1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 /* 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 */ 29 /* 30 * Copyright (c) 2017, Joyent, Inc. All rights reserved. 31 */ 32 33 /* 34 * To understand how the apix module interacts with the interrupt subsystem read 35 * the theory statement in uts/i86pc/os/intr.c. 36 */ 37 38 /* 39 * PSMI 1.1 extensions are supported only in 2.6 and later versions. 40 * PSMI 1.2 extensions are supported only in 2.7 and later versions. 41 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. 42 * PSMI 1.5 extensions are supported in Solaris Nevada. 43 * PSMI 1.6 extensions are supported in Solaris Nevada. 44 * PSMI 1.7 extensions are supported in Solaris Nevada. 45 */ 46 #define PSMI_1_7 47 48 #include <sys/processor.h> 49 #include <sys/time.h> 50 #include <sys/psm.h> 51 #include <sys/smp_impldefs.h> 52 #include <sys/cram.h> 53 #include <sys/acpi/acpi.h> 54 #include <sys/acpica.h> 55 #include <sys/psm_common.h> 56 #include <sys/pit.h> 57 #include <sys/ddi.h> 58 #include <sys/sunddi.h> 59 #include <sys/ddi_impldefs.h> 60 #include <sys/pci.h> 61 #include <sys/promif.h> 62 #include <sys/x86_archext.h> 63 #include <sys/cpc_impl.h> 64 #include <sys/uadmin.h> 65 #include <sys/panic.h> 66 #include <sys/debug.h> 67 #include <sys/archsystm.h> 68 #include <sys/trap.h> 69 #include <sys/machsystm.h> 70 #include <sys/sysmacros.h> 71 #include <sys/cpuvar.h> 72 #include <sys/rm_platter.h> 73 #include <sys/privregs.h> 74 #include <sys/note.h> 75 #include <sys/pci_intr_lib.h> 76 #include <sys/spl.h> 77 #include <sys/clock.h> 78 #include <sys/cyclic.h> 79 #include <sys/dditypes.h> 80 #include <sys/sunddi.h> 81 #include <sys/x_call.h> 82 #include <sys/reboot.h> 83 #include <sys/mach_intr.h> 84 #include <sys/apix.h> 85 #include <sys/apix_irm_impl.h> 86 87 static int apix_probe(); 88 static void apix_init(); 89 static void apix_picinit(void); 90 static int apix_intr_enter(int, int *); 91 static void apix_intr_exit(int, int); 92 static void apix_setspl(int); 93 static int apix_disable_intr(processorid_t); 94 static void apix_enable_intr(processorid_t); 95 static int apix_get_clkvect(int); 96 static int apix_get_ipivect(int, int); 97 static void apix_post_cyclic_setup(void *); 98 static int apix_post_cpu_start(); 99 static int apix_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *, 100 psm_intr_op_t, int *); 101 102 /* 103 * Helper functions for apix_intr_ops() 104 */ 105 static void apix_redistribute_compute(void); 106 static int apix_get_pending(apix_vector_t *); 107 static apix_vector_t *apix_get_req_vector(ddi_intr_handle_impl_t *, ushort_t); 108 static int apix_get_intr_info(ddi_intr_handle_impl_t *, apic_get_intr_t *); 109 static char *apix_get_apic_type(void); 110 static int apix_intx_get_pending(int); 111 static void apix_intx_set_mask(int irqno); 112 static void apix_intx_clear_mask(int irqno); 113 static int apix_intx_get_shared(int irqno); 114 static void apix_intx_set_shared(int irqno, int delta); 115 static apix_vector_t *apix_intx_xlate_vector(dev_info_t *, int, 116 struct intrspec *); 117 static int apix_intx_alloc_vector(dev_info_t *, ddi_intr_handle_impl_t *, 118 struct intrspec *); 119 120 extern int apic_clkinit(int); 121 122 /* IRM initialization for APIX PSM module */ 123 extern void apix_irm_init(void); 124 125 extern int irm_enable; 126 127 /* 128 * Local static data 129 */ 130 static struct psm_ops apix_ops = { 131 apix_probe, 132 133 apix_init, 134 apix_picinit, 135 apix_intr_enter, 136 apix_intr_exit, 137 apix_setspl, 138 apix_addspl, 139 apix_delspl, 140 apix_disable_intr, 141 apix_enable_intr, 142 NULL, /* psm_softlvl_to_irq */ 143 NULL, /* psm_set_softintr */ 144 145 apic_set_idlecpu, 146 apic_unset_idlecpu, 147 148 apic_clkinit, 149 apix_get_clkvect, 150 NULL, /* psm_hrtimeinit */ 151 apic_gethrtime, 152 153 apic_get_next_processorid, 154 apic_cpu_start, 155 apix_post_cpu_start, 156 apic_shutdown, 157 apix_get_ipivect, 158 apic_send_ipi, 159 160 NULL, /* psm_translate_irq */ 161 NULL, /* psm_notify_error */ 162 NULL, /* psm_notify_func */ 163 apic_timer_reprogram, 164 apic_timer_enable, 165 apic_timer_disable, 166 apix_post_cyclic_setup, 167 apic_preshutdown, 168 apix_intr_ops, /* Advanced DDI Interrupt framework */ 169 apic_state, /* save, restore apic state for S3 */ 170 apic_cpu_ops, /* CPU control interface. */ 171 }; 172 173 struct psm_ops *psmops = &apix_ops; 174 175 static struct psm_info apix_psm_info = { 176 PSM_INFO_VER01_7, /* version */ 177 PSM_OWN_EXCLUSIVE, /* ownership */ 178 &apix_ops, /* operation */ 179 APIX_NAME, /* machine name */ 180 "apix MPv1.4 compatible", 181 }; 182 183 static void *apix_hdlp; 184 185 static int apix_is_enabled = 0; 186 187 /* 188 * Flag to indicate if APIX is to be enabled only for platforms 189 * with specific hw feature(s). 190 */ 191 int apix_hw_chk_enable = 1; 192 193 /* 194 * Hw features that are checked for enabling APIX support. 195 */ 196 #define APIX_SUPPORT_X2APIC 0x00000001 197 uint_t apix_supported_hw = APIX_SUPPORT_X2APIC; 198 199 /* 200 * apix_lock is used for cpu selection and vector re-binding 201 */ 202 lock_t apix_lock; 203 apix_impl_t *apixs[NCPU]; 204 /* 205 * Mapping between device interrupt and the allocated vector. Indexed 206 * by major number. 207 */ 208 apix_dev_vector_t **apix_dev_vector; 209 /* 210 * Mapping between device major number and cpu id. It gets used 211 * when interrupt binding policy round robin with affinity is 212 * applied. With that policy, devices with the same major number 213 * will be bound to the same CPU. 214 */ 215 processorid_t *apix_major_to_cpu; /* major to cpu mapping */ 216 kmutex_t apix_mutex; /* for apix_dev_vector & apix_major_to_cpu */ 217 218 int apix_nipis = 16; /* Maximum number of IPIs */ 219 /* 220 * Maximum number of vectors in a CPU that can be used for interrupt 221 * allocation (including IPIs and the reserved vectors). 222 */ 223 int apix_cpu_nvectors = APIX_NVECTOR; 224 225 /* number of CPUs in power-on transition state */ 226 static int apic_poweron_cnt = 0; 227 228 /* gcpu.h */ 229 230 extern void apic_do_interrupt(struct regs *rp, trap_trace_rec_t *ttp); 231 extern void apic_change_eoi(); 232 233 /* 234 * This is the loadable module wrapper 235 */ 236 237 int 238 _init(void) 239 { 240 if (apic_coarse_hrtime) 241 apix_ops.psm_gethrtime = &apic_gettime; 242 return (psm_mod_init(&apix_hdlp, &apix_psm_info)); 243 } 244 245 int 246 _fini(void) 247 { 248 return (psm_mod_fini(&apix_hdlp, &apix_psm_info)); 249 } 250 251 int 252 _info(struct modinfo *modinfop) 253 { 254 return (psm_mod_info(&apix_hdlp, &apix_psm_info, modinfop)); 255 } 256 257 static int 258 apix_probe() 259 { 260 int rval; 261 262 if (apix_enable == 0) 263 return (PSM_FAILURE); 264 265 /* check for hw features if specified */ 266 if (apix_hw_chk_enable) { 267 /* check if x2APIC mode is supported */ 268 if ((apix_supported_hw & APIX_SUPPORT_X2APIC) == 269 APIX_SUPPORT_X2APIC) { 270 if (apic_local_mode() == LOCAL_X2APIC) { 271 /* x2APIC mode activated by BIOS, switch ops */ 272 apic_mode = LOCAL_X2APIC; 273 apic_change_ops(); 274 } else if (!apic_detect_x2apic()) { 275 /* x2APIC mode is not supported in the hw */ 276 apix_enable = 0; 277 } 278 } 279 if (apix_enable == 0) 280 return (PSM_FAILURE); 281 } 282 283 rval = apic_probe_common(apix_psm_info.p_mach_idstring); 284 if (rval == PSM_SUCCESS) 285 apix_is_enabled = 1; 286 else 287 apix_is_enabled = 0; 288 return (rval); 289 } 290 291 /* 292 * Initialize the data structures needed by pcplusmpx module. 293 * Specifically, the data structures used by addspl() and delspl() 294 * routines. 295 */ 296 static void 297 apix_softinit() 298 { 299 int i, *iptr; 300 apix_impl_t *hdlp; 301 int nproc; 302 303 nproc = max(apic_nproc, apic_max_nproc); 304 305 hdlp = kmem_zalloc(nproc * sizeof (apix_impl_t), KM_SLEEP); 306 for (i = 0; i < nproc; i++) { 307 apixs[i] = &hdlp[i]; 308 apixs[i]->x_cpuid = i; 309 LOCK_INIT_CLEAR(&apixs[i]->x_lock); 310 } 311 312 /* cpu 0 is always up (for now) */ 313 apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE; 314 315 iptr = (int *)&apic_irq_table[0]; 316 for (i = 0; i <= APIC_MAX_VECTOR; i++) { 317 apic_level_intr[i] = 0; 318 *iptr++ = NULL; 319 } 320 mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL); 321 322 apix_dev_vector = kmem_zalloc(sizeof (apix_dev_vector_t *) * devcnt, 323 KM_SLEEP); 324 325 if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) { 326 apix_major_to_cpu = kmem_zalloc(sizeof (int) * devcnt, 327 KM_SLEEP); 328 for (i = 0; i < devcnt; i++) 329 apix_major_to_cpu[i] = IRQ_UNINIT; 330 } 331 332 mutex_init(&apix_mutex, NULL, MUTEX_DEFAULT, NULL); 333 } 334 335 static int 336 apix_get_pending_spl(void) 337 { 338 int cpuid = CPU->cpu_id; 339 340 return (bsrw_insn(apixs[cpuid]->x_intr_pending)); 341 } 342 343 static uintptr_t 344 apix_get_intr_handler(int cpu, short vec) 345 { 346 apix_vector_t *apix_vector; 347 348 ASSERT(cpu < apic_nproc && vec < APIX_NVECTOR); 349 if (cpu >= apic_nproc) 350 return (NULL); 351 352 apix_vector = apixs[cpu]->x_vectbl[vec]; 353 354 return ((uintptr_t)(apix_vector->v_autovect)); 355 } 356 357 static void 358 apix_init() 359 { 360 extern void (*do_interrupt_common)(struct regs *, trap_trace_rec_t *); 361 362 APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_softinit\n")); 