1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* 27 * hermon_srq.c 28 * Hermon Shared Receive Queue Processing Routines 29 * 30 * Implements all the routines necessary for allocating, freeing, querying, 31 * modifying and posting shared receive queues. 32 */ 33 34 #include <sys/sysmacros.h> 35 #include <sys/types.h> 36 #include <sys/conf.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/modctl.h> 40 #include <sys/bitmap.h> 41 42 #include <sys/ib/adapters/hermon/hermon.h> 43 44 static void hermon_srq_sgl_to_logwqesz(hermon_state_t *state, uint_t num_sgl, 45 hermon_qp_wq_type_t wq_type, uint_t *logwqesz, uint_t *max_sgl); 46 47 /* 48 * hermon_srq_alloc() 49 * Context: Can be called only from user or kernel context. 50 */ 51 int 52 hermon_srq_alloc(hermon_state_t *state, hermon_srq_info_t *srqinfo, 53 uint_t sleepflag) 54 { 55 ibt_srq_hdl_t ibt_srqhdl; 56 hermon_pdhdl_t pd; 57 ibt_srq_sizes_t *sizes; 58 ibt_srq_sizes_t *real_sizes; 59 hermon_srqhdl_t *srqhdl; 60 ibt_srq_flags_t flags; 61 hermon_rsrc_t *srqc, *rsrc; 62 hermon_hw_srqc_t srqc_entry; 63 uint32_t *buf; 64 hermon_srqhdl_t srq; 65 hermon_umap_db_entry_t *umapdb; 66 ibt_mr_attr_t mr_attr; 67 hermon_mr_options_t mr_op; 68 hermon_mrhdl_t mr; 69 uint64_t value, srq_desc_off; 70 uint32_t log_srq_size; 71 uint32_t uarpg; 72 uint_t srq_is_umap; 73 int flag, status; 74 uint_t max_sgl; 75 uint_t wqesz; 76 uint_t srq_wr_sz; 77 78 /* 79 * options-->wq_location used to be for location, now explicitly 80 * LOCATION_NORMAL 81 */ 82 83 /* 84 * Extract the necessary info from the hermon_srq_info_t structure 85 */ 86 real_sizes = srqinfo->srqi_real_sizes; 87 sizes = srqinfo->srqi_sizes; 88 pd = srqinfo->srqi_pd; 89 ibt_srqhdl = srqinfo->srqi_ibt_srqhdl; 90 flags = srqinfo->srqi_flags; 91 srqhdl = srqinfo->srqi_srqhdl; 92 93 /* 94 * Determine whether SRQ is being allocated for userland access or 95 * whether it is being allocated for kernel access. If the SRQ is 96 * being allocated for userland access, then lookup the UAR doorbell 97 * page number for the current process. Note: If this is not found 98 * (e.g. if the process has not previously open()'d the Hermon driver), 99 * then an error is returned. 100 */ 101 srq_is_umap = (flags & IBT_SRQ_USER_MAP) ? 1 : 0; 102 if (srq_is_umap) { 103 status = hermon_umap_db_find(state->hs_instance, ddi_get_pid(), 104 MLNX_UMAP_UARPG_RSRC, &value, 0, NULL); 105 if (status != DDI_SUCCESS) { 106 status = IBT_INVALID_PARAM; 107 goto srqalloc_fail3; 108 } 109 uarpg = ((hermon_rsrc_t *)(uintptr_t)value)->hr_indx; 110 } else { 111 uarpg = state->hs_kernel_uar_index; 112 } 113 114 /* Increase PD refcnt */ 115 hermon_pd_refcnt_inc(pd); 116 117 /* Allocate an SRQ context entry */ 118 status = hermon_rsrc_alloc(state, HERMON_SRQC, 1, sleepflag, &srqc); 119 if (status != DDI_SUCCESS) { 120 status = IBT_INSUFF_RESOURCE; 121 goto srqalloc_fail1; 122 } 123 124 /* Allocate the SRQ Handle entry */ 125 status = hermon_rsrc_alloc(state, HERMON_SRQHDL, 1, sleepflag, &rsrc); 126 if (status != DDI_SUCCESS) { 127 status = IBT_INSUFF_RESOURCE; 128 goto srqalloc_fail2; 129 } 130 131 srq = (hermon_srqhdl_t)rsrc->hr_addr; 132 133 bzero(srq, sizeof (struct hermon_sw_srq_s)); 134 /* Calculate the SRQ number */ 135 136 /* just use the index, implicit in Hermon */ 137 srq->srq_srqnum = srqc->hr_indx; 138 139 /* 140 * If this will be a user-mappable SRQ, then allocate an entry for 141 * the "userland resources database". This will later be added to 142 * the database (after all further SRQ operations are successful). 143 * If we fail here, we must undo the reference counts and the 144 * previous resource allocation. 