Print this page
3752 want more verifiable dbuf user eviction
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Will Andrews <willa@spectralogic.com>
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/fs/zfs/zap_leaf.c
+++ new/usr/src/uts/common/fs/zfs/zap_leaf.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 24 */
25 25
26 26 /*
27 27 * The 512-byte leaf is broken into 32 16-byte chunks.
28 28 * chunk number n means l_chunk[n], even though the header precedes it.
29 29 * the names are stored null-terminated.
30 30 */
31 31
32 32 #include <sys/zio.h>
33 33 #include <sys/spa.h>
34 34 #include <sys/dmu.h>
35 35 #include <sys/zfs_context.h>
36 36 #include <sys/fs/zfs.h>
37 37 #include <sys/zap.h>
38 38 #include <sys/zap_impl.h>
39 39 #include <sys/zap_leaf.h>
40 40 #include <sys/arc.h>
41 41
42 42 static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry);
43 43
44 44 #define CHAIN_END 0xffff /* end of the chunk chain */
45 45
46 46 /* half the (current) minimum block size */
47 47 #define MAX_ARRAY_BYTES (8<<10)
48 48
49 49 #define LEAF_HASH(l, h) \
50 50 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
51 51 ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(l)-(l)->l_phys->l_hdr.lh_prefix_len)))
52 52
53 53 #define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)])
54 54
55 55
56 56 static void
57 57 zap_memset(void *a, int c, size_t n)
58 58 {
59 59 char *cp = a;
60 60 char *cpend = cp + n;
61 61
62 62 while (cp < cpend)
63 63 *cp++ = c;
64 64 }
65 65
66 66 static void
67 67 stv(int len, void *addr, uint64_t value)
68 68 {
69 69 switch (len) {
70 70 case 1:
71 71 *(uint8_t *)addr = value;
72 72 return;
73 73 case 2:
74 74 *(uint16_t *)addr = value;
75 75 return;
76 76 case 4:
77 77 *(uint32_t *)addr = value;
78 78 return;
79 79 case 8:
80 80 *(uint64_t *)addr = value;
81 81 return;
82 82 }
83 83 ASSERT(!"bad int len");
84 84 }
85 85
86 86 static uint64_t
87 87 ldv(int len, const void *addr)
88 88 {
89 89 switch (len) {
90 90 case 1:
91 91 return (*(uint8_t *)addr);
92 92 case 2:
93 93 return (*(uint16_t *)addr);
94 94 case 4:
95 95 return (*(uint32_t *)addr);
96 96 case 8:
↓ open down ↓ |
96 lines elided |
↑ open up ↑ |
97 97 return (*(uint64_t *)addr);
98 98 }
99 99 ASSERT(!"bad int len");
100 100 return (0xFEEDFACEDEADBEEFULL);
101 101 }
102 102
103 103 void
104 104 zap_leaf_byteswap(zap_leaf_phys_t *buf, int size)
105 105 {
106 106 int i;
107 - zap_leaf_t l;
107 + zap_leaf_t l = { 0 };
108 +
108 109 l.l_bs = highbit(size)-1;
109 - l.l_phys = buf;
110 110
111 111 buf->l_hdr.lh_block_type = BSWAP_64(buf->l_hdr.lh_block_type);
112 112 buf->l_hdr.lh_prefix = BSWAP_64(buf->l_hdr.lh_prefix);
113 113 buf->l_hdr.lh_magic = BSWAP_32(buf->l_hdr.lh_magic);
114 114 buf->l_hdr.lh_nfree = BSWAP_16(buf->l_hdr.lh_nfree);
115 115 buf->l_hdr.lh_nentries = BSWAP_16(buf->l_hdr.lh_nentries);
116 116 buf->l_hdr.lh_prefix_len = BSWAP_16(buf->l_hdr.lh_prefix_len);
117 117 buf->l_hdr.lh_freelist = BSWAP_16(buf->l_hdr.lh_freelist);
118 118
119 119 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++)
120 120 buf->l_hash[i] = BSWAP_16(buf->l_hash[i]);
121 121
122 122 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) {
123 123 zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i);
124 124 struct zap_leaf_entry *le;
