1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/dmu.h> 29 #include <sys/dmu_impl.h> 30 #include <sys/dbuf.h> 31 #include <sys/dmu_objset.h> 32 #include <sys/dsl_dataset.h> 33 #include <sys/dsl_dir.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/spa.h> 36 #include <sys/zio.h> 37 #include <sys/dmu_zfetch.h> 38 #include <sys/sa.h> 39 #include <sys/sa_impl.h> 40 41 static void dbuf_destroy(dmu_buf_impl_t *db); 42 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 43 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 44 45 /* 46 * Global data structures and functions for the dbuf cache. 47 */ 48 static kmem_cache_t *dbuf_cache; 49 50 /* ARGSUSED */ 51 static int 52 dbuf_cons(void *vdb, void *unused, int kmflag) 53 { 54 dmu_buf_impl_t *db = vdb; 55 bzero(db, sizeof (dmu_buf_impl_t)); 56 57 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 58 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 59 refcount_create(&db->db_holds); 60 return (0); 61 } 62 63 /* ARGSUSED */ 64 static void 65 dbuf_dest(void *vdb, void *unused) 66 { 67 dmu_buf_impl_t *db = vdb; 68 mutex_destroy(&db->db_mtx); 69 cv_destroy(&db->db_changed); 70 refcount_destroy(&db->db_holds); 71 } 72 73 /* 74 * dbuf hash table routines 75 */ 76 static dbuf_hash_table_t dbuf_hash_table; 77 78 static uint64_t dbuf_hash_count; 79 80 static uint64_t 81 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 82 { 83 uintptr_t osv = (uintptr_t)os; 84 uint64_t crc = -1ULL; 85 86 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 87 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF]; 88 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF]; 89 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF]; 90 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF]; 91 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF]; 92 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF]; 93 94 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16); 95 96 return (crc); 97 } 98 99 #define DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid); 100 101 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 102 ((dbuf)->db.db_object == (obj) && \ 103 (dbuf)->db_objset == (os) && \ 104 (dbuf)->db_level == (level) && \ 105 (dbuf)->db_blkid == (blkid)) 106 107 dmu_buf_impl_t * 108 dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid) 109 { 110 dbuf_hash_table_t *h = &dbuf_hash_table; 111 objset_t *os = dn->dn_objset; 112 uint64_t obj = dn->dn_object; 113 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 114 uint64_t idx = hv & h->hash_table_mask; 115 dmu_buf_impl_t *db; 116 117 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 118 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 119 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 120 mutex_enter(&db->db_mtx); 121 if (db->db_state != DB_EVICTING) { 122 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 123 return (db); 124 } 125 mutex_exit(&db->db_mtx); 126 } 127 } 128 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 129 return (NULL); 130 } 131 132 /* 133 * Insert an entry into the hash table. If there is already an element 134 * equal to elem in the hash table, then the already existing element 135 * will be returned and the new element will not be inserted. 