363 364 do_interrupt_common = apix_do_interrupt; 365 addintr = apix_add_avintr; 366 remintr = apix_rem_avintr; 367 get_pending_spl = apix_get_pending_spl; 368 get_intr_handler = apix_get_intr_handler; 369 psm_get_localapicid = apic_get_localapicid; 370 psm_get_ioapicid = apic_get_ioapicid; 371 372 apix_softinit(); 373 374 #if !defined(__amd64) 375 if (cpuid_have_cr8access(CPU)) 376 apic_have_32bit_cr8 = 1; 377 #endif 378 379 /* 380 * Initialize IRM pool parameters 381 */ 382 if (irm_enable) { 383 int i; 384 int lowest_irq; 385 int highest_irq; 386 387 /* number of CPUs present */ 388 apix_irminfo.apix_ncpus = apic_nproc; 389 /* total number of entries in all of the IOAPICs present */ 390 lowest_irq = apic_io_vectbase[0]; 391 highest_irq = apic_io_vectend[0]; 392 for (i = 1; i < apic_io_max; i++) { 393 if (apic_io_vectbase[i] < lowest_irq) 394 lowest_irq = apic_io_vectbase[i]; 395 if (apic_io_vectend[i] > highest_irq) 396 highest_irq = apic_io_vectend[i]; 397 } 398 apix_irminfo.apix_ioapic_max_vectors = 399 highest_irq - lowest_irq + 1; 400 /* 401 * Number of available per-CPU vectors excluding 402 * reserved vectors for Dtrace, int80, system-call, 403 * fast-trap, etc. 404 */ 405 apix_irminfo.apix_per_cpu_vectors = APIX_NAVINTR - 406 APIX_SW_RESERVED_VECTORS; 407 408 /* Number of vectors (pre) allocated (SCI and HPET) */ 409 apix_irminfo.apix_vectors_allocated = 0; 410 if (apic_hpet_vect != -1) 411 apix_irminfo.apix_vectors_allocated++; 412 if (apic_sci_vect != -1) 413 apix_irminfo.apix_vectors_allocated++; 414 } 415 } 416 417 static void 418 apix_init_intr() 419 { 420 processorid_t cpun = psm_get_cpu_id(); 421 uint_t nlvt; 422 uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR; 423 extern void cmi_cmci_trap(void); 424 425 apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL); 426 427 if (apic_mode == LOCAL_APIC) { 428 /* 429 * We are running APIC in MMIO mode. 430 */ 431 if (apic_flat_model) { 432 apic_reg_ops->apic_write(APIC_FORMAT_REG, 433 APIC_FLAT_MODEL); 434 } else { 435 apic_reg_ops->apic_write(APIC_FORMAT_REG, 436 APIC_CLUSTER_MODEL); 437 } 438 439 apic_reg_ops->apic_write(APIC_DEST_REG, 440 AV_HIGH_ORDER >> cpun); 441 } 442 443 if (apic_directed_EOI_supported()) { 444 /* 445 * Setting the 12th bit in the Spurious Interrupt Vector 446 * Register suppresses broadcast EOIs generated by the local 447 * APIC. The suppression of broadcast EOIs happens only when 448 * interrupts are level-triggered. 449 */ 450 svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI; 451 } 452 453 /* need to enable APIC before unmasking NMI */ 454 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr); 455 456 /* 457 * Presence of an invalid vector with delivery mode AV_FIXED can 458 * cause an error interrupt, even if the entry is masked...so 459 * write a valid vector to LVT entries along with the mask bit 460 */ 461 462 /* All APICs have timer and LINT0/1 */ 463 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ); 464 apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ); 465 apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI); /* enable NMI */ 466 467 /* 468 * On integrated APICs, the number of LVT entries is 469 * 'Max LVT entry' + 1; on 82489DX's (non-integrated 470 * APICs), nlvt is "3" (LINT0, LINT1, and timer) 471 */ 472 473 if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) { 474 nlvt = 3; 475 } else { 476 nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) & 477 0xFF) + 1; 478 } 479 480 if (nlvt >= 5) { 481 /* Enable performance counter overflow interrupt */ 482 483 if (!is_x86_feature(x86_featureset, X86FSET_MSR)) 484 apic_enable_cpcovf_intr = 0; 485 if (apic_enable_cpcovf_intr) { 486 if (apic_cpcovf_vect == 0) { 487 int ipl = APIC_PCINT_IPL; 488 489 apic_cpcovf_vect = apix_get_ipivect(ipl, -1); 490 ASSERT(apic_cpcovf_vect); 491 492 (void) add_avintr(NULL, ipl, 493 (avfunc)kcpc_hw_overflow_intr, 494 "apic pcint", apic_cpcovf_vect, 495 NULL, NULL, NULL, NULL); 496 kcpc_hw_overflow_intr_installed = 1; 497 kcpc_hw_enable_cpc_intr = 498 apic_cpcovf_mask_clear; 499 } 500 apic_reg_ops->apic_write(APIC_PCINT_VECT, 501 apic_cpcovf_vect); 502 } 503 } 504 505 if (nlvt >= 6) { 506 /* Only mask TM intr if the BIOS apparently doesn't use it */ 507 508 uint32_t lvtval; 509 510 lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT); 511 if (((lvtval & AV_MASK) == AV_MASK) || 512 ((lvtval & AV_DELIV_MODE) != AV_SMI)) { 513 apic_reg_ops->apic_write(APIC_THERM_VECT, 514 AV_MASK|APIC_RESV_IRQ); 515 } 516 } 517 518 /* Enable error interrupt */ 519 520 if (nlvt >= 4 && apic_enable_error_intr) { 521 if (apic_errvect == 0) { 522 int ipl = 0xf; /* get highest priority intr */ 523 apic_errvect = apix_get_ipivect(ipl, -1); 524 ASSERT(apic_errvect); 525 /* 526 * Not PSMI compliant, but we are going to merge 527 * with ON anyway 528 */ 529 (void) add_avintr(NULL, ipl, 530 (avfunc)apic_error_intr, "apic error intr", 531 apic_errvect, NULL, NULL, NULL, NULL); 532 } 533 apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect); 534 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 535 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 536 } 537 538 /* Enable CMCI interrupt */ 539 if (cmi_enable_cmci) { 540 mutex_enter(&cmci_cpu_setup_lock); 541 if (cmci_cpu_setup_registered == 0) { 542 mutex_enter(&cpu_lock); 543 register_cpu_setup_func(cmci_cpu_setup, NULL); 544 mutex_exit(&cpu_lock); 545 cmci_cpu_setup_registered = 1; 546 } 547 mutex_exit(&cmci_cpu_setup_lock); 548 549 if (apic_cmci_vect == 0) { 550 int ipl = 0x2; 551 apic_cmci_vect = apix_get_ipivect(ipl, -1); 552 ASSERT(apic_cmci_vect); 553 554 (void) add_avintr(NULL, ipl, 555 (avfunc)cmi_cmci_trap, "apic cmci intr", 556 apic_cmci_vect, NULL, NULL, NULL, NULL); 557 } 558 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect); 559 } 560 561 apic_reg_ops->apic_write_task_reg(0); 562 } 563 564 static void 565 apix_picinit(void) 566 { 567 int i, j; 568 uint_t isr; 569 570 APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_picinit\n")); 571 572 /* 573 * initialize interrupt remapping before apic 574 * hardware initialization 575 */ 576 apic_intrmap_init(apic_mode); 577 if (apic_vt_ops == psm_vt_ops) 578 apix_mul_ioapic_method = APIC_MUL_IOAPIC_IIR; 579 580 /* 581 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr 582 * bit on without clearing it with EOI. Since softint 583 * uses vector 0x20 to interrupt itself, so softint will 584 * not work on this machine. In order to fix this problem 585 * a check is made to verify all the isr bits are clear. 586 * If not, EOIs are issued to clear the bits. 587 */ 588 for (i = 7; i >= 1; i--) { 589 isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4)); 590 if (isr != 0) 591 for (j = 0; ((j < 32) && (isr != 0)); j++) 592 if (isr & (1 << j)) { 593 apic_reg_ops->apic_write( 594 APIC_EOI_REG, 0); 595 isr &= ~(1 << j); 596 apic_error |= APIC_ERR_BOOT_EOI; 597 } 598 } 599 600 /* set a flag so we know we have run apic_picinit() */ 601 apic_picinit_called = 1; 602 LOCK_INIT_CLEAR(&apic_gethrtime_lock); 603 LOCK_INIT_CLEAR(&apic_ioapic_lock); 604 LOCK_INIT_CLEAR(&apic_error_lock); 605 LOCK_INIT_CLEAR(&apic_mode_switch_lock); 606 607 picsetup(); /* initialise the 8259 */ 608 609 /* add nmi handler - least priority nmi handler */ 610 LOCK_INIT_CLEAR(&apic_nmi_lock); 611 612 if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr, 613 "apix NMI handler", (caddr_t)NULL)) 614 cmn_err(CE_WARN, "apix: Unable to add nmi handler"); 615 616 apix_init_intr(); 617 618 /* enable apic mode if imcr present */ 619 if (apic_imcrp) { 620 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); 621 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC); 622 } 623 624 ioapix_init_intr(IOAPIC_MASK); 625 626 /* setup global IRM pool if applicable */ 627 if (irm_enable) 628 apix_irm_init(); 629 } 630 631 static __inline__ void 632 apix_send_eoi(void) 633 { 634 if (apic_mode == LOCAL_APIC) 635 LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0); 636 else 637 X2APIC_WRITE(APIC_EOI_REG, 0); 638 } 639 640 /* 641 * platform_intr_enter 642 * 643 * Called at the beginning of the interrupt service routine, but unlike 644 * pcplusmp, does not mask interrupts. An EOI is given to the interrupt 645 * controller to enable other HW interrupts but interrupts are still 646 * masked by the IF flag. 647 * 648 * Return -1 for spurious interrupts 649 * 650 */ 651 static int 652 apix_intr_enter(int ipl, int *vectorp) 653 { 654 struct cpu *cpu = CPU; 655 uint32_t cpuid = CPU->cpu_id; 656 apic_cpus_info_t *cpu_infop; 657 uchar_t vector; 658 apix_vector_t *vecp; 659 int nipl = -1; 660 661 /* 662 * The real vector delivered is (*vectorp + 0x20), but our caller 663 * subtracts 0x20 from the vector before passing it to us. 664 * (That's why APIC_BASE_VECT is 0x20.) 