1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 27 /* 28 * 29 * IEEE 1284 Parallel Port Device Driver 30 * 31 */ 32 33 #include <sys/param.h> 34 #include <sys/errno.h> 35 #include <sys/file.h> 36 #include <sys/cmn_err.h> 37 #include <sys/stropts.h> 38 #include <sys/debug.h> 39 #include <sys/stream.h> 40 #include <sys/strsun.h> 41 #include <sys/kmem.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/conf.h> /* req. by dev_ops flags MTSAFE etc. */ 45 #include <sys/modctl.h> /* for modldrv */ 46 #include <sys/stat.h> /* ddi_create_minor_node S_IFCHR */ 47 #include <sys/open.h> 48 #include <sys/ddi_impldefs.h> 49 #include <sys/kstat.h> 50 51 #include <sys/prnio.h> 52 #include <sys/ecppreg.h> /* hw description */ 53 #include <sys/ecppio.h> /* ioctl description */ 54 #include <sys/ecppvar.h> /* driver description */ 55 #include <sys/dma_engine.h> 56 #include <sys/dma_i8237A.h> 57 58 /* 59 * Background 60 * ========== 61 * IEEE 1284-1994 standard defines "a signalling method for asynchronous, 62 * fully interlocked, bidirectional parallel communications between hosts 63 * and printers or other peripherals." (1.1) The standard defines 5 modes 64 * of operation - Compatibility, Nibble, Byte, ECP and EPP - which differ 65 * in direction, bandwidth, pins assignment, DMA capability, etc. 66 * 67 * Negotiation is a mechanism for moving between modes. Compatibility mode 68 * is a default mode, from which negotiations to other modes occur and 69 * to which both host and peripheral break in case of interface errors. 70 * Compatibility mode provides a unidirectional (forward) channel for 71 * communicating with old pre-1284 peripherals. 72 * 73 * Each mode has a number of phases. [Mode, phase] pair represents the 74 * interface state. Host initiates all transfers, though peripheral can 75 * request backchannel transfer by asserting nErr pin. 76 * 77 * Ecpp driver implements an IEEE 1284-compliant host using a combination 78 * of hardware and software. Hardware part is represented by a controller, 79 * which is a part of the SuperIO chip. Ecpp supports the following SuperIOs: 80 * PC82332/PC82336 (U5/U10/U60), PC97317 (U100), M1553 (Grover). 81 * Struct ecpp_hw describes each SuperIO and is determined in ecpp_attach(). 82 * 83 * Negotiation is performed in software. Transfer may be performed either 84 * in software by driving output pins for each byte (PIO method), or with 85 * hardware assistance - SuperIO has a 16-byte FIFO, which is filled by 86 * the driver (normally using DMA), while the chip performs the actual xfer. 87 * PIO is used for Nibble and Compat, DMA is used for ECP and Compat modes. 88 * 89 * Driver currently supports the following modes: 90 * 91 * - Compatibility mode: byte-wide forward channel ~50KB/sec; 92 * pp->io_mode defines PIO or DMA method of transfer; 93 * - Nibble mode: nibble-wide (4-bit) reverse channel ~30KB/sec; 94 * - ECP mode: byte-wide bidirectional channel (~1MB/sec); 95 * 96 * Theory of operation 97 * =================== 98 * The manner in which ecpp drives 1284 interface is that of a state machine. 99 * State is a combination of 1284 mode {ECPP_*_MODE}, 1284 phase {ECPP_PHASE_*} 100 * and transfer method {PIO, DMA}. State is a function of application actions 101 * {write(2), ioctl(2)} and peripheral reaction. 102 * 103 * 1284 interface state is described by the following variables: 104 * pp->current_mode -- 1284 mode used for forward transfers; 105 * pp->backchannel -- 1284 mode used for backward transfers; 106 * pp->curent_phase -- 1284 phase; 107 * 108 * Bidirectional operation in Compatibility mode is provided by a combination: 109 * pp->current_mode == ECPP_COMPAT_MODE && pp->backchannel == ECPP_NIBBLE_MODE 110 * ECPP_CENTRONICS means no backchannel 111 * 112 * Driver internal state is defined by pp->e_busy as follows: 113 * ECPP_IDLE -- idle, no active transfers; 114 * ECPP_BUSY -- transfer is in progress; 115 * ECPP_ERR -- have data to transfer, but peripheral can`t receive data; 116 * ECPP_FLUSH -- flushing the queues; 117 * 118 * When opened, driver is in ECPP_IDLE state, current mode is ECPP_CENTRONICS 119 * Default negotiation tries to negotiate to the best mode supported by printer, 120 * sets pp->current_mode and pp->backchannel accordingly. 121 * 122 * When output data arrives in M_DATA mblks ecpp_wput() puts them on the queue 123 * to let ecpp_wsrv() concatenate small blocks into one big transfer 124 * by copying them into pp->ioblock. If first the mblk data is bigger than 125 * pp->ioblock, then it is used instead of i/o block (pointed by pp->msg) 126 * 127 * Before starting the transfer the driver will check if peripheral is ready 128 * by calling ecpp_check_status() and if it is not, driver goes ECPP_ERR state 129 * and schedules ecpp_wsrv_timer() which would qenable() the wq, effectively 130 * rechecking the peripheral readiness and restarting itself until it is ready. 131 * The transfer is then started by calling ecpp_start(), driver goes ECPP_BUSY 132 * 133 * While transfer is in progress all arriving messages will be queued up. 134 * Transfer can end up in either of two ways: 135 * - interrupt occurs, ecpp_isr() checks if all the data was transferred, if so 136 * cleanup and go ECPP_IDLE, otherwise putback untransferred and qenable(); 137 * - ecpp_xfer_timeout() cancels the transfer and puts back untransferred data; 138 * 139 * PIO transfer method is very CPU intensive: for each sent byte the peripheral 140 * state is checked, then the byte is transfered and driver waits for an nAck 141 * interrupt; ecpp_isr() will then look if there is more data and if so 142 * triggers the soft interrupt, which transfers the next byte. PIO method 143 * is needed only for legacy printers which are sensitive to strobe problem 144 * (Bugid 4192788). 145 * 146 * ecpp_wsrv() is responsible for both starting transfers (ecpp_start()) and 147 * going idle (ecpp_idle_phase()). Many routines qenable() the write queue, 148 * meaning "check if there are pending requests, process them and go idle". 149 * 150 * In it`s idle state the driver will always try to listen to the backchannel 151 * (as advised by 1284). 152 * 153 * The mechanism for handling backchannel requests is as follows: 154 * - when the peripheral has data to send it asserts nErr pin 155 * (and also nAck in Nibble Mode) which results in an interrupt on the host; 156 * - ISR creates M_CTL message containing an ECPP_BACKCHANNEL byte and 157 * puts it back on the write queue; 158 * - ecpp_wsrv() gets M_CTL and calls ecpp_peripheral2host(), which kicks off 159 * the transfer; 160 * 161 * This way Nibble and ECP mode backchannel are implemented. 162 * If the read queue gets full, backchannel request is rejected. 163 * As the application reads data and queue size falls below the low watermark, 164 * ecpp_rsrv() gets called and enables the backchannel again. 165 * 166 * Future enhancements 167 * =================== 168 * 169 * Support new modes: Byte and EPP. 170 */ 171 172 #ifndef ECPP_DEBUG 173 #define ECPP_DEBUG 0 174 #endif /* ECPP_DEBUG */ 175 int ecpp_debug = ECPP_DEBUG; 176 177 int noecp = 0; /* flag not to use ECP mode */ 178 179 /* driver entry point fn definitions */ 180 static int ecpp_open(queue_t *, dev_t *, int, int, cred_t *); 181 static int ecpp_close(queue_t *, int, cred_t *); 182 static uint_t ecpp_isr(caddr_t); 183 static uint_t ecpp_softintr(caddr_t); 184 185 /* configuration entry point fn definitions */ 186 static int ecpp_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **); 187 static int ecpp_attach(dev_info_t *, ddi_attach_cmd_t); 188 static int ecpp_detach(dev_info_t *, ddi_detach_cmd_t); 189 static struct ecpp_hw_bind *ecpp_determine_sio_type(struct ecppunit *); 190 191 /* isr support routines */ 192 static uint_t ecpp_nErr_ihdlr(struct ecppunit *); 193 static uint_t ecpp_pio_ihdlr(struct ecppunit *); 194 static uint_t ecpp_dma_ihdlr(struct ecppunit *); 195 static uint_t ecpp_M1553_intr(struct ecppunit *); 196 197 /* configuration support routines */ 198 static void ecpp_get_props(struct ecppunit *); 199 200 /* Streams Routines */ 201 static int ecpp_wput(queue_t *, mblk_t *); 202 static int ecpp_wsrv(queue_t *); 203 static int ecpp_rsrv(queue_t *); 204 static void ecpp_flush(struct ecppunit *, int); 205 static void ecpp_start(struct ecppunit *, caddr_t, size_t); 206 207 /* ioctl handling */ 208 static void ecpp_putioc(queue_t *, mblk_t *); 209 static void ecpp_srvioc(queue_t *, mblk_t *); 210 static void ecpp_wput_iocdata_devid(queue_t *, mblk_t *, uintptr_t); 211 static void ecpp_putioc_copyout(queue_t *, mblk_t *, void *, int); 212 static void ecpp_putioc_stateful_copyin(queue_t *, mblk_t *, size_t); 213 static void ecpp_srvioc_devid(queue_t *, mblk_t *, 214 struct ecpp_device_id *, int *); 215 static void ecpp_srvioc_prnif(queue_t *, mblk_t *); 216 static void ecpp_ack_ioctl(queue_t *, mblk_t *); 217 static void ecpp_nack_ioctl(queue_t *, mblk_t *, int); 218 219 /* kstat routines */ 220 static void ecpp_kstat_init(struct ecppunit *); 221 static int ecpp_kstat_update(kstat_t *, int); 222 static int ecpp_kstatintr_update(kstat_t *, int); 223 224 /* dma routines */ 225 static void ecpp_putback_untransfered(struct ecppunit *, void *, uint_t); 226 static uint8_t ecpp_setup_dma_resources(struct ecppunit *, caddr_t, size_t); 227 static uint8_t ecpp_init_dma_xfer(struct ecppunit *, caddr_t, size_t); 228 229 /* pio routines */ 230 static void ecpp_pio_writeb(struct ecppunit *); 231 static void ecpp_xfer_cleanup(struct ecppunit *); 232 static uint8_t ecpp_prep_pio_xfer(struct ecppunit *, caddr_t, size_t); 233 234 /* misc */ 235 static uchar_t ecpp_reset_port_regs(struct ecppunit *); 236 static void ecpp_xfer_timeout(void *); 237 static void ecpp_fifo_timer(void *); 238 static void ecpp_wsrv_timer(void *); 239 static uchar_t dcr_write(struct ecppunit *, uint8_t); 240 static uchar_t ecr_write(struct ecppunit *, uint8_t); 241 static uchar_t ecpp_check_status(struct ecppunit *); 242 static int ecpp_backchan_req(struct ecppunit *); 243 static void ecpp_untimeout_unblock(struct ecppunit *, timeout_id_t *); 244 static uint_t ecpp_get_prn_ifcap(struct ecppunit *); 245 246 /* stubs */ 247 static void empty_config_mode(struct ecppunit *); 248 static void empty_mask_intr(struct ecppunit *); 249 250 /* PC87332 support */ 251 static int pc87332_map_regs(struct ecppunit *); 252 static void pc87332_unmap_regs(struct ecppunit *); 253 static int pc87332_config_chip(struct ecppunit *); 254 static void pc87332_config_mode(struct ecppunit *); 255 static uint8_t pc87332_read_config_reg(struct ecppunit *, uint8_t); 256 static void pc87332_write_config_reg(struct ecppunit *, uint8_t, uint8_t); 257 static void cheerio_mask_intr(struct ecppunit *); 258 static void cheerio_unmask_intr(struct ecppunit *); 259 static int cheerio_dma_start(struct ecppunit *); 260 static int cheerio_dma_stop(struct ecppunit *, size_t *); 261 static size_t cheerio_getcnt(struct ecppunit *); 262 static void cheerio_reset_dcsr(struct ecppunit *); 263 264 /* PC97317 support */ 265 static int pc97317_map_regs(struct ecppunit *); 266 static void pc97317_unmap_regs(struct ecppunit *); 267 static int pc97317_config_chip(struct ecppunit *); 268 static void pc97317_config_mode(struct ecppunit *); 269 270 /* M1553 Southbridge support */ 271 static int m1553_map_regs(struct ecppunit *pp); 272 static void m1553_unmap_regs(struct ecppunit *pp); 273 static int m1553_config_chip(struct ecppunit *); 274 static uint8_t m1553_read_config_reg(struct ecppunit *, uint8_t); 275 static void m1553_write_config_reg(struct ecppunit *, uint8_t, uint8_t); 276 277 /* M1553 Southbridge DMAC 8237 support routines */ 278 static int dma8237_dma_start(struct ecppunit *); 279 static int dma8237_dma_stop(struct ecppunit *, size_t *); 280 static size_t dma8237_getcnt(struct ecppunit *); 281 static void dma8237_write_addr(struct ecppunit *, uint32_t); 282 static void dma8237_write_count(struct ecppunit *, uint32_t); 283 static uint32_t dma8237_read_count(struct ecppunit *); 284 static void dma8237_write(struct ecppunit *, int, uint8_t); 285 static uint8_t dma8237_read(struct ecppunit *, int); 286 #ifdef INCLUDE_DMA8237_READ_ADDR 287 static uint32_t dma8237_read_addr(struct ecppunit *); 288 #endif 289 290 /* i86 PC support rountines */ 291 292 #if defined(__x86) 293 static int x86_dma_start(struct ecppunit *); 294 static int x86_dma_stop(struct ecppunit *, size_t *); 295 static int x86_map_regs(struct ecppunit *); 296 static void x86_unmap_regs(struct ecppunit *); 297 static int x86_config_chip(struct ecppunit *); 298 static size_t x86_getcnt(struct ecppunit *); 299 #endif 300 301 /* IEEE 1284 phase transitions */ 302 static void ecpp_1284_init_interface(struct ecppunit *); 303 static int ecpp_1284_termination(struct ecppunit *); 304 static uchar_t ecpp_idle_phase(struct ecppunit *); 305 static int ecp_forward2reverse(struct ecppunit *); 306 static int ecp_reverse2forward(struct ecppunit *); 307 static int read_nibble_backchan(struct ecppunit *); 308 309 /* reverse transfers */ 310 static uint_t ecpp_peripheral2host(struct ecppunit *); 311 static uchar_t ecp_peripheral2host(struct ecppunit *); 312 static uchar_t nibble_peripheral2host(struct ecppunit *pp, uint8_t *); 313 static int ecpp_getdevid(struct ecppunit *, uint8_t *, int *, int); 314 static void ecpp_ecp_read_timeout(void *); 315 static void ecpp_ecp_read_completion(struct ecppunit *); 316 317 /* IEEE 1284 mode transitions */ 318 static void ecpp_default_negotiation(struct ecppunit *); 319 static int ecpp_mode_negotiation(struct ecppunit *, uchar_t); 320 static int ecpp_1284_negotiation(struct ecppunit *, uint8_t, uint8_t *); 321 static int ecp_negotiation(struct ecppunit *); 322 static int nibble_negotiation(struct ecppunit *); 323 static int devidnib_negotiation(struct ecppunit *); 324 325 /* IEEE 1284 utility routines */ 326 static int wait_dsr(struct ecppunit *, uint8_t, uint8_t, int); 327 328 /* debugging functions */ 329 static void ecpp_error(dev_info_t *, char *, ...); 330 static uchar_t ecpp_get_error_status(uchar_t); 331 332 /* 333 * Chip-dependent structures 334 */ 335 static ddi_dma_attr_t cheerio_dma_attr = { 336 DMA_ATTR_VERSION, /* version */ 337 0x00000000ull, /* dlim_addr_lo */ 338 0xfffffffeull, /* dlim_addr_hi */ 339 0xffffff, /* DMA counter register */ 340 1, /* DMA address alignment */ 341 0x74, /* burst sizes */ 342 0x0001, /* min effective DMA size */ 343 0xffff, /* maximum transfer size */ 344 0xffff, /* segment boundary */ 345 1, /* s/g list length */ 346 1, /* granularity of device */ 347 0 /* DMA flags */ 348 }; 349 350 static struct ecpp_hw pc87332 = { 351 pc87332_map_regs, 352 pc87332_unmap_regs, 353 pc87332_config_chip, 354 pc87332_config_mode, 355 cheerio_mask_intr, 356 cheerio_unmask_intr, 357 cheerio_dma_start, 358 cheerio_dma_stop, 359 cheerio_getcnt, 360 &cheerio_dma_attr 361 }; 362 363 static struct ecpp_hw pc97317 = { 364 pc97317_map_regs, 365 pc97317_unmap_regs, 366 pc97317_config_chip, 367 pc97317_config_mode, 368 cheerio_mask_intr, 369 cheerio_unmask_intr, 370 cheerio_dma_start, 371 cheerio_dma_stop, 372 cheerio_getcnt, 373 &cheerio_dma_attr 374 }; 375 376 static ddi_dma_attr_t i8237_dma_attr = { 377 DMA_ATTR_VERSION, /* version */ 378 0x00000000ull, /* dlim_addr_lo */ 379 0xfffffffeull, /* dlim_addr_hi */ 380 0xffff, /* DMA counter register */ 381 1, /* DMA address alignment */ 382 0x01, /* burst sizes */ 383 0x0001, /* min effective DMA size */ 384 0xffff, /* maximum transfer size */ 385 0x7fff, /* segment boundary */ 386 1, /* s/g list length */ 387 1, /* granularity of device */ 388 0 /* DMA flags */ 389 }; 390 391 static struct ecpp_hw m1553 = { 392 m1553_map_regs, 393 m1553_unmap_regs, 394 m1553_config_chip, 395 empty_config_mode, /* no config_mode */ 396 empty_mask_intr, /* no mask_intr */ 397 empty_mask_intr, /* no unmask_intr */ 398 dma8237_dma_start, 399 dma8237_dma_stop, 400 dma8237_getcnt, 401 &i8237_dma_attr 402 }; 403 404 #if defined(__x86) 405 static ddi_dma_attr_t sb_dma_attr = { 406 DMA_ATTR_VERSION, /* version */ 407 0x00000000ull, /* dlim_addr_lo */ 408 0xffffff, /* dlim_addr_hi */ 409 0xffff, /* DMA counter register */ 410 1, /* DMA address alignment */ 411 0x01, /* burst sizes */ 412 0x0001, /* min effective DMA size */ 413 0xffffffff, /* maximum transfer size */ 414 0xffff, /* segment boundary */ 415 1, /* s/g list length */ 416 1, /* granularity of device */ 417 0 /* DMA flags */ 418 }; 419 420 static struct ecpp_hw x86 = { 421 x86_map_regs, 422 x86_unmap_regs, 423 x86_config_chip, 424 empty_config_mode, /* no config_mode */ 425 empty_mask_intr, /* no mask_intr */ 426 empty_mask_intr, /* no unmask_intr */ 427 x86_dma_start, 428 x86_dma_stop, 429 x86_getcnt, 430 &sb_dma_attr 431 }; 432 #endif 433 434 /* 435 * list of supported devices 436 */ 437 struct ecpp_hw_bind ecpp_hw_bind[] = { 438 { "ns87317-ecpp", &pc97317, "PC97317" }, 439 { "pnpALI,1533,3", &m1553, "M1553" }, 440 { "ecpp", &pc87332, "PC87332" }, 441 #if defined(__x86) 442 { "lp", &x86, "i86pc"}, 443 #endif 444 }; 445 446 static ddi_device_acc_attr_t acc_attr = { 447 DDI_DEVICE_ATTR_V0, 448 DDI_STRUCTURE_LE_ACC, 449 DDI_STRICTORDER_ACC 450 }; 451 452 static struct ecpp_transfer_parms default_xfer_parms = { 453 FWD_TIMEOUT_DEFAULT, /* write timeout in seconds */ 454 ECPP_CENTRONICS /* supported mode */ 455 }; 456 457 /* prnio interface info string */ 458 static const char prn_ifinfo[] = PRN_PARALLEL; 459 460 /* prnio timeouts */ 461 static const struct prn_timeouts prn_timeouts_default = { 462 FWD_TIMEOUT_DEFAULT, /* forward timeout */ 463 REV_TIMEOUT_DEFAULT /* reverse timeout */ 464 }; 465 466 static int ecpp_isr_max_delay = ECPP_ISR_MAX_DELAY; 467 static int ecpp_def_timeout = 90; /* left in for 2.7 compatibility */ 468 469 static void *ecppsoft_statep; 470 471 /* 472 * STREAMS framework manages locks for these structures 473 */ 474 _NOTE(SCHEME_PROTECTS_DATA("unique per call", iocblk)) 475 _NOTE(SCHEME_PROTECTS_DATA("unique per call", datab)) 476 _NOTE(SCHEME_PROTECTS_DATA("unique per call", msgb)) 477 _NOTE(SCHEME_PROTECTS_DATA("unique per call", queue)) 478 _NOTE(SCHEME_PROTECTS_DATA("unique per call", copyreq)) 479 _NOTE(SCHEME_PROTECTS_DATA("unique per call", stroptions)) 480 481 struct module_info ecppinfo = { 482 /* id, name, min pkt siz, max pkt siz, hi water, low water */ 483 42, "ecpp", 0, IO_BLOCK_SZ, ECPPHIWAT, ECPPLOWAT 484 }; 485 486 static struct qinit ecpp_rinit = { 487 putq, ecpp_rsrv, ecpp_open, ecpp_close, NULL, &ecppinfo, NULL 488 }; 489 490 static struct qinit ecpp_wint = { 491 ecpp_wput, ecpp_wsrv, ecpp_open, ecpp_close, NULL, &ecppinfo, NULL 492 }; 493 494 struct streamtab ecpp_str_info = { 495 &ecpp_rinit, &ecpp_wint, NULL, NULL 496 }; 497 498 static struct cb_ops ecpp_cb_ops = { 499 nodev, /* cb_open */ 500 nodev, /* cb_close */ 501 nodev, /* cb_strategy */ 502 nodev, /* cb_print */ 503 nodev, /* cb_dump */ 504 nodev, /* cb_read */ 505 nodev, /* cb_write */ 506 nodev, /* cb_ioctl */ 507 nodev, /* cb_devmap */ 508 nodev, /* cb_mmap */ 509 nodev, /* cb_segmap */ 510 nochpoll, /* cb_chpoll */ 511 ddi_prop_op, /* cb_prop_op */ 512 &ecpp_str_info, /* cb_stream */ 513 (D_NEW | D_MP | D_MTPERQ) /* cb_flag */ 514 }; 515 516 /* 517 * Declare ops vectors for auto configuration. 518 */ 519 struct dev_ops ecpp_ops = { 520 DEVO_REV, /* devo_rev */ 521 0, /* devo_refcnt */ 522 ecpp_getinfo, /* devo_getinfo */ 523 nulldev, /* devo_identify */ 524 nulldev, /* devo_probe */ 525 ecpp_attach, /* devo_attach */ 526 ecpp_detach, /* devo_detach */ 527 nodev, /* devo_reset */ 528 &ecpp_cb_ops, /* devo_cb_ops */ 529 (struct bus_ops *)NULL, /* devo_bus_ops */ 530 nulldev, /* devo_power */ 531 ddi_quiesce_not_needed, /* devo_quiesce */ 532 }; 533 534 extern struct mod_ops mod_driverops; 535 536 static struct modldrv ecppmodldrv = { 537 &mod_driverops, /* type of module - driver */ 538 "parallel port driver", 539 &ecpp_ops, 540 }; 541 542 static struct modlinkage ecppmodlinkage = { 543 MODREV_1, 544 &ecppmodldrv, 545 0 546 }; 547 548 549 /* 550 * 551 * DDI/DKI entry points and supplementary routines 552 * 553 */ 554 555 556 int 557 _init(void) 558 { 559 int error; 560 561 if ((error = mod_install(&ecppmodlinkage)) == 0) { 562 (void) ddi_soft_state_init(&ecppsoft_statep, 563 sizeof (struct ecppunit), 1); 564 } 565 566 return (error); 567 } 568 569 int 570 _fini(void) 571 { 572 int error; 573 574 if ((error = mod_remove(&ecppmodlinkage)) == 0) { 575 ddi_soft_state_fini(&ecppsoft_statep); 576 } 577 578 return (error); 579 } 580 581 int 582 _info(struct modinfo *modinfop) 583 { 584 return (mod_info(&ecppmodlinkage, modinfop)); 585 } 586 587 static int 588 ecpp_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 589 { 590 int instance; 591 char name[16]; 592 struct ecppunit *pp; 593 struct ecpp_hw_bind *hw_bind; 594 595 instance = ddi_get_instance(dip); 596 597 switch (cmd) { 598 case DDI_ATTACH: 599 break; 600 601 case DDI_RESUME: 602 if (!(pp = ddi_get_soft_state(ecppsoft_statep, instance))) { 603 return (DDI_FAILURE); 604 } 605 606 mutex_enter(&pp->umutex); 607 608 pp->suspended = FALSE; 609 610 /* 611 * Initialize the chip and restore current mode if needed 612 */ 613 (void) ECPP_CONFIG_CHIP(pp); 614 (void) ecpp_reset_port_regs(pp); 615 616 if (pp->oflag == TRUE) { 617 int current_mode = pp->current_mode; 618 619 (void) ecpp_1284_termination(pp); 620 (void) ecpp_mode_negotiation(pp, current_mode); 621 } 622 623 mutex_exit(&pp->umutex); 624 625 return (DDI_SUCCESS); 626 627 default: 628 return (DDI_FAILURE); 629 } 630 631 if (ddi_soft_state_zalloc(ecppsoft_statep, instance) != 0) { 632 ecpp_error(dip, "ddi_soft_state_zalloc failed\n"); 633 goto fail; 634 } 635 636 pp = ddi_get_soft_state(ecppsoft_statep, instance); 637 638 pp->dip = dip; 639 pp->suspended = FALSE; 640 641 /* 642 * Determine SuperIO type and set chip-dependent variables 643 */ 644 hw_bind = ecpp_determine_sio_type(pp); 645 646 if (hw_bind == NULL) { 647 cmn_err(CE_NOTE, "parallel port controller not supported"); 648 goto fail_sio; 649 } else { 650 pp->hw = hw_bind->hw; 651 ecpp_error(pp->dip, "SuperIO type: %s\n", hw_bind->info); 652 } 653 654 /* 655 * Map registers 656 */ 657 if (ECPP_MAP_REGS(pp) != SUCCESS) { 658 goto fail_map; 659 } 660 661 if (ddi_dma_alloc_handle(dip, pp->hw->attr, DDI_DMA_DONTWAIT, 662 NULL, &pp->dma_handle) != DDI_SUCCESS) { 663 ecpp_error(dip, "ecpp_attach: failed ddi_dma_alloc_handle\n"); 664 goto fail_dma; 665 } 666 667 if (ddi_get_iblock_cookie(dip, 0, 668 &pp->ecpp_trap_cookie) != DDI_SUCCESS) { 669 ecpp_error(dip, "ecpp_attach: failed ddi_get_iblock_cookie\n"); 670 goto fail_ibc; 671 } 672 673 mutex_init(&pp->umutex, NULL, MUTEX_DRIVER, 674 (void *)pp->ecpp_trap_cookie); 675 676 cv_init(&pp->pport_cv, NULL, CV_DRIVER, NULL); 677 678 if (ddi_add_intr(dip, 0, &pp->ecpp_trap_cookie, NULL, ecpp_isr, 679 (caddr_t)pp) != DDI_SUCCESS) { 680 ecpp_error(dip, "ecpp_attach: failed to add hard intr\n"); 681 goto fail_intr; 682 } 683 684 if (ddi_add_softintr(dip, DDI_SOFTINT_LOW, 685 &pp->softintr_id, 0, 0, ecpp_softintr, 686 (caddr_t)pp) != DDI_SUCCESS) { 687 ecpp_error(dip, "ecpp_attach: failed to add soft intr\n"); 688 goto fail_softintr; 689 } 690 691 (void) sprintf(name, "ecpp%d", instance); 692 693 if (ddi_create_minor_node(dip, name, S_IFCHR, instance, 694 DDI_NT_PRINTER, NULL) == DDI_FAILURE) { 695 ecpp_error(dip, "ecpp_attach: create_minor_node failed\n"); 696 goto fail_minor; 697 } 698 699 pp->ioblock = (caddr_t)kmem_alloc(IO_BLOCK_SZ, KM_SLEEP); 700 if (pp->ioblock == NULL) { 701 ecpp_error(dip, "ecpp_attach: kmem_alloc failed\n"); 702 goto fail_iob; 703 } else { 704 ecpp_error(pp->dip, "ecpp_attach: ioblock=0x%x\n", pp->ioblock); 705 } 706 707 ecpp_get_props(pp); 708 #if defined(__x86) 709 if (pp->hw == &x86 && pp->uh.x86.chn != 0xff) { 710 if (ddi_dmae_alloc(dip, pp->uh.x86.chn, 711 DDI_DMA_DONTWAIT, NULL) == DDI_SUCCESS) 712 ecpp_error(pp->dip, "dmae_alloc success!\n"); 713 } 714 #endif 715 if (ECPP_CONFIG_CHIP(pp) == FAILURE) { 716 ecpp_error(pp->dip, "config_chip failed.\n"); 717 goto fail_config; 718 } 719 720 ecpp_kstat_init(pp); 721 722 ddi_report_dev(dip); 723 724 return (DDI_SUCCESS); 725 726 fail_config: 727 ddi_prop_remove_all(dip); 728 kmem_free(pp->ioblock, IO_BLOCK_SZ); 729 fail_iob: 730 ddi_remove_minor_node(dip, NULL); 731 fail_minor: 732 ddi_remove_softintr(pp->softintr_id); 733 fail_softintr: 734 ddi_remove_intr(dip, (uint_t)0, pp->ecpp_trap_cookie); 735 fail_intr: 736 mutex_destroy(&pp->umutex); 737 cv_destroy(&pp->pport_cv); 738 fail_ibc: 739 ddi_dma_free_handle(&pp->dma_handle); 740 fail_dma: 741 ECPP_UNMAP_REGS(pp); 742 fail_map: 743 fail_sio: 744 ddi_soft_state_free(ecppsoft_statep, instance); 745 fail: 746 ecpp_error(dip, "ecpp_attach: failed.\n"); 747 748 return (DDI_FAILURE); 749 } 750 751 static int 752 ecpp_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 753 { 754 int instance; 755 struct ecppunit *pp; 756 757 instance = ddi_get_instance(dip); 758 759 switch (cmd) { 760 case DDI_DETACH: 761 break; 762 763 case DDI_SUSPEND: 764 if (!(pp = ddi_get_soft_state(ecppsoft_statep, instance))) { 765 return (DDI_FAILURE); 766 } 767 768 mutex_enter(&pp->umutex); 769 ASSERT(pp->suspended == FALSE); 770 771 pp->suspended = TRUE; /* prevent new transfers */ 772 773 /* 774 * Wait if there's any activity on the port 775 */ 776 if ((pp->e_busy == ECPP_BUSY) || (pp->e_busy == ECPP_FLUSH)) { 777 (void) cv_reltimedwait(&pp->pport_cv, &pp->umutex, 778 SUSPEND_TOUT * drv_usectohz(1000000), 779 TR_CLOCK_TICK); 780 if ((pp->e_busy == ECPP_BUSY) || 781 (pp->e_busy == ECPP_FLUSH)) { 782 pp->suspended = FALSE; 783 mutex_exit(&pp->umutex); 784 ecpp_error(pp->dip, 785 "ecpp_detach: suspend timeout\n"); 786 return (DDI_FAILURE); 787 } 788 } 789 790 mutex_exit(&pp->umutex); 791 return (DDI_SUCCESS); 792 793 default: 794 return (DDI_FAILURE); 795 } 796 797 pp = ddi_get_soft_state(ecppsoft_statep, instance); 798 #if defined(__x86) 799 if (pp->hw == &x86 && pp->uh.x86.chn != 0xff) 800 (void) ddi_dmae_release(pp->dip, pp->uh.x86.chn); 801 #endif 802 if (pp->dma_handle != NULL) 803 ddi_dma_free_handle(&pp->dma_handle); 804 805 ddi_remove_minor_node(dip, NULL); 806 807 ddi_remove_softintr(pp->softintr_id); 808 809 ddi_remove_intr(dip, (uint_t)0, pp->ecpp_trap_cookie); 810 811 if (pp->ksp) { 812 kstat_delete(pp->ksp); 813 } 814 if (pp->intrstats) { 815 kstat_delete(pp->intrstats); 816 } 817 818 cv_destroy(&pp->pport_cv); 819 820 mutex_destroy(&pp->umutex); 821 822 ECPP_UNMAP_REGS(pp); 823 824 kmem_free(pp->ioblock, IO_BLOCK_SZ); 825 826 ddi_prop_remove_all(dip); 827 828 ddi_soft_state_free(ecppsoft_statep, instance); 829 830 return (DDI_SUCCESS); 831 832 } 833 834 /* 835 * ecpp_get_props() reads ecpp.conf for user defineable tuneables. 836 * If the file or a particular variable is not there, a default value 837 * is assigned. 838 */ 839 840 static void 841 ecpp_get_props(struct ecppunit *pp) 842 { 843 char *prop; 844 #if defined(__x86) 845 int len; 846 int value; 847 #endif 848 /* 849 * If fast_centronics is TRUE, non-compliant IEEE 1284 850 * peripherals ( Centronics peripherals) will operate in DMA mode. 851 * Transfers betwee main memory and the device will be via DMA; 852 * peripheral handshaking will be conducted by superio logic. 853 * If ecpp can not read the variable correctly fast_centronics will 854 * be set to FALSE. In this case, transfers and handshaking 855 * will be conducted by PIO for Centronics devices. 856 */ 857 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pp->dip, 0, 858 "fast-centronics", &prop) == DDI_PROP_SUCCESS) { 859 pp->fast_centronics = 860 (strcmp(prop, "true") == 0) ? TRUE : FALSE; 861 ddi_prop_free(prop); 862 } else { 863 pp->fast_centronics = FALSE; 864 } 865 866 /* 867 * If fast-1284-compatible is set to TRUE, when ecpp communicates 868 * with IEEE 1284 compliant peripherals, data transfers between 869 * main memory and the parallel port will be conducted by DMA. 870 * Handshaking between the port and peripheral will be conducted 871 * by superio logic. This is the default characteristic. If 872 * fast-1284-compatible is set to FALSE, transfers and handshaking 873 * will be conducted by PIO. 874 */ 875 876 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pp->dip, 0, 877 "fast-1284-compatible", &prop) == DDI_PROP_SUCCESS) { 878 pp->fast_compat = (strcmp(prop, "true") == 0) ? TRUE : FALSE; 879 ddi_prop_free(prop); 880 } else { 881 pp->fast_compat = TRUE; 882 } 883 884 /* 885 * Some centronics peripherals require the nInit signal to be 886 * toggled to reset the device. If centronics_init_seq is set 887 * to TRUE, ecpp will toggle the nInit signal upon every ecpp_open(). 888 * Applications have the opportunity to toggle the nInit signal 889 * with ioctl(2) calls as well. The default is to set it to FALSE. 890 */ 891 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pp->dip, 0, 892 "centronics-init-seq", &prop) == DDI_PROP_SUCCESS) { 893 pp->init_seq = (strcmp(prop, "true") == 0) ? TRUE : FALSE; 894 ddi_prop_free(prop); 895 } else { 896 pp->init_seq = FALSE; 897 } 898 899 /* 900 * If one of the centronics status signals are in an erroneous 901 * state, ecpp_wsrv() will be reinvoked centronics-retry ms to 902 * check if the status is ok to transfer. If the property is not 903 * found, wsrv_retry will be set to CENTRONICS_RETRY ms. 904 */ 905 pp->wsrv_retry = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0, 906 "centronics-retry", CENTRONICS_RETRY); 907 908 /* 909 * In PIO mode, ecpp_isr() will loop for wait for the busy signal 910 * to be deasserted before transferring the next byte. wait_for_busy 911 * is specificied in microseconds. If the property is not found 912 * ecpp_isr() will wait for a maximum of WAIT_FOR_BUSY us. 913 */ 914 pp->wait_for_busy = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0, 915 "centronics-wait-for-busy", WAIT_FOR_BUSY); 916 917 /* 918 * In PIO mode, centronics transfers must hold the data signals 919 * for a data_setup_time milliseconds before the strobe is asserted. 920 */ 921 pp->data_setup_time = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0, 922 "centronics-data-setup-time", DATA_SETUP_TIME); 923 924 /* 925 * In PIO mode, centronics transfers asserts the strobe signal 926 * for a period of strobe_pulse_width milliseconds. 927 */ 928 pp->strobe_pulse_width = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0, 929 "centronics-strobe-pulse-width", STROBE_PULSE_WIDTH); 930 931 /* 932 * Upon a transfer the peripheral, ecpp waits write_timeout seconds 933 * for the transmission to complete. 934 */ 935 default_xfer_parms.write_timeout = ddi_prop_get_int(DDI_DEV_T_ANY, 936 pp->dip, 0, "ecpp-transfer-timeout", ecpp_def_timeout); 937 938 pp->xfer_parms = default_xfer_parms; 939 940 /* 941 * Get dma channel for M1553 942 */ 943 if (pp->hw == &m1553) { 944 pp->uh.m1553.chn = ddi_prop_get_int(DDI_DEV_T_ANY, 945 pp->dip, 0, "dma-channel", 0x1); 946 ecpp_error(pp->dip, "ecpp_get_prop:chn=%x\n", pp->uh.m1553.chn); 947 } 948 #if defined(__x86) 949 len = sizeof (value); 950 /* Get dma channel for i86 pc */ 951 if (pp->hw == &x86) { 952 if (ddi_prop_op(DDI_DEV_T_ANY, pp->dip, PROP_LEN_AND_VAL_BUF, 953 DDI_PROP_DONTPASS, "dma-channels", (caddr_t)&value, &len) 954 != DDI_PROP_SUCCESS) { 955 ecpp_error(pp->dip, "No dma channel found\n"); 956 pp->uh.x86.chn = 0xff; 957 pp->fast_compat = FALSE; 958 pp->noecpregs = TRUE; 959 } else 960 pp->uh.x86.chn = (uint8_t)value; 961 } 962 #endif 963 /* 964 * these properties are not yet public 965 */ 966 pp->ecp_rev_speed = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0, 967 "ecp-rev-speed", ECP_REV_SPEED); 968 969 pp->rev_watchdog = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0, 970 "rev-watchdog", REV_WATCHDOG); 971 972 ecpp_error(pp->dip, 973 "ecpp_get_prop: fast_centronics=%x, fast-1284=%x\n" 974 "ecpp_get_prop: wsrv_retry=%d, wait_for_busy=%d\n" 975 "ecpp_get_prop: data_setup=%d, strobe_pulse=%d\n" 976 "ecpp_get_prop: transfer-timeout=%d\n", 977 pp->fast_centronics, pp->fast_compat, 978 pp->wsrv_retry, pp->wait_for_busy, 979 pp->data_setup_time, pp->strobe_pulse_width, 980 pp->xfer_parms.write_timeout); 981 } 982 983 /*ARGSUSED*/ 984 int 985 ecpp_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 986 { 987 dev_t dev = (dev_t)arg; 988 struct ecppunit *pp; 989 int instance, ret; 990 991 instance = getminor(dev); 992 993 switch (infocmd) { 994 case DDI_INFO_DEVT2DEVINFO: 995 pp = ddi_get_soft_state(ecppsoft_statep, instance); 996 if (pp != NULL) { 997 *result = pp->dip; 998 ret = DDI_SUCCESS; 999 } else { 1000 ret = DDI_FAILURE; 1001 } 1002 break; 1003 1004 case DDI_INFO_DEVT2INSTANCE: 1005 *result = (void *)(uintptr_t)instance; 1006 ret = DDI_SUCCESS; 1007 break; 1008 1009 default: 1010 ret = DDI_FAILURE; 1011 break; 1012 } 1013 1014 return (ret); 1015 } 1016 1017 /*ARGSUSED2*/ 1018 static int 1019 ecpp_open(queue_t *q, dev_t *dev, int flag, int sflag, cred_t *credp) 1020 { 1021 struct ecppunit *pp; 1022 int instance; 1023 struct stroptions *sop; 1024 mblk_t *mop; 1025 1026 instance = getminor(*dev); 1027 1028 if (instance < 0) { 1029 return (ENXIO); 1030 } 1031 1032 pp = (struct ecppunit *)ddi_get_soft_state(ecppsoft_statep, instance); 1033 1034 if (pp == NULL) { 1035 return (ENXIO); 1036 } 1037 1038 mutex_enter(&pp->umutex); 1039 1040 /* 1041 * Parallel port is an exclusive-use device 1042 * thus providing print job integrity 1043 */ 1044 if (pp->oflag == TRUE) { 1045 ecpp_error(pp->dip, "ecpp open failed"); 1046 mutex_exit(&pp->umutex); 1047 return (EBUSY); 1048 } 1049 1050 pp->oflag = TRUE; 1051 1052 /* initialize state variables */ 1053 pp->prn_timeouts = prn_timeouts_default; 1054 pp->xfer_parms = default_xfer_parms; 1055 pp->current_mode = ECPP_CENTRONICS; 1056 pp->backchannel = ECPP_CENTRONICS; 1057 pp->current_phase = ECPP_PHASE_PO; 1058 pp->port = ECPP_PORT_DMA; 1059 pp->instance = instance; 1060 pp->timeout_error = 0; 1061 pp->saved_dsr = DSR_READ(pp); 1062 pp->ecpp_drain_counter = 0; 1063 pp->dma_cancelled = FALSE; 1064 pp->io_mode = ECPP_DMA; 1065 pp->joblen = 0; 1066 pp->tfifo_intr = 0; 1067 pp->softintr_pending = 0; 1068 pp->nread = 0; 1069 1070 /* clear the state flag */ 1071 pp->e_busy = ECPP_IDLE; 1072 1073 pp->readq = RD(q); 1074 pp->writeq = WR(q); 1075 pp->msg = NULL; 1076 1077 RD(q)->q_ptr = WR(q)->q_ptr = (caddr_t)pp; 1078 1079 /* 1080 * Get ready: check host/peripheral, negotiate into default mode 1081 */ 1082 if (ecpp_reset_port_regs(pp) == FAILURE) { 1083 mutex_exit(&pp->umutex); 1084 return (EIO); 1085 } 1086 1087 mutex_exit(&pp->umutex); 1088 1089 /* 1090 * Configure the Stream head and enable the Stream 1091 */ 1092 if (!(mop = allocb(sizeof (struct stroptions), BPRI_MED))) { 1093 return (EAGAIN); 1094 } 1095 1096 mop->b_datap->db_type = M_SETOPTS; 1097 mop->b_wptr += sizeof (struct stroptions); 1098 1099 /* 1100 * if device is open with O_NONBLOCK flag set, let read(2) return 0 1101 * if no data waiting to be read. Writes will block on flow control. 1102 */ 1103 sop = (struct stroptions *)mop->b_rptr; 1104 sop->so_flags = SO_HIWAT | SO_LOWAT | SO_NDELON | SO_MREADON; 1105 sop->so_hiwat = ECPPHIWAT; 1106 sop->so_lowat = ECPPLOWAT; 1107 1108 /* enable the stream */ 1109 qprocson(q); 1110 1111 putnext(q, mop); 1112 1113 mutex_enter(&pp->umutex); 1114 1115 ecpp_default_negotiation(pp); 1116 1117 /* go revidle */ 1118 (void) ecpp_idle_phase(pp); 1119 1120 ecpp_error(pp->dip, 1121 "ecpp_open: mode=%x, phase=%x ecr=%x, dsr=%x, dcr=%x\n", 1122 pp->current_mode, pp->current_phase, 1123 ECR_READ(pp), DSR_READ(pp), DCR_READ(pp)); 1124 1125 mutex_exit(&pp->umutex); 1126 1127 return (0); 1128 } 1129 1130 /*ARGSUSED1*/ 1131 static int 1132 ecpp_close(queue_t *q, int flag, cred_t *cred_p) 1133 { 1134 struct ecppunit *pp; 1135 timeout_id_t timeout_id, fifo_timer_id, wsrv_timer_id; 1136 1137 pp = (struct ecppunit *)q->q_ptr; 1138 1139 ecpp_error(pp->dip, "ecpp_close: entering ...\n"); 1140 1141 mutex_enter(&pp->umutex); 1142 1143 /* 1144 * ecpp_close() will continue to loop until the 1145 * queue has been drained or if the thread 1146 * has received a SIG. Typically, when the queue 1147 * has data, the port will be ECPP_BUSY. However, 1148 * after a dma completes and before the wsrv 1149 * starts the next transfer, the port may be IDLE. 1150 * In this case, ecpp_close() will loop within this 1151 * while(qsize) segment. Since, ecpp_wsrv() runs 1152 * at software interupt level, this shouldn't loop 1153 * very long. 1154 */ 1155 while (pp->e_busy != ECPP_IDLE || qsize(WR(q))) { 1156 if (!cv_wait_sig(&pp->pport_cv, &pp->umutex)) { 1157 ecpp_error(pp->dip, "ecpp_close:B: received SIG\n"); 1158 /* 1159 * Returning from a signal such as 1160 * SIGTERM or SIGKILL 1161 */ 1162 ecpp_flush(pp, FWRITE); 1163 break; 1164 } else { 1165 ecpp_error(pp->dip, "ecpp_close:rcvd cv-sig\n"); 1166 } 1167 } 1168 1169 ecpp_error(pp->dip, "ecpp_close: joblen=%d, ctx_cf=%d, " 1170 "qsize(WR(q))=%d, qsize(RD(q))=%d\n", 1171 pp->joblen, pp->ctx_cf, qsize(pp->writeq), qsize(q)); 1172 1173 /* 1174 * Cancel all timeouts, disable interrupts 1175 * 1176 * Note that we can`t call untimeout(9F) with mutex held: 1177 * callout may be blocked on the same mutex, and untimeout() will 1178 * cv_wait() while callout is executing, thus creating a deadlock 1179 * So we zero the timeout id's inside mutex and call untimeout later 1180 */ 1181 timeout_id = pp->timeout_id; 1182 fifo_timer_id = pp->fifo_timer_id; 1183 wsrv_timer_id = pp->wsrv_timer_id; 1184 1185 pp->timeout_id = pp->fifo_timer_id = pp->wsrv_timer_id = 0; 1186 1187 pp->softintr_pending = 0; 1188 pp->dma_cancelled = TRUE; 1189 ECPP_MASK_INTR(pp); 1190 1191 mutex_exit(&pp->umutex); 1192 1193 qprocsoff(q); 1194 1195 if (timeout_id) { 1196 (void) untimeout(timeout_id); 1197 } 1198 if (fifo_timer_id) { 1199 (void) untimeout(fifo_timer_id); 1200 } 1201 if (wsrv_timer_id) { 1202 (void) untimeout(wsrv_timer_id); 1203 } 1204 1205 mutex_enter(&pp->umutex); 1206 1207 /* set link to Compatible mode */ 1208 if ((pp->current_mode == ECPP_ECP_MODE) && 1209 (pp->current_phase != ECPP_PHASE_ECP_FWD_IDLE)) { 1210 (void) ecp_reverse2forward(pp); 1211 } 1212 1213 (void) ecpp_1284_termination(pp); 1214 1215 pp->oflag = FALSE; 1216 q->q_ptr = WR(q)->q_ptr = NULL; 1217 pp->readq = pp->writeq = NULL; 1218 pp->msg = NULL; 1219 1220 ecpp_error(pp->dip, "ecpp_close: ecr=%x, dsr=%x, dcr=%x\n", 1221 ECR_READ(pp), DSR_READ(pp), DCR_READ(pp)); 1222 1223 mutex_exit(&pp->umutex); 1224 1225 return (0); 1226 } 1227 1228 /* 1229 * standard put procedure for ecpp 1230 */ 1231 static int 1232 ecpp_wput(queue_t *q, mblk_t *mp) 1233 { 1234 struct msgb *nmp; 1235 struct ecppunit *pp; 1236 1237 pp = (struct ecppunit *)q->q_ptr; 1238 1239 if (!mp) { 1240 return (0); 1241 } 1242 1243 if ((mp->b_wptr - mp->b_rptr) <= 0) { 1244 ecpp_error(pp->dip, 1245 "ecpp_wput:bogus packet recieved mp=%x\n", mp); 1246 freemsg(mp); 1247 return (0); 1248 } 1249 1250 switch (DB_TYPE(mp)) { 1251 case M_DATA: 1252 /* 1253 * This is a quick fix for multiple message block problem, 1254 * it will be changed later with better performance code. 1255 */ 1256 if (mp->b_cont) { 1257 /* 1258 * mblk has scattered data ... do msgpullup 1259 * if it fails, continue with the current mblk 1260 */ 1261 if ((nmp = msgpullup(mp, -1)) != NULL) { 1262 freemsg(mp); 1263 mp = nmp; 1264 ecpp_error(pp->dip, 1265 "ecpp_wput:msgpullup: mp=%p len=%d\n", 1266 mp, mp->b_wptr - mp->b_rptr); 1267 } 1268 } 1269 1270 /* let ecpp_wsrv() concatenate small blocks */ 1271 (void) putq(q, mp); 1272 1273 break; 1274 1275 case M_CTL: 1276 (void) putq(q, mp); 1277 1278 break; 1279 1280 case M_IOCTL: { 1281 struct iocblk *iocbp; 1282 1283 iocbp = (struct iocblk *)mp->b_rptr; 1284 1285 ecpp_error(pp->dip, "ecpp_wput:M_IOCTL %x\n", iocbp->ioc_cmd); 1286 1287 mutex_enter(&pp->umutex); 1288 1289 /* TESTIO and GET_STATUS can be used during transfer */ 1290 if ((pp->e_busy == ECPP_BUSY) && 1291 (iocbp->ioc_cmd != BPPIOC_TESTIO) && 1292 (iocbp->ioc_cmd != PRNIOC_GET_STATUS)) { 1293 mutex_exit(&pp->umutex); 1294 (void) putq(q, mp); 1295 } else { 1296 mutex_exit(&pp->umutex); 1297 ecpp_putioc(q, mp); 1298 } 1299 1300 break; 1301 } 1302 1303 case M_IOCDATA: { 1304 struct copyresp *csp; 1305 1306 ecpp_error(pp->dip, "ecpp_wput:M_IOCDATA\n"); 1307 1308 csp = (struct copyresp *)mp->b_rptr; 1309 1310 /* 1311 * If copy request failed, quit now 1312 */ 1313 if (csp->cp_rval != 0) { 1314 freemsg(mp); 1315 return (0); 1316 } 1317 1318 switch (csp->cp_cmd) { 1319 case ECPPIOC_SETPARMS: 1320 case ECPPIOC_SETREGS: 1321 case ECPPIOC_SETPORT: 1322 case ECPPIOC_SETDATA: 1323 case PRNIOC_SET_IFCAP: 1324 case PRNIOC_SET_TIMEOUTS: 1325 /* 1326 * need to retrieve and use the data, but if the 1327 * device is busy, wait. 1328 */ 1329 (void) putq(q, mp); 1330 break; 1331 1332 case ECPPIOC_GETPARMS: 1333 case ECPPIOC_GETREGS: 1334 case ECPPIOC_GETPORT: 1335 case ECPPIOC_GETDATA: 1336 case BPPIOC_GETERR: 1337 case BPPIOC_TESTIO: 1338 case PRNIOC_GET_IFCAP: 1339 case PRNIOC_GET_STATUS: 1340 case PRNIOC_GET_1284_STATUS: 1341 case PRNIOC_GET_TIMEOUTS: 1342 /* data transfered to user space okay */ 1343 ecpp_ack_ioctl(q, mp); 1344 break; 1345 1346 case ECPPIOC_GETDEVID: 1347 ecpp_wput_iocdata_devid(q, mp, 1348 offsetof(struct ecpp_device_id, rlen)); 1349 break; 1350 1351 case PRNIOC_GET_1284_DEVID: 1352 ecpp_wput_iocdata_devid(q, mp, 1353 offsetof(struct prn_1284_device_id, id_rlen)); 1354 break; 1355 1356 case PRNIOC_GET_IFINFO: 1357 ecpp_wput_iocdata_devid(q, mp, 1358 offsetof(struct prn_interface_info, if_rlen)); 1359 break; 1360 1361 default: 1362 ecpp_nack_ioctl(q, mp, EINVAL); 1363 break; 1364 } 1365 1366 break; 1367 } 1368 1369 case M_FLUSH: 1370 ecpp_error(pp->dip, "ecpp_wput:M_FLUSH\n"); 1371 1372 if (*mp->b_rptr & FLUSHW) { 1373 mutex_enter(&pp->umutex); 1374 ecpp_flush(pp, FWRITE); 1375 mutex_exit(&pp->umutex); 1376 } 1377 1378 if (*mp->b_rptr & FLUSHR) { 1379 mutex_enter(&pp->umutex); 1380 ecpp_flush(pp, FREAD); 1381 mutex_exit(&pp->umutex); 1382 qreply(q, mp); 1383 } else { 1384 freemsg(mp); 1385 } 1386 1387 break; 1388 1389 case M_READ: 1390 /* 1391 * When the user calls read(2), M_READ message is sent to us, 1392 * first byte of which is the number of requested bytes 1393 * We add up user requests and use resulting number 1394 * to calculate the reverse transfer block size 1395 */ 1396 mutex_enter(&pp->umutex); 1397 if (pp->e_busy == ECPP_IDLE) { 1398 pp->nread += *(size_t *)mp->b_rptr; 1399 ecpp_error(pp->dip, "ecpp_wput: M_READ %d", pp->nread); 1400 freemsg(mp); 1401 } else { 1402 ecpp_error(pp->dip, "ecpp_wput: M_READ queueing"); 1403 (void) putq(q, mp); 1404 } 1405 mutex_exit(&pp->umutex); 1406 break; 1407 1408 default: 1409 ecpp_error(pp->dip, "ecpp_wput: bad messagetype 0x%x\n", 1410 DB_TYPE(mp)); 1411 freemsg(mp); 1412 break; 1413 } 1414 1415 return (0); 1416 } 1417 1418 /* 1419 * Process ECPPIOC_GETDEVID-like ioctls 1420 */ 1421 static void 1422 ecpp_wput_iocdata_devid(queue_t *q, mblk_t *mp, uintptr_t rlen_offset) 1423 { 1424 struct copyresp *csp; 1425 struct ecpp_copystate *stp; 1426 mblk_t *datamp; 1427 1428 csp = (struct copyresp *)mp->b_rptr; 1429 stp = (struct ecpp_copystate *)csp->cp_private->b_rptr; 1430 1431 /* determine the state of copyin/copyout process */ 1432 switch (stp->state) { 1433 case ECPP_STRUCTIN: 1434 /* user structure has arrived */ 1435 (void) putq(q, mp); 1436 break; 1437 1438 case ECPP_ADDROUT: 1439 /* 1440 * data transfered to user space okay 1441 * now update user structure 1442 */ 1443 datamp = allocb(sizeof (int), BPRI_MED); 1444 if (datamp == NULL) { 1445 ecpp_nack_ioctl(q, mp, ENOSR); 1446 break; 1447 } 1448 1449 *(int *)datamp->b_rptr = 1450 *(int *)((char *)&stp->un + rlen_offset); 1451 stp->state = ECPP_STRUCTOUT; 1452 1453 mcopyout(mp, csp->cp_private, sizeof (int), 1454 (char *)stp->uaddr + rlen_offset, datamp); 1455 qreply(q, mp); 1456 break; 1457 1458 case ECPP_STRUCTOUT: 1459 /* user structure was updated okay */ 1460 freemsg(csp->cp_private); 1461 ecpp_ack_ioctl(q, mp); 1462 break; 1463 1464 default: 1465 ecpp_nack_ioctl(q, mp, EINVAL); 1466 break; 1467 } 1468 } 1469 1470 static uchar_t 1471 ecpp_get_error_status(uchar_t status) 1472 { 1473 uchar_t pin_status = 0; 1474 1475 if (!