136 * Otherwise returns NULL. 137 */ 138 static dmu_buf_impl_t * 139 dbuf_hash_insert(dmu_buf_impl_t *db) 140 { 141 dbuf_hash_table_t *h = &dbuf_hash_table; 142 objset_t *os = db->db_objset; 143 uint64_t obj = db->db.db_object; 144 int level = db->db_level; 145 uint64_t blkid = db->db_blkid; 146 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 147 uint64_t idx = hv & h->hash_table_mask; 148 dmu_buf_impl_t *dbf; 149 150 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 151 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 152 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 153 mutex_enter(&dbf->db_mtx); 154 if (dbf->db_state != DB_EVICTING) { 155 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 156 return (dbf); 157 } 158 mutex_exit(&dbf->db_mtx); 159 } 160 } 161 162 mutex_enter(&db->db_mtx); 163 db->db_hash_next = h->hash_table[idx]; 164 h->hash_table[idx] = db; 165 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 166 atomic_add_64(&dbuf_hash_count, 1); 167 168 return (NULL); 169 } 170 171 /* 172 * Remove an entry from the hash table. This operation will 173 * fail if there are any existing holds on the db. 174 */ 175 static void 176 dbuf_hash_remove(dmu_buf_impl_t *db) 177 { 178 dbuf_hash_table_t *h = &dbuf_hash_table; 179 uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object, 180 db->db_level, db->db_blkid); 181 uint64_t idx = hv & h->hash_table_mask; 182 dmu_buf_impl_t *dbf, **dbp; 183 184 /* 185 * We musn't hold db_mtx to maintin lock ordering: 186 * DBUF_HASH_MUTEX > db_mtx. 187 */ 188 ASSERT(refcount_is_zero(&db->db_holds)); 189 ASSERT(db->db_state == DB_EVICTING); 190 ASSERT(!MUTEX_HELD(&db->db_mtx)); 191 192 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 193 dbp = &h->hash_table[idx]; 194 while ((dbf = *dbp) != db) { 195 dbp = &dbf->db_hash_next; 196 ASSERT(dbf != NULL); 197 } 198 *dbp = db->db_hash_next; 199 db->db_hash_next = NULL; 200 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 201 atomic_add_64(&dbuf_hash_count, -1); 202 } 203 204 static arc_evict_func_t dbuf_do_evict; 205 206 static void 207 dbuf_verify_user(dmu_buf_impl_t *db, boolean_t evicting) 208 { 209 #ifdef ZFS_DEBUG 210 211 if (db->db_level != 0) 212 ASSERT(db->db_user == NULL); 213 214 if (db->db_user == NULL) 215 return; 216 217 /* Clients must resolve a dbuf before attaching user data. */ 218 ASSERT(db->db.db_data != NULL && db->db_state == DB_CACHED); 219 /* 220 * We can't check the hold count here, because they are modified 221 * independently of the dbuf mutex. But it would be nice to ensure 222 * that the user has the appropriate number. 223 */ 224 #endif 225 } 226 227 /* 228 * Evict the dbuf's user, either immediately, or use a provided queue. 229 * 230 * Call dmu_buf_process_user_evicts or dmu_buf_destroy_user_evict_list 231 * on the list when finished generating it. 232 * 233 * NOTE: If db->db_immediate_evict is FALSE, evict_list_p must be provided. 234 * NOTE: See dmu_buf_user_t about how this process works. 235 */ 236 static void 237 dbuf_evict_user(dmu_buf_impl_t *db, list_t *evict_list_p) 238 { 239 ASSERT(MUTEX_HELD(&db->db_mtx)); 240 ASSERT(evict_list_p != NULL); 241 dbuf_verify_user(db, /*evicting*/B_TRUE); 242 243 if (db->db_user == NULL) 244 return; 245 246 ASSERT(!list_link_active(&db->db_user->evict_queue_link)); 247 list_insert_head(evict_list_p, db->db_user); 248 db->db_user = NULL; 249 } 250 251 /* 252 * Replace the current user of the dbuf. Requires that the caller knows who 253 * the old user is. Returns the old user, which may not necessarily be 254 * the same old_user provided by the caller. 255 */ 256 dmu_buf_user_t * 257 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 258 dmu_buf_user_t *new_user) 259 { 260 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 261 262 mutex_enter(&db->db_mtx); 263 dbuf_verify_user(db, /*evicting*/B_FALSE); 264 if (db->db_user == old_user) 265 db->db_user = new_user; 266 else 267 old_user = db->db_user; 268 dbuf_verify_user(db, /*evicting*/B_FALSE); 269 mutex_exit(&db->db_mtx); 270 271 return (old_user); 272 } 273 274 /* 275 * Set the user eviction data for the DMU beturns NULL on success, 276 * or the existing user if another user currently owns the buffer. 