1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 */
25
26 /*
27 * The 512-byte leaf is broken into 32 16-byte chunks.
28 * chunk number n means l_chunk[n], even though the header precedes it.
29 * the names are stored null-terminated.
30 */
31
32 #include <sys/zio.h>
33 #include <sys/spa.h>
34 #include <sys/dmu.h>
35 #include <sys/zfs_context.h>
36 #include <sys/fs/zfs.h>
37 #include <sys/zap.h>
38 #include <sys/zap_impl.h>
39 #include <sys/zap_leaf.h>
40 #include <sys/arc.h>
41
42 static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry);
43
44 #define CHAIN_END 0xffff /* end of the chunk chain */
45
46 /* half the (current) minimum block size */
47 #define MAX_ARRAY_BYTES (8<<10)
48
49 #define LEAF_HASH(l, h) \
50 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
51 ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(l)-(l)->l_phys->l_hdr.lh_prefix_len)))
52
53 #define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)])
54
55
56 static void
57 zap_memset(void *a, int c, size_t n)
58 {
59 char *cp = a;
60 char *cpend = cp + n;
61
62 while (cp < cpend)
63 *cp++ = c;
64 }
65
66 static void
67 stv(int len, void *addr, uint64_t value)
68 {
69 switch (len) {
70 case 1:
71 *(uint8_t *)addr = value;
72 return;
73 case 2:
74 *(uint16_t *)addr = value;
75 return;
76 case 4:
77 *(uint32_t *)addr = value;
78 return;
79 case 8:
80 *(uint64_t *)addr = value;
81 return;
82 }
83 ASSERT(!"bad int len");
84 }
85
86 static uint64_t
87 ldv(int len, const void *addr)
88 {
89 switch (len) {
90 case 1:
91 return (*(uint8_t *)addr);
92 case 2:
93 return (*(uint16_t *)addr);
94 case 4:
95 return (*(uint32_t *)addr);
96 case 8:
97 return (*(uint64_t *)addr);
98 }
99 ASSERT(!"bad int len");
100 return (0xFEEDFACEDEADBEEFULL);
101 }
102
103 void
104 zap_leaf_byteswap(zap_leaf_phys_t *buf, int size)
105 {
106 int i;
107 zap_leaf_t l;
108 l.l_bs = highbit(size)-1;
109 l.l_phys = buf;
110
111 buf->l_hdr.lh_block_type = BSWAP_64(buf->l_hdr.lh_block_type);
112 buf->l_hdr.lh_prefix = BSWAP_64(buf->l_hdr.lh_prefix);
113 buf->l_hdr.lh_magic = BSWAP_32(buf->l_hdr.lh_magic);
114 buf->l_hdr.lh_nfree = BSWAP_16(buf->l_hdr.lh_nfree);
115 buf->l_hdr.lh_nentries = BSWAP_16(buf->l_hdr.lh_nentries);
116 buf->l_hdr.lh_prefix_len = BSWAP_16(buf->l_hdr.lh_prefix_len);
117 buf->l_hdr.lh_freelist = BSWAP_16(buf->l_hdr.lh_freelist);
118
119 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++)
120 buf->l_hash[i] = BSWAP_16(buf->l_hash[i]);
121
122 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) {
123 zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i);
124 struct zap_leaf_entry *le;
125
126 switch (lc->l_free.lf_type) {
127 case ZAP_CHUNK_ENTRY:
128 le = &lc->l_entry;
129
130 le->le_type = BSWAP_8(le->le_type);
131 le->le_value_intlen = BSWAP_8(le->le_value_intlen);
132 le->le_next = BSWAP_16(le->le_next);
133 le->le_name_chunk = BSWAP_16(le->le_name_chunk);
134 le->le_name_numints = BSWAP_16(le->le_name_numints);
135 le->le_value_chunk = BSWAP_16(le->le_value_chunk);
136 le->le_value_numints = BSWAP_16(le->le_value_numints);
137 le->le_cd = BSWAP_32(le->le_cd);
138 le->le_hash = BSWAP_64(le->le_hash);
139 break;
140 case ZAP_CHUNK_FREE:
141 lc->l_free.lf_type = BSWAP_8(lc->l_free.lf_type);
142 lc->l_free.lf_next = BSWAP_16(lc->l_free.lf_next);
143 break;
144 case ZAP_CHUNK_ARRAY:
145 lc->l_array.la_type = BSWAP_8(lc->l_array.la_type);
146 lc->l_array.la_next = BSWAP_16(lc->l_array.la_next);
147 /* la_array doesn't need swapping */
148 break;
149 default:
150 ASSERT(!"bad leaf type");
151 }
152 }
153 }
154
155 void
156 zap_leaf_init(zap_leaf_t *l, boolean_t sort)
157 {
158 int i;
159
160 l->l_bs = highbit(l->l_dbuf->db_size)-1;
161 zap_memset(&l->l_phys->l_hdr, 0, sizeof (struct zap_leaf_header));
162 zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l));
163 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
164 ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE;
165 ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1;
166 }
167 ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END;
168 l->l_phys->l_hdr.lh_block_type = ZBT_LEAF;
169 l->l_phys->l_hdr.lh_magic = ZAP_LEAF_MAGIC;
170 l->l_phys->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l);
171 if (sort)
172 l->l_phys->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
173 }
174
175 /*
176 * Routines which manipulate leaf chunks (l_chunk[]).
177 */
178
179 static uint16_t
180 zap_leaf_chunk_alloc(zap_leaf_t *l)
181 {
182 int chunk;
183
184 ASSERT(l->l_phys->l_hdr.lh_nfree > 0);
185
186 chunk = l->l_phys->l_hdr.lh_freelist;
187 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
188 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE);
189
190 l->l_phys->l_hdr.lh_freelist = ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next;
191
192 l->l_phys->l_hdr.lh_nfree--;
193
194 return (chunk);
195 }
196
197 static void
198 zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk)
199 {
200 struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free;
201 ASSERT3U(l->l_phys->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l));
202 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
203 ASSERT(zlf->lf_type != ZAP_CHUNK_FREE);
204
205 zlf->lf_type = ZAP_CHUNK_FREE;
206 zlf->lf_next = l->l_phys->l_hdr.lh_freelist;
207 bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */
208 l->l_phys->l_hdr.lh_freelist = chunk;
209
210 l->l_phys->l_hdr.lh_nfree++;
211 }
212
213 /*
214 * Routines which manipulate leaf arrays (zap_leaf_array type chunks).
215 */
216
217 static uint16_t
218 zap_leaf_array_create(zap_leaf_t *l, const char *buf,
219 int integer_size, int num_integers)
220 {
221 uint16_t chunk_head;
222 uint16_t *chunkp = &chunk_head;
223 int byten = 0;
224 uint64_t value = 0;
225 int shift = (integer_size-1)*8;
226 int len = num_integers;
227
228 ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES);
229
230 while (len > 0) {
231 uint16_t chunk = zap_leaf_chunk_alloc(l);
232 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
233 int i;
234
235 la->la_type = ZAP_CHUNK_ARRAY;
236 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) {
237 if (byten == 0)
238 value = ldv(integer_size, buf);
239 la->la_array[i] = value >> shift;
240 value <<= 8;
241 if (++byten == integer_size) {
242 byten = 0;
243 buf += integer_size;
244 if (--len == 0)
245 break;
246 }
247 }
248
249 *chunkp = chunk;
250 chunkp = &la->la_next;
251 }
252 *chunkp = CHAIN_END;
253
254 return (chunk_head);
255 }
256
257 static void
258 zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp)
259 {
260 uint16_t chunk = *chunkp;
261
262 *chunkp = CHAIN_END;
263
264 while (chunk != CHAIN_END) {
265 int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next;
266 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==,
267 ZAP_CHUNK_ARRAY);
268 zap_leaf_chunk_free(l, chunk);
269 chunk = nextchunk;
270 }
271 }
272
273 /* array_len and buf_len are in integers, not bytes */
274 static void
275 zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk,
276 int array_int_len, int array_len, int buf_int_len, uint64_t buf_len,
277 void *buf)
278 {
279 int len = MIN(array_len, buf_len);
280 int byten = 0;
281 uint64_t value = 0;
282 char *p = buf;
283
284 ASSERT3U(array_int_len, <=, buf_int_len);
285
286 /* Fast path for one 8-byte integer */
287 if (array_int_len == 8 && buf_int_len == 8 && len == 1) {
288 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
289 uint8_t *ip = la->la_array;
290 uint64_t *buf64 = buf;
291
292 *buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 |
293 (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 |
294 (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 |
295 (uint64_t)ip[6] << 8 | (uint64_t)ip[7];
296 return;
297 }
298
299 /* Fast path for an array of 1-byte integers (eg. the entry name) */
300 if (array_int_len == 1 && buf_int_len == 1 &&
301 buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) {
302 while (chunk != CHAIN_END) {
303 struct zap_leaf_array *la =
304 &ZAP_LEAF_CHUNK(l, chunk).l_array;
305 bcopy(la->la_array, p, ZAP_LEAF_ARRAY_BYTES);
306 p += ZAP_LEAF_ARRAY_BYTES;
307 chunk = la->la_next;
308 }
309 return;
310 }
311
312 while (len > 0) {
313 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
314 int i;
315
316 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
317 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
318 value = (value << 8) | la->la_array[i];
319 byten++;
320 if (byten == array_int_len) {
321 stv(buf_int_len, p, value);
322 byten = 0;
323 len--;
324 if (len == 0)
325 return;
326 p += buf_int_len;
327 }
328 }
329 chunk = la->la_next;
330 }
331 }
332
333 static boolean_t
334 zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn,
335 int chunk, int array_numints)
336 {
337 int bseen = 0;
338
339 if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) {
340 uint64_t *thiskey;
341 boolean_t match;
342
343 ASSERT(zn->zn_key_intlen == sizeof (*thiskey));
344 thiskey = kmem_alloc(array_numints * sizeof (*thiskey),
345 KM_SLEEP);
346
347 zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints,
348 sizeof (*thiskey), array_numints, thiskey);
349 match = bcmp(thiskey, zn->zn_key_orig,
350 array_numints * sizeof (*thiskey)) == 0;
351 kmem_free(thiskey, array_numints * sizeof (*thiskey));
352 return (match);
353 }
354
355 ASSERT(zn->zn_key_intlen == 1);
356 if (zn->zn_matchtype == MT_FIRST) {
357 char *thisname = kmem_alloc(array_numints, KM_SLEEP);
358 boolean_t match;
359
360 zap_leaf_array_read(l, chunk, sizeof (char), array_numints,
361 sizeof (char), array_numints, thisname);
362 match = zap_match(zn, thisname);
363 kmem_free(thisname, array_numints);
364 return (match);
365 }
366
367 /*
368 * Fast path for exact matching.
369 * First check that the lengths match, so that we don't read
370 * past the end of the zn_key_orig array.
371 */
372 if (array_numints != zn->zn_key_orig_numints)
373 return (B_FALSE);
374 while (bseen < array_numints) {
375 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
376 int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES);
377 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
378 if (bcmp(la->la_array, (char *)zn->zn_key_orig + bseen, toread))
379 break;
380 chunk = la->la_next;
381 bseen += toread;
382 }
383 return (bseen == array_numints);
384 }
385
386 /*
387 * Routines which manipulate leaf entries.
388 */
389
390 int
391 zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh)
392 {
393 uint16_t *chunkp;
394 struct zap_leaf_entry *le;
395
396 ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
397
398 again:
399 for (chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash);
400 *chunkp != CHAIN_END; chunkp = &le->le_next) {
401 uint16_t chunk = *chunkp;
402 le = ZAP_LEAF_ENTRY(l, chunk);
403
404 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
405 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
406
407 if (le->le_hash != zn->zn_hash)
408 continue;
409
410 /*
411 * NB: the entry chain is always sorted by cd on
412 * normalized zap objects, so this will find the
413 * lowest-cd match for MT_FIRST.
414 */
415 ASSERT(zn->zn_matchtype == MT_EXACT ||
416 (l->l_phys->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED));
417 if (zap_leaf_array_match(l, zn, le->le_name_chunk,
418 le->le_name_numints)) {
419 zeh->zeh_num_integers = le->le_value_numints;
420 zeh->zeh_integer_size = le->le_value_intlen;
421 zeh->zeh_cd = le->le_cd;
422 zeh->zeh_hash = le->le_hash;
423 zeh->zeh_chunkp = chunkp;
424 zeh->zeh_leaf = l;
425 return (0);
426 }
427 }
428
429 /*
430 * NB: we could of course do this in one pass, but that would be
431 * a pain. We'll see if MT_BEST is even used much.
432 */
433 if (zn->zn_matchtype == MT_BEST) {
434 zn->zn_matchtype = MT_FIRST;
435 goto again;
436 }
437
438 return (SET_ERROR(ENOENT));
439 }
440
441 /* Return (h1,cd1 >= h2,cd2) */
442 #define HCD_GTEQ(h1, cd1, h2, cd2) \
443 ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE))
444
445 int
446 zap_leaf_lookup_closest(zap_leaf_t *l,
447 uint64_t h, uint32_t cd, zap_entry_handle_t *zeh)
448 {
449 uint16_t chunk;
450 uint64_t besth = -1ULL;
451 uint32_t bestcd = -1U;
452 uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1;
453 uint16_t lh;
454 struct zap_leaf_entry *le;
455
456 ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
457
458 for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) {
459 for (chunk = l->l_phys->l_hash[lh];
460 chunk != CHAIN_END; chunk = le->le_next) {
461 le = ZAP_LEAF_ENTRY(l, chunk);
462
463 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
464 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
465
466 if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) &&
467 HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) {
468 ASSERT3U(bestlh, >=, lh);
469 bestlh = lh;
470 besth = le->le_hash;
471 bestcd = le->le_cd;
472
473 zeh->zeh_num_integers = le->le_value_numints;
474 zeh->zeh_integer_size = le->le_value_intlen;
475 zeh->zeh_cd = le->le_cd;
476 zeh->zeh_hash = le->le_hash;
477 zeh->zeh_fakechunk = chunk;
478 zeh->zeh_chunkp = &zeh->zeh_fakechunk;
479 zeh->zeh_leaf = l;
480 }
481 }
482 }
483
484 return (bestcd == -1U ? ENOENT : 0);
485 }
486
487 int
488 zap_entry_read(const zap_entry_handle_t *zeh,
489 uint8_t integer_size, uint64_t num_integers, void *buf)
490 {
491 struct zap_leaf_entry *le =
492 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
493 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
494
495 if (le->le_value_intlen > integer_size)
496 return (SET_ERROR(EINVAL));
497
498 zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk,
499 le->le_value_intlen, le->le_value_numints,
500 integer_size, num_integers, buf);
501
502 if (zeh->zeh_num_integers > num_integers)
503 return (SET_ERROR(EOVERFLOW));
504 return (0);
505
506 }
507
508 int
509 zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen,
510 char *buf)
511 {
512 struct zap_leaf_entry *le =
513 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
514 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
515
516 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
517 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8,
518 le->le_name_numints, 8, buflen / 8, buf);
519 } else {
520 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1,
521 le->le_name_numints, 1, buflen, buf);
522 }
523 if (le->le_name_numints > buflen)
524 return (SET_ERROR(EOVERFLOW));
525 return (0);
526 }
527
528 int
529 zap_entry_update(zap_entry_handle_t *zeh,
530 uint8_t integer_size, uint64_t num_integers, const void *buf)
531 {
532 int delta_chunks;
533 zap_leaf_t *l = zeh->zeh_leaf;
534 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp);
535
536 delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) -
537 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen);
538
539 if ((int)l->l_phys->l_hdr.lh_nfree < delta_chunks)
540 return (SET_ERROR(EAGAIN));
541
542 zap_leaf_array_free(l, &le->le_value_chunk);
543 le->le_value_chunk =
544 zap_leaf_array_create(l, buf, integer_size, num_integers);
545 le->le_value_numints = num_integers;
546 le->le_value_intlen = integer_size;
547 return (0);
548 }
549
550 void
551 zap_entry_remove(zap_entry_handle_t *zeh)
552 {
553 uint16_t entry_chunk;
554 struct zap_leaf_entry *le;
555 zap_leaf_t *l = zeh->zeh_leaf;
556
557 ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk);
558
559 entry_chunk = *zeh->zeh_chunkp;
560 le = ZAP_LEAF_ENTRY(l, entry_chunk);
561 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
562
563 zap_leaf_array_free(l, &le->le_name_chunk);
564 zap_leaf_array_free(l, &le->le_value_chunk);
565
566 *zeh->zeh_chunkp = le->le_next;
567 zap_leaf_chunk_free(l, entry_chunk);
568
569 l->l_phys->l_hdr.lh_nentries--;
570 }
571
572 int
573 zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd,
574 uint8_t integer_size, uint64_t num_integers, const void *buf,
575 zap_entry_handle_t *zeh)
576 {
577 uint16_t chunk;
578 uint16_t *chunkp;
579 struct zap_leaf_entry *le;
580 uint64_t valuelen;
581 int numchunks;
582 uint64_t h = zn->zn_hash;
583
584 valuelen = integer_size * num_integers;
585
586 numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints *
587 zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen);
588 if (numchunks > ZAP_LEAF_NUMCHUNKS(l))
589 return (E2BIG);
590
591 if (cd == ZAP_NEED_CD) {
592 /* find the lowest unused cd */
593 if (l->l_phys->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) {
594 cd = 0;
595
596 for (chunk = *LEAF_HASH_ENTPTR(l, h);
597 chunk != CHAIN_END; chunk = le->le_next) {
598 le = ZAP_LEAF_ENTRY(l, chunk);
599 if (le->le_cd > cd)
600 break;
601 if (le->le_hash == h) {
602 ASSERT3U(cd, ==, le->le_cd);
603 cd++;
604 }
605 }
606 } else {
607 /* old unsorted format; do it the O(n^2) way */
608 for (cd = 0; ; cd++) {
609 for (chunk = *LEAF_HASH_ENTPTR(l, h);
610 chunk != CHAIN_END; chunk = le->le_next) {
611 le = ZAP_LEAF_ENTRY(l, chunk);
612 if (le->le_hash == h &&
613 le->le_cd == cd) {
614 break;
615 }
616 }
617 /* If this cd is not in use, we are good. */
618 if (chunk == CHAIN_END)
619 break;
620 }
621 }
622 /*
623 * We would run out of space in a block before we could
624 * store enough entries to run out of CD values.
625 */
626 ASSERT3U(cd, <, zap_maxcd(zn->zn_zap));
627 }
628
629 if (l->l_phys->l_hdr.lh_nfree < numchunks)
630 return (SET_ERROR(EAGAIN));
631
632 /* make the entry */
633 chunk = zap_leaf_chunk_alloc(l);
634 le = ZAP_LEAF_ENTRY(l, chunk);
635 le->le_type = ZAP_CHUNK_ENTRY;
636 le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig,
637 zn->zn_key_intlen, zn->zn_key_orig_numints);
638 le->le_name_numints = zn->zn_key_orig_numints;
639 le->le_value_chunk =
640 zap_leaf_array_create(l, buf, integer_size, num_integers);
641 le->le_value_numints = num_integers;
642 le->le_value_intlen = integer_size;
643 le->le_hash = h;
644 le->le_cd = cd;
645
646 /* link it into the hash chain */
647 /* XXX if we did the search above, we could just use that */
648 chunkp = zap_leaf_rehash_entry(l, chunk);
649
650 l->l_phys->l_hdr.lh_nentries++;
651
652 zeh->zeh_leaf = l;
653 zeh->zeh_num_integers = num_integers;
654 zeh->zeh_integer_size = le->le_value_intlen;
655 zeh->zeh_cd = le->le_cd;
656 zeh->zeh_hash = le->le_hash;
657 zeh->zeh_chunkp = chunkp;
658
659 return (0);
660 }
661
662 /*
663 * Determine if there is another entry with the same normalized form.
664 * For performance purposes, either zn or name must be provided (the
665 * other can be NULL). Note, there usually won't be any hash
666 * conflicts, in which case we don't need the concatenated/normalized
667 * form of the name. But all callers have one of these on hand anyway,
668 * so might as well take advantage. A cleaner but slower interface
669 * would accept neither argument, and compute the normalized name as
670 * needed (using zap_name_alloc(zap_entry_read_name(zeh))).
671 */
672 boolean_t
673 zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn,
674 const char *name, zap_t *zap)
675 {
676 uint64_t chunk;
677 struct zap_leaf_entry *le;
678 boolean_t allocdzn = B_FALSE;
679
680 if (zap->zap_normflags == 0)
681 return (B_FALSE);
682
683 for (chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash);
684 chunk != CHAIN_END; chunk = le->le_next) {
685 le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk);
686 if (le->le_hash != zeh->zeh_hash)
687 continue;
688 if (le->le_cd == zeh->zeh_cd)
689 continue;
690
691 if (zn == NULL) {
692 zn = zap_name_alloc(zap, name, MT_FIRST);
693 allocdzn = B_TRUE;
694 }
695 if (zap_leaf_array_match(zeh->zeh_leaf, zn,
696 le->le_name_chunk, le->le_name_numints)) {
697 if (allocdzn)
698 zap_name_free(zn);
699 return (B_TRUE);
700 }
701 }
702 if (allocdzn)
703 zap_name_free(zn);
704 return (B_FALSE);
705 }
706
707 /*
708 * Routines for transferring entries between leafs.
709 */
710
711 static uint16_t *
712 zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry)
713 {
714 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry);
715 struct zap_leaf_entry *le2;
716 uint16_t *chunkp;
717
718 /*
719 * keep the entry chain sorted by cd
720 * NB: this will not cause problems for unsorted leafs, though
721 * it is unnecessary there.
722 */
723 for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash);
724 *chunkp != CHAIN_END; chunkp = &le2->le_next) {
725 le2 = ZAP_LEAF_ENTRY(l, *chunkp);
726 if (le2->le_cd > le->le_cd)
727 break;
728 }
729
730 le->le_next = *chunkp;
731 *chunkp = entry;
732 return (chunkp);
733 }
734
735 static uint16_t
736 zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl)
737 {
738 uint16_t new_chunk;
739 uint16_t *nchunkp = &new_chunk;
740
741 while (chunk != CHAIN_END) {
742 uint16_t nchunk = zap_leaf_chunk_alloc(nl);
743 struct zap_leaf_array *nla =
744 &ZAP_LEAF_CHUNK(nl, nchunk).l_array;
745 struct zap_leaf_array *la =
746 &ZAP_LEAF_CHUNK(l, chunk).l_array;
747 int nextchunk = la->la_next;
748
749 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
750 ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l));
751
752 *nla = *la; /* structure assignment */
753
754 zap_leaf_chunk_free(l, chunk);
755 chunk = nextchunk;
756 *nchunkp = nchunk;
757 nchunkp = &nla->la_next;
758 }
759 *nchunkp = CHAIN_END;
760 return (new_chunk);
761 }
762
763 static void
764 zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl)
765 {
766 struct zap_leaf_entry *le, *nle;
767 uint16_t chunk;
768
769 le = ZAP_LEAF_ENTRY(l, entry);
770 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
771
772 chunk = zap_leaf_chunk_alloc(nl);
773 nle = ZAP_LEAF_ENTRY(nl, chunk);
774 *nle = *le; /* structure assignment */
775
776 (void) zap_leaf_rehash_entry(nl, chunk);
777
778 nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl);
779 nle->le_value_chunk =
780 zap_leaf_transfer_array(l, le->le_value_chunk, nl);
781
782 zap_leaf_chunk_free(l, entry);
783
784 l->l_phys->l_hdr.lh_nentries--;
785 nl->l_phys->l_hdr.lh_nentries++;
786 }
787
788 /*
789 * Transfer the entries whose hash prefix ends in 1 to the new leaf.
790 */
791 void
792 zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort)
793 {
794 int i;
795 int bit = 64 - 1 - l->l_phys->l_hdr.lh_prefix_len;
796
797 /* set new prefix and prefix_len */
798 l->l_phys->l_hdr.lh_prefix <<= 1;
799 l->l_phys->l_hdr.lh_prefix_len++;
800 nl->l_phys->l_hdr.lh_prefix = l->l_phys->l_hdr.lh_prefix | 1;
801 nl->l_phys->l_hdr.lh_prefix_len = l->l_phys->l_hdr.lh_prefix_len;
802
803 /* break existing hash chains */
804 zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l));
805
806 if (sort)
807 l->l_phys->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
808
809 /*
810 * Transfer entries whose hash bit 'bit' is set to nl; rehash
811 * the remaining entries
812 *
813 * NB: We could find entries via the hashtable instead. That
814 * would be O(hashents+numents) rather than O(numblks+numents),
815 * but this accesses memory more sequentially, and when we're
816 * called, the block is usually pretty full.
817 */
818 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
819 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i);
820 if (le->le_type != ZAP_CHUNK_ENTRY)
821 continue;
822
823 if (le->le_hash & (1ULL << bit))
824 zap_leaf_transfer_entry(l, i, nl);
825 else
826 (void) zap_leaf_rehash_entry(l, i);
827 }
828 }
829
830 void
831 zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs)
832 {
833 int i, n;
834
835 n = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift -
836 l->l_phys->l_hdr.lh_prefix_len;
837 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
838 zs->zs_leafs_with_2n_pointers[n]++;
839
840
841 n = l->l_phys->l_hdr.lh_nentries/5;
842 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
843 zs->zs_blocks_with_n5_entries[n]++;
844
845 n = ((1<<FZAP_BLOCK_SHIFT(zap)) -
846 l->l_phys->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 /
847 (1<<FZAP_BLOCK_SHIFT(zap));
848 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
849 zs->zs_blocks_n_tenths_full[n]++;
850
851 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) {
852 int nentries = 0;
853 int chunk = l->l_phys->l_hash[i];
854
855 while (chunk != CHAIN_END) {
856 struct zap_leaf_entry *le =
857 ZAP_LEAF_ENTRY(l, chunk);
858
859 n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) +
860 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints *
861 le->le_value_intlen);
862 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
863 zs->zs_entries_using_n_chunks[n]++;
864
865 chunk = le->le_next;
866 nentries++;
867 }
868
869 n = nentries;
870 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
871 zs->zs_buckets_with_n_entries[n]++;
872 }
873 }