media)
3312 3321 {
3313 3322 nvme_namespace_t *ns = arg;
3314 3323
3315 3324 media->m_nblks = ns->ns_block_count;
3316 3325 media->m_blksize = ns->ns_block_size;
3317 3326 media->m_readonly = B_FALSE;
3318 3327 media->m_solidstate = B_TRUE;
3319 3328
3320 3329 media->m_pblksize = ns->ns_best_block_size;
3321 3330
3322 3331 return (0);
3323 3332 }
3324 3333
3325 3334 static int
3326 3335 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
3327 3336 {
3328 3337 nvme_t *nvme = ns->ns_nvme;
3329 3338 nvme_cmd_t *cmd;
3330 3339 nvme_qpair_t *ioq;
3331 3340 boolean_t poll;
3332 3341 int ret;
3333 3342
3334 3343 if (nvme->n_dead)
3335 3344 return (EIO);
3336 3345
3337 3346 cmd = nvme_create_nvm_cmd(ns, opc, xfer);
3338 3347 if (cmd == NULL)
3339 3348 return (ENOMEM);
3340 3349
3341 3350 cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
3342 3351 ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
3343 3352 ioq = nvme->n_ioq[cmd->nc_sqid];
3344 3353
3345 3354 /*
3346 3355 * Get the polling flag before submitting the command. The command may
3347 3356 * complete immediately after it was submitted, which means we must
3348 3357 * treat both cmd and xfer as if they have been freed already.
3349 3358 */
3350 3359 poll = (xfer->x_flags & BD_XFER_POLL) != 0;
3351 3360
3352 3361 ret = nvme_submit_io_cmd(ioq, cmd);
3353 3362
3354 3363 if (ret != 0)
3355 3364 return (ret);
3356 3365
3357 3366 if (!poll)
3358 3367 return (0);
3359 3368
3360 3369 do {
3361 3370 cmd = nvme_retrieve_cmd(nvme, ioq);
3362 3371 if (cmd != NULL)
3363 3372 nvme_bd_xfer_done(cmd);
3364 3373 else
3365 3374 drv_usecwait(10);
3366 3375 } while (ioq->nq_active_cmds != 0);
3367 3376
3368 3377 return (0);
3369 3378 }
3370 3379
3371 3380 static int
3372 3381 nvme_bd_read(void *arg, bd_xfer_t *xfer)
3373 3382 {
3374 3383 nvme_namespace_t *ns = arg;
3375 3384
3376 3385 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
3377 3386 }
3378 3387
3379 3388 static int
3380 3389 nvme_bd_write(void *arg, bd_xfer_t *xfer)
3381 3390 {
3382 3391 nvme_namespace_t *ns = arg;
3383 3392
3384 3393 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
3385 3394 }
3386 3395
3387 3396 static int
3388 3397 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
3389 3398 {
3390 3399 nvme_namespace_t *ns = arg;
3391 3400
3392 3401 if (ns->ns_nvme->n_dead)
3393 3402 return (EIO);
3394 3403
3395 3404 /*
3396 3405 * If the volatile write cache is not present or not enabled the FLUSH
3397 3406 * command is a no-op, so we can take a shortcut here.