277 */ 278 dmu_buf_user_t * 279 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 280 { 281 return (dmu_buf_replace_user(db_fake, NULL, user)); 282 } 283 284 dmu_buf_user_t * 285 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 286 { 287 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 288 289 db->db_immediate_evict = TRUE; 290 return (dmu_buf_set_user(db_fake, user)); 291 } 292 293 /* 294 * Remove the user eviction data for the DMU buffer. 295 */ 296 dmu_buf_user_t * 297 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 298 { 299 return (dmu_buf_replace_user(db_fake, user, NULL)); 300 } 301 302 /* 303 * Returns the db_user set with dmu_buf_update_user(), or NULL if not set. 304 */ 305 dmu_buf_user_t * 306 dmu_buf_get_user(dmu_buf_t *db_fake) 307 { 308 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 309 310 dbuf_verify_user(db, /*evicting*/B_FALSE); 311 return (db->db_user); 312 } 313 314 static void 315 dbuf_clear_data(dmu_buf_impl_t *db, list_t *evict_list_p) 316 { 317 ASSERT(MUTEX_HELD(&db->db_mtx)); 318 ASSERT(db->db_buf == NULL || !arc_has_callback(db->db_buf)); 319 dbuf_evict_user(db, evict_list_p); 320 db->db_buf = NULL; 321 db->db.db_data = NULL; 322 if (db->db_state != DB_NOFILL) 323 db->db_state = DB_UNCACHED; 324 } 325 326 static void 327 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 328 { 329 ASSERT(MUTEX_HELD(&db->db_mtx)); 330 ASSERT(db->db_buf == NULL || !arc_has_callback(db->db_buf)); 331 ASSERT(buf != NULL); 332 333 db->db_buf = buf; 334 ASSERT(buf->b_data != NULL); 335 db->db.db_data = buf->b_data; 336 if (!arc_released(buf)) 337 arc_set_callback(buf, dbuf_do_evict, db); 338 } 339 340 boolean_t 341 dbuf_is_metadata(dmu_buf_impl_t *db) 342 { 343 if (db->db_level > 0) { 344 return (B_TRUE); 345 } else { 346 boolean_t is_metadata; 347 348 DB_DNODE_ENTER(db); 349 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 350 DB_DNODE_EXIT(db); 351 352 return (is_metadata); 353 } 354 } 355 356 void 357 dbuf_evict(dmu_buf_impl_t *db, list_t *evict_list_p) 358 { 359 ASSERT(MUTEX_HELD(&db->db_mtx)); 360 ASSERT(db->db_buf == NULL); 361 ASSERT(db->db_data_pending == NULL); 362 363 dbuf_clear(db, evict_list_p); 364 dbuf_destroy(db); 365 } 366 367 void 368 dbuf_init(void) 369 { 370 uint64_t hsize = 1ULL << 16; 371 dbuf_hash_table_t *h = &dbuf_hash_table; 372 int i; 373 374 /* 375 * The hash table is big enough to fill all of physical memory 376 * with an average 4K block size. The table will take up 377 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 378 */ 379 while (hsize * 4096 < physmem * PAGESIZE) 380 hsize <<= 1; 381 382 retry: 383 h->hash_table_mask = hsize - 1; 384 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 385 if (h->hash_table == NULL) { 386 /* XXX - we should really return an error instead of assert */ 387 ASSERT(hsize > (1ULL << 10)); 388 hsize >>= 1; 389 goto retry; 390 } 391 392 dbuf_cache = kmem_cache_create("dmu_buf_impl_t", 393 sizeof (dmu_buf_impl_t), 394 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 395 396 for (i = 0; i < DBUF_MUTEXES; i++) 397 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 398 } 399 400 void 401 dbuf_fini(void) 402 { 403 dbuf_hash_table_t *h = &dbuf_hash_table; 404 int i; 405 406 for (i = 0; i < DBUF_MUTEXES; i++) 407 mutex_destroy(&h->hash_mutexes[i]); 408 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 409 kmem_cache_destroy(dbuf_cache); 410 } 411 412 /* 413 * Other stuff. 