665 */ 666 vector = *vectorp = (uchar_t)*vectorp + APIC_BASE_VECT; 667 668 cpu_infop = &apic_cpus[cpuid]; 669 if (vector == APIC_SPUR_INTR) { 670 cpu_infop->aci_spur_cnt++; 671 return (APIC_INT_SPURIOUS); 672 } 673 674 vecp = xv_vector(cpuid, vector); 675 if (vecp == NULL) { 676 if (APIX_IS_FAKE_INTR(vector)) 677 nipl = apix_rebindinfo.i_pri; 678 apix_send_eoi(); 679 return (nipl); 680 } 681 nipl = vecp->v_pri; 682 683 /* if interrupted by the clock, increment apic_nsec_since_boot */ 684 if (vector == (apic_clkvect + APIC_BASE_VECT)) { 685 if (!apic_oneshot) { 686 /* NOTE: this is not MT aware */ 687 apic_hrtime_stamp++; 688 apic_nsec_since_boot += apic_nsec_per_intr; 689 apic_hrtime_stamp++; 690 last_count_read = apic_hertz_count; 691 apix_redistribute_compute(); 692 } 693 694 apix_send_eoi(); 695 696 return (nipl); 697 } 698 699 ASSERT(vecp->v_state != APIX_STATE_OBSOLETED); 700 701 /* pre-EOI handling for level-triggered interrupts */ 702 if (!APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method) && 703 (vecp->v_type & APIX_TYPE_FIXED) && apic_level_intr[vecp->v_inum]) 704 apix_level_intr_pre_eoi(vecp->v_inum); 705 706 /* send back EOI */ 707 apix_send_eoi(); 708 709 cpu_infop->aci_current[nipl] = vector; 710 if ((nipl > ipl) && (nipl > cpu->cpu_base_spl)) { 711 cpu_infop->aci_curipl = (uchar_t)nipl; 712 cpu_infop->aci_ISR_in_progress |= 1 << nipl; 713 } 714 715 #ifdef DEBUG 716 if (vector >= APIX_IPI_MIN) 717 return (nipl); /* skip IPI */ 718 719 APIC_DEBUG_BUF_PUT(vector); 720 APIC_DEBUG_BUF_PUT(vecp->v_inum); 721 APIC_DEBUG_BUF_PUT(nipl); 722 APIC_DEBUG_BUF_PUT(psm_get_cpu_id()); 723 if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl))) 724 drv_usecwait(apic_stretch_interrupts); 725 #endif /* DEBUG */ 726 727 return (nipl); 728 } 729 730 /* 731 * Any changes made to this function must also change X2APIC 732 * version of intr_exit. 733 */ 734 static void 735 apix_intr_exit(int prev_ipl, int arg2) 736 { 737 int cpuid = psm_get_cpu_id(); 738 apic_cpus_info_t *cpu_infop = &apic_cpus[cpuid]; 739 apix_impl_t *apixp = apixs[cpuid]; 740 741 UNREFERENCED_1PARAMETER(arg2); 742 743 cpu_infop->aci_curipl = (uchar_t)prev_ipl; 744 /* ISR above current pri could not be in progress */ 745 cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1; 746 747 if (apixp->x_obsoletes != NULL) { 748 if (APIX_CPU_LOCK_HELD(cpuid)) 749 return; 750 751 APIX_ENTER_CPU_LOCK(cpuid); 752 (void) apix_obsolete_vector(apixp->x_obsoletes); 753 APIX_LEAVE_CPU_LOCK(cpuid); 754 } 755 } 756 757 /* 758 * The pcplusmp setspl code uses the TPR to mask all interrupts at or below the 759 * given ipl, but apix never uses the TPR and we never mask a subset of the 760 * interrupts. They are either all blocked by the IF flag or all can come in. 761 * 762 * For setspl, we mask all interrupts for XC_HI_PIL (15), otherwise, interrupts 763 * can come in if currently enabled by the IF flag. This table shows the state 764 * of the IF flag when we leave this function. 765 * 766 * curr IF | ipl == 15 ipl != 15 767 * --------+--------------------------- 768 * 0 | 0 0 769 * 1 | 0 1 770 */ 771 static void 772 apix_setspl(int ipl) 773 { 774 /* 775 * Interrupts at ipl above this cannot be in progress, so the following 776 * mask is ok. 777 */ 778 apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1; 779 780 if (ipl == XC_HI_PIL) 781 cli(); 782 } 783 784 int 785 apix_addspl(int virtvec, int ipl, int min_ipl, int max_ipl) 786 { 787 uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec); 788 uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec); 789 apix_vector_t *vecp = xv_vector(cpuid, vector); 790 791 UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl); 792 ASSERT(vecp != NULL && LOCK_HELD(&apix_lock)); 793 794 if (vecp->v_type == APIX_TYPE_FIXED) 795 apix_intx_set_shared(vecp->v_inum, 1); 796 797 /* There are more interrupts, so it's already been enabled */ 798 if (vecp->v_share > 1) 799 return (PSM_SUCCESS); 800 801 /* return if it is not hardware interrupt */ 802 if (vecp->v_type == APIX_TYPE_IPI) 803 return (PSM_SUCCESS); 804 805 /* 806 * if apix_picinit() has not been called yet, just return. 807 * At the end of apic_picinit(), we will call setup_io_intr(). 808 */ 809 if (!apic_picinit_called) 810 return (PSM_SUCCESS); 811 812 (void) apix_setup_io_intr(vecp); 813 814 return (PSM_SUCCESS); 815 } 816 817 int 818 apix_delspl(int virtvec, int ipl, int min_ipl, int max_ipl) 819 { 820 uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec); 821 uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec); 822 apix_vector_t *vecp = xv_vector(cpuid, vector); 823 824 UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl); 825 ASSERT(vecp != NULL && LOCK_HELD(&apix_lock)); 826 827 if (vecp->v_type == APIX_TYPE_FIXED) 828 apix_intx_set_shared(vecp->v_inum, -1); 829 830 /* There are more interrupts */ 831 if (vecp->v_share > 1) 832 return (PSM_SUCCESS); 833 834 /* return if it is not hardware interrupt */ 835 if (vecp->v_type == APIX_TYPE_IPI) 836 return (PSM_SUCCESS); 837 838 if (!apic_picinit_called) { 839 cmn_err(CE_WARN, "apix: delete 0x%x before apic init", 840 virtvec); 841 return (PSM_SUCCESS); 842 } 843 844 apix_disable_vector(vecp); 845 846 return (PSM_SUCCESS); 847 } 848 849 /* 850 * Try and disable all interrupts. We just assign interrupts to other 851 * processors based on policy. If any were bound by user request, we 852 * let them continue and return failure. We do not bother to check 853 * for cache affinity while rebinding. 854 */ 855 static int 856 apix_disable_intr(processorid_t cpun) 857 { 858 apix_impl_t *apixp = apixs[cpun]; 859 apix_vector_t *vecp, *newp; 860 int bindcpu, i, hardbound = 0, errbound = 0, ret, loop, type; 861 862 lock_set(&apix_lock); 863 864 apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE; 865 apic_cpus[cpun].aci_curipl = 0; 866 867 /* if this is for SUSPEND operation, skip rebinding */ 868 if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) { 869 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) { 870 vecp = apixp->x_vectbl[i]; 871 if (!IS_VECT_ENABLED(vecp)) 872 continue; 873 874 apix_disable_vector(vecp); 875 } 876 lock_clear(&apix_lock); 877 return (PSM_SUCCESS); 878 } 879 880 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) { 881 vecp = apixp->x_vectbl[i]; 882 if (!IS_VECT_ENABLED(vecp)) 883 continue; 884 885 if (vecp->v_flags & APIX_VECT_USER_BOUND) { 886 hardbound++; 887 continue; 888 } 889 type = vecp->v_type; 890 891 /* 892 * If there are bound interrupts on this cpu, then 893 * rebind them to other processors. 894 */ 895 loop = 0; 896 do { 897 bindcpu = apic_find_cpu(APIC_CPU_INTR_ENABLE); 898 899 if (type != APIX_TYPE_MSI) 900 newp = apix_set_cpu(vecp, bindcpu, &ret); 901 else 902 newp = apix_grp_set_cpu(vecp, bindcpu, &ret); 903 } while ((newp == NULL) && (loop++ < apic_nproc)); 904 905 if (loop >= apic_nproc) { 906 errbound++; 907 cmn_err(CE_WARN, "apix: failed to rebind vector %x/%x", 908 vecp->v_cpuid, vecp->v_vector); 909 } 910 } 911 912 lock_clear(&apix_lock); 913 914 if (hardbound || errbound) { 915 cmn_err(CE_WARN, "Could not disable interrupts on %d" 916 "due to user bound interrupts or failed operation", 917 cpun); 918 return (PSM_FAILURE); 919 } 920 921 return (PSM_SUCCESS); 922 } 923 924 /* 925 * Bind interrupts to specified CPU 926 */ 927 static void 928 apix_enable_intr(processorid_t cpun) 929 { 930 apix_vector_t *vecp; 931 int i, ret; 932 processorid_t n; 933 934 lock_set(&apix_lock); 935 936 apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE; 937 938 /* interrupt enabling for system resume */ 939 if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) { 940 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) { 941 vecp = xv_vector(cpun, i); 942 if (!IS_VECT_ENABLED(vecp)) 943 continue; 944 945 apix_enable_vector(vecp); 946 } 947 apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND; 948 } 949 950 for (n = 0; n < apic_nproc; n++) { 951 if (!apic_cpu_in_range(n) || n == cpun || 952 (apic_cpus[n].aci_status & APIC_CPU_INTR_ENABLE) == 0) 953 continue; 954 955 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) { 956 vecp = xv_vector(n, i); 957 if (!IS_VECT_ENABLED(vecp) || 958 vecp->v_bound_cpuid != cpun) 959 continue; 960 961 if (vecp->v_type != APIX_TYPE_MSI) 962 (void) apix_set_cpu(vecp, cpun, &ret); 963 else 964 (void) apix_grp_set_cpu(vecp, cpun, &ret); 965 } 966 } 967 968 lock_clear(&apix_lock); 969 } 970 971 /* 972 * Allocate vector for IPI 973 * type == -1 indicates it is an internal request. Do not change 974 * resv_vector for these requests. 975 */ 976 static int 977 apix_get_ipivect(int ipl, int type) 978 { 979 uchar_t vector; 980 981 if ((vector = apix_alloc_ipi(ipl)) > 0) { 982 if (type != -1) 983 apic_resv_vector[ipl] = vector; 984 return (vector); 985 } 986 apic_error |= APIC_ERR_GET_IPIVECT_FAIL; 987 return (-1); /* shouldn't happen */ 988 } 989 990 static int 991 apix_get_clkvect(int ipl) 992 { 993 int vector; 994 995 if ((vector = apix_get_ipivect(ipl, -1)) == -1) 996 return (-1); 997 998 apic_clkvect = vector - APIC_BASE_VECT; 999 APIC_VERBOSE(IPI, (CE_CONT, "apix: clock vector = %x\n", 1000 apic_clkvect)); 1001 return (vector); 1002 } 1003 1004 static int 1005 apix_post_cpu_start() 1006 { 1007 int cpun; 1008 static int cpus_started = 1; 1009 1010 /* We know this CPU + BSP started successfully. */ 1011 cpus_started++; 1012 1013 /* 1014 * On BSP we would have enabled X2APIC, if supported by processor, 1015 * in acpi_probe(), but on AP we do it here. 1016 * 1017 * We enable X2APIC mode only if BSP is running in X2APIC & the 1018 * local APIC mode of the current CPU is MMIO (xAPIC). 1019 */ 1020 if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() && 1021 apic_local_mode() == LOCAL_APIC) { 1022 apic_enable_x2apic(); 1023 } 1024 1025 /* 1026 * Switch back to x2apic IPI sending method for performance when target 1027 * CPU has entered x2apic mode. 1028 */ 1029 if (apic_mode == LOCAL_X2APIC) { 1030 apic_switch_ipi_callback(B_FALSE); 1031 } 1032 1033 splx(ipltospl(LOCK_LEVEL)); 1034 apix_init_intr(); 1035 1036 /* 1037 * since some systems don't enable the internal cache on the non-boot 1038 * cpus, so we have to enable them here 1039 */ 1040 setcr0(getcr0() & ~(CR0_CD | CR0_NW)); 1041 1042 #ifdef DEBUG 1043 APIC_AV_PENDING_SET(); 1044 #else 1045 if (apic_mode == LOCAL_APIC) 1046 APIC_AV_PENDING_SET(); 1047 #endif /* DEBUG */ 1048 1049 /* 1050 * We may be booting, or resuming from suspend; aci_status will 1051 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the 1052 * APIC_CPU_ONLINE flag here rather than setting aci_status completely. 1053 */ 1054 cpun = psm_get_cpu_id(); 1055 apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE; 1056 1057 apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init); 1058 1059 return (PSM_SUCCESS); 1060 } 1061 1062 /* 1063 * If this module needs a periodic handler for the interrupt distribution, it 1064 * can be added here. The argument to the periodic handler is not currently 1065 * used, but is reserved for future. 1066 */ 1067 static void 1068 apix_post_cyclic_setup(void *arg) 1069 { 1070 UNREFERENCED_1PARAMETER(arg); 1071 1072 cyc_handler_t cyh; 1073 cyc_time_t cyt; 1074 1075 /* cpu_lock is held */ 1076 /* set up a periodic handler for intr redistribution */ 1077 1078 /* 1079 * In peridoc mode intr redistribution processing is done in 1080 * apic_intr_enter during clk intr processing 1081 */ 1082 if (!apic_oneshot) 1083 return; 1084 1085 /* 1086 * Register a periodical handler for the redistribution processing. 1087 * Though we would generally prefer to use the DDI interface for 1088 * periodic handler invocation, ddi_periodic_add(9F), we are 1089 * unfortunately already holding cpu_lock, which ddi_periodic_add will 1090 * attempt to take for us. Thus, we add our own cyclic directly: 1091 */ 1092 cyh.cyh_func = (void (*)(void *))apix_redistribute_compute; 1093 cyh.cyh_arg = NULL; 1094 cyh.cyh_level = CY_LOW_LEVEL; 1095 1096 cyt.cyt_when = 0; 1097 cyt.cyt_interval = apic_redistribute_sample_interval; 1098 1099 apic_cyclic_id = cyclic_add(&cyh, &cyt); 1100 } 1101 1102 /* 1103 * Called the first time we enable x2apic mode on this cpu. 1104 * Update some of the function pointers to use x2apic routines. 1105 */ 1106 void 1107 x2apic_update_psm() 1108 { 1109 struct psm_ops *pops = &apix_ops; 1110 1111 ASSERT(pops != NULL); 1112 1113 /* 1114 * The pcplusmp module's version of x2apic_update_psm makes additional 1115 * changes that we do not have to make here. It needs to make those 1116 * changes because pcplusmp relies on the TPR register and the means of 1117 * addressing that changes when using the local apic versus the x2apic. 1118 * It's also worth noting that the apix driver specific function end up 1119 * being apix_foo as opposed to apic_foo and x2apic_foo. 1120 */ 1121 pops->psm_send_ipi = x2apic_send_ipi; 1122 1123 send_dirintf = pops->psm_send_ipi; 1124 1125 apic_mode = LOCAL_X2APIC; 1126 apic_change_ops(); 1127 } 1128 1129 /* 1130 * This function provides external interface to the nexus for all 1131 * functionalities related to the new DDI interrupt framework. 1132 * 1133 * Input: 1134 * dip - pointer to the dev_info structure of the requested device 1135 * hdlp - pointer to the internal interrupt handle structure for the 1136 * requested interrupt 1137 * intr_op - opcode for this call 1138 * result - pointer to the integer that will hold the result to be 1139 * passed back if return value is PSM_SUCCESS 1140 * 1141 * Output: 1142 * return value is either PSM_SUCCESS or PSM_FAILURE 1143 */ 1144 static int 1145 apix_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp, 1146 psm_intr_op_t intr_op, int *result) 1147 { 1148 int cap; 1149 apix_vector_t *vecp, *newvecp; 1150 struct intrspec *ispec, intr_spec; 1151 processorid_t target; 1152 1153 ispec = &intr_spec; 1154 ispec->intrspec_pri = hdlp->ih_pri; 1155 ispec->intrspec_vec = hdlp->ih_inum; 1156 ispec->intrspec_func = hdlp->ih_cb_func; 1157 1158 switch (intr_op) { 1159 case PSM_INTR_OP_ALLOC_VECTORS: 1160 switch (hdlp->ih_type) { 1161 case DDI_INTR_TYPE_MSI: 1162 /* allocate MSI vectors */ 1163 *result = apix_alloc_msi(dip, hdlp->ih_inum, 1164 hdlp->ih_scratch1, 1165 (int)(uintptr_t)hdlp->ih_scratch2); 1166 break; 1167 case DDI_INTR_TYPE_MSIX: 1168 /* allocate MSI-X vectors */ 1169 *result = apix_alloc_msix(dip, hdlp->ih_inum, 1170 hdlp->ih_scratch1, 1171 (int)(uintptr_t)hdlp->ih_scratch2); 1172 break; 1173 case DDI_INTR_TYPE_FIXED: 1174 /* allocate or share vector for fixed */ 1175 if ((ihdl_plat_t *)hdlp->ih_private == NULL) { 1176 return (PSM_FAILURE); 1177 } 1178 ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp; 1179 *result = apix_intx_alloc_vector(dip, hdlp, ispec); 1180 break; 1181 default: 1182 return (PSM_FAILURE); 1183 } 1184 break; 1185 case PSM_INTR_OP_FREE_VECTORS: 1186 apix_free_vectors(dip, hdlp->ih_inum, hdlp->ih_scratch1, 1187 hdlp->ih_type); 1188 break; 1189 case PSM_INTR_OP_XLATE_VECTOR: 1190 /* 1191 * Vectors are allocated by ALLOC and freed by FREE. 1192 * XLATE finds and returns APIX_VIRTVEC_VECTOR(cpu, vector). 1193 */ 1194 *result = APIX_INVALID_VECT; 1195 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); 1196 if (vecp != NULL) { 1197 *result = APIX_VIRTVECTOR(vecp->v_cpuid, 1198 vecp->v_vector); 1199 break; 1200 } 1201 1202 /* 1203 * No vector to device mapping exists. If this is FIXED type 1204 * then check if this IRQ is already mapped for another device 1205 * then return the vector number for it (i.e. shared IRQ case). 1206 * Otherwise, return PSM_FAILURE. 1207 */ 1208 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) { 1209 vecp = apix_intx_xlate_vector(dip, hdlp->ih_inum, 1210 ispec); 1211 *result = (vecp == NULL) ? APIX_INVALID_VECT : 1212 APIX_VIRTVECTOR(vecp->v_cpuid, vecp->v_vector); 1213 } 1214 if (*result == APIX_INVALID_VECT) 1215 return (PSM_FAILURE); 1216 break; 1217 case PSM_INTR_OP_GET_PENDING: 1218 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); 1219 if (vecp == NULL) 1220 return (PSM_FAILURE); 1221 1222 *result = apix_get_pending(vecp); 1223 break; 1224 case PSM_INTR_OP_CLEAR_MASK: 1225 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 1226 return (PSM_FAILURE); 1227 1228 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); 1229 if (vecp == NULL) 1230 return (PSM_FAILURE); 1231 1232 apix_intx_clear_mask(vecp->v_inum); 1233 break; 1234 case PSM_INTR_OP_SET_MASK: 1235 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 1236 return (PSM_FAILURE); 1237 1238 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); 1239 if (vecp == NULL) 1240 return (PSM_FAILURE); 1241 1242 apix_intx_set_mask(vecp->v_inum); 1243 break; 1244 case PSM_INTR_OP_GET_SHARED: 1245 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 1246 return (PSM_FAILURE); 1247 1248 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); 1249 if (vecp == NULL) 1250 return (PSM_FAILURE); 1251 1252 *result = apix_intx_get_shared(vecp->v_inum); 1253 break; 1254 case PSM_INTR_OP_SET_PRI: 1255 /* 1256 * Called prior to adding the interrupt handler or when 1257 * an interrupt handler is unassigned. 1258 */ 1259 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) 1260 return (PSM_SUCCESS); 1261 1262 if (apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type) == NULL) 1263 return (PSM_FAILURE); 1264 1265 break; 1266 case PSM_INTR_OP_SET_CPU: 1267 case PSM_INTR_OP_GRP_SET_CPU: 1268 /* 1269 * The interrupt handle given here has been allocated 1270 * specifically for this command, and ih_private carries 1271 * a CPU value. 1272 */ 1273 *result = EINVAL; 1274 target = (int)(intptr_t)hdlp->ih_private; 1275 if (!apic_cpu_in_range(target)) { 1276 DDI_INTR_IMPLDBG((CE_WARN, 1277 "[grp_]set_cpu: cpu out of range: %d\n", target)); 1278 return (PSM_FAILURE); 1279 } 1280 1281 lock_set(&apix_lock); 1282 1283 vecp = apix_get_req_vector(hdlp, hdlp->ih_flags); 1284 if (!IS_VECT_ENABLED(vecp)) { 1285 DDI_INTR_IMPLDBG((CE_WARN, 1286 "[grp]_set_cpu: invalid vector 0x%x\n", 1287 hdlp->ih_vector)); 1288 lock_clear(&apix_lock); 1289 return (PSM_FAILURE); 1290 } 1291 1292 *result = 0; 1293 1294 if (intr_op == PSM_INTR_OP_SET_CPU) 1295 newvecp = apix_set_cpu(vecp, target, result); 1296 else 1297 newvecp = apix_grp_set_cpu(vecp, target, result); 1298 1299 lock_clear(&apix_lock); 1300 1301 if (newvecp == NULL) { 1302 *result = EIO; 1303 return (PSM_FAILURE); 1304 } 1305 newvecp->v_bound_cpuid = target; 1306 hdlp->ih_vector = APIX_VIRTVECTOR(newvecp->v_cpuid, 1307 newvecp->v_vector); 1308 break; 1309 1310 case PSM_INTR_OP_GET_INTR: 1311 /* 1312 * The interrupt handle given here has been allocated 1313 * specifically for this command, and ih_private carries 1314 * a pointer to a apic_get_intr_t. 1315 */ 1316 if (apix_get_intr_info(hdlp, hdlp->ih_private) != PSM_SUCCESS) 1317 return (PSM_FAILURE); 1318 break; 1319 1320 case PSM_INTR_OP_CHECK_MSI: 1321 /* 1322 * Check MSI/X is supported or not at APIC level and 1323 * masked off the MSI/X bits in hdlp->ih_type if not 1324 * supported before return. If MSI/X is supported, 1325 * leave the ih_type unchanged and return. 