3398 3407 */
3399 3408 if (!ns->ns_nvme->n_write_cache_present) {
3400 3409 bd_xfer_done(xfer, ENOTSUP);
3401 3410 return (0);
3402 3411 }
3403 3412
3404 3413 if (!ns->ns_nvme->n_write_cache_enabled) {
3405 3414 bd_xfer_done(xfer, 0);
3406 3415 return (0);
3407 3416 }
3408 3417
3409 3418 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
3410 3419 }
3411 3420
3412 3421 static int
3413 3422 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
3414 3423 {
3415 3424 nvme_namespace_t *ns = arg;
3416 3425
3417 3426 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
3418 3427 if (*(uint64_t *)ns->ns_eui64 != 0) {
3419 3428 return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
3420 3429 sizeof (ns->ns_eui64), ns->ns_eui64, devid));
3421 3430 } else {
3422 3431 return (ddi_devid_init(devinfo, DEVID_ENCAP,
3423 3432 strlen(ns->ns_devid), ns->ns_devid, devid));
3424 3433 }
3425 3434 }
3426 3435
3427 3436 static int
3428 3437 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
3429 3438 {
3430 3439 #ifndef __lock_lint
3431 3440 _NOTE(ARGUNUSED(cred_p));
3432 3441 #endif
3433 3442 minor_t minor = getminor(*devp);
3434 3443 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3435 3444 int nsid = NVME_MINOR_NSID(minor);
3436 3445 nvme_minor_state_t *nm;
3437 3446 int rv = 0;
3438 3447
3439 3448 if (otyp != OTYP_CHR)
3440 3449 return (EINVAL);
3441 3450
3442 3451 if (nvme == NULL)
3443 3452 return (ENXIO);
3444 3453
3445 3454 if (nsid > nvme->n_namespace_count)
3446 3455 return (ENXIO);
3447 3456
3448 3457 if (nvme->n_dead)
3449 3458 return (EIO);
3450 3459
3451 3460 nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3452 3461
3453 3462 mutex_enter(&nm->nm_mutex);
3454 3463 if (nm->nm_oexcl) {
3455 3464 rv = EBUSY;
3456 3465 goto out;
3457 3466 }
3458 3467
3459 3468 if (flag & FEXCL) {
3460 3469 if (nm->nm_ocnt != 0) {
3461 3470 rv = EBUSY;
3462 3471 goto out;
3463 3472 }
3464 3473 nm->nm_oexcl = B_TRUE;
3465 3474 }
3466 3475
3467 3476 nm->nm_ocnt++;
3468 3477
3469 3478 out:
3470 3479 mutex_exit(&nm->nm_mutex);
3471 3480 return (rv);
3472 3481
3473 3482 }
3474 3483
3475 3484 static int
3476 3485 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
3477 3486 {
3478 3487 #ifndef __lock_lint
3479 3488 _NOTE(ARGUNUSED(cred_p));
3480 3489 _NOTE(ARGUNUSED(flag));
3481 3490 #endif
3482 3491 minor_t minor = getminor(dev);
3483 3492 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3484 3493 int nsid = NVME_MINOR_NSID(minor);
3485 3494 nvme_minor_state_t *nm;
3486 3495
3487 3496 if (otyp != OTYP_CHR)
3488 3497 return (ENXIO);
3489 3498
3490 3499 if (nvme == NULL)
3491 3500 return (ENXIO);
3492 3501
3493 3502 if (nsid > nvme->n_namespace_count)
3494 3503 return (ENXIO);
3495 3504
3496 3505 nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3497 3506
3498 3507 mutex_enter(&nm->nm_mutex);
3499 3508 if (nm->nm_oexcl)
3500 3509 nm->nm_oexcl = B_FALSE;
3501 3510
3502 3511 ASSERT(nm->nm_ocnt > 0);
3503 3512 nm->nm_ocnt--;
3504 3513 mutex_exit(&nm->nm_mutex);
3505 3514
3506 3515 return (0);
3507 3516 }
3508 3517
3509 3518 static int
3510 3519 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3511 3520 cred_t *cred_p)
3512 3521 {
3513 3522 _NOTE(ARGUNUSED(cred_p));
3514 3523 int rv = 0;
3515 3524 void *idctl;
3516 3525
3517 3526 if ((mode & FREAD) == 0)
3518 3527 return (EPERM);
3519 3528
3520 3529 if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
3521 3530 return (EINVAL);
3522 3531
3523 3532 if ((rv = nvme_identify(nvme, nsid, (void **)&idctl)) != 0)
3524 3533 return (rv);
3525 3534
3526 3535 if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
3527 3536 != 0)
3528 3537 rv = EFAULT;
3529 3538
3530 3539 kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
3531 3540
3532 3541 return (rv);
3533 3542 }
3534 3543
3535 3544 static int
3536 3545 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3537 3546 int mode, cred_t *cred_p)
3538 3547 {
3539 3548 _NOTE(ARGUNUSED(nsid, cred_p));
3540 3549 int rv = 0;
3541 3550 nvme_reg_cap_t cap = { 0 };
3542 3551 nvme_capabilities_t nc;
3543 3552
3544 3553 if ((mode & FREAD) == 0)
3545 3554 return (EPERM);
3546 3555
3547 3556 if (nioc->n_len < sizeof (nc))
3548 3557 return (EINVAL);
3549 3558
3550 3559 cap.r = nvme_get64(nvme, NVME_REG_CAP);
3551 3560
3552 3561 /*
3553 3562 * The MPSMIN and MPSMAX fields in the CAP register use 0 to
3554 3563 * specify the base page size of 4k (1<<12), so add 12 here to
3555 3564 * get the real page size value.