414 */ 415 416 #ifdef ZFS_DEBUG 417 static void 418 dbuf_verify(dmu_buf_impl_t *db) 419 { 420 dnode_t *dn; 421 dbuf_dirty_record_t *dr; 422 423 ASSERT(MUTEX_HELD(&db->db_mtx)); 424 425 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 426 return; 427 428 ASSERT(db->db_objset != NULL); 429 DB_DNODE_ENTER(db); 430 dn = DB_DNODE(db); 431 if (dn == NULL) { 432 ASSERT(db->db_parent == NULL); 433 ASSERT(db->db_blkptr == NULL); 434 } else { 435 ASSERT3U(db->db.db_object, ==, dn->dn_object); 436 ASSERT3P(db->db_objset, ==, dn->dn_objset); 437 ASSERT3U(db->db_level, <, dn->dn_nlevels); 438 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 439 db->db_blkid == DMU_SPILL_BLKID || 440 !list_is_empty(&dn->dn_dbufs)); 441 } 442 if (db->db_blkid == DMU_BONUS_BLKID) { 443 ASSERT(dn != NULL); 444 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 445 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 446 } else if (db->db_blkid == DMU_SPILL_BLKID) { 447 ASSERT(dn != NULL); 448 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 449 ASSERT0(db->db.db_offset); 450 } else { 451 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 452 } 453 454 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next) 455 ASSERT(dr->dr_dbuf == db); 456 457 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next) 458 ASSERT(dr->dr_dbuf == db); 459 460 /* 461 * We can't assert that db_size matches dn_datablksz because it 462 * can be momentarily different when another thread is doing 463 * dnode_set_blksz(). 464 */ 465 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 466 dr = db->db_data_pending; 467 /* 468 * It should only be modified in syncing context, so 469 * make sure we only have one copy of the data. 470 */ 471 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 472 } 473 474 /* verify db->db_blkptr */ 475 if (db->db_blkptr) { 476 if (db->db_parent == dn->dn_dbuf) { 477 /* db is pointed to by the dnode */ 478 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 479 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 480 ASSERT(db->db_parent == NULL); 481 else 482 ASSERT(db->db_parent != NULL); 483 if (db->db_blkid != DMU_SPILL_BLKID) 484 ASSERT3P(db->db_blkptr, ==, 485 &dn->dn_phys->dn_blkptr[db->db_blkid]); 486 } else { 487 /* db is pointed to by an indirect block */ 488 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 489 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 490 ASSERT3U(db->db_parent->db.db_object, ==, 491 db->db.db_object); 492 /* 493 * dnode_grow_indblksz() can make this fail if we don't 494 * have the struct_rwlock. XXX indblksz no longer 495 * grows. safe to do this now? 496 */ 497 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 498 ASSERT3P(db->db_blkptr, ==, 499 ((blkptr_t *)db->db_parent->db.db_data + 500 db->db_blkid % epb)); 501 } 502 } 503 } 504 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 505 (db->db_buf == NULL || db->db_buf->b_data) && 506 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 507 db->db_state != DB_FILL && !dn->dn_free_txg) { 508 /* 509 * If the blkptr isn't set but they have nonzero data, 510 * it had better be dirty, otherwise we'll lose that 511 * data when we evict this buffer. 512 */ 513 if (db->db_dirtycnt == 0) { 514 uint64_t *buf = db->db.db_data; 515 int i; 516 517 for (i = 0; i < db->db.db_size >> 3; i++) { 518 ASSERT(buf[i] == 0); 519 } 520 } 521 } 522 DB_DNODE_EXIT(db); 523 } 524 #endif 525 526 /* 527 * Loan out an arc_buf for read. Return the loaned arc_buf. 528 */ 529 arc_buf_t * 530 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 531 { 532 arc_buf_t *abuf; 533 list_t evict_list; 534 535 dmu_buf_create_user_evict_list(&evict_list); 536 537 mutex_enter(&db->db_mtx); 538 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) { 539 int blksz = db->db.db_size; 540 spa_t *spa; 541 542 mutex_exit(&db->db_mtx); 543 DB_GET_SPA(&spa, db); 544 abuf = arc_loan_buf(spa, blksz); 545 bcopy(db->db.db_data, abuf->b_data, blksz); 546 } else { 547 abuf = db->db_buf; 548 arc_loan_inuse_buf(abuf, db); 549 dbuf_clear_data(db, &evict_list); 550 mutex_exit(&db->db_mtx); 551 } 552 dmu_buf_destroy_user_evict_list(&evict_list); 553 return (abuf); 554 } 555 556 uint64_t 557 dbuf_whichblock(dnode_t *dn, uint64_t offset) 558 { 559 if (dn->dn_datablkshift) { 560 return (offset >> dn->dn_datablkshift); 561 } else { 562 ASSERT3U(offset, <, dn->dn_datablksz); 563 return (0); 564 } 565 } 566 567 static void 568 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) 569 { 570 dmu_buf_impl_t *db = vdb; 571 572 mutex_enter(&db->db_mtx); 573 ASSERT3U(db->db_state, ==, DB_READ); 574 /* 575 * All reads are synchronous, so we must have a hold on the dbuf 576 */ 577 ASSERT(refcount_count(&db->db_holds) > 0); 578 ASSERT(db->db_buf == NULL); 579 ASSERT(db->db.db_data == NULL); 580 if (db->db_level == 0 && db->db_freed_in_flight) { 581 /* we were freed in flight; disregard any error */ 582 arc_release(buf, db); 583 bzero(buf->b_data, db->db.db_size); 584 arc_buf_freeze(buf); 585 db->db_freed_in_flight = FALSE; 586 dbuf_set_data(db, buf); 587 db->db_state = DB_CACHED; 588 } else if (zio == NULL || zio->io_error == 0) { 589 dbuf_set_data(db, buf); 590 db->db_state = DB_CACHED; 591 } else { 592 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 593 ASSERT3P(db->db_buf, ==, NULL); 594 VERIFY(arc_buf_remove_ref(buf, db)); 595 db->db_state = DB_UNCACHED; 596 } 597 cv_broadcast(&db->db_changed); 598 dbuf_rele_and_unlock(db, NULL); 599 } 600 601 static void 602 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags) 603 { 604 dnode_t *dn; 605 spa_t *spa; 606 zbookmark_t zb; 607 uint32_t aflags = ARC_NOWAIT; 608 609 DB_DNODE_ENTER(db); 610 dn = DB_DNODE(db); 611 ASSERT(!refcount_is_zero(&db->db_holds)); 612 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 613 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 614 ASSERT(MUTEX_HELD(&db->db_mtx)); 615 ASSERT(db->db_state == DB_UNCACHED); 616 ASSERT(db->db_buf == NULL); 617 618 if (db->db_blkid == DMU_BONUS_BLKID) { 619 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 620 621 ASSERT3U(bonuslen, <=, db->db.db_size); 622 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); 623 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 624 if (bonuslen < DN_MAX_BONUSLEN) 625 bzero(db->db.db_data, DN_MAX_BONUSLEN); 626 if (bonuslen) 627 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 628 DB_DNODE_EXIT(db); 629 db->db_state = DB_CACHED; 630 mutex_exit(&db->db_mtx); 631 return; 632 } 633 634 /* 635 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 636 * processes the delete record and clears the bp while we are waiting 637 * for the dn_mtx (resulting in a "no" from block_freed). 638 */ 639 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) || 640 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) || 641 BP_IS_HOLE(db->db_blkptr)))) { 642 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 643 644 dbuf_set_data(db, arc_buf_alloc(dn->dn_objset->os_spa, 645 db->db.db_size, db, type)); 646 DB_DNODE_EXIT(db); 647 bzero(db->db.db_data, db->db.db_size); 648 db->db_state = DB_CACHED; 649 *flags |= DB_RF_CACHED; 650 mutex_exit(&db->db_mtx); 651 return; 652 } 653 654 spa = dn->dn_objset->os_spa; 655 DB_DNODE_EXIT(db); 656 657 db->db_state = DB_READ; 658 mutex_exit(&db->db_mtx); 659 660 if (DBUF_IS_L2CACHEABLE(db)) 661 aflags |= ARC_L2CACHE; 662 663 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ? 664 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET, 665 db->db.db_object, db->db_level, db->db_blkid); 666 667 dbuf_add_ref(db, NULL); 668 669 (void) arc_read(zio, spa, db->db_blkptr, 670 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, 671 (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, 672 &aflags, &zb); 673 if (aflags & ARC_CACHED) 674 *flags |= DB_RF_CACHED; 675 } 676 677 int 678 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 679 { 680 int err = 0; 681 int havepzio = (zio != NULL); 682 int prefetch; 683 dnode_t *dn; 684 685 /* 686 * We don't have to hold the mutex to check db_state because it 687 * can't be freed while we have a hold on the buffer. 688 */ 689 ASSERT(!refcount_is_zero(&db->db_holds)); 690 691 if (db->db_state == DB_NOFILL) 692 return (SET_ERROR(EIO)); 693 694 DB_DNODE_ENTER(db); 695 dn = DB_DNODE(db); 696 if ((flags & DB_RF_HAVESTRUCT) == 0) 697 rw_enter(&dn->dn_struct_rwlock, RW_READER); 698 699 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 700 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 701 DBUF_IS_CACHEABLE(db); 702 703 mutex_enter(&db->db_mtx); 704 if (db->db_state == DB_CACHED) { 705 mutex_exit(&db->db_mtx); 706 if (prefetch) 707 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, 708 db->db.db_size, TRUE); 709 if ((flags & DB_RF_HAVESTRUCT) == 0) 710 rw_exit(&dn->dn_struct_rwlock); 711 DB_DNODE_EXIT(db); 712 } else if (db->db_state == DB_UNCACHED) { 713 spa_t *spa = dn->dn_objset->os_spa; 714 715 if (zio == NULL) 716 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 717 dbuf_read_impl(db, zio, &flags); 718 719 /* dbuf_read_impl has dropped db_mtx for us */ 720 721 if (prefetch) 722 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, 723 db->db.db_size, flags & DB_RF_CACHED); 724 725 if ((flags & DB_RF_HAVESTRUCT) == 0) 726 rw_exit(&dn->dn_struct_rwlock); 727 DB_DNODE_EXIT(db); 728 729 if (!havepzio) 730 err = zio_wait(zio); 731 } else { 732 mutex_exit(&db->db_mtx); 733 if (prefetch) 734 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, 735 db->db.db_size, TRUE); 736 if ((flags & DB_RF_HAVESTRUCT) == 0) 737 rw_exit(&dn->dn_struct_rwlock); 738 DB_DNODE_EXIT(db); 739 740 mutex_enter(&db->db_mtx); 741 if ((flags & DB_RF_NEVERWAIT) == 0) { 742 while (db->db_state == DB_READ || 743 db->db_state == DB_FILL) { 744 ASSERT(db->db_state == DB_READ || 745 (flags & DB_RF_HAVESTRUCT) == 0); 746 cv_wait(&db->db_changed, &db->db_mtx); 747 } 748 if (db->db_state == DB_UNCACHED) 749 err = SET_ERROR(EIO); 750 } 751 mutex_exit(&db->db_mtx); 752 } 753 754 ASSERT(err || havepzio || db->db_state == DB_CACHED); 755 return (err); 756 } 757 758 static void 759 dbuf_noread(dmu_buf_impl_t *db) 760 { 761 list_t evict_list; 762 763 ASSERT(!refcount_is_zero(&db->db_holds)); 764 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 765 dmu_buf_create_user_evict_list(&evict_list); 766 767 mutex_enter(&db->db_mtx); 768 while (db->db_state == DB_READ || db->db_state == DB_FILL) 769 cv_wait(&db->db_changed, &db->db_mtx); 770 if (db->db_state == DB_UNCACHED) { 771 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 772 spa_t *spa; 773 774 ASSERT(db->db_buf == NULL); 775 ASSERT(db->db.db_data == NULL); 776 