1326 * 1327 * hdlp->ih_type passed in from the nexus has all the 1328 * interrupt types supported by the device. 1329 */ 1330 if (apic_support_msi == 0) { /* uninitialized */ 1331 /* 1332 * if apic_support_msi is not set, call 1333 * apic_check_msi_support() to check whether msi 1334 * is supported first 1335 */ 1336 if (apic_check_msi_support() == PSM_SUCCESS) 1337 apic_support_msi = 1; /* supported */ 1338 else 1339 apic_support_msi = -1; /* not-supported */ 1340 } 1341 if (apic_support_msi == 1) { 1342 if (apic_msix_enable) 1343 *result = hdlp->ih_type; 1344 else 1345 *result = hdlp->ih_type & ~DDI_INTR_TYPE_MSIX; 1346 } else 1347 *result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI | 1348 DDI_INTR_TYPE_MSIX); 1349 break; 1350 case PSM_INTR_OP_GET_CAP: 1351 cap = DDI_INTR_FLAG_PENDING; 1352 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) 1353 cap |= DDI_INTR_FLAG_MASKABLE; 1354 *result = cap; 1355 break; 1356 case PSM_INTR_OP_APIC_TYPE: 1357 ((apic_get_type_t *)(hdlp->ih_private))->avgi_type = 1358 apix_get_apic_type(); 1359 ((apic_get_type_t *)(hdlp->ih_private))->avgi_num_intr = 1360 APIX_IPI_MIN; 1361 ((apic_get_type_t *)(hdlp->ih_private))->avgi_num_cpu = 1362 apic_nproc; 1363 hdlp->ih_ver = apic_get_apic_version(); 1364 break; 1365 case PSM_INTR_OP_SET_CAP: 1366 default: 1367 return (PSM_FAILURE); 1368 } 1369 1370 return (PSM_SUCCESS); 1371 } 1372 1373 static void 1374 apix_cleanup_busy(void) 1375 { 1376 int i, j; 1377 apix_vector_t *vecp; 1378 1379 for (i = 0; i < apic_nproc; i++) { 1380 if (!apic_cpu_in_range(i)) 1381 continue; 1382 apic_cpus[i].aci_busy = 0; 1383 for (j = APIX_AVINTR_MIN; j < APIX_AVINTR_MAX; j++) { 1384 if ((vecp = xv_vector(i, j)) != NULL) 1385 vecp->v_busy = 0; 1386 } 1387 } 1388 } 1389 1390 static void 1391 apix_redistribute_compute(void) 1392 { 1393 int i, j, max_busy; 1394 1395 if (!apic_enable_dynamic_migration) 1396 return; 1397 1398 if (++apic_nticks == apic_sample_factor_redistribution) { 1399 /* 1400 * Time to call apic_intr_redistribute(). 1401 * reset apic_nticks. This will cause max_busy 1402 * to be calculated below and if it is more than 1403 * apic_int_busy, we will do the whole thing 1404 */ 1405 apic_nticks = 0; 1406 } 1407 max_busy = 0; 1408 for (i = 0; i < apic_nproc; i++) { 1409 if (!apic_cpu_in_range(i)) 1410 continue; 1411 /* 1412 * Check if curipl is non zero & if ISR is in 1413 * progress 1414 */ 1415 if (((j = apic_cpus[i].aci_curipl) != 0) && 1416 (apic_cpus[i].aci_ISR_in_progress & (1 << j))) { 1417 1418 int vect; 1419 apic_cpus[i].aci_busy++; 1420 vect = apic_cpus[i].aci_current[j]; 1421 apixs[i]->x_vectbl[vect]->v_busy++; 1422 } 1423 1424 if (!apic_nticks && 1425 (apic_cpus[i].aci_busy > max_busy)) 1426 max_busy = apic_cpus[i].aci_busy; 1427 } 1428 if (!apic_nticks) { 1429 if (max_busy > apic_int_busy_mark) { 1430 /* 1431 * We could make the following check be 1432 * skipped > 1 in which case, we get a 1433 * redistribution at half the busy mark (due to 1434 * double interval). Need to be able to collect 1435 * more empirical data to decide if that is a 1436 * good strategy. Punt for now. 1437 */ 1438 apix_cleanup_busy(); 1439 apic_skipped_redistribute = 0; 1440 } else 1441 apic_skipped_redistribute++; 1442 } 1443 } 1444 1445 /* 1446 * intr_ops() service routines 1447 */ 1448 1449 static int 1450 apix_get_pending(apix_vector_t *vecp) 1451 { 1452 int bit, index, irr, pending; 1453 1454 /* need to get on the bound cpu */ 1455 mutex_enter(&cpu_lock); 1456 affinity_set(vecp->v_cpuid); 1457 1458 index = vecp->v_vector / 32; 1459 bit = vecp->v_vector % 32; 1460 irr = apic_reg_ops->apic_read(APIC_IRR_REG + index); 1461 1462 affinity_clear(); 1463 mutex_exit(&cpu_lock); 1464 1465 pending = (irr & (1 << bit)) ? 1 : 0; 1466 if (!pending && vecp->v_type == APIX_TYPE_FIXED) 1467 pending = apix_intx_get_pending(vecp->v_inum); 1468 1469 return (pending); 1470 } 1471 1472 static apix_vector_t * 1473 apix_get_req_vector(ddi_intr_handle_impl_t *hdlp, ushort_t flags) 1474 { 1475 apix_vector_t *vecp; 1476 processorid_t cpuid; 1477 int32_t virt_vec = 0; 1478 1479 switch (flags & PSMGI_INTRBY_FLAGS) { 1480 case PSMGI_INTRBY_IRQ: 1481 return (apix_intx_get_vector(hdlp->ih_vector)); 1482 case PSMGI_INTRBY_VEC: 1483 virt_vec = (virt_vec == 0) ? hdlp->ih_vector : virt_vec; 1484 1485 cpuid = APIX_VIRTVEC_CPU(virt_vec); 1486 if (!apic_cpu_in_range(cpuid)) 1487 return (NULL); 1488 1489 vecp = xv_vector(cpuid, APIX_VIRTVEC_VECTOR(virt_vec)); 1490 break; 1491 case PSMGI_INTRBY_DEFAULT: 1492 vecp = apix_get_dev_map(hdlp->ih_dip, hdlp->ih_inum, 1493 hdlp->ih_type); 1494 break; 1495 default: 1496 return (NULL); 1497 } 1498 1499 return (vecp); 1500 } 1501 1502 static int 1503 apix_get_intr_info(ddi_intr_handle_impl_t *hdlp, 1504 apic_get_intr_t *intr_params_p) 1505 { 1506 apix_vector_t *vecp; 1507 struct autovec *av_dev; 1508 int i; 1509 1510 vecp = apix_get_req_vector(hdlp, intr_params_p->avgi_req_flags); 1511 if (IS_VECT_FREE(vecp)) { 1512 intr_params_p->avgi_num_devs = 0; 1513 intr_params_p->avgi_cpu_id = 0; 1514 intr_params_p->avgi_req_flags = 0; 1515 return (PSM_SUCCESS); 1516 } 1517 1518 if (intr_params_p->avgi_req_flags & PSMGI_REQ_CPUID) { 1519 intr_params_p->avgi_cpu_id = vecp->v_cpuid; 1520 1521 /* Return user bound info for intrd. */ 1522 if (intr_params_p->avgi_cpu_id & IRQ_USER_BOUND) { 1523 intr_params_p->avgi_cpu_id &= ~IRQ_USER_BOUND; 1524 intr_params_p->avgi_cpu_id |= PSMGI_CPU_USER_BOUND; 1525 } 1526 } 1527 1528 if (intr_params_p->avgi_req_flags & PSMGI_REQ_VECTOR) 1529 intr_params_p->avgi_vector = vecp->v_vector; 1530 1531 if (intr_params_p->avgi_req_flags & 1532 (PSMGI_REQ_NUM_DEVS | PSMGI_REQ_GET_DEVS)) 1533 /* Get number of devices from apic_irq table shared field. */ 1534 intr_params_p->avgi_num_devs = vecp->v_share; 1535 1536 if (intr_params_p->avgi_req_flags & PSMGI_REQ_GET_DEVS) { 1537 1538 intr_params_p->avgi_req_flags |= PSMGI_REQ_NUM_DEVS; 1539 1540 /* Some devices have NULL dip. Don't count these. */ 1541 if (intr_params_p->avgi_num_devs > 0) { 1542 for (i = 0, av_dev = vecp->v_autovect; av_dev; 1543 av_dev = av_dev->av_link) { 1544 if (av_dev->av_vector && av_dev->av_dip) 1545 i++; 1546 } 1547 intr_params_p->avgi_num_devs = 1548 (uint8_t)MIN(intr_params_p->avgi_num_devs, i); 1549 } 1550 1551 /* There are no viable dips to return. */ 1552 if (intr_params_p->avgi_num_devs == 0) { 1553 intr_params_p->avgi_dip_list = NULL; 1554 1555 } else { /* Return list of dips */ 1556 1557 /* Allocate space in array for that number of devs. */ 1558 intr_params_p->avgi_dip_list = kmem_zalloc( 1559 intr_params_p->avgi_num_devs * 1560 sizeof (dev_info_t *), 1561 KM_NOSLEEP); 1562 if (intr_params_p->avgi_dip_list == NULL) { 1563 DDI_INTR_IMPLDBG((CE_WARN, 1564 "apix_get_vector_intr_info: no memory")); 1565 return (PSM_FAILURE); 1566 } 1567 1568 /* 1569 * Loop through the device list of the autovec table 1570 * filling in the dip array. 1571 * 1572 * Note that the autovect table may have some special 1573 * entries which contain NULL dips. These will be 1574 * ignored. 1575 */ 1576 for (i = 0, av_dev = vecp->v_autovect; av_dev; 1577 av_dev = av_dev->av_link) { 1578 if (av_dev->av_vector && av_dev->av_dip) 1579 intr_params_p->avgi_dip_list[i++] = 1580 av_dev->av_dip; 1581 } 1582 } 1583 } 1584 1585 return (PSM_SUCCESS); 1586 } 1587 1588 static char * 1589 apix_get_apic_type(void) 1590 { 1591 return (apix_psm_info.p_mach_idstring); 1592 } 1593 1594 apix_vector_t * 1595 apix_set_cpu(apix_vector_t *vecp, int new_cpu, int *result) 1596 { 1597 apix_vector_t *newp = NULL; 1598 dev_info_t *dip; 1599 int inum, cap_ptr; 1600 ddi_acc_handle_t handle; 1601 ddi_intr_msix_t *msix_p = NULL; 1602 ushort_t msix_ctrl; 1603 uintptr_t off = 0; 1604 uint32_t mask = 0; 1605 1606 ASSERT(LOCK_HELD(&apix_lock)); 1607 *result = ENXIO; 1608 1609 /* Fail if this is an MSI intr and is part of a group. */ 1610 if (vecp->v_type == APIX_TYPE_MSI) { 1611 if (i_ddi_intr_get_current_nintrs(APIX_GET_DIP(vecp)) > 1) 1612 return (NULL); 1613 else 1614 return (apix_grp_set_cpu(vecp, new_cpu, result)); 1615 } 1616 1617 /* 1618 * Mask MSI-X. It's unmasked when MSI-X gets enabled. 1619 */ 1620 if (vecp->v_type == APIX_TYPE_MSIX && IS_VECT_ENABLED(vecp)) { 1621 if ((dip = APIX_GET_DIP(vecp)) == NULL) 1622 return (NULL); 1623 inum = vecp->v_devp->dv_inum; 1624 1625 handle = i_ddi_get_pci_config_handle(dip); 1626 cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip); 1627 msix_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL); 1628 if ((msix_ctrl & PCI_MSIX_FUNCTION_MASK) == 0) { 1629 /* 1630 * Function is not masked, then mask "inum"th 1631 * entry in the MSI-X table 1632 */ 1633 msix_p = i_ddi_get_msix(dip); 1634 off = (uintptr_t)msix_p->msix_tbl_addr + (inum * 1635 PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET; 1636 mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off); 1637 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, 1638 mask | 1); 1639 } 1640 } 1641 1642 *result = 0; 1643 if ((newp = apix_rebind(vecp, new_cpu, 1)) == NULL) 1644 *result = EIO; 1645 1646 /* Restore mask bit */ 1647 if (msix_p != NULL) 1648 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, mask); 1649 1650 return (newp); 1651 } 1652 1653 /* 1654 * Set cpu for MSIs 1655 */ 1656 apix_vector_t * 1657 apix_grp_set_cpu(apix_vector_t *vecp, int new_cpu, int *result) 1658 { 1659 apix_vector_t *newp, *vp; 1660 uint32_t orig_cpu = vecp->v_cpuid; 1661 int orig_vect = vecp->v_vector; 1662 int i, num_vectors, cap_ptr, msi_mask_off = 0; 1663 uint32_t msi_pvm = 0; 1664 ushort_t msi_ctrl; 1665 ddi_acc_handle_t handle; 1666 dev_info_t *dip; 1667 1668 APIC_VERBOSE(INTR, (CE_CONT, "apix_grp_set_cpu: oldcpu: %x, vector: %x," 1669 " newcpu:%x\n", vecp->v_cpuid, vecp->v_vector, new_cpu)); 1670 1671 ASSERT(LOCK_HELD(&apix_lock)); 1672 1673 *result = ENXIO; 1674 1675 if (vecp->v_type != APIX_TYPE_MSI) { 1676 DDI_INTR_IMPLDBG((CE_WARN, "set_grp: intr not MSI\n")); 1677 return (NULL); 1678 } 1679 1680 if ((dip = APIX_GET_DIP(vecp)) == NULL) 1681 return (NULL); 1682 1683 num_vectors = i_ddi_intr_get_current_nintrs(dip); 1684 if ((num_vectors < 1) || ((num_vectors - 1) & orig_vect)) { 1685 APIC_VERBOSE(INTR, (CE_WARN, 1686 "set_grp: base vec not part of a grp or not aligned: " 1687 "vec:0x%x, num_vec:0x%x\n", orig_vect, num_vectors)); 1688 return (NULL); 1689 } 1690 1691 if (vecp->v_inum != apix_get_min_dev_inum(dip, vecp->v_type)) 1692 return (NULL); 1693 1694 *result = EIO; 1695 for (i = 1; i < num_vectors; i++) { 1696 if ((vp = xv_vector(orig_cpu, orig_vect + i)) == NULL) 1697 return (NULL); 1698 #ifdef DEBUG 1699 /* 1700 * Sanity check: CPU and dip is the same for all entries. 1701 * May be called when first msi to be enabled, at this time 1702 * add_avintr() is not called for other msi 1703 */ 1704 if ((vp->v_share != 0) && 1705 ((APIX_GET_DIP(vp) != dip) || 1706 (vp->v_cpuid != vecp->v_cpuid))) { 1707 APIC_VERBOSE(INTR, (CE_WARN, 1708 "set_grp: cpu or dip for vec 0x%x difft than for " 1709 "vec 0x%x\n", orig_vect, orig_vect + i)); 1710 APIC_VERBOSE(INTR, (CE_WARN, 1711 " cpu: %d vs %d, dip: 0x%p vs 0x%p\n", orig_cpu, 1712 vp->v_cpuid, (void *)dip, 1713 (void *)APIX_GET_DIP(vp))); 1714 return (NULL); 1715 } 1716 #endif /* DEBUG */ 1717 } 1718 1719 cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip); 1720 handle = i_ddi_get_pci_config_handle(dip); 1721 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL); 1722 1723 /* MSI Per vector masking is supported. */ 1724 if (msi_ctrl & PCI_MSI_PVM_MASK) { 1725 if (msi_ctrl & PCI_MSI_64BIT_MASK) 1726 msi_mask_off = cap_ptr + PCI_MSI_64BIT_MASKBITS; 1727 else 1728 msi_mask_off = cap_ptr + PCI_MSI_32BIT_MASK; 1729 msi_pvm = pci_config_get32(handle, msi_mask_off); 1730 pci_config_put32(handle, msi_mask_off, (uint32_t)-1); 1731 APIC_VERBOSE(INTR, (CE_CONT, 1732 "set_grp: pvm supported. Mask set to 0x%x\n", 1733 pci_config_get32(handle, msi_mask_off))); 1734 } 1735 1736 if ((newp = apix_rebind(vecp, new_cpu, num_vectors)) != NULL) 1737 *result = 0; 1738 1739 /* Reenable vectors if per vector masking is supported. */ 1740 if (msi_ctrl & PCI_MSI_PVM_MASK) { 1741 pci_config_put32(handle, msi_mask_off, msi_pvm); 1742 APIC_VERBOSE(INTR, (CE_CONT, 1743 "set_grp: pvm supported. Mask restored to 0x%x\n", 1744 pci_config_get32(handle, msi_mask_off))); 1745 } 1746 1747 return (newp); 1748 } 1749 1750 void 1751 apix_intx_set_vector(int irqno, uint32_t cpuid, uchar_t vector) 1752 { 1753 apic_irq_t *irqp; 1754 1755 mutex_enter(&airq_mutex); 1756 irqp = apic_irq_table[irqno]; 1757 irqp->airq_cpu = cpuid; 1758 irqp->airq_vector = vector; 1759 apic_record_rdt_entry(irqp, irqno); 1760 mutex_exit(&airq_mutex); 1761 } 1762 1763 apix_vector_t * 1764 apix_intx_get_vector(int irqno) 1765 { 1766 apic_irq_t *irqp; 1767 uint32_t cpuid; 1768 uchar_t vector; 1769 1770 mutex_enter(&airq_mutex); 1771 irqp = apic_irq_table[irqno & 0xff]; 1772 if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) { 1773 mutex_exit(&airq_mutex); 1774 return (NULL); 1775 } 1776 cpuid = irqp->airq_cpu; 1777 vector = irqp->airq_vector; 1778 mutex_exit(&airq_mutex); 1779 1780 return (xv_vector(cpuid, vector)); 1781 } 1782 1783 /* 1784 * Must called with interrupts disabled and apic_ioapic_lock held 1785 */ 1786 void 1787 apix_intx_enable(int irqno) 1788 { 1789 uchar_t ioapicindex, intin; 1790 apic_irq_t *irqp = apic_irq_table[irqno]; 1791 ioapic_rdt_t irdt; 1792 apic_cpus_info_t *cpu_infop; 1793 apix_vector_t *vecp = xv_vector(irqp->airq_cpu, irqp->airq_vector); 1794 1795 ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp)); 1796 1797 ioapicindex = irqp->airq_ioapicindex; 1798 intin = irqp->airq_intin_no; 1799 cpu_infop = &apic_cpus[irqp->airq_cpu]; 1800 1801 irdt.ir_lo = AV_PDEST | AV_FIXED | irqp->airq_rdt_entry; 1802 irdt.ir_hi = cpu_infop->aci_local_id; 1803 1804 apic_vt_ops->apic_intrmap_alloc_entry(&vecp->v_intrmap_private, NULL, 1805 vecp->v_type, 1, ioapicindex); 1806 apic_vt_ops->apic_intrmap_map_entry(vecp->v_intrmap_private, 1807 (void *)&irdt, vecp->v_type, 1); 1808 apic_vt_ops->apic_intrmap_record_rdt(vecp->v_intrmap_private, &irdt); 1809 1810 /* write RDT entry high dword - destination */ 1811 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin, 1812 irdt.ir_hi); 1813 1814 /* Write the vector, trigger, and polarity portion of the RDT */ 1815 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin, irdt.ir_lo); 1816 1817 vecp->v_state = APIX_STATE_ENABLED; 1818 1819 APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_enable: ioapic 0x%x" 1820 " intin 0x%x rdt_low 0x%x rdt_high 0x%x\n", 1821 ioapicindex, intin, irdt.ir_lo, irdt.ir_hi)); 1822 } 1823 1824 /* 1825 * Must called with interrupts disabled and apic_ioapic_lock held 1826 */ 1827 void 1828 apix_intx_disable(int irqno) 1829 { 1830 apic_irq_t *irqp = apic_irq_table[irqno]; 1831 int ioapicindex, intin; 1832 1833 ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp)); 1834 /* 1835 * The assumption here is that this is safe, even for 1836 * systems with IOAPICs that suffer from the hardware 1837 * erratum because all devices have been quiesced before 1838 * they unregister their interrupt handlers. If that 1839 * assumption turns out to be false, this mask operation 1840 * can induce the same erratum result we're trying to 1841 * avoid. 1842 */ 1843 ioapicindex = irqp->airq_ioapicindex; 1844 intin = irqp->airq_intin_no; 1845 ioapic_write(ioapicindex, APIC_RDT_CMD + 2 * intin, AV_MASK); 1846 1847 APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_disable: ioapic 0x%x" 1848 " intin 0x%x\n", ioapicindex, intin)); 1849 } 1850 1851 void 1852 apix_intx_free(int irqno) 1853 { 1854 apic_irq_t *irqp; 1855 1856 mutex_enter(&airq_mutex); 1857 irqp = apic_irq_table[irqno]; 1858 1859 if (IS_IRQ_FREE(irqp)) { 1860 mutex_exit(&airq_mutex); 1861 return; 1862 } 1863 1864 irqp->airq_mps_intr_index = FREE_INDEX; 1865 irqp->airq_cpu = IRQ_UNINIT; 1866 irqp->airq_vector = APIX_INVALID_VECT; 1867 mutex_exit(&airq_mutex); 1868 } 1869 1870 #ifdef DEBUG 1871 int apix_intr_deliver_timeouts = 0; 1872 int apix_intr_rirr_timeouts = 0; 1873 int apix_intr_rirr_reset_failure = 0; 1874 #endif 1875 int apix_max_reps_irr_pending = 10; 1876 1877 #define GET_RDT_BITS(ioapic, intin, bits) \ 1878 (READ_IOAPIC_RDT_ENTRY_LOW_DWORD((ioapic), (intin)) & (bits)) 1879 #define APIX_CHECK_IRR_DELAY drv_usectohz(5000) 1880 1881 int 1882 apix_intx_rebind(int irqno, processorid_t cpuid, uchar_t vector) 1883 { 1884 apic_irq_t *irqp = apic_irq_table[irqno]; 1885 ulong_t iflag; 1886 int waited, ioapic_ix, intin_no, level, repeats, rdt_entry, masked; 1887 1888 ASSERT(irqp != NULL); 1889 1890 iflag = intr_clear(); 1891 lock_set(&apic_ioapic_lock); 1892 1893 ioapic_ix = irqp->airq_ioapicindex; 1894 intin_no = irqp->airq_intin_no; 1895 level = apic_level_intr[irqno]; 1896 1897 /* 1898 * Wait for the delivery status bit to be cleared. This should 1899 * be a very small amount of time. 1900 */ 1901 repeats = 0; 1902 do { 1903 repeats++; 1904 1905 for (waited = 0; waited < apic_max_reps_clear_pending; 1906 waited++) { 1907 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) == 0) 1908 break; 1909 } 1910 if (!level) 1911 break; 1912 1913 /* 1914 * Mask the RDT entry for level-triggered interrupts. 1915 */ 1916 irqp->airq_rdt_entry |= AV_MASK; 1917 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 1918 intin_no); 1919 if ((masked = (rdt_entry & AV_MASK)) == 0) { 1920 /* Mask it */ 1921 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no, 1922 AV_MASK | rdt_entry); 1923 } 1924 1925 /* 1926 * If there was a race and an interrupt was injected 1927 * just before we masked, check for that case here. 1928 * Then, unmask the RDT entry and try again. If we're 1929 * on our last try, don't unmask (because we want the 1930 * RDT entry to remain masked for the rest of the 1931 * function). 1932 */ 1933 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 1934 intin_no); 1935 if ((masked == 0) && ((rdt_entry & AV_PENDING) != 0) && 1936 (repeats < apic_max_reps_clear_pending)) { 1937 /* Unmask it */ 1938 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 1939 intin_no, rdt_entry & ~AV_MASK); 1940 irqp->airq_rdt_entry &= ~AV_MASK; 1941 } 1942 } while ((rdt_entry & AV_PENDING) && 1943 (repeats < apic_max_reps_clear_pending)); 1944 1945 #ifdef DEBUG 1946 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) != 0) 1947 apix_intr_deliver_timeouts++; 1948 #endif 1949 1950 if (!level || !APIX_IS_MASK_RDT(apix_mul_ioapic_method)) 1951 goto done; 1952 1953 /* 1954 * wait for remote IRR to be cleared for level-triggered 1955 * interrupts 1956 */ 1957 repeats = 0; 1958 do { 1959 repeats++; 1960 1961 for (waited = 0; waited < apic_max_reps_clear_pending; 1962 waited++) { 1963 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) 1964 == 0) 1965 break; 1966 } 1967 1968 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) { 1969 lock_clear(&apic_ioapic_lock); 1970 intr_restore(iflag); 1971 1972 delay(APIX_CHECK_IRR_DELAY); 1973 1974 iflag = intr_clear(); 1975 lock_set(&apic_ioapic_lock); 1976 } 1977 } while (repeats < apix_max_reps_irr_pending); 1978 1979 if (repeats >= apix_max_reps_irr_pending) { 1980 #ifdef DEBUG 1981 apix_intr_rirr_timeouts++; 1982 #endif 1983 1984 /* 1985 * If we waited and the Remote IRR bit is still not cleared, 1986 * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS 1987 * times for this interrupt, try the last-ditch workaround: 1988 */ 1989 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) { 1990 /* 1991 * Trying to clear the bit through normal 1992 * channels has failed. So as a last-ditch 1993 * effort, try to set the trigger mode to 1994 * edge, then to level. This has been 1995 * observed to work on many systems. 1996 */ 1997 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 1998 intin_no, 1999 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 2000 intin_no) & ~AV_LEVEL); 2001 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 2002 intin_no, 2003 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 2004 intin_no) | AV_LEVEL); 2005 } 2006 2007 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) { 2008 #ifdef DEBUG 2009 apix_intr_rirr_reset_failure++; 2010 #endif 2011 lock_clear(&apic_ioapic_lock); 2012 intr_restore(iflag); 2013 prom_printf("apix: Remote IRR still " 2014 "not clear for IOAPIC %d intin %d.\n" 2015 "\tInterrupts to this pin may cease " 2016 "functioning.\n", ioapic_ix, intin_no); 2017 return (1); /* return failure */ 2018 } 2019 } 2020 2021 done: 2022 /* change apic_irq_table */ 2023 lock_clear(&apic_ioapic_lock); 2024 intr_restore(iflag); 2025 apix_intx_set_vector(irqno, cpuid, vector); 2026 iflag = intr_clear(); 2027 lock_set(&apic_ioapic_lock); 2028 2029 /* reprogramme IO-APIC RDT entry */ 2030 apix_intx_enable(irqno); 2031 2032 lock_clear(&apic_ioapic_lock); 2033 intr_restore(iflag); 2034 2035 return (0); 2036 } 2037 2038 static int 2039 apix_intx_get_pending(int irqno) 2040 { 2041 apic_irq_t *irqp; 2042 int intin, ioapicindex, pending; 2043 ulong_t iflag; 2044 2045 mutex_enter(&airq_mutex); 2046 irqp = apic_irq_table[irqno]; 2047 if (IS_IRQ_FREE(irqp)) { 2048 mutex_exit(&airq_mutex); 2049 return (0); 2050 } 2051 2052 /* check IO-APIC delivery status */ 2053 intin = irqp->airq_intin_no; 2054 ioapicindex = irqp->airq_ioapicindex; 2055 mutex_exit(&airq_mutex); 2056 2057 iflag = intr_clear(); 2058 lock_set(&apic_ioapic_lock); 2059 2060 pending = (READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin) & 2061 AV_PENDING) ? 1 : 0; 2062 2063 lock_clear(&apic_ioapic_lock); 2064 intr_restore(iflag); 2065 2066 return (pending); 2067 } 2068 2069 /* 2070 * This function will mask the interrupt on the I/O APIC 2071 */ 2072 static void 2073 apix_intx_set_mask(int irqno) 2074 { 2075 int intin, ioapixindex, rdt_entry; 2076 ulong_t iflag; 2077 apic_irq_t *irqp; 2078 2079 mutex_enter(&airq_mutex); 2080 irqp = apic_irq_table[irqno]; 2081 2082 ASSERT(irqp->airq_mps_intr_index != FREE_INDEX); 2083 2084 intin = irqp->airq_intin_no; 2085 ioapixindex = irqp->airq_ioapicindex; 2086 mutex_exit(&airq_mutex); 2087 2088 iflag = intr_clear(); 2089 lock_set(&apic_ioapic_lock); 2090 2091 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin); 2092 2093 /* clear mask */ 2094 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin, 2095 (AV_MASK | rdt_entry)); 2096 2097 lock_clear(&apic_ioapic_lock); 2098 intr_restore(iflag); 2099 } 2100 2101 /* 2102 * This function will clear the mask for the interrupt on the I/O APIC 2103 */ 2104 static void 2105 apix_intx_clear_mask(int irqno) 2106 { 2107 int intin, ioapixindex, rdt_entry; 2108 ulong_t iflag; 2109 apic_irq_t *irqp; 2110 2111 mutex_enter(&airq_mutex); 2112 irqp = apic_irq_table[irqno]; 2113 2114 ASSERT(irqp->airq_mps_intr_index != FREE_INDEX); 2115 2116 intin = irqp->airq_intin_no; 2117 ioapixindex = irqp->airq_ioapicindex; 2118 mutex_exit(&airq_mutex); 2119 2120 iflag = intr_clear(); 2121 lock_set(&apic_ioapic_lock); 2122 2123 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin); 2124 2125 /* clear mask */ 2126 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin, 2127 ((~AV_MASK) & rdt_entry)); 2128 2129 lock_clear(&apic_ioapic_lock); 2130 intr_restore(iflag); 2131 } 2132 2133 /* 2134 * For level-triggered interrupt, mask the IRQ line. Mask means 2135 * new interrupts will not be delivered. The interrupt already 2136 * accepted by a local APIC is not affected 2137 */ 2138 void 2139 apix_level_intr_pre_eoi(int irq) 2140 { 2141 apic_irq_t *irqp = apic_irq_table[irq]; 2142 int apic_ix, intin_ix; 2143 2144 if (irqp == NULL) 2145 return; 2146 2147 ASSERT(apic_level_intr[irq] == TRIGGER_MODE_LEVEL); 2148 2149 lock_set(&apic_ioapic_lock); 2150 2151 intin_ix = irqp->airq_intin_no; 2152 apic_ix = irqp->airq_ioapicindex; 2153 2154 if (irqp->airq_cpu != CPU->cpu_id) { 2155 if (!APIX_IS_MASK_RDT(apix_mul_ioapic_method)) 2156 ioapic_write_eoi(apic_ix, irqp->airq_vector); 2157 lock_clear(&apic_ioapic_lock); 2158 return; 2159 } 2160 2161 if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC) { 2162 /* 2163 * This is a IOxAPIC and there is EOI register: 2164 * Change the vector to reserved unused vector, so that 2165 * the EOI from Local APIC won't clear the Remote IRR for 2166 * this level trigger interrupt. Instead, we'll manually 2167 * clear it in apix_post_hardint() after ISR handling. 2168 */ 2169 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix, 2170 (irqp->airq_rdt_entry & (~0xff)) | APIX_RESV_VECTOR); 2171 } else { 2172 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix, 2173 AV_MASK | irqp->airq_rdt_entry); 2174 } 2175 2176 lock_clear(&apic_ioapic_lock); 2177 } 2178 2179 /* 2180 * For level-triggered interrupt, unmask the IRQ line 2181 * or restore the original vector number. 2182 */ 2183 void 2184 apix_level_intr_post_dispatch(int irq) 2185 { 2186 apic_irq_t *irqp = apic_irq_table[irq]; 2187 int apic_ix, intin_ix; 2188 2189 if (irqp == NULL) 2190 return; 2191 2192 lock_set(&apic_ioapic_lock); 2193 2194 intin_ix = irqp->airq_intin_no; 2195 apic_ix = irqp->airq_ioapicindex; 2196 2197 if (APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method)) { 2198 /* 2199 * Already sent EOI back to Local APIC. 2200 * Send EOI to IO-APIC 2201 */ 2202 ioapic_write_eoi(apic_ix, irqp->airq_vector); 2203 } else { 2204 /* clear the mask or restore the vector */ 2205 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix, 2206 irqp->airq_rdt_entry); 2207 2208 /* send EOI to IOxAPIC */ 2209 if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC) 2210 ioapic_write_eoi(apic_ix, irqp->airq_vector); 2211 } 2212 2213 lock_clear(&apic_ioapic_lock); 2214 } 2215 2216 static int 2217 apix_intx_get_shared(int irqno) 2218 { 2219 apic_irq_t *irqp; 2220 int share; 2221 2222 mutex_enter(&airq_mutex); 2223 irqp = apic_irq_table[irqno]; 2224 if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) { 2225 mutex_exit(&airq_mutex); 2226 return (0); 2227 } 2228 share = irqp->airq_share; 2229 mutex_exit(&airq_mutex); 2230 2231 return (share); 2232 } 2233 2234 static void 2235 apix_intx_set_shared(int irqno, int delta) 2236 { 2237 apic_irq_t *irqp; 2238 2239 mutex_enter(&airq_mutex); 2240 irqp = apic_irq_table[irqno]; 2241 if (IS_IRQ_FREE(irqp)) { 2242 mutex_exit(&airq_mutex); 2243 return; 2244 } 2245 irqp->airq_share += delta; 2246 mutex_exit(&airq_mutex); 2247 } 2248 2249 /* 2250 * Setup IRQ table. Return IRQ no or -1 on failure 2251 */ 2252 static int 2253 apix_intx_setup(dev_info_t *dip, int inum, int irqno, 2254 struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *iflagp) 2255 { 2256 int origirq = ispec->intrspec_vec; 2257 int newirq; 2258 short intr_index; 2259 uchar_t ipin, ioapic, ioapicindex; 2260 apic_irq_t *irqp; 2261 2262 UNREFERENCED_1PARAMETER(inum); 2263 2264 if (intrp != NULL) { 2265 intr_index = (short)(intrp - apic_io_intrp); 2266 ioapic = intrp->intr_destid; 2267 ipin = intrp->intr_destintin; 2268 2269 /* Find ioapicindex. If destid was ALL, we will exit with 0. */ 2270 for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--) 2271 if (apic_io_id[ioapicindex] == ioapic) 2272 break; 2273 ASSERT((ioapic == apic_io_id[ioapicindex]) || 2274 (ioapic == INTR_ALL_APIC)); 2275 2276 /* check whether this intin# has been used by another irqno */ 2277 if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1) 2278 return (newirq); 2279 2280 } else if (iflagp != NULL) { /* ACPI */ 2281 intr_index = ACPI_INDEX; 2282 ioapicindex = acpi_find_ioapic(irqno); 2283 ASSERT(ioapicindex != 0xFF); 2284 ioapic = apic_io_id[ioapicindex]; 2285 ipin = irqno - apic_io_vectbase[ioapicindex]; 2286 2287 if (apic_irq_table[irqno] && 2288 apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) { 2289 ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin && 2290 apic_irq_table[irqno]->airq_ioapicindex == 2291 ioapicindex); 2292 return (irqno); 2293 } 2294 2295 } else { /* default configuration */ 2296 intr_index = DEFAULT_INDEX; 2297 ioapicindex = 0; 2298 ioapic = apic_io_id[ioapicindex]; 2299 ipin = (uchar_t)irqno; 2300 } 2301 2302 /* allocate a new IRQ no */ 2303 if ((irqp = apic_irq_table[irqno]) == NULL) { 2304 irqp = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP); 2305 apic_irq_table[irqno] = irqp; 2306 } else { 2307 if (irqp->airq_mps_intr_index != FREE_INDEX) { 2308 newirq = apic_allocate_irq(apic_first_avail_irq); 2309 if (newirq == -1) { 2310 return (-1); 2311 } 2312 irqno = newirq; 2313 irqp = apic_irq_table[irqno]; 2314 ASSERT(irqp != NULL); 2315 } 2316 } 2317 apic_max_device_irq = max(irqno, apic_max_device_irq); 2318 apic_min_device_irq = min(irqno, apic_min_device_irq); 2319 2320 irqp->airq_mps_intr_index = intr_index; 2321 irqp->airq_ioapicindex = ioapicindex; 2322 irqp->airq_intin_no = ipin; 2323 irqp->airq_dip = dip; 2324 irqp->airq_origirq = (uchar_t)origirq; 2325 if (iflagp != NULL) 2326 irqp->airq_iflag = *iflagp; 2327 irqp->airq_cpu = IRQ_UNINIT; 2328 irqp->airq_vector = 0; 2329 2330 return (irqno); 2331 } 2332 2333 /* 2334 * Setup IRQ table for non-pci devices. Return IRQ no or -1 on error 2335 */ 2336 static int 2337 apix_intx_setup_nonpci(dev_info_t *dip, int inum, int bustype, 2338 struct intrspec *ispec) 2339 { 2340 int irqno = ispec->intrspec_vec; 2341 int newirq, i; 2342 iflag_t intr_flag; 2343 ACPI_SUBTABLE_HEADER *hp; 2344 ACPI_MADT_INTERRUPT_OVERRIDE *isop; 2345 struct apic_io_intr *intrp; 2346 2347 if (!apic_enable_acpi || apic_use_acpi_madt_only) { 2348 int busid; 2349 2350 if (bustype == 0) 2351 bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA; 2352 2353 /* loop checking BUS_ISA/BUS_EISA */ 2354 for (i = 0; i < 2; i++) { 2355 if (((busid = apic_find_bus_id(bustype)) != -1) && 2356 ((intrp = apic_find_io_intr_w_busid(irqno, busid)) 2357 != NULL)) { 2358 return (apix_intx_setup(dip, inum, irqno, 2359 intrp, ispec, NULL)); 2360 } 2361 bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA; 2362 } 2363 2364 /* fall back to default configuration */ 2365 return (-1); 2366 } 2367 2368 /* search iso entries first */ 2369 if (acpi_iso_cnt != 0) { 2370 hp = (ACPI_SUBTABLE_HEADER *)acpi_isop; 2371 i = 0; 2372 while (i < acpi_iso_cnt) { 2373 if (hp->Type == ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) { 2374 isop = (ACPI_MADT_INTERRUPT_OVERRIDE *) hp; 2375 if (isop->Bus == 0 && 2376 isop->SourceIrq == irqno) { 2377 newirq = isop->GlobalIrq; 2378 intr_flag.intr_po = isop->IntiFlags & 2379 ACPI_MADT_POLARITY_MASK; 2380 intr_flag.intr_el = (isop->IntiFlags & 2381 ACPI_MADT_TRIGGER_MASK) >> 2; 2382 intr_flag.bustype = BUS_ISA; 2383 2384 return (apix_intx_setup(dip, inum, 2385 newirq, NULL, ispec, &intr_flag)); 2386 } 2387 i++; 2388 } 2389 hp = (ACPI_SUBTABLE_HEADER *)(((char *)hp) + 2390 hp->Length); 2391 } 2392 } 2393 intr_flag.intr_po = INTR_PO_ACTIVE_HIGH; 2394 intr_flag.intr_el = INTR_EL_EDGE; 2395 intr_flag.bustype = BUS_ISA; 2396 return (apix_intx_setup(dip, inum, irqno, NULL, ispec, &intr_flag)); 2397 } 2398 2399 2400 /* 2401 * Setup IRQ table for pci devices. Return IRQ no or -1 on error 2402 */ 2403 static int 2404 apix_intx_setup_pci(dev_info_t *dip, int inum, int bustype, 2405 struct intrspec *ispec) 2406 { 2407 int busid, devid, pci_irq; 2408 ddi_acc_handle_t cfg_handle; 2409 uchar_t ipin; 2410 iflag_t intr_flag; 2411 struct apic_io_intr *intrp; 2412 2413 if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0) 2414 return (-1); 2415 2416 if (busid == 0 && apic_pci_bus_total == 1) 2417 busid = (int)apic_single_pci_busid; 2418 2419 if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS) 2420 return (-1); 2421 ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA; 2422 pci_config_teardown(&cfg_handle); 2423 2424 if (apic_enable_acpi && !apic_use_acpi_madt_only) { /* ACPI */ 2425 if (apic_acpi_translate_pci_irq(dip, busid, devid, 2426 ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS) 2427 return (-1); 2428 2429 intr_flag.bustype = (uchar_t)bustype; 2430 return (apix_intx_setup(dip, inum, pci_irq, NULL, ispec, 2431 &intr_flag)); 2432 } 2433 2434 /* MP configuration table */ 2435 pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3); 2436 if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid)) == NULL) { 2437 pci_irq = apic_handle_pci_pci_bridge(dip, devid, ipin, &intrp); 2438 if (pci_irq == -1) 2439 return (-1); 2440 } 2441 2442 return (apix_intx_setup(dip, inum, pci_irq, intrp, ispec, NULL)); 2443 } 2444 2445 /* 2446 * Translate and return IRQ no 2447 */ 2448 static int 2449 apix_intx_xlate_irq(dev_info_t *dip, int inum, struct intrspec *ispec) 2450 { 2451 int newirq, irqno = ispec->intrspec_vec; 2452 int parent_is_pci_or_pciex = 0, child_is_pciex = 0; 2453 int bustype = 0, dev_len; 2454 char dev_type[16]; 2455 2456 if (apic_defconf) { 2457 mutex_enter(&airq_mutex); 2458 goto defconf; 2459 } 2460 2461 if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi)) { 2462 mutex_enter(&airq_mutex); 2463 goto nonpci; 2464 } 2465 2466 /* 2467 * use ddi_getlongprop_buf() instead of ddi_prop_lookup_string() 2468 * to avoid extra buffer allocation. 2469 */ 2470 dev_len = sizeof (dev_type); 2471 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip), 2472 DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type, 2473 &dev_len) == DDI_PROP_SUCCESS) { 2474 if ((strcmp(dev_type, "pci") == 0) || 2475 (strcmp(dev_type, "pciex") == 0)) 2476 parent_is_pci_or_pciex = 1; 2477 } 2478 2479 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, 2480 DDI_PROP_DONTPASS, "compatible", (caddr_t)dev_type, 2481 &dev_len) == DDI_PROP_SUCCESS) { 2482 if (strstr(dev_type, "pciex")) 2483 child_is_pciex = 1; 2484 } 2485 2486 mutex_enter(&airq_mutex); 2487 2488 if (parent_is_pci_or_pciex) { 2489 bustype = child_is_pciex ? BUS_PCIE : BUS_PCI; 2490 newirq = apix_intx_setup_pci(dip, inum, bustype, ispec); 2491 if (newirq != -1) 2492 goto done; 2493 bustype = 0; 2494 } else if (strcmp(dev_type, "isa") == 0) 2495 bustype = BUS_ISA; 2496 else if (strcmp(dev_type, "eisa") == 0) 2497 bustype = BUS_EISA; 2498 2499 nonpci: 2500 newirq = apix_intx_setup_nonpci(dip, inum, bustype, ispec); 2501 if (newirq != -1) 2502 goto done; 2503 2504 defconf: 2505 newirq = apix_intx_setup(dip, inum, irqno, NULL, ispec, NULL); 2506 if (newirq == -1) { 2507 mutex_exit(&airq_mutex); 2508 return (-1); 2509 } 2510 done: 2511 ASSERT(apic_irq_table[newirq]); 2512 mutex_exit(&airq_mutex); 2513 return (newirq); 2514 } 2515 2516 static int 2517 apix_intx_alloc_vector(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp, 2518 struct intrspec *ispec) 2519 { 2520 int irqno; 2521 apix_vector_t *vecp; 2522 2523 if ((irqno = apix_intx_xlate_irq(dip, hdlp->ih_inum, ispec)) == -1) 2524 return (0); 2525 2526 if ((vecp = apix_alloc_intx(dip, hdlp->ih_inum, irqno)) == NULL) 2527 return (0); 2528 2529 hdlp->ih_irq = irqno; 2530 2531 DDI_INTR_IMPLDBG((CE_CONT, "apix_intx_alloc_vector: dip=0x%p name=%s " 2532 "irqno=0x%x cpuid=%d vector=0x%x\n", 2533 (void *)dip, ddi_driver_name(dip), irqno, 2534 vecp->v_cpuid, vecp->v_vector)); 2535 2536 return (1); 2537 } 2538 2539 /* 2540 * Return the vector number if the translated IRQ for this device 2541 * has a vector mapping setup. If no IRQ setup exists or no vector is 2542 * allocated to it then return 0. 2543 */ 2544 static apix_vector_t * 2545 apix_intx_xlate_vector(dev_info_t *dip, int inum, struct intrspec *ispec) 2546 { 2547 int irqno; 2548 apix_vector_t *vecp; 2549 2550 /* get the IRQ number */ 2551 if ((irqno = apix_intx_xlate_irq(dip, inum, ispec)) == -1) 2552 return (NULL); 2553 2554 /* get the vector number if a vector is allocated to this irqno */ 2555 vecp = apix_intx_get_vector(irqno); 2556 2557 return (vecp); 2558 } 2559 2560 /* 2561 * Switch between safe and x2APIC IPI sending method. 2562 * The CPU may power on in xapic mode or x2apic mode. If the CPU needs to send 2563 * an IPI to other CPUs before entering x2APIC mode, it still needs to use the 2564 * xAPIC method. Before sending a StartIPI to the target CPU, psm_send_ipi will 2565 * be changed to apic_common_send_ipi, which detects current local APIC mode and 2566 * use the right method to send an IPI. If some CPUs fail to start up, 2567 * apic_poweron_cnt won't return to zero, so apic_common_send_ipi will always be 2568 * used. psm_send_ipi can't be simply changed back to x2apic_send_ipi if some 2569 * CPUs failed to start up because those failed CPUs may recover itself later at 2570 * unpredictable time. 2571 */ 2572 void 2573 apic_switch_ipi_callback(boolean_t enter) 2574 { 2575 ulong_t iflag; 2576 struct psm_ops *pops = psmops; 2577 2578 iflag = intr_clear(); 2579 lock_set(&apic_mode_switch_lock); 2580 if (enter) { 2581 ASSERT(apic_poweron_cnt >= 0); 2582 if (apic_poweron_cnt == 0) { 2583 pops->psm_send_ipi = apic_common_send_ipi; 2584 send_dirintf = pops->psm_send_ipi; 2585 } 2586 apic_poweron_cnt++; 2587 } else { 2588 ASSERT(apic_poweron_cnt > 0); 2589 apic_poweron_cnt--; 2590 if (apic_poweron_cnt == 0) { 2591 pops->psm_send_ipi = x2apic_send_ipi; 2592 send_dirintf = pops->psm_send_ipi; 2593 } 2594 } 2595 lock_clear(&apic_mode_switch_lock); 2596 intr_restore(iflag); 2597 } 2598 2599 /* stub function */ 2600 int 2601 apix_loaded(void) 2602 { 2603 return (apix_is_enabled); 2604 }