145 */ 146 if (srq_is_umap) { 147 umapdb = hermon_umap_db_alloc(state->hs_instance, 148 srq->srq_srqnum, MLNX_UMAP_SRQMEM_RSRC, 149 (uint64_t)(uintptr_t)rsrc); 150 if (umapdb == NULL) { 151 status = IBT_INSUFF_RESOURCE; 152 goto srqalloc_fail3; 153 } 154 } 155 156 /* 157 * Allocate the doorbell record. Hermon just needs one for the 158 * SRQ, and use uarpg (above) as the uar index 159 */ 160 161 status = hermon_dbr_alloc(state, uarpg, &srq->srq_wq_dbr_acchdl, 162 &srq->srq_wq_vdbr, &srq->srq_wq_pdbr, &srq->srq_rdbr_mapoffset); 163 if (status != DDI_SUCCESS) { 164 status = IBT_INSUFF_RESOURCE; 165 goto srqalloc_fail4; 166 } 167 168 /* 169 * Calculate the appropriate size for the SRQ. 170 * Note: All Hermon SRQs must be a power-of-2 in size. Also 171 * they may not be any smaller than HERMON_SRQ_MIN_SIZE. This step 172 * is to round the requested size up to the next highest power-of-2 173 */ 174 srq_wr_sz = max(sizes->srq_wr_sz + 1, HERMON_SRQ_MIN_SIZE); 175 log_srq_size = highbit(srq_wr_sz); 176 if (ISP2(srq_wr_sz)) { 177 log_srq_size = log_srq_size - 1; 178 } 179 180 /* 181 * Next we verify that the rounded-up size is valid (i.e. consistent 182 * with the device limits and/or software-configured limits). If not, 183 * then obviously we have a lot of cleanup to do before returning. 184 */ 185 if (log_srq_size > state->hs_cfg_profile->cp_log_max_srq_sz) { 186 status = IBT_HCA_WR_EXCEEDED; 187 goto srqalloc_fail4a; 188 } 189 190 /* 191 * Next we verify that the requested number of SGL is valid (i.e. 192 * consistent with the device limits and/or software-configured 193 * limits). If not, then obviously the same cleanup needs to be done. 194 */ 195 max_sgl = state->hs_ibtfinfo.hca_attr->hca_max_srq_sgl; 196 if (sizes->srq_sgl_sz > max_sgl) { 197 status = IBT_HCA_SGL_EXCEEDED; 198 goto srqalloc_fail4a; 199 } 200 201 /* 202 * Determine the SRQ's WQE sizes. This depends on the requested 203 * number of SGLs. Note: This also has the side-effect of 204 * calculating the real number of SGLs (for the calculated WQE size) 205 */ 206 hermon_srq_sgl_to_logwqesz(state, sizes->srq_sgl_sz, 207 HERMON_QP_WQ_TYPE_RECVQ, &srq->srq_wq_log_wqesz, 208 &srq->srq_wq_sgl); 209 210 /* 211 * Allocate the memory for SRQ work queues. Note: The location from 212 * which we will allocate these work queues is always 213 * QUEUE_LOCATION_NORMAL. Since Hermon work queues are not 214 * allowed to cross a 32-bit (4GB) boundary, the alignment of the work 215 * queue memory is very important. We used to allocate work queues 216 * (the combined receive and send queues) so that they would be aligned 217 * on their combined size. That alignment guaranteed that they would 218 * never cross the 4GB boundary (Hermon work queues are on the order of 219 * MBs at maximum). Now we are able to relax this alignment constraint 220 * by ensuring that the IB address assigned to the queue memory (as a 221 * result of the hermon_mr_register() call) is offset from zero. 222 * Previously, we had wanted to use the ddi_dma_mem_alloc() routine to 223 * guarantee the alignment, but when attempting to use IOMMU bypass 224 * mode we found that we were not allowed to specify any alignment that 225 * was more restrictive than the system page size. So we avoided this 226 * constraint by passing two alignment values, one for the memory 227 * allocation itself and the other for the DMA handle (for later bind). 228 * This used to cause more memory than necessary to be allocated (in 229 * order to guarantee the more restrictive alignment contraint). But 230 * be guaranteeing the zero-based IB virtual address for the queue, we 231 * are able to conserve this memory. 232 * 233 * Note: If SRQ is not user-mappable, then it may come from either 234 * kernel system memory or from HCA-attached local DDR memory. 235 * 236 * Note2: We align this queue on a pagesize boundary. This is required 237 * to make sure that all the resulting IB addresses will start at 0, for 238 * a zero-based queue. By making sure we are aligned on at least a 239 * page, any offset we use into our queue will be the same as when we 240 * perform hermon_srq_modify() operations later. 241 */ 242 wqesz = (1 << srq->srq_wq_log_wqesz); 243 srq->srq_wqinfo.qa_size = (1 << log_srq_size) * wqesz; 244 srq->srq_wqinfo.qa_alloc_align = PAGESIZE; 245 srq->srq_wqinfo.qa_bind_align = PAGESIZE; 246 if (srq_is_umap) { 247 srq->srq_wqinfo.qa_location = HERMON_QUEUE_LOCATION_USERLAND; 248 } else { 249 srq->srq_wqinfo.qa_location = HERMON_QUEUE_LOCATION_NORMAL; 250 } 251 status = hermon_queue_alloc(state, &srq->srq_wqinfo, sleepflag); 252 if (status != DDI_SUCCESS) { 253 status = IBT_INSUFF_RESOURCE; 254 goto srqalloc_fail4a; 255 } 256 buf = (uint32_t *)srq->srq_wqinfo.qa_buf_aligned; 257 258 /* 259 * Register the memory for the SRQ work queues. The memory for the SRQ 260 * must be registered in the Hermon cMPT tables. This gives us the LKey 261 * to specify in the SRQ context later. Note: If the work queue is to 262 * be allocated from DDR memory, then only a "bypass" mapping is 263 * appropriate. And if the SRQ memory is user-mappable, then we force 264 * DDI_DMA_CONSISTENT mapping. Also, in order to meet the alignment 265 * restriction, we pass the "mro_bind_override_addr" flag in the call 266 * to hermon_mr_register(). This guarantees that the resulting IB vaddr 267 * will be zero-based (modulo the offset into the first page). If we 268 * fail here, we still have the bunch of resource and reference count 269 * cleanup to do. 270 */ 271 flag = (sleepflag == HERMON_SLEEP) ? IBT_MR_SLEEP : 272 IBT_MR_NOSLEEP; 273 mr_attr.mr_vaddr = (uint64_t)(uintptr_t)buf; 274 mr_attr.mr_len = srq->srq_wqinfo.qa_size; 275 mr_attr.mr_as = NULL; 276 mr_attr.mr_flags = flag | IBT_MR_ENABLE_LOCAL_WRITE; 277 mr_op.mro_bind_type = state->hs_cfg_profile->cp_iommu_bypass; 278 mr_op.mro_bind_dmahdl = srq->srq_wqinfo.qa_dmahdl; 279 mr_op.mro_bind_override_addr = 1; 280 status = hermon_mr_register(state, pd, &mr_attr, &mr, 281 &mr_op, HERMON_SRQ_CMPT); 282 if (status != DDI_SUCCESS) { 283 status = IBT_INSUFF_RESOURCE; 284 goto srqalloc_fail5; 285 } 286 287 /* 288 * Calculate the offset between the kernel virtual address space 289 * and the IB virtual address space. This will be used when 290 * posting work requests to properly initialize each WQE. 291 */ 292 srq_desc_off = (uint64_t)(uintptr_t)srq->srq_wqinfo.qa_buf_aligned - 293 (uint64_t)mr->mr_bindinfo.bi_addr; 294 295 srq->srq_wq_wqhdr = hermon_wrid_wqhdr_create(1 << log_srq_size); 296 297 /* 298 * Fill in all the return arguments (if necessary). This includes 299 * real queue size and real SGLs. 300 */ 301 if (real_sizes != NULL) { 302 real_sizes->srq_wr_sz = (1 << log_srq_size) - 1; 303 real_sizes->srq_sgl_sz = srq->srq_wq_sgl; 304 } 305 306 /* 307 * Fill in the SRQC entry. This is the final step before passing 308 * ownership of the SRQC entry to the Hermon hardware. We use all of 309 * the information collected/calculated above to fill in the 310 * requisite portions of the SRQC. Note: If this SRQ is going to be 311 * used for userland access, then we need to set the UAR page number 312 * appropriately (otherwise it's a "don't care") 313 */ 314 bzero(&srqc_entry, sizeof (hermon_hw_srqc_t)); 315 srqc_entry.state = HERMON_SRQ_STATE_HW_OWNER; 316 srqc_entry.log_srq_size = log_srq_size; 317 srqc_entry.srqn = srq->srq_srqnum; 318 srqc_entry.log_rq_stride = srq->srq_wq_log_wqesz - 4; 319 /* 16-byte chunks */ 320 321 srqc_entry.page_offs = srq->srq_wqinfo.qa_pgoffs >> 6; 322 srqc_entry.log2_pgsz = mr->mr_log2_pgsz; 323 srqc_entry.mtt_base_addrh = (uint32_t)((mr->mr_mttaddr >> 32) & 0xFF); 324 srqc_entry.mtt_base_addrl = mr->mr_mttaddr >> 3; 325 srqc_entry.pd = pd->pd_pdnum; 326 srqc_entry.dbr_addrh = (uint32_t)((uint64_t)srq->srq_wq_pdbr >> 32); 327 srqc_entry.dbr_addrl = (uint32_t)((uint64_t)srq->srq_wq_pdbr >> 2); 328 329 /* 330 * all others - specifically, xrcd, cqn_xrc, lwm, wqe_cnt, and wqe_cntr 331 * are zero thanks to the bzero of the structure 332 */ 333 334 /* 335 * Write the SRQC entry to hardware. Lastly, we pass ownership of 336 * the entry to the hardware (using the Hermon SW2HW_SRQ firmware 337 * command). Note: In general, this operation shouldn't fail. But 338 * if it does, we have to undo everything we've done above before 339 * returning error. 340 */ 341 status = hermon_cmn_ownership_cmd_post(state, SW2HW_SRQ, &srqc_entry, 342 sizeof (hermon_hw_srqc_t), srq->srq_srqnum, 343 sleepflag); 344 if (status != HERMON_CMD_SUCCESS) { 345 cmn_err(CE_CONT, "Hermon: SW2HW_SRQ command failed: %08x\n", 346 status); 347 if (status == HERMON_CMD_INVALID_STATUS) { 348 hermon_fm_ereport(state, HCA_SYS_ERR, HCA_ERR_SRV_LOST); 349 } 350 status = ibc_get_ci_failure(0); 351 goto srqalloc_fail8; 352 } 353 354 /* 355 * Fill in the rest of the Hermon SRQ handle. We can update 356 * the following fields for use in further operations on the SRQ. 357 */ 358 srq->srq_srqcrsrcp = srqc; 359 srq->srq_rsrcp = rsrc; 360 srq->srq_mrhdl = mr; 361 srq->srq_refcnt = 0; 362 srq->srq_is_umap = srq_is_umap; 363 srq->srq_uarpg = uarpg; 364 srq->srq_umap_dhp = (devmap_cookie_t)NULL; 365 srq->srq_pdhdl = pd; 366 srq->srq_wq_bufsz = (1 << log_srq_size); 367 srq->srq_wq_buf = buf; 368 srq->srq_desc_off = srq_desc_off; 369 srq->srq_hdlrarg = (void *)ibt_srqhdl; 370 srq->srq_state = 0; 371 srq->srq_real_sizes.srq_wr_sz = (1 << log_srq_size); 372 srq->srq_real_sizes.srq_sgl_sz = srq->srq_wq_sgl; 373 374 /* 375 * Put SRQ handle in Hermon SRQNum-to-SRQhdl list. Then fill in the 376 * "srqhdl" and return success 377 */ 378 hermon_icm_set_num_to_hdl(state, HERMON_SRQC, srqc->hr_indx, srq); 379 380 /* 381 * If this is a user-mappable SRQ, then we need to insert the 382 * previously allocated entry into the "userland resources database". 383 * This will allow for later lookup during devmap() (i.e. mmap()) 384 * calls. 385 */ 386 if (srq->srq_is_umap) { 387 hermon_umap_db_add(umapdb); 388 } else { /* initialize work queue for kernel SRQs */ 389 int i, len, last; 390 uint16_t *desc; 391 392 desc = (uint16_t *)buf; 393 len = wqesz / sizeof (*desc); 394 last = srq->srq_wq_bufsz - 1; 395 for (i = 0; i < last; i++) { 396 desc[1] = htons(i + 1); 397 desc += len; 398 } 399 srq->srq_wq_wqhdr->wq_tail = last; 400 srq->srq_wq_wqhdr->wq_head = 0; 401 } 402 403 *srqhdl = srq; 404 405 return (status); 406 407 /* 408 * The following is cleanup for all possible failure cases in this routine 409 */ 410 srqalloc_fail8: 411 hermon_wrid_wqhdr_destroy(srq->srq_wq_wqhdr); 412 srqalloc_fail7: 413 if (hermon_mr_deregister(state, &mr, HERMON_MR_DEREG_ALL, 414 HERMON_SLEEPFLAG_FOR_CONTEXT()) != DDI_SUCCESS) { 415 HERMON_WARNING(state, "failed to deregister SRQ memory"); 416 } 417 srqalloc_fail5: 418 hermon_queue_free(&srq->srq_wqinfo); 419 srqalloc_fail4a: 420 hermon_dbr_free(state, uarpg, srq->srq_wq_vdbr); 421 srqalloc_fail4: 422 if (srq_is_umap) { 423 hermon_umap_db_free(umapdb); 424 } 425 srqalloc_fail3: 426 hermon_rsrc_free(state, &rsrc); 427 srqalloc_fail2: 428 hermon_rsrc_free(state, &srqc); 429 srqalloc_fail1: 430 hermon_pd_refcnt_dec(pd); 431 srqalloc_fail: 432 return (status); 433 } 434 435 436 /* 437 * hermon_srq_free() 438 * Context: Can be called only from user or kernel context. 439 */ 440 /* ARGSUSED */ 441 int 442 hermon_srq_free(hermon_state_t *state, hermon_srqhdl_t *srqhdl, 443 uint_t sleepflag) 444 { 445 hermon_rsrc_t *srqc, *rsrc; 446 hermon_umap_db_entry_t *umapdb; 447 uint64_t value; 448 hermon_srqhdl_t srq; 449 hermon_mrhdl_t mr; 450 hermon_pdhdl_t pd; 451 hermon_hw_srqc_t srqc_entry; 452 uint32_t srqnum; 453 uint_t maxprot; 454 int status; 455 456 /* 457 * Pull all the necessary information from the Hermon Shared Receive 458 * Queue handle. This is necessary here because the resource for the 459 * SRQ handle is going to be freed up as part of this operation. 460 */ 461 srq = *srqhdl; 462 mutex_enter(&srq->srq_lock); 463 srqc = srq->srq_srqcrsrcp; 464 rsrc = srq->srq_rsrcp; 465 pd = srq->srq_pdhdl; 466 mr = srq->srq_mrhdl; 467 srqnum = srq->srq_srqnum; 468 469 /* 470 * If there are work queues still associated with the SRQ, then return 471 * an error. Otherwise, we will be holding the SRQ lock. 472 */ 473 if (srq->srq_refcnt != 0) { 474 mutex_exit(&srq->srq_lock); 475 return (IBT_SRQ_IN_USE); 476 } 477 478 /* 479 * If this was a user-mappable SRQ, then we need to remove its entry 480 * from the "userland resources database". If it is also currently 481 * mmap()'d out to a user process, then we need to call 482 * devmap_devmem_remap() to remap the SRQ memory to an invalid mapping. 483 * We also need to invalidate the SRQ tracking information for the 484 * user mapping. 485 */ 486 if (srq->srq_is_umap) { 487 status = hermon_umap_db_find(state->hs_instance, 488 srq->srq_srqnum, MLNX_UMAP_SRQMEM_RSRC, &value, 489 HERMON_UMAP_DB_REMOVE, &umapdb); 490 if (status != DDI_SUCCESS) { 491 mutex_exit(&srq->srq_lock); 492 HERMON_WARNING(state, "failed to find in database"); 493 return (ibc_get_ci_failure(0)); 494 } 495 hermon_umap_db_free(umapdb); 496 if (srq->srq_umap_dhp != NULL) { 497 maxprot = (PROT_READ | PROT_WRITE | PROT_USER); 498 status = devmap_devmem_remap(srq->srq_umap_dhp, 499 state->hs_dip, 0, 0, srq->srq_wqinfo.qa_size, 500 maxprot, DEVMAP_MAPPING_INVALID, NULL); 501 if (status != DDI_SUCCESS) { 502 mutex_exit(&srq->srq_lock); 503 HERMON_WARNING(state, "failed in SRQ memory " 504 "devmap_devmem_remap()"); 505 return (ibc_get_ci_failure(0)); 506 } 507 srq->srq_umap_dhp = (devmap_cookie_t)NULL; 508 } 509 } 510 511 /* 512 * Put NULL into the Hermon SRQNum-to-SRQHdl list. This will allow any 513 * in-progress events to detect that the SRQ corresponding to this 514 * number has been freed. 515 */ 516 hermon_icm_set_num_to_hdl(state, HERMON_SRQC, srqc->hr_indx, NULL); 517 518 mutex_exit(&srq->srq_lock); 519 520 /* 521 * Reclaim SRQC entry from hardware (using the Hermon HW2SW_SRQ 522 * firmware command). If the ownership transfer fails for any reason, 523 * then it is an indication that something (either in HW or SW) has 524 * gone seriously wrong. 525 */ 526 status = hermon_cmn_ownership_cmd_post(state, HW2SW_SRQ, &srqc_entry, 527 sizeof (hermon_hw_srqc_t), srqnum, sleepflag); 528 if (status != HERMON_CMD_SUCCESS) { 529 HERMON_WARNING(state, "failed to reclaim SRQC ownership"); 530 cmn_err(CE_CONT, "Hermon: HW2SW_SRQ command failed: %08x\n", 531 status); 532 if (status == HERMON_CMD_INVALID_STATUS) { 533 hermon_fm_ereport(state, HCA_SYS_ERR, HCA_ERR_SRV_LOST); 534 } 535 return (ibc_get_ci_failure(0)); 536 } 537 538 /* 539 * Deregister the memory for the Shared Receive Queue. If this fails 540 * for any reason, then it is an indication that something (either 541 * in HW or SW) has gone seriously wrong. So we print a warning 542 * message and return. 543 */ 544 status = hermon_mr_deregister(state, &mr, HERMON_MR_DEREG_ALL, 545 sleepflag); 546 if (status != DDI_SUCCESS) { 547 HERMON_WARNING(state, "failed to deregister SRQ memory"); 548 return (IBT_FAILURE); 549 } 550 551 hermon_wrid_wqhdr_destroy(srq->srq_wq_wqhdr); 552 553 /* Free the memory for the SRQ */ 554 hermon_queue_free(&srq->srq_wqinfo); 555 556 /* Free the dbr */ 557 hermon_dbr_free(state, srq->srq_uarpg, srq->srq_wq_vdbr); 558 559 /* Free the Hermon SRQ Handle */ 560 hermon_rsrc_free(state, &rsrc); 561 562 /* Free the SRQC entry resource */ 563 hermon_rsrc_free(state, &srqc); 564 565 /* Decrement the reference count on the protection domain (PD) */ 566 hermon_pd_refcnt_dec(pd); 567 568 /* Set the srqhdl pointer to NULL and return success */ 569 *srqhdl = NULL; 570 571 return (DDI_SUCCESS); 572 } 573 574 575 /* 576 * hermon_srq_modify() 577 * Context: Can be called only from user or kernel context. 578 */ 579 int 580 hermon_srq_modify(hermon_state_t *state, hermon_srqhdl_t srq, uint_t size, 581 uint_t *real_size, uint_t sleepflag) 582 { 583 hermon_qalloc_info_t new_srqinfo, old_srqinfo; 584 hermon_rsrc_t *mtt, *old_mtt; 585 hermon_bind_info_t bind; 586 hermon_bind_info_t old_bind; 587 hermon_mrhdl_t mr; 588 hermon_hw_srqc_t srqc_entry; 589 hermon_hw_dmpt_t mpt_entry; 590 uint64_t *wre_new, *wre_old; 591 uint64_t mtt_addr; 592 uint64_t srq_pgoffs; 593 uint64_t srq_desc_off; 594 uint32_t *buf, srq_old_bufsz; 595 uint32_t wqesz; 596 uint_t max_srq_size; 597 uint_t mtt_pgsize_bits; 598 uint_t log_srq_size, maxprot; 599 int status; 600 601 if ((state->hs_devlim.mod_wr_srq == 0) || 602 (state->hs_cfg_profile->cp_srq_resize_enabled == 0)) 603 return (IBT_NOT_SUPPORTED); 604 605 /* 606 * If size requested is larger than device capability, return 607 * Insufficient Resources 608 */ 609 max_srq_size = (1 << state->hs_cfg_profile->cp_log_max_srq_sz); 610 if (size > max_srq_size) { 611 return (IBT_HCA_WR_EXCEEDED); 612 } 613 614 /* 615 * Calculate the appropriate size for the SRQ. 616 * Note: All Hermon SRQs must be a power-of-2 in size. Also 617 * they may not be any smaller than HERMON_SRQ_MIN_SIZE. This step 618 * is to round the requested size up to the next highest power-of-2 619 */ 620 size = max(size, HERMON_SRQ_MIN_SIZE); 621 log_srq_size = highbit(size); 622 if (ISP2(size)) { 623 log_srq_size = log_srq_size - 1; 624 } 625 626 /* 627 * Next we verify that the rounded-up size is valid (i.e. consistent 628 * with the device limits and/or software-configured limits). 