1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012 by Delphix. All rights reserved. 25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 27 */ 28 29 /* Portions Copyright 2010 Robert Milkowski */ 30 31 #ifndef _SYS_DMU_H 32 #define _SYS_DMU_H 33 34 /* 35 * This file describes the interface that the DMU provides for its 36 * consumers. 37 * 38 * The DMU also interacts with the SPA. That interface is described in 39 * dmu_spa.h. 40 */ 41 42 #include <sys/zfs_context.h> 43 #include <sys/inttypes.h> 44 #include <sys/types.h> 45 #include <sys/param.h> 46 #include <sys/cred.h> 47 #include <sys/time.h> 48 #include <sys/fs/zfs.h> 49 50 #ifdef __cplusplus 51 extern "C" { 52 #endif 53 54 struct uio; 55 struct xuio; 56 struct page; 57 struct vnode; 58 struct spa; 59 struct zilog; 60 struct zio; 61 struct blkptr; 62 struct zap_cursor; 63 struct dsl_dataset; 64 struct dsl_pool; 65 struct dnode; 66 struct drr_begin; 67 struct drr_end; 68 struct zbookmark; 69 struct spa; 70 struct nvlist; 71 struct arc_buf; 72 struct zio_prop; 73 struct sa_handle; 74 75 typedef struct objset objset_t; 76 typedef struct dmu_tx dmu_tx_t; 77 typedef struct dsl_dir dsl_dir_t; 78 79 typedef enum dmu_object_byteswap { 80 DMU_BSWAP_UINT8, 81 DMU_BSWAP_UINT16, 82 DMU_BSWAP_UINT32, 83 DMU_BSWAP_UINT64, 84 DMU_BSWAP_ZAP, 85 DMU_BSWAP_DNODE, 86 DMU_BSWAP_OBJSET, 87 DMU_BSWAP_ZNODE, 88 DMU_BSWAP_OLDACL, 89 DMU_BSWAP_ACL, 90 /* 91 * Allocating a new byteswap type number makes the on-disk format 92 * incompatible with any other format that uses the same number. 93 * 94 * Data can usually be structured to work with one of the 95 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types. 96 */ 97 DMU_BSWAP_NUMFUNCS 98 } dmu_object_byteswap_t; 99 100 #define DMU_OT_NEWTYPE 0x80 101 #define DMU_OT_METADATA 0x40 102 #define DMU_OT_BYTESWAP_MASK 0x3f 103 104 /* 105 * Defines a uint8_t object type. Object types specify if the data 106 * in the object is metadata (boolean) and how to byteswap the data 107 * (dmu_object_byteswap_t). 108 */ 109 #define DMU_OT(byteswap, metadata) \ 110 (DMU_OT_NEWTYPE | \ 111 ((metadata) ? DMU_OT_METADATA : 0) | \ 112 ((byteswap) & DMU_OT_BYTESWAP_MASK)) 113 114 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 115 ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \ 116 (ot) < DMU_OT_NUMTYPES) 117 118 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 119 ((ot) & DMU_OT_METADATA) : \ 120 dmu_ot[(ot)].ot_metadata) 121 122 #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 123 ((ot) & DMU_OT_BYTESWAP_MASK) : \ 124 dmu_ot[(ot)].ot_byteswap) 125 126 typedef enum dmu_object_type { 127 DMU_OT_NONE, 128 /* general: */ 129 DMU_OT_OBJECT_DIRECTORY, /* ZAP */ 130 DMU_OT_OBJECT_ARRAY, /* UINT64 */ 131 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */ 132 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */ 133 DMU_OT_BPOBJ, /* UINT64 */ 134 DMU_OT_BPOBJ_HDR, /* UINT64 */ 135 /* spa: */ 136 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */ 137 DMU_OT_SPACE_MAP, /* UINT64 */ 138 /* zil: */ 139 DMU_OT_INTENT_LOG, /* UINT64 */ 140 /* dmu: */ 141 DMU_OT_DNODE, /* DNODE */ 142 DMU_OT_OBJSET, /* OBJSET */ 143 /* dsl: */ 144 DMU_OT_DSL_DIR, /* UINT64 */ 145 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */ 146 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */ 147 DMU_OT_DSL_PROPS, /* ZAP */ 148 DMU_OT_DSL_DATASET, /* UINT64 */ 149 /* zpl: */ 150 DMU_OT_ZNODE, /* ZNODE */ 151 DMU_OT_OLDACL, /* Old ACL */ 152 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */ 153 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */ 154 DMU_OT_MASTER_NODE, /* ZAP */ 155 DMU_OT_UNLINKED_SET, /* ZAP */ 156 /* zvol: */ 157 DMU_OT_ZVOL, /* UINT8 */ 158 DMU_OT_ZVOL_PROP, /* ZAP */ 159 /* other; for testing only! */ 160 DMU_OT_PLAIN_OTHER, /* UINT8 */ 161 DMU_OT_UINT64_OTHER, /* UINT64 */ 162 DMU_OT_ZAP_OTHER, /* ZAP */ 163 /* new object types: */ 164 DMU_OT_ERROR_LOG, /* ZAP */ 165 DMU_OT_SPA_HISTORY, /* UINT8 */ 166 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */ 167 DMU_OT_POOL_PROPS, /* ZAP */ 168 DMU_OT_DSL_PERMS, /* ZAP */ 169 DMU_OT_ACL, /* ACL */ 170 DMU_OT_SYSACL, /* SYSACL */ 171 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */ 172 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */ 173 DMU_OT_NEXT_CLONES, /* ZAP */ 174 DMU_OT_SCAN_QUEUE, /* ZAP */ 175 DMU_OT_USERGROUP_USED, /* ZAP */ 176 DMU_OT_USERGROUP_QUOTA, /* ZAP */ 177 DMU_OT_USERREFS, /* ZAP */ 178 DMU_OT_DDT_ZAP, /* ZAP */ 179 DMU_OT_DDT_STATS, /* ZAP */ 180 DMU_OT_SA, /* System attr */ 181 DMU_OT_SA_MASTER_NODE, /* ZAP */ 182 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */ 183 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */ 184 DMU_OT_SCAN_XLATE, /* ZAP */ 185 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */ 186 DMU_OT_DEADLIST, /* ZAP */ 187 DMU_OT_DEADLIST_HDR, /* UINT64 */ 188 DMU_OT_DSL_CLONES, /* ZAP */ 189 DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */ 190 /* 191 * Do not allocate new object types here. Doing so makes the on-disk 192 * format incompatible with any other format that uses the same object 193 * type number. 194 * 195 * When creating an object which does not have one of the above types 196 * use the DMU_OTN_* type with the correct byteswap and metadata 197 * values. 198 * 199 * The DMU_OTN_* types do not have entries in the dmu_ot table, 200 * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead 201 * of indexing into dmu_ot directly (this works for both DMU_OT_* types 202 * and DMU_OTN_* types). 203 */ 204 DMU_OT_NUMTYPES, 205 206 /* 207 * Names for valid types declared with DMU_OT(). 208 */ 209 DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE), 210 DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE), 211 DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE), 212 DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE), 213 DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE), 214 DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE), 215 DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE), 216 DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE), 217 DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE), 218 DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE), 219 } dmu_object_type_t; 220 221 typedef enum txg_how { 222 TXG_WAIT = 1, 223 TXG_NOWAIT, 224 } txg_how_t; 225 226 void byteswap_uint64_array(void *buf, size_t size); 227 void byteswap_uint32_array(void *buf, size_t size); 228 void byteswap_uint16_array(void *buf, size_t size); 229 void byteswap_uint8_array(void *buf, size_t size); 230 void zap_byteswap(void *buf, size_t size); 231 void zfs_oldacl_byteswap(void *buf, size_t size); 232 void zfs_acl_byteswap(void *buf, size_t size); 233 void zfs_znode_byteswap(void *buf, size_t size); 234 235 #define DS_FIND_SNAPSHOTS (1<<0) 236 #define DS_FIND_CHILDREN (1<<1) 237 238 /* 239 * The maximum number of bytes that can be accessed as part of one 240 * operation, including metadata. 241 */ 242 #define DMU_MAX_ACCESS (10<<20) /* 10MB */ 243 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */ 244 245 #define DMU_USERUSED_OBJECT (-1ULL) 246 #define DMU_GROUPUSED_OBJECT (-2ULL) 247 #define DMU_DEADLIST_OBJECT (-3ULL) 248 249 /* 250 * artificial blkids for bonus buffer and spill blocks 251 */ 252 #define DMU_BONUS_BLKID (-1ULL) 253 #define DMU_SPILL_BLKID (-2ULL) 254 /* 255 * Public routines to create, destroy, open, and close objsets. 256 */ 257 int dmu_objset_hold(const char *name, void *tag, objset_t **osp); 258 int dmu_objset_own(const char *name, dmu_objset_type_t type, 259 boolean_t readonly, void *tag, objset_t **osp); 260 void dmu_objset_rele(objset_t *os, void *tag); 261 void dmu_objset_disown(objset_t *os, void *tag); 262 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp); 263 264 void dmu_objset_evict_dbufs(objset_t *os); 265 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags, 266 void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg); 267 int dmu_objset_clone(const char *name, const char *origin); 268 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer, 269 struct nvlist *errlist); 270 int dmu_objset_snapshot_one(const char *fsname, const char *snapname); 271 int dmu_objset_snapshot_tmp(const char *, const char *, int); 272 int dmu_objset_find(char *name, int func(const char *, void *), void *arg, 273 int flags); 274 void dmu_objset_byteswap(void *buf, size_t size); 275 int dsl_dataset_rename_snapshot(const char *fsname, 276 const char *oldsnapname, const char *newsnapname, boolean_t recursive); 277 278 typedef struct dmu_buf { 279 uint64_t db_object; /* object that this buffer is part of */ 280 uint64_t db_offset; /* byte offset in this object */ 281 uint64_t db_size; /* size of buffer in bytes */ 282 void *db_data; /* data in buffer */ 283 } dmu_buf_t; 284 285 /* 286 * The names of zap entries in the DIRECTORY_OBJECT of the MOS. 287 */ 288 #define DMU_POOL_DIRECTORY_OBJECT 1 289 #define DMU_POOL_CONFIG "config" 290 #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write" 291 #define DMU_POOL_FEATURES_FOR_READ "features_for_read" 292 #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions" 293 #define DMU_POOL_ROOT_DATASET "root_dataset" 294 #define DMU_POOL_SYNC_BPOBJ "sync_bplist" 295 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub" 296 #define DMU_POOL_ERRLOG_LAST "errlog_last" 297 #define DMU_POOL_SPARES "spares" 298 #define DMU_POOL_DEFLATE "deflate" 299 #define DMU_POOL_HISTORY "history" 300 #define DMU_POOL_PROPS "pool_props" 301 #define DMU_POOL_L2CACHE "l2cache" 302 #define DMU_POOL_TMP_USERREFS "tmp_userrefs" 303 #define DMU_POOL_DDT "DDT-%s-%s-%s" 304 #define DMU_POOL_DDT_STATS "DDT-statistics" 305 #define DMU_POOL_CREATION_VERSION "creation_version" 306 #define DMU_POOL_SCAN "scan" 307 #define DMU_POOL_FREE_BPOBJ "free_bpobj" 308 #define DMU_POOL_BPTREE_OBJ "bptree_obj" 309 #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj" 310 311 /* 312 * Allocate an object from this objset. The range of object numbers 313 * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode. 314 * 315 * The transaction must be assigned to a txg. The newly allocated 316 * object will be "held" in the transaction (ie. you can modify the 317 * newly allocated object in this transaction). 318 * 319 * dmu_object_alloc() chooses an object and returns it in *objectp. 320 * 321 * dmu_object_claim() allocates a specific object number. If that 322 * number is already allocated, it fails and returns EEXIST. 323 * 324 * Return 0 on success, or ENOSPC or EEXIST as specified above. 325 */ 326 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot, 327 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx); 328 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot, 329 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx); 330 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot, 331 int blocksize, dmu_object_type_t bonustype, int bonuslen); 332 333 /* 334 * Free an object from this objset. 335 * 336 * The object's data will be freed as well (ie. you don't need to call 337 * dmu_free(object, 0, -1, tx)). 338 * 339 * The object need not be held in the transaction. 340 * 341 * If there are any holds on this object's buffers (via dmu_buf_hold()), 342 * or tx holds on the object (via dmu_tx_hold_object()), you can not 343 * free it; it fails and returns EBUSY. 344 * 345 * If the object is not allocated, it fails and returns ENOENT. 346 * 347 * Return 0 on success, or EBUSY or ENOENT as specified above. 348 */ 349 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx); 350 351 /* 352 * Find the next allocated or free object. 353 * 354 * The objectp parameter is in-out. It will be updated to be the next 355 * object which is allocated. Ignore objects which have not been 356 * modified since txg. 357 * 358 * XXX Can only be called on a objset with no dirty data. 359 * 360 * Returns 0 on success, or ENOENT if there are no more objects. 361 */ 362 int dmu_object_next(objset_t *os, uint64_t *objectp, 363 boolean_t hole, uint64_t txg); 364 365 /* 366 * Set the data blocksize for an object. 367 * 368 * The object cannot have any blocks allcated beyond the first. If 369 * the first block is allocated already, the new size must be greater 370 * than the current block size. If these conditions are not met, 371 * ENOTSUP will be returned. 372 * 373 * Returns 0 on success, or EBUSY if there are any holds on the object 374 * contents, or ENOTSUP as described above. 375 */ 376 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, 377 int ibs, dmu_tx_t *tx); 378 379 /* 380 * Set the checksum property on a dnode. The new checksum algorithm will 381 * apply to all newly written blocks; existing blocks will not be affected. 382 */ 383 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 384 dmu_tx_t *tx); 385 386 /* 387 * Set the compress property on a dnode. The new compression algorithm will 388 * apply to all newly written blocks; existing blocks will not be affected. 389 */ 390 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 391 dmu_tx_t *tx); 392 393 /* 394 * Decide how to write a block: checksum, compression, number of copies, etc. 395 */ 396 #define WP_NOFILL 0x1 397 #define WP_DMU_SYNC 0x2 398 #define WP_SPILL 0x4 399 400 void dmu_write_policy(objset_t *os, struct dnode *dn, int level, int wp, 401 struct zio_prop *zp); 402 /* 403 * The bonus data is accessed more or less like a regular buffer. 404 * You must dmu_bonus_hold() to get the buffer, which will give you a 405 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus 406 * data. As with any normal buffer, you must call dmu_buf_read() to 407 * read db_data, dmu_buf_will_dirty() before modifying it, and the 408 * object must be held in an assigned transaction before calling 409 * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus 410 * buffer as well. You must release your hold with dmu_buf_rele(). 411 */ 412 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **); 413 int dmu_bonus_max(void); 414 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *); 415 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *); 416 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *); 417 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *); 418 419 /* 420 * Special spill buffer support used by "SA" framework 421 */ 422 423 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp); 424 int dmu_spill_hold_by_dnode(struct dnode *dn, uint32_t flags, 425 void *tag, dmu_buf_t **dbp); 426 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp); 427 428 /* 429 * Obtain the DMU buffer from the specified object which contains the 430 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so 431 * that it will remain in memory. You must release the hold with 432 * dmu_buf_rele(). You musn't access the dmu_buf_t after releasing your 433 * hold. You must have a hold on any dmu_buf_t* you pass to the DMU. 434 * 435 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill 436 * on the returned buffer before reading or writing the buffer's 437 * db_data. The comments for those routines describe what particular 438 * operations are valid after calling them. 439 * 440 * The object number must be a valid, allocated object number. 441 */ 442 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 443 void *tag, dmu_buf_t **, int flags); 444 void dmu_buf_add_ref(dmu_buf_t *db, void* tag); 445 void dmu_buf_rele(dmu_buf_t *db, void *tag); 446 uint64_t dmu_buf_refcount(dmu_buf_t *db); 447 448 /* 449 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a 450 * range of an object. A pointer to an array of dmu_buf_t*'s is 451 * returned (in *dbpp). 452 * 453 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and 454 * frees the array. The hold on the array of buffers MUST be released 455 * with dmu_buf_rele_array. You can NOT release the hold on each buffer 456 * individually with dmu_buf_rele. 457 */ 458 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset, 459 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp); 460 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag); 461 462 struct dmu_buf_user; 463 464 typedef void dmu_buf_evict_func_t(struct dmu_buf_user *); 465 466 /* 467 * The DMU buffer user object is used to allow private data to be 468 * associated with a dbuf for the duration of its lifetime. This private 469 * data must include a dmu_buf_user_t as its first object, which is passed 470 * into the DMU user data API and can be attached to a dbuf. Clients can 471 * regain access to their private data structure with a cast. 472 * 473 * DMU buffer users can be notified via a callback when their associated 474 * dbuf has been evicted. This is typically used to free the user's 475 * private data. The eviction callback is executed without the dbuf 476 * mutex held or any other type of mechanism to guarantee that the 477 * dbuf is still available. For this reason, users must assume the dbuf 478 * has already been freed and not reference the dbuf from the callback 479 * context. 480 * 481 * Users requestion "immediate eviction" are notified as soon as the dbuf 482 * is only referenced by dirty records (dirties == holds). Otherwise the 483 * eviction callback occurs after the last reference to the dbuf is dropped. 484 * 485 * Eviction Callback Processing 486 * ============================ 487 * In any context where a dbuf reference drop may trigger an eviction, an 488 * eviction queue object must be provided. This queue must then be 489 * processed while not holding any dbuf locks. In this way, the user can 490 * perform any work needed in their eviction function without fear of 491 * lock order reversals. 492 * 493 * Implementation Note 494 * ============================ 495 * Some users will occasionally want to map a structure directly onto the 496 * backing dbuf. Using an union with an name alias macro to access these 497 * overlays reduces the ugliness of code that accesses them. Initial work on 498 * user objects involved using a macro that took the user object as an 499 * argument to access the fields, which resulted in hundreds of lines of 500 * needless diffs and wasn't any easier to read. 501 */ 502 typedef struct dmu_buf_user { 503 /* 504 * This instance's link in the eviction queue. Set when the buffer 505 * has evicted and the callback needs to be called. 506 */ 507 list_node_t evict_queue_link; 508 /** This instance's eviction function pointer. */ 509 dmu_buf_evict_func_t *evict_func; 510 } dmu_buf_user_t; 511 512 /* 513 * Initialize the given dmu_buf_user_t instance with the eviction function 514 * evict_func, to be called when the user is evicted. 515 * 516 * NOTE: This function should only be called once on a given object. To 517 * help enforce this, dbu should already be zeroed on entry. 518 */ 519 static inline void 520 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func) 521 { 522 ASSERT(dbu->evict_func == NULL); 523 ASSERT(!list_link_active(&dbu->evict_queue_link)); 524 dbu->evict_func = evict_func; 525 } 526 527 static inline void 528 dmu_buf_create_user_evict_list(list_t *evict_list_p) 529 { 530 list_create(evict_list_p, sizeof(dmu_buf_user_t), 531 offsetof(dmu_buf_user_t, evict_queue_link)); 532 } 533 534 static inline void 535 dmu_buf_process_user_evicts(list_t *evict_list_p) 536 { 537 dmu_buf_user_t *dbu, *next; 538 539 for (dbu = (dmu_buf_user_t *)list_head(evict_list_p); dbu != NULL; 540 dbu = next) { 541 next = (dmu_buf_user_t *)list_next(evict_list_p, dbu); 542 list_remove(evict_list_p, dbu); 543 dbu->evict_func(dbu); 544 } 545 } 546 547 static inline void 548 dmu_buf_destroy_user_evict_list(list_t *evict_list_p) 549 { 550 dmu_buf_process_user_evicts(evict_list_p); 551 list_destroy(evict_list_p); 552 } 553 554 dmu_buf_user_t *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user); 555 dmu_buf_user_t *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user); 556 dmu_buf_user_t *dmu_buf_replace_user(dmu_buf_t *db, 557 dmu_buf_user_t *old_user, dmu_buf_user_t *new_user); 558 dmu_buf_user_t *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user); 559 dmu_buf_user_t *dmu_buf_get_user(dmu_buf_t *db); 560 561 /* 562 * Returns the blkptr associated with this dbuf, or NULL if not set. 563 */ 564 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db); 565 566 /* 567 * Indicate that you are going to modify the buffer's data (db_data). 568 * 569 * The transaction (tx) must be assigned to a txg (ie. you've called 570 * dmu_tx_assign()). The buffer's object must be held in the tx 571 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)). 572 */ 573 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx); 574 575 /* 576 * Tells if the given dbuf is freeable. 577 */ 578 boolean_t dmu_buf_freeable(dmu_buf_t *); 579 580 /* 581 * You must create a transaction, then hold the objects which you will 582 * (or might) modify as part of this transaction. Then you must assign 583 * the transaction to a transaction group. Once the transaction has 584 * been assigned, you can modify buffers which belong to held objects as 585 * part of this transaction. You can't modify buffers before the 586 * transaction has been assigned; you can't modify buffers which don't 587 * belong to objects which this transaction holds; you can't hold 588 * objects once the transaction has been assigned. You may hold an 589 * object which you are going to free (with dmu_object_free()), but you 590 * don't have to. 591 * 592 * You can abort the transaction before it has been assigned. 593 * 594 * Note that you may hold buffers (with dmu_buf_hold) at any time, 595 * regardless of transaction state. 596 */ 597 598 #define DMU_NEW_OBJECT (-1ULL) 599 #define DMU_OBJECT_END (-1ULL) 600 601 dmu_tx_t *dmu_tx_create(objset_t *os); 602 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len); 603 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, 604 uint64_t len); 605 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name); 606 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object); 607 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object); 608 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow); 609 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size); 610 void dmu_tx_abort(dmu_tx_t *tx); 611 int dmu_tx_assign(dmu_tx_t *tx, enum txg_how txg_how); 612 void dmu_tx_wait(dmu_tx_t *tx); 613 void dmu_tx_commit(dmu_tx_t *tx); 614 615 /* 616 * To register a commit callback, dmu_tx_callback_register() must be called. 617 * 618 * dcb_data is a pointer to caller private data that is passed on as a 619 * callback parameter. The caller is responsible for properly allocating and 620 * freeing it. 621 * 622 * When registering a callback, the transaction must be already created, but 623 * it cannot be committed or aborted. It can be assigned to a txg or not. 624 * 625 * The callback will be called after the transaction has been safely written 626 * to stable storage and will also be called if the dmu_tx is aborted. 627 * If there is any error which prevents the transaction from being committed to 628 * disk, the callback will be called with a value of error != 0. 629 */ 630 typedef void dmu_tx_callback_func_t(void *dcb_data, int error); 631 632 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func, 633 void *dcb_data); 634 635 /* 636 * Free up the data blocks for a defined range of a file. If size is 637 * -1, the range from offset to end-of-file is freed. 638 */ 639 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 640 uint64_t size, dmu_tx_t *tx); 641 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset, 642 uint64_t size); 643 int dmu_free_object(objset_t *os, uint64_t object); 644 645 /* 646 * Convenience functions. 647 * 648 * Canfail routines will return 0 on success, or an errno if there is a 649 * nonrecoverable I/O error. 650 */ 651 #define DMU_READ_PREFETCH 0 /* prefetch */ 652 #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */ 653 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 654 void *buf, uint32_t flags); 655 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 656 const void *buf, dmu_tx_t *tx); 657 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 658 dmu_tx_t *tx); 659 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size); 660 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size, 661 dmu_tx_t *tx); 662 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size, 663 dmu_tx_t *tx); 664 int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, 665 uint64_t size, struct page *pp, dmu_tx_t *tx); 666 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size); 667 void dmu_return_arcbuf(struct arc_buf *buf); 668 void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf, 669 dmu_tx_t *tx); 670 int dmu_xuio_init(struct xuio *uio, int niov); 671 void dmu_xuio_fini(struct xuio *uio); 672 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off, 673 size_t n); 674 int dmu_xuio_cnt(struct xuio *uio); 675 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i); 676 void dmu_xuio_clear(struct xuio *uio, int i); 677 void xuio_stat_wbuf_copied(); 678 void xuio_stat_wbuf_nocopy(); 679 680 extern int zfs_prefetch_disable; 681 682 /* 683 * Asynchronously try to read in the data. 684 */ 685 void dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, 686 uint64_t len); 687 688 typedef struct dmu_object_info { 689 /* All sizes are in bytes unless otherwise indicated. */ 690 uint32_t doi_data_block_size; 691 uint32_t doi_metadata_block_size; 692 dmu_object_type_t doi_type; 693 dmu_object_type_t doi_bonus_type; 694 uint64_t doi_bonus_size; 695 uint8_t doi_indirection; /* 2 = dnode->indirect->data */ 696 uint8_t doi_checksum; 697 uint8_t doi_compress; 698 uint8_t doi_pad[5]; 699 uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */ 700 uint64_t doi_max_offset; 701 uint64_t doi_fill_count; /* number of non-empty blocks */ 702 } dmu_object_info_t; 703 704 typedef void arc_byteswap_func_t(void *buf, size_t size); 705 706 typedef struct dmu_object_type_info { 707 dmu_object_byteswap_t ot_byteswap; 708 boolean_t ot_metadata; 709 char *ot_name; 710 } dmu_object_type_info_t; 711 712 typedef struct dmu_object_byteswap_info { 713 arc_byteswap_func_t *ob_func; 714 char *ob_name; 715 } dmu_object_byteswap_info_t; 716 717 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES]; 718 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS]; 719 720 /* 721 * Get information on a DMU object. 722 * 723 * Return 0 on success or ENOENT if object is not allocated. 724 * 725 * If doi is NULL, just indicates whether the object exists. 726 */ 727 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi); 728 void dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi); 729 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi); 730 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, 731 u_longlong_t *nblk512); 732 733 typedef struct dmu_objset_stats { 734 uint64_t dds_num_clones; /* number of clones of this */ 735 uint64_t dds_creation_txg; 736 uint64_t dds_guid; 737 dmu_objset_type_t dds_type; 738 uint8_t dds_is_snapshot; 739 uint8_t dds_inconsistent; 740 char dds_origin[MAXNAMELEN]; 741 } dmu_objset_stats_t; 742 743 /* 744 * Get stats on a dataset. 745 */ 746 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat); 747 748 /* 749 * Add entries to the nvlist for all the objset's properties. See 750 * zfs_prop_table[] and zfs(1m) for details on the properties. 751 */ 752 void dmu_objset_stats(objset_t *os, struct nvlist *nv); 753 754 /* 755 * Get the space usage statistics for statvfs(). 756 * 757 * refdbytes is the amount of space "referenced" by this objset. 758 * availbytes is the amount of space available to this objset, taking 759 * into account quotas & reservations, assuming that no other objsets 760 * use the space first. These values correspond to the 'referenced' and 761 * 'available' properties, described in the zfs(1m) manpage. 762 * 763 * usedobjs and availobjs are the number of objects currently allocated, 764 * and available. 765 */ 766 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp, 767 uint64_t *usedobjsp, uint64_t *availobjsp); 768 769 /* 770 * The fsid_guid is a 56-bit ID that can change to avoid collisions. 771 * (Contrast with the ds_guid which is a 64-bit ID that will never 772 * change, so there is a small probability that it will collide.) 773 */ 774 uint64_t dmu_objset_fsid_guid(objset_t *os); 775 776 /* 777 * Get the [cm]time for an objset's snapshot dir 778 */ 779 timestruc_t dmu_objset_snap_cmtime(objset_t *os); 780 781 int dmu_objset_is_snapshot(objset_t *os); 782 783 extern struct spa *dmu_objset_spa(objset_t *os); 784 extern struct zilog *dmu_objset_zil(objset_t *os); 785 extern struct dsl_pool *dmu_objset_pool(objset_t *os); 786 extern struct dsl_dataset *dmu_objset_ds(objset_t *os); 787 extern void dmu_objset_name(objset_t *os, char *buf); 788 extern dmu_objset_type_t dmu_objset_type(objset_t *os); 789 extern uint64_t dmu_objset_id(objset_t *os); 790 extern uint64_t dmu_objset_syncprop(objset_t *os); 791 extern uint64_t dmu_objset_logbias(objset_t *os); 792 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name, 793 uint64_t *id, uint64_t *offp, boolean_t *case_conflict); 794 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real, 795 int maxlen, boolean_t *conflict); 796 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name, 797 uint64_t *idp, uint64_t *offp); 798 799 typedef int objset_used_cb_t(dmu_object_type_t bonustype, 800 void *bonus, uint64_t *userp, uint64_t *groupp); 801 extern void dmu_objset_register_type(dmu_objset_type_t ost, 802 objset_used_cb_t *cb); 803 extern void dmu_objset_set_user(objset_t *os, void *user_ptr); 804 extern void *dmu_objset_get_user(objset_t *os); 805 806 /* 807 * Return the txg number for the given assigned transaction. 808 */ 809 uint64_t dmu_tx_get_txg(dmu_tx_t *tx); 810 811 /* 812 * Synchronous write. 813 * If a parent zio is provided this function initiates a write on the 814 * provided buffer as a child of the parent zio. 815 * In the absence of a parent zio, the write is completed synchronously. 816 * At write completion, blk is filled with the bp of the written block. 817 * Note that while the data covered by this function will be on stable 818 * storage when the write completes this new data does not become a 819 * permanent part of the file until the associated transaction commits. 820 */ 821 822 /* 823 * {zfs,zvol,ztest}_get_done() args 824 */ 825 typedef struct zgd { 826 struct zilog *zgd_zilog; 827 struct blkptr *zgd_bp; 828 dmu_buf_t *zgd_db; 829 struct rl *zgd_rl; 830 void *zgd_private; 831 } zgd_t; 832 833 typedef void dmu_sync_cb_t(zgd_t *arg, int error); 834 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd); 835 836 /* 837 * Find the next hole or data block in file starting at *off 838 * Return found offset in *off. Return ESRCH for end of file. 839 */ 840 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, 841 uint64_t *off); 842 843 /* 844 * Initial setup and final teardown. 845 */ 846 extern void dmu_init(void); 847 extern void dmu_fini(void); 848 849 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp, 850 uint64_t object, uint64_t offset, int len); 851 void dmu_traverse_objset(objset_t *os, uint64_t txg_start, 852 dmu_traverse_cb_t cb, void *arg); 853 854 int dmu_diff(const char *tosnap_name, const char *fromsnap_name, 855 struct vnode *vp, offset_t *offp); 856 857 /* CRC64 table */ 858 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */ 859 extern uint64_t zfs_crc64_table[256]; 860 861 #ifdef __cplusplus 862 } 863 #endif 864 865 #endif /* _SYS_DMU_H */