(status & ECPP_nERR)) { 1476 pin_status |= BPP_ERR_ERR; 1477 } 1478 1479 if (status & ECPP_PE) { 1480 pin_status |= BPP_PE_ERR; 1481 } 1482 1483 if (!(status & ECPP_SLCT)) { 1484 pin_status |= BPP_SLCT_ERR; 1485 } 1486 1487 if (!(status & ECPP_nBUSY)) { 1488 pin_status |= BPP_SLCT_ERR; 1489 } 1490 1491 return (pin_status); 1492 } 1493 1494 /* 1495 * ioctl handler for output PUT procedure. 1496 */ 1497 static void 1498 ecpp_putioc(queue_t *q, mblk_t *mp) 1499 { 1500 struct iocblk *iocbp; 1501 struct ecppunit *pp; 1502 1503 pp = (struct ecppunit *)q->q_ptr; 1504 1505 iocbp = (struct iocblk *)mp->b_rptr; 1506 1507 /* I_STR ioctls are invalid */ 1508 if (iocbp->ioc_count != TRANSPARENT) { 1509 ecpp_nack_ioctl(q, mp, EINVAL); 1510 return; 1511 } 1512 1513 switch (iocbp->ioc_cmd) { 1514 case ECPPIOC_SETPARMS: { 1515 mcopyin(mp, NULL, sizeof (struct ecpp_transfer_parms), NULL); 1516 qreply(q, mp); 1517 break; 1518 } 1519 1520 case ECPPIOC_GETPARMS: { 1521 struct ecpp_transfer_parms xfer_parms; 1522 1523 mutex_enter(&pp->umutex); 1524 1525 pp->xfer_parms.mode = pp->current_mode; 1526 xfer_parms = pp->xfer_parms; 1527 1528 mutex_exit(&pp->umutex); 1529 1530 ecpp_putioc_copyout(q, mp, &xfer_parms, sizeof (xfer_parms)); 1531 break; 1532 } 1533 1534 case ECPPIOC_SETREGS: { 1535 mutex_enter(&pp->umutex); 1536 if (pp->current_mode != ECPP_DIAG_MODE) { 1537 mutex_exit(&pp->umutex); 1538 ecpp_nack_ioctl(q, mp, EINVAL); 1539 break; 1540 } 1541 mutex_exit(&pp->umutex); 1542 1543 mcopyin(mp, NULL, sizeof (struct ecpp_regs), NULL); 1544 qreply(q, mp); 1545 break; 1546 } 1547 1548 case ECPPIOC_GETREGS: { 1549 struct ecpp_regs rg; 1550 1551 mutex_enter(&pp->umutex); 1552 1553 if (pp->current_mode != ECPP_DIAG_MODE) { 1554 mutex_exit(&pp->umutex); 1555 ecpp_nack_ioctl(q, mp, EINVAL); 1556 break; 1557 } 1558 1559 rg.dsr = DSR_READ(pp); 1560 rg.dcr = DCR_READ(pp); 1561 1562 mutex_exit(&pp->umutex); 1563 1564 ecpp_error(pp->dip, "ECPPIOC_GETREGS: dsr=%x,dcr=%x\n", 1565 rg.dsr, rg.dcr); 1566 1567 /* these bits must be 1 */ 1568 rg.dsr |= ECPP_SETREGS_DSR_MASK; 1569 rg.dcr |= ECPP_SETREGS_DCR_MASK; 1570 1571 ecpp_putioc_copyout(q, mp, &rg, sizeof (rg)); 1572 break; 1573 } 1574 1575 case ECPPIOC_SETPORT: 1576 case ECPPIOC_SETDATA: { 1577 mutex_enter(&pp->umutex); 1578 if (pp->current_mode != ECPP_DIAG_MODE) { 1579 mutex_exit(&pp->umutex); 1580 ecpp_nack_ioctl(q, mp, EINVAL); 1581 break; 1582 } 1583 mutex_exit(&pp->umutex); 1584 1585 /* 1586 * each of the commands fetches a byte quantity. 1587 */ 1588 mcopyin(mp, NULL, sizeof (uchar_t), NULL); 1589 qreply(q, mp); 1590 break; 1591 } 1592 1593 case ECPPIOC_GETDATA: 1594 case ECPPIOC_GETPORT: { 1595 uchar_t byte; 1596 1597 mutex_enter(&pp->umutex); 1598 1599 /* must be in diagnostic mode for these commands to work */ 1600 if (pp->current_mode != ECPP_DIAG_MODE) { 1601 mutex_exit(&pp->umutex); 1602 ecpp_nack_ioctl(q, mp, EINVAL); 1603 break; 1604 } 1605 1606 if (iocbp->ioc_cmd == ECPPIOC_GETPORT) { 1607 byte = pp->port; 1608 } else if (iocbp->ioc_cmd == ECPPIOC_GETDATA) { 1609 switch (pp->port) { 1610 case ECPP_PORT_PIO: 1611 byte = DATAR_READ(pp); 1612 break; 1613 case ECPP_PORT_TDMA: 1614 byte = TFIFO_READ(pp); 1615 ecpp_error(pp->dip, "GETDATA=0x%x\n", byte); 1616 break; 1617 default: 1618 ecpp_nack_ioctl(q, mp, EINVAL); 1619 break; 1620 } 1621 } else { 1622 mutex_exit(&pp->umutex); 1623 ecpp_error(pp->dip, "weird command"); 1624 ecpp_nack_ioctl(q, mp, EINVAL); 1625 break; 1626 } 1627 1628 mutex_exit(&pp->umutex); 1629 1630 ecpp_putioc_copyout(q, mp, &byte, sizeof (byte)); 1631 1632 break; 1633 } 1634 1635 case BPPIOC_GETERR: { 1636 struct bpp_error_status bpp_status; 1637 1638 mutex_enter(&pp->umutex); 1639 1640 bpp_status.timeout_occurred = pp->timeout_error; 1641 bpp_status.bus_error = 0; /* not used */ 1642 bpp_status.pin_status = ecpp_get_error_status(pp->saved_dsr); 1643 1644 mutex_exit(&pp->umutex); 1645 1646 ecpp_putioc_copyout(q, mp, &bpp_status, sizeof (bpp_status)); 1647 1648 break; 1649 } 1650 1651 case BPPIOC_TESTIO: { 1652 mutex_enter(&pp->umutex); 1653 1654 if (!((pp->current_mode == ECPP_CENTRONICS) || 1655 (pp->current_mode == ECPP_COMPAT_MODE))) { 1656 ecpp_nack_ioctl(q, mp, EINVAL); 1657 } else { 1658 pp->saved_dsr = DSR_READ(pp); 1659 1660 if ((pp->saved_dsr & ECPP_PE) || 1661 !(pp->saved_dsr & ECPP_SLCT) || 1662 !(pp->saved_dsr & ECPP_nERR)) { 1663 ecpp_nack_ioctl(q, mp, EIO); 1664 } else { 1665 ecpp_ack_ioctl(q, mp); 1666 } 1667 } 1668 1669 mutex_exit(&pp->umutex); 1670 1671 break; 1672 } 1673 1674 case PRNIOC_RESET: 1675 /* 1676 * Initialize interface only if no transfer is in progress 1677 */ 1678 mutex_enter(&pp->umutex); 1679 if (pp->e_busy == ECPP_BUSY) { 1680 mutex_exit(&pp->umutex); 1681 ecpp_nack_ioctl(q, mp, EIO); 1682 } else { 1683 (void) ecpp_mode_negotiation(pp, ECPP_CENTRONICS); 1684 1685 DCR_WRITE(pp, ECPP_SLCTIN); 1686 drv_usecwait(2); 1687 DCR_WRITE(pp, ECPP_SLCTIN | ECPP_nINIT); 1688 1689 ecpp_default_negotiation(pp); 1690 1691 mutex_exit(&pp->umutex); 1692 ecpp_ack_ioctl(q, mp); 1693 } 1694 break; 1695 1696 case PRNIOC_GET_IFCAP: { 1697 uint_t ifcap; 1698 1699 mutex_enter(&pp->umutex); 1700 1701 ifcap = ecpp_get_prn_ifcap(pp); 1702 1703 mutex_exit(&pp->umutex); 1704 1705 ecpp_putioc_copyout(q, mp, &ifcap, sizeof (ifcap)); 1706 break; 1707 } 1708 1709 case PRNIOC_SET_IFCAP: { 1710 mcopyin(mp, NULL, sizeof (uint_t), NULL); 1711 qreply(q, mp); 1712 break; 1713 } 1714 1715 case PRNIOC_GET_TIMEOUTS: { 1716 struct prn_timeouts timeouts; 1717 1718 mutex_enter(&pp->umutex); 1719 timeouts = pp->prn_timeouts; 1720 mutex_exit(&pp->umutex); 1721 1722 ecpp_putioc_copyout(q, mp, &timeouts, sizeof (timeouts)); 1723 1724 break; 1725 } 1726 1727 case PRNIOC_SET_TIMEOUTS: 1728 mcopyin(mp, NULL, sizeof (struct prn_timeouts), 1729 *(caddr_t *)(void *)mp->b_cont->b_rptr); 1730 qreply(q, mp); 1731 break; 1732 1733 case PRNIOC_GET_STATUS: { 1734 uint8_t dsr; 1735 uint_t status; 1736 1737 mutex_enter(&pp->umutex); 1738 1739 /* DSR only makes sense in Centronics & Compat mode */ 1740 if (pp->current_mode == ECPP_CENTRONICS || 1741 pp->current_mode == ECPP_COMPAT_MODE) { 1742 dsr = DSR_READ(pp); 1743 if ((dsr & ECPP_PE) || 1744 !(dsr & ECPP_SLCT) || !(dsr & ECPP_nERR)) { 1745 status = PRN_ONLINE; 1746 } else { 1747 status = PRN_ONLINE | PRN_READY; 1748 } 1749 } else { 1750 status = PRN_ONLINE | PRN_READY; 1751 } 1752 1753 mutex_exit(&pp->umutex); 1754 1755 ecpp_putioc_copyout(q, mp, &status, sizeof (status)); 1756 break; 1757 } 1758 1759 case PRNIOC_GET_1284_STATUS: { 1760 uint8_t dsr; 1761 uchar_t status; 1762 1763 mutex_enter(&pp->umutex); 1764 1765 /* status only makes sense in Centronics & Compat mode */ 1766 if (pp->current_mode != ECPP_COMPAT_MODE && 1767 pp->current_mode != ECPP_CENTRONICS) { 1768 mutex_exit(&pp->umutex); 1769 ecpp_nack_ioctl(q, mp, EINVAL); 1770 break; 1771 } 1772 1773 dsr = DSR_READ(pp); /* read status */ 1774 1775 mutex_exit(&pp->umutex); 1776 1777 ecpp_error(pp->dip, "PRNIOC_GET_STATUS: %x\n", dsr); 1778 1779 status = (dsr & (ECPP_SLCT | ECPP_PE | ECPP_nERR)) | 1780 (~dsr & ECPP_nBUSY); 1781 1782 ecpp_putioc_copyout(q, mp, &status, sizeof (status)); 1783 break; 1784 } 1785 1786 case ECPPIOC_GETDEVID: 1787 ecpp_putioc_stateful_copyin(q, mp, 1788 sizeof (struct ecpp_device_id)); 1789 break; 1790 1791 case PRNIOC_GET_1284_DEVID: 1792 ecpp_putioc_stateful_copyin(q, mp, 1793 sizeof (struct prn_1284_device_id)); 1794 break; 1795 1796 case PRNIOC_GET_IFINFO: 1797 ecpp_putioc_stateful_copyin(q, mp, 1798 sizeof (struct prn_interface_info)); 1799 break; 1800 1801 default: 1802 ecpp_error(pp->dip, "putioc: unknown IOCTL: %x\n", 1803 iocbp->ioc_cmd); 1804 ecpp_nack_ioctl(q, mp, EINVAL); 1805 break; 1806 } 1807 } 1808 1809 /* 1810 * allocate mblk and copyout the requested number of bytes 1811 */ 1812 static void 1813 ecpp_putioc_copyout(queue_t *q, mblk_t *mp, void *buf, int len) 1814 { 1815 mblk_t *tmp; 1816 1817 if ((tmp = allocb(len, BPRI_MED)) == NULL) { 1818 ecpp_nack_ioctl(q, mp, ENOSR); 1819 return; 1820 } 1821 1822 bcopy(buf, tmp->b_wptr, len); 1823 1824 mcopyout(mp, NULL, len, NULL, tmp); 1825 qreply(q, mp); 1826 } 1827 1828 /* 1829 * copyin the structure using struct ecpp_copystate 1830 */ 1831 static void 1832 ecpp_putioc_stateful_copyin(queue_t *q, mblk_t *mp, size_t size) 1833 { 1834 mblk_t *tmp; 1835 struct ecpp_copystate *stp; 1836 1837 if ((tmp = allocb(sizeof (struct ecpp_copystate), BPRI_MED)) == NULL) { 1838 ecpp_nack_ioctl(q, mp, EAGAIN); 1839 return; 1840 } 1841 1842 stp = (struct ecpp_copystate *)tmp->b_rptr; 1843 stp->state = ECPP_STRUCTIN; 1844 stp->uaddr = *(caddr_t *)mp->b_cont->b_rptr; 1845 1846 tmp->b_wptr += sizeof (struct ecpp_copystate); 1847 1848 mcopyin(mp, tmp, size, stp->uaddr); 1849 qreply(q, mp); 1850 } 1851 1852 /* 1853 * read queue is only used when the peripheral sends data faster, 1854 * then the application consumes it; 1855 * once the low water mark is reached, this routine will be scheduled 1856 */ 1857 static int 1858 ecpp_rsrv(queue_t *q) 1859 { 1860 struct msgb *mp; 1861 1862 /* 1863 * send data upstream until next queue is full or the queue is empty 1864 */ 1865 while (canputnext(q) && (mp = getq(q))) { 1866 putnext(q, mp); 1867 } 1868 1869 /* 1870 * if there is still space on the queue, enable backchannel 1871 */ 1872 if (canputnext(q)) { 1873 struct ecppunit *pp = (struct ecppunit *)q->q_ptr; 1874 1875 mutex_enter(&pp->umutex); 1876 1877 if (pp->e_busy == ECPP_IDLE) { 1878 (void) ecpp_idle_phase(pp); 1879 cv_signal(&pp->pport_cv); /* signal ecpp_close() */ 1880 } 1881 1882 mutex_exit(&pp->umutex); 1883 } 1884 1885 return (0); 1886 } 1887 1888 static int 1889 ecpp_wsrv(queue_t *q) 1890 { 1891 struct ecppunit *pp = (struct ecppunit *)q->q_ptr; 1892 struct msgb *mp; 1893 size_t len, total_len; 1894 size_t my_ioblock_sz; 1895 caddr_t my_ioblock; 1896 caddr_t start_addr; 1897 1898 mutex_enter(&pp->umutex); 1899 1900 ecpp_error(pp->dip, "ecpp_wsrv: e_busy=%x\n", pp->e_busy); 1901 1902 /* if channel is actively doing work, wait till completed */ 1903 if (pp->e_busy == ECPP_BUSY || pp->e_busy == ECPP_FLUSH) { 1904 mutex_exit(&pp->umutex); 1905 return (0); 1906 } else if (pp->suspended == TRUE) { 1907 /* 1908 * if the system is about to suspend and ecpp_detach() 1909 * is blocked due to active transfers, wake it up and exit 1910 */ 1911 cv_signal(&pp->pport_cv); 1912 mutex_exit(&pp->umutex); 1913 return (0); 1914 } 1915 1916 /* peripheral status should be okay before starting transfer */ 1917 if (pp->e_busy == ECPP_ERR) { 1918 if (ecpp_check_status(pp) == FAILURE) { 1919 if (pp->wsrv_timer_id == 0) { 1920 ecpp_error(pp->dip, "wsrv: start wrsv_timer\n"); 1921 pp->wsrv_timer_id = timeout(ecpp_wsrv_timer, 1922 (caddr_t)pp, 1923 drv_usectohz(pp->wsrv_retry * 1000)); 1924 } else { 1925 ecpp_error(pp->dip, 1926 "ecpp_wsrv: wrsv_timer is active\n"); 1927 } 1928 1929 mutex_exit(&pp->umutex); 1930 return (0); 1931 } else { 1932 pp->e_busy = ECPP_IDLE; 1933 } 1934 } 1935 1936 my_ioblock = pp->ioblock; 1937 my_ioblock_sz = IO_BLOCK_SZ; 1938 1939 /* 1940 * it`s important to null pp->msg here, 1941 * cleaning up from the previous transfer attempts 1942 */ 1943 pp->msg = NULL; 1944 1945 start_addr = NULL; 1946 len = total_len = 0; 1947 /* 1948 * The following loop is implemented to gather the 1949 * many small writes that the lp subsystem makes and 1950 * compile them into one large dma transfer. The len and 1951 * total_len variables are a running count of the number of 1952 * bytes that have been gathered. They are bcopied to the 1953 * ioblock buffer. The pp->e_busy is set to E_BUSY as soon as 1954 * we start gathering packets to indicate the following transfer. 1955 */ 1956 while (mp = getq(q)) { 1957 switch (DB_TYPE(mp)) { 1958 case M_DATA: 1959 pp->e_busy = ECPP_BUSY; 1960 len = mp->b_wptr - mp->b_rptr; 1961 1962 if ((total_len == 0) && (len >= my_ioblock_sz)) { 1963 /* 1964 * if the first M_DATA is bigger than ioblock, 1965 * just use this mblk and start the transfer 1966 */ 1967 total_len = len; 1968 start_addr = (caddr_t)mp->b_rptr; 1969 pp->msg = mp; 1970 goto breakout; 1971 } else if (total_len + len > my_ioblock_sz) { 1972 /* 1973 * current M_DATA does not fit in ioblock, 1974 * put it back and start the transfer 1975 */ 1976 (void) putbq(q, mp); 1977 goto breakout; 1978 } else { 1979 /* 1980 * otherwise add data to ioblock and free mblk 1981 */ 1982 bcopy(mp->b_rptr, my_ioblock, len); 1983 my_ioblock += len; 1984 total_len += len; 1985 start_addr = (caddr_t)pp->ioblock; 1986 freemsg(mp); 1987 } 1988 break; 1989 1990 case M_IOCTL: 1991 /* 1992 * Assume a simple loopback test: an application 1993 * writes data into the TFIFO, reads it using 1994 * ECPPIOC_GETDATA and compares. If the transfer 1995 * times out (which is only possible on Grover), 1996 * the ioctl might be processed before the data 1997 * got to the TFIFO, which leads to miscompare. 1998 * So if we met ioctl, postpone it until after xfer. 1999 */ 2000 if (total_len > 0) { 2001 (void) putbq(q, mp); 2002 goto breakout; 2003 } 2004 2005 ecpp_error(pp->dip, "M_IOCTL.\n"); 2006 2007 mutex_exit(&pp->umutex); 2008 2009 ecpp_putioc(q, mp); 2010 2011 mutex_enter(&pp->umutex); 2012 2013 break; 2014 2015 case M_IOCDATA: { 2016 struct copyresp *csp = (struct copyresp *)mp->b_rptr; 2017 2018 ecpp_error(pp->dip, "M_IOCDATA\n"); 2019 2020 /* 2021 * If copy request failed, quit now 2022 */ 2023 if (csp->cp_rval != 0) { 2024 freemsg(mp); 2025 break; 2026 } 2027 2028 switch (csp->cp_cmd) { 2029 case ECPPIOC_SETPARMS: 2030 case ECPPIOC_SETREGS: 2031 case ECPPIOC_SETPORT: 2032 case ECPPIOC_SETDATA: 2033 case ECPPIOC_GETDEVID: 2034 case PRNIOC_SET_IFCAP: 2035 case PRNIOC_GET_1284_DEVID: 2036 case PRNIOC_SET_TIMEOUTS: 2037 case PRNIOC_GET_IFINFO: 2038 ecpp_srvioc(q, mp); 2039 break; 2040 2041 default: 2042 ecpp_nack_ioctl(q, mp, EINVAL); 2043 break; 2044 } 2045 2046 break; 2047 } 2048 2049 case M_CTL: 2050 if (pp->e_busy != ECPP_IDLE) { 2051 ecpp_error(pp->dip, "wsrv: M_CTL postponed\n"); 2052 (void) putbq(q, mp); 2053 goto breakout; 2054 } else { 2055 ecpp_error(pp->dip, "wsrv: M_CTL\n"); 2056 } 2057 2058 /* sanity check */ 2059 if ((mp->b_wptr - mp->b_rptr != sizeof (int)) || 2060 (*(int *)mp->b_rptr != ECPP_BACKCHANNEL)) { 2061 ecpp_error(pp->dip, "wsrv: bogus M_CTL"); 2062 freemsg(mp); 2063 break; 2064 } else { 2065 freemsg(mp); 2066 } 2067 2068 /* This was a backchannel request */ 2069 (void) ecpp_peripheral2host(pp); 2070 2071 /* exit if transfer have been initiated */ 2072 if (pp->e_busy == ECPP_BUSY) { 2073 goto breakout; 2074 } 2075 break; 2076 2077 case M_READ: 2078 pp->nread += *(size_t *)mp->b_rptr; 2079 freemsg(mp); 2080 ecpp_error(pp->dip, "wsrv: M_READ %d", pp->nread); 2081 break; 2082 2083 default: 2084 ecpp_error(pp->dip, "wsrv: should never get here\n"); 2085 freemsg(mp); 2086 break; 2087 } 2088 } 2089 breakout: 2090 /* 2091 * If total_len > 0 then start the transfer, otherwise goto idle state 2092 */ 2093 if (total_len > 0) { 2094 ecpp_error(pp->dip, "wsrv:starting: total_len=%d\n", total_len); 2095 pp->e_busy = ECPP_BUSY; 2096 ecpp_start(pp, start_addr, total_len); 2097 } else { 2098 ecpp_error(pp->dip, "wsrv:finishing: ebusy=%x\n", pp->e_busy); 2099 2100 /* IDLE if xfer_timeout, or FIFO_EMPTY */ 2101 if (pp->e_busy == ECPP_IDLE) { 2102 (void) ecpp_idle_phase(pp); 2103 cv_signal(&pp->pport_cv); /* signal ecpp_close() */ 2104 } 2105 } 2106 2107 mutex_exit(&pp->umutex); 2108 return (1); 2109 } 2110 2111 /* 2112 * Ioctl processor for queued ioctl data transfer messages. 2113 */ 2114 static void 2115 ecpp_srvioc(queue_t *q, mblk_t *mp) 2116 { 2117 struct iocblk *iocbp; 2118 struct ecppunit *pp; 2119 2120 iocbp = (struct iocblk *)mp->b_rptr; 2121 pp = (struct ecppunit *)q->q_ptr; 2122 2123 switch (iocbp->ioc_cmd) { 2124 case ECPPIOC_SETPARMS: { 2125 struct ecpp_transfer_parms *xferp; 2126 2127 xferp = (struct ecpp_transfer_parms *)mp->b_cont->b_rptr; 2128 2129 if (xferp->write_timeout <= 0 || 2130 xferp->write_timeout >= ECPP_MAX_TIMEOUT) { 2131 ecpp_nack_ioctl(q, mp, EINVAL); 2132 break; 2133 } 2134 2135 if (!((xferp->mode == ECPP_CENTRONICS) || 2136 (xferp->mode == ECPP_COMPAT_MODE) || 2137 (xferp->mode == ECPP_NIBBLE_MODE) || 2138 (xferp->mode == ECPP_ECP_MODE) || 2139 (xferp->mode == ECPP_DIAG_MODE))) { 2140 ecpp_nack_ioctl(q, mp, EINVAL); 2141 break; 2142 } 2143 2144 pp->xfer_parms = *xferp; 2145 pp->prn_timeouts.tmo_forward = pp->xfer_parms.write_timeout; 2146 2147 ecpp_error(pp->dip, "srvioc: current_mode =%x new mode=%x\n", 2148 pp->current_mode, pp->xfer_parms.mode); 2149 2150 if (ecpp_mode_negotiation(pp, pp->xfer_parms.mode) == FAILURE) { 2151 ecpp_nack_ioctl(q, mp, EPROTONOSUPPORT); 2152 } else { 2153 /* 2154 * mode nego was a success. If nibble mode check 2155 * back channel and set into REVIDLE. 2156 */ 2157 if ((pp->current_mode == ECPP_NIBBLE_MODE) && 2158 (read_nibble_backchan(pp) == FAILURE)) { 2159 /* 2160 * problems reading the backchannel 2161 * returned to centronics; 2162 * ioctl fails. 2163 */ 2164 ecpp_nack_ioctl(q, mp, EPROTONOSUPPORT); 2165 break; 2166 } 2167 2168 ecpp_ack_ioctl(q, mp); 2169 } 2170 if (pp->current_mode != ECPP_DIAG_MODE) { 2171 pp->port = ECPP_PORT_DMA; 2172 } else { 2173 pp->port = ECPP_PORT_PIO; 2174 } 2175 2176 pp->xfer_parms.mode = pp->current_mode; 2177 2178 break; 2179 } 2180 2181 case ECPPIOC_SETREGS: { 2182 struct ecpp_regs *rg; 2183 uint8_t dcr; 2184 2185 rg = (struct ecpp_regs *)mp->b_cont->b_rptr; 2186 2187 /* must be in diagnostic mode for these commands to work */ 2188 if (pp->current_mode != ECPP_DIAG_MODE) { 2189 ecpp_nack_ioctl(q, mp, EINVAL); 2190 break; 2191 } 2192 2193 /* bits 4-7 must be 1 or return EINVAL */ 2194 if ((rg->dcr & ECPP_SETREGS_DCR_MASK) != 2195 ECPP_SETREGS_DCR_MASK) { 2196 ecpp_nack_ioctl(q, mp, EINVAL); 2197 break; 2198 } 2199 2200 /* get the old dcr */ 2201 dcr = DCR_READ(pp) & ~ECPP_REV_DIR; 2202 /* get the new dcr */ 2203 dcr = (dcr & ECPP_SETREGS_DCR_MASK) | 2204 (rg->dcr & ~ECPP_SETREGS_DCR_MASK); 2205 DCR_WRITE(pp, dcr); 2206 ecpp_error(pp->dip, "ECPPIOC_SETREGS:dcr=%x\n", dcr); 2207 ecpp_ack_ioctl(q, mp); 2208 break; 2209 } 2210 2211 case ECPPIOC_SETPORT: { 2212 uchar_t *port; 2213 2214 port = (uchar_t *)mp->b_cont->b_rptr; 2215 2216 /* must be in diagnostic mode for these commands to work */ 2217 if (pp->current_mode != ECPP_DIAG_MODE) { 2218 ecpp_nack_ioctl(q, mp, EINVAL); 2219 break; 2220 } 2221 2222 switch (*port) { 2223 case ECPP_PORT_PIO: 2224 /* put superio into PIO mode */ 2225 ECR_WRITE(pp, 2226 ECR_mode_001 | ECPP_INTR_MASK | ECPP_INTR_SRV); 2227 pp->port = *port; 2228 ecpp_ack_ioctl(q, mp); 2229 break; 2230 2231 case ECPP_PORT_TDMA: 2232 ecpp_error(pp->dip, "SETPORT: to TDMA\n"); 2233 pp->tfifo_intr = 1; 2234 /* change to mode 110 */ 2235 ECR_WRITE(pp, 2236 ECR_mode_110 | ECPP_INTR_MASK | ECPP_INTR_SRV); 2237 pp->port = *port; 2238 ecpp_ack_ioctl(q, mp); 2239 break; 2240 2241 default: 2242 ecpp_nack_ioctl(q, mp, EINVAL); 2243 } 2244 2245 break; 2246 } 2247 2248 case ECPPIOC_SETDATA: { 2249 uchar_t *data; 2250 2251 data = (uchar_t *)mp->b_cont->b_rptr; 2252 2253 /* must be in diagnostic mode for these commands to work */ 2254 if (pp->current_mode != ECPP_DIAG_MODE) { 2255 ecpp_nack_ioctl(q, mp, EINVAL); 2256 break; 2257 } 2258 2259 switch (pp->port) { 2260 case ECPP_PORT_PIO: 2261 DATAR_WRITE(pp, *data); 2262 ecpp_ack_ioctl(q, mp); 2263 break; 2264 2265 case ECPP_PORT_TDMA: 2266 TFIFO_WRITE(pp, *data); 2267 ecpp_ack_ioctl(q, mp); 2268 break; 2269 2270 default: 2271 ecpp_nack_ioctl(q, mp, EINVAL); 2272 } 2273 2274 break; 2275 } 2276 2277 case ECPPIOC_GETDEVID: { 2278 struct copyresp *csp; 2279 struct ecpp_copystate *stp; 2280 struct ecpp_device_id *dp; 2281 struct ecpp_device_id id; 2282 2283 csp = (struct copyresp *)mp->b_rptr; 2284 stp = (struct ecpp_copystate *)csp->cp_private->b_rptr; 2285 dp = (struct ecpp_device_id *)mp->b_cont->b_rptr; 2286 2287 #ifdef _MULTI_DATAMODEL 2288 if (IOC_CONVERT_FROM(iocbp) == IOC_ILP32) { 2289 struct ecpp_device_id32 *dp32; 2290 2291 dp32 = (struct ecpp_device_id32 *)dp; 2292 id.mode = dp32->mode; 2293 id.len = dp32->len; 2294 id.addr = (char *)(uintptr_t)dp32->addr; 2295 } else { 2296 #endif /* _MULTI_DATAMODEL */ 2297 id = *dp; 2298 #ifdef _MULTI_DATAMODEL 2299 } 2300 #endif /* _MULTI_DATAMODEL */ 2301 2302 ecpp_srvioc_devid(q, mp, &id, &stp->un.devid.rlen); 2303 break; 2304 } 2305 2306 case PRNIOC_GET_1284_DEVID: { 2307 struct copyresp *csp; 2308 struct ecpp_copystate *stp; 2309 struct prn_1284_device_id *dp; 2310 struct ecpp_device_id id; 2311 2312 csp = (struct copyresp *)mp->b_rptr; 2313 stp = (struct ecpp_copystate *)csp->cp_private->b_rptr; 2314 dp = (struct prn_1284_device_id *)mp->b_cont->b_rptr; 2315 2316 /* imitate struct ecpp_device_id */ 2317 id.mode = ECPP_NIBBLE_MODE; 2318 2319 #ifdef _MULTI_DATAMODEL 2320 if (IOC_CONVERT_FROM(iocbp) == IOC_ILP32) { 2321 struct prn_1284_device_id32 *dp32; 2322 2323 dp32 = (struct prn_1284_device_id32 *)dp; 2324 id.len = dp32->id_len; 2325 id.addr = (char *)(uintptr_t)dp32->id_data; 2326 } else { 2327 #endif /* _MULTI_DATAMODEL */ 2328 id.len = dp->id_len; 2329 id.addr = (char *)dp->id_data; 2330 #ifdef _MULTI_DATAMODEL 2331 } 2332 #endif /* _MULTI_DATAMODEL */ 2333 2334 ecpp_srvioc_devid(q, mp, &id, 2335 (int *)&stp->un.prn_devid.id_rlen); 2336 break; 2337 } 2338 2339 case PRNIOC_SET_IFCAP: { 2340 uint_t ifcap, new_ifcap; 2341 2342 ifcap = ecpp_get_prn_ifcap(pp); 2343 new_ifcap = *(uint_t *)mp->b_cont->b_rptr; 2344 2345 if (ifcap == new_ifcap) { 2346 ecpp_ack_ioctl(q, mp); 2347 break; 2348 } 2349 2350 /* only changing PRN_BIDI is supported */ 2351 if ((ifcap ^ new_ifcap) & ~PRN_BIDI) { 2352 ecpp_nack_ioctl(q, mp, EINVAL); 2353 break; 2354 } 2355 2356 if (new_ifcap & PRN_BIDI) { /* go bidirectional */ 2357 ecpp_default_negotiation(pp); 2358 } else { /* go unidirectional */ 2359 (void) ecpp_mode_negotiation(pp, ECPP_CENTRONICS); 2360 } 2361 2362 ecpp_ack_ioctl(q, mp); 2363 break; 2364 } 2365 2366 case PRNIOC_SET_TIMEOUTS: { 2367 struct prn_timeouts *prn_timeouts; 2368 2369 prn_timeouts = (struct prn_timeouts *)mp->b_cont->b_rptr; 2370 2371 if (prn_timeouts->tmo_forward > ECPP_MAX_TIMEOUT) { 2372 ecpp_nack_ioctl(q, mp, EINVAL); 2373 break; 2374 } 2375 2376 pp->prn_timeouts = *prn_timeouts; 2377 pp->xfer_parms.write_timeout = (int)prn_timeouts->tmo_forward; 2378 2379 ecpp_ack_ioctl(q, mp); 2380 break; 2381 } 2382 2383 case PRNIOC_GET_IFINFO: 2384 ecpp_srvioc_prnif(q, mp); 2385 break; 2386 2387 default: /* unexpected ioctl type */ 2388 ecpp_nack_ioctl(q, mp, EINVAL); 2389 break; 2390 } 2391 } 2392 2393 static void 2394 ecpp_srvioc_devid(queue_t *q, mblk_t *mp, struct ecpp_device_id *id, int *rlen) 2395 { 2396 struct ecppunit *pp; 2397 struct copyresp *csp; 2398 struct ecpp_copystate *stp; 2399 int error; 2400 int len; 2401 int mode; 2402 mblk_t *datamp; 2403 2404 pp = (struct ecppunit *)q->q_ptr; 2405 csp = (struct copyresp *)mp->b_rptr; 2406 stp = (struct ecpp_copystate *)csp->cp_private->b_rptr; 2407 mode = id->mode; 2408 2409 /* check arguments */ 2410 if ((mode < ECPP_CENTRONICS) || (mode > ECPP_ECP_MODE)) { 2411 ecpp_error(pp->dip, "ecpp_srvioc_devid: mode=%x, len=%x\n", 2412 mode, id->len); 2413 ecpp_nack_ioctl(q, mp, EINVAL); 2414 return; 2415 } 2416 2417 /* Currently only Nibble mode is supported */ 2418 if (mode != ECPP_NIBBLE_MODE) { 2419 ecpp_nack_ioctl(q, mp, EPROTONOSUPPORT); 2420 return; 2421 } 2422 2423 if ((id->addr == NULL) && (id->len != 0)) { 2424 ecpp_nack_ioctl(q, mp, EFAULT); 2425 return; 2426 } 2427 2428 /* read device ID length */ 2429 if (error = ecpp_getdevid(pp, NULL, &len, mode)) { 2430 ecpp_nack_ioctl(q, mp, error); 2431 goto breakout; 2432 } 2433 2434 /* don't take into account two length bytes */ 2435 len -= 2; 2436 *rlen = len; 2437 2438 /* limit transfer to user buffer length */ 2439 if (id->len < len) { 2440 len = id->len; 2441 } 2442 2443 if (len == 0) { 2444 /* just return rlen */ 2445 stp->state = ECPP_ADDROUT; 2446 ecpp_wput_iocdata_devid(q, mp, 2447 (uintptr_t)rlen - (uintptr_t)&stp->un); 2448 goto breakout; 2449 } 2450 2451 if ((datamp = allocb(len, BPRI_MED)) == NULL) { 2452 ecpp_nack_ioctl(q, mp, ENOSR); 2453 goto breakout; 2454 } 2455 2456 /* read ID string */ 2457 error = ecpp_getdevid(pp, datamp->b_rptr, &len, mode); 2458 if (error) { 2459 freemsg(datamp); 2460 ecpp_nack_ioctl(q, mp, error); 2461 goto breakout; 2462 } else { 2463 datamp->b_wptr += len; 2464 2465 stp->state = ECPP_ADDROUT; 2466 mcopyout(mp, csp->cp_private, len, id->addr, datamp); 2467 qreply(q, mp); 2468 } 2469 2470 return; 2471 2472 breakout: 2473 (void) ecpp_1284_termination(pp); 2474 } 2475 2476 /* 2477 * PRNIOC_GET_IFINFO: return prnio interface info string 2478 */ 2479 static void 2480 ecpp_srvioc_prnif(queue_t *q, mblk_t *mp) 2481 { 2482 struct copyresp *csp; 2483 struct ecpp_copystate *stp; 2484 uint_t len; 2485 struct prn_interface_info *ip; 2486 struct prn_interface_info info; 2487 mblk_t *datamp; 2488 #ifdef _MULTI_DATAMODEL 2489 struct iocblk *iocbp = (struct iocblk *)mp->b_rptr; 2490 #endif 2491 2492 csp = (struct copyresp *)mp->b_rptr; 2493 stp = (struct ecpp_copystate *)csp->cp_private->b_rptr; 2494 ip = (struct prn_interface_info *)mp->b_cont->b_rptr; 2495 2496 #ifdef _MULTI_DATAMODEL 2497 if (IOC_CONVERT_FROM(iocbp) == IOC_ILP32) { 2498 struct prn_interface_info32 *ip32; 2499 2500 ip32 = (struct prn_interface_info32 *)ip; 2501 info.if_len = ip32->if_len; 2502 info.if_data = (char *)(uintptr_t)ip32->if_data; 2503 } else { 2504 #endif /* _MULTI_DATAMODEL */ 2505 info = *ip; 2506 #ifdef _MULTI_DATAMODEL 2507 } 2508 #endif /* _MULTI_DATAMODEL */ 2509 2510 len = strlen(prn_ifinfo); 2511 stp->un.prn_if.if_rlen = len; 2512 stp->state = ECPP_ADDROUT; 2513 2514 /* check arguments */ 2515 if ((info.if_data == NULL) && (info.if_len != 0)) { 2516 ecpp_nack_ioctl(q, mp, EFAULT); 2517 return; 2518 } 2519 2520 if (info.if_len == 0) { 2521 /* just copyout rlen */ 2522 ecpp_wput_iocdata_devid(q, mp, 2523 offsetof(struct prn_interface_info, if_rlen)); 2524 return; 2525 } 2526 2527 /* if needed, trim to the buffer size */ 2528 if (len > info.if_len) { 2529 len = info.if_len; 2530 } 2531 2532 if ((datamp = allocb(len, BPRI_MED)) == NULL) { 2533 ecpp_nack_ioctl(q, mp, ENOSR); 2534 return; 2535 } 2536 2537 bcopy(&prn_ifinfo[0], datamp->b_wptr, len); 2538 datamp->b_wptr += len; 2539 2540 mcopyout(mp, csp->cp_private, len, info.if_data, datamp); 2541 qreply(q, mp); 2542 } 2543 2544 static void 2545 ecpp_flush(struct ecppunit *pp, int cmd) 2546 { 2547 queue_t *q; 2548 uint8_t ecr, dcr; 2549 timeout_id_t timeout_id, fifo_timer_id, wsrv_timer_id; 2550 2551 ASSERT(mutex_owned(&pp->umutex)); 2552 2553 if (!(cmd & FWRITE)) { 2554 return; 2555 } 2556 2557 q = pp->writeq; 2558 timeout_id = fifo_timer_id = wsrv_timer_id = 0; 2559 2560 ecpp_error(pp->dip, "ecpp_flush e_busy=%x\n", pp->e_busy); 2561 2562 /* if there is an ongoing DMA, it needs to be turned off. */ 2563 switch (pp->e_busy) { 2564 case ECPP_BUSY: 2565 /* 2566 * Change the port status to ECPP_FLUSH to 2567 * indicate to ecpp_wsrv that the wq is being flushed. 2568 */ 2569 pp->e_busy = ECPP_FLUSH; 2570 2571 /* 2572 * dma_cancelled indicates to ecpp_isr() that we have 2573 * turned off the DMA. Since the mutex is held, ecpp_isr() 2574 * may be blocked. Once ecpp_flush() finishes and ecpp_isr() 2575 * gains the mutex, ecpp_isr() will have a _reset_ DMAC. Most 2576 * significantly, the DMAC will be reset after ecpp_isr() was 2577 * invoked. Therefore we need to have a flag "dma_cancelled" 2578 * to signify when the described condition has occured. If 2579 * ecpp_isr() notes a dma_cancelled, it will ignore the DMAC csr 2580 * and simply claim the interupt. 2581 */ 2582 2583 pp->dma_cancelled = TRUE; 2584 2585 /* either DMA or PIO transfer */ 2586 if (COMPAT_DMA(pp) || 2587 (pp->current_mode == ECPP_ECP_MODE) || 2588 (pp->current_mode == ECPP_DIAG_MODE)) { 2589 /* 2590 * if the bcr is zero, then DMA is complete and 2591 * we are waiting for the fifo to drain. Therefore, 2592 * turn off dma. 2593 */ 2594 if (ECPP_DMA_STOP(pp, NULL) == FAILURE) { 2595 ecpp_error(pp->dip, 2596 "ecpp_flush: dma_stop failed.\n"); 2597 } 2598 2599 /* 2600 * If the status of the port is ECPP_BUSY, 2601 * the DMA is stopped by either explicitly above, or by 2602 * ecpp_isr() but the FIFO hasn't drained yet. In either 2603 * case, we need to unbind the dma mappings. 2604 */ 2605 if (ddi_dma_unbind_handle( 2606 pp->dma_handle) != DDI_SUCCESS) 2607 ecpp_error(pp->dip, 2608 "ecpp_flush: unbind failed.\n"); 2609 2610 if (pp->msg != NULL) { 2611 freemsg(pp->msg); 2612 pp->msg = NULL; 2613 } 2614 } else { 2615 /* 2616 * PIO transfer: disable nAck interrups 2617 */ 2618 dcr = DCR_READ(pp); 2619 dcr &= ~(ECPP_REV_DIR | ECPP_INTR_EN); 2620 DCR_WRITE(pp, dcr); 2621 ECPP_MASK_INTR(pp); 2622 } 2623 2624 /* 2625 * The transfer is cleaned up. There may or may not be data 2626 * in the fifo. We don't care at this point. Ie. SuperIO may 2627 * transfer the remaining bytes in the fifo or not. it doesn't 2628 * matter. All that is important at this stage is that no more 2629 * fifo timers are started. 2630 */ 2631 2632 timeout_id = pp->timeout_id; 2633 fifo_timer_id = pp->fifo_timer_id; 2634 pp->timeout_id = pp->fifo_timer_id = 0; 2635 pp->softintr_pending = 0; 2636 2637 break; 2638 2639 case ECPP_ERR: 2640 /* 2641 * Change the port status to ECPP_FLUSH to 2642 * indicate to ecpp_wsrv that the wq is being flushed. 2643 */ 2644 pp->e_busy = ECPP_FLUSH; 2645 2646 /* 2647 * Most likely there are mblks in the queue, 2648 * but the driver can not transmit because 2649 * of the bad port status. In this case, 2650 * ecpp_flush() should make sure ecpp_wsrv_timer() 2651 * is turned off. 2652 */ 2653 wsrv_timer_id = pp->wsrv_timer_id; 2654 pp->wsrv_timer_id = 0; 2655 2656 break; 2657 2658 case ECPP_IDLE: 2659 /* No work to do. Ready to flush */ 2660 break; 2661 2662 default: 2663 ecpp_error(pp->dip, 2664 "ecpp_flush: illegal state %x\n", pp->e_busy); 2665 } 2666 2667 /* in DIAG mode clear TFIFO if needed */ 2668 if (pp->current_mode == ECPP_DIAG_MODE) { 2669 ecr = ECR_READ(pp); 2670 if (!(ecr & ECPP_FIFO_EMPTY)) { 2671 ECR_WRITE(pp, 2672 ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_001); 2673 ECR_WRITE(pp, ecr); 2674 } 2675 } 2676 2677 /* Discard all messages on the output queue. */ 2678 flushq(q, FLUSHDATA); 2679 2680 /* The port is no longer flushing or dma'ing for that matter. */ 2681 pp->e_busy = ECPP_IDLE; 2682 2683 /* Set the right phase */ 2684 if (pp->current_mode == ECPP_ECP_MODE) { 2685 if (pp->current_phase == ECPP_PHASE_ECP_REV_XFER) { 2686 pp->current_phase = ECPP_PHASE_ECP_REV_IDLE; 2687 } else { 2688 pp->current_phase = ECPP_PHASE_ECP_FWD_IDLE; 2689 } 2690 } 2691 2692 /* cancel timeouts if any */ 2693 mutex_exit(&pp->umutex); 2694 2695 if (timeout_id) { 2696 (void) untimeout(timeout_id); 2697 } 2698 if (fifo_timer_id) { 2699 (void) untimeout(fifo_timer_id); 2700 } 2701 if (wsrv_timer_id) { 2702 (void) untimeout(wsrv_timer_id); 2703 } 2704 2705 mutex_enter(&pp->umutex); 2706 2707 cv_signal(&pp->pport_cv); /* wake up ecpp_close() */ 2708 } 2709 2710 static void 2711 ecpp_start(struct ecppunit *pp, caddr_t addr, size_t len) 2712 { 2713 ASSERT(mutex_owned(&pp->umutex)); 2714 ASSERT(pp->e_busy == ECPP_BUSY); 2715 2716 ecpp_error(pp->dip, 2717 "ecpp_start:current_mode=%x,current_phase=%x,ecr=%x,len=%d\n", 2718 pp->current_mode, pp->current_phase, ECR_READ(pp), len); 2719 2720 pp->dma_dir = DDI_DMA_WRITE; /* this is a forward transfer */ 2721 2722 switch (pp->current_mode) { 2723 case ECPP_NIBBLE_MODE: 2724 (void) ecpp_1284_termination(pp); 2725 2726 /* After termination we are either Compatible or Centronics */ 2727 2728 /* FALLTHRU */ 2729 2730 case ECPP_CENTRONICS: 2731 case ECPP_COMPAT_MODE: 2732 if (pp->io_mode == ECPP_DMA) { 2733 if (ecpp_init_dma_xfer(pp, addr, len) == FAILURE) { 2734 return; 2735 } 2736 } else { 2737 /* PIO mode */ 2738 if (ecpp_prep_pio_xfer(pp, addr, len) == FAILURE) { 2739 return; 2740 } 2741 (void) ecpp_pio_writeb(pp); 2742 } 2743 break; 2744 2745 case ECPP_DIAG_MODE: { 2746 int oldlen; 2747 2748 /* put superio into TFIFO mode, if not already */ 2749 ECR_WRITE(pp, ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_110); 2750 /* 2751 * DMA would block if the TFIFO is not empty 2752 * if by this moment nobody read these bytes, they`re gone 2753 */ 2754 drv_usecwait(1); 2755 if (!(ECR_READ(pp) & ECPP_FIFO_EMPTY)) { 2756 ecpp_error(pp->dip, 2757 "ecpp_start: TFIFO not empty, clearing\n"); 2758 ECR_WRITE(pp, 2759 ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_001); 2760 ECR_WRITE(pp, 2761 ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_110); 2762 } 2763 2764 /* we can DMA at most 16 bytes into TFIFO */ 2765 oldlen = len; 2766 if (len > ECPP_FIFO_SZ) { 2767 len = ECPP_FIFO_SZ; 2768 } 2769 2770 if (ecpp_init_dma_xfer(pp, addr, len) == FAILURE) { 2771 return; 2772 } 2773 2774 /* put the rest of data back on the queue */ 2775 if (oldlen > len) { 2776 ecpp_putback_untransfered(pp, addr + len, oldlen - len); 2777 } 2778 2779 break; 2780 } 2781 2782 case ECPP_ECP_MODE: 2783 ASSERT(pp->current_phase == ECPP_PHASE_ECP_FWD_IDLE || 2784 pp->current_phase == ECPP_PHASE_ECP_REV_IDLE); 2785 2786 /* if in Reverse Phase negotiate to Forward */ 2787 if (pp->current_phase == ECPP_PHASE_ECP_REV_IDLE) { 2788 if (ecp_reverse2forward(pp) == FAILURE) { 2789 if (pp->msg) { 2790 (void) putbq(pp->writeq, pp->msg); 2791 } else { 2792 ecpp_putback_untransfered(pp, 2793 addr, len); 2794 } 2795 } 2796 } 2797 2798 if (ecpp_init_dma_xfer(pp, addr, len) == FAILURE) { 2799 return; 2800 } 2801 2802 break; 2803 } 2804 2805 /* schedule transfer timeout */ 2806 pp->timeout_id = timeout(ecpp_xfer_timeout, (caddr_t)pp, 2807 pp->xfer_parms.write_timeout * drv_usectohz(1000000)); 2808 } 2809 2810 /* 2811 * Transfer a PIO "block" a byte at a time. 2812 * The block is starts at addr and ends at pp->last_byte 2813 */ 2814 static uint8_t 2815 ecpp_prep_pio_xfer(struct ecppunit *pp, caddr_t addr, size_t len) 2816 { 2817 pp->next_byte = addr; 2818 pp->last_byte = (caddr_t)((ulong_t)addr + len); 2819 2820 if (ecpp_check_status(pp) == FAILURE) { 2821 /* 2822 * if status signals are bad, do not start PIO, 2823 * put everything back on the queue. 2824 */ 2825 ecpp_error(pp->dip, 2826 "ecpp_prep_pio_xfer:suspend PIO len=%d\n", len); 2827 2828 if (pp->msg != NULL) { 2829 /* 2830 * this circumstance we want to copy the 2831 * untransfered section of msg to a new mblk, 2832 * then free the orignal one. 2833 */ 2834 ecpp_putback_untransfered(pp, 2835 (void *)pp->msg->b_rptr, len); 2836 ecpp_error(pp->dip, 2837 "ecpp_prep_pio_xfer: len1=%d\n", len); 2838 2839 freemsg(pp->msg); 2840 pp->msg = NULL; 2841 } else { 2842 ecpp_putback_untransfered(pp, pp->ioblock, len); 2843 ecpp_error(pp->dip, 2844 "ecpp_prep_pio_xfer: len2=%d\n", len); 2845 } 2846 qenable(pp->writeq); 2847 2848 return (FAILURE); 2849 } 2850 2851 pp->dma_cancelled = FALSE; 2852 2853 /* pport must be in PIO mode */ 2854 if (ecr_write(pp, ECR_mode_001 | 2855 ECPP_INTR_MASK | ECPP_INTR_SRV) != SUCCESS) { 2856 ecpp_error(pp->dip, "ecpp_prep_pio_xfer: failed w/ECR.\n"); 2857 } 2858 2859 ecpp_error(pp->dip, "ecpp_prep_pio_xfer: dcr=%x ecr=%x\n", 2860 DCR_READ(pp), ECR_READ(pp)); 2861 2862 return (SUCCESS); 2863 } 2864 2865 static uint8_t 2866 ecpp_init_dma_xfer(struct ecppunit *pp, caddr_t addr, size_t len) 2867 { 2868 uint8_t ecr_mode[] = { 2869 0, 2870 ECR_mode_010, /* Centronix */ 2871 ECR_mode_010, /* Compat */ 2872 0, /* Byte */ 2873 0, /* Nibble */ 2874 ECR_mode_011, /* ECP */ 2875 0, /* Failure */ 2876 ECR_mode_110, /* Diag */ 2877 }; 2878 uint8_t ecr; 2879 2880 ASSERT((pp->current_mode <= ECPP_DIAG_MODE) && 2881 (ecr_mode[pp->current_mode] != 0)); 2882 2883 if (ecpp_setup_dma_resources(pp, addr, len) == FAILURE) { 2884 qenable(pp->writeq); 2885 return (FAILURE); 2886 } 2887 2888 if (ecpp_check_status(pp) == FAILURE) { 2889 /* 2890 * if status signals are bad, do not start DMA, but 2891 * rather put everything back on the queue. 2892 */ 2893 ecpp_error(pp->dip, 2894 "ecpp_init_dma_xfer: suspending DMA len=%d\n", 2895 pp->dma_cookie.dmac_size); 2896 2897 if (pp->msg != NULL) { 2898 /* 2899 * this circumstance we want to copy the 2900 * untransfered section of msg to a new mblk, 2901 * then free the orignal one. 2902 */ 2903 ecpp_putback_untransfered(pp, 2904 (void *)pp->msg->b_rptr, len); 2905 ecpp_error(pp->dip, 2906 "ecpp_init_dma_xfer:a:len=%d\n", len); 2907 2908 freemsg(pp->msg); 2909 pp->msg = NULL; 2910 } else { 2911 ecpp_putback_untransfered(pp, pp->ioblock, len); 2912 ecpp_error(pp->dip, 2913 "ecpp_init_dma_xfer:b:len=%d\n", len); 2914 } 2915 2916 if (ddi_dma_unbind_handle(pp->dma_handle) != DDI_SUCCESS) { 2917 ecpp_error(pp->dip, 2918 "ecpp_init_dma_xfer: unbind FAILURE.\n"); 2919 } 2920 qenable(pp->writeq); 2921 return (FAILURE); 2922 } 2923 2924 pp->xfercnt = pp->resid = len; 2925 pp->dma_cancelled = FALSE; 2926 pp->tfifo_intr = 0; 2927 2928 /* set the right ECR mode and disable DMA */ 2929 ecr = ecr_mode[pp->current_mode]; 2930 (void) ecr_write(pp, ecr | ECPP_INTR_SRV | ECPP_INTR_MASK); 2931 2932 /* prepare DMAC for a transfer */ 2933 if (ECPP_DMA_START(pp) == FAILURE) { 2934 ecpp_error(pp->dip, "ecpp_init_dma_xfer: dma_start FAILED.\n"); 2935 return (FAILURE); 2936 } 2937 2938 /* GO! */ 2939 (void) ecr_write(pp, ecr | ECPP_DMA_ENABLE | ECPP_INTR_MASK); 2940 2941 return (SUCCESS); 2942 } 2943 2944 static uint8_t 2945 ecpp_setup_dma_resources(struct ecppunit *pp, caddr_t addr, size_t len) 2946 { 2947 int err; 2948 off_t woff; 2949 size_t wlen; 2950 2951 ASSERT(pp->dma_dir == DDI_DMA_READ || pp->dma_dir == DDI_DMA_WRITE); 2952 2953 err = ddi_dma_addr_bind_handle(pp->dma_handle, NULL, 2954 addr, len, pp->dma_dir | DDI_DMA_PARTIAL, 2955 DDI_DMA_DONTWAIT, NULL, 2956 &pp->dma_cookie, &pp->dma_cookie_count); 2957 2958 switch (err) { 2959 case DDI_DMA_MAPPED: 2960 ecpp_error(pp->dip, "ecpp_setup_dma: DMA_MAPPED\n"); 2961 2962 pp->dma_nwin = 1; 2963 pp->dma_curwin = 1; 2964 break; 2965 2966 case DDI_DMA_PARTIAL_MAP: { 2967 ecpp_error(pp->dip, "ecpp_setup_dma: DMA_PARTIAL_MAP\n"); 2968 2969 if (ddi_dma_numwin(pp->dma_handle, 2970 &pp->dma_nwin) != DDI_SUCCESS) { 2971 (void) ddi_dma_unbind_handle(pp->dma_handle); 2972 return (FAILURE); 2973 } 2974 pp->dma_curwin = 1; 2975 2976 /* 2977 * The very first window is returned by bind_handle, 2978 * but we must do this explicitly here, otherwise 2979 * next getwin would return wrong cookie dmac_size 2980 */ 2981 if (ddi_dma_getwin(pp->dma_handle, 0, &woff, &wlen, 2982 &pp->dma_cookie, &pp->dma_cookie_count) != DDI_SUCCESS) { 2983 ecpp_error(pp->dip, 2984 "ecpp_setup_dma: ddi_dma_getwin failed!"); 2985 (void) ddi_dma_unbind_handle(pp->dma_handle); 2986 return (FAILURE); 2987 } 2988 2989 ecpp_error(pp->dip, 2990 "ecpp_setup_dma: cookies=%d, windows=%d" 2991 " addr=%lx len=%d\n", 2992 pp->dma_cookie_count, pp->dma_nwin, 2993 pp->dma_cookie.dmac_address, pp->dma_cookie.dmac_size); 2994 2995 break; 2996 } 2997 2998 default: 2999 ecpp_error(pp->dip, "ecpp_setup_dma: err=%x\n", err); 3000 return (FAILURE); 3001 } 3002 3003 return (SUCCESS); 3004 } 3005 3006 static void 3007 ecpp_ack_ioctl(queue_t *q, mblk_t *mp) 3008 { 3009 struct iocblk *iocbp; 3010 3011 mp->b_datap->db_type = M_IOCACK; 3012 mp->b_wptr = mp->b_rptr + sizeof (struct iocblk); 3013 3014 if (mp->b_cont) { 3015 freemsg(mp->b_cont); 3016 mp->b_cont = NULL; 3017 } 3018 3019 iocbp = (struct iocblk *)mp->b_rptr; 3020 iocbp->ioc_error = 0; 3021 iocbp->ioc_count = 0; 3022 iocbp->ioc_rval = 0; 3023 3024 qreply(q, mp); 3025 } 3026 3027 static void 3028 ecpp_nack_ioctl(queue_t *q, mblk_t *mp, int err) 3029 { 3030 struct iocblk *iocbp; 3031 3032 mp->b_datap->db_type = M_IOCNAK; 3033 mp->b_wptr = mp->b_rptr + sizeof (struct iocblk); 3034 iocbp = (struct iocblk *)mp->b_rptr; 3035 iocbp->ioc_error = err; 3036 3037 if (mp->b_cont) { 3038 freemsg(mp->b_cont); 3039 mp->b_cont = NULL; 3040 } 3041 3042 qreply(q, mp); 3043 } 3044 3045 uint_t 3046 ecpp_isr(caddr_t arg) 3047 { 3048 struct ecppunit *pp = (struct ecppunit *)(void *)arg; 3049 uint32_t dcsr; 3050 uint8_t dsr; 3051 int cheerio_pend_counter; 3052 int retval = DDI_INTR_UNCLAIMED; 3053 hrtime_t now; 3054 3055 mutex_enter(&pp->umutex); 3056 /* 3057 * interrupt may occur while other thread is holding the lock 3058 * and cancels DMA transfer (e.g. ecpp_flush()) 3059 * since it cannot cancel the interrupt thread, 3060 * it just sets dma_cancelled to TRUE, 3061 * telling interrupt handler to exit immediately 3062 */ 3063 if (pp->dma_cancelled == TRUE) { 3064 ecpp_error(pp->dip, "dma-cancel isr\n"); 3065 3066 pp->intr_hard++; 3067 pp->dma_cancelled = FALSE; 3068 3069 mutex_exit(&pp->umutex); 3070 return (DDI_INTR_CLAIMED); 3071 } 3072 3073 /* Southbridge interrupts are handled separately */ 3074 #if defined(__x86) 3075 if (pp->hw == &x86) 3076 #else 3077 if (pp->hw == &m1553) 3078 #endif 3079 { 3080 retval = ecpp_M1553_intr(pp); 3081 if (retval == DDI_INTR_UNCLAIMED) { 3082 goto unexpected; 3083 } 3084 mutex_exit(&pp->umutex); 3085 return (DDI_INTR_CLAIMED); 3086 } 3087 3088 /* 3089 * the intr is through the motherboard. it is faster than PCI route. 3090 * sometimes ecpp_isr() is invoked before cheerio csr is updated. 3091 */ 3092 cheerio_pend_counter = ecpp_isr_max_delay; 3093 dcsr = GET_DMAC_CSR(pp); 3094 3095 while (!(dcsr & DCSR_INT_PEND) && cheerio_pend_counter-- > 0) { 3096 drv_usecwait(1); 3097 dcsr = GET_DMAC_CSR(pp); 3098 } 3099 3100 /* 3101 * This is a workaround for what seems to be a timing problem 3102 * with the delivery of interrupts and CSR updating with the 3103 * ebus2 csr, superio and the n_ERR pin from the peripheral. 3104 * 3105 * delay is not needed for PIO mode 3106 */ 3107 if (!COMPAT_PIO(pp)) { 3108 drv_usecwait(100); 3109 dcsr = GET_DMAC_CSR(pp); 3110 } 3111 3112 /* on 97317 in Extended mode IRQ_ST of DSR is deasserted when read */ 3113 dsr = DSR_READ(pp); 3114 3115 /* 3116 * check if interrupt is for this device: 3117 * it should be reflected either in cheerio DCSR register 3118 * or in IRQ_ST bit of DSR on 97317 3119 */ 3120 if ((dcsr & DCSR_INT_PEND) == 0) { 3121 if (pp->hw != &pc97317) { 3122 goto unclaimed; 3123 } 3124 /* 3125 * on Excalibur, reading DSR will deassert SuperIO IRQx line 3126 * RIO's DCSR_INT_PEND seems to follow IRQx transitions, 3127 * so if DSR is read after interrupt occured, but before 3128 * we get here, IRQx and hence INT_PEND will be deasserted 3129 * as a result, we can miss a service interrupt in PIO mode 3130 * 3131 * malicious DSR reader is BPPIOC_TESTIO, which is called 3132 * by LP in between data blocks to check printer status 3133 * this workaround lets us not to miss an interrupt 3134 * 3135 * also, nErr interrupt (ECP mode) not always reflected in DCSR 3136 */ 3137 if (((dsr & ECPP_IRQ_ST) == 0) || 3138 ((COMPAT_PIO(pp)) && (pp->e_busy == ECPP_BUSY)) || 3139 (((dsr & ECPP_nERR) == 0) && 3140 (pp->current_mode == ECPP_ECP_MODE))) { 3141 dcsr = 0; 3142 } else { 3143 goto unclaimed; 3144 } 3145 } 3146 3147 pp->intr_hard++; 3148 3149 /* the intr is for us - check all possible interrupt sources */ 3150 if (dcsr & DCSR_ERR_PEND) { 3151 size_t bcr; 3152 3153 /* we are expecting a data transfer interrupt */ 3154 ASSERT(pp->e_busy == ECPP_BUSY); 3155 3156 /* 3157 * some kind of DMA error 3158 */ 3159 if (ECPP_DMA_STOP(pp, &bcr) == FAILURE) { 3160 ecpp_error(pp->dip, "ecpp_isr: dma_stop failed\n"); 3161 } 3162 3163 ecpp_error(pp->dip, "ecpp_isr: DMAC ERROR bcr=%d\n", bcr); 3164 3165 ecpp_xfer_cleanup(pp); 3166 3167 if (ddi_dma_unbind_handle(pp->dma_handle) != DDI_SUCCESS) { 3168 ecpp_error(pp->dip, "ecpp_isr(e): unbind failed\n"); 3169 } 3170 3171 mutex_exit(&pp->umutex); 3172 return (DDI_INTR_CLAIMED); 3173 } 3174 3175 if (dcsr & DCSR_TC) { 3176 retval = ecpp_dma_ihdlr(pp); 3177 mutex_exit(&pp->umutex); 3178 return (DDI_INTR_CLAIMED); 3179 } 3180 3181 if (COMPAT_PIO(pp)) { 3182 retval = ecpp_pio_ihdlr(pp); 3183 mutex_exit(&pp->umutex); 3184 return (DDI_INTR_CLAIMED); 3185 } 3186 3187 /* does peripheral need attention? */ 3188 if ((dsr & ECPP_nERR) == 0) { 3189 retval = ecpp_nErr_ihdlr(pp); 3190 mutex_exit(&pp->umutex); 3191 return (DDI_INTR_CLAIMED); 3192 } 3193 3194 pp->intr_hard--; 3195 3196 unexpected: 3197 3198 pp->intr_spurious++; 3199 3200 /* 3201 * The following procedure tries to prevent soft hangs 3202 * in event of peripheral/superio misbehaviour: 3203 * if number of unexpected interrupts in the last SPUR_PERIOD ns 3204 * exceeded SPUR_CRITICAL, then shut up interrupts 3205 */ 3206 now = gethrtime(); 3207 if (pp->lastspur == 0 || now - pp->lastspur > SPUR_PERIOD) { 3208 /* last unexpected interrupt was long ago */ 3209 pp->lastspur = now; 3210 pp->nspur = 1; 3211 } else { 3212 /* last unexpected interrupt was recently */ 3213 pp->nspur++; 3214 } 3215 3216 if (pp->nspur >= SPUR_CRITICAL) { 3217 ECPP_MASK_INTR(pp); 3218 ECR_WRITE(pp, ECR_READ(pp) | ECPP_INTR_MASK | ECPP_INTR_SRV); 3219 pp->nspur = 0; 3220 cmn_err(CE_NOTE, "%s%d: too many interrupt requests", 3221 ddi_get_name(pp->dip), ddi_get_instance(pp->dip)); 3222 } else { 3223 ECR_WRITE(pp, ECR_READ(pp) | ECPP_INTR_SRV | ECPP_INTR_MASK); 3224 } 3225 3226 ecpp_error(pp->dip, 3227 "isr:unknown: dcsr=%x ecr=%x dsr=%x dcr=%x\nmode=%x phase=%x\n", 3228 dcsr, ECR_READ(pp), dsr, DCR_READ(pp), 3229 pp->current_mode, pp->current_phase); 3230 3231 mutex_exit(&pp->umutex); 3232 return (DDI_INTR_CLAIMED); 3233 3234 unclaimed: 3235 3236 pp->intr_spurious++; 3237 3238 ecpp_error(pp->dip, 3239 "isr:UNCL: dcsr=%x ecr=%x dsr=%x dcr=%x\nmode=%x phase=%x\n", 3240 dcsr, ECR_READ(pp), DSR_READ(pp), DCR_READ(pp), 3241 pp->current_mode, pp->current_phase); 3242 3243 mutex_exit(&pp->umutex); 3244 return (DDI_INTR_UNCLAIMED); 3245 } 3246 3247 /* 3248 * M1553 intr handler 3249 */ 3250 static uint_t 3251 ecpp_M1553_intr(struct ecppunit *pp) 3252 { 3253 int retval = DDI_INTR_UNCLAIMED; 3254 3255 pp->intr_hard++; 3256 3257 if (pp->e_busy == ECPP_BUSY) { 3258 /* Centronics or Compat PIO transfer */ 3259 if (COMPAT_PIO(pp)) { 3260 return (ecpp_pio_ihdlr(pp)); 3261 } 3262 3263 /* Centronics or Compat DMA transfer */ 3264 if (COMPAT_DMA(pp) || 3265 (pp->current_mode == ECPP_ECP_MODE) || 3266 (pp->current_mode == ECPP_DIAG_MODE)) { 3267 return (ecpp_dma_ihdlr(pp)); 3268 } 3269 } 3270 3271 /* Nibble or ECP backchannel request? */ 3272 if ((DSR_READ(pp) & ECPP_nERR) == 0) { 3273 return (ecpp_nErr_ihdlr(pp)); 3274 } 3275 3276 return (retval); 3277 } 3278 3279 /* 3280 * DMA completion interrupt handler 3281 */ 3282 static uint_t 3283 ecpp_dma_ihdlr(struct ecppunit *pp) 3284 { 3285 clock_t tm; 3286 3287 ecpp_error(pp->dip, "ecpp_dma_ihdlr(%x): ecr=%x, dsr=%x, dcr=%x\n", 3288 pp->current_mode, ECR_READ(pp), DSR_READ(pp), DCR_READ(pp)); 3289 3290 /* we are expecting a data transfer interrupt */ 3291 ASSERT(pp->e_busy == ECPP_BUSY); 3292 3293 /* Intr generated while invoking TFIFO mode. Exit */ 3294 if (pp->tfifo_intr == 1) { 3295 pp->tfifo_intr = 0; 3296 ecpp_error(pp->dip, "ecpp_dma_ihdlr: tfifo_intr is 1\n"); 3297 return (DDI_INTR_CLAIMED); 3298 } 3299 3300 if (ECPP_DMA_STOP(pp, NULL) == FAILURE) { 3301 ecpp_error(pp->dip, "ecpp_dma_ihdlr: dma_stop failed\n"); 3302 } 3303 3304 if (pp->current_mode == ECPP_ECP_MODE && 3305 pp->current_phase == ECPP_PHASE_ECP_REV_XFER) { 3306 ecpp_ecp_read_completion(pp); 3307 } else { 3308 /* 3309 * fifo_timer() will do the cleanup when the FIFO drains 3310 */ 3311 if ((ECR_READ(pp) & ECPP_FIFO_EMPTY) || 3312 (pp->current_mode == ECPP_DIAG_MODE)) { 3313 tm = 0; /* no use in waiting if FIFO is already empty */ 3314 } else { 3315 tm = drv_usectohz(FIFO_DRAIN_PERIOD); 3316 } 3317 pp->fifo_timer_id = timeout(ecpp_fifo_timer, (caddr_t)pp, tm); 3318 } 3319 3320 /* 3321 * Stop the DMA transfer timeout timer 3322 * this operation will temporarily give up the mutex, 3323 * so we do it in the end of the handler to avoid races 3324 */ 3325 ecpp_untimeout_unblock(pp, &pp->timeout_id); 3326 3327 return (DDI_INTR_CLAIMED); 3328 } 3329 3330 /* 3331 * ecpp_pio_ihdlr() is a PIO interrupt processing routine 3332 * It masks interrupts, updates statistics and initiates next byte transfer 3333 */ 3334 static uint_t 3335 ecpp_pio_ihdlr(struct ecppunit *pp) 3336 { 3337 ASSERT(mutex_owned(&pp->umutex)); 3338 ASSERT(pp->e_busy == ECPP_BUSY); 3339 3340 /* update statistics */ 3341 pp->joblen++; 3342 pp->ctxpio_obytes++; 3343 3344 /* disable nAck interrups */ 3345 ECPP_MASK_INTR(pp); 3346 DCR_WRITE(pp, DCR_READ(pp) & ~(ECPP_REV_DIR | ECPP_INTR_EN)); 3347 3348 /* 3349 * If it was the last byte of the data block cleanup, 3350 * otherwise trigger a soft interrupt to send the next byte 3351 */ 3352 if (pp->next_byte >= pp->last_byte) { 3353 ecpp_xfer_cleanup(pp); 3354 ecpp_error(pp->dip, 3355 "ecpp_pio_ihdlr: pp->joblen=%d,pp->ctx_cf=%d,\n", 3356 pp->joblen, pp->ctx_cf); 3357 } else { 3358 if (pp->softintr_pending) { 3359 ecpp_error(pp->dip, 3360 "ecpp_pio_ihdlr:E: next byte in progress\n"); 3361 } else { 3362 pp->softintr_flags = ECPP_SOFTINTR_PIONEXT; 3363 pp->softintr_pending = 1; 3364 ddi_trigger_softintr(pp->softintr_id); 3365 } 3366 } 3367 3368 return (DDI_INTR_CLAIMED); 3369 } 3370 3371 /* 3372 * ecpp_pio_writeb() sends a byte using Centronics handshake 3373 */ 3374 static void 3375 ecpp_pio_writeb(struct ecppunit *pp) 3376 { 3377 uint8_t dcr; 3378 3379 dcr = DCR_READ(pp) & ~ECPP_REV_DIR; 3380 dcr |= ECPP_INTR_EN; 3381 3382 /* send the next byte */ 3383 DATAR_WRITE(pp, *(pp->next_byte++)); 3384 3385 drv_usecwait(pp->data_setup_time); 3386 3387 /* Now Assert (neg logic) nStrobe */ 3388 if (dcr_write(pp, dcr | ECPP_STB) == FAILURE) { 3389 ecpp_error(pp->dip, "ecpp_pio_writeb:1: failed w/DCR\n"); 3390 } 3391 3392 /* Enable nAck interrupts */ 3393 (void) DSR_READ(pp); /* ensure IRQ_ST is armed */ 3394 ECPP_UNMASK_INTR(pp); 3395 3396 drv_usecwait(pp->strobe_pulse_width); 3397 3398 if (dcr_write(pp, dcr & ~ECPP_STB) == FAILURE) { 3399 ecpp_error(pp->dip, "ecpp_pio_writeb:2: failed w/DCR\n"); 3400 } 3401 } 3402 3403 /* 3404 * Backchannel request interrupt handler 3405 */ 3406 static uint_t 3407 ecpp_nErr_ihdlr(struct ecppunit *pp) 3408 { 3409 ecpp_error(pp->dip, "ecpp_nErr_ihdlr: mode=%x, phase=%x\n", 3410 pp->current_mode, pp->current_phase); 3411 3412 if (pp->oflag != TRUE) { 3413 ecpp_error(pp->dip, "ecpp_nErr_ihdlr: not open!\n"); 3414 return (DDI_INTR_UNCLAIMED); 3415 } 3416 3417 if (pp->e_busy == ECPP_BUSY) { 3418 ecpp_error(pp->dip, "ecpp_nErr_ihdlr: busy\n"); 3419 ECR_WRITE(pp, ECR_READ(pp) | ECPP_INTR_MASK); 3420 return (DDI_INTR_CLAIMED); 3421 } 3422 3423 /* mask nErr & nAck interrupts */ 3424 ECPP_MASK_INTR(pp); 3425 DCR_WRITE(pp, DCR_READ(pp) & ~(ECPP_INTR_EN | ECPP_REV_DIR)); 3426 ECR_WRITE(pp, ECR_READ(pp) | ECPP_INTR_MASK); 3427 3428 /* going reverse */ 3429 switch (pp->current_mode) { 3430 case ECPP_ECP_MODE: 3431 /* 3432 * Peripheral asserts nPeriphRequest (nFault) 3433 */ 3434 break; 3435 case ECPP_NIBBLE_MODE: 3436 /* 3437 * Event 18: Periph asserts nErr to indicate data avail 3438 * Event 19: After waiting minimum pulse width, 3439 * periph sets nAck high to generate an interrupt 3440 * 3441 * Interface is in Interrupt Phase 3442 */ 3443 pp->current_phase = ECPP_PHASE_NIBT_REVINTR; 3444 3445 break; 3446 default: 3447 ecpp_error(pp->dip, "ecpp_nErr_ihdlr: wrong mode!\n"); 3448 return (DDI_INTR_UNCLAIMED); 3449 } 3450 3451 (void) ecpp_backchan_req(pp); /* put backchannel request on the wq */ 3452 3453 return (DDI_INTR_CLAIMED); 3454 } 3455 3456 /* 3457 * Softintr handler does work according to softintr_flags: 3458 * in case of ECPP_SOFTINTR_PIONEXT it sends next byte of PIO transfer 3459 */ 3460 static uint_t 3461 ecpp_softintr(caddr_t arg) 3462 { 3463 struct ecppunit *pp = (struct ecppunit *)arg; 3464 uint32_t unx_len, ecpp_reattempts = 0; 3465 3466 mutex_enter(&pp->umutex); 3467 3468 pp->intr_soft++; 3469 3470 if (!pp->softintr_pending) { 3471 mutex_exit(&pp->umutex); 3472 return (DDI_INTR_CLAIMED); 3473 } else { 3474 pp->softintr_pending = 0; 3475 } 3476 3477 if (pp->softintr_flags & ECPP_SOFTINTR_PIONEXT) { 3478 pp->softintr_flags &= ~ECPP_SOFTINTR_PIONEXT; 3479 /* 3480 * Sent next byte in PIO mode 3481 */ 3482 ecpp_reattempts = 0; 3483 do { 3484 if (ecpp_check_status(pp) == SUCCESS) { 3485 pp->e_busy = ECPP_BUSY; 3486 break; 3487 } 3488 drv_usecwait(1); 3489 if (pp->isr_reattempt_high < ecpp_reattempts) { 3490 pp->isr_reattempt_high = ecpp_reattempts; 3491 } 3492 } while (++ecpp_reattempts < pp->wait_for_busy); 3493 3494 /* if the peripheral still not recovered suspend the transfer */ 3495 if (pp->e_busy == ECPP_ERR) { 3496 ++pp->ctx_cf; /* check status fail */ 3497 ecpp_error(pp->dip, "ecpp_softintr:check_status:F: " 3498 "dsr=%x jl=%d cf_isr=%d\n", 3499 DSR_READ(pp), pp->joblen, pp->ctx_cf); 3500 3501 /* 3502 * if status signals are bad, 3503 * put everything back on the wq. 3504 */ 3505 unx_len = pp->last_byte - pp->next_byte; 3506 if (pp->msg != NULL) { 3507 ecpp_putback_untransfered(pp, 3508 (void *)pp->msg->b_rptr, unx_len); 3509 ecpp_error(pp->dip, 3510 "ecpp_softintr:e1:unx_len=%d\n", unx_len); 3511 3512 freemsg(pp->msg); 3513 pp->msg = NULL; 3514 } else { 3515 ecpp_putback_untransfered(pp, 3516 pp->next_byte, unx_len); 3517 ecpp_error(pp->dip, 3518 "ecpp_softintr:e2:unx_len=%d\n", unx_len); 3519 } 3520 3521 ecpp_xfer_cleanup(pp); 3522 pp->e_busy = ECPP_ERR; 3523 qenable(pp->writeq); 3524 } else { 3525 /* send the next one */ 3526 pp->e_busy = ECPP_BUSY; 3527 (void) ecpp_pio_writeb(pp); 3528 } 3529 } 3530 3531 mutex_exit(&pp->umutex); 3532 return (DDI_INTR_CLAIMED); 3533 } 3534 3535 3536 /* 3537 * Transfer clean-up: 3538 * shut down the DMAC 3539 * stop the transfer timer 3540 * enable write queue 3541 */ 3542 static void 3543 ecpp_xfer_cleanup(struct ecppunit *pp) 3544 { 3545 ASSERT(mutex_owned(&pp->umutex)); 3546 3547 /* 3548 * if we did not use the ioblock, the mblk that 3549 * was used should be freed. 3550 */ 3551 if (pp->msg != NULL) { 3552 freemsg(pp->msg); 3553 pp->msg = NULL; 3554 } 3555 3556 /* The port is no longer active */ 3557 pp->e_busy = ECPP_IDLE; 3558 3559 /* Stop the transfer timeout timer */ 3560 ecpp_untimeout_unblock(pp, &pp->timeout_id); 3561 3562 qenable(pp->writeq); 3563 } 3564 3565 /*VARARGS*/ 3566 static void 3567 ecpp_error(dev_info_t *dip, char *fmt, ...) 3568 { 3569 static long last; 3570 static char *lastfmt; 3571 char msg_buffer[255]; 3572 va_list ap; 3573 time_t now; 3574 3575 if (!ecpp_debug) { 3576 return; 3577 } 3578 3579 /* 3580 * This function is supposed to be a quick non-blockable 3581 * wrapper for cmn_err(9F), which provides a sensible degree 3582 * of debug message throttling. Not using any type of lock 3583 * is a requirement, but this also leaves two static variables 3584 * - last and lastfmt - unprotected. However, this will not do 3585 * any harm to driver functionality, it can only weaken throttling. 3586 * The following directive asks warlock to not worry about these 3587 * variables. 3588 */ 3589 _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(last, lastfmt)) 3590 3591 /* 3592 * Don't print same error message too often. 3593 */ 3594 now = gethrestime_sec(); 3595 if ((last == (now & ~1)) && (lastfmt == fmt)) 3596 return; 3597 3598 last = now & ~1; 3599 lastfmt = fmt; 3600 3601 va_start(ap, fmt); 3602 (void) vsprintf(msg_buffer, fmt, ap); 3603 cmn_err(CE_CONT, "%s%d: %s", ddi_get_name(dip), 3604 ddi_get_instance(dip), msg_buffer); 3605 va_end(ap); 3606 } 3607 3608 /* 3609 * Forward transfer timeout 3610 */ 3611 static void 3612 ecpp_xfer_timeout(void *arg) 3613 { 3614 struct ecppunit *pp = arg; 3615 void *unx_addr; 3616 size_t unx_len, xferd; 3617 uint8_t dcr; 3618 timeout_id_t fifo_timer_id; 3619 3620 mutex_enter(&pp->umutex); 3621 3622 if (pp->timeout_id == 0) { 3623 mutex_exit(&pp->umutex); 3624 return; 3625 } else { 3626 pp->timeout_id = 0; 3627 } 3628 3629 pp->xfer_tout++; 3630 3631 pp->dma_cancelled = TRUE; /* prevent race with isr() */ 3632 3633 if (COMPAT_PIO(pp)) { 3634 /* 3635 * PIO mode timeout 3636 */ 3637 3638 /* turn off nAck interrupts */ 3639 dcr = DCR_READ(pp); 3640 (void) dcr_write(pp, dcr & ~(ECPP_REV_DIR | ECPP_INTR_EN)); 3641 ECPP_MASK_INTR(pp); 3642 3643 pp->softintr_pending = 0; 3644 unx_len = pp->last_byte - pp->next_byte; 3645 ecpp_error(pp->dip, "xfer_timeout: unx_len=%d\n", unx_len); 3646 3647 if (unx_len > 0) { 3648 unx_addr = pp->next_byte; 3649 } else { 3650 ecpp_xfer_cleanup(pp); 3651 qenable(pp->writeq); 3652 mutex_exit(&pp->umutex); 3653 return; 3654 } 3655 } else { 3656 /* 3657 * DMA mode timeout 3658 * 3659 * If DMAC fails to shut off, continue anyways and attempt 3660 * to put untransfered data back on queue. 3661 */ 3662 if (ECPP_DMA_STOP(pp, &unx_len) == FAILURE) { 3663 ecpp_error(pp->dip, 3664 "ecpp_xfer_timeout: failed dma_stop\n"); 3665 } 3666 3667 ecpp_error(pp->dip, "xfer_timeout: unx_len=%d\n", unx_len); 3668 3669 if (ddi_dma_unbind_handle(pp->dma_handle) == DDI_FAILURE) { 3670 ecpp_error(pp->dip, 3671 "ecpp_xfer_timeout: failed unbind\n"); 3672 } 3673 3674 /* 3675 * if the bcr is zero, then DMA is complete and 3676 * we are waiting for the fifo to drain. So let 3677 * ecpp_fifo_timer() look after the clean up. 3678 */ 3679 if (unx_len == 0) { 3680 qenable(pp->writeq); 3681 mutex_exit(&pp->umutex); 3682 return; 3683 } else { 3684 xferd = pp->dma_cookie.dmac_size - unx_len; 3685 pp->resid -= xferd; 3686 unx_len = pp->resid; 3687 3688 /* update statistics */ 3689 pp->obytes[pp->current_mode] += xferd; 3690 pp->joblen += xferd; 3691 3692 if (pp->msg != NULL) { 3693 unx_addr = (caddr_t)pp->msg->b_wptr - unx_len; 3694 } else { 3695 unx_addr = pp->ioblock + 3696 (pp->xfercnt - unx_len); 3697 } 3698 } 3699 } 3700 3701 /* Following code is common for PIO and DMA modes */ 3702 3703 ecpp_putback_untransfered(pp, (caddr_t)unx_addr, unx_len); 3704 3705 if (pp->msg != NULL) { 3706 freemsg(pp->msg); 3707 pp->msg = NULL; 3708 } 3709 3710 /* mark the error status structure */ 3711 pp->timeout_error = 1; 3712 pp->e_busy = ECPP_ERR; 3713 fifo_timer_id = pp->fifo_timer_id; 3714 pp->fifo_timer_id = 0; 3715 3716 qenable(pp->writeq); 3717 3718 mutex_exit(&pp->umutex); 3719 3720 if (fifo_timer_id) { 3721 (void) untimeout(fifo_timer_id); 3722 } 3723 } 3724 3725 static void 3726 ecpp_putback_untransfered(struct ecppunit *pp, void *startp, uint_t len) 3727 { 3728 mblk_t *new_mp; 3729 3730 ecpp_error(pp->dip, "ecpp_putback_untrans=%d\n", len); 3731 3732 if (len == 0) { 3733 return; 3734 } 3735 3736 new_mp = allocb(len, BPRI_MED); 3737 if (new_mp == NULL) { 3738 ecpp_error(pp->dip, 3739 "ecpp_putback_untransfered: allocb FAILURE.\n"); 3740 return; 3741 } 3742 3743 bcopy(startp, new_mp->b_rptr, len); 3744 new_mp->b_wptr = new_mp->b_rptr + len; 3745 3746 if (!putbq(pp->writeq, new_mp)) { 3747 freemsg(new_mp); 3748 } 3749 } 3750 3751 static uchar_t 3752 ecr_write(struct ecppunit *pp, uint8_t ecr_byte) 3753 { 3754 int i, current_ecr; 3755 3756 for (i = ECPP_REG_WRITE_MAX_LOOP; i > 0; i--) { 3757 ECR_WRITE(pp, ecr_byte); 3758 3759 current_ecr = ECR_READ(pp); 3760 3761 /* mask off the lower two read-only bits */ 3762 if ((ecr_byte & 0xFC) == (current_ecr & 0xFC)) 3763 return (SUCCESS); 3764 } 3765 return (FAILURE); 3766 } 3767 3768 static uchar_t 3769 dcr_write(struct ecppunit *pp, uint8_t dcr_byte) 3770 { 3771 uint8_t current_dcr; 3772 int i; 3773 3774 for (i = ECPP_REG_WRITE_MAX_LOOP; i > 0; i--) { 3775 DCR_WRITE(pp, dcr_byte); 3776 3777 current_dcr = DCR_READ(pp); 3778 3779 /* compare only bits 0-4 (direction bit return 1) */ 3780 if ((dcr_byte & 0x1F) == (current_dcr & 0x1F)) 3781 return (SUCCESS); 3782 } 3783 ecpp_error(pp->dip, 3784 "(%d)dcr_write: dcr written =%x, dcr readback =%x\n", 3785 i, dcr_byte, current_dcr); 3786 3787 return (FAILURE); 3788 } 3789 3790 static uchar_t 3791 ecpp_reset_port_regs(struct ecppunit *pp) 3792 { 3793 DCR_WRITE(pp, ECPP_SLCTIN | ECPP_nINIT); 3794 ECR_WRITE(pp, ECR_mode_001 | ECPP_INTR_MASK | ECPP_INTR_SRV); 3795 return (SUCCESS); 3796 } 3797 3798 /* 3799 * The data transferred by the DMA engine goes through the FIFO, 3800 * so that when the DMA counter reaches zero (and an interrupt occurs) 3801 * the FIFO can still contain data. If this is the case, the ISR will 3802 * schedule this callback to wait until the FIFO drains or a timeout occurs. 3803 */ 3804 static void 3805 ecpp_fifo_timer(void *arg) 3806 { 3807 struct ecppunit *pp = arg; 3808 uint8_t ecr; 3809 timeout_id_t timeout_id; 3810 3811 mutex_enter(&pp->umutex); 3812 3813 /* 3814 * If the FIFO timer has been turned off, exit. 3815 */ 3816 if (pp->fifo_timer_id == 0) { 3817 ecpp_error(pp->dip, "ecpp_fifo_timer: untimedout\n"); 3818 mutex_exit(&pp->umutex); 3819 return; 3820 } else { 3821 pp->fifo_timer_id = 0; 3822 } 3823 3824 /* 3825 * If the FIFO is not empty restart timer. Wait FIFO_DRAIN_PERIOD 3826 * (250 ms) and check FIFO_EMPTY bit again. Repeat until FIFO is 3827 * empty or until 10 * FIFO_DRAIN_PERIOD expires. 3828 */ 3829 ecr = ECR_READ(pp); 3830 3831 if ((pp->current_mode != ECPP_DIAG_MODE) && 3832 (((ecr & ECPP_FIFO_EMPTY) == 0) && 3833 (pp->ecpp_drain_counter < 10))) { 3834 3835 ecpp_error(pp->dip, 3836 "ecpp_fifo_timer(%d):FIFO not empty:ecr=%x\n", 3837 pp->ecpp_drain_counter, ecr); 3838 3839 pp->fifo_timer_id = timeout(ecpp_fifo_timer, 3840 (caddr_t)pp, drv_usectohz(FIFO_DRAIN_PERIOD)); 3841 ++pp->ecpp_drain_counter; 3842 3843 mutex_exit(&pp->umutex); 3844 return; 3845 } 3846 3847 if (pp->current_mode != ECPP_DIAG_MODE) { 3848 /* 3849 * If the FIFO won't drain after 10 FIFO_DRAIN_PERIODs 3850 * then don't wait any longer. Simply clean up the transfer. 3851 */ 3852 if (pp->ecpp_drain_counter >= 10) { 3853 ecpp_error(pp->dip, "ecpp_fifo_timer(%d):" 3854 " clearing FIFO,can't wait:ecr=%x\n", 3855 pp->ecpp_drain_counter, ecr); 3856 } else { 3857 ecpp_error(pp->dip, 3858 "ecpp_fifo_timer(%d):FIFO empty:ecr=%x\n", 3859 pp->ecpp_drain_counter, ecr); 3860 } 3861 3862 pp->ecpp_drain_counter = 0; 3863 } 3864 3865 /* 3866 * Main section of routine: 3867 * - stop the DMA transfer timer 3868 * - program DMA with next cookie/window or unbind the DMA mapping 3869 * - update stats 3870 * - if last mblk in queue, signal to close() & return to idle state 3871 */ 3872 3873 /* Stop the DMA transfer timeout timer */ 3874 timeout_id = pp->timeout_id; 3875 pp->timeout_id = 0; 3876 3877 /* data has drained from fifo, it is ok to free dma resource */ 3878 if (pp->current_mode == ECPP_ECP_MODE || 3879 pp->current_mode == ECPP_DIAG_MODE || 3880 COMPAT_DMA(pp)) { 3881 off_t off; 3882 size_t len; 3883 3884 /* update residual */ 3885 pp->resid -= pp->dma_cookie.dmac_size; 3886 3887 /* update statistics */ 3888 pp->joblen += pp->dma_cookie.dmac_size; 3889 if (pp->dma_dir == DDI_DMA_WRITE) { 3890 pp->obytes[pp->current_mode] += 3891 pp->dma_cookie.dmac_size; 3892 } else { 3893 pp->ibytes[pp->current_mode] += 3894 pp->dma_cookie.dmac_size; 3895 } 3896 3897 /* 3898 * Look if any cookies/windows left 3899 */ 3900 if (--pp->dma_cookie_count > 0) { 3901 /* process the next cookie */ 3902 ddi_dma_nextcookie(pp->dma_handle, 3903 &pp->dma_cookie); 3904 } else if (pp->dma_curwin < pp->dma_nwin) { 3905 /* process the next window */ 3906 if (ddi_dma_getwin(pp->dma_handle, 3907 pp->dma_curwin, &off, &len, 3908 &pp->dma_cookie, 3909 &pp->dma_cookie_count) != DDI_SUCCESS) { 3910 ecpp_error(pp->dip, 3911 "ecpp_fifo_timer: ddi_dma_getwin failed\n"); 3912 goto dma_done; 3913 } 3914 3915 pp->dma_curwin++; 3916 } else { 3917 goto dma_done; 3918 } 3919 3920 ecpp_error(pp->dip, "ecpp_fifo_timer: next addr=%llx len=%d\n", 3921 pp->dma_cookie.dmac_address, 3922 pp->dma_cookie.dmac_size); 3923 3924 /* kick off new transfer */ 3925 if (ECPP_DMA_START(pp) != SUCCESS) { 3926 ecpp_error(pp->dip, 3927 "ecpp_fifo_timer: dma_start failed\n"); 3928 goto dma_done; 3929 } 3930 3931 (void) ecr_write(pp, (ecr & 0xe0) | 3932 ECPP_DMA_ENABLE | ECPP_INTR_MASK); 3933 3934 mutex_exit(&pp->umutex); 3935 3936 if (timeout_id) { 3937 (void) untimeout(timeout_id); 3938 } 3939 return; 3940 3941 dma_done: 3942 if (ddi_dma_unbind_handle(pp->dma_handle) != DDI_SUCCESS) { 3943 ecpp_error(pp->dip, "ecpp_fifo_timer: unbind failed\n"); 3944 } else { 3945 ecpp_error(pp->dip, "ecpp_fifo_timer: unbind ok\n"); 3946 } 3947 } 3948 3949 /* 3950 * if we did not use the dmablock, the mblk that 3951 * was used should be freed. 3952 */ 3953 if (pp->msg != NULL) { 3954 freemsg(pp->msg); 3955 pp->msg = NULL; 3956 } 3957 3958 /* The port is no longer active */ 3959 pp->e_busy = ECPP_IDLE; 3960 3961 qenable(pp->writeq); 3962 3963 mutex_exit(&pp->umutex); 3964 3965 if (timeout_id) { 3966 (void) untimeout(timeout_id); 3967 } 3968 } 3969 3970 /* 3971 * In Compatibility mode, check if the peripheral is ready to accept data 3972 */ 3973 static uint8_t 3974 ecpp_check_status(struct ecppunit *pp) 3975 { 3976 uint8_t dsr; 3977 uint8_t statmask; 3978 3979 if (pp->current_mode == ECPP_ECP_MODE || 3980 pp->current_mode == ECPP_DIAG_MODE) 3981 return (SUCCESS); 3982 3983 statmask = ECPP_nERR | ECPP_SLCT | ECPP_nBUSY | ECPP_nACK; 3984 3985 dsr = DSR_READ(pp); 3986 if ((dsr & ECPP_PE) || ((dsr & statmask) != statmask)) { 3987 pp->e_busy = ECPP_ERR; 3988 return (FAILURE); 3989 } else { 3990 return (SUCCESS); 3991 } 3992 } 3993 3994 /* 3995 * if the peripheral is not ready to accept data, write service routine 3996 * periodically reschedules itself to recheck peripheral status 3997 * and start data transfer as soon as possible 3998 */ 3999 static void 4000 ecpp_wsrv_timer(void *arg) 4001 { 4002 struct ecppunit *pp = arg; 4003 4004 ecpp_error(pp->dip, "ecpp_wsrv_timer: starting\n"); 4005 4006 mutex_enter(&pp->umutex); 4007 4008 if (pp->wsrv_timer_id == 0) { 4009 mutex_exit(&pp->umutex); 4010 return; 4011 } else { 4012 pp->wsrv_timer_id = 0; 4013 } 4014 4015 ecpp_error(pp->dip, "ecpp_wsrv_timer: qenabling...\n"); 4016 4017 qenable(pp->writeq); 4018 4019 mutex_exit(&pp->umutex); 4020 } 4021 4022 /* 4023 * Allocate a message indicating a backchannel request 4024 * and put it on the write queue 4025 */ 4026 static int 4027 ecpp_backchan_req(struct ecppunit *pp) 4028 { 4029 mblk_t *mp; 4030 4031 if ((mp = allocb(sizeof (int), BPRI_MED)) == NULL) { 4032 ecpp_error(pp->dip, "ecpp_backchan_req: allocb failed\n"); 4033 return (FAILURE); 4034 } else { 4035 mp->b_datap->db_type = M_CTL; 4036 *(int *)mp->b_rptr = ECPP_BACKCHANNEL; 4037 mp->b_wptr = mp->b_rptr + sizeof (int); 4038 if (!putbq(pp->writeq, mp)) { 4039 ecpp_error(pp->dip, "ecpp_backchan_req:putbq failed\n"); 4040 freemsg(mp); 4041 return (FAILURE); 4042 } 4043 return (SUCCESS); 4044 } 4045 } 4046 4047 /* 4048 * Cancel the function scheduled with timeout(9F) 4049 * This function is to be called with the mutex held 4050 */ 4051 static void 4052 ecpp_untimeout_unblock(struct ecppunit *pp, timeout_id_t *id) 4053 { 4054 timeout_id_t saved_id; 4055 4056 ASSERT(mutex_owned(&pp->umutex)); 4057 4058 if (*id) { 4059 saved_id = *id; 4060 *id = 0; 4061 mutex_exit(&pp->umutex); 4062 (void) untimeout(saved_id); 4063 mutex_enter(&pp->umutex); 4064 } 4065 } 4066 4067 /* 4068 * get prnio interface capabilities 4069 */ 4070 static uint_t 4071 ecpp_get_prn_ifcap(struct ecppunit *pp) 4072 { 4073 uint_t ifcap; 4074 4075 ifcap = PRN_1284_DEVID | PRN_TIMEOUTS | PRN_STREAMS; 4076 4077 /* status (DSR) only makes sense in Centronics & Compat modes */ 4078 if (pp->current_mode == ECPP_CENTRONICS || 4079 pp->current_mode == ECPP_COMPAT_MODE) { 4080 ifcap |= PRN_1284_STATUS; 4081 } else if (pp->current_mode == ECPP_NIBBLE_MODE || 4082 pp->current_mode == ECPP_ECP_MODE) { 4083 ifcap |= PRN_BIDI; 4084 } 4085 4086 return (ifcap); 4087 } 4088 4089 /* 4090 * Determine SuperI/O type 4091 */ 4092 static struct ecpp_hw_bind * 4093 ecpp_determine_sio_type(struct ecppunit *pp) 4094 { 4095 struct ecpp_hw_bind *hw_bind; 4096 char *name; 4097 int i; 4098 4099 name = ddi_binding_name(pp->dip); 4100 4101 for (hw_bind = NULL, i = 0; i < NELEM(ecpp_hw_bind); i++) { 4102 if (strcmp(name, ecpp_hw_bind[i].name) == 0) { 4103 hw_bind = &ecpp_hw_bind[i]; 4104 break; 4105 } 4106 } 4107 4108 return (hw_bind); 4109 } 4110 4111 4112 /* 4113 * 4114 * IEEE 1284 support routines: 4115 * negotiation and termination; 4116 * phase transitions; 4117 * device ID; 4118 * 4119 */ 4120 4121 /* 4122 * Interface initialization, abnormal termination into Compatibility mode 4123 * 4124 * Peripheral may be non-1284, so we set current mode to ECPP_CENTRONICS 4125 */ 4126 static void 4127 ecpp_1284_init_interface(struct ecppunit *pp) 4128 { 4129 ECR_WRITE(pp, ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_001); 4130 4131 /* 4132 * Toggle the nInit signal if configured in ecpp.conf 4133 * for most peripherals it is not needed 4134 */ 4135 if (pp->init_seq == TRUE) { 4136 DCR_WRITE(pp, ECPP_SLCTIN); 4137 drv_usecwait(50); /* T(ER) = 50us */ 4138 } 4139 4140 DCR_WRITE(pp, ECPP_nINIT | ECPP_SLCTIN); 4141 4142 pp->current_mode = pp->backchannel = ECPP_CENTRONICS; 4143 pp->current_phase = ECPP_PHASE_C_IDLE; 4144 ECPP_CONFIG_MODE(pp); 4145 pp->to_mode[pp->current_mode]++; 4146 4147 ecpp_error(pp->dip, "ecpp_1284_init_interface: ok\n"); 4148 } 4149 4150 /* 4151 * ECP mode negotiation 4152 */ 4153 static int 4154 ecp_negotiation(struct ecppunit *pp) 4155 { 4156 uint8_t dsr; 4157 4158 /* ECP mode negotiation */ 4159 4160 if (ecpp_1284_negotiation(pp, ECPP_XREQ_ECP, &dsr) == FAILURE) 4161 return (FAILURE); 4162 4163 /* Event 5: peripheral deasserts PError and Busy, asserts Select */ 4164 if ((dsr & (ECPP_PE | ECPP_nBUSY | ECPP_SLCT)) != 4165 (ECPP_nBUSY | ECPP_SLCT)) { 4166 ecpp_error(pp->dip, 4167 "ecp_negotiation: failed event 5 %x\n", DSR_READ(pp)); 4168 (void) ecpp_1284_termination(pp); 4169 return (FAILURE); 4170 } 4171 4172 /* entered Setup Phase */ 4173 pp->current_phase = ECPP_PHASE_ECP_SETUP; 4174 4175 /* Event 30: host asserts nAutoFd */ 4176 DCR_WRITE(pp, ECPP_nINIT | ECPP_AFX); 4177 4178 /* Event 31: peripheral asserts PError */ 4179 if (wait_dsr(pp, ECPP_PE, ECPP_PE, 35000) < 0) { 4180 ecpp_error(pp->dip, 4181 "ecp_negotiation: failed event 31 %x\n", DSR_READ(pp)); 4182 (void) ecpp_1284_termination(pp); 4183 return (FAILURE); 4184 } 4185 4186 /* entered Forward Idle Phase */ 4187 pp->current_phase = ECPP_PHASE_ECP_FWD_IDLE; 4188 4189 /* successful negotiation into ECP mode */ 4190 pp->current_mode = ECPP_ECP_MODE; 4191 pp->backchannel = ECPP_ECP_MODE; 4192 4193 ecpp_error(pp->dip, "ecp_negotiation: ok\n"); 4194 4195 return (SUCCESS); 4196 } 4197 4198 /* 4199 * Nibble mode negotiation 4200 */ 4201 static int 4202 nibble_negotiation(struct ecppunit *pp) 4203 { 4204 uint8_t dsr; 4205 4206 if (ecpp_1284_negotiation(pp, ECPP_XREQ_NIBBLE, &dsr) == FAILURE) { 4207 return (FAILURE); 4208 } 4209 4210 /* 4211 * If peripheral has data available, PE and nErr will 4212 * be set low at Event 5 & 6. 4213 */ 4214 if ((dsr & (ECPP_PE | ECPP_nERR)) == 0) { 4215 pp->current_phase = ECPP_PHASE_NIBT_AVAIL; 4216 } else { 4217 pp->current_phase = ECPP_PHASE_NIBT_NAVAIL; 4218 } 4219 4220 /* successful negotiation into Nibble mode */ 4221 pp->current_mode = ECPP_NIBBLE_MODE; 4222 pp->backchannel = ECPP_NIBBLE_MODE; 4223 4224 ecpp_error(pp->dip, "nibble_negotiation: ok (phase=%x)\n", 4225 pp->current_phase); 4226 4227 return (SUCCESS); 4228 4229 } 4230 4231 /* 4232 * Wait ptimeout usec for periph to set 'mask' bits to 'val' state 4233 * 4234 * return value < 0 indicates timeout 4235 */ 4236 static int 4237 wait_dsr(struct ecppunit *pp, uint8_t mask, uint8_t val, int ptimeout) 4238 { 4239 while (((DSR_READ(pp) & mask) != val) && ptimeout--) { 4240 drv_usecwait(1); 4241 } 4242 4243 return (ptimeout); 4244 } 4245 4246 /* 4247 * 1284 negotiation Events 0..6 4248 * required mode is indicated by extensibility request value 4249 * 4250 * After successful negotiation SUCCESS is returned and 4251 * current mode is set according to xreq, 4252 * otherwise FAILURE is returned and current mode is set to 4253 * either COMPAT (1284 periph) or CENTRONICS (non-1284 periph) 4254 * 4255 * Current phase must be set by the caller (mode-specific negotiation) 4256 * 4257 * If rdsr is not NULL, DSR value after Event 6 is stored here 4258 */ 4259 static int 4260 ecpp_1284_negotiation(struct ecppunit *pp, uint8_t xreq, uint8_t *rdsr) 4261 { 4262 int xflag; 4263 4264 ecpp_error(pp->dip, "nego(%x): entering...\n", xreq); 4265 4266 /* negotiation should start in Compatibility mode */ 4267 (void) ecpp_1284_termination(pp); 4268 4269 /* Set host into Compat mode */ 4270 ECR_WRITE(pp, ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_001); 4271 4272 pp->current_phase = ECPP_PHASE_NEGO; 4273 4274 /* Event 0: host sets extensibility request on data lines */ 4275 DATAR_WRITE(pp, xreq); 4276 4277 /* Event 1: host deassert nSelectin and assert nAutoFd */ 4278 DCR_WRITE(pp, ECPP_nINIT | ECPP_AFX); 4279 4280 drv_usecwait(1); /* Tp(ecp) == 0.5us */ 4281 4282 /* 4283 * Event 2: peripheral asserts nAck, deasserts nFault, 4284 * asserts Select, asserts PError 4285 */ 4286 if (wait_dsr(pp, ECPP_nERR | ECPP_SLCT | ECPP_PE | ECPP_nACK, 4287 ECPP_nERR | ECPP_SLCT | ECPP_PE, 35000) < 0) { 4288 /* peripheral is not 1284-compliant */ 4289 ecpp_error(pp->dip, 4290 "nego(%x): failed event 2 %x\n", xreq, DSR_READ(pp)); 4291 (void) ecpp_1284_termination(pp); 4292 return (FAILURE); 4293 } 4294 4295 /* 4296 * Event 3: host asserts nStrobe, latching extensibility value into 4297 * peripherals input latch. 4298 */ 4299 DCR_WRITE(pp, ECPP_nINIT | ECPP_AFX | ECPP_STB); 4300 4301 drv_usecwait(2); /* Tp(ecp) = 0.5us */ 4302 4303 /* 4304 * Event 4: hosts deasserts nStrobe and nAutoFD to acknowledge that 4305 * it has recognized an 1284 compatible peripheral 4306 */ 4307 DCR_WRITE(pp, ECPP_nINIT); 4308 4309 /* 4310 * Event 5: Peripheral confirms it supports requested extension 4311 * For Nibble mode Xflag must be low, otherwise it must be high 4312 */ 4313 xflag = (xreq == ECPP_XREQ_NIBBLE) ? 0 : ECPP_SLCT; 4314 4315 /* 4316 * Event 6: Peripheral sets nAck high 4317 * indicating that status lines are valid 4318 */ 4319 if (wait_dsr(pp, ECPP_nACK, ECPP_nACK, 35000) < 0) { 4320 /* Something wrong with peripheral */ 4321 ecpp_error(pp->dip, 4322 "nego(%x): failed event 6 %x\n", xreq, DSR_READ(pp)); 4323 (void) ecpp_1284_termination(pp); 4324 return (FAILURE); 4325 } 4326 4327 if ((DSR_READ(pp) & ECPP_SLCT) != xflag) { 4328 /* Extensibility value is not supported */ 4329 ecpp_error(pp->dip, 4330 "nego(%x): failed event 5 %x\n", xreq, DSR_READ(pp)); 4331 (void) ecpp_1284_termination(pp); 4332 return (FAILURE); 4333 } 4334 4335 if (rdsr) { 4336 *rdsr = DSR_READ(pp); 4337 } 4338 4339 return (SUCCESS); 4340 } 4341 4342 /* 4343 * 1284 Termination: Events 22..28 - set link to Compatibility mode 4344 * 4345 * This routine is not designed for Immediate termination, 4346 * caller must take care of waiting for a valid state, 4347 * (in particular, in ECP mode current phase must be Forward Idle) 4348 * otherwise interface will be reinitialized 4349 * 4350 * In case of Valid state termination SUCCESS is returned and 4351 * current_mode is ECPP_COMPAT_MODE, current phase is ECPP_PHASE_C_IDLE 4352 * Otherwise interface is reinitialized, FAILURE is returned and 4353 * current mode is ECPP_CENTRONICS, current phase is ECPP_PHASE_C_IDLE 4354 */ 4355 static int 4356 ecpp_1284_termination(struct ecppunit *pp) 4357 { 4358 int previous_mode = pp->current_mode; 4359 4360 if (((pp->current_mode == ECPP_COMPAT_MODE || 4361 pp->current_mode == ECPP_CENTRONICS) && 4362 pp->current_phase == ECPP_PHASE_C_IDLE) || 4363 pp->current_mode == ECPP_DIAG_MODE) { 4364 ecpp_error(pp->dip, "termination: not needed\n"); 4365 return (SUCCESS); 4366 } 4367 4368 /* Set host into Compat mode, interrupts disabled */ 4369 ECPP_MASK_INTR(pp); 4370 ECR_WRITE(pp, ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_001); 4371 4372 pp->current_mode = ECPP_COMPAT_MODE; /* needed by next function */ 4373 4374 ECPP_CONFIG_MODE(pp); 4375 4376 /* 4377 * EPP mode uses simple nInit pulse for termination 4378 */ 4379 if (previous_mode == ECPP_EPP_MODE) { 4380 /* Event 68: host sets nInit low */ 4381 DCR_WRITE(pp, 0); 4382 4383 drv_usecwait(55); /* T(ER) = 50us */ 4384 4385 /* Event 69: host sets nInit high */ 4386 DCR_WRITE(pp, ECPP_nINIT | ECPP_SLCTIN); 4387 4388 goto endterm; 4389 } 4390 4391 /* terminate peripheral to Compat mode */ 4392 pp->current_phase = ECPP_PHASE_TERM; 4393 4394 /* Event 22: hosts sets nSelectIn low and nAutoFd high */ 4395 DCR_WRITE(pp, ECPP_nINIT | ECPP_SLCTIN); 4396 4397 /* Event 23: peripheral deasserts nFault and nBusy */ 4398 /* Event 24: peripheral asserts nAck */ 4399 if (wait_dsr(pp, ECPP_nERR | ECPP_nBUSY | ECPP_nACK, 4400 ECPP_nERR, 35000) < 0) { 4401 ecpp_error(pp->dip, 4402 "termination: failed events 23,24 %x\n", DSR_READ(pp)); 4403 ecpp_1284_init_interface(pp); 4404 return (FAILURE); 4405 } 4406 4407 drv_usecwait(1); /* Tp = 0.5us */ 4408 4409 /* Event 25: hosts sets nAutoFd low */ 4410 DCR_WRITE(pp, ECPP_nINIT | ECPP_SLCTIN | ECPP_AFX); 4411 4412 /* Event 26: the peripheral puts itself in Compatible mode */ 4413 4414 /* Event 27: peripheral deasserts nAck */ 4415 if (wait_dsr(pp, ECPP_nACK, ECPP_nACK, 35000) < 0) { 4416 ecpp_error(pp->dip, 4417 "termination: failed event 27 %x\n", DSR_READ(pp)); 4418 ecpp_1284_init_interface(pp); 4419 return (FAILURE); 4420 } 4421 4422 drv_usecwait(1); /* Tp = 0.5us */ 4423 4424 /* Event 28: hosts deasserts nAutoFd */ 4425 DCR_WRITE(pp, ECPP_nINIT | ECPP_SLCTIN); 4426 4427 drv_usecwait(1); /* Tp = 0.5us */ 4428 4429 endterm: 4430 /* Compatible mode Idle Phase */ 4431 pp->current_phase = ECPP_PHASE_C_IDLE; 4432 4433 ecpp_error(pp->dip, "termination: completed %x %x\n", 4434 DSR_READ(pp), DCR_READ(pp)); 4435 4436 return (SUCCESS); 4437 } 4438 4439 /* 4440 * Initiate ECP backchannel DMA transfer 4441 */ 4442 static uchar_t 4443 ecp_peripheral2host(struct ecppunit *pp) 4444 { 4445 mblk_t *mp = NULL; 4446 size_t len; 4447 uint32_t xfer_time; 4448 4449 ASSERT(pp->current_mode == ECPP_ECP_MODE && 4450 pp->current_phase == ECPP_PHASE_ECP_REV_IDLE); 4451 4452 /* 4453 * hardware generates cycles to receive data from the peripheral 4454 * we only need to read from FIFO 4455 */ 4456 4457 /* 4458 * If user issued read(2) of rev_resid bytes, xfer exactly this amount 4459 * unless it exceeds ECP_REV_BLKSZ_MAX; otherwise try to read 4460 * ECP_REV_BLKSZ_MAX or at least ECP_REV_BLKSZ bytes 4461 */ 4462 if (pp->nread > 0) { 4463 len = min(pp->nread, ECP_REV_BLKSZ_MAX); 4464 } else { 4465 len = ECP_REV_BLKSZ_MAX; 4466 } 4467 4468 pp->nread = 0; /* clear after use */ 4469 4470 /* 4471 * Allocate mblk for data, make max 2 attepmts: 4472 * if len bytes block fails, try our block size 4473 */ 4474 while ((mp = allocb(len, BPRI_MED)) == NULL) { 4475 ecpp_error(pp->dip, 4476 "ecp_periph2host: failed allocb(%d)\n", len); 4477 if (len > ECP_REV_BLKSZ) { 4478 len = ECP_REV_BLKSZ; 4479 } else { 4480 break; 4481 } 4482 } 4483 4484 if (mp == NULL) { 4485 goto fail; 4486 } 4487 4488 pp->msg = mp; 4489 pp->e_busy = ECPP_BUSY; 4490 pp->dma_dir = DDI_DMA_READ; 4491 pp->current_phase = ECPP_PHASE_ECP_REV_XFER; 4492 4493 if (ecpp_init_dma_xfer(pp, (caddr_t)mp->b_rptr, len) == FAILURE) { 4494 goto fail; 4495 } 4496 4497 /* 4498 * there are two problems with defining ECP backchannel xfer timeout 4499 * 4500 * a) IEEE 1284 allows infinite time between backchannel bytes, 4501 * but we must stop at some point to send the data upstream, 4502 * look if any forward transfer requests are pending, etc; 4503 * all that done, we can continue with backchannel data; 4504 * 4505 * b) we don`t know how much data peripheral has; 4506 * DMA counter is set to our buffer size, which can be bigger 4507 * than needed - in this case a timeout must detect this; 4508 * 4509 * The timeout we schedule here serves as both the transfer timeout 4510 * and a means of detecting backchannel stalls; in fact, there are 4511 * two timeouts in one: 4512 * 4513 * - transfer timeout is based on the ECP bandwidth of ~1MB/sec and 4514 * equals the time needed to transfer the whole buffer 4515 * (but not less than ECP_REV_MINTOUT ms); if it occurs, 4516 * DMA is stopped and the data is sent upstream; 4517 * 4518 * - backchannel watchdog, which would look at DMA counter 4519 * every rev_watchdog ms and stop the transfer only 4520 * if the counter hasn`t changed since the last time; 4521 * otherwise it would save DMA counter value and restart itself; 4522 * 4523 * transfer timeout is a multiple of rev_watchdog 4524 * and implemented as a downward counter 4525 * 4526 * on Grover, we can`t access DMAC registers while DMA is in flight, 4527 * so we can`t have watchdog on Grover, only timeout 4528 */ 4529 4530 /* calculate number of watchdog invocations equal to the xfer timeout */ 4531 xfer_time = max((1000 * len) / pp->ecp_rev_speed, ECP_REV_MINTOUT); 4532 #if defined(__x86) 4533 pp->rev_timeout_cnt = (pp->hw == &x86) ? 1 : 4534 max(xfer_time / pp->rev_watchdog, 1); 4535 #else 4536 pp->rev_timeout_cnt = (pp->hw == &m1553) ? 1 : 4537 max(xfer_time / pp->rev_watchdog, 1); 4538 #endif 4539 4540 pp->last_dmacnt = len; /* nothing xferred yet */ 4541 4542 pp->timeout_id = timeout(ecpp_ecp_read_timeout, (caddr_t)pp, 4543 drv_usectohz(pp->rev_watchdog * 1000)); 4544 4545 ecpp_error(pp->dip, "ecp_periph2host: DMA started len=%d\n" 4546 "xfer_time=%d wdog=%d cnt=%d\n", 4547 len, xfer_time, pp->rev_watchdog, pp->rev_timeout_cnt); 4548 4549 return (SUCCESS); 4550 4551 fail: 4552 if (mp) { 4553 freemsg(mp); 4554 } 4555 pp->e_busy = ECPP_IDLE; 4556 pp->current_phase = ECPP_PHASE_ECP_REV_IDLE; 4557 4558 return (FAILURE); 4559 } 4560 4561 /* 4562 * ECP backchannel read timeout 4563 * implements both backchannel watchdog and transfer timeout in ECP mode 4564 * if the transfer is still in progress, reschedule itself, 4565 * otherwise call completion routine 4566 */ 4567 static void 4568 ecpp_ecp_read_timeout(void *arg) 4569 { 4570 struct ecppunit *pp = arg; 4571 size_t dmacnt; 4572 4573 mutex_enter(&pp->umutex); 4574 4575 if (pp->timeout_id == 0) { 4576 mutex_exit(&pp->umutex); 4577 return; 4578 } else { 4579 pp->timeout_id = 0; 4580 } 4581 4582 if (--pp->rev_timeout_cnt == 0) { 4583 /* 4584 * Transfer timed out 4585 */ 4586 ecpp_error(pp->dip, "ecp_read_timeout: timeout\n"); 4587 pp->xfer_tout++; 4588 ecpp_ecp_read_completion(pp); 4589 } else { 4590 /* 4591 * Backchannel watchdog: 4592 * look if DMA made any progress from the last time 4593 */ 4594 dmacnt = ECPP_DMA_GETCNT(pp); 4595 if (dmacnt - pp->last_dmacnt == 0) { 4596 /* 4597 * No progress - stop the transfer and send 4598 * whatever has been read so far up the stream 4599 */ 4600 ecpp_error(pp->dip, "ecp_read_timeout: no progress\n"); 4601 pp->xfer_tout++; 4602 ecpp_ecp_read_completion(pp); 4603 } else { 4604 /* 4605 * Something was transferred - restart ourselves 4606 */ 4607 ecpp_error(pp->dip, "ecp_read_timeout: restarting\n"); 4608 pp->last_dmacnt = dmacnt; 4609 pp->timeout_id = timeout(ecpp_ecp_read_timeout, 4610 (caddr_t)pp, 4611 drv_usectohz(pp->rev_watchdog * 1000)); 4612 } 4613 } 4614 4615 mutex_exit(&pp->umutex); 4616 } 4617 4618 /* 4619 * ECP backchannel read completion: 4620 * stop the DMA, free DMA resources and send read data upstream 4621 */ 4622 static void 4623 ecpp_ecp_read_completion(struct ecppunit *pp) 4624 { 4625 size_t xfer_len, unx_len; 4626 mblk_t *mp; 4627 4628 ASSERT(mutex_owned(&pp->umutex)); 4629 ASSERT(pp->current_mode == ECPP_ECP_MODE && 4630 pp->current_phase == ECPP_PHASE_ECP_REV_XFER); 4631 ASSERT(pp->msg != NULL); 4632 4633 /* 4634 * Stop the transfer and unbind DMA handle 4635 */ 4636 if (ECPP_DMA_STOP(pp, &unx_len) == FAILURE) { 4637 unx_len = pp->resid; 4638 ecpp_error(pp->dip, "ecp_read_completion: failed dma_stop\n"); 4639 } 4640 4641 mp = pp->msg; 4642 xfer_len = pp->resid - unx_len; /* how much data was transferred */ 4643 4644 if (ddi_dma_unbind_handle(pp->dma_handle) != DDI_SUCCESS) { 4645 ecpp_error(pp->dip, "ecp_read_completion: unbind failed.\n"); 4646 } 4647 4648 ecpp_error(pp->dip, "ecp_read_completion: xfered %d bytes of %d\n", 4649 xfer_len, pp->resid); 4650 4651 /* clean up and update statistics */ 4652 pp->msg = NULL; 4653 pp->resid -= xfer_len; 4654 pp->ibytes[pp->current_mode] += xfer_len; 4655 pp->e_busy = ECPP_IDLE; 4656 pp->current_phase = ECPP_PHASE_ECP_REV_IDLE; 4657 4658 /* 4659 * Send the read data up the stream 4660 */ 4661 mp->b_wptr += xfer_len; 4662 if (canputnext(pp->readq)) { 4663 mutex_exit(&pp->umutex); 4664 putnext(pp->readq, mp); 4665 mutex_enter(&pp->umutex); 4666 } else { 4667 ecpp_error(pp->dip, "ecp_read_completion: fail canputnext\n"); 4668 if (!putq(pp->readq, mp)) { 4669 freemsg(mp); 4670 } 4671 } 4672 4673 /* if bytes left in the FIFO another transfer is needed */ 4674 if (!(ECR_READ(pp) & ECPP_FIFO_EMPTY)) { 4675 (void) ecpp_backchan_req(pp); 4676 } 4677 4678 qenable(pp->writeq); 4679 } 4680 4681 /* 4682 * Read one byte in the Nibble mode 4683 */ 4684 static uchar_t 4685 nibble_peripheral2host(struct ecppunit *pp, uint8_t *byte) 4686 { 4687 uint8_t n[2]; /* two nibbles */ 4688 int i; 4689 4690 /* 4691 * One byte is made of two nibbles 4692 */ 4693 for (i = 0; i < 2; i++) { 4694 /* Event 7, 12: host asserts nAutoFd to move to read a nibble */ 4695 DCR_WRITE(pp, ECPP_nINIT | ECPP_AFX); 4696 4697 /* Event 8: peripheral puts data on the status lines */ 4698 4699 /* Event 9: peripheral asserts nAck, data available */ 4700 if (wait_dsr(pp, ECPP_nACK, 0, 35000) < 0) { 4701 ecpp_error(pp->dip, 4702 "nibble_periph2host(%d): failed event 9 %x\n", 4703 i + 1, DSR_READ(pp)); 4704 (void) ecpp_1284_termination(pp); 4705 return (FAILURE); 4706 } 4707 4708 n[i] = DSR_READ(pp); /* get a nibble */ 4709 4710 /* Event 10: host deasserts nAutoFd to say it grabbed data */ 4711 DCR_WRITE(pp, ECPP_nINIT); 4712 4713 /* (2) Event 13: peripheral asserts PE - end of data phase */ 4714 4715 /* Event 11: peripheral deasserts nAck to finish handshake */ 4716 if (wait_dsr(pp, ECPP_nACK, ECPP_nACK, 35000) < 0) { 4717 ecpp_error(pp->dip, 4718 "nibble_periph2host(%d): failed event 11 %x\n", 4719 i + 1, DSR_READ(pp)); 4720 (void) ecpp_1284_termination(pp); 4721 return (FAILURE); 4722 } 4723 } 4724 4725 /* extract data byte from two nibbles - optimized formula */ 4726 *byte = ((((n[1] & ~ECPP_nACK) << 1) | (~n[1] & ECPP_nBUSY)) & 0xf0) | 4727 ((((n[0] & ~ECPP_nACK) >> 3) | ((~n[0] & ECPP_nBUSY) >> 4)) & 0x0f); 4728 4729 pp->ibytes[ECPP_NIBBLE_MODE]++; 4730 return (SUCCESS); 4731 } 4732 4733 /* 4734 * process data transfers requested by the peripheral 4735 */ 4736 static uint_t 4737 ecpp_peripheral2host(struct ecppunit *pp) 4738 { 4739 if (!canputnext(pp->readq)) { 4740 ecpp_error(pp->dip, "ecpp_peripheral2host: readq full\n"); 4741 return (SUCCESS); 4742 } 4743 4744 switch (pp->backchannel) { 4745 case ECPP_CENTRONICS: 4746 /* no backchannel */ 4747 return (SUCCESS); 4748 4749 case ECPP_NIBBLE_MODE: 4750 ASSERT(pp->current_mode == ECPP_NIBBLE_MODE); 4751 4752 /* 4753 * Event 20: Host sets nAutoFd high to ack request 4754 */ 4755 DCR_WRITE(pp, ECPP_nINIT); 4756 4757 /* Event 21: Periph sets PError low to ack host */ 4758 if (wait_dsr(pp, ECPP_PE, 0, 35000) < 0) { 4759 ecpp_error(pp->dip, 4760 "ecpp_periph2host: failed event 21 %x\n", 4761 DSR_READ(pp)); 4762 (void) ecpp_1284_termination(pp); 4763 return (FAILURE); 4764 } 4765 4766 pp->current_phase = ECPP_PHASE_NIBT_AVAIL; 4767 4768 /* this routine will read the data in Nibble mode */ 4769 return (ecpp_idle_phase(pp)); 4770 4771 case ECPP_ECP_MODE: 4772 if ((pp->current_phase == ECPP_PHASE_ECP_FWD_IDLE) && 4773 (ecp_forward2reverse(pp) == FAILURE)) { 4774 return (FAILURE); 4775 } 4776 4777 return (ecp_peripheral2host(pp)); /* start the transfer */ 4778 4779 case ECPP_DIAG_MODE: { 4780 mblk_t *mp; 4781 int i; 4782 4783 if (ECR_READ(pp) & ECPP_FIFO_EMPTY) { 4784 ecpp_error(pp->dip, "ecpp_periph2host: fifo empty\n"); 4785 return (SUCCESS); 4786 } 4787 4788 /* allocate the FIFO size */ 4789 if ((mp = allocb(ECPP_FIFO_SZ, BPRI_MED)) == NULL) { 4790 ecpp_error(pp->dip, 4791 "ecpp_periph2host: allocb FAILURE.\n"); 4792 return (FAILURE); 4793 } 4794 4795 /* 4796 * For the time being just read it byte by byte 4797 */ 4798 i = ECPP_FIFO_SZ; 4799 while (i-- && (!(ECR_READ(pp) & ECPP_FIFO_EMPTY))) { 4800 *mp->b_wptr++ = TFIFO_READ(pp); 4801 drv_usecwait(1); /* ECR is sometimes slow to update */ 4802 } 4803 4804 if (canputnext(pp->readq)) { 4805 mutex_exit(&pp->umutex); 4806 mp->b_datap->db_type = M_DATA; 4807 ecpp_error(pp->dip, 4808 "ecpp_periph2host: sending %d bytes\n", 4809 mp->b_wptr - mp->b_rptr); 4810 putnext(pp->readq, mp); 4811 mutex_enter(&pp->umutex); 4812 return (SUCCESS); 4813 } else { 4814 ecpp_error(pp->dip, 4815 "ecpp_periph2host: !canputnext data lost\n"); 4816 freemsg(mp); 4817 return (FAILURE); 4818 } 4819 } 4820 4821 default: 4822 ecpp_error(pp->dip, "ecpp_peripheraltohost: illegal back"); 4823 return (FAILURE); 4824 } 4825 } 4826 4827 /* 4828 * Negotiate from ECP Forward Idle to Reverse Idle Phase 4829 * 4830 * (manipulations with dcr/ecr are according to ECP Specification) 4831 */ 4832 static int 4833 ecp_forward2reverse(struct ecppunit *pp) 4834 { 4835 ASSERT(pp->current_mode == ECPP_ECP_MODE && 4836 pp->current_phase == ECPP_PHASE_ECP_FWD_IDLE); 4837 4838 /* place port into PS2 mode */ 4839 ECR_WRITE(pp, ECR_mode_001 | ECPP_INTR_SRV | ECPP_INTR_MASK); 4840 4841 /* set direction bit (DCR3-0 must be 0100 - National) */ 4842 DCR_WRITE(pp, ECPP_REV_DIR | ECPP_nINIT); 4843 4844 /* enable hardware assist */ 4845 ECR_WRITE(pp, ECR_mode_011 | ECPP_INTR_SRV | ECPP_INTR_MASK); 4846 4847 drv_usecwait(1); /* Tp(ecp) = 0.5us */ 4848 4849 /* Event 39: host sets nInit low */ 4850 DCR_WRITE(pp, ECPP_REV_DIR); 4851 4852 /* Event 40: peripheral sets PError low */ 4853 4854 pp->current_phase = ECPP_PHASE_ECP_REV_IDLE; 4855 4856 ecpp_error(pp->dip, "ecp_forward2reverse ok\n"); 4857 4858 return (SUCCESS); 4859 } 4860 4861 /* 4862 * Negotiate from ECP Reverse Idle to Forward Idle Phase 4863 * 4864 * (manipulations with dcr/ecr are according to ECP Specification) 4865 */ 4866 static int 4867 ecp_reverse2forward(struct ecppunit *pp) 4868 { 4869 ASSERT(pp->current_mode == ECPP_ECP_MODE && 4870 pp->current_phase == ECPP_PHASE_ECP_REV_IDLE); 4871 4872 /* Event 47: host deasserts nInit */ 4873 DCR_WRITE(pp, ECPP_REV_DIR | ECPP_nINIT); 4874 4875 /* 4876 * Event 48: peripheral deasserts nAck 4877 * Event 49: peripheral asserts PError 4878 */ 4879 if (wait_dsr(pp, ECPP_PE, ECPP_PE, 35000) < 0) { 4880 ecpp_error(pp->dip, 4881 "ecp_reverse2forward: failed event 49 %x\n", DSR_READ(pp)); 4882 (void) ecpp_1284_termination(pp); 4883 return (FAILURE); 4884 } 4885 4886 /* place port into PS2 mode */ 4887 ECR_WRITE(pp, ECR_mode_001 | ECPP_INTR_SRV | ECPP_INTR_MASK); 4888 4889 /* clear direction bit */ 4890 DCR_WRITE(pp, ECPP_nINIT); 4891 4892 /* reenable hardware assist */ 4893 ECR_WRITE(pp, ECR_mode_011 | ECPP_INTR_SRV | ECPP_INTR_MASK); 4894 4895 pp->current_phase = ECPP_PHASE_ECP_FWD_IDLE; 4896 4897 ecpp_error(pp->dip, "ecp_reverse2forward ok\n"); 4898 4899 return (SUCCESS); 4900 } 4901 4902 /* 4903 * Default negotiation chooses the best mode supported by peripheral 4904 * Note that backchannel mode may be different from forward mode 4905 */ 4906 static void 4907 ecpp_default_negotiation(struct ecppunit *pp) 4908 { 4909 if (!noecp && (ecpp_mode_negotiation(pp, ECPP_ECP_MODE) == SUCCESS)) { 4910 /* 1284 compatible device */ 4911 pp->io_mode = (pp->fast_compat == TRUE) ? ECPP_DMA : ECPP_PIO; 4912 return; 4913 } else if (ecpp_mode_negotiation(pp, ECPP_NIBBLE_MODE) == SUCCESS) { 4914 /* 1284 compatible device */ 4915 pp->io_mode = (pp->fast_compat == TRUE) ? ECPP_DMA : ECPP_PIO; 4916 } else { 4917 /* Centronics device */ 4918 pp->io_mode = 4919 (pp->fast_centronics == TRUE) ? ECPP_DMA : ECPP_PIO; 4920 } 4921 ECPP_CONFIG_MODE(pp); 4922 } 4923 4924 /* 4925 * Negotiate to the mode indicated by newmode 4926 */ 4927 static int 4928 ecpp_mode_negotiation(struct ecppunit *pp, uchar_t newmode) 4929 { 4930 /* any other mode is impossible */ 4931 ASSERT(pp->current_mode == ECPP_CENTRONICS || 4932 pp->current_mode == ECPP_COMPAT_MODE || 4933 pp->current_mode == ECPP_NIBBLE_MODE || 4934 pp->current_mode == ECPP_ECP_MODE || 4935 pp->current_mode == ECPP_DIAG_MODE); 4936 4937 if (pp->current_mode == newmode) { 4938 return (SUCCESS); 4939 } 4940 4941 /* termination from ECP is only allowed from the Forward Idle Phase */ 4942 if ((pp->current_mode == ECPP_ECP_MODE) && 4943 (pp->current_phase != ECPP_PHASE_ECP_FWD_IDLE)) { 4944 /* this may break into Centronics */ 4945 (void) ecp_reverse2forward(pp); 4946 } 4947 4948 switch (newmode) { 4949 case ECPP_CENTRONICS: 4950 (void) ecpp_1284_termination(pp); 4951 4952 /* put superio into PIO mode */ 4953 ECR_WRITE(pp, ECR_mode_001 | ECPP_INTR_MASK | ECPP_INTR_SRV); 4954 4955 pp->current_mode = ECPP_CENTRONICS; 4956 pp->backchannel = ECPP_CENTRONICS; 4957 ECPP_CONFIG_MODE(pp); 4958 4959 pp->to_mode[pp->current_mode]++; 4960 return (SUCCESS); 4961 4962 case ECPP_COMPAT_MODE: 4963 /* ECPP_COMPAT_MODE should support Nibble as a backchannel */ 4964 if (pp->current_mode == ECPP_NIBBLE_MODE) { 4965 if (ecpp_1284_termination(pp) == SUCCESS) { 4966 pp->current_mode = ECPP_COMPAT_MODE; 4967 pp->backchannel = ECPP_NIBBLE_MODE; 4968 ECPP_CONFIG_MODE(pp); 4969 pp->to_mode[pp->current_mode]++; 4970 return (SUCCESS); 4971 } else { 4972 return (FAILURE); 4973 } 4974 } 4975 4976 if ((nibble_negotiation(pp) == SUCCESS) && 4977 (ecpp_1284_termination(pp) == SUCCESS)) { 4978 pp->backchannel = ECPP_NIBBLE_MODE; 4979 pp->current_mode = ECPP_COMPAT_MODE; 4980 ECPP_CONFIG_MODE(pp); 4981 pp->to_mode[pp->current_mode]++; 4982 return (SUCCESS); 4983 } else { 4984 return (FAILURE); 4985 } 4986 4987 case ECPP_NIBBLE_MODE: 4988 if (nibble_negotiation(pp) == FAILURE) { 4989 return (FAILURE); 4990 } 4991 4992 pp->backchannel = ECPP_NIBBLE_MODE; 4993 ECPP_CONFIG_MODE(pp); 4994 pp->to_mode[pp->current_mode]++; 4995 4996 return (SUCCESS); 4997 4998 case ECPP_ECP_MODE: 4999 if (pp->noecpregs) 5000 return (FAILURE); 5001 if (ecp_negotiation(pp) == FAILURE) { 5002 return (FAILURE); 5003 } 5004 5005 /* 5006 * National says CTR[3:0] should be 0100b before moving to 011 5007 */ 5008 DCR_WRITE(pp, ECPP_nINIT); 5009 5010 if (ecr_write(pp, ECR_mode_011 | 5011 ECPP_INTR_MASK | ECPP_INTR_SRV) == FAILURE) { 5012 ecpp_error(pp->dip, "mode_nego:ECP: failed w/ecr\n"); 5013 return (FAILURE); 5014 } 5015 5016 ECPP_CONFIG_MODE(pp); 5017 pp->to_mode[pp->current_mode]++; 5018 5019 return (SUCCESS); 5020 5021 case ECPP_DIAG_MODE: 5022 /* 5023 * In DIAG mode application can do nasty things(e.g drive pins) 5024 * To keep peripheral sane, terminate to Compatibility mode 5025 */ 5026 (void) ecpp_1284_termination(pp); 5027 5028 /* put superio into TFIFO mode */ 5029 if (ecr_write(pp, ECR_mode_001 | 5030 ECPP_INTR_MASK | ECPP_INTR_SRV) == FAILURE) { 5031 ecpp_error(pp->dip, "put to TFIFO: failed w/ecr\n"); 5032 return (FAILURE); 5033 } 5034 5035 pp->current_mode = ECPP_DIAG_MODE; 5036 pp->backchannel = ECPP_DIAG_MODE; 5037 ECPP_CONFIG_MODE(pp); 5038 pp->to_mode[pp->current_mode]++; 5039 5040 return (SUCCESS); 5041 5042 default: 5043 ecpp_error(pp->dip, 5044 "ecpp_mode_negotiation: mode %d not supported\n", newmode); 5045 return (FAILURE); 5046 } 5047 } 5048 5049 /* 5050 * Standard (9.1): Peripheral data is available only when the host places 5051 * the interface in a mode capable of peripheral-to-host data transfer. 5052 * This requires the host periodically to place the interface in such a mode. 5053 * Polling can be eliminated by leaving the interface in an 1284 idle phase. 5054 */ 5055 static uchar_t 5056 ecpp_idle_phase(struct ecppunit *pp) 5057 { 5058 uchar_t rval = FAILURE; 5059 5060 /* 5061 * If there is no space on the read queue, do not reverse channel 5062 */ 5063 if (!canputnext(pp->readq)) { 5064 ecpp_error(pp->dip, "ecpp_idle_phase: readq full\n"); 5065 return (SUCCESS); 5066 } 5067 5068 switch (pp->backchannel) { 5069 case ECPP_CENTRONICS: 5070 case ECPP_COMPAT_MODE: 5071 case ECPP_DIAG_MODE: 5072 /* nothing */ 5073 ecpp_error(pp->dip, "ecpp_idle_phase: compat idle\n"); 5074 return (SUCCESS); 5075 5076 case ECPP_NIBBLE_MODE: 5077 /* 5078 * read as much data as possible, ending up in either 5079 * Reverse Idle or Host Busy Data Available phase 5080 */ 5081 ecpp_error(pp->dip, "ecpp_idle_phase: nibble backchannel\n"); 5082 if ((pp->current_mode != ECPP_NIBBLE_MODE) && 5083 (ecpp_mode_negotiation(pp, ECPP_NIBBLE_MODE) == FAILURE)) { 5084 break; 5085 } 5086 5087 rval = read_nibble_backchan(pp); 5088 5089 /* put interface into Reverse Idle phase */ 5090 if (pp->current_phase == ECPP_PHASE_NIBT_NAVAIL && 5091 canputnext(pp->readq)) { 5092 ecpp_error(pp->dip, "ecpp_idle_phase: going revidle\n"); 5093 5094 /* 5095 * Event 7: host asserts nAutoFd 5096 * enable nAck interrupt to get a backchannel request 5097 */ 5098 DCR_WRITE(pp, ECPP_nINIT | ECPP_AFX | ECPP_INTR_EN); 5099 5100 ECPP_UNMASK_INTR(pp); 5101 } 5102 5103 break; 5104 5105 case ECPP_ECP_MODE: 5106 /* 5107 * if data is already available, request the backchannel xfer 5108 * otherwise stay in Forward Idle and enable nErr interrupts 5109 */ 5110 ecpp_error(pp->dip, "ecpp_idle_phase: ECP forward\n"); 5111 5112 ASSERT(pp->current_phase == ECPP_PHASE_ECP_FWD_IDLE || 5113 pp->current_phase == ECPP_PHASE_ECP_REV_IDLE); 5114 5115 /* put interface into Forward Idle phase */ 5116 if ((pp->current_phase == ECPP_PHASE_ECP_REV_IDLE) && 5117 (ecp_reverse2forward(pp) == FAILURE)) { 5118 return (FAILURE); 5119 } 5120 5121 /* 5122 * if data already available, put backchannel request on the wq 5123 * otherwise enable nErr interrupts 5124 */ 5125 if ((DSR_READ(pp) & ECPP_nERR) == 0) { 5126 (void) ecpp_backchan_req(pp); 5127 } else { 5128 ECR_WRITE(pp, 5129 ECR_READ(pp) & ~ECPP_INTR_MASK | ECPP_INTR_SRV); 5130 5131 ECPP_UNMASK_INTR(pp); 5132 } 5133 5134 return (SUCCESS); 5135 5136 default: 5137 ecpp_error(pp->dip, "ecpp_idle_phase: illegal backchannel"); 5138 } 5139 5140 return (rval); 5141 } 5142 5143 /* 5144 * This routine will leave the port in ECPP_PHASE_NIBT_REVIDLE 5145 * Due to flow control, though, it may stop at ECPP_PHASE_NIBT_AVAIL, 5146 * and continue later as the user consumes data from the read queue 5147 * 5148 * The current phase should be NIBT_AVAIL or NIBT_NAVAIL 5149 * If some events fail during transfer, termination puts link 5150 * to Compatibility mode and FAILURE is returned 5151 */ 5152 static int 5153 read_nibble_backchan(struct ecppunit *pp) 5154 { 5155 mblk_t *mp; 5156 int i; 5157 int rval = SUCCESS; 5158 5159 ASSERT(pp->current_mode == ECPP_NIBBLE_MODE); 5160 5161 pp->current_phase = (DSR_READ(pp) & (ECPP_nERR | ECPP_PE)) 5162 ? ECPP_PHASE_NIBT_NAVAIL : ECPP_PHASE_NIBT_AVAIL; 5163 5164 ecpp_error(pp->dip, "read_nibble_backchan: %x\n", DSR_READ(pp)); 5165 5166 /* 5167 * While data is available, read it in NIBBLE_REV_BLKSZ byte chunks 5168 * and send up the stream 5169 */ 5170 while (pp->current_phase == ECPP_PHASE_NIBT_AVAIL && rval == SUCCESS) { 5171 /* see if there's space on the queue */ 5172 if (!canputnext(pp->readq)) { 5173 ecpp_error(pp->dip, 5174 "read_nibble_backchan: canputnext failed\n"); 5175 return (SUCCESS); 5176 } 5177 5178 if ((mp = allocb(NIBBLE_REV_BLKSZ, BPRI_MED)) == NULL) { 5179 ecpp_error(pp->dip, 5180 "read_nibble_backchan: allocb failed\n"); 5181 return (SUCCESS); 5182 } 5183 5184 /* read a chunk of data from the peripheral byte by byte */ 5185 i = NIBBLE_REV_BLKSZ; 5186 while (i-- && !(DSR_READ(pp) & ECPP_nERR)) { 5187 if (nibble_peripheral2host(pp, mp->b_wptr) != SUCCESS) { 5188 rval = FAILURE; 5189 break; 5190 } 5191 mp->b_wptr++; 5192 } 5193 5194 pp->current_phase = (DSR_READ(pp) & (ECPP_nERR | ECPP_PE)) 5195 ? ECPP_PHASE_NIBT_NAVAIL 5196 : ECPP_PHASE_NIBT_AVAIL; 5197 5198 if (mp->b_wptr - mp->b_rptr > 0) { 5199 ecpp_error(pp->dip, 5200 "read_nibble_backchan: sending %d bytes\n", 5201 mp->b_wptr - mp->b_rptr); 5202 pp->nread = 0; 5203 mutex_exit(&pp->umutex); 5204 putnext(pp->readq, mp); 5205 mutex_enter(&pp->umutex); 5206 } else { 5207 freemsg(mp); 5208 } 5209 } 5210 5211 return (rval); 5212 } 5213 5214 /* 5215 * 'Request Device ID using nibble mode' negotiation 5216 */ 5217 static int 5218 devidnib_negotiation(struct ecppunit *pp) 5219 { 5220 uint8_t dsr; 5221 5222 if (ecpp_1284_negotiation(pp, 5223 ECPP_XREQ_NIBBLE | ECPP_XREQ_ID, &dsr) == FAILURE) { 5224 return (FAILURE); 5225 } 5226 5227 /* 5228 * If peripheral has data available, PE and nErr will 5229 * be set low at Event 5 & 6. 5230 */ 5231 if ((dsr & (ECPP_PE | ECPP_nERR)) == 0) { 5232 pp->current_phase = ECPP_PHASE_NIBT_AVAIL; 5233 } else { 5234 pp->current_phase = ECPP_PHASE_NIBT_NAVAIL; 5235 } 5236 5237 ecpp_error(pp->dip, "ecpp_devidnib_nego: current_phase=%x\n", 5238 pp->current_phase); 5239 5240 /* successful negotiation into Nibble mode */ 5241 pp->current_mode = ECPP_NIBBLE_MODE; 5242 pp->backchannel = ECPP_NIBBLE_MODE; 5243 5244 ecpp_error(pp->dip, "ecpp_devidnib_nego: ok\n"); 5245 5246 return (SUCCESS); 5247 } 5248 5249 /* 5250 * Read 1284 device ID sequence 5251 * 5252 * This function should be called two times: 5253 * 1) ecpp_getdevid(pp, NULL, &len) - to retrieve ID length; 5254 * 2) ecpp_getdevid(pp, buffer, &len) - to read len bytes into buffer 5255 * 5256 * After 2) port is in Compatible mode 5257 * If the caller fails to make second call, it must reset port to Centronics 5258 * 5259 */ 5260 static int 5261 ecpp_getdevid(struct ecppunit *pp, uint8_t *id, int *lenp, int mode) 5262 { 5263 uint8_t lenhi, lenlo; 5264 uint8_t dsr; 5265 int i; 5266 5267 switch (mode) { 5268 case ECPP_NIBBLE_MODE: 5269 /* negotiate only if neccessary */ 5270 if ((pp->current_mode != mode) || (id == NULL)) { 5271 if (devidnib_negotiation(pp) == FAILURE) { 5272 return (EIO); 5273 } 5274 } 5275 5276 if (pp->current_phase != ECPP_PHASE_NIBT_AVAIL) { 5277 return (EIO); 5278 } 5279 5280 /* 5281 * Event 14: Host tristates data bus, peripheral 5282 * asserts nERR if data available, usually the 5283 * status bits (7-0) and requires two reads since 5284 * only nibbles are transfered. 5285 */ 5286 dsr = DSR_READ(pp); 5287 5288 if (id == NULL) { 5289 /* 5290 * first two bytes are the length of the sequence 5291 * (incl. these bytes) 5292 * first byte is MSB 5293 */ 5294 if ((dsr & ECPP_nERR) || 5295 (nibble_peripheral2host(pp, &lenhi) == FAILURE) || 5296 (dsr & ECPP_nERR) || 5297 (nibble_peripheral2host(pp, &lenlo) == FAILURE)) { 5298 ecpp_error(pp->dip, 5299 "ecpp_getdevid: id length read error\n"); 5300 return (EIO); 5301 } 5302 5303 *lenp = (lenhi << 8) | (lenlo); 5304 5305 ecpp_error(pp->dip, 5306 "ecpp_getdevid: id length = %d\n", *lenp); 5307 5308 if (*lenp < 2) { 5309 return (EIO); 5310 } 5311 } else { 5312 /* 5313 * read the rest of the data 5314 */ 5315 i = *lenp; 5316 while (i && ((dsr & ECPP_nERR) == 0)) { 5317 if (nibble_peripheral2host(pp, id++) == FAILURE) 5318 break; 5319 5320 i--; 5321 dsr = DSR_READ(pp); 5322 } 5323 ecpp_error(pp->dip, 5324 "ecpp_getdevid: read %d bytes\n", *lenp - i); 5325 5326 /* 5327 * 1284: After receiving the sequence, the host is 5328 * required to return the link to the Compatibility mode 5329 */ 5330 (void) ecpp_1284_termination(pp); 5331 } 5332 5333 break; 5334 5335 /* Other modes are not yet supported */ 5336 default: 5337 return (EINVAL); 5338 } 5339 5340 return (0); 5341 } 5342 5343 /* 5344 * Various hardware support 5345 * 5346 * First define some stubs for functions that do nothing 5347 */ 5348 5349 /*ARGSUSED*/ 5350 static void 5351 empty_config_mode(struct ecppunit *pp) 5352 { 5353 } 5354 5355 /*ARGSUSED*/ 5356 static void 5357 empty_mask_intr(struct ecppunit *pp) 5358 { 5359 } 5360 5361 #if defined(__x86) 5362 static size_t 5363 x86_getcnt(struct ecppunit *pp) 5364 { 5365 int count; 5366 5367 (void) ddi_dmae_getcnt(pp->dip, pp->uh.x86.chn, &count); 5368 return (count); 5369 } 5370 #endif 5371 5372 /* 5373 * 5374 * National PC87332 and PC97317 SuperIOs support routines 5375 * These chips are used in PCI-based Darwin, Quark, Quasar, Excalibur 5376 * and use EBus DMA facilities (Cheerio or RIO) 5377 * 5378 */ 5379 5380 static int 5381 pc87332_map_regs(struct ecppunit *pp) 5382 { 5383 if (ddi_regs_map_setup(pp->dip, 1, (caddr_t *)&pp->uh.ebus.c_reg, 0, 5384 sizeof (struct config_reg), &acc_attr, 5385 &pp->uh.ebus.c_handle) != DDI_SUCCESS) { 5386 ecpp_error(pp->dip, "pc87332_map_regs: failed c_reg\n"); 5387 goto fail; 5388 } 5389 5390 if (ddi_regs_map_setup(pp->dip, 0, (caddr_t *)&pp->i_reg, 0, 5391 sizeof (struct info_reg), &acc_attr, &pp->i_handle) 5392 != DDI_SUCCESS) { 5393 ecpp_error(pp->dip, "pc87332_map_regs: failed i_reg\n"); 5394 goto fail; 5395 } 5396 5397 if (ddi_regs_map_setup(pp->dip, 0, (caddr_t *)&pp->f_reg, 0x400, 5398 sizeof (struct fifo_reg), &acc_attr, &pp->f_handle) 5399 != DDI_SUCCESS) { 5400 ecpp_error(pp->dip, "pc87332_map_regs: failed f_reg\n"); 5401 goto fail; 5402 } 5403 5404 if (ddi_regs_map_setup(pp->dip, 2, (caddr_t *)&pp->uh.ebus.dmac, 0, 5405 sizeof (struct cheerio_dma_reg), &acc_attr, 5406 &pp->uh.ebus.d_handle) != DDI_SUCCESS) { 5407 ecpp_error(pp->dip, "pc87332_map_regs: failed dmac\n"); 5408 goto fail; 5409 } 5410 5411 return (SUCCESS); 5412 5413 fail: 5414 pc87332_unmap_regs(pp); 5415 return (FAILURE); 5416 } 5417 5418 static void 5419 pc87332_unmap_regs(struct ecppunit *pp) 5420 { 5421 if (pp->uh.ebus.c_handle) { 5422 ddi_regs_map_free(&pp->uh.ebus.c_handle); 5423 } 5424 if (pp->uh.ebus.d_handle) { 5425 ddi_regs_map_free(&pp->uh.ebus.d_handle); 5426 } 5427 if (pp->i_handle) { 5428 ddi_regs_map_free(&pp->i_handle); 5429 } 5430 if (pp->f_handle) { 5431 ddi_regs_map_free(&pp->f_handle); 5432 } 5433 } 5434 5435 static uint8_t 5436 pc87332_read_config_reg(struct ecppunit *pp, uint8_t reg_num) 5437 { 5438 uint8_t retval; 5439 5440 PP_PUTB(pp->uh.ebus.c_handle, &pp->uh.ebus.c_reg->index, reg_num); 5441 retval = PP_GETB(pp->uh.ebus.c_handle, &pp->uh.ebus.c_reg->data); 5442 5443 return (retval); 5444 } 5445 5446 static void 5447 pc87332_write_config_reg(struct ecppunit *pp, uint8_t reg_num, uint8_t val) 5448 { 5449 PP_PUTB(pp->uh.ebus.c_handle, &pp->uh.ebus.c_reg->index, reg_num); 5450 PP_PUTB(pp->uh.ebus.c_handle, &pp->uh.ebus.c_reg->data, val); 5451 5452 /* 5453 * second write to this register is needed. the register behaves as 5454 * a fifo. the first value written goes to the data register. the 5455 * second write pushes the initial value to the register indexed. 5456 */ 5457 5458 PP_PUTB(pp->uh.ebus.c_handle, &pp->uh.ebus.c_reg->data, val); 5459 } 5460 5461 static int 5462 pc87332_config_chip(struct ecppunit *pp) 5463 { 5464 uint8_t pmc, fcr; 5465 5466 pp->current_phase = ECPP_PHASE_INIT; 5467 5468 /* ECP DMA configuration bit (PMC4) must be set */ 5469 pmc = pc87332_read_config_reg(pp, PMC); 5470 if (!(pmc & PC87332_PMC_ECP_DMA_CONFIG)) { 5471 pc87332_write_config_reg(pp, PMC, 5472 pmc | PC87332_PMC_ECP_DMA_CONFIG); 5473 } 5474 5475 /* 5476 * The Parallel Port Multiplexor pins must be driven. 5477 * Check to see if FCR3 is zero, if not clear FCR3. 5478 */ 5479 fcr = pc87332_read_config_reg(pp, FCR); 5480 if (fcr & PC87332_FCR_PPM_FLOAT_CTL) { 5481 pc87332_write_config_reg(pp, FCR, 5482 fcr & ~PC87332_FCR_PPM_FLOAT_CTL); 5483 } 5484 5485 /* 5486 * clear bits 3-0 in CTR (aka DCR) prior to enabling ECP mode 5487 * CTR5 can not be cleared in SPP mode, CTR5 will return 1. 5488 * "FAILURE" in this case is ok. Better to use dcr_write() 5489 * to ensure reliable writing to DCR. 5490 */ 5491 if (dcr_write(pp, ECPP_DCR_SET | ECPP_nINIT) == FAILURE) { 5492 ecpp_error(pp->dip, "ecpp_config_87332: DCR config\n"); 5493 } 5494 5495 /* enable ECP mode, level intr (note that DCR bits 3-0 == 0x0) */ 5496 pc87332_write_config_reg(pp, PCR, 5497 PC87332_PCR_INTR_LEVL | PC87332_PCR_ECP_EN); 5498 5499 /* put SuperIO in initial state */ 5500 if (ecr_write(pp, ECR_mode_001 | 5501 ECPP_INTR_MASK | ECPP_INTR_SRV) == FAILURE) { 5502 ecpp_error(pp->dip, "ecpp_config_87332: ECR\n"); 5503 } 5504 5505 if (dcr_write(pp, ECPP_DCR_SET | ECPP_SLCTIN | ECPP_nINIT) == FAILURE) { 5506 ecpp_error(pp->dip, "ecpp_config_87332: w/DCR failed2.\n"); 5507 return (FAILURE); 5508 5509 } 5510 /* we are in centronic mode */ 5511 pp->current_mode = ECPP_CENTRONICS; 5512 5513 /* in compatible mode with no data transfer in progress */ 5514 pp->current_phase = ECPP_PHASE_C_IDLE; 5515 5516 return (SUCCESS); 5517 } 5518 5519 /* 5520 * A new mode was set, do some mode specific reconfiguration 5521 * in this case - set interrupt characteristic 5522 */ 5523 static void 5524 pc87332_config_mode(struct ecppunit *pp) 5525 { 5526 if (COMPAT_PIO(pp)) { 5527 pc87332_write_config_reg(pp, PCR, 0x04); 5528 } else { 5529 pc87332_write_config_reg(pp, PCR, 0x14); 5530 } 5531 } 5532 5533 static int 5534 pc97317_map_regs(struct ecppunit *pp) 5535 { 5536 if (pc87332_map_regs(pp) != SUCCESS) { 5537 return (FAILURE); 5538 } 5539 5540 if (ddi_regs_map_setup(pp->dip, 0, (caddr_t *)&pp->uh.ebus.c2_reg, 5541 0x403, sizeof (struct config2_reg), &acc_attr, 5542 &pp->uh.ebus.c2_handle) != DDI_SUCCESS) { 5543 ecpp_error(pp->dip, "pc97317_map_regs: failed c2_reg\n"); 5544 pc87332_unmap_regs(pp); 5545 return (FAILURE); 5546 } else { 5547 return (SUCCESS); 5548 } 5549 } 5550 5551 static void 5552 pc97317_unmap_regs(struct ecppunit *pp) 5553 { 5554 if (pp->uh.ebus.c2_handle) { 5555 ddi_regs_map_free(&pp->uh.ebus.c2_handle); 5556 } 5557 5558 pc87332_unmap_regs(pp); 5559 } 5560 5561 /* 5562 * OBP should configure the PC97317 such that it does not need further 5563 * configuration. Upon sustaining, it may be necessary to examine 5564 * or change the configuration registers. This routine is left in 5565 * the file for that purpose. 5566 */ 5567 static int 5568 pc97317_config_chip(struct ecppunit *pp) 5569 { 5570 uint8_t conreg; 5571 5572 /* set the logical device name */ 5573 pc87332_write_config_reg(pp, PC97317_CONFIG_DEV_NO, 0x4); 5574 5575 /* SPP Compatibility */ 5576 PP_PUTB(pp->uh.ebus.c2_handle, 5577 &pp->uh.ebus.c2_reg->eir, PC97317_CONFIG2_CONTROL2); 5578 PP_PUTB(pp->uh.ebus.c2_handle, &pp->uh.ebus.c2_reg->edr, 0x80); 5579 5580 /* low interrupt polarity */ 5581 pc87332_write_config_reg(pp, PC97317_CONFIG_INTR_TYPE, 0x00); 5582 5583 /* ECP mode */ 5584 pc87332_write_config_reg(pp, PC97317_CONFIG_PP_CONFIG, 0xf2); 5585 5586 if (dcr_write(pp, ECPP_SLCTIN | ECPP_nINIT) == FAILURE) { 5587 ecpp_error(pp->dip, "pc97317_config_chip: failed w/DCR\n"); 5588 } 5589 5590 if (ecr_write(pp, ECR_mode_001 | 5591 ECPP_INTR_MASK | ECPP_INTR_SRV) == FAILURE) { 5592 ecpp_error(pp->dip, "pc97317_config_chip: failed w/ECR\n"); 5593 } 5594 5595 #ifdef DEBUG 5596 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_DEV_NO); 5597 ecpp_error(pp->dip, "97317:conreg7(logical dev)=%x\n", conreg); 5598 5599 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_BASE_ADDR_MSB); 5600 ecpp_error(pp->dip, "97317:conreg60(addrHi)=%x\n", conreg); 5601 5602 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_BASE_ADDR_LSB); 5603 ecpp_error(pp->dip, "97317:conreg61(addrLo)=%x\n", conreg); 5604 5605 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_INTR_SEL); 5606 ecpp_error(pp->dip, "97317:conreg70(IRQL)=%x\n", conreg); 5607 5608 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_INTR_TYPE); 5609 ecpp_error(pp->dip, "97317:conreg71(intr type)=%x\n", conreg); 5610 5611 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_ACTIVATE); 5612 ecpp_error(pp->dip, "97317:conreg30(Active)=%x\n", conreg); 5613 5614 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_IO_RANGE); 5615 ecpp_error(pp->dip, "97317:conreg31(IO Range Check)=%x\n", conreg); 5616 5617 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_DMA0_CHAN); 5618 ecpp_error(pp->dip, "97317:conreg74(DMA0 Chan)=%x\n", conreg); 5619 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_DMA1_CHAN); 5620 ecpp_error(pp->dip, "97317:conreg75(DMA1 Chan)=%x\n", conreg); 5621 5622 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_PP_CONFIG); 5623 ecpp_error(pp->dip, "97317:conregFO(pport conf)=%x\n", conreg); 5624 5625 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_PP_CONFIG); 5626 ecpp_error(pp->dip, "97317:conregFO(pport conf)=%x\n", conreg); 5627 #endif /* DEBUG */ 5628 5629 return (SUCCESS); 5630 } 5631 5632 /* 5633 * A new mode was set, do some mode specific reconfiguration 5634 * in this case - set interrupt polarity 5635 */ 5636 static void 5637 pc97317_config_mode(struct ecppunit *pp) 5638 { 5639 /* set the logical device name */ 5640 pc87332_write_config_reg(pp, PC97317_CONFIG_DEV_NO, 0x4); 5641 5642 if (COMPAT_PIO(pp) || pp->current_mode == ECPP_NIBBLE_MODE) { 5643 pc87332_write_config_reg(pp, PC97317_CONFIG_INTR_TYPE, 0x02); 5644 } else { 5645 pc87332_write_config_reg(pp, PC97317_CONFIG_INTR_TYPE, 0x00); 5646 } 5647 } 5648 5649 static void 5650 cheerio_mask_intr(struct ecppunit *pp) 5651 { 5652 /* mask Cheerio interrupts */ 5653 AND_SET_LONG_R(pp->uh.ebus.d_handle, 5654 &pp->uh.ebus.dmac->csr, ~DCSR_INT_EN); 5655 } 5656 5657 static void 5658 cheerio_unmask_intr(struct ecppunit *pp) 5659 { 5660 /* unmask Cheerio interrupts */ 5661 OR_SET_LONG_R(pp->uh.ebus.d_handle, 5662 &pp->uh.ebus.dmac->csr, DCSR_INT_EN | DCSR_TCI_DIS); 5663 } 5664 5665 static int 5666 cheerio_dma_start(struct ecppunit *pp) 5667 { 5668 cheerio_reset_dcsr(pp); 5669 SET_DMAC_BCR(pp, pp->dma_cookie.dmac_size); 5670 SET_DMAC_ACR(pp, pp->dma_cookie.dmac_address); 5671 5672 if (pp->dma_dir == DDI_DMA_READ) { 5673 SET_DMAC_CSR(pp, DCSR_INT_EN | DCSR_EN_CNT | DCSR_EN_DMA | 5674 DCSR_CSR_DRAIN | DCSR_BURST_1 | DCSR_BURST_0 | DCSR_WRITE); 5675 } else { 5676 SET_DMAC_CSR(pp, DCSR_INT_EN | DCSR_EN_CNT | DCSR_EN_DMA | 5677 DCSR_CSR_DRAIN | DCSR_BURST_1 | DCSR_BURST_0); 5678 } 5679 5680 return (SUCCESS); 5681 } 5682 5683 /* 5684 * Note: BCR is reset to 0, so counter should always be read before dma_stop 5685 */ 5686 static int 5687 cheerio_dma_stop(struct ecppunit *pp, size_t *countp) 5688 { 5689 uint8_t ecr; 5690 5691 /* disable DMA and byte counter */ 5692 AND_SET_LONG_R(pp->uh.ebus.d_handle, &pp->uh.ebus.dmac->csr, 5693 ~(DCSR_EN_DMA | DCSR_EN_CNT| DCSR_INT_EN)); 5694 5695 /* ACK and disable the TC interrupt */ 5696 OR_SET_LONG_R(pp->uh.ebus.d_handle, &pp->uh.ebus.dmac->csr, 5697 DCSR_TC | DCSR_TCI_DIS); 5698 5699 /* read DMA count if requested */ 5700 if (countp) { 5701 *countp = cheerio_getcnt(pp); 5702 } 5703 5704 cheerio_reset_dcsr(pp); 5705 SET_DMAC_BCR(pp, 0); 5706 5707 /* turn off SuperIO's DMA */ 5708 ecr = ECR_READ(pp); 5709 if (ecr_write(pp, ecr & ~ECPP_DMA_ENABLE) == FAILURE) { 5710 return (FAILURE); 5711 } 5712 5713 /* Disable SuperIO interrupts and DMA */ 5714 ecr = ECR_READ(pp); 5715 5716 return (ecr_write(pp, ecr | ECPP_INTR_SRV)); 5717 } 5718 5719 static size_t 5720 cheerio_getcnt(struct ecppunit *pp) 5721 { 5722 return (GET_DMAC_BCR(pp)); 5723 } 5724 5725 /* 5726 * Reset the DCSR by first setting the RESET bit to 1. Poll the 5727 * DCSR_CYC_PEND bit to make sure there are no more pending DMA cycles. 5728 * If there are no more pending cycles, clear the RESET bit. 5729 */ 5730 static void 5731 cheerio_reset_dcsr(struct ecppunit *pp) 5732 { 5733 int timeout = DMAC_RESET_TIMEOUT; 5734 5735 SET_DMAC_CSR(pp, DCSR_RESET); 5736 5737 while (GET_DMAC_CSR(pp) & DCSR_CYC_PEND) { 5738 if (timeout == 0) { 5739 ecpp_error(pp->dip, "cheerio_reset_dcsr: timeout\n"); 5740 break; 5741 } else { 5742 drv_usecwait(1); 5743 timeout--; 5744 } 5745 } 5746 5747 SET_DMAC_CSR(pp, 0); 5748 } 5749 5750 /* 5751 * 5752 * Grover Southbridge (M1553) support routines 5753 * Southbridge contains an Intel 8237 DMAC onboard which is used 5754 * to transport data to/from PCI space to superio parallel port 5755 * 5756 */ 5757 5758 5759 static int 5760 m1553_map_regs(struct ecppunit *pp) 5761 { 5762 if (ddi_regs_map_setup(pp->dip, 1, (caddr_t *)&pp->uh.m1553.isa_space, 5763 0, sizeof (struct isaspace), &acc_attr, 5764 &pp->uh.m1553.d_handle) != DDI_SUCCESS) { 5765 ecpp_error(pp->dip, "m1553_map_regs: failed isa space\n"); 5766 goto fail; 5767 } 5768 5769 if (ddi_regs_map_setup(pp->dip, 0, (caddr_t *)&pp->i_reg, 0, 5770 sizeof (struct info_reg), &acc_attr, &pp->i_handle) 5771 != DDI_SUCCESS) { 5772 ecpp_error(pp->dip, "m1553_map_regs: failed i_reg\n"); 5773 goto fail; 5774 } 5775 5776 if (ddi_regs_map_setup(pp->dip, 0, (caddr_t *)&pp->f_reg, 0x400, 5777 sizeof (struct fifo_reg), &acc_attr, &pp->f_handle) 5778 != DDI_SUCCESS) { 5779 ecpp_error(pp->dip, "m1553_map_regs: failed f_reg\n"); 5780 goto fail; 5781 } 5782 5783 return (SUCCESS); 5784 5785 fail: 5786 m1553_unmap_regs(pp); 5787 return (FAILURE); 5788 } 5789 5790 static void 5791 m1553_unmap_regs(struct ecppunit *pp) 5792 { 5793 if (pp->uh.m1553.d_handle) { 5794 ddi_regs_map_free(&pp->uh.m1553.d_handle); 5795 } 5796 if (pp->i_handle) { 5797 ddi_regs_map_free(&pp->i_handle); 5798 } 5799 if (pp->f_handle) { 5800 ddi_regs_map_free(&pp->f_handle); 5801 } 5802 } 5803 5804 #if defined(__x86) 5805 static int 5806 x86_map_regs(struct ecppunit *pp) 5807 { 5808 int nregs = 0; 5809 5810 if (ddi_regs_map_setup(pp->dip, 0, (caddr_t *)&pp->i_reg, 0, 5811 sizeof (struct info_reg), &acc_attr, &pp->i_handle) 5812 != DDI_SUCCESS) { 5813 ecpp_error(pp->dip, "x86_map_regs: failed i_reg\n"); 5814 goto fail; 5815 } 5816 if (ddi_dev_nregs(pp->dip, &nregs) == DDI_SUCCESS && nregs == 2) { 5817 if (ddi_regs_map_setup(pp->dip, 1, (caddr_t *)&pp->f_reg, 0, 5818 sizeof (struct fifo_reg), &acc_attr, &pp->f_handle) 5819 != DDI_SUCCESS) { 5820 ecpp_error(pp->dip, "x86_map_regs: failed f_reg\n"); 5821 goto fail; 5822 } else 5823 pp->noecpregs = FALSE; 5824 } else { 5825 pp->noecpregs = TRUE; 5826 } 5827 return (SUCCESS); 5828 fail: 5829 x86_unmap_regs(pp); 5830 return (FAILURE); 5831 } 5832 5833 static void 5834 x86_unmap_regs(struct ecppunit *pp) 5835 { 5836 if (pp->i_handle) { 5837 ddi_regs_map_free(&pp->i_handle); 5838 } 5839 if (pp->f_handle) { 5840 ddi_regs_map_free(&pp->f_handle); 5841 } 5842 } 5843 #endif 5844 5845 static uint8_t 5846 m1553_read_config_reg(struct ecppunit *pp, uint8_t reg_num) 5847 { 5848 uint8_t retval; 5849 5850 dma8237_write(pp, 0x3F0, reg_num); 5851 retval = dma8237_read(pp, 0x3F1); 5852 5853 return (retval); 5854 } 5855 5856 static void 5857 m1553_write_config_reg(struct ecppunit *pp, uint8_t reg_num, uint8_t val) 5858 { 5859 dma8237_write(pp, 0x3F0, reg_num); 5860 dma8237_write(pp, 0x3F1, val); 5861 } 5862 5863 static int 5864 m1553_config_chip(struct ecppunit *pp) 5865 { 5866 uint8_t conreg; 5867 5868 /* Unlock configuration regs with "key sequence" */ 5869 dma8237_write(pp, 0x3F0, 0x51); 5870 dma8237_write(pp, 0x3F0, 0x23); 5871 5872 m1553_write_config_reg(pp, PnP_CONFIG_DEV_NO, 0x3); 5873 conreg = m1553_read_config_reg(pp, PnP_CONFIG_DEV_NO); 5874 ecpp_error(pp->dip, "M1553:conreg7(logical dev)=%x\n", conreg); 5875 5876 conreg = m1553_read_config_reg(pp, PnP_CONFIG_ACTIVATE); 5877 ecpp_error(pp->dip, "M1553:conreg30(Active)=%x\n", conreg); 5878 5879 conreg = m1553_read_config_reg(pp, PnP_CONFIG_BASE_ADDR_MSB); 5880 ecpp_error(pp->dip, "M1553:conreg60(addrHi)=%x\n", conreg); 5881 conreg = m1553_read_config_reg(pp, PnP_CONFIG_BASE_ADDR_LSB); 5882 ecpp_error(pp->dip, "M1553:conreg61(addrLo)=%x\n", conreg); 5883 5884 conreg = m1553_read_config_reg(pp, PnP_CONFIG_INTR_SEL); 5885 ecpp_error(pp->dip, "M1553:conreg70(IRQL)=%x\n", conreg); 5886 5887 conreg = m1553_read_config_reg(pp, PnP_CONFIG_DMA0_CHAN); 5888 ecpp_error(pp->dip, "M1553:conreg74(DMA0 Chan)=%x\n", conreg); 5889 5890 /* set FIFO threshold 1 and ECP mode, preserve bit 7 (IRQ polarity) */ 5891 conreg = m1553_read_config_reg(pp, PnP_CONFIG_PP_CONFIG0); 5892 conreg = (conreg & ~0x7F) | 0x0A; 5893 m1553_write_config_reg(pp, PnP_CONFIG_PP_CONFIG0, conreg); 5894 conreg = m1553_read_config_reg(pp, PnP_CONFIG_PP_CONFIG0); 5895 ecpp_error(pp->dip, "M1553:conregFO(pport conf)=%x\n", conreg); 5896 5897 m1553_write_config_reg(pp, PnP_CONFIG_PP_CONFIG1, 0x04); 5898 conreg = m1553_read_config_reg(pp, PnP_CONFIG_PP_CONFIG1); 5899 ecpp_error(pp->dip, "M1553:conregF1(outconf)=%x\n", conreg); 5900 5901 /* lock configuration regs with key */ 5902 dma8237_write(pp, 0x3F0, 0xBB); 5903 5904 /* Set ECR, DCR in known state */ 5905 ECR_WRITE(pp, ECR_mode_001 | ECPP_INTR_MASK | ECPP_INTR_SRV); 5906 DCR_WRITE(pp, ECPP_SLCTIN | ECPP_nINIT); 5907 5908 ecpp_error(pp->dip, "m1553_config_chip: ecr=%x, dsr=%x, dcr=%x\n", 5909 ECR_READ(pp), DSR_READ(pp), DCR_READ(pp)); 5910 5911 return (SUCCESS); 5912 } 5913 5914 #if defined(__x86) 5915 static int 5916 x86_config_chip(struct ecppunit *pp) 5917 { 5918 if (ecr_write(pp, ECR_mode_001 | 5919 ECPP_INTR_MASK | ECPP_INTR_SRV) == FAILURE) { 5920 ecpp_error(pp->dip, "config chip: failed w/ecr\n"); 5921 pp->noecpregs = TRUE; 5922 } 5923 if (pp->noecpregs) 5924 pp->fast_compat = FALSE; 5925 DCR_WRITE(pp, ECPP_SLCTIN | ECPP_nINIT); 5926 ecpp_error(pp->dip, "x86_config_chip: ecr=%x, dsr=%x, dcr=%x\n", 5927 ECR_READ(pp), DSR_READ(pp), DCR_READ(pp)); 5928 return (SUCCESS); 5929 } 5930 #endif 5931 5932 /* 5933 * dma8237_dma_start() programs the selected 8 bit channel 5934 * of DMAC1 with the dma cookie. pp->dma_cookie must 5935 * be set before this routine is called. 5936 */ 5937 static int 5938 dma8237_dma_start(struct ecppunit *pp) 5939 { 5940 uint8_t chn; 5941 5942 chn = pp->uh.m1553.chn; 5943 5944 ASSERT(chn <= DMAE_CH3 && 5945 pp->dma_cookie.dmac_size != 0 && 5946 pp->dma_cookie.dmac_address != NULL); 5947 5948 /* At this point Southbridge has not yet asserted DREQ */ 5949 5950 /* set mode to read-from-memory. */ 5951 dma8237_write(pp, DMAC2_MODE, DMAMODE_CASC); 5952 if (pp->dma_dir == DDI_DMA_READ) { 5953 dma8237_write(pp, DMAC1_MODE, DMAMODE_SINGLE | 5954 DMAMODE_READ | chn); 5955 } else { 5956 dma8237_write(pp, DMAC1_MODE, DMAMODE_SINGLE | 5957 DMAMODE_WRITE | chn); 5958 } 5959 5960 dma8237_write_addr(pp, pp->dma_cookie.dmac_address); 5961 dma8237_write_count(pp, pp->dma_cookie.dmac_size - 1); 5962 5963 /* 5964 * M1553 chip does not permit to access DMA register banks 5965 * while DMA is in flight. As a result, ecpp and floppy drivers 5966 * can potentially corrupt each other's DMA. The interlocking mechanism 5967 * is provided by a parent nexus driver (isadma), which is enabled 5968 * indirectly through a DMAC1_ALLMASK register access: 5969 * 5970 * writing a non-zero value to this register enters a lock, 5971 * writing zero releases the lock. 5972 * 5973 * DMA transfer must only occur after entering a lock. 5974 * If the lock is already owned by other driver, we will block. 5975 * 5976 * The following operation unmasks our channel and masks all others 5977 */ 5978 dma8237_write(pp, DMAC1_ALLMASK, ~(1 << chn)); 5979 pp->uh.m1553.isadma_entered = 1; 5980 5981 return (SUCCESS); 5982 } 5983 5984 static int 5985 dma8237_dma_stop(struct ecppunit *pp, size_t *countp) 5986 { 5987 uint8_t ecr; 5988 5989 /* stop DMA */ 5990 ecr = (ECR_READ(pp) & 0xe0) | ECPP_INTR_MASK | ECPP_INTR_SRV; 5991 (void) ecr_write(pp, ecr); 5992 5993 if (pp->uh.m1553.isadma_entered) { 5994 /* reset the channel mask so we can issue PIO's to our device */ 5995 dma8237_write(pp, DMAC1_ALLMASK, 0); 5996 pp->uh.m1553.isadma_entered = 0; 5997 5998 } 5999 6000 /* read DMA count if requested */ 6001 if (countp) { 6002 *countp = dma8237_getcnt(pp); 6003 if (pp->dma_dir == DDI_DMA_READ && *countp > 0) { 6004 (*countp)++; /* need correction for reverse xfers */ 6005 } 6006 } 6007 return (SUCCESS); 6008 } 6009 #if defined(__x86) 6010 static int 6011 x86_dma_start(struct ecppunit *pp) 6012 { 6013 uint8_t chn; 6014 struct ddi_dmae_req dmaereq; 6015 6016 chn = pp->uh.x86.chn; 6017 ASSERT(chn <= DMAE_CH3 && 6018 pp->dma_cookie.dmac_size != 0 && 6019 pp->dma_cookie.dmac_address != NULL); 6020 bzero(&dmaereq, sizeof (struct ddi_dmae_req)); 6021 dmaereq.der_command = 6022 (pp->dma_dir & DDI_DMA_READ) ? DMAE_CMD_READ : DMAE_CMD_WRITE; 6023 if (ddi_dmae_prog(pp->dip, &dmaereq, &pp->dma_cookie, chn) 6024 != DDI_SUCCESS) 6025 ecpp_error(pp->dip, "prog failed !!!\n"); 6026 ecpp_error(pp->dip, "dma_started..\n"); 6027 return (SUCCESS); 6028 } 6029 6030 static int 6031 x86_dma_stop(struct ecppunit *pp, size_t *countp) 6032 { 6033 uint8_t ecr; 6034 6035 /* stop DMA */ 6036 if (pp->uh.x86.chn == 0xff) 6037 return (FAILURE); 6038 ecr = (ECR_READ(pp) & 0xe0) | ECPP_INTR_MASK | ECPP_INTR_SRV; 6039 (void) ecr_write(pp, ecr); 6040 ecpp_error(pp->dip, "dma_stop\n"); 6041 6042 /* read DMA count if requested */ 6043 if (countp) { 6044 *countp = x86_getcnt(pp); 6045 } 6046 ecpp_error(pp->dip, "dma_stoped..\n"); 6047 return (SUCCESS); 6048 } 6049 #endif 6050 6051 /* channel must be masked */ 6052 static void 6053 dma8237_write_addr(struct ecppunit *pp, uint32_t addr) 6054 { 6055 uint8_t c_addr, c_lpage; 6056 uint16_t c_hpage, *p; 6057 6058 switch (pp->uh.m1553.chn) { 6059 case DMAE_CH0: 6060 c_addr = DMA_0ADR; 6061 c_lpage = DMA_0PAGE; 6062 c_hpage = DMA_0HPG; 6063 break; 6064 6065 case DMAE_CH1: 6066 c_addr = DMA_1ADR; 6067 c_lpage = DMA_1PAGE; 6068 c_hpage = DMA_1HPG; 6069 break; 6070 6071 case DMAE_CH2: 6072 c_addr = DMA_2ADR; 6073 c_lpage = DMA_2PAGE; 6074 c_hpage = DMA_2HPG; 6075 break; 6076 6077 case DMAE_CH3: 6078 c_addr = DMA_3ADR; 6079 c_lpage = DMA_3PAGE; 6080 c_hpage = DMA_3HPG; 6081 break; 6082 6083 default: 6084 return; 6085 } 6086 6087 p = (uint16_t *)&pp->uh.m1553.isa_space->isa_reg[c_addr]; 6088 ddi_put16(pp->uh.m1553.d_handle, p, addr & 0xFFFF); 6089 6090 dma8237_write(pp, c_lpage, (addr & 0xFF0000) >> 16); 6091 dma8237_write(pp, c_hpage, (addr & 0xFF000000) >> 24); 6092 6093 } 6094 6095 /* 6096 * This function may be useful during debugging, 6097 * so we leave it in, but do not include in the binary 6098 */ 6099 #ifdef INCLUDE_DMA8237_READ_ADDR 6100 static uint32_t 6101 dma8237_read_addr(struct ecppunit *pp) 6102 { 6103 uint8_t rval3, rval4; 6104 uint16_t rval16; 6105 uint32_t rval; 6106 uint8_t c_addr, c_lpage; 6107 uint16_t c_hpage, *p; 6108 6109 switch (pp->uh.m1553.chn) { 6110 case DMAE_CH0: 6111 c_addr = DMA_0ADR; 6112 c_lpage = DMA_0PAGE; 6113 c_hpage = DMA_0HPG; 6114 break; 6115 6116 case DMAE_CH1: 6117 c_addr = DMA_1ADR; 6118 c_lpage = DMA_1PAGE; 6119 c_hpage = DMA_1HPG; 6120 break; 6121 6122 case DMAE_CH2: 6123 c_addr = DMA_2ADR; 6124 c_lpage = DMA_2PAGE; 6125 c_hpage = DMA_2HPG; 6126 break; 6127 6128 case DMAE_CH3: 6129 c_addr = DMA_3ADR; 6130 c_lpage = DMA_3PAGE; 6131 c_hpage = DMA_3HPG; 6132 break; 6133 6134 default: 6135 return (NULL); 6136 } 6137 6138 p = (uint16_t *)&pp->uh.m1553.isa_space->isa_reg[c_addr]; 6139 rval16 = ddi_get16(pp->uh.m1553.d_handle, p); 6140 6141 rval3 = dma8237_read(pp, c_lpage); 6142 rval4 = dma8237_read(pp, c_hpage); 6143 6144 rval = rval16 | (rval3 << 16) | (rval4 <<24); 6145 6146 return (rval); 6147 } 6148 #endif 6149 6150 static void 6151 dma8237_write_count(struct ecppunit *pp, uint32_t count) 6152 { 6153 uint8_t c_wcnt; 6154 uint16_t *p; 6155 6156 switch (pp->uh.m1553.chn) { 6157 case DMAE_CH0: 6158 c_wcnt = DMA_0WCNT; 6159 break; 6160 6161 case DMAE_CH1: 6162 c_wcnt = DMA_1WCNT; 6163 break; 6164 6165 case DMAE_CH2: 6166 c_wcnt = DMA_2WCNT; 6167 break; 6168 6169 case DMAE_CH3: 6170 c_wcnt = DMA_3WCNT; 6171 break; 6172 6173 default: 6174 return; 6175 } 6176 6177 p = (uint16_t *)&pp->uh.m1553.isa_space->isa_reg[c_wcnt]; 6178 ddi_put16(pp->uh.m1553.d_handle, p, count & 0xFFFF); 6179 6180 } 6181 6182 static uint32_t 6183 dma8237_read_count(struct ecppunit *pp) 6184 { 6185 uint8_t c_wcnt; 6186 uint16_t *p; 6187 6188 switch (pp->uh.m1553.chn) { 6189 case DMAE_CH0: 6190 c_wcnt = DMA_0WCNT; 6191 break; 6192 6193 case DMAE_CH1: 6194 c_wcnt = DMA_1WCNT; 6195 break; 6196 6197 case DMAE_CH2: 6198 c_wcnt = DMA_2WCNT; 6199 break; 6200 6201 case DMAE_CH3: 6202 c_wcnt = DMA_3WCNT; 6203 break; 6204 6205 default: 6206 return (NULL); 6207 } 6208 6209 p = (uint16_t *)&pp->uh.m1553.isa_space->isa_reg[c_wcnt]; 6210 return (ddi_get16(pp->uh.m1553.d_handle, p)); 6211 6212 } 6213 6214 static void 6215 dma8237_write(struct ecppunit *pp, int reg_num, uint8_t val) 6216 { 6217 ddi_put8(pp->uh.m1553.d_handle, 6218 &pp->uh.m1553.isa_space->isa_reg[reg_num], val); 6219 } 6220 6221 static uint8_t 6222 dma8237_read(struct ecppunit *pp, int reg_num) 6223 { 6224 return (ddi_get8(pp->uh.m1553.d_handle, 6225 &pp->uh.m1553.isa_space->isa_reg[reg_num])); 6226 } 6227 6228 static size_t 6229 dma8237_getcnt(struct ecppunit *pp) 6230 { 6231 uint32_t cnt; 6232 6233 if ((cnt = dma8237_read_count(pp)) == 0xffff) 6234 cnt = 0; 6235 else 6236 cnt++; 6237 return (cnt); 6238 } 6239 6240 6241 /* 6242 * 6243 * Kstat support routines 6244 * 6245 */ 6246 static void 6247 ecpp_kstat_init(struct ecppunit *pp) 6248 { 6249 struct ecppkstat *ekp; 6250 char buf[16]; 6251 6252 /* 6253 * Allocate, initialize and install interrupt counter kstat 6254 */ 6255 (void) sprintf(buf, "ecppc%d", pp->instance); 6256 pp->intrstats = kstat_create("ecpp", pp->instance, buf, "controller", 6257 KSTAT_TYPE_INTR, 1, KSTAT_FLAG_PERSISTENT); 6258 if (pp->intrstats == NULL) { 6259 ecpp_error(pp->dip, "ecpp_kstat_init:1: kstat_create failed"); 6260 } else { 6261 pp->intrstats->ks_update = ecpp_kstatintr_update; 6262 pp->intrstats->ks_private = (void *) pp; 6263 kstat_install(pp->intrstats); 6264 } 6265 6266 /* 6267 * Allocate, initialize and install misc stats kstat 6268 */ 6269 pp->ksp = kstat_create("ecpp", pp->instance, NULL, "misc", 6270 KSTAT_TYPE_NAMED, 6271 sizeof (struct ecppkstat) / sizeof (kstat_named_t), 6272 KSTAT_FLAG_PERSISTENT); 6273 if (pp->ksp == NULL) { 6274 ecpp_error(pp->dip, "ecpp_kstat_init:2: kstat_create failed"); 6275 return; 6276 } 6277 6278 ekp = (struct ecppkstat *)pp->ksp->ks_data; 6279 6280 #define EK_NAMED_INIT(name) \ 6281 kstat_named_init(&ekp->ek_##name, #name, KSTAT_DATA_UINT32) 6282 6283 EK_NAMED_INIT(ctx_obytes); 6284 EK_NAMED_INIT(ctxpio_obytes); 6285 EK_NAMED_INIT(nib_ibytes); 6286 EK_NAMED_INIT(ecp_obytes); 6287 EK_NAMED_INIT(ecp_ibytes); 6288 EK_NAMED_INIT(epp_obytes); 6289 EK_NAMED_INIT(epp_ibytes); 6290 EK_NAMED_INIT(diag_obytes); 6291 EK_NAMED_INIT(to_ctx); 6292 EK_NAMED_INIT(to_nib); 6293 EK_NAMED_INIT(to_ecp); 6294 EK_NAMED_INIT(to_epp); 6295 EK_NAMED_INIT(to_diag); 6296 EK_NAMED_INIT(xfer_tout); 6297 EK_NAMED_INIT(ctx_cf); 6298 EK_NAMED_INIT(joblen); 6299 EK_NAMED_INIT(isr_reattempt_high); 6300 EK_NAMED_INIT(mode); 6301 EK_NAMED_INIT(phase); 6302 EK_NAMED_INIT(backchan); 6303 EK_NAMED_INIT(iomode); 6304 EK_NAMED_INIT(state); 6305 6306 pp->ksp->ks_update = ecpp_kstat_update; 6307 pp->ksp->ks_private = (void *) pp; 6308 kstat_install(pp->ksp); 6309 } 6310 6311 static int 6312 ecpp_kstat_update(kstat_t *ksp, int rw) 6313 { 6314 struct ecppunit *pp; 6315 struct ecppkstat *ekp; 6316 6317 /* 6318 * For the time being there is no point 6319 * in supporting writable kstats 6320 */ 6321 if (rw == KSTAT_WRITE) { 6322 return (EACCES); 6323 } 6324 6325 pp = (struct ecppunit *)ksp->ks_private; 6326 ekp = (struct ecppkstat *)ksp->ks_data; 6327 6328 mutex_enter(&pp->umutex); 6329 6330 ekp->ek_ctx_obytes.value.ui32 = pp->obytes[ECPP_CENTRONICS] + 6331 pp->obytes[ECPP_COMPAT_MODE]; 6332 ekp->ek_ctxpio_obytes.value.ui32 = pp->ctxpio_obytes; 6333 ekp->ek_nib_ibytes.value.ui32 = pp->ibytes[ECPP_NIBBLE_MODE]; 6334 ekp->ek_ecp_obytes.value.ui32 = pp->obytes[ECPP_ECP_MODE]; 6335 ekp->ek_ecp_ibytes.value.ui32 = pp->ibytes[ECPP_ECP_MODE]; 6336 ekp->ek_epp_obytes.value.ui32 = pp->obytes[ECPP_EPP_MODE]; 6337 ekp->ek_epp_ibytes.value.ui32 = pp->ibytes[ECPP_EPP_MODE]; 6338 ekp->ek_diag_obytes.value.ui32 = pp->obytes[ECPP_DIAG_MODE]; 6339 ekp->ek_to_ctx.value.ui32 = pp->to_mode[ECPP_CENTRONICS] + 6340 pp->to_mode[ECPP_COMPAT_MODE]; 6341 ekp->ek_to_nib.value.ui32 = pp->to_mode[ECPP_NIBBLE_MODE]; 6342 ekp->ek_to_ecp.value.ui32 = pp->to_mode[ECPP_ECP_MODE]; 6343 ekp->ek_to_epp.value.ui32 = pp->to_mode[ECPP_EPP_MODE]; 6344 ekp->ek_to_diag.value.ui32 = pp->to_mode[ECPP_DIAG_MODE]; 6345 ekp->ek_xfer_tout.value.ui32 = pp->xfer_tout; 6346 ekp->ek_ctx_cf.value.ui32 = pp->ctx_cf; 6347 ekp->ek_joblen.value.ui32 = pp->joblen; 6348 ekp->ek_isr_reattempt_high.value.ui32 = pp->isr_reattempt_high; 6349 ekp->ek_mode.value.ui32 = pp->current_mode; 6350 ekp->ek_phase.value.ui32 = pp->current_phase; 6351 ekp->ek_backchan.value.ui32 = pp->backchannel; 6352 ekp->ek_iomode.value.ui32 = pp->io_mode; 6353 ekp->ek_state.value.ui32 = pp->e_busy; 6354 6355 mutex_exit(&pp->umutex); 6356 6357 return (0); 6358 } 6359 6360 static int 6361 ecpp_kstatintr_update(kstat_t *ksp, int rw) 6362 { 6363 struct ecppunit *pp; 6364 6365 /* 6366 * For the time being there is no point 6367 * in supporting writable kstats 6368 */ 6369 if (rw == KSTAT_WRITE) { 6370 return (EACCES); 6371 } 6372 6373 pp = (struct ecppunit *)ksp->ks_private; 6374 6375 mutex_enter(&pp->umutex); 6376 6377 KSTAT_INTR_PTR(ksp)->intrs[KSTAT_INTR_HARD] = pp->intr_hard; 6378 KSTAT_INTR_PTR(ksp)->intrs[KSTAT_INTR_SPURIOUS] = pp->intr_spurious; 6379 KSTAT_INTR_PTR(ksp)->intrs[KSTAT_INTR_SOFT] = pp->intr_soft; 6380 6381 mutex_exit(&pp->umutex); 6382 6383 return (0); 6384 }