125 125
126 126 switch (lc->l_free.lf_type) {
127 127 case ZAP_CHUNK_ENTRY:
128 128 le = &lc->l_entry;
129 129
130 130 le->le_type = BSWAP_8(le->le_type);
131 131 le->le_value_intlen = BSWAP_8(le->le_value_intlen);
132 132 le->le_next = BSWAP_16(le->le_next);
133 133 le->le_name_chunk = BSWAP_16(le->le_name_chunk);
134 134 le->le_name_numints = BSWAP_16(le->le_name_numints);
135 135 le->le_value_chunk = BSWAP_16(le->le_value_chunk);
136 136 le->le_value_numints = BSWAP_16(le->le_value_numints);
137 137 le->le_cd = BSWAP_32(le->le_cd);
138 138 le->le_hash = BSWAP_64(le->le_hash);
139 139 break;
140 140 case ZAP_CHUNK_FREE:
141 141 lc->l_free.lf_type = BSWAP_8(lc->l_free.lf_type);
142 142 lc->l_free.lf_next = BSWAP_16(lc->l_free.lf_next);
143 143 break;
144 144 case ZAP_CHUNK_ARRAY:
145 145 lc->l_array.la_type = BSWAP_8(lc->l_array.la_type);
146 146 lc->l_array.la_next = BSWAP_16(lc->l_array.la_next);
147 147 /* la_array doesn't need swapping */
148 148 break;
149 149 default:
150 150 ASSERT(!"bad leaf type");
151 151 }
152 152 }
153 153 }
154 154
155 155 void
156 156 zap_leaf_init(zap_leaf_t *l, boolean_t sort)
157 157 {
158 158 int i;
159 159
160 160 l->l_bs = highbit(l->l_dbuf->db_size)-1;
161 161 zap_memset(&l->l_phys->l_hdr, 0, sizeof (struct zap_leaf_header));
162 162 zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l));
163 163 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
164 164 ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE;
165 165 ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1;
166 166 }
167 167 ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END;
168 168 l->l_phys->l_hdr.lh_block_type = ZBT_LEAF;
169 169 l->l_phys->l_hdr.lh_magic = ZAP_LEAF_MAGIC;
170 170 l->l_phys->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l);
171 171 if (sort)
172 172 l->l_phys->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
173 173 }
174 174
175 175 /*
176 176 * Routines which manipulate leaf chunks (l_chunk[]).
177 177 */
178 178
179 179 static uint16_t
180 180 zap_leaf_chunk_alloc(zap_leaf_t *l)
181 181 {
182 182 int chunk;
183 183
184 184 ASSERT(l->l_phys->l_hdr.lh_nfree > 0);
185 185
186 186 chunk = l->l_phys->l_hdr.lh_freelist;
187 187 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
188 188 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE);
189 189
190 190 l->l_phys->l_hdr.lh_freelist = ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next;
191 191
192 192 l->l_phys->l_hdr.lh_nfree--;
193 193
194 194 return (chunk);
195 195 }
196 196
197 197 static void
198 198 zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk)
199 199 {
200 200 struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free;
201 201 ASSERT3U(l->l_phys->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l));
202 202 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
203 203 ASSERT(zlf->lf_type != ZAP_CHUNK_FREE);
204 204
205 205 zlf->lf_type = ZAP_CHUNK_FREE;
206 206 zlf->lf_next = l->l_phys->l_hdr.lh_freelist;
207 207 bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */
208 208 l->l_phys->l_hdr.lh_freelist = chunk;
209 209
210 210 l->l_phys->l_hdr.lh_nfree++;
211 211 }
212 212
213 213 /*
214 214 * Routines which manipulate leaf arrays (zap_leaf_array type chunks).
215 215 */
216 216
217 217 static uint16_t
218 218 zap_leaf_array_create(zap_leaf_t *l, const char *buf,
219 219 int integer_size, int num_integers)
220 220 {
221 221 uint16_t chunk_head;
222 222 uint16_t *chunkp = &chunk_head;
223 223 int byten = 0;
224 224 uint64_t value = 0;
225 225 int shift = (integer_size-1)*8;
226 226 int len = num_integers;
227 227
228 228 ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES);
229 229
230 230 while (len > 0) {
231 231 uint16_t chunk = zap_leaf_chunk_alloc(l);
232 232 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
233 233 int i;
234 234
235 235 la->la_type = ZAP_CHUNK_ARRAY;
236 236 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) {
237 237 if (byten == 0)
238 238 value = ldv(integer_size, buf);
239 239 la->la_array[i] = value >> shift;
240 240 value <<= 8;
241 241 if (++byten == integer_size) {
242 242 byten = 0;
243 243 buf += integer_size;
244 244 if (--len == 0)
245 245 break;
246 246 }
247 247 }
248 248
249 249 *chunkp = chunk;
250 250 chunkp = &la->la_next;
251 251 }
252 252 *chunkp = CHAIN_END;
253 253
254 254 return (chunk_head);
255 255 }
256 256
257 257 static void
258 258 zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp)
259 259 {
260 260 uint16_t chunk = *chunkp;
261 261
262 262 *chunkp = CHAIN_END;
263 263
264 264 while (chunk != CHAIN_END) {
265 265 int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next;
266 266 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==,
267 267 ZAP_CHUNK_ARRAY);
268 268 zap_leaf_chunk_free(l, chunk);
269 269 chunk = nextchunk;
270 270 }
271 271 }
272 272
273 273 /* array_len and buf_len are in integers, not bytes */
274 274 static void
275 275 zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk,
276 276 int array_int_len, int array_len, int buf_int_len, uint64_t buf_len,
277 277 void *buf)
278 278 {
279 279 int len = MIN(array_len, buf_len);
280 280 int byten = 0;
281 281 uint64_t value = 0;
282 282 char *p = buf;
283 283
284 284 ASSERT3U(array_int_len, <=, buf_int_len);
285 285
286 286 /* Fast path for one 8-byte integer */
287 287 if (array_int_len == 8 && buf_int_len == 8 && len == 1) {
288 288 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
289 289 uint8_t *ip = la->la_array;
290 290 uint64_t *buf64 = buf;
291 291
292 292 *buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 |
293 293 (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 |
294 294 (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 |
295 295 (uint64_t)ip[6] << 8 | (uint64_t)ip[7];
296 296 return;
297 297 }
298 298
299 299 /* Fast path for an array of 1-byte integers (eg. the entry name) */
300 300 if (array_int_len == 1 && buf_int_len == 1 &&
301 301 buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) {
302 302 while (chunk != CHAIN_END) {
303 303 struct zap_leaf_array *la =
304 304 &ZAP_LEAF_CHUNK(l, chunk).l_array;
305 305 bcopy(la->la_array, p, ZAP_LEAF_ARRAY_BYTES);
306 306 p += ZAP_LEAF_ARRAY_BYTES;
307 307 chunk = la->la_next;
308 308 }
309 309 return;
310 310 }
311 311
312 312 while (len > 0) {
313 313 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
314 314 int i;
315 315
316 316 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
317 317 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
318 318 value = (value << 8) | la->la_array[i];
319 319 byten++;
320 320 if (byten == array_int_len) {
321 321 stv(buf_int_len, p, value);
322 322 byten = 0;
323 323 len--;
324 324 if (len == 0)
325 325 return;
326 326 p += buf_int_len;
327 327 }
328 328 }
329 329 chunk = la->la_next;
330 330 }
331 331 }
332 332
333 333 static boolean_t
334 334 zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn,
335 335 int chunk, int array_numints)
336 336 {
337 337 int bseen = 0;
338 338
339 339 if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) {
340 340 uint64_t *thiskey;
341 341 boolean_t match;
342 342
343 343 ASSERT(zn->zn_key_intlen == sizeof (*thiskey));
344 344 thiskey = kmem_alloc(array_numints * sizeof (*thiskey),
345 345 KM_SLEEP);
346 346
347 347 zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints,
348 348 sizeof (*thiskey), array_numints, thiskey);
349 349 match = bcmp(thiskey, zn->zn_key_orig,
350 350 array_numints * sizeof (*thiskey)) == 0;
351 351 kmem_free(thiskey, array_numints * sizeof (*thiskey));
352 352 return (match);
353 353 }
354 354
355 355 ASSERT(zn->zn_key_intlen == 1);
356 356 if (zn->zn_matchtype == MT_FIRST) {
357 357 char *thisname = kmem_alloc(array_numints, KM_SLEEP);
358 358 boolean_t match;
359 359
360 360 zap_leaf_array_read(l, chunk, sizeof (char), array_numints,
361 361 sizeof (char), array_numints, thisname);
362 362 match = zap_match(zn, thisname);
363 363 kmem_free(thisname, array_numints);
364 364 return (match);
365 365 }
366 366
367 367 /*
368 368 * Fast path for exact matching.
369 369 * First check that the lengths match, so that we don't read
370 370 * past the end of the zn_key_orig array.
371 371 */
372 372 if (array_numints != zn->zn_key_orig_numints)
373 373 return (B_FALSE);
374 374 while (bseen < array_numints) {
375 375 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
376 376 int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES);
377 377 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
378 378 if (bcmp(la->la_array, (char *)zn->zn_key_orig + bseen, toread))
379 379 break;
380 380 chunk = la->la_next;
381 381 bseen += toread;
382 382 }
383 383 return (bseen == array_numints);
384 384 }
385 385
386 386 /*
387 387 * Routines which manipulate leaf entries.
388 388 */
389 389
390 390 int
391 391 zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh)
392 392 {
393 393 uint16_t *chunkp;
394 394 struct zap_leaf_entry *le;
395 395
396 396 ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
397 397
398 398 again:
399 399 for (chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash);
400 400 *chunkp != CHAIN_END; chunkp = &le->le_next) {
401 401 uint16_t chunk = *chunkp;
402 402 le = ZAP_LEAF_ENTRY(l, chunk);
403 403
404 404 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
405 405 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
406 406
407 407 if (le->le_hash != zn->zn_hash)
408 408 continue;
409 409
410 410 /*
411 411 * NB: the entry chain is always sorted by cd on
412 412 * normalized zap objects, so this will find the
413 413 * lowest-cd match for MT_FIRST.
414 414 */
415 415 ASSERT(zn->zn_matchtype == MT_EXACT ||
416 416 (l->l_phys->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED));
417 417 if (zap_leaf_array_match(l, zn, le->le_name_chunk,
418 418 le->le_name_numints)) {
419 419 zeh->zeh_num_integers = le->le_value_numints;
420 420 zeh->zeh_integer_size = le->le_value_intlen;
421 421 zeh->zeh_cd = le->le_cd;
422 422 zeh->zeh_hash = le->le_hash;
423 423 zeh->zeh_chunkp = chunkp;
424 424 zeh->zeh_leaf = l;
425 425 return (0);
426 426 }
427 427 }
428 428
429 429 /*
430 430 * NB: we could of course do this in one pass, but that would be
431 431 * a pain. We'll see if MT_BEST is even used much.
432 432 */
433 433 if (zn->zn_matchtype == MT_BEST) {
434 434 zn->zn_matchtype = MT_FIRST;
435 435 goto again;
436 436 }
437 437
438 438 return (SET_ERROR(ENOENT));
439 439 }
440 440
441 441 /* Return (h1,cd1 >= h2,cd2) */
442 442 #define HCD_GTEQ(h1, cd1, h2, cd2) \
443 443 ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE))
444 444
445 445 int
446 446 zap_leaf_lookup_closest(zap_leaf_t *l,
447 447 uint64_t h, uint32_t cd, zap_entry_handle_t *zeh)
448 448 {
449 449 uint16_t chunk;
450 450 uint64_t besth = -1ULL;
451 451 uint32_t bestcd = -1U;
452 452 uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1;
453 453 uint16_t lh;
454 454 struct zap_leaf_entry *le;
455 455
456 456 ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
457 457
458 458 for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) {
459 459 for (chunk = l->l_phys->l_hash[lh];
460 460 chunk != CHAIN_END; chunk = le->le_next) {
461 461 le = ZAP_LEAF_ENTRY(l, chunk);
462 462
463 463 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
464 464 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
465 465
466 466 if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) &&
467 467 HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) {
468 468 ASSERT3U(bestlh, >=, lh);
469 469 bestlh = lh;
470 470 besth = le->le_hash;
471 471 bestcd = le->le_cd;
472 472
473 473 zeh->zeh_num_integers = le->le_value_numints;
474 474 zeh->zeh_integer_size = le->le_value_intlen;
475 475 zeh->zeh_cd = le->le_cd;
476 476 zeh->zeh_hash = le->le_hash;
477 477 zeh->zeh_fakechunk = chunk;
478 478 zeh->zeh_chunkp = &zeh->zeh_fakechunk;
479 479 zeh->zeh_leaf = l;
480 480 }
481 481 }
482 482 }
483 483
484 484 return (bestcd == -1U ? ENOENT : 0);
485 485 }
486 486
487 487 int
488 488 zap_entry_read(const zap_entry_handle_t *zeh,
489 489 uint8_t integer_size, uint64_t num_integers, void *buf)
490 490 {
491 491 struct zap_leaf_entry *le =
492 492 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
493 493 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
494 494
495 495 if (le->le_value_intlen > integer_size)
496 496 return (SET_ERROR(EINVAL));
497 497
498 498 zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk,
499 499 le->le_value_intlen, le->le_value_numints,
500 500 integer_size, num_integers, buf);
501 501
502 502 if (zeh->zeh_num_integers > num_integers)
503 503 return (SET_ERROR(EOVERFLOW));
504 504 return (0);
505 505
506 506 }
507 507
508 508 int
509 509 zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen,
510 510 char *buf)
511 511 {
512 512 struct zap_leaf_entry *le =
513 513 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
514 514 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
515 515
516 516 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
517 517 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8,
518 518 le->le_name_numints, 8, buflen / 8, buf);
519 519 } else {
520 520 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1,
521 521 le->le_name_numints, 1, buflen, buf);
522 522 }
523 523 if (le->le_name_numints > buflen)
524 524 return (SET_ERROR(EOVERFLOW));
525 525 return (0);
526 526 }
527 527
528 528 int
529 529 zap_entry_update(zap_entry_handle_t *zeh,
530 530 uint8_t integer_size, uint64_t num_integers, const void *buf)
531 531 {
532 532 int delta_chunks;
533 533 zap_leaf_t *l = zeh->zeh_leaf;
534 534 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp);
535 535
536 536 delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) -
537 537 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen);
538 538
539 539 if ((int)l->l_phys->l_hdr.lh_nfree < delta_chunks)
540 540 return (SET_ERROR(EAGAIN));
541 541
542 542 zap_leaf_array_free(l, &le->le_value_chunk);
543 543 le->le_value_chunk =
544 544 zap_leaf_array_create(l, buf, integer_size, num_integers);
545 545 le->le_value_numints = num_integers;
546 546 le->le_value_intlen = integer_size;
547 547 return (0);
548 548 }
549 549
550 550 void
551 551 zap_entry_remove(zap_entry_handle_t *zeh)
552 552 {
553 553 uint16_t entry_chunk;
554 554 struct zap_leaf_entry *le;
555 555 zap_leaf_t *l = zeh->zeh_leaf;
556 556
557 557 ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk);
558 558
559 559 entry_chunk = *zeh->zeh_chunkp;
560 560 le = ZAP_LEAF_ENTRY(l, entry_chunk);
561 561 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
562 562
563 563 zap_leaf_array_free(l, &le->le_name_chunk);
564 564 zap_leaf_array_free(l, &le->le_value_chunk);
565 565
566 566 *zeh->zeh_chunkp = le->le_next;
567 567 zap_leaf_chunk_free(l, entry_chunk);
568 568
569 569 l->l_phys->l_hdr.lh_nentries--;
570 570 }
571 571
572 572 int
573 573 zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd,
574 574 uint8_t integer_size, uint64_t num_integers, const void *buf,
575 575 zap_entry_handle_t *zeh)
576 576 {
577 577 uint16_t chunk;
578 578 uint16_t *chunkp;
579 579 struct zap_leaf_entry *le;
580 580 uint64_t valuelen;
581 581 int numchunks;
582 582 uint64_t h = zn->zn_hash;
583 583
584 584 valuelen = integer_size * num_integers;
585 585
586 586 numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints *
587 587 zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen);
588 588 if (numchunks > ZAP_LEAF_NUMCHUNKS(l))
589 589 return (E2BIG);
590 590
591 591 if (cd == ZAP_NEED_CD) {
592 592 /* find the lowest unused cd */
593 593 if (l->l_phys->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) {
594 594 cd = 0;
595 595
596 596 for (chunk = *LEAF_HASH_ENTPTR(l, h);
597 597 chunk != CHAIN_END; chunk = le->le_next) {
598 598 le = ZAP_LEAF_ENTRY(l, chunk);
599 599 if (le->le_cd > cd)
600 600 break;
601 601 if (le->le_hash == h) {
602 602 ASSERT3U(cd, ==, le->le_cd);
603 603 cd++;
604 604 }
605 605 }
606 606 } else {
607 607 /* old unsorted format; do it the O(n^2) way */
608 608 for (cd = 0; ; cd++) {
609 609 for (chunk = *LEAF_HASH_ENTPTR(l, h);
610 610 chunk != CHAIN_END; chunk = le->le_next) {
611 611 le = ZAP_LEAF_ENTRY(l, chunk);
612 612 if (le->le_hash == h &&
613 613 le->le_cd == cd) {
614 614 break;
615 615 }
616 616 }
617 617 /* If this cd is not in use, we are good. */
618 618 if (chunk == CHAIN_END)
619 619 break;
620 620 }
621 621 }
622 622 /*
623 623 * We would run out of space in a block before we could
624 624 * store enough entries to run out of CD values.
625 625 */
626 626 ASSERT3U(cd, <, zap_maxcd(zn->zn_zap));
627 627 }
628 628
629 629 if (l->l_phys->l_hdr.lh_nfree < numchunks)
630 630 return (SET_ERROR(EAGAIN));
631 631
632 632 /* make the entry */
633 633 chunk = zap_leaf_chunk_alloc(l);
634 634 le = ZAP_LEAF_ENTRY(l, chunk);
635 635 le->le_type = ZAP_CHUNK_ENTRY;
636 636 le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig,
637 637 zn->zn_key_intlen, zn->zn_key_orig_numints);
638 638 le->le_name_numints = zn->zn_key_orig_numints;
639 639 le->le_value_chunk =
640 640 zap_leaf_array_create(l, buf, integer_size, num_integers);
641 641 le->le_value_numints = num_integers;
642 642 le->le_value_intlen = integer_size;
643 643 le->le_hash = h;
644 644 le->le_cd = cd;
645 645
646 646 /* link it into the hash chain */
647 647 /* XXX if we did the search above, we could just use that */
648 648 chunkp = zap_leaf_rehash_entry(l, chunk);
649 649
650 650 l->l_phys->l_hdr.lh_nentries++;
651 651
652 652 zeh->zeh_leaf = l;
653 653 zeh->zeh_num_integers = num_integers;
654 654 zeh->zeh_integer_size = le->le_value_intlen;
655 655 zeh->zeh_cd = le->le_cd;
656 656 zeh->zeh_hash = le->le_hash;
657 657 zeh->zeh_chunkp = chunkp;
658 658
659 659 return (0);
660 660 }
661 661
662 662 /*
663 663 * Determine if there is another entry with the same normalized form.
664 664 * For performance purposes, either zn or name must be provided (the
665 665 * other can be NULL). Note, there usually won't be any hash
666 666 * conflicts, in which case we don't need the concatenated/normalized
667 667 * form of the name. But all callers have one of these on hand anyway,
668 668 * so might as well take advantage. A cleaner but slower interface
669 669 * would accept neither argument, and compute the normalized name as
670 670 * needed (using zap_name_alloc(zap_entry_read_name(zeh))).
671 671 */
672 672 boolean_t
673 673 zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn,
674 674 const char *name, zap_t *zap)
675 675 {
676 676 uint64_t chunk;
677 677 struct zap_leaf_entry *le;
678 678 boolean_t allocdzn = B_FALSE;
679 679
680 680 if (zap->zap_normflags == 0)
681 681 return (B_FALSE);
682 682
683 683 for (chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash);
684 684 chunk != CHAIN_END; chunk = le->le_next) {
685 685 le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk);
686 686 if (le->le_hash != zeh->zeh_hash)
687 687 continue;
688 688 if (le->le_cd == zeh->zeh_cd)
689 689 continue;
690 690
691 691 if (zn == NULL) {
692 692 zn = zap_name_alloc(zap, name, MT_FIRST);
693 693 allocdzn = B_TRUE;
694 694 }
695 695 if (zap_leaf_array_match(zeh->zeh_leaf, zn,
696 696 le->le_name_chunk, le->le_name_numints)) {
697 697 if (allocdzn)
698 698 zap_name_free(zn);
699 699 return (B_TRUE);
700 700 }
701 701 }
702 702 if (allocdzn)
703 703 zap_name_free(zn);
704 704 return (B_FALSE);
705 705 }
706 706
707 707 /*
708 708 * Routines for transferring entries between leafs.
709 709 */
710 710
711 711 static uint16_t *
712 712 zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry)
713 713 {
714 714 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry);
715 715 struct zap_leaf_entry *le2;
716 716 uint16_t *chunkp;
717 717
718 718 /*
719 719 * keep the entry chain sorted by cd
720 720 * NB: this will not cause problems for unsorted leafs, though
721 721 * it is unnecessary there.
722 722 */
723 723 for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash);
724 724 *chunkp != CHAIN_END; chunkp = &le2->le_next) {
725 725 le2 = ZAP_LEAF_ENTRY(l, *chunkp);
726 726 if (le2->le_cd > le->le_cd)
727 727 break;
728 728 }
729 729
730 730 le->le_next = *chunkp;
731 731 *chunkp = entry;
732 732 return (chunkp);
733 733 }
734 734
735 735 static uint16_t
736 736 zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl)
737 737 {
738 738 uint16_t new_chunk;
739 739 uint16_t *nchunkp = &new_chunk;
740 740
741 741 while (chunk != CHAIN_END) {
742 742 uint16_t nchunk = zap_leaf_chunk_alloc(nl);
743 743 struct zap_leaf_array *nla =
744 744 &ZAP_LEAF_CHUNK(nl, nchunk).l_array;
745 745 struct zap_leaf_array *la =
746 746 &ZAP_LEAF_CHUNK(l, chunk).l_array;
747 747 int nextchunk = la->la_next;
748 748
749 749 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
750 750 ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l));
751 751
752 752 *nla = *la; /* structure assignment */
753 753
754 754 zap_leaf_chunk_free(l, chunk);
755 755 chunk = nextchunk;
756 756 *nchunkp = nchunk;
757 757 nchunkp = &nla->la_next;
758 758 }
759 759 *nchunkp = CHAIN_END;
760 760 return (new_chunk);
761 761 }
762 762
763 763 static void
764 764 zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl)
765 765 {
766 766 struct zap_leaf_entry *le, *nle;
767 767 uint16_t chunk;
768 768
769 769 le = ZAP_LEAF_ENTRY(l, entry);
770 770 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
771 771
772 772 chunk = zap_leaf_chunk_alloc(nl);
773 773 nle = ZAP_LEAF_ENTRY(nl, chunk);
774 774 *nle = *le; /* structure assignment */
775 775
776 776 (void) zap_leaf_rehash_entry(nl, chunk);
777 777
778 778 nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl);
779 779 nle->le_value_chunk =
780 780 zap_leaf_transfer_array(l, le->le_value_chunk, nl);
781 781
782 782 zap_leaf_chunk_free(l, entry);
783 783
784 784 l->l_phys->l_hdr.lh_nentries--;
785 785 nl->l_phys->l_hdr.lh_nentries++;
786 786 }
787 787
788 788 /*
789 789 * Transfer the entries whose hash prefix ends in 1 to the new leaf.
790 790 */
791 791 void
792 792 zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort)
793 793 {
794 794 int i;
795 795 int bit = 64 - 1 - l->l_phys->l_hdr.lh_prefix_len;
796 796
797 797 /* set new prefix and prefix_len */
798 798 l->l_phys->l_hdr.lh_prefix <<= 1;
799 799 l->l_phys->l_hdr.lh_prefix_len++;
800 800 nl->l_phys->l_hdr.lh_prefix = l->l_phys->l_hdr.lh_prefix | 1;
801 801 nl->l_phys->l_hdr.lh_prefix_len = l->l_phys->l_hdr.lh_prefix_len;
802 802
803 803 /* break existing hash chains */
804 804 zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l));
805 805
806 806 if (sort)
807 807 l->l_phys->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
808 808
809 809 /*
810 810 * Transfer entries whose hash bit 'bit' is set to nl; rehash
811 811 * the remaining entries
812 812 *
813 813 * NB: We could find entries via the hashtable instead. That
814 814 * would be O(hashents+numents) rather than O(numblks+numents),
815 815 * but this accesses memory more sequentially, and when we're
816 816 * called, the block is usually pretty full.
817 817 */
818 818 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
819 819 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i);
820 820 if (le->le_type != ZAP_CHUNK_ENTRY)
821 821 continue;
822 822
823 823 if (le->le_hash & (1ULL << bit))
824 824 zap_leaf_transfer_entry(l, i, nl);
↓ open down ↓ |
705 lines elided |
↑ open up ↑ |
825 825 else
826 826 (void) zap_leaf_rehash_entry(l, i);
827 827 }
828 828 }
829 829
830 830 void
831 831 zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs)
832 832 {
833 833 int i, n;
834 834
835 - n = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift -
835 + n = zap->zap_f_phys->zap_ptrtbl.zt_shift -
836 836 l->l_phys->l_hdr.lh_prefix_len;
837 837 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
838 838 zs->zs_leafs_with_2n_pointers[n]++;
839 839
840 840
841 841 n = l->l_phys->l_hdr.lh_nentries/5;
842 842 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
843 843 zs->zs_blocks_with_n5_entries[n]++;
844 844
845 845 n = ((1<<FZAP_BLOCK_SHIFT(zap)) -
846 846 l->l_phys->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 /
847 847 (1<<FZAP_BLOCK_SHIFT(zap));
848 848 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
849 849 zs->zs_blocks_n_tenths_full[n]++;
850 850
851 851 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) {
852 852 int nentries = 0;
853 853 int chunk = l->l_phys->l_hash[i];
854 854
855 855 while (chunk != CHAIN_END) {
856 856 struct zap_leaf_entry *le =
857 857 ZAP_LEAF_ENTRY(l, chunk);
858 858
859 859 n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) +
860 860 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints *
861 861 le->le_value_intlen);
862 862 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
863 863 zs->zs_entries_using_n_chunks[n]++;
864 864
865 865 chunk = le->le_next;
866 866 nentries++;
867 867 }
868 868
869 869 n = nentries;
870 870 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
871 871 zs->zs_buckets_with_n_entries[n]++;
872 872 }
873 873 }
↓ open down ↓ |
28 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX