1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
  24  */
  25 
  26 /*
  27  * hermon_event.c
  28  *    Hermon Interrupt and Event Processing Routines
  29  *
  30  *    Implements all the routines necessary for allocating, freeing, and
  31  *    handling all of the various event types that the Hermon hardware can
  32  *    generate.
  33  *    These routines include the main Hermon interrupt service routine
  34  *    (hermon_isr()) as well as all the code necessary to setup and handle
  35  *    events from each of the many event queues used by the Hermon device.
  36  */
  37 
  38 #include <sys/types.h>
  39 #include <sys/conf.h>
  40 #include <sys/ddi.h>
  41 #include <sys/sunddi.h>
  42 #include <sys/modctl.h>
  43 
  44 #include <sys/ib/adapters/hermon/hermon.h>
  45 
  46 static void hermon_eq_poll(hermon_state_t *state, hermon_eqhdl_t eq);
  47 static void hermon_eq_catastrophic(hermon_state_t *state);
  48 static int hermon_eq_alloc(hermon_state_t *state, uint32_t log_eq_size,
  49     uint_t intr, hermon_eqhdl_t *eqhdl);
  50 static int hermon_eq_free(hermon_state_t *state, hermon_eqhdl_t *eqhdl);
  51 static int hermon_eq_handler_init(hermon_state_t *state, hermon_eqhdl_t eq,
  52     uint_t evt_type_mask, int (*eqfunc)(hermon_state_t *state,
  53     hermon_eqhdl_t eq, hermon_hw_eqe_t *eqe));
  54 static int hermon_eq_handler_fini(hermon_state_t *state, hermon_eqhdl_t eq);
  55 static int hermon_port_state_change_handler(hermon_state_t *state,
  56     hermon_eqhdl_t eq, hermon_hw_eqe_t *eqe);
  57 static int hermon_comm_estbl_handler(hermon_state_t *state,
  58     hermon_eqhdl_t eq, hermon_hw_eqe_t *eqe);
  59 static int hermon_local_wq_cat_err_handler(hermon_state_t *state,
  60     hermon_eqhdl_t eq, hermon_hw_eqe_t *eqe);
  61 static int hermon_invreq_local_wq_err_handler(hermon_state_t *state,
  62     hermon_eqhdl_t eq, hermon_hw_eqe_t *eqe);
  63 static int hermon_local_acc_vio_wq_err_handler(hermon_state_t *state,
  64     hermon_eqhdl_t eq, hermon_hw_eqe_t *eqe);
  65 static int hermon_sendq_drained_handler(hermon_state_t *state,
  66     hermon_eqhdl_t eq, hermon_hw_eqe_t *eqe);
  67 static int hermon_path_mig_handler(hermon_state_t *state,
  68     hermon_eqhdl_t eq, hermon_hw_eqe_t *eqe);
  69 static int hermon_path_mig_err_handler(hermon_state_t *state,
  70     hermon_eqhdl_t eq, hermon_hw_eqe_t *eqe);
  71 static int hermon_catastrophic_handler(hermon_state_t *state,
  72     hermon_eqhdl_t eq, hermon_hw_eqe_t *eqe);
  73 static int hermon_srq_last_wqe_reached_handler(hermon_state_t *state,
  74     hermon_eqhdl_t eq, hermon_hw_eqe_t *eqe);
  75 static int hermon_fexch_error_handler(hermon_state_t *state,
  76     hermon_eqhdl_t eq, hermon_hw_eqe_t *eqe);
  77 static int hermon_no_eqhandler(hermon_state_t *state, hermon_eqhdl_t eq,
  78     hermon_hw_eqe_t *eqe);
  79 static int hermon_eq_demux(hermon_state_t *state, hermon_eqhdl_t eq,
  80     hermon_hw_eqe_t *eqe);
  81 
  82 /*
  83  * hermon_eq_init_all
  84  *    Context: Only called from attach() path context
  85  */
  86 int
  87 hermon_eq_init_all(hermon_state_t *state)
  88 {
  89         uint_t          log_eq_size, intr_num;
  90         uint_t          num_eq, num_eq_init, num_eq_unmap, num_eq_rsvd;
  91         uint32_t        event_mask;     /* used for multiple event types */
  92         int             status, i, num_extra;
  93         struct hermon_sw_eq_s **eq;
  94         ddi_acc_handle_t uarhdl = hermon_get_uarhdl(state);
  95 
  96         /* initialize the FMA retry loop */
  97         hermon_pio_init(fm_loop_cnt, fm_status, fm_test);
  98 
  99         /*
 100          * For now, all Event Queues default to the same size (pulled from
 101          * the current configuration profile) and are all assigned to the
 102          * same interrupt or MSI.  In the future we may support assigning
 103          * EQs to specific interrupts or MSIs XXX
 104          */
 105         log_eq_size = state->hs_cfg_profile->cp_log_eq_sz;
 106 
 107         /*
 108          * Total number of supported EQs is fixed.  Hermon hardware
 109          * supports up to 512 EQs, though in theory they will one day be
 110          * alloc'd to virtual HCA's.  We are currently using only 47 of them
 111          * - that is, in Arbel and Tavor, before HERMON, where
 112          * we had set aside the first 32 for use with Completion Queues (CQ)
 113          * and reserved a few of the other 32 for each specific class of event
 114          *
 115          * However, with the coming of vitualization, we'll have only 4 per
 116          * potential guest - so, we'll try alloc'ing them differntly
 117          * (see below for more details).
 118          */
 119         num_eq = HERMON_NUM_EQ_USED;
 120         num_eq_rsvd = state->hs_rsvd_eqs;
 121         eq = &state->hs_eqhdl[num_eq_rsvd];
 122 
 123         /*
 124          * If MSI is to be used, then set intr_num to the MSI number.
 125          * Otherwise, for fixed (i.e. 'legacy') interrupts,
 126          * it is what the card tells us in 'inta_pin'.
 127          */
 128         if (state->hs_intr_type_chosen == DDI_INTR_TYPE_FIXED) {
 129                 intr_num = state->hs_adapter.inta_pin;
 130                 num_extra = 0;
 131         } else {
 132                 /* If we have more than one MSI-X vector, init them. */
 133                 for (i = 0; i + 1 < state->hs_intrmsi_allocd; i++) {
 134                         status = hermon_eq_alloc(state, log_eq_size, i, &eq[i]);
 135                         if (status != DDI_SUCCESS) {
 136                                 while (--i >= 0) {
 137                                         (void) hermon_eq_handler_fini(state,
 138                                             eq[i]);
 139                                         (void) hermon_eq_free(state, &eq[i]);
 140                                 }
 141                                 return (DDI_FAILURE);
 142                         }
 143 
 144                         (void) hermon_eq_handler_init(state, eq[i],
 145                             HERMON_EVT_NO_MASK, hermon_cq_handler);
 146                 }
 147                 intr_num = i;
 148                 num_extra = i;
 149         }
 150 
 151         /*
 152          * Allocate and initialize the rest of the Event Queues to be used.
 153          * If any of these EQ allocations fail then jump to the end, cleanup
 154          * what had been successfully initialized, and return an error.
 155          */
 156         for (i = 0; i < num_eq; i++) {
 157                 status = hermon_eq_alloc(state, log_eq_size, intr_num,
 158                     &eq[num_extra + i]);
 159                 if (status != DDI_SUCCESS) {
 160                         num_eq_init = i;
 161                         goto all_eq_init_fail;
 162                 }
 163         }
 164         num_eq_init = num_eq;
 165         /*
 166          * The "num_eq_unmap" variable is used in any possible failure
 167          * cleanup (below) to indicate which events queues might require
 168          * possible event class unmapping.
 169          */
 170         num_eq_unmap = 0;
 171 
 172         /*
 173          * Setup EQ0 (first avail) for use with Completion Queues.  Note: We can
 174          * cast the return value to void here because, when we use the
 175          * HERMON_EVT_NO_MASK flag, it is not possible for
 176          * hermon_eq_handler_init() to return an error.
 177          */
 178         (void) hermon_eq_handler_init(state, eq[num_eq_unmap + num_extra],
 179             HERMON_EVT_NO_MASK, hermon_cq_handler);
 180 
 181         num_eq_unmap++;
 182 
 183         /*
 184          * Setup EQ1 for handling Completion Queue Error Events.
 185          *
 186          * These events include things like CQ overflow or CQ access
 187          * violation errors.  If this setup fails for any reason (which, in
 188          * general, it really never should), then jump to the end, cleanup
 189          * everything that has been successfully initialized, and return an
 190          * error.
 191          */
 192         status = hermon_eq_handler_init(state, eq[num_eq_unmap + num_extra],
 193             HERMON_EVT_MSK_CQ_ERRORS, hermon_cq_err_handler);
 194         if (status != DDI_SUCCESS) {
 195                 goto all_eq_init_fail;
 196         }
 197         state->hs_cq_erreqnum = num_eq_unmap + num_extra + num_eq_rsvd;
 198         num_eq_unmap++;
 199 
 200         /*
 201          * Setup EQ2 for handling most other things including:
 202          *
 203          * Port State Change Events
 204          *   These events include things like Port Up and Port Down events.
 205          *
 206          * Communication Established Events
 207          *   These events correspond to the IB affiliated asynchronous events
 208          *   that are used for connection management
 209          *
 210          * Path Migration Succeeded Events
 211          *   These evens corresponid to the IB affiliated asynchronous events
 212          *   that are used to indicate successful completion of a
 213          *   Path Migration.