3556 3565 */
3557 3566 nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
3558 3567 nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
3559 3568
3560 3569 if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
3561 3570 rv = EFAULT;
3562 3571
3563 3572 return (rv);
3564 3573 }
3565 3574
3566 3575 static int
3567 3576 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3568 3577 int mode, cred_t *cred_p)
3569 3578 {
3570 3579 _NOTE(ARGUNUSED(cred_p));
3571 3580 void *log = NULL;
3572 3581 size_t bufsize = 0;
3573 3582 int rv = 0;
3574 3583
3575 3584 if ((mode & FREAD) == 0)
3576 3585 return (EPERM);
3577 3586
3578 3587 switch (nioc->n_arg) {
3579 3588 case NVME_LOGPAGE_ERROR:
3580 3589 if (nsid != 0)
3581 3590 return (EINVAL);
3582 3591 break;
3583 3592 case NVME_LOGPAGE_HEALTH:
3584 3593 if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
3585 3594 return (EINVAL);
3586 3595
3587 3596 if (nsid == 0)
3588 3597 nsid = (uint32_t)-1;
3589 3598
3590 3599 break;
3591 3600 case NVME_LOGPAGE_FWSLOT:
3592 3601 if (nsid != 0)
3593 3602 return (EINVAL);
3594 3603 break;
3595 3604 default:
3596 3605 return (EINVAL);
3597 3606 }
3598 3607
3599 3608 if (nvme_get_logpage(nvme, &log, &bufsize, nioc->n_arg, nsid)
3600 3609 != DDI_SUCCESS)
3601 3610 return (EIO);
3602 3611
3603 3612 if (nioc->n_len < bufsize) {
3604 3613 kmem_free(log, bufsize);
3605 3614 return (EINVAL);
3606 3615 }
3607 3616
3608 3617 if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
3609 3618 rv = EFAULT;
3610 3619
3611 3620 nioc->n_len = bufsize;
3612 3621 kmem_free(log, bufsize);
3613 3622
3614 3623 return (rv);
3615 3624 }
3616 3625
3617 3626 static int
3618 3627 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3619 3628 int mode, cred_t *cred_p)
3620 3629 {
3621 3630 _NOTE(ARGUNUSED(cred_p));
3622 3631 void *buf = NULL;
3623 3632 size_t bufsize = 0;
3624 3633 uint32_t res = 0;
3625 3634 uint8_t feature;
3626 3635 int rv = 0;
3627 3636
3628 3637 if ((mode & FREAD) == 0)
3629 3638 return (EPERM);
3630 3639
3631 3640 if ((nioc->n_arg >> 32) > 0xff)
3632 3641 return (EINVAL);
3633 3642
3634 3643 feature = (uint8_t)(nioc->n_arg >> 32);
3635 3644
3636 3645 switch (feature) {
3637 3646 case NVME_FEAT_ARBITRATION:
3638 3647 case NVME_FEAT_POWER_MGMT:
3639 3648 case NVME_FEAT_TEMPERATURE:
3640 3649 case NVME_FEAT_ERROR:
3641 3650 case NVME_FEAT_NQUEUES:
3642 3651 case NVME_FEAT_INTR_COAL:
3643 3652 case NVME_FEAT_WRITE_ATOM:
3644 3653 case NVME_FEAT_ASYNC_EVENT:
3645 3654 case NVME_FEAT_PROGRESS:
3646 3655 if (nsid != 0)
3647 3656 return (EINVAL);
3648 3657 break;
3649 3658
3650 3659 case NVME_FEAT_INTR_VECT:
3651 3660 if (nsid != 0)
3652 3661 return (EINVAL);
3653 3662
3654 3663 res = nioc->n_arg & 0xffffffffUL;
3655 3664 if (res >= nvme->n_intr_cnt)
3656 3665 return (EINVAL);
3657 3666 break;
3658 3667
3659 3668 case NVME_FEAT_LBA_RANGE:
3660 3669 if (nvme->n_lba_range_supported == B_FALSE)
3661 3670 return (EINVAL);
3662 3671
3663 3672 if (nsid == 0 ||
3664 3673 nsid > nvme->n_namespace_count)
3665 3674 return (EINVAL);
3666 3675
3667 3676 break;
3668 3677
3669 3678 case NVME_FEAT_WRITE_CACHE:
3670 3679 if (nsid != 0)
3671 3680 return (EINVAL);
3672 3681
3673 3682 if (!nvme->n_write_cache_present)
3674 3683 return (EINVAL);
3675 3684
3676 3685 break;
3677 3686
3678 3687 case NVME_FEAT_AUTO_PST:
3679 3688 if (nsid != 0)
3680 3689 return (EINVAL);
3681 3690
3682 3691 if (!nvme->n_auto_pst_supported)
3683 3692 return (EINVAL);
3684 3693
3685 3694 break;
3686 3695
3687 3696 default:
3688 3697 return (EINVAL);
3689 3698 }
3690 3699
3691 3700 rv = nvme_get_features(nvme, nsid, feature, &res, &buf, &bufsize);
3692 3701 if (rv != 0)
3693 3702 return (rv);
3694 3703
3695 3704 if (nioc->n_len < bufsize) {
3696 3705 kmem_free(buf, bufsize);
3697 3706 return (EINVAL);
3698 3707 }
3699 3708
3700 3709 if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
3701 3710 rv = EFAULT;
3702 3711
3703 3712 kmem_free(buf, bufsize);
3704 3713 nioc->n_arg = res;
3705 3714 nioc->n_len = bufsize;
3706 3715
3707 3716 return (rv);
3708 3717 }
3709 3718
3710 3719 static int
3711 3720 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3712 3721 cred_t *cred_p)
3713 3722 {
3714 3723 _NOTE(ARGUNUSED(nsid, mode, cred_p));
3715 3724
3716 3725 if ((mode & FREAD) == 0)
3717 3726 return (EPERM);
3718 3727
3719 3728 nioc->n_arg = nvme->n_intr_cnt;
3720 3729 return (0);
3721 3730 }
3722 3731
3723 3732 static int
3724 3733 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3725 3734 cred_t *cred_p)
3726 3735 {
3727 3736 _NOTE(ARGUNUSED(nsid, cred_p));
3728 3737 int rv = 0;
3729 3738
3730 3739 if ((mode & FREAD) == 0)
3731 3740 return (EPERM);
3732 3741
3733 3742 if (nioc->n_len < sizeof (nvme->n_version))
3734 3743 return (ENOMEM);
3735 3744
3736 3745 if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
3737 3746 sizeof (nvme->n_version), mode) != 0)
3738 3747 rv = EFAULT;
3739 3748
3740 3749 return (rv);
3741 3750 }
3742 3751
3743 3752 static int
3744 3753 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3745 3754 cred_t *cred_p)
3746 3755 {
3747 3756 _NOTE(ARGUNUSED(mode));
3748 3757 nvme_format_nvm_t frmt = { 0 };
3749 3758 int c_nsid = nsid != 0 ? nsid - 1 : 0;
3750 3759
3751 3760 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3752 3761 return (EPERM);
3753 3762
3754 3763 frmt.r = nioc->n_arg & 0xffffffff;
3755 3764
3756 3765 /*
3757 3766 * Check whether the FORMAT NVM command is supported.
3758 3767 */
3759 3768 if (nvme->n_idctl->id_oacs.oa_format == 0)
3760 3769 return (EINVAL);
3761 3770
3762 3771 /*
3763 3772 * Don't allow format or secure erase of individual namespace if that
3764 3773 * would cause a format or secure erase of all namespaces.
3765 3774 */
3766 3775 if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
3767 3776 return (EINVAL);
3768 3777
3769 3778 if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
3770 3779 nvme->n_idctl->id_fna.fn_sec_erase != 0)
3771 3780 return (EINVAL);
3772 3781
3773 3782 /*
3774 3783 * Don't allow formatting with Protection Information.
3775 3784 */
3776 3785 if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
3777 3786 return (EINVAL);
3778 3787
3779 3788 /*
3780 3789 * Don't allow formatting using an illegal LBA format, or any LBA format
3781 3790 * that uses metadata.
3782 3791 */
3783 3792 if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf ||
3784 3793 nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
3785 3794 return (EINVAL);
3786 3795
3787 3796 /*
3788 3797 * Don't allow formatting using an illegal Secure Erase setting.
3789 3798 */
3790 3799 if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
3791 3800 (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
3792 3801 nvme->n_idctl->id_fna.fn_crypt_erase == 0))
3793 3802 return (EINVAL);
3794 3803
3795 3804 if (nsid == 0)
3796 3805 nsid = (uint32_t)-1;
3797 3806
3798 3807 return (nvme_format_nvm(nvme, nsid, frmt.b.fm_lbaf, B_FALSE, 0, B_FALSE,
3799 3808 frmt.b.fm_ses));
3800 3809 }
3801 3810
3802 3811 static int
3803 3812 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3804 3813 cred_t *cred_p)
3805 3814 {
3806 3815 _NOTE(ARGUNUSED(nioc, mode));
3807 3816 int rv = 0;
3808 3817
3809 3818 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3810 3819 return (EPERM);
3811 3820
3812 3821 if (nsid == 0)
3813 3822 return (EINVAL);
3814 3823
3815 3824 rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl);
3816 3825 if (rv != DDI_SUCCESS)
3817 3826 rv = EBUSY;
3818 3827
3819 3828 return (rv);
3820 3829 }
3821 3830
3822 3831 static int
3823 3832 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3824 3833 cred_t *cred_p)
3825 3834 {
3826 3835 _NOTE(ARGUNUSED(nioc, mode));
3827 3836 nvme_identify_nsid_t *idns;
3828 3837 int rv = 0;
3829 3838
3830 3839 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3831 3840 return (EPERM);
3832 3841
3833 3842 if (nsid == 0)
3834 3843 return (EINVAL);
3835 3844
3836 3845 /*
3837 3846 * Identify namespace again, free old identify data.
3838 3847 */
3839 3848 idns = nvme->n_ns[nsid - 1].ns_idns;
3840 3849 if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
3841 3850 return (EIO);
3842 3851
3843 3852 kmem_free(idns, sizeof (nvme_identify_nsid_t));
3844 3853
3845 3854 rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl);
3846 3855 if (rv != DDI_SUCCESS)
3847 3856 rv = EBUSY;
3848 3857
3849 3858 return (rv);
3850 3859 }
3851 3860
3852 3861 static int
3853 3862 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
3854 3863 int *rval_p)
3855 3864 {
3856 3865 #ifndef __lock_lint
3857 3866 _NOTE(ARGUNUSED(rval_p));
3858 3867 #endif
3859 3868 minor_t minor = getminor(dev);
3860 3869 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3861 3870 int nsid = NVME_MINOR_NSID(minor);
3862 3871 int rv = 0;
3863 3872 nvme_ioctl_t nioc;
3864 3873
3865 3874 int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
3866 3875 NULL,
3867 3876 nvme_ioctl_identify,
3868 3877 nvme_ioctl_identify,
3869 3878 nvme_ioctl_capabilities,
3870 3879 nvme_ioctl_get_logpage,
3871 3880 nvme_ioctl_get_features,
3872 3881 nvme_ioctl_intr_cnt,
3873 3882 nvme_ioctl_version,
3874 3883 nvme_ioctl_format,
3875 3884 nvme_ioctl_detach,
3876 3885 nvme_ioctl_attach
3877 3886 };
3878 3887
3879 3888 if (nvme == NULL)
3880 3889 return (ENXIO);
3881 3890
3882 3891 if (nsid > nvme->n_namespace_count)
3883 3892 return (ENXIO);
3884 3893
3885 3894 if (IS_DEVCTL(cmd))
3886 3895 return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
3887 3896
3888 3897 #ifdef _MULTI_DATAMODEL
3889 3898 switch (ddi_model_convert_from(mode & FMODELS)) {
3890 3899 case DDI_MODEL_ILP32: {
3891 3900 nvme_ioctl32_t nioc32;
3892 3901 if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
3893 3902 mode) != 0)
3894 3903 return (EFAULT);
3895 3904 nioc.n_len = nioc32.n_len;
3896 3905 nioc.n_buf = nioc32.n_buf;
3897 3906 nioc.n_arg = nioc32.n_arg;
3898 3907 break;
3899 3908 }
3900 3909 case DDI_MODEL_NONE:
3901 3910 #endif
3902 3911 if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
3903 3912 != 0)
3904 3913 return (EFAULT);
3905 3914 #ifdef _MULTI_DATAMODEL
3906 3915 break;
3907 3916 }
3908 3917 #endif
3909 3918
3910 3919 if (nvme->n_dead && cmd != NVME_IOC_DETACH)
3911 3920 return (EIO);
3912 3921
3913 3922
3914 3923 if (cmd == NVME_IOC_IDENTIFY_CTRL) {
3915 3924 /*
3916 3925 * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
3917 3926 * attachment point nodes.
3918 3927 */
3919 3928 nsid = 0;
3920 3929 } else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
3921 3930 /*
3922 3931 * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
3923 3932 * will always return identify data for namespace 1.
3924 3933 */
3925 3934 nsid = 1;
3926 3935 }
3927 3936
3928 3937 if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
3929 3938 rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
3930 3939 cred_p);
3931 3940 else
3932 3941 rv = EINVAL;
3933 3942
3934 3943 #ifdef _MULTI_DATAMODEL
3935 3944 switch (ddi_model_convert_from(mode & FMODELS)) {
3936 3945 case DDI_MODEL_ILP32: {
3937 3946 nvme_ioctl32_t nioc32;
3938 3947
3939 3948 nioc32.n_len = (size32_t)nioc.n_len;
3940 3949 nioc32.n_buf = (uintptr32_t)nioc.n_buf;
3941 3950 nioc32.n_arg = nioc.n_arg;
3942 3951
3943 3952 if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
3944 3953 mode) != 0)
3945 3954 return (EFAULT);
3946 3955 break;
3947 3956 }
3948 3957 case DDI_MODEL_NONE:
3949 3958 #endif
3950 3959 if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
3951 3960 != 0)
3952 3961 return (EFAULT);
3953 3962 #ifdef _MULTI_DATAMODEL
3954 3963 break;
3955 3964 }
3956 3965 #endif
3957 3966
3958 3967 return (rv);
3959 3968 }
↓ open down ↓ |
2073 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX