1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 */ 25 26 /* 27 * This file contains the top half of the zfs directory structure 28 * implementation. The bottom half is in zap_leaf.c. 29 * 30 * The zdir is an extendable hash data structure. There is a table of 31 * pointers to buckets (zap_t->zd_data->zd_leafs). The buckets are 32 * each a constant size and hold a variable number of directory entries. 33 * The buckets (aka "leaf nodes") are implemented in zap_leaf.c. 34 * 35 * The pointer table holds a power of 2 number of pointers. 36 * (1<<zap_t->zd_data->zd_phys->zd_prefix_len). The bucket pointed to 37 * by the pointer at index i in the table holds entries whose hash value 38 * has a zd_prefix_len - bit prefix 39 */ 40 41 #include <sys/spa.h> 42 #include <sys/dmu.h> 43 #include <sys/zfs_context.h> 44 #include <sys/zfs_znode.h> 45 #include <sys/fs/zfs.h> 46 #include <sys/zap.h> 47 #include <sys/refcount.h> 48 #include <sys/zap_impl.h> 49 #include <sys/zap_leaf.h> 50 51 int fzap_default_block_shift = 14; /* 16k blocksize */ 52 53 static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks); 54 55 void 56 fzap_byteswap(void *vbuf, size_t size) 57 { 58 uint64_t block_type; 59 60 block_type = *(uint64_t *)vbuf; 61 62 if (block_type == ZBT_LEAF || block_type == BSWAP_64(ZBT_LEAF)) 63 zap_leaf_byteswap(vbuf, size); 64 else { 65 /* it's a ptrtbl block */ 66 byteswap_uint64_array(vbuf, size); 67 } 68 } 69 70 void 71 fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags) 72 { 73 dmu_buf_t *db; 74 zap_leaf_t *l; 75 int i; 76 zap_phys_t *zp; 77 78 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 79 zap->zap_ismicro = FALSE; 80 81 zap->db_evict.evict_func = zap_evict; 82 83 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0); 84 zap->zap_f.zap_block_shift = highbit(zap->zap_dbuf->db_size) - 1; 85 86 zp = zap->zap_f_phys; 87 /* 88 * explicitly zero it since it might be coming from an 89 * initialized microzap 90 */ 91 bzero(zap->zap_dbuf->db_data, zap->zap_dbuf->db_size); 92 zp->zap_block_type = ZBT_HEADER; 93 zp->zap_magic = ZAP_MAGIC; 94 95 zp->zap_ptrtbl.zt_shift = ZAP_EMBEDDED_PTRTBL_SHIFT(zap); 96 97 zp->zap_freeblk = 2; /* block 1 will be the first leaf */ 98 zp->zap_num_leafs = 1; 99 zp->zap_num_entries = 0; 100 zp->zap_salt = zap->zap_salt; 101 zp->zap_normflags = zap->zap_normflags; 102 zp->zap_flags = flags; 103 104 /* block 1 will be the first leaf */ 105 for (i = 0; i < (1<<zp->zap_ptrtbl.zt_shift); i++) 106 ZAP_EMBEDDED_PTRTBL_ENT(zap, i) = 1; 107 108 /* 109 * set up block 1 - the first leaf 110 */ 111 VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object, 112 1<<FZAP_BLOCK_SHIFT(zap), FTAG, &db, DMU_READ_NO_PREFETCH)); 113 dmu_buf_will_dirty(db, tx); 114 115 l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP); 116 l->l_dbuf = db; 117 118 zap_leaf_init(l, zp->zap_normflags != 0); 119 120 kmem_free(l, sizeof (zap_leaf_t)); 121 dmu_buf_rele(db, FTAG); 122 } 123 124 static int 125 zap_tryupgradedir(zap_t *zap, dmu_tx_t *tx) 126 { 127 if (RW_WRITE_HELD(&zap->zap_rwlock)) 128 return (1); 129 if (rw_tryupgrade(&zap->zap_rwlock)) { 130 dmu_buf_will_dirty(zap->zap_dbuf, tx); 131 return (1); 132 } 133 return (0); 134 } 135 136 /* 137 * Generic routines for dealing with the pointer & cookie tables. 138 */ 139 140 static int 141 zap_table_grow(zap_t *zap, zap_table_phys_t *tbl, 142 void (*transfer_func)(const uint64_t *src, uint64_t *dst, int n), 143 dmu_tx_t *tx) 144 { 145 uint64_t b, newblk; 146 dmu_buf_t *db_old, *db_new; 147 int err; 148 int bs = FZAP_BLOCK_SHIFT(zap); 149 int hepb = 1<<(bs-4); 150 /* hepb = half the number of entries in a block */ 151 152 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 153 ASSERT(tbl->zt_blk != 0); 154 ASSERT(tbl->zt_numblks > 0); 155 156 if (tbl->zt_nextblk != 0) { 157 newblk = tbl->zt_nextblk; 158 } else { 159 newblk = zap_allocate_blocks(zap, tbl->zt_numblks * 2); 160 tbl->zt_nextblk = newblk; 161 ASSERT0(tbl->zt_blks_copied); 162 dmu_prefetch(zap->zap_objset, zap->zap_object, 163 tbl->zt_blk << bs, tbl->zt_numblks << bs); 164 } 165 166 /* 167 * Copy the ptrtbl from the old to new location. 168 */ 169 170 b = tbl->zt_blks_copied; 171 err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 172 (tbl->zt_blk + b) << bs, FTAG, &db_old, DMU_READ_NO_PREFETCH); 173 if (err) 174 return (err); 175 176 /* first half of entries in old[b] go to new[2*b+0] */ 177 VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object, 178 (newblk + 2*b+0) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH)); 179 dmu_buf_will_dirty(db_new, tx); 180 transfer_func(db_old->db_data, db_new->db_data, hepb); 181 dmu_buf_rele(db_new, FTAG); 182 183 /* second half of entries in old[b] go to new[2*b+1] */ 184 VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object, 185 (newblk + 2*b+1) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH)); 186 dmu_buf_will_dirty(db_new, tx); 187 transfer_func((uint64_t *)db_old->db_data + hepb, 188 db_new->db_data, hepb); 189 dmu_buf_rele(db_new, FTAG); 190 191 dmu_buf_rele(db_old, FTAG); 192 193 tbl->zt_blks_copied++; 194 195 dprintf("copied block %llu of %llu\n", 196 tbl->zt_blks_copied, tbl->zt_numblks); 197 198 if (tbl->zt_blks_copied == tbl->zt_numblks) { 199 (void) dmu_free_range(zap->zap_objset, zap->zap_object, 200 tbl->zt_blk << bs, tbl->zt_numblks << bs, tx); 201 202 tbl->zt_blk = newblk; 203 tbl->zt_numblks *= 2; 204 tbl->zt_shift++; 205 tbl->zt_nextblk = 0; 206 tbl->zt_blks_copied = 0; 207 208 dprintf("finished; numblocks now %llu (%lluk entries)\n", 209 tbl->zt_numblks, 1<<(tbl->zt_shift-10)); 210 } 211 212 return (0); 213 } 214 215 static int 216 zap_table_store(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t val, 217 dmu_tx_t *tx) 218 { 219 int err; 220 uint64_t blk, off; 221 int bs = FZAP_BLOCK_SHIFT(zap); 222 dmu_buf_t *db; 223 224 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 225 ASSERT(tbl->zt_blk != 0); 226 227 dprintf("storing %llx at index %llx\n", val, idx); 228 229 blk = idx >> (bs-3); 230 off = idx & ((1<<(bs-3))-1); 231 232 err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 233 (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); 234 if (err) 235 return (err); 236 dmu_buf_will_dirty(db, tx); 237 238 if (tbl->zt_nextblk != 0) { 239 uint64_t idx2 = idx * 2; 240 uint64_t blk2 = idx2 >> (bs-3); 241 uint64_t off2 = idx2 & ((1<<(bs-3))-1); 242 dmu_buf_t *db2; 243 244 err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 245 (tbl->zt_nextblk + blk2) << bs, FTAG, &db2, 246 DMU_READ_NO_PREFETCH); 247 if (err) { 248 dmu_buf_rele(db, FTAG); 249 return (err); 250 } 251 dmu_buf_will_dirty(db2, tx); 252 ((uint64_t *)db2->db_data)[off2] = val; 253 ((uint64_t *)db2->db_data)[off2+1] = val; 254 dmu_buf_rele(db2, FTAG); 255 } 256 257 ((uint64_t *)db->db_data)[off] = val; 258 dmu_buf_rele(db, FTAG); 259 260 return (0); 261 } 262 263 static int 264 zap_table_load(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t *valp) 265 { 266 uint64_t blk, off; 267 int err; 268 dmu_buf_t *db; 269 int bs = FZAP_BLOCK_SHIFT(zap); 270 271 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 272 273 blk = idx >> (bs-3); 274 off = idx & ((1<<(bs-3))-1); 275 276 err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 277 (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); 278 if (err) 279 return (err); 280 *valp = ((uint64_t *)db->db_data)[off]; 281 dmu_buf_rele(db, FTAG); 282 283 if (tbl->zt_nextblk != 0) { 284 /* 285 * read the nextblk for the sake of i/o error checking, 286 * so that zap_table_load() will catch errors for 287 * zap_table_store. 288 */ 289 blk = (idx*2) >> (bs-3); 290 291 err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 292 (tbl->zt_nextblk + blk) << bs, FTAG, &db, 293 DMU_READ_NO_PREFETCH); 294 dmu_buf_rele(db, FTAG); 295 } 296 return (err); 297 } 298 299 /* 300 * Routines for growing the ptrtbl. 301 */ 302 303 static void 304 zap_ptrtbl_transfer(const uint64_t *src, uint64_t *dst, int n) 305 { 306 int i; 307 for (i = 0; i < n; i++) { 308 uint64_t lb = src[i]; 309 dst[2*i+0] = lb; 310 dst[2*i+1] = lb; 311 } 312 } 313 314 static int 315 zap_grow_ptrtbl(zap_t *zap, dmu_tx_t *tx) 316 { 317 /* 318 * The pointer table should never use more hash bits than we 319 * have (otherwise we'd be using useless zero bits to index it). 320 * If we are within 2 bits of running out, stop growing, since 321 * this is already an aberrant condition. 322 */ 323 if (zap->zap_f_phys->zap_ptrtbl.zt_shift >= zap_hashbits(zap) - 2) 324 return (SET_ERROR(ENOSPC)); 325 326 if (zap->zap_f_phys->zap_ptrtbl.zt_numblks == 0) { 327 /* 328 * We are outgrowing the "embedded" ptrtbl (the one 329 * stored in the header block). Give it its own entire 330 * block, which will double the size of the ptrtbl. 331 */ 332 uint64_t newblk; 333 dmu_buf_t *db_new; 334 int err; 335 336 ASSERT3U(zap->zap_f_phys->zap_ptrtbl.zt_shift, ==, 337 ZAP_EMBEDDED_PTRTBL_SHIFT(zap)); 338 ASSERT0(zap->zap_f_phys->zap_ptrtbl.zt_blk); 339 340 newblk = zap_allocate_blocks(zap, 1); 341 err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 342 newblk << FZAP_BLOCK_SHIFT(zap), FTAG, &db_new, 343 DMU_READ_NO_PREFETCH); 344 if (err) 345 return (err); 346 dmu_buf_will_dirty(db_new, tx); 347 zap_ptrtbl_transfer(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), 348 db_new->db_data, 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap)); 349 dmu_buf_rele(db_new, FTAG); 350 351 zap->zap_f_phys->zap_ptrtbl.zt_blk = newblk; 352 zap->zap_f_phys->zap_ptrtbl.zt_numblks = 1; 353 zap->zap_f_phys->zap_ptrtbl.zt_shift++; 354 355 ASSERT3U(1ULL << zap->zap_f_phys->zap_ptrtbl.zt_shift, ==, 356 zap->zap_f_phys->zap_ptrtbl.zt_numblks << 357 (FZAP_BLOCK_SHIFT(zap)-3)); 358 359 return (0); 360 } else { 361 return (zap_table_grow(zap, &zap->zap_f_phys->zap_ptrtbl, 362 zap_ptrtbl_transfer, tx)); 363 } 364 } 365 366 static void 367 zap_increment_num_entries(zap_t *zap, int delta, dmu_tx_t *tx) 368 { 369 dmu_buf_will_dirty(zap->zap_dbuf, tx); 370 mutex_enter(&zap->zap_f.zap_num_entries_mtx); 371 ASSERT(delta > 0 || zap->zap_f_phys->zap_num_entries >= -delta); 372 zap->zap_f_phys->zap_num_entries += delta; 373 mutex_exit(&zap->zap_f.zap_num_entries_mtx); 374 } 375 376 static uint64_t 377 zap_allocate_blocks(zap_t *zap, int nblocks) 378 { 379 uint64_t newblk; 380 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 381 newblk = zap->zap_f_phys->zap_freeblk; 382 zap->zap_f_phys->zap_freeblk += nblocks; 383 return (newblk); 384 } 385 386 static void 387 zap_leaf_pageout(dmu_buf_user_t *dbu) 388 { 389 zap_leaf_t *l = (zap_leaf_t *)dbu; 390 391 rw_destroy(&l->l_rwlock); 392 kmem_free(l, sizeof (zap_leaf_t)); 393 } 394 395 static zap_leaf_t * 396 zap_create_leaf(zap_t *zap, dmu_tx_t *tx) 397 { 398 void *winner; 399 zap_leaf_t *l = kmem_alloc(sizeof (zap_leaf_t), KM_SLEEP); 400 401 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 402 403 rw_init(&l->l_rwlock, 0, 0, 0); 404 rw_enter(&l->l_rwlock, RW_WRITER); 405 l->l_blkid = zap_allocate_blocks(zap, 1); 406 l->l_dbuf = NULL; 407 408 VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object, 409 l->l_blkid << FZAP_BLOCK_SHIFT(zap), NULL, &l->l_dbuf, 410 DMU_READ_NO_PREFETCH)); 411 dmu_buf_init_user(&l->db_evict, zap_leaf_pageout); 412 winner = (zap_leaf_t *)dmu_buf_set_user(l->l_dbuf, &l->db_evict); 413 ASSERT(winner == NULL); 414 dmu_buf_will_dirty(l->l_dbuf, tx); 415 416 zap_leaf_init(l, zap->zap_normflags != 0); 417 418 zap->zap_f_phys->zap_num_leafs++; 419 420 return (l); 421 } 422 423 int 424 fzap_count(zap_t *zap, uint64_t *count) 425 { 426 ASSERT(!zap->zap_ismicro); 427 mutex_enter(&zap->zap_f.zap_num_entries_mtx); /* unnecessary */ 428 *count = zap->zap_f_phys->zap_num_entries; 429 mutex_exit(&zap->zap_f.zap_num_entries_mtx); 430 return (0); 431 } 432 433 /* 434 * Routines for obtaining zap_leaf_t's 435 */ 436 437 void 438 zap_put_leaf(zap_leaf_t *l) 439 { 440 rw_exit(&l->l_rwlock); 441 dmu_buf_rele(l->l_dbuf, NULL); 442 } 443 444 static zap_leaf_t * 445 zap_open_leaf(uint64_t blkid, dmu_buf_t *db) 446 { 447 zap_leaf_t *l, *winner; 448 449 ASSERT(blkid != 0); 450 451 l = kmem_alloc(sizeof (zap_leaf_t), KM_SLEEP); 452 rw_init(&l->l_rwlock, 0, 0, 0); 453 rw_enter(&l->l_rwlock, RW_WRITER); 454 l->l_blkid = blkid; 455 l->l_bs = highbit(db->db_size)-1; 456 l->l_dbuf = db; 457 458 dmu_buf_init_user(&l->db_evict, zap_leaf_pageout); 459 winner = (zap_leaf_t *)dmu_buf_set_user(db, &l->db_evict); 460 461 rw_exit(&l->l_rwlock); 462 if (winner != NULL) { 463 /* someone else set it first */ 464 zap_leaf_pageout(&l->db_evict); 465 l = winner; 466 } 467 468 /* 469 * lhr_pad was previously used for the next leaf in the leaf 470 * chain. There should be no chained leafs (as we have removed 471 * support for them). 472 */ 473 ASSERT0(l->l_phys->l_hdr.lh_pad1); 474 475 /* 476 * There should be more hash entries than there can be 477 * chunks to put in the hash table 478 */ 479 ASSERT3U(ZAP_LEAF_HASH_NUMENTRIES(l), >, ZAP_LEAF_NUMCHUNKS(l) / 3); 480 481 /* The chunks should begin at the end of the hash table */ 482 ASSERT3P(&ZAP_LEAF_CHUNK(l, 0), ==, 483 &l->l_phys->l_hash[ZAP_LEAF_HASH_NUMENTRIES(l)]); 484 485 /* The chunks should end at the end of the block */ 486 ASSERT3U((uintptr_t)&ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)) - 487 (uintptr_t)l->l_phys, ==, l->l_dbuf->db_size); 488 489 return (l); 490 } 491 492 static int 493 zap_get_leaf_byblk(zap_t *zap, uint64_t blkid, dmu_tx_t *tx, krw_t lt, 494 zap_leaf_t **lp) 495 { 496 dmu_buf_t *db; 497 zap_leaf_t *l; 498 int bs = FZAP_BLOCK_SHIFT(zap); 499 int err; 500 501 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 502 503 err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 504 blkid << bs, NULL, &db, DMU_READ_NO_PREFETCH); 505 if (err) 506 return (err); 507 508 ASSERT3U(db->db_object, ==, zap->zap_object); 509 ASSERT3U(db->db_offset, ==, blkid << bs); 510 ASSERT3U(db->db_size, ==, 1 << bs); 511 ASSERT(blkid != 0); 512 513 l = (zap_leaf_t *)dmu_buf_get_user(db); 514 515 if (l == NULL) 516 l = zap_open_leaf(blkid, db); 517 518 rw_enter(&l->l_rwlock, lt); 519 /* 520 * Must lock before dirtying, otherwise l->l_phys could change, 521 * causing ASSERT below to fail. 522 */ 523 if (lt == RW_WRITER) 524 dmu_buf_will_dirty(db, tx); 525 ASSERT3U(l->l_blkid, ==, blkid); 526 ASSERT3P(l->l_dbuf, ==, db); 527 ASSERT3P(l->l_phys, ==, l->l_dbuf->db_data); 528 ASSERT3U(l->l_phys->l_hdr.lh_block_type, ==, ZBT_LEAF); 529 ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 530 531 *lp = l; 532 return (0); 533 } 534 535 static int 536 zap_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t *valp) 537 { 538 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 539 540 if (zap->zap_f_phys->zap_ptrtbl.zt_numblks == 0) { 541 ASSERT3U(idx, <, 542 (1ULL << zap->zap_f_phys->zap_ptrtbl.zt_shift)); 543 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx); 544 return (0); 545 } else { 546 return (zap_table_load(zap, &zap->zap_f_phys->zap_ptrtbl, 547 idx, valp)); 548 } 549 } 550 551 static int 552 zap_set_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t blk, dmu_tx_t *tx) 553 { 554 ASSERT(tx != NULL); 555 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 556 557 if (zap->zap_f_phys->zap_ptrtbl.zt_blk == 0) { 558 ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) = blk; 559 return (0); 560 } else { 561 return (zap_table_store(zap, &zap->zap_f_phys->zap_ptrtbl, 562 idx, blk, tx)); 563 } 564 } 565 566 static int 567 zap_deref_leaf(zap_t *zap, uint64_t h, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp) 568 { 569 uint64_t idx, blk; 570 int err; 571 572 ASSERT(zap->zap_dbuf == NULL || 573 zap->zap_f_phys == zap->zap_dbuf->db_data); 574 ASSERT3U(zap->zap_f_phys->zap_magic, ==, ZAP_MAGIC); 575 idx = ZAP_HASH_IDX(h, zap->zap_f_phys->zap_ptrtbl.zt_shift); 576 err = zap_idx_to_blk(zap, idx, &blk); 577 if (err != 0) 578 return (err); 579 err = zap_get_leaf_byblk(zap, blk, tx, lt, lp); 580 581 ASSERT(err || ZAP_HASH_IDX(h, (*lp)->l_phys->l_hdr.lh_prefix_len) == 582 (*lp)->l_phys->l_hdr.lh_prefix); 583 return (err); 584 } 585 586 static int 587 zap_expand_leaf(zap_name_t *zn, zap_leaf_t *l, dmu_tx_t *tx, zap_leaf_t **lp) 588 { 589 zap_t *zap = zn->zn_zap; 590 uint64_t hash = zn->zn_hash; 591 zap_leaf_t *nl; 592 int prefix_diff, i, err; 593 uint64_t sibling; 594 int old_prefix_len = l->l_phys->l_hdr.lh_prefix_len; 595 596 ASSERT3U(old_prefix_len, <=, zap->zap_f_phys->zap_ptrtbl.zt_shift); 597 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 598 599 ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==, 600 l->l_phys->l_hdr.lh_prefix); 601 602 if (zap_tryupgradedir(zap, tx) == 0 || 603 old_prefix_len == zap->zap_f_phys->zap_ptrtbl.zt_shift) { 604 /* We failed to upgrade, or need to grow the pointer table */ 605 objset_t *os = zap->zap_objset; 606 uint64_t object = zap->zap_object; 607 608 zap_put_leaf(l); 609 zap_unlockdir(zap); 610 err = zap_lockdir(os, object, tx, RW_WRITER, 611 FALSE, FALSE, &zn->zn_zap); 612 zap = zn->zn_zap; 613 if (err) 614 return (err); 615 ASSERT(!zap->zap_ismicro); 616 617 while (old_prefix_len == 618 zap->zap_f_phys->zap_ptrtbl.zt_shift) { 619 err = zap_grow_ptrtbl(zap, tx); 620 if (err) 621 return (err); 622 } 623 624 err = zap_deref_leaf(zap, hash, tx, RW_WRITER, &l); 625 if (err) 626 return (err); 627 628 if (l->l_phys->l_hdr.lh_prefix_len != old_prefix_len) { 629 /* it split while our locks were down */ 630 *lp = l; 631 return (0); 632 } 633 } 634 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 635 ASSERT3U(old_prefix_len, <, zap->zap_f_phys->zap_ptrtbl.zt_shift); 636 ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==, 637 l->l_phys->l_hdr.lh_prefix); 638 639 prefix_diff = zap->zap_f_phys->zap_ptrtbl.zt_shift - 640 (old_prefix_len + 1); 641 sibling = (ZAP_HASH_IDX(hash, old_prefix_len + 1) | 1) << prefix_diff; 642 643 /* check for i/o errors before doing zap_leaf_split */ 644 for (i = 0; i < (1ULL<<prefix_diff); i++) { 645 uint64_t blk; 646 err = zap_idx_to_blk(zap, sibling+i, &blk); 647 if (err) 648 return (err); 649 ASSERT3U(blk, ==, l->l_blkid); 650 } 651 652 nl = zap_create_leaf(zap, tx); 653 zap_leaf_split(l, nl, zap->zap_normflags != 0); 654 655 /* set sibling pointers */ 656 for (i = 0; i < (1ULL << prefix_diff); i++) { 657 err = zap_set_idx_to_blk(zap, sibling+i, nl->l_blkid, tx); 658 ASSERT0(err); /* we checked for i/o errors above */ 659 } 660 661 if (hash & (1ULL << (64 - l->l_phys->l_hdr.lh_prefix_len))) { 662 /* we want the sibling */ 663 zap_put_leaf(l); 664 *lp = nl; 665 } else { 666 zap_put_leaf(nl); 667 *lp = l; 668 } 669 670 return (0); 671 } 672 673 static void 674 zap_put_leaf_maybe_grow_ptrtbl(zap_name_t *zn, zap_leaf_t *l, dmu_tx_t *tx) 675 { 676 zap_t *zap = zn->zn_zap; 677 int shift = zap->zap_f_phys->zap_ptrtbl.zt_shift; 678 int leaffull = (l->l_phys->l_hdr.lh_prefix_len == shift && 679 l->l_phys->l_hdr.lh_nfree < ZAP_LEAF_LOW_WATER); 680 681 zap_put_leaf(l); 682 683 if (leaffull || zap->zap_f_phys->zap_ptrtbl.zt_nextblk) { 684 int err; 685 686 /* 687 * We are in the middle of growing the pointer table, or 688 * this leaf will soon make us grow it. 689 */ 690 if (zap_tryupgradedir(zap, tx) == 0) { 691 objset_t *os = zap->zap_objset; 692 uint64_t zapobj = zap->zap_object; 693 694 zap_unlockdir(zap); 695 err = zap_lockdir(os, zapobj, tx, 696 RW_WRITER, FALSE, FALSE, &zn->zn_zap); 697 zap = zn->zn_zap; 698 if (err) 699 return; 700 } 701 702 /* could have finished growing while our locks were down */ 703 if (zap->zap_f_phys->zap_ptrtbl.zt_shift == shift) 704 (void) zap_grow_ptrtbl(zap, tx); 705 } 706 } 707 708 static int 709 fzap_checkname(zap_name_t *zn) 710 { 711 if (zn->zn_key_orig_numints * zn->zn_key_intlen > ZAP_MAXNAMELEN) 712 return (SET_ERROR(ENAMETOOLONG)); 713 return (0); 714 } 715 716 static int 717 fzap_checksize(uint64_t integer_size, uint64_t num_integers) 718 { 719 /* Only integer sizes supported by C */ 720 switch (integer_size) { 721 case 1: 722 case 2: 723 case 4: 724 case 8: 725 break; 726 default: 727 return (SET_ERROR(EINVAL)); 728 } 729 730 if (integer_size * num_integers > ZAP_MAXVALUELEN) 731 return (E2BIG); 732 733 return (0); 734 } 735 736 static int 737 fzap_check(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers) 738 { 739 int err; 740 741 if ((err = fzap_checkname(zn)) != 0) 742 return (err); 743 return (fzap_checksize(integer_size, num_integers)); 744 } 745 746 /* 747 * Routines for manipulating attributes. 748 */ 749 int 750 fzap_lookup(zap_name_t *zn, 751 uint64_t integer_size, uint64_t num_integers, void *buf, 752 char *realname, int rn_len, boolean_t *ncp) 753 { 754 zap_leaf_t *l; 755 int err; 756 zap_entry_handle_t zeh; 757 758 if ((err = fzap_checkname(zn)) != 0) 759 return (err); 760 761 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l); 762 if (err != 0) 763 return (err); 764 err = zap_leaf_lookup(l, zn, &zeh); 765 if (err == 0) { 766 if ((err = fzap_checksize(integer_size, num_integers)) != 0) { 767 zap_put_leaf(l); 768 return (err); 769 } 770 771 err = zap_entry_read(&zeh, integer_size, num_integers, buf); 772 (void) zap_entry_read_name(zn->zn_zap, &zeh, rn_len, realname); 773 if (ncp) { 774 *ncp = zap_entry_normalization_conflict(&zeh, 775 zn, NULL, zn->zn_zap); 776 } 777 } 778 779 zap_put_leaf(l); 780 return (err); 781 } 782 783 int 784 fzap_add_cd(zap_name_t *zn, 785 uint64_t integer_size, uint64_t num_integers, 786 const void *val, uint32_t cd, dmu_tx_t *tx) 787 { 788 zap_leaf_t *l; 789 int err; 790 zap_entry_handle_t zeh; 791 zap_t *zap = zn->zn_zap; 792 793 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 794 ASSERT(!zap->zap_ismicro); 795 ASSERT(fzap_check(zn, integer_size, num_integers) == 0); 796 797 err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l); 798 if (err != 0) 799 return (err); 800 retry: 801 err = zap_leaf_lookup(l, zn, &zeh); 802 if (err == 0) { 803 err = SET_ERROR(EEXIST); 804 goto out; 805 } 806 if (err != ENOENT) 807 goto out; 808 809 err = zap_entry_create(l, zn, cd, 810 integer_size, num_integers, val, &zeh); 811 812 if (err == 0) { 813 zap_increment_num_entries(zap, 1, tx); 814 } else if (err == EAGAIN) { 815 err = zap_expand_leaf(zn, l, tx, &l); 816 zap = zn->zn_zap; /* zap_expand_leaf() may change zap */ 817 if (err == 0) 818 goto retry; 819 } 820 821 out: 822 if (zap != NULL) 823 zap_put_leaf_maybe_grow_ptrtbl(zn, l, tx); 824 return (err); 825 } 826 827 int 828 fzap_add(zap_name_t *zn, 829 uint64_t integer_size, uint64_t num_integers, 830 const void *val, dmu_tx_t *tx) 831 { 832 int err = fzap_check(zn, integer_size, num_integers); 833 if (err != 0) 834 return (err); 835 836 return (fzap_add_cd(zn, integer_size, num_integers, 837 val, ZAP_NEED_CD, tx)); 838 } 839 840 int 841 fzap_update(zap_name_t *zn, 842 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 843 { 844 zap_leaf_t *l; 845 int err, create; 846 zap_entry_handle_t zeh; 847 zap_t *zap = zn->zn_zap; 848 849 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 850 err = fzap_check(zn, integer_size, num_integers); 851 if (err != 0) 852 return (err); 853 854 err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l); 855 if (err != 0) 856 return (err); 857 retry: 858 err = zap_leaf_lookup(l, zn, &zeh); 859 create = (err == ENOENT); 860 ASSERT(err == 0 || err == ENOENT); 861 862 if (create) { 863 err = zap_entry_create(l, zn, ZAP_NEED_CD, 864 integer_size, num_integers, val, &zeh); 865 if (err == 0) 866 zap_increment_num_entries(zap, 1, tx); 867 } else { 868 err = zap_entry_update(&zeh, integer_size, num_integers, val); 869 } 870 871 if (err == EAGAIN) { 872 err = zap_expand_leaf(zn, l, tx, &l); 873 zap = zn->zn_zap; /* zap_expand_leaf() may change zap */ 874 if (err == 0) 875 goto retry; 876 } 877 878 if (zap != NULL) 879 zap_put_leaf_maybe_grow_ptrtbl(zn, l, tx); 880 return (err); 881 } 882 883 int 884 fzap_length(zap_name_t *zn, 885 uint64_t *integer_size, uint64_t *num_integers) 886 { 887 zap_leaf_t *l; 888 int err; 889 zap_entry_handle_t zeh; 890 891 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l); 892 if (err != 0) 893 return (err); 894 err = zap_leaf_lookup(l, zn, &zeh); 895 if (err != 0) 896 goto out; 897 898 if (integer_size) 899 *integer_size = zeh.zeh_integer_size; 900 if (num_integers) 901 *num_integers = zeh.zeh_num_integers; 902 out: 903 zap_put_leaf(l); 904 return (err); 905 } 906 907 int 908 fzap_remove(zap_name_t *zn, dmu_tx_t *tx) 909 { 910 zap_leaf_t *l; 911 int err; 912 zap_entry_handle_t zeh; 913 914 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, tx, RW_WRITER, &l); 915 if (err != 0) 916 return (err); 917 err = zap_leaf_lookup(l, zn, &zeh); 918 if (err == 0) { 919 zap_entry_remove(&zeh); 920 zap_increment_num_entries(zn->zn_zap, -1, tx); 921 } 922 zap_put_leaf(l); 923 return (err); 924 } 925 926 void 927 fzap_prefetch(zap_name_t *zn) 928 { 929 uint64_t idx, blk; 930 zap_t *zap = zn->zn_zap; 931 int bs; 932 933 idx = ZAP_HASH_IDX(zn->zn_hash, 934 zap->zap_f_phys->zap_ptrtbl.zt_shift); 935 if (zap_idx_to_blk(zap, idx, &blk) != 0) 936 return; 937 bs = FZAP_BLOCK_SHIFT(zap); 938 dmu_prefetch(zap->zap_objset, zap->zap_object, blk << bs, 1 << bs); 939 } 940 941 /* 942 * Helper functions for consumers. 943 */ 944 945 uint64_t 946 zap_create_link(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj, 947 const char *name, dmu_tx_t *tx) 948 { 949 uint64_t new_obj; 950 951 VERIFY((new_obj = zap_create(os, ot, DMU_OT_NONE, 0, tx)) > 0); 952 VERIFY(zap_add(os, parent_obj, name, sizeof (uint64_t), 1, &new_obj, 953 tx) == 0); 954 955 return (new_obj); 956 } 957 958 int 959 zap_value_search(objset_t *os, uint64_t zapobj, uint64_t value, uint64_t mask, 960 char *name) 961 { 962 zap_cursor_t zc; 963 zap_attribute_t *za; 964 int err; 965 966 if (mask == 0) 967 mask = -1ULL; 968 969 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); 970 for (zap_cursor_init(&zc, os, zapobj); 971 (err = zap_cursor_retrieve(&zc, za)) == 0; 972 zap_cursor_advance(&zc)) { 973 if ((za->za_first_integer & mask) == (value & mask)) { 974 (void) strcpy(name, za->za_name); 975 break; 976 } 977 } 978 zap_cursor_fini(&zc); 979 kmem_free(za, sizeof (zap_attribute_t)); 980 return (err); 981 } 982 983 int 984 zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx) 985 { 986 zap_cursor_t zc; 987 zap_attribute_t za; 988 int err; 989 990 for (zap_cursor_init(&zc, os, fromobj); 991 zap_cursor_retrieve(&zc, &za) == 0; 992 (void) zap_cursor_advance(&zc)) { 993 if (za.za_integer_length != 8 || za.za_num_integers != 1) 994 return (SET_ERROR(EINVAL)); 995 err = zap_add(os, intoobj, za.za_name, 996 8, 1, &za.za_first_integer, tx); 997 if (err) 998 return (err); 999 } 1000 zap_cursor_fini(&zc); 1001 return (0); 1002 } 1003 1004 int 1005 zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj, 1006 uint64_t value, dmu_tx_t *tx) 1007 { 1008 zap_cursor_t zc; 1009 zap_attribute_t za; 1010 int err; 1011 1012 for (zap_cursor_init(&zc, os, fromobj); 1013 zap_cursor_retrieve(&zc, &za) == 0; 1014 (void) zap_cursor_advance(&zc)) { 1015 if (za.za_integer_length != 8 || za.za_num_integers != 1) 1016 return (SET_ERROR(EINVAL)); 1017 err = zap_add(os, intoobj, za.za_name, 1018 8, 1, &value, tx); 1019 if (err) 1020 return (err); 1021 } 1022 zap_cursor_fini(&zc); 1023 return (0); 1024 } 1025 1026 int 1027 zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj, 1028 dmu_tx_t *tx) 1029 { 1030 zap_cursor_t zc; 1031 zap_attribute_t za; 1032 int err; 1033 1034 for (zap_cursor_init(&zc, os, fromobj); 1035 zap_cursor_retrieve(&zc, &za) == 0; 1036 (void) zap_cursor_advance(&zc)) { 1037 uint64_t delta = 0; 1038 1039 if (za.za_integer_length != 8 || za.za_num_integers != 1) 1040 return (SET_ERROR(EINVAL)); 1041 1042 err = zap_lookup(os, intoobj, za.za_name, 8, 1, &delta); 1043 if (err != 0 && err != ENOENT) 1044 return (err); 1045 delta += za.za_first_integer; 1046 err = zap_update(os, intoobj, za.za_name, 8, 1, &delta, tx); 1047 if (err) 1048 return (err); 1049 } 1050 zap_cursor_fini(&zc); 1051 return (0); 1052 } 1053 1054 int 1055 zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx) 1056 { 1057 char name[20]; 1058 1059 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); 1060 return (zap_add(os, obj, name, 8, 1, &value, tx)); 1061 } 1062 1063 int 1064 zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx) 1065 { 1066 char name[20]; 1067 1068 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); 1069 return (zap_remove(os, obj, name, tx)); 1070 } 1071 1072 int 1073 zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value) 1074 { 1075 char name[20]; 1076 1077 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); 1078 return (zap_lookup(os, obj, name, 8, 1, &value)); 1079 } 1080 1081 int 1082 zap_add_int_key(objset_t *os, uint64_t obj, 1083 uint64_t key, uint64_t value, dmu_tx_t *tx) 1084 { 1085 char name[20]; 1086 1087 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); 1088 return (zap_add(os, obj, name, 8, 1, &value, tx)); 1089 } 1090 1091 int 1092 zap_update_int_key(objset_t *os, uint64_t obj, 1093 uint64_t key, uint64_t value, dmu_tx_t *tx) 1094 { 1095 char name[20]; 1096 1097 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); 1098 return (zap_update(os, obj, name, 8, 1, &value, tx)); 1099 } 1100 1101 int 1102 zap_lookup_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t *valuep) 1103 { 1104 char name[20]; 1105 1106 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); 1107 return (zap_lookup(os, obj, name, 8, 1, valuep)); 1108 } 1109 1110 int 1111 zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta, 1112 dmu_tx_t *tx) 1113 { 1114 uint64_t value = 0; 1115 int err; 1116 1117 if (delta == 0) 1118 return (0); 1119 1120 err = zap_lookup(os, obj, name, 8, 1, &value); 1121 if (err != 0 && err != ENOENT) 1122 return (err); 1123 value += delta; 1124 if (value == 0) 1125 err = zap_remove(os, obj, name, tx); 1126 else 1127 err = zap_update(os, obj, name, 8, 1, &value, tx); 1128 return (err); 1129 } 1130 1131 int 1132 zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta, 1133 dmu_tx_t *tx) 1134 { 1135 char name[20]; 1136 1137 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); 1138 return (zap_increment(os, obj, name, delta, tx)); 1139 } 1140 1141 /* 1142 * Routines for iterating over the attributes. 1143 */ 1144 1145 int 1146 fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za) 1147 { 1148 int err = ENOENT; 1149 zap_entry_handle_t zeh; 1150 zap_leaf_t *l; 1151 1152 /* retrieve the next entry at or after zc_hash/zc_cd */ 1153 /* if no entry, return ENOENT */ 1154 1155 if (zc->zc_leaf && 1156 (ZAP_HASH_IDX(zc->zc_hash, 1157 zc->zc_leaf->l_phys->l_hdr.lh_prefix_len) != 1158 zc->zc_leaf->l_phys->l_hdr.lh_prefix)) { 1159 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 1160 zap_put_leaf(zc->zc_leaf); 1161 zc->zc_leaf = NULL; 1162 } 1163 1164 again: 1165 if (zc->zc_leaf == NULL) { 1166 err = zap_deref_leaf(zap, zc->zc_hash, NULL, RW_READER, 1167 &zc->zc_leaf); 1168 if (err != 0) 1169 return (err); 1170 } else { 1171 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 1172 } 1173 l = zc->zc_leaf; 1174 1175 err = zap_leaf_lookup_closest(l, zc->zc_hash, zc->zc_cd, &zeh); 1176 1177 if (err == ENOENT) { 1178 uint64_t nocare = 1179 (1ULL << (64 - l->l_phys->l_hdr.lh_prefix_len)) - 1; 1180 zc->zc_hash = (zc->zc_hash & ~nocare) + nocare + 1; 1181 zc->zc_cd = 0; 1182 if (l->l_phys->l_hdr.lh_prefix_len == 0 || zc->zc_hash == 0) { 1183 zc->zc_hash = -1ULL; 1184 } else { 1185 zap_put_leaf(zc->zc_leaf); 1186 zc->zc_leaf = NULL; 1187 goto again; 1188 } 1189 } 1190 1191 if (err == 0) { 1192 zc->zc_hash = zeh.zeh_hash; 1193 zc->zc_cd = zeh.zeh_cd; 1194 za->za_integer_length = zeh.zeh_integer_size; 1195 za->za_num_integers = zeh.zeh_num_integers; 1196 if (zeh.zeh_num_integers == 0) { 1197 za->za_first_integer = 0; 1198 } else { 1199 err = zap_entry_read(&zeh, 8, 1, &za->za_first_integer); 1200 ASSERT(err == 0 || err == EOVERFLOW); 1201 } 1202 err = zap_entry_read_name(zap, &zeh, 1203 sizeof (za->za_name), za->za_name); 1204 ASSERT(err == 0); 1205 1206 za->za_normalization_conflict = 1207 zap_entry_normalization_conflict(&zeh, 1208 NULL, za->za_name, zap); 1209 } 1210 rw_exit(&zc->zc_leaf->l_rwlock); 1211 return (err); 1212 } 1213 1214 static void 1215 zap_stats_ptrtbl(zap_t *zap, uint64_t *tbl, int len, zap_stats_t *zs) 1216 { 1217 int i, err; 1218 uint64_t lastblk = 0; 1219 1220 /* 1221 * NB: if a leaf has more pointers than an entire ptrtbl block 1222 * can hold, then it'll be accounted for more than once, since 1223 * we won't have lastblk. 1224 */ 1225 for (i = 0; i < len; i++) { 1226 zap_leaf_t *l; 1227 1228 if (tbl[i] == lastblk) 1229 continue; 1230 lastblk = tbl[i]; 1231 1232 err = zap_get_leaf_byblk(zap, tbl[i], NULL, RW_READER, &l); 1233 if (err == 0) { 1234 zap_leaf_stats(zap, l, zs); 1235 zap_put_leaf(l); 1236 } 1237 } 1238 } 1239 1240 int 1241 fzap_cursor_move_to_key(zap_cursor_t *zc, zap_name_t *zn) 1242 { 1243 int err; 1244 zap_leaf_t *l; 1245 zap_entry_handle_t zeh; 1246 1247 if (zn->zn_key_orig_numints * zn->zn_key_intlen > ZAP_MAXNAMELEN) 1248 return (SET_ERROR(ENAMETOOLONG)); 1249 1250 err = zap_deref_leaf(zc->zc_zap, zn->zn_hash, NULL, RW_READER, &l); 1251 if (err != 0) 1252 return (err); 1253 1254 err = zap_leaf_lookup(l, zn, &zeh); 1255 if (err != 0) 1256 return (err); 1257 1258 zc->zc_leaf = l; 1259 zc->zc_hash = zeh.zeh_hash; 1260 zc->zc_cd = zeh.zeh_cd; 1261 1262 return (err); 1263 } 1264 1265 void 1266 fzap_get_stats(zap_t *zap, zap_stats_t *zs) 1267 { 1268 int bs = FZAP_BLOCK_SHIFT(zap); 1269 zs->zs_blocksize = 1ULL << bs; 1270 1271 /* 1272 * Set zap_phys_t fields 1273 */ 1274 zs->zs_num_leafs = zap->zap_f_phys->zap_num_leafs; 1275 zs->zs_num_entries = zap->zap_f_phys->zap_num_entries; 1276 zs->zs_num_blocks = zap->zap_f_phys->zap_freeblk; 1277 zs->zs_block_type = zap->zap_f_phys->zap_block_type; 1278 zs->zs_magic = zap->zap_f_phys->zap_magic; 1279 zs->zs_salt = zap->zap_f_phys->zap_salt; 1280 1281 /* 1282 * Set zap_ptrtbl fields 1283 */ 1284 zs->zs_ptrtbl_len = 1ULL << zap->zap_f_phys->zap_ptrtbl.zt_shift; 1285 zs->zs_ptrtbl_nextblk = zap->zap_f_phys->zap_ptrtbl.zt_nextblk; 1286 zs->zs_ptrtbl_blks_copied = 1287 zap->zap_f_phys->zap_ptrtbl.zt_blks_copied; 1288 zs->zs_ptrtbl_zt_blk = zap->zap_f_phys->zap_ptrtbl.zt_blk; 1289 zs->zs_ptrtbl_zt_numblks = zap->zap_f_phys->zap_ptrtbl.zt_numblks; 1290 zs->zs_ptrtbl_zt_shift = zap->zap_f_phys->zap_ptrtbl.zt_shift; 1291 1292 if (zap->zap_f_phys->zap_ptrtbl.zt_numblks == 0) { 1293 /* the ptrtbl is entirely in the header block. */ 1294 zap_stats_ptrtbl(zap, &ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), 1295 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap), zs); 1296 } else { 1297 int b; 1298 1299 dmu_prefetch(zap->zap_objset, zap->zap_object, 1300 zap->zap_f_phys->zap_ptrtbl.zt_blk << bs, 1301 zap->zap_f_phys->zap_ptrtbl.zt_numblks << bs); 1302 1303 for (b = 0; b < zap->zap_f_phys->zap_ptrtbl.zt_numblks; 1304 b++) { 1305 dmu_buf_t *db; 1306 int err; 1307 1308 err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 1309 (zap->zap_f_phys->zap_ptrtbl.zt_blk + b) << bs, 1310 FTAG, &db, DMU_READ_NO_PREFETCH); 1311 if (err == 0) { 1312 zap_stats_ptrtbl(zap, db->db_data, 1313 1<<(bs-3), zs); 1314 dmu_buf_rele(db, FTAG); 1315 } 1316 } 1317 } 1318 } 1319 1320 int 1321 fzap_count_write(zap_name_t *zn, int add, uint64_t *towrite, 1322 uint64_t *tooverwrite) 1323 { 1324 zap_t *zap = zn->zn_zap; 1325 zap_leaf_t *l; 1326 int err; 1327 1328 /* 1329 * Account for the header block of the fatzap. 1330 */ 1331 if (!add && dmu_buf_freeable(zap->zap_dbuf)) { 1332 *tooverwrite += zap->zap_dbuf->db_size; 1333 } else { 1334 *towrite += zap->zap_dbuf->db_size; 1335 } 1336 1337 /* 1338 * Account for the pointer table blocks. 1339 * If we are adding we need to account for the following cases : 1340 * - If the pointer table is embedded, this operation could force an 1341 * external pointer table. 1342 * - If this already has an external pointer table this operation 1343 * could extend the table. 1344 */ 1345 if (add) { 1346 if (zap->zap_f_phys->zap_ptrtbl.zt_blk == 0) 1347 *towrite += zap->zap_dbuf->db_size; 1348 else 1349 *towrite += (zap->zap_dbuf->db_size * 3); 1350 } 1351 1352 /* 1353 * Now, check if the block containing leaf is freeable 1354 * and account accordingly. 1355 */ 1356 err = zap_deref_leaf(zap, zn->zn_hash, NULL, RW_READER, &l); 1357 if (err != 0) { 1358 return (err); 1359 } 1360 1361 if (!add && dmu_buf_freeable(l->l_dbuf)) { 1362 *tooverwrite += l->l_dbuf->db_size; 1363 } else { 1364 /* 1365 * If this an add operation, the leaf block could split. 1366 * Hence, we need to account for an additional leaf block. 1367 */ 1368 *towrite += (add ? 2 : 1) * l->l_dbuf->db_size; 1369 } 1370 1371 zap_put_leaf(l); 1372 return (0); 1373 }