 214          *
 215          * Command Completion Events
 216          *   These events correspond to the Arbel generated events that are used
 217          *   to indicate Arbel firmware command completion.
 218          *
 219          * Local WQ Catastrophic Error Events
 220          * Invalid Req Local WQ Error Events
 221          * Local Access Violation WQ Error Events
 222          * SRQ Catastrophic Error Events
 223          * SRQ Last WQE Reached Events
 224          * ECC error detection events
 225          *   These events also correspond to the similarly-named IB affiliated
 226          *   asynchronous error type.
 227          *
 228          * Send Queue Drained Events
 229          *   These events correspond to the IB affiliated asynchronous events
 230          *   that are used to indicate completion of a Send Queue Drained QP
 231          *   state transition.
 232          *
 233          * Path Migration Failed Events
 234          *   These events correspond to the IB affiliated asynchronous events
 235          *   that are used to indicate that path migration was not successful.
 236          *
 237          * Fibre Channel Error Event
 238          *   This event is affiliated with an Fexch QP.
 239          *
 240          * NOTE: When an event fires on this EQ, it will demux the type and
 241          *      send it to the right specific handler routine
 242          *
 243          */
 244         event_mask =
 245             HERMON_EVT_MSK_PORT_STATE_CHANGE |
 246             HERMON_EVT_MSK_COMM_ESTABLISHED |
 247             HERMON_EVT_MSK_COMMAND_INTF_COMP |
 248             HERMON_EVT_MSK_LOCAL_WQ_CAT_ERROR |
 249             HERMON_EVT_MSK_INV_REQ_LOCAL_WQ_ERROR |
 250             HERMON_EVT_MSK_LOCAL_ACC_VIO_WQ_ERROR |
 251             HERMON_EVT_MSK_SEND_QUEUE_DRAINED |
 252             HERMON_EVT_MSK_PATH_MIGRATED |
 253             HERMON_EVT_MSK_PATH_MIGRATE_FAILED |
 254             HERMON_EVT_MSK_SRQ_CATASTROPHIC_ERROR |
 255             HERMON_EVT_MSK_SRQ_LAST_WQE_REACHED |
 256             HERMON_EVT_MSK_FEXCH_ERROR;
 257 
 258         status = hermon_eq_handler_init(state, eq[num_eq_unmap + num_extra],
 259             event_mask, hermon_eq_demux);
 260         if (status != DDI_SUCCESS) {
 261                 goto all_eq_init_fail;
 262         }
 263         num_eq_unmap++;
 264 
 265         /*
 266          * Setup EQ3 to catch all other types of events.  Specifically, we
 267          * do not catch the "Local EEC Catastrophic Error Event" because we
 268          * should have no EEC (the Arbel driver does not support RD).  We also
 269          * choose not to handle any of the address translation page fault
 270          * event types.  Since we are not doing any page fault handling (and
 271          * since the Arbel firmware does not currently support any such
 272          * handling), we allow these events to go to the catch-all handler.
 273          */
 274         status = hermon_eq_handler_init(state, eq[num_eq_unmap + num_extra],
 275             HERMON_EVT_CATCHALL_MASK, hermon_no_eqhandler);
 276         if (status != DDI_SUCCESS) {
 277                 goto all_eq_init_fail;
 278         }
 279         num_eq_unmap++;
 280 
 281         /* the FMA retry loop starts. */
 282         hermon_pio_start(state, uarhdl, all_eq_init_fail, fm_loop_cnt,
 283             fm_status, fm_test);
 284 
 285         /*
 286          * Run through and initialize the Consumer Index for each EQC.
 287          */
 288         for (i = 0; i < num_eq + num_extra; i++) {
 289                 ddi_put32(uarhdl, eq[i]->eq_doorbell, 0x0);
 290         }
 291 
 292         /* the FMA retry loop ends. */
 293         hermon_pio_end(state, uarhdl, all_eq_init_fail, fm_loop_cnt,
 294             fm_status, fm_test);
 295 
 296         return (DDI_SUCCESS);
 297 
 298 all_eq_init_fail:
 299 
 300         /* Unmap any of the partially mapped EQs from above */
 301         for (i = 0; i < num_eq_unmap + num_extra; i++) {
 302                 (void) hermon_eq_handler_fini(state, eq[i]);
 303         }
 304 
 305         /* Free up any of the partially allocated EQs from above */
 306         for (i = 0; i < num_eq_init + num_extra; i++) {
 307                 (void) hermon_eq_free(state, &eq[i]);
 308         }
 309 
 310         /* If a HW error happen during ddi_pio, return DDI_FAILURE */
 311         if (fm_status == HCA_PIO_PERSISTENT) {
 312                 hermon_fm_ereport(state, HCA_SYS_ERR, HCA_ERR_NON_FATAL);
 313                 status = DDI_FAILURE;
 314         }
 315 
 316         return (status);
 317 }
 318 
 319 
 320 /*
 321  * hermon_eq_fini_all
 322  *    Context: Only called from attach() and/or detach() path contexts
 323  */
 324 int
 325 hermon_eq_fini_all(hermon_state_t *state)
 326 {
 327         uint_t          num_eq, num_eq_rsvd;
 328         int             status, i;
 329         struct hermon_sw_eq_s **eq;
 330 
 331         /*
 332          * Grab the total number of supported EQs again.  This is the same
 333          * hardcoded value that was used above (during the event queue
 334          * initialization.)
 335          */
 336         num_eq = HERMON_NUM_EQ_USED + state->hs_intrmsi_allocd - 1;
 337         num_eq_rsvd = state->hs_rsvd_eqs;
 338         eq = &state->hs_eqhdl[num_eq_rsvd];
 339 
 340         /*
 341          * For each of the event queues that we initialized and mapped
 342          * earlier, attempt to unmap the events from the EQ.
 343          */
 344         for (i = 0; i < num_eq; i++) {
 345                 status = hermon_eq_handler_fini(state, eq[i]);
 346                 if (status != DDI_SUCCESS) {
 347                         return (DDI_FAILURE);
 348                 }
 349         }
 350 
 351         /*
 352          * Teardown and free up all the Event Queues that were allocated
 353          * earlier.
 354          */
 355         for (i = 0; i < num_eq; i++) {
 356                 status = hermon_eq_free(state, &eq[i]);
 357                 if (status != DDI_SUCCESS) {
 358                         return (DDI_FAILURE);
 359                 }
 360         }
 361 
 362         return (DDI_SUCCESS);
 363 }
 364 
 365 
 366 /*
 367  * hermon_eq_reset_uar_baseaddr
 368  *    Context: Only called from attach()
 369  */
 370 void
 371 hermon_eq_reset_uar_baseaddr(hermon_state_t *state)
 372 {
 373         int i, num_eq;
 374         hermon_eqhdl_t eq, *eqh;
 375 
 376         num_eq = HERMON_NUM_EQ_USED + state->hs_intrmsi_allocd - 1;
 377         eqh = &state->hs_eqhdl[state->hs_rsvd_eqs];
 378         for (i = 0; i < num_eq; i++) {
 379                 eq = eqh[i];
 380                 eq->eq_doorbell = (uint32_t *)
 381                     ((uintptr_t)state->hs_reg_uar_baseaddr +
 382                     (uint32_t)ARM_EQ_INDEX(eq->eq_eqnum));
 383         }
 384 }
 385 
 386 
 387 /*
 388  * hermon_eq_arm_all
 389  *    Context: Only called from attach() and/or detach() path contexts
 390  */
 391 int
 392 hermon_eq_arm_all(hermon_state_t *state)
 393 {
 394         uint_t          num_eq, num_eq_rsvd;
 395         uint64_t        offset;
 396         hermon_eqhdl_t  eq;
 397         uint32_t        eq_ci;
 398         int             i;
 399         ddi_acc_handle_t uarhdl = hermon_get_uarhdl(state);
 400 
 401         /* initialize the FMA retry loop */
 402         hermon_pio_init(fm_loop_cnt, fm_status, fm_test);
 403 
 404         num_eq = HERMON_NUM_EQ_USED + state->hs_intrmsi_allocd - 1;
 405         num_eq_rsvd = state->hs_rsvd_eqs;
 406 
 407         /* the FMA retry loop starts. */
 408         hermon_pio_start(state, uarhdl, pio_error, fm_loop_cnt, fm_status,
 409             fm_test);
 410 
 411         for (i = 0; i < num_eq; i++) {
 412                 offset = ARM_EQ_INDEX(i + num_eq_rsvd);
 413                 eq = state->hs_eqhdl[i + num_eq_rsvd];
 414                 eq_ci = (eq->eq_consindx & HERMON_EQ_CI_MASK) | EQ_ARM_BIT;
 415                 ddi_put32(uarhdl,
 416                     (uint32_t *)((uintptr_t)state->hs_reg_uar_baseaddr +
 417                     (uint32_t)offset), eq_ci);
 418         }
 419 
 420         /* the FMA retry loop ends. */
 421         hermon_pio_end(state, uarhdl, pio_error, fm_loop_cnt, fm_status,
 422             fm_test);
 423 
 424         return (DDI_SUCCESS);
 425 
 426 pio_error:
 427         hermon_fm_ereport(state, HCA_SYS_ERR, HCA_ERR_NON_FATAL);
 428         return (DDI_FAILURE);
 429 }
 430 
 431 
 432 /*
 433  * hermon_isr()
 434  *    Context: Only called from interrupt context (and during panic)
 435  */
 436 uint_t
 437 hermon_isr(caddr_t arg1, caddr_t arg2)
 438 {
 439         hermon_state_t  *state;
 440         int             i, r;
 441         int             intr;
 442 
 443         /*
 444          * Grab the Hermon softstate pointer from the input parameter
 445          */
 446         state   = (hermon_state_t *)(void *)arg1;
 447 
 448         /* Get the interrupt number */
 449         intr = (int)(uintptr_t)arg2;
 450 
 451         /*
 452          * Clear the interrupt.  Note: This is only needed for
 453          * fixed interrupts as the framework does what is needed for
 454          * MSI-X interrupts.
 455          */
 456         if (state->hs_intr_type_chosen == DDI_INTR_TYPE_FIXED) {
 457                 ddi_acc_handle_t cmdhdl = hermon_get_cmdhdl(state);
 458 
 459                 /* initialize the FMA retry loop */
 460                 hermon_pio_init(fm_loop_cnt, fm_status, fm_test);
 461 
 462                 /* the FMA retry loop starts. */
 463                 hermon_pio_start(state, cmdhdl, pio_error, fm_loop_cnt,
 464                     fm_status, fm_test);
 465 
 466                 ddi_put64(cmdhdl, state->hs_cmd_regs.clr_intr,
 467                     (uint64_t)1 << state->hs_adapter.inta_pin);
 468 
 469                 /* the FMA retry loop ends. */
 470                 hermon_pio_end(state, cmdhdl, pio_error, fm_loop_cnt, fm_status,
 471                     fm_test);
 472         }
 473 
 474         /*
 475          * Loop through all the EQs looking for ones that have "fired".
 476          * To determine if an EQ is fired, the ownership will be the SW
 477          * (the HW will set the owner appropriately). Update the Consumer Index
 478          * of the Event Queue Entry (EQE) and pass it to HW by writing it
 479          * to the respective Set CI DB Register.
 480          *
 481          * The "else" case handles the extra EQs used only for completion
 482          * events, whereas the "if" case deals with the required interrupt
 483          * vector that is used for all classes of events.
 484          */
 485         r = state->hs_rsvd_eqs;
 486 
 487         if (intr + 1 == state->hs_intrmsi_allocd) {  /* last intr */
 488                 r += state->hs_intrmsi_allocd - 1;
 489                 for (i = 0; i < HERMON_NUM_EQ_USED; i++) {
 490                         hermon_eq_poll(state, state->hs_eqhdl[i + r]);
 491                 }
 492         } else {        /* only poll the one EQ */
 493                 hermon_eq_poll(state, state->hs_eqhdl[intr + r]);
 494         }
 495 
 496         return (DDI_INTR_CLAIMED);
 497 
 498 pio_error:
 499         hermon_fm_ereport(state, HCA_SYS_ERR, HCA_ERR_FATAL);
 500         return (DDI_INTR_UNCLAIMED);
 501 }
 502 
 503 
 504 /*
 505  * hermon_eq_poll
 506  *    Context: Only called from interrupt context (and during panic)
 507  */
 508 static void
 509 hermon_eq_poll(hermon_state_t *state, hermon_eqhdl_t eq)
 510 {
 511         hermon_hw_eqe_t *eqe;
 512         int             polled_some;
 513         uint32_t        cons_indx, wrap_around_mask, shift;
 514         int (*eqfunction)(hermon_state_t *state, hermon_eqhdl_t eq,
 515             hermon_hw_eqe_t *eqe);
 516         ddi_acc_handle_t uarhdl = hermon_get_uarhdl(state);
 517 
 518         /* initialize the FMA retry loop */
 519         hermon_pio_init(fm_loop_cnt, fm_status, fm_test);
 520 
 521         /* Get the consumer pointer index */
 522         cons_indx = eq->eq_consindx;
 523         shift = eq->eq_log_eqsz - HERMON_EQE_OWNER_SHIFT;
 524 
 525         /*
 526          * Calculate the wrap around mask.  Note: This operation only works
 527          * because all Hermon event queues have power-of-2 sizes
 528          */
 529         wrap_around_mask = (eq->eq_bufsz - 1);
 530 
 531         /* Calculate the pointer to the first EQ entry */
 532         eqe = &eq->eq_buf[(cons_indx & wrap_around_mask)];
 533 
 534 
 535         /*
 536          * Pull the handler function for this EQ from the Hermon Event Queue
 537          * handle
 538          */
 539         eqfunction = eq->eq_func;
 540 
 541         for (;;) {
 542                 polled_some = 0;
 543                 while (HERMON_EQE_OWNER_IS_SW(eq, eqe, cons_indx, shift)) {
 544 
 545                         /*
 546                          * Call the EQ handler function.  But only call if we
 547                          * are not in polled I/O mode (i.e. not processing
 548                          * because of a system panic).  Note: We don't call
 549                          * the EQ handling functions from a system panic
 550                          * because we are primarily concerned only with
 551                          * ensuring that the event queues do not overflow (or,
 552                          * more specifically, the event queue associated with
 553                          * the CQ that is being used in the sync/dump process).
 554                          * Also, we don't want to make any upcalls (to the
 555                          * IBTF) because we can't guarantee when/if those
 556                          * calls would ever return.  And, if we're in panic,
 557                          * then we reached here through a PollCQ() call (from
 558                          * hermon_cq_poll()), and we need to ensure that we
 559                          * successfully return any work completions to the
 560                          * caller.
 561                          */
 562                         if (ddi_in_panic() == 0) {
 563                                 eqfunction(state, eq, eqe);
 564                         }
 565 
 566                         /* Reset to hardware ownership is implicit */
 567 
 568                         /* Increment the consumer index */
 569                         cons_indx++;
 570 
 571                         /* Update the pointer to the next EQ entry */
 572                         eqe = &eq->eq_buf[(cons_indx & wrap_around_mask)];
 573 
 574                         polled_some = 1;
 575                 }
 576 
 577                 /*
 578                  * write consumer index via EQ set CI Doorbell, to keep overflow
 579                  * from occuring during poll
 580                  */
 581 
 582                 eq->eq_consindx = cons_indx;
 583 
 584                 /* the FMA retry loop starts. */
 585                 hermon_pio_start(state, uarhdl, pio_error, fm_loop_cnt,
 586                     fm_status, fm_test);
 587 
 588                 ddi_put32(uarhdl, eq->eq_doorbell,
 589                     (cons_indx & HERMON_EQ_CI_MASK) | EQ_ARM_BIT);
 590 
 591                 /* the FMA retry loop starts. */
 592                 hermon_pio_end(state, uarhdl, pio_error, fm_loop_cnt,
 593                     fm_status, fm_test);
 594 
 595                 if (polled_some == 0)
 596                         break;
 597         };
 598         return;
 599 
 600 pio_error:
 601         hermon_fm_ereport(state, HCA_SYS_ERR, HCA_ERR_FATAL);
 602 }
 603 
 604 
 605 /*
 606  * hermon_eq_catastrophic
 607  *    Context: Only called from interrupt context (and during panic)
 608  */
 609 static void
 610 hermon_eq_catastrophic(hermon_state_t *state)
 611 {
 612         ddi_acc_handle_t        cmdhdl = hermon_get_cmdhdl(state);
 613         ibt_async_code_t        type;
 614         ibc_async_event_t       event;
 615         uint32_t                *base_addr;
 616         uint32_t                buf_size;
 617         uint32_t                word;
 618         uint8_t                 err_type;
 619         uint32_t                err_buf;
 620         int                     i;
 621 
 622         /* initialize the FMA retry loop */
 623         hermon_pio_init(fm_loop_cnt, fm_status, fm_test);
 624 
 625         bzero(&event, sizeof (ibc_async_event_t));
 626         base_addr = state->hs_cmd_regs.fw_err_buf;
 627 
 628         buf_size = state->hs_fw.error_buf_sz;        /* in #dwords */
 629 
 630         /* the FMA retry loop starts. */
 631         hermon_pio_start(state, cmdhdl, pio_error, fm_loop_cnt, fm_status,
 632             fm_test);
 633 
 634         word = ddi_get32(cmdhdl, base_addr);
 635 
 636         /* the FMA retry loop ends. */
 637         hermon_pio_end(state, cmdhdl, pio_error, fm_loop_cnt, fm_status,
 638             fm_test);
 639 
 640         err_type = (word & 0xFF000000) >> 24;
 641         type     = IBT_ERROR_LOCAL_CATASTROPHIC;
 642 
 643         switch (err_type) {
 644         case HERMON_CATASTROPHIC_INTERNAL_ERROR:
 645                 cmn_err(CE_WARN, "Catastrophic Internal Error: 0x%02x",
 646                     err_type);
 647 
 648                 break;
 649 
 650         case HERMON_CATASTROPHIC_UPLINK_BUS_ERROR:
 651                 cmn_err(CE_WARN, "Catastrophic Uplink Bus Error: 0x%02x",
 652                     err_type);
 653 
 654                 break;
 655 
 656         case HERMON_CATASTROPHIC_DDR_DATA_ERROR:
 657                 cmn_err(CE_WARN, "Catastrophic DDR Data Error: 0x%02x",
 658                     err_type);
 659 
 660                 break;
 661 
 662         case HERMON_CATASTROPHIC_INTERNAL_PARITY_ERROR:
 663                 cmn_err(CE_WARN, "Catastrophic Internal Parity Error: 0x%02x",
 664                     err_type);
 665 
 666                 break;
 667 
 668         default:
 669                 /* Unknown type of Catastrophic error */
 670                 cmn_err(CE_WARN, "Catastrophic Unknown Error: 0x%02x",
 671                     err_type);
 672 
 673                 break;
 674         }
 675 
 676         /* the FMA retry loop starts. */
 677         hermon_pio_start(state, cmdhdl, pio_error, fm_loop_cnt, fm_status,
 678             fm_test);
 679 
 680         /*
 681          * Read in the catastrophic error buffer from the hardware.
 682          */
 683         for (i = 0; i < buf_size; i++) {
 684                 base_addr =
 685                     (state->hs_cmd_regs.fw_err_buf + i);
 686                 err_buf = ddi_get32(cmdhdl, base_addr);
 687                 cmn_err(CE_NOTE, "hermon%d: catastrophic_error[%02x]: %08X",
 688                     state->hs_instance, i, err_buf);
 689         }
 690 
 691         /* the FMA retry loop ends. */
 692         hermon_pio_end(state, cmdhdl, pio_error, fm_loop_cnt, fm_status,
 693             fm_test);
 694 
 695         /*
 696          * We also call the IBTF here to inform it of the catastrophic error.
 697          * Note: Since no event information (i.e. QP handles, CQ handles,
 698          * etc.) is necessary, we pass a NULL pointer instead of a pointer to
 699          * an empty ibc_async_event_t struct.
 700          *
 701          * But we also check if "hs_ibtfpriv" is NULL.  If it is then it
 702          * means that we've have either received this event before we
 703          * finished attaching to the IBTF or we've received it while we
 704          * are in the process of detaching.
 705          */
 706         if (state->hs_ibtfpriv != NULL) {
 707                 HERMON_DO_IBTF_ASYNC_CALLB(state, type, &event);
 708         }
 709 
 710 pio_error:
 711         /* ignore these errors but log them because they're harmless. */
 712         hermon_fm_ereport(state, HCA_SYS_ERR, HCA_ERR_NON_FATAL);
 713 }
 714 
 715 
 716 /*
 717  * hermon_eq_alloc()
 718  *    Context: Only called from attach() path context
 719  */
 720 static int
 721 hermon_eq_alloc(hermon_state_t *state, uint32_t log_eq_size, uint_t intr,
 722     hermon_eqhdl_t *eqhdl)
 723 {
 724         hermon_rsrc_t           *eqc, *rsrc;
 725         hermon_hw_eqc_t         eqc_entry;
 726         hermon_eqhdl_t          eq;
 727         ibt_mr_attr_t           mr_attr;
 728         hermon_mr_options_t     op;
 729         hermon_pdhdl_t          pd;
 730         hermon_mrhdl_t          mr;
 731         hermon_hw_eqe_t         *buf;
 732         int                     status;
 733 
 734         /* Use the internal protection domain (PD) for setting up EQs */
 735         pd = state->hs_pdhdl_internal;
 736 
 737         /* Increment the reference count on the protection domain (PD) */
 738         hermon_pd_refcnt_inc(pd);
 739 
 740         /*
 741          * Allocate an EQ context entry.  This will be filled in with all
 742          * the necessary parameters to define the Event Queue.  And then
 743          * ownership will be passed to the hardware in the final step
 744          * below.  If we fail here, we must undo the protection domain
 745          * reference count.
 746          */
 747         status = hermon_rsrc_alloc(state, HERMON_EQC, 1, HERMON_SLEEP, &eqc);
 748         if (status != DDI_SUCCESS) {
 749                 status = DDI_FAILURE;
 750                 goto eqalloc_fail1;
 751         }
 752 
 753         /*
 754          * Allocate the software structure for tracking the event queue (i.e.
 755          * the Hermon Event Queue handle).  If we fail here, we must undo the
 756          * protection domain reference count and the previous resource
 757          * allocation.
 758          */
 759         status = hermon_rsrc_alloc(state, HERMON_EQHDL, 1, HERMON_SLEEP, &rsrc);
 760         if (status != DDI_SUCCESS) {
 761                 status = DDI_FAILURE;
 762                 goto eqalloc_fail2;
 763         }
 764 
 765         eq = (hermon_eqhdl_t)rsrc->hr_addr;
 766 
 767         /*
 768          * Allocate the memory for Event Queue.
 769          */
 770         eq->eq_eqinfo.qa_size = (1 << log_eq_size) * sizeof (hermon_hw_eqe_t);
 771         eq->eq_eqinfo.qa_alloc_align = eq->eq_eqinfo.qa_bind_align = PAGESIZE;
 772 
 773         eq->eq_eqinfo.qa_location = HERMON_QUEUE_LOCATION_NORMAL;
 774         status = hermon_queue_alloc(state, &eq->eq_eqinfo, HERMON_SLEEP);
 775         if (status != DDI_SUCCESS) {
 776                 status = DDI_FAILURE;
 777                 goto eqalloc_fail3;
 778         }
 779 
 780         buf = (hermon_hw_eqe_t *)eq->eq_eqinfo.qa_buf_aligned;
 781         /*
 782          * Initializing each of the Event Queue Entries (EQE) by setting their
 783          * ownership to hardware ("owner" bit set to HW) is now done by HW
 784          * when the transfer of ownership (below) of the
 785          * EQ context itself is done.
 786          */
 787 
 788         /*
 789          * Register the memory for the EQ.
 790          *
 791          * Because we are in the attach path we use NOSLEEP here so that we
 792          * SPIN in the HCR since the event queues are not setup yet, and we
 793          * cannot NOSPIN at this point in time.
 794          */
 795 
 796         mr_attr.mr_vaddr = (uint64_t)(uintptr_t)buf;
 797         mr_attr.mr_len   = eq->eq_eqinfo.qa_size;
 798         mr_attr.mr_as    = NULL;
 799         mr_attr.mr_flags = IBT_MR_NOSLEEP | IBT_MR_ENABLE_LOCAL_WRITE;
 800         op.mro_bind_type   = state->hs_cfg_profile->cp_iommu_bypass;
 801         op.mro_bind_dmahdl = eq->eq_eqinfo.qa_dmahdl;
 802         op.mro_bind_override_addr = 0;
 803         status = hermon_mr_register(state, pd, &mr_attr, &mr, &op,
 804             HERMON_EQ_CMPT);
 805         if (status != DDI_SUCCESS) {
 806                 status = DDI_FAILURE;
 807                 goto eqalloc_fail4;
 808         }
 809 
 810         /*
 811          * Fill in the EQC entry.  This is the final step before passing
 812          * ownership of the EQC entry to the Hermon hardware.  We use all of
 813          * the information collected/calculated above to fill in the
 814          * requisite portions of the EQC.  Note:  We create all EQs in the
 815          * "fired" state.  We will arm them later (after our interrupt
 816          * routine had been registered.)
 817          */
 818         bzero(&eqc_entry, sizeof (hermon_hw_eqc_t));
 819         eqc_entry.state         = HERMON_EQ_ARMED;
 820         eqc_entry.log_eq_sz     = log_eq_size;
 821         eqc_entry.intr          = intr;
 822         eqc_entry.log2_pgsz     = mr->mr_log2_pgsz;
 823         eqc_entry.pg_offs       = eq->eq_eqinfo.qa_pgoffs >> 5;
 824         eqc_entry.mtt_base_addrh = (uint32_t)((mr->mr_mttaddr >> 32) & 0xFF);
 825         eqc_entry.mtt_base_addrl =  mr->mr_mttaddr >> 3;
 826         eqc_entry.cons_indx     = 0x0;
 827         eqc_entry.prod_indx     = 0x0;
 828 
 829         /*
 830          * Write the EQC entry to hardware.  Lastly, we pass ownership of
 831          * the entry to the hardware (using the Hermon SW2HW_EQ firmware
 832          * command).  Note: in general, this operation shouldn't fail.  But
 833          * if it does, we have to undo everything we've done above before
 834          * returning error.
 835          */
 836         status = hermon_cmn_ownership_cmd_post(state, SW2HW_EQ, &eqc_entry,
 837             sizeof (hermon_hw_eqc_t), eqc->hr_indx, HERMON_CMD_NOSLEEP_SPIN);
 838         if (status != HERMON_CMD_SUCCESS) {
 839                 cmn_err(CE_NOTE, "hermon%d: SW2HW_EQ command failed: %08x\n",
 840                     state->hs_instance, status);
 841                 if (status == HERMON_CMD_INVALID_STATUS) {
 842                         hermon_fm_ereport(state, HCA_SYS_ERR, HCA_ERR_SRV_LOST);
 843                 }
 844                 status = ibc_get_ci_failure(0);
 845                 goto eqalloc_fail5;
 846         }
 847 
 848         /*
 849          * Fill in the rest of the Hermon Event Queue handle.  Having
 850          * successfully transferred ownership of the EQC, we can update the
 851          * following fields for use in further operations on the EQ.
 852          */
 853         eq->eq_eqcrsrcp       = eqc;
 854         eq->eq_rsrcp  = rsrc;
 855         eq->eq_consindx       = 0;
 856         eq->eq_eqnum  = eqc->hr_indx;
 857         eq->eq_buf    = buf;
 858         eq->eq_bufsz  = (1 << log_eq_size);
 859         eq->eq_log_eqsz       = log_eq_size;
 860         eq->eq_mrhdl  = mr;
 861         eq->eq_doorbell       = (uint32_t *)((uintptr_t)state->hs_reg_uar_baseaddr +
 862             (uint32_t)ARM_EQ_INDEX(eq->eq_eqnum));
 863         *eqhdl           = eq;
 864 
 865         return (DDI_SUCCESS);
 866 
 867 /*
 868  * The following is cleanup for all possible failure cases in this routine
 869  */
 870 eqalloc_fail5:
 871         if (hermon_mr_deregister(state, &mr, HERMON_MR_DEREG_ALL,
 872             HERMON_NOSLEEP) != DDI_SUCCESS) {
 873                 HERMON_WARNING(state, "failed to deregister EQ memory");
 874         }
 875 eqalloc_fail4:
 876         hermon_queue_free(&eq->eq_eqinfo);
 877 eqalloc_fail3:
 878         hermon_rsrc_free(state, &rsrc);
 879 eqalloc_fail2:
 880         hermon_rsrc_free(state, &eqc);
 881 eqalloc_fail1:
 882         hermon_pd_refcnt_dec(pd);
 883 eqalloc_fail:
 884         return (status);
 885 }
 886 
 887 
 888 /*
 889  * hermon_eq_free()
 890  *    Context: Only called from attach() and/or detach() path contexts
 891  */
 892 static int
 893 hermon_eq_free(hermon_state_t *state, hermon_eqhdl_t *eqhdl)
 894 {
 895         hermon_rsrc_t           *eqc, *rsrc;
 896         hermon_hw_eqc_t         eqc_entry;
 897         hermon_pdhdl_t          pd;
 898         hermon_mrhdl_t          mr;
 899         hermon_eqhdl_t          eq;
 900         uint32_t                eqnum;
 901         int                     status;
 902 
 903         /*
 904          * Pull all the necessary information from the Hermon Event Queue
 905          * handle.  This is necessary here because the resource for the
 906          * EQ handle is going to be freed up as part of this operation.
 907          */
 908         eq      = *eqhdl;
 909         eqc     = eq->eq_eqcrsrcp;
 910         rsrc    = eq->eq_rsrcp;
 911         pd      = state->hs_pdhdl_internal;
 912         mr      = eq->eq_mrhdl;
 913         eqnum   = eq->eq_eqnum;
 914 
 915         /*
 916          * Reclaim EQC entry from hardware (using the Hermon HW2SW_EQ
 917          * firmware command).  If the ownership transfer fails for any reason,
 918          * then it is an indication that something (either in HW or SW) has
 919          * gone seriously wrong.
 920          */
 921         status = hermon_cmn_ownership_cmd_post(state, HW2SW_EQ, &eqc_entry,
 922             sizeof (hermon_hw_eqc_t), eqnum, HERMON_CMD_NOSLEEP_SPIN);
 923         if (status != HERMON_CMD_SUCCESS) {
 924                 HERMON_WARNING(state, "failed to reclaim EQC ownership");
 925                 cmn_err(CE_CONT, "Hermon: HW2SW_EQ command failed: %08x\n",
 926                     status);
 927                 return (DDI_FAILURE);
 928         }
 929 
 930         /*
 931          * Deregister the memory for the Event Queue.  If this fails
 932          * for any reason, then it is an indication that something (either
 933          * in HW or SW) has gone seriously wrong.  So we print a warning
 934          * message and continue.
 935          */
 936         status = hermon_mr_deregister(state, &mr, HERMON_MR_DEREG_ALL,
 937             HERMON_NOSLEEP);
 938         if (status != DDI_SUCCESS) {
 939                 HERMON_WARNING(state, "failed to deregister EQ memory");
 940         }
 941 
 942         /* Free the memory for the EQ */
 943         hermon_queue_free(&eq->eq_eqinfo);
 944 
 945         /* Free the Hermon Event Queue handle */
 946         hermon_rsrc_free(state, &rsrc);
 947 
 948         /* Free up the EQC entry resource */
 949         hermon_rsrc_free(state, &eqc);
 950 
 951         /* Decrement the reference count on the protection domain (PD) */
 952         hermon_pd_refcnt_dec(pd);
 953 
 954         /* Set the eqhdl pointer to NULL and return success */
 955         *eqhdl = NULL;
 956 
 957         return (DDI_SUCCESS);
 958 }
 959 
 960 
 961 /*
 962  * hermon_eq_handler_init
 963  *    Context: Only called from attach() path context
 964  */
 965 static int
 966 hermon_eq_handler_init(hermon_state_t *state, hermon_eqhdl_t eq,
 967     uint_t evt_type_mask, int (*eq_func)(hermon_state_t *state,
 968     hermon_eqhdl_t eq, hermon_hw_eqe_t *eqe))
 969 {
 970         int             status;
 971 
 972         /*
 973          * Save away the EQ handler function and the event type mask.  These
 974          * will be used later during interrupt and event queue processing.
 975          */
 976         eq->eq_func     = eq_func;
 977         eq->eq_evttypemask = evt_type_mask;
 978 
 979         /*
 980          * Map the EQ to a specific class of event (or events) depending
 981          * on the mask value passed in.  The HERMON_EVT_NO_MASK means not
 982          * to attempt associating the EQ with any specific class of event.
 983          * This is particularly useful when initializing the events queues
 984          * used for CQ events.   The mapping is done using the Hermon MAP_EQ
 985          * firmware command.  Note: This command should not, in general, fail.
 986          * If it does, then something (probably HW related) has gone seriously
 987          * wrong.
 988          */
 989         if (evt_type_mask != HERMON_EVT_NO_MASK) {
 990                 status = hermon_map_eq_cmd_post(state,
 991                     HERMON_CMD_MAP_EQ_EVT_MAP, eq->eq_eqnum, evt_type_mask,
 992                     HERMON_CMD_NOSLEEP_SPIN);
 993                 if (status != HERMON_CMD_SUCCESS) {
 994                         cmn_err(CE_NOTE, "hermon%d: MAP_EQ command failed: "
 995                             "%08x\n", state->hs_instance, status);
 996                         return (DDI_FAILURE);
 997                 }
 998         }
 999 
1000         return (DDI_SUCCESS);
1001 }
1002 
1003 
1004 /*
1005  * hermon_eq_handler_fini
1006  *    Context: Only called from attach() and/or detach() path contexts
1007  */
1008 static int
1009 hermon_eq_handler_fini(hermon_state_t *state, hermon_eqhdl_t eq)
1010 {
1011         int                     status;
1012 
1013         /*
1014          * Unmap the EQ from the event class to which it had been previously
1015          * mapped.  The unmapping is done using the Hermon MAP_EQ (in much
1016          * the same way that the initial mapping was done).  The difference,
1017          * however, is in the HERMON_EQ_EVT_UNMAP flag that is passed to the
1018          * MAP_EQ firmware command.  The HERMON_EVT_NO_MASK (which may have
1019          * been passed in at init time) still means that no association has
1020          * been made between the EQ and any specific class of event (and,
1021          * hence, no unmapping is necessary).  Note: This command should not,
1022          * in general, fail.  If it does, then something (probably HW related)
1023          * has gone seriously wrong.
1024          */
1025         if (eq->eq_evttypemask != HERMON_EVT_NO_MASK) {
1026                 status = hermon_map_eq_cmd_post(state,
1027                     HERMON_CMD_MAP_EQ_EVT_UNMAP, eq->eq_eqnum,
1028                     eq->eq_evttypemask, HERMON_CMD_NOSLEEP_SPIN);
1029                 if (status != HERMON_CMD_SUCCESS) {
1030                         cmn_err(CE_NOTE, "hermon%d: MAP_EQ command failed: "
1031                             "%08x\n", state->hs_instance, status);
1032                         return (DDI_FAILURE);
1033                 }
1034         }
1035 
1036         return (DDI_SUCCESS);
1037 }
1038 
1039 
1040 /*
1041  * hermon_eq_demux()
1042  *      Context: Called only from interrupt context
1043  *      Usage:  to demux the various type reported on one EQ
1044  */
1045 static int
1046 hermon_eq_demux(hermon_state_t *state, hermon_eqhdl_t eq,
1047     hermon_hw_eqe_t *eqe)
1048 {
1049         uint_t                  eqe_evttype;
1050         int                     status = DDI_FAILURE;
1051 
1052         eqe_evttype = HERMON_EQE_EVTTYPE_GET(eq, eqe);
1053 
1054         switch (eqe_evttype) {
1055 
1056         case HERMON_EVT_PORT_STATE_CHANGE:
1057                 status = hermon_port_state_change_handler(state, eq, eqe);
1058                 break;
1059 
1060         case HERMON_EVT_COMM_ESTABLISHED:
1061                 status = hermon_comm_estbl_handler(state, eq, eqe);
1062                 break;
1063 
1064         case HERMON_EVT_COMMAND_INTF_COMP:
1065                 status = hermon_cmd_complete_handler(state, eq, eqe);
1066                 break;
1067 
1068         case HERMON_EVT_LOCAL_WQ_CAT_ERROR:
1069                 HERMON_WARNING(state, HERMON_FMA_LOCCAT);
1070                 status = hermon_local_wq_cat_err_handler(state, eq, eqe);
1071                 break;
1072 
1073         case HERMON_EVT_INV_REQ_LOCAL_WQ_ERROR:
1074                 HERMON_WARNING(state, HERMON_FMA_LOCINV);
1075                 status = hermon_invreq_local_wq_err_handler(state, eq, eqe);
1076                 break;
1077 
1078         case HERMON_EVT_LOCAL_ACC_VIO_WQ_ERROR:
1079                 HERMON_WARNING(state, HERMON_FMA_LOCACEQ);
1080                 IBTF_DPRINTF_L2("async", HERMON_FMA_LOCACEQ);
1081                 status = hermon_local_acc_vio_wq_err_handler(state, eq, eqe);
1082                 break;
1083         case HERMON_EVT_SEND_QUEUE_DRAINED:
1084                 status = hermon_sendq_drained_handler(state, eq, eqe);
1085                 break;
1086 
1087         case HERMON_EVT_PATH_MIGRATED:
1088                 status = hermon_path_mig_handler(state, eq, eqe);
1089                 break;
1090 
1091         case HERMON_EVT_PATH_MIGRATE_FAILED:
1092                 HERMON_WARNING(state, HERMON_FMA_PATHMIG);
1093                 status = hermon_path_mig_err_handler(state, eq, eqe);
1094                 break;
1095 
1096         case HERMON_EVT_SRQ_CATASTROPHIC_ERROR:
1097                 HERMON_WARNING(state, HERMON_FMA_SRQCAT);
1098                 status = hermon_catastrophic_handler(state, eq, eqe);
1099                 break;
1100 
1101         case HERMON_EVT_SRQ_LAST_WQE_REACHED:
1102                 status = hermon_srq_last_wqe_reached_handler(state, eq, eqe);
1103                 break;
1104 
1105         case HERMON_EVT_FEXCH_ERROR:
1106                 status = hermon_fexch_error_handler(state, eq, eqe);
1107                 break;
1108 
1109         default:
1110                 break;
1111         }
1112         return (status);
1113 }
1114 
1115 /*
1116  * hermon_port_state_change_handler()
1117  *    Context: Only called from interrupt context
1118  */
1119 /* ARGSUSED */
1120 static int
1121 hermon_port_state_change_handler(hermon_state_t *state, hermon_eqhdl_t eq,
1122     hermon_hw_eqe_t *eqe)
1123 {
1124         ibc_async_event_t       event;
1125         ibt_async_code_t        type;
1126         uint_t                  subtype;
1127         uint8_t                 port;
1128         char                    link_msg[24];
1129 
1130         /*
1131          * Depending on the type of Port State Change event, pass the
1132          * appropriate asynch event to the IBTF.
1133          */
1134         port = (uint8_t)HERMON_EQE_PORTNUM_GET(eq, eqe);
1135 
1136         /* Check for valid port number in event */
1137         if ((port == 0) || (port > state->hs_cfg_profile->cp_num_ports)) {
1138                 HERMON_WARNING(state, "Unexpected port number in port state "
1139                     "change event");
1140                 cmn_err(CE_CONT, "  Port number: %02x\n", port);
1141                 return (DDI_FAILURE);
1142         }
1143 
1144         subtype = HERMON_EQE_EVTSUBTYPE_GET(eq, eqe);
1145         if (subtype == HERMON_PORT_LINK_ACTIVE) {
1146                 event.ev_port   = port;
1147                 type            = IBT_EVENT_PORT_UP;
1148 
1149                 (void) snprintf(link_msg, 23, "port %d up", port);
1150                 ddi_dev_report_fault(state->hs_dip, DDI_SERVICE_RESTORED,
1151                     DDI_EXTERNAL_FAULT, link_msg);
1152         } else if (subtype == HERMON_PORT_LINK_DOWN) {
1153                 event.ev_port   = port;
1154                 type            = IBT_ERROR_PORT_DOWN;
1155 
1156                 (void) snprintf(link_msg, 23, "port %d down", port);
1157                 ddi_dev_report_fault(state->hs_dip, DDI_SERVICE_LOST,
1158                     DDI_EXTERNAL_FAULT, link_msg);
1159         } else {
1160                 HERMON_WARNING(state, "Unexpected subtype in port state change "
1161                     "event");
1162                 cmn_err(CE_CONT, "  Event type: %02x, subtype: %02x\n",
1163                     HERMON_EQE_EVTTYPE_GET(eq, eqe), subtype);
1164                 return (DDI_FAILURE);
1165         }
1166 
1167         /*
1168          * Deliver the event to the IBTF.  Note: If "hs_ibtfpriv" is NULL,
1169          * then we have either received this event before we finished
1170          * attaching to the IBTF or we've received it while we are in the
1171          * process of detaching.
1172          */
1173         if (state->hs_ibtfpriv != NULL) {
1174                 HERMON_DO_IBTF_ASYNC_CALLB(state, type, &event);
1175         }
1176 
1177         return (DDI_SUCCESS);
1178 }
1179 
1180 
1181 /*
1182  * hermon_comm_estbl_handler()
1183  *    Context: Only called from interrupt context
1184  */
1185 /* ARGSUSED */
1186 static int
1187 hermon_comm_estbl_handler(hermon_state_t *state, hermon_eqhdl_t eq,
1188     hermon_hw_eqe_t *eqe)
1189 {
1190         hermon_qphdl_t          qp;
1191         uint_t                  qpnum;
1192         ibc_async_event_t       event;
1193         ibt_async_code_t        type;
1194 
1195         /* Get the QP handle from QP number in event descriptor */
1196         qpnum = HERMON_EQE_QPNUM_GET(eq, eqe);
1197         qp = hermon_qphdl_from_qpnum(state, qpnum);
1198 
1199         /*
1200          * If the QP handle is NULL, this is probably an indication
1201          * that the QP has been freed already.  In which case, we
1202          * should not deliver this event.
1203          *
1204          * We also check that the QP number in the handle is the
1205          * same as the QP number in the event queue entry.  This
1206          * extra check allows us to handle the case where a QP was
1207          * freed and then allocated again in the time it took to
1208          * handle the event queue processing.  By constantly incrementing
1209          * the non-constrained portion of the QP number every time
1210          * a new QP is allocated, we mitigate (somewhat) the chance
1211          * that a stale event could be passed to the client's QP
1212          * handler.
1213          *
1214          * Lastly, we check if "hs_ibtfpriv" is NULL.  If it is then it
1215          * means that we've have either received this event before we
1216          * finished attaching to the IBTF or we've received it while we
1217          * are in the process of detaching.
1218          */
1219         if ((qp != NULL) && (qp->qp_qpnum == qpnum) &&
1220             (state->hs_ibtfpriv != NULL)) {
1221                 event.ev_qp_hdl = (ibtl_qp_hdl_t)qp->qp_hdlrarg;
1222                 type            = IBT_EVENT_COM_EST_QP;
1223 
1224                 HERMON_DO_IBTF_ASYNC_CALLB(state, type, &event);
1225         }
1226 
1227         return (DDI_SUCCESS);
1228 }
1229 
1230 
1231 /*
1232  * hermon_local_wq_cat_err_handler()
1233  *    Context: Only called from interrupt context
1234  */
1235 /* ARGSUSED */
1236 static int
1237 hermon_local_wq_cat_err_handler(hermon_state_t *state, hermon_eqhdl_t eq,
1238     hermon_hw_eqe_t *eqe)
1239 {
1240         hermon_qphdl_t          qp;
1241         uint_t                  qpnum;
1242         ibc_async_event_t       event;
1243         ibt_async_code_t        type;
1244 
1245         /* Get the QP handle from QP number in event descriptor */
1246         qpnum = HERMON_EQE_QPNUM_GET(eq, eqe);
1247         qp = hermon_qphdl_from_qpnum(state, qpnum);
1248 
1249         /*
1250          * If the QP handle is NULL, this is probably an indication
1251          * that the QP has been freed already.  In which case, we
1252          * should not deliver this event.
1253          *
1254          * We also check that the QP number in the handle is the
1255          * same as the QP number in the event queue entry.  This
1256          * extra check allows us to handle the case where a QP was
1257          * freed and then allocated again in the time it took to
1258          * handle the event queue processing.  By constantly incrementing
1259          * the non-constrained portion of the QP number every time
1260          * a new QP is allocated, we mitigate (somewhat) the chance
1261          * that a stale event could be passed to the client's QP
1262          * handler.
1263          *
1264          * Lastly, we check if "hs_ibtfpriv" is NULL.  If it is then it
1265          * means that we've have either received this event before we
1266          * finished attaching to the IBTF or we've received it while we
1267          * are in the process of detaching.
1268          */
1269         if ((qp != NULL) && (qp->qp_qpnum == qpnum) &&
1270             (state->hs_ibtfpriv != NULL)) {
1271                 event.ev_qp_hdl = (ibtl_qp_hdl_t)qp->qp_hdlrarg;
1272                 type            = IBT_ERROR_CATASTROPHIC_QP;
1273 
1274                 HERMON_DO_IBTF_ASYNC_CALLB(state, type, &event);
1275         }
1276 
1277         return (DDI_SUCCESS);
1278 }
1279 
1280 
1281 /*
1282  * hermon_invreq_local_wq_err_handler()
1283  *    Context: Only called from interrupt context
1284  */
1285 /* ARGSUSED */
1286 static int
1287 hermon_invreq_local_wq_err_handler(hermon_state_t *state, hermon_eqhdl_t eq,
1288     hermon_hw_eqe_t *eqe)
1289 {
1290         hermon_qphdl_t          qp;
1291         uint_t                  qpnum;
1292         ibc_async_event_t       event;
1293         ibt_async_code_t        type;
1294 
1295         /* Get the QP handle from QP number in event descriptor */
1296         qpnum = HERMON_EQE_QPNUM_GET(eq, eqe);
1297         qp = hermon_qphdl_from_qpnum(state, qpnum);
1298 
1299         /*
1300          * If the QP handle is NULL, this is probably an indication
1301          * that the QP has been freed already.  In which case, we
1302          * should not deliver this event.
1303          *
1304          * We also check that the QP number in the handle is the
1305          * same as the QP number in the event queue entry.  This
1306          * extra check allows us to handle the case where a QP was
1307          * freed and then allocated again in the time it took to
1308          * handle the event queue processing.  By constantly incrementing
1309          * the non-constrained portion of the QP number every time
1310          * a new QP is allocated, we mitigate (somewhat) the chance
1311          * that a stale event could be passed to the client's QP
1312          * handler.
1313          *
1314          * Lastly, we check if "hs_ibtfpriv" is NULL.  If it is then it
1315          * means that we've have either received this event before we
1316          * finished attaching to the IBTF or we've received it while we
1317          * are in the process of detaching.
1318          */
1319         if ((qp != NULL) && (qp->qp_qpnum == qpnum) &&
1320             (state->hs_ibtfpriv != NULL)) {
1321                 event.ev_qp_hdl = (ibtl_qp_hdl_t)qp->qp_hdlrarg;
1322                 type            = IBT_ERROR_INVALID_REQUEST_QP;
1323 
1324                 HERMON_DO_IBTF_ASYNC_CALLB(state, type, &event);
1325         }
1326 
1327         return (DDI_SUCCESS);
1328 }
1329 
1330 
1331 /*
1332  * hermon_local_acc_vio_wq_err_handler()
1333  *    Context: Only called from interrupt context
1334  */
1335 /* ARGSUSED */
1336 static int
1337 hermon_local_acc_vio_wq_err_handler(hermon_state_t *state, hermon_eqhdl_t eq,
1338     hermon_hw_eqe_t *eqe)
1339 {
1340         hermon_qphdl_t          qp;
1341         uint_t                  qpnum;
1342         ibc_async_event_t       event;
1343         ibt_async_code_t        type;
1344 
1345         /* Get the QP handle from QP number in event descriptor */
1346         qpnum = HERMON_EQE_QPNUM_GET(eq, eqe);
1347         qp = hermon_qphdl_from_qpnum(state, qpnum);
1348 
1349         /*
1350          * If the QP handle is NULL, this is probably an indication
1351          * that the QP has been freed already.  In which case, we
1352          * should not deliver this event.
1353          *
1354          * We also check that the QP number in the handle is the
1355          * same as the QP number in the event queue entry.  This
1356          * extra check allows us to handle the case where a QP was
1357          * freed and then allocated again in the time it took to
1358          * handle the event queue processing.  By constantly incrementing
1359          * the non-constrained portion of the QP number every time
1360          * a new QP is allocated, we mitigate (somewhat) the chance
1361          * that a stale event could be passed to the client's QP
1362          * handler.
1363          *
1364          * Lastly, we check if "hs_ibtfpriv" is NULL.  If it is then it
1365          * means that we've have either received this event before we
1366          * finished attaching to the IBTF or we've received it while we
1367          * are in the process of detaching.
1368          */
1369         if ((qp != NULL) && (qp->qp_qpnum == qpnum) &&
1370             (state->hs_ibtfpriv != NULL)) {
1371                 event.ev_qp_hdl = (ibtl_qp_hdl_t)qp->qp_hdlrarg;
1372                 type            = IBT_ERROR_ACCESS_VIOLATION_QP;
1373 
1374                 HERMON_DO_IBTF_ASYNC_CALLB(state, type, &event);
1375         }
1376 
1377         return (DDI_SUCCESS);
1378 }
1379 
1380 
1381 /*
1382  * hermon_sendq_drained_handler()
1383  *    Context: Only called from interrupt context
1384  */
1385 /* ARGSUSED */
1386 static int
1387 hermon_sendq_drained_handler(hermon_state_t *state, hermon_eqhdl_t eq,
1388     hermon_hw_eqe_t *eqe)
1389 {
1390         hermon_qphdl_t          qp;
1391         uint_t                  qpnum;
1392         ibc_async_event_t       event;
1393         uint_t                  forward_sqd_event;
1394         ibt_async_code_t        type;
1395 
1396         /* Get the QP handle from QP number in event descriptor */
1397         qpnum = HERMON_EQE_QPNUM_GET(eq, eqe);
1398         qp = hermon_qphdl_from_qpnum(state, qpnum);
1399 
1400         /*
1401          * If the QP handle is NULL, this is probably an indication
1402          * that the QP has been freed already.  In which case, we
1403          * should not deliver this event.
1404          *
1405          * We also check that the QP number in the handle is the
1406          * same as the QP number in the event queue entry.  This
1407          * extra check allows us to handle the case where a QP was
1408          * freed and then allocated again in the time it took to
1409          * handle the event queue processing.  By constantly incrementing
1410          * the non-constrained portion of the QP number every time
1411          * a new QP is allocated, we mitigate (somewhat) the chance
1412          * that a stale event could be passed to the client's QP
1413          * handler.
1414          *
1415          * And then we check if "hs_ibtfpriv" is NULL.  If it is then it
1416          * means that we've have either received this event before we
1417          * finished attaching to the IBTF or we've received it while we
1418          * are in the process of detaching.
1419          */
1420         if ((qp != NULL) && (qp->qp_qpnum == qpnum) &&
1421             (state->hs_ibtfpriv != NULL)) {
1422                 event.ev_qp_hdl = (ibtl_qp_hdl_t)qp->qp_hdlrarg;
1423                 type            = IBT_EVENT_SQD;
1424 
1425                 /*
1426                  * Grab the QP lock and update the QP state to reflect that
1427                  * the Send Queue Drained event has arrived.  Also determine
1428                  * whether the event is intended to be forwarded on to the
1429                  * consumer or not.  This information is used below in
1430                  * determining whether or not to call the IBTF.
1431                  */
1432                 mutex_enter(&qp->qp_lock);
1433                 forward_sqd_event = qp->qp_forward_sqd_event;
1434                 qp->qp_forward_sqd_event  = 0;
1435                 qp->qp_sqd_still_draining = 0;
1436                 mutex_exit(&qp->qp_lock);
1437 
1438                 if (forward_sqd_event != 0) {
1439                         HERMON_DO_IBTF_ASYNC_CALLB(state, type, &event);
1440                 }
1441         }
1442 
1443         return (DDI_SUCCESS);
1444 }
1445 
1446 
1447 /*
1448  * hermon_path_mig_handler()
1449  *    Context: Only called from interrupt context
1450  */
1451 /* ARGSUSED */
1452 static int
1453 hermon_path_mig_handler(hermon_state_t *state, hermon_eqhdl_t eq,
1454     hermon_hw_eqe_t *eqe)
1455 {
1456         hermon_qphdl_t          qp;
1457         uint_t                  qpnum;
1458         ibc_async_event_t       event;
1459         ibt_async_code_t        type;
1460 
1461         /* Get the QP handle from QP number in event descriptor */
1462         qpnum = HERMON_EQE_QPNUM_GET(eq, eqe);
1463         qp = hermon_qphdl_from_qpnum(state, qpnum);
1464 
1465         /*
1466          * If the QP handle is NULL, this is probably an indication
1467          * that the QP has been freed already.  In which case, we
1468          * should not deliver this event.
1469          *
1470          * We also check that the QP number in the handle is the
1471          * same as the QP number in the event queue entry.  This
1472          * extra check allows us to handle the case where a QP was
1473          * freed and then allocated again in the time it took to
1474          * handle the event queue processing.  By constantly incrementing
1475          * the non-constrained portion of the QP number every time
1476          * a new QP is allocated, we mitigate (somewhat) the chance
1477          * that a stale event could be passed to the client's QP
1478          * handler.
1479          *
1480          * Lastly, we check if "hs_ibtfpriv" is NULL.  If it is then it
1481          * means that we've have either received this event before we
1482          * finished attaching to the IBTF or we've received it while we
1483          * are in the process of detaching.
1484          */
1485         if ((qp != NULL) && (qp->qp_qpnum == qpnum) &&
1486             (state->hs_ibtfpriv != NULL)) {
1487                 event.ev_qp_hdl = (ibtl_qp_hdl_t)qp->qp_hdlrarg;
1488                 type            = IBT_EVENT_PATH_MIGRATED_QP;
1489 
1490                 HERMON_DO_IBTF_ASYNC_CALLB(state, type, &event);
1491         }
1492 
1493         return (DDI_SUCCESS);
1494 }
1495 
1496 
1497 /*
1498  * hermon_path_mig_err_handler()
1499  *    Context: Only called from interrupt context
1500  */
1501 /* ARGSUSED */
1502 static int
1503 hermon_path_mig_err_handler(hermon_state_t *state, hermon_eqhdl_t eq,
1504     hermon_hw_eqe_t *eqe)
1505 {
1506         hermon_qphdl_t          qp;
1507         uint_t                  qpnum;
1508         ibc_async_event_t       event;
1509         ibt_async_code_t        type;
1510 
1511         /* Get the QP handle from QP number in event descriptor */
1512         qpnum = HERMON_EQE_QPNUM_GET(eq, eqe);
1513         qp = hermon_qphdl_from_qpnum(state, qpnum);
1514 
1515         /*
1516          * If the QP handle is NULL, this is probably an indication
1517          * that the QP has been freed already.  In which case, we
1518          * should not deliver this event.
1519          *
1520          * We also check that the QP number in the handle is the
1521          * same as the QP number in the event queue entry.  This
1522          * extra check allows us to handle the case where a QP was
1523          * freed and then allocated again in the time it took to
1524          * handle the event queue processing.  By constantly incrementing
1525          * the non-constrained portion of the QP number every time
1526          * a new QP is allocated, we mitigate (somewhat) the chance
1527          * that a stale event could be passed to the client's QP
1528          * handler.
1529          *
1530          * Lastly, we check if "hs_ibtfpriv" is NULL.  If it is then it
1531          * means that we've have either received this event before we
1532          * finished attaching to the IBTF or we've received it while we
1533          * are in the process of detaching.
1534          */
1535         if ((qp != NULL) && (qp->qp_qpnum == qpnum) &&
1536             (state->hs_ibtfpriv != NULL)) {
1537                 event.ev_qp_hdl = (ibtl_qp_hdl_t)qp->qp_hdlrarg;
1538                 type            = IBT_ERROR_PATH_MIGRATE_REQ_QP;
1539 
1540                 HERMON_DO_IBTF_ASYNC_CALLB(state, type, &event);
1541         }
1542 
1543         return (DDI_SUCCESS);
1544 }
1545 
1546 
1547 /*
1548  * hermon_catastrophic_handler()
1549  *    Context: Only called from interrupt context
1550  */
1551 /* ARGSUSED */
1552 static int
1553 hermon_catastrophic_handler(hermon_state_t *state, hermon_eqhdl_t eq,
1554     hermon_hw_eqe_t *eqe)
1555 {
1556         hermon_qphdl_t          qp;
1557         uint_t                  qpnum;
1558         ibc_async_event_t       event;
1559         ibt_async_code_t        type;
1560 
1561         if (eq->eq_evttypemask == HERMON_EVT_MSK_LOCAL_CAT_ERROR) {
1562                 HERMON_FMANOTE(state, HERMON_FMA_INTERNAL);
1563                 hermon_eq_catastrophic(state);
1564                 return (DDI_SUCCESS);
1565         }
1566 
1567         /* Get the QP handle from QP number in event descriptor */
1568         qpnum = HERMON_EQE_QPNUM_GET(eq, eqe);
1569         qp = hermon_qphdl_from_qpnum(state, qpnum);
1570 
1571         /*
1572          * If the QP handle is NULL, this is probably an indication
1573          * that the QP has been freed already.  In which case, we
1574          * should not deliver this event.
1575          *
1576          * We also check that the QP number in the handle is the
1577          * same as the QP number in the event queue entry.  This
1578          * extra check allows us to handle the case where a QP was
1579          * freed and then allocated again in the time it took to
1580          * handle the event queue processing.  By constantly incrementing
1581          * the non-constrained portion of the QP number every time
1582          * a new QP is allocated, we mitigate (somewhat) the chance
1583          * that a stale event could be passed to the client's QP
1584          * handler.
1585          *
1586          * Lastly, we check if "hs_ibtfpriv" is NULL.  If it is then it
1587          * means that we've have either received this event before we
1588          * finished attaching to the IBTF or we've received it while we
1589          * are in the process of detaching.
1590          */
1591         if ((qp != NULL) && (qp->qp_qpnum == qpnum) &&
1592             (state->hs_ibtfpriv != NULL)) {
1593                 event.ev_srq_hdl = (ibt_srq_hdl_t)qp->qp_srqhdl->srq_hdlrarg;
1594                 type            = IBT_ERROR_CATASTROPHIC_SRQ;
1595 
1596                 mutex_enter(&qp->qp_srqhdl->srq_lock);
1597                 qp->qp_srqhdl->srq_state = HERMON_SRQ_STATE_ERROR;
1598                 mutex_exit(&qp->qp_srqhdl->srq_lock);
1599 
1600                 HERMON_DO_IBTF_ASYNC_CALLB(state, type, &event);
1601         }
1602 
1603         return (DDI_SUCCESS);
1604 }
1605 
1606 
1607 /*
1608  * hermon_srq_last_wqe_reached_handler()
1609  *    Context: Only called from interrupt context
1610  */
1611 /* ARGSUSED */
1612 static int
1613 hermon_srq_last_wqe_reached_handler(hermon_state_t *state, hermon_eqhdl_t eq,
1614     hermon_hw_eqe_t *eqe)
1615 {
1616         hermon_qphdl_t          qp;
1617         uint_t                  qpnum;
1618         ibc_async_event_t       event;
1619         ibt_async_code_t        type;
1620 
1621         /* Get the QP handle from QP number in event descriptor */
1622         qpnum = HERMON_EQE_QPNUM_GET(eq, eqe);
1623         qp = hermon_qphdl_from_qpnum(state, qpnum);
1624 
1625         /*
1626          * If the QP handle is NULL, this is probably an indication
1627          * that the QP has been freed already.  In which case, we
1628          * should not deliver this event.
1629          *
1630          * We also check that the QP number in the handle is the
1631          * same as the QP number in the event queue entry.  This
1632          * extra check allows us to handle the case where a QP was
1633          * freed and then allocated again in the time it took to
1634          * handle the event queue processing.  By constantly incrementing
1635          * the non-constrained portion of the QP number every time
1636          * a new QP is allocated, we mitigate (somewhat) the chance
1637          * that a stale event could be passed to the client's QP
1638          * handler.
1639          *
1640          * Lastly, we check if "hs_ibtfpriv" is NULL.  If it is then it
1641          * means that we've have either received this event before we
1642          * finished attaching to the IBTF or we've received it while we
1643          * are in the process of detaching.
1644          */
1645         if ((qp != NULL) && (qp->qp_qpnum == qpnum) &&
1646             (state->hs_ibtfpriv != NULL)) {
1647                 event.ev_qp_hdl = (ibtl_qp_hdl_t)qp->qp_hdlrarg;
1648                 type            = IBT_EVENT_EMPTY_CHAN;
1649 
1650                 HERMON_DO_IBTF_ASYNC_CALLB(state, type, &event);
1651         }
1652 
1653         return (DDI_SUCCESS);
1654 }
1655 
1656 
1657 /* ARGSUSED */
1658 static int hermon_fexch_error_handler(hermon_state_t *state,
1659     hermon_eqhdl_t eq, hermon_hw_eqe_t *eqe)
1660 {
1661         hermon_qphdl_t          qp;
1662         uint_t                  qpnum;
1663         ibc_async_event_t       event;
1664         ibt_async_code_t        type;
1665 
1666         /* Get the QP handle from QP number in event descriptor */
1667         event.ev_port = HERMON_EQE_FEXCH_PORTNUM_GET(eq, eqe);
1668         qpnum = hermon_fcoib_qpnum_from_fexch(state,
1669             event.ev_port, HERMON_EQE_FEXCH_FEXCH_GET(eq, eqe));
1670         qp = hermon_qphdl_from_qpnum(state, qpnum);
1671 
1672         event.ev_fc = HERMON_EQE_FEXCH_SYNDROME_GET(eq, eqe);
1673 
1674         /*
1675          * If the QP handle is NULL, this is probably an indication
1676          * that the QP has been freed already.  In which case, we
1677          * should not deliver this event.
1678          *
1679          * We also check that the QP number in the handle is the
1680          * same as the QP number in the event queue entry.  This
1681          * extra check allows us to handle the case where a QP was
1682          * freed and then allocated again in the time it took to
1683          * handle the event queue processing.  By constantly incrementing
1684          * the non-constrained portion of the QP number every time
1685          * a new QP is allocated, we mitigate (somewhat) the chance
1686          * that a stale event could be passed to the client's QP
1687          * handler.
1688          *
1689          * Lastly, we check if "hs_ibtfpriv" is NULL.  If it is then it
1690          * means that we've have either received this event before we
1691          * finished attaching to the IBTF or we've received it while we
1692          * are in the process of detaching.
1693          */
1694         if ((qp != NULL) && (qp->qp_qpnum == qpnum) &&
1695             (state->hs_ibtfpriv != NULL)) {
1696                 event.ev_qp_hdl = (ibtl_qp_hdl_t)qp->qp_hdlrarg;
1697                 type            = IBT_FEXCH_ERROR;
1698 
1699                 HERMON_DO_IBTF_ASYNC_CALLB(state, type, &event);
1700         }
1701 
1702         return (DDI_SUCCESS);
1703 }
1704 
1705 
1706 /*
1707  * hermon_no_eqhandler
1708  *    Context: Only called from interrupt context
1709  */
1710 /* ARGSUSED */
1711 static int
1712 hermon_no_eqhandler(hermon_state_t *state, hermon_eqhdl_t eq,
1713     hermon_hw_eqe_t *eqe)
1714 {
1715         uint_t          data;
1716         int             i;
1717 
1718         /*
1719          * This "unexpected event" handler (or "catch-all" handler) will
1720          * receive all events for which no other handler has been registered.
1721          * If we end up here, then something has probably gone seriously wrong
1722          * with the Hermon hardware (or, perhaps, with the software... though
1723          * it's unlikely in this case).  The EQE provides all the information
1724          * about the event.  So we print a warning message here along with
1725          * the contents of the EQE.
1726          */
1727         HERMON_WARNING(state, "Unexpected Event handler");
1728         cmn_err(CE_CONT, "  Event type: %02x, subtype: %02x\n",
1729             HERMON_EQE_EVTTYPE_GET(eq, eqe),
1730             HERMON_EQE_EVTSUBTYPE_GET(eq, eqe));
1731         for (i = 0; i < sizeof (hermon_hw_eqe_t) >> 2; i++) {
1732                 data = ((uint_t *)eqe)[i];
1733                 cmn_err(CE_CONT, "  EQE[%02x]: %08x\n", i, data);
1734         }
1735 
1736         return (DDI_SUCCESS);
1737 }