629 */ 630 if (log_srq_size > state->hs_cfg_profile->cp_log_max_srq_sz) { 631 status = IBT_HCA_WR_EXCEEDED; 632 goto srqmodify_fail; 633 } 634 635 /* 636 * Allocate the memory for newly resized Shared Receive Queue. 637 * 638 * Note: If SRQ is not user-mappable, then it may come from either 639 * kernel system memory or from HCA-attached local DDR memory. 640 * 641 * Note2: We align this queue on a pagesize boundary. This is required 642 * to make sure that all the resulting IB addresses will start at 0, 643 * for a zero-based queue. By making sure we are aligned on at least a 644 * page, any offset we use into our queue will be the same as it was 645 * when we allocated it at hermon_srq_alloc() time. 646 */ 647 wqesz = (1 << srq->srq_wq_log_wqesz); 648 new_srqinfo.qa_size = (1 << log_srq_size) * wqesz; 649 new_srqinfo.qa_alloc_align = PAGESIZE; 650 new_srqinfo.qa_bind_align = PAGESIZE; 651 if (srq->srq_is_umap) { 652 new_srqinfo.qa_location = HERMON_QUEUE_LOCATION_USERLAND; 653 } else { 654 new_srqinfo.qa_location = HERMON_QUEUE_LOCATION_NORMAL; 655 } 656 status = hermon_queue_alloc(state, &new_srqinfo, sleepflag); 657 if (status != DDI_SUCCESS) { 658 status = IBT_INSUFF_RESOURCE; 659 goto srqmodify_fail; 660 } 661 buf = (uint32_t *)new_srqinfo.qa_buf_aligned; 662 663 /* 664 * Allocate the memory for the new WRE list. This will be used later 665 * when we resize the wridlist based on the new SRQ size. 666 */ 667 wre_new = kmem_zalloc((1 << log_srq_size) * sizeof (uint64_t), 668 sleepflag); 669 if (wre_new == NULL) { 670 status = IBT_INSUFF_RESOURCE; 671 goto srqmodify_fail; 672 } 673 674 /* 675 * Fill in the "bind" struct. This struct provides the majority 676 * of the information that will be used to distinguish between an 677 * "addr" binding (as is the case here) and a "buf" binding (see 678 * below). The "bind" struct is later passed to hermon_mr_mem_bind() 679 * which does most of the "heavy lifting" for the Hermon memory 680 * registration routines. 681 */ 682 bzero(&bind, sizeof (hermon_bind_info_t)); 683 bind.bi_type = HERMON_BINDHDL_VADDR; 684 bind.bi_addr = (uint64_t)(uintptr_t)buf; 685 bind.bi_len = new_srqinfo.qa_size; 686 bind.bi_as = NULL; 687 bind.bi_flags = sleepflag == HERMON_SLEEP ? IBT_MR_SLEEP : 688 IBT_MR_NOSLEEP | IBT_MR_ENABLE_LOCAL_WRITE; 689 bind.bi_bypass = state->hs_cfg_profile->cp_iommu_bypass; 690 691 status = hermon_mr_mtt_bind(state, &bind, new_srqinfo.qa_dmahdl, &mtt, 692 &mtt_pgsize_bits, 0); /* no relaxed ordering */ 693 if (status != DDI_SUCCESS) { 694 status = status; 695 kmem_free(wre_new, (1 << log_srq_size) * 696 sizeof (uint64_t)); 697 hermon_queue_free(&new_srqinfo); 698 goto srqmodify_fail; 699 } 700 701 /* 702 * Calculate the offset between the kernel virtual address space 703 * and the IB virtual address space. This will be used when 704 * posting work requests to properly initialize each WQE. 705 * 706 * Note: bind addr is zero-based (from alloc) so we calculate the 707 * correct new offset here. 708 */ 709 bind.bi_addr = bind.bi_addr & ((1 << mtt_pgsize_bits) - 1); 710 srq_desc_off = (uint64_t)(uintptr_t)new_srqinfo.qa_buf_aligned - 711 (uint64_t)bind.bi_addr; 712 srq_pgoffs = (uint_t) 713 ((uintptr_t)new_srqinfo.qa_buf_aligned & HERMON_PAGEOFFSET); 714 715 /* 716 * Fill in the MPT entry. This is the final step before passing 717 * ownership of the MPT entry to the Hermon hardware. We use all of 718 * the information collected/calculated above to fill in the 719 * requisite portions of the MPT. 720 */ 721 bzero(&mpt_entry, sizeof (hermon_hw_dmpt_t)); 722 mpt_entry.reg_win_len = bind.bi_len; 723 mtt_addr = (mtt->hr_indx << HERMON_MTT_SIZE_SHIFT); 724 mpt_entry.mtt_addr_h = mtt_addr >> 32; 725 mpt_entry.mtt_addr_l = mtt_addr >> 3; 726 727 /* 728 * for hermon we build up a new srqc and pass that (partially filled 729 * to resize SRQ instead of modifying the (d)mpt directly 730 */ 731 732 733 734 /* 735 * Now we grab the SRQ lock. Since we will be updating the actual 736 * SRQ location and the producer/consumer indexes, we should hold 737 * the lock. 738 * 739 * We do a HERMON_NOSLEEP here (and below), though, because we are 740 * holding the "srq_lock" and if we got raised to interrupt level 741 * by priority inversion, we would not want to block in this routine 742 * waiting for success. 743 */ 744 mutex_enter(&srq->srq_lock); 745 746 /* 747 * Copy old entries to new buffer 748 */ 749 srq_old_bufsz = srq->srq_wq_bufsz; 750 bcopy(srq->srq_wq_buf, buf, srq_old_bufsz * wqesz); 751 752 /* 753 * Setup MPT information for use in the MODIFY_MPT command 754 */ 755 mr = srq->srq_mrhdl; 756 mutex_enter(&mr->mr_lock); 757 758 /* 759 * now, setup the srqc information needed for resize - limit the 760 * values, but use the same structure as the srqc 761 */ 762 763 srqc_entry.log_srq_size = log_srq_size; 764 srqc_entry.page_offs = srq_pgoffs >> 6; 765 srqc_entry.log2_pgsz = mr->mr_log2_pgsz; 766 srqc_entry.mtt_base_addrl = (uint64_t)mtt_addr >> 32; 767 srqc_entry.mtt_base_addrh = mtt_addr >> 3; 768 769 /* 770 * RESIZE_SRQ 771 * 772 * If this fails for any reason, then it is an indication that 773 * something (either in HW or SW) has gone seriously wrong. So we 774 * print a warning message and return. 775 */ 776 status = hermon_resize_srq_cmd_post(state, &srqc_entry, 777 srq->srq_srqnum, sleepflag); 778 if (status != HERMON_CMD_SUCCESS) { 779 cmn_err(CE_CONT, "Hermon: RESIZE_SRQ command failed: %08x\n", 780 status); 781 if (status == HERMON_CMD_INVALID_STATUS) { 782 hermon_fm_ereport(state, HCA_SYS_ERR, HCA_ERR_SRV_LOST); 783 } 784 (void) hermon_mr_mtt_unbind(state, &bind, mtt); 785 kmem_free(wre_new, (1 << log_srq_size) * 786 sizeof (uint64_t)); 787 hermon_queue_free(&new_srqinfo); 788 mutex_exit(&mr->mr_lock); 789 mutex_exit(&srq->srq_lock); 790 return (ibc_get_ci_failure(0)); 791 } 792 /* 793 * Update the Hermon Shared Receive Queue handle with all the new 794 * information. At the same time, save away all the necessary 795 * information for freeing up the old resources 796 */ 797 old_srqinfo = srq->srq_wqinfo; 798 old_mtt = srq->srq_mrhdl->mr_mttrsrcp; 799 bcopy(&srq->srq_mrhdl->mr_bindinfo, &old_bind, 800 sizeof (hermon_bind_info_t)); 801 802 /* Now set the new info */ 803 srq->srq_wqinfo = new_srqinfo; 804 srq->srq_wq_buf = buf; 805 srq->srq_wq_bufsz = (1 << log_srq_size); 806 bcopy(&bind, &srq->srq_mrhdl->mr_bindinfo, sizeof (hermon_bind_info_t)); 807 srq->srq_mrhdl->mr_mttrsrcp = mtt; 808 srq->srq_desc_off = srq_desc_off; 809 srq->srq_real_sizes.srq_wr_sz = (1 << log_srq_size); 810 811 /* Update MR mtt pagesize */ 812 mr->mr_logmttpgsz = mtt_pgsize_bits; 813 mutex_exit(&mr->mr_lock); 814 815 /* 816 * Initialize new wridlist, if needed. 817 * 818 * If a wridlist already is setup on an SRQ (the QP associated with an 819 * SRQ has moved "from_reset") then we must update this wridlist based 820 * on the new SRQ size. We allocate the new size of Work Request ID 821 * Entries, copy over the old entries to the new list, and 822 * re-initialize the srq wridlist in non-umap case 823 */ 824 wre_old = srq->srq_wq_wqhdr->wq_wrid; 825 826 bcopy(wre_old, wre_new, srq_old_bufsz * sizeof (uint64_t)); 827 828 /* Setup new sizes in wre */ 829 srq->srq_wq_wqhdr->wq_wrid = wre_new; 830 831 /* 832 * If "old" SRQ was a user-mappable SRQ that is currently mmap()'d out 833 * to a user process, then we need to call devmap_devmem_remap() to 834 * invalidate the mapping to the SRQ memory. We also need to 835 * invalidate the SRQ tracking information for the user mapping. 836 * 837 * Note: On failure, the remap really shouldn't ever happen. So, if it 838 * does, it is an indication that something has gone seriously wrong. 839 * So we print a warning message and return error (knowing, of course, 840 * that the "old" SRQ memory will be leaked) 841 */ 842 if ((srq->srq_is_umap) && (srq->srq_umap_dhp != NULL)) { 843 maxprot = (PROT_READ | PROT_WRITE | PROT_USER); 844 status = devmap_devmem_remap(srq->srq_umap_dhp, 845 state->hs_dip, 0, 0, srq->srq_wqinfo.qa_size, maxprot, 846 DEVMAP_MAPPING_INVALID, NULL); 847 if (status != DDI_SUCCESS) { 848 mutex_exit(&srq->srq_lock); 849 HERMON_WARNING(state, "failed in SRQ memory " 850 "devmap_devmem_remap()"); 851 /* We can, however, free the memory for old wre */ 852 kmem_free(wre_old, srq_old_bufsz * sizeof (uint64_t)); 853 return (ibc_get_ci_failure(0)); 854 } 855 srq->srq_umap_dhp = (devmap_cookie_t)NULL; 856 } 857 858 /* 859 * Drop the SRQ lock now. The only thing left to do is to free up 860 * the old resources. 861 */ 862 mutex_exit(&srq->srq_lock); 863 864 /* 865 * Unbind the MTT entries. 866 */ 867 status = hermon_mr_mtt_unbind(state, &old_bind, old_mtt); 868 if (status != DDI_SUCCESS) { 869 HERMON_WARNING(state, "failed to unbind old SRQ memory"); 870 status = ibc_get_ci_failure(0); 871 goto srqmodify_fail; 872 } 873 874 /* Free the memory for old wre */ 875 kmem_free(wre_old, srq_old_bufsz * sizeof (uint64_t)); 876 877 /* Free the memory for the old SRQ */ 878 hermon_queue_free(&old_srqinfo); 879 880 /* 881 * Fill in the return arguments (if necessary). This includes the 882 * real new completion queue size. 883 */ 884 if (real_size != NULL) { 885 *real_size = (1 << log_srq_size); 886 } 887 888 return (DDI_SUCCESS); 889 890 srqmodify_fail: 891 return (status); 892 } 893 894 895 /* 896 * hermon_srq_refcnt_inc() 897 * Context: Can be called from interrupt or base context. 898 */ 899 void 900 hermon_srq_refcnt_inc(hermon_srqhdl_t srq) 901 { 902 mutex_enter(&srq->srq_lock); 903 srq->srq_refcnt++; 904 mutex_exit(&srq->srq_lock); 905 } 906 907 908 /* 909 * hermon_srq_refcnt_dec() 910 * Context: Can be called from interrupt or base context. 911 */ 912 void 913 hermon_srq_refcnt_dec(hermon_srqhdl_t srq) 914 { 915 mutex_enter(&srq->srq_lock); 916 srq->srq_refcnt--; 917 mutex_exit(&srq->srq_lock); 918 } 919 920 921 /* 922 * hermon_srqhdl_from_srqnum() 923 * Context: Can be called from interrupt or base context. 924 * 925 * This routine is important because changing the unconstrained 926 * portion of the SRQ number is critical to the detection of a 927 * potential race condition in the SRQ handler code (i.e. the case 928 * where a SRQ is freed and alloc'd again before an event for the 929 * "old" SRQ can be handled). 930 * 931 * While this is not a perfect solution (not sure that one exists) 932 * it does help to mitigate the chance that this race condition will 933 * cause us to deliver a "stale" event to the new SRQ owner. Note: 934 * this solution does not scale well because the number of constrained 935 * bits increases (and, hence, the number of unconstrained bits 936 * decreases) as the number of supported SRQ grows. For small and 937 * intermediate values, it should hopefully provide sufficient 938 * protection. 939 */ 940 hermon_srqhdl_t 941 hermon_srqhdl_from_srqnum(hermon_state_t *state, uint_t srqnum) 942 { 943 uint_t srqindx, srqmask; 944 945 /* Calculate the SRQ table index from the srqnum */ 946 srqmask = (1 << state->hs_cfg_profile->cp_log_num_srq) - 1; 947 srqindx = srqnum & srqmask; 948 return (hermon_icm_num_to_hdl(state, HERMON_SRQC, srqindx)); 949 } 950 951 952 /* 953 * hermon_srq_sgl_to_logwqesz() 954 * Context: Can be called from interrupt or base context. 955 */ 956 static void 957 hermon_srq_sgl_to_logwqesz(hermon_state_t *state, uint_t num_sgl, 958 hermon_qp_wq_type_t wq_type, uint_t *logwqesz, uint_t *max_sgl) 959 { 960 uint_t max_size, log2, actual_sgl; 961 962 switch (wq_type) { 963 case HERMON_QP_WQ_TYPE_RECVQ: 964 /* 965 * Use requested maximum SGL to calculate max descriptor size 966 * (while guaranteeing that the descriptor size is a 967 * power-of-2 cachelines). 968 */ 969 max_size = (HERMON_QP_WQE_MLX_SRQ_HDRS + (num_sgl << 4)); 970 log2 = highbit(max_size); 971 if (ISP2(max_size)) { 972 log2 = log2 - 1; 973 } 974 975 /* Make sure descriptor is at least the minimum size */ 976 log2 = max(log2, HERMON_QP_WQE_LOG_MINIMUM); 977 978 /* Calculate actual number of SGL (given WQE size) */ 979 actual_sgl = ((1 << log2) - HERMON_QP_WQE_MLX_SRQ_HDRS) >> 4; 980 break; 981 982 default: 983 HERMON_WARNING(state, "unexpected work queue type"); 984 break; 985 } 986 987 /* Fill in the return values */ 988 *logwqesz = log2; 989 *max_sgl = min(state->hs_cfg_profile->cp_srq_max_sgl, actual_sgl); 990 }