DB_GET_SPA(&spa, db); 777 dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type)); 778 db->db_state = DB_FILL; 779 } else if (db->db_state == DB_NOFILL) { 780 dbuf_clear_data(db, &evict_list); 781 } else { 782 ASSERT3U(db->db_state, ==, DB_CACHED); 783 } 784 mutex_exit(&db->db_mtx); 785 dmu_buf_destroy_user_evict_list(&evict_list); 786 } 787 788 /* 789 * This is our just-in-time copy function. It makes a copy of 790 * buffers, that have been modified in a previous transaction 791 * group, before we modify them in the current active group. 792 * 793 * This function is used in two places: when we are dirtying a 794 * buffer for the first time in a txg, and when we are freeing 795 * a range in a dnode that includes this buffer. 796 * 797 * Note that when we are called from dbuf_free_range() we do 798 * not put a hold on the buffer, we just traverse the active 799 * dbuf list for the dnode. 800 */ 801 static void 802 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg, list_t *evict_list_p) 803 { 804 dbuf_dirty_record_t *dr = db->db_last_dirty; 805 806 ASSERT(MUTEX_HELD(&db->db_mtx)); 807 ASSERT(db->db.db_data != NULL); 808 ASSERT(db->db_level == 0); 809 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 810 811 if (dr == NULL || 812 (dr->dt.dl.dr_data != 813 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 814 return; 815 816 /* 817 * If the last dirty record for this dbuf has not yet synced 818 * and its referencing the dbuf data, either: 819 * reset the reference to point to a new copy, 820 * or (if there a no active holders) 821 * just null out the current db_data pointer. 822 */ 823 ASSERT(dr->dr_txg >= txg - 2); 824 if (db->db_blkid == DMU_BONUS_BLKID) { 825 /* Note that the data bufs here are zio_bufs */ 826 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN); 827 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 828 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN); 829 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 830 int size = db->db.db_size; 831 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 832 spa_t *spa; 833 834 DB_GET_SPA(&spa, db); 835 dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type); 836 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 837 } else { 838 dbuf_clear_data(db, evict_list_p); 839 } 840 } 841 842 void 843 dbuf_unoverride(dbuf_dirty_record_t *dr) 844 { 845 dmu_buf_impl_t *db = dr->dr_dbuf; 846 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 847 uint64_t txg = dr->dr_txg; 848 849 ASSERT(MUTEX_HELD(&db->db_mtx)); 850 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 851 ASSERT(db->db_level == 0); 852 853 if (db->db_blkid == DMU_BONUS_BLKID || 854 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 855 return; 856 857 ASSERT(db->db_data_pending != dr); 858 859 /* free this block */ 860 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) { 861 spa_t *spa; 862 863 DB_GET_SPA(&spa, db); 864 zio_free(spa, txg, bp); 865 } 866 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 867 dr->dt.dl.dr_nopwrite = B_FALSE; 868 869 /* 870 * Release the already-written buffer, so we leave it in 871 * a consistent dirty state. Note that all callers are 872 * modifying the buffer, so they will immediately do 873 * another (redundant) arc_release(). Therefore, leave 874 * the buf thawed to save the effort of freezing & 875 * immediately re-thawing it. 876 */ 877 arc_release(dr->dt.dl.dr_data, db); 878 } 879 880 /* 881 * Evict (if its unreferenced) or clear (if its referenced) any level-0 882 * data blocks in the free range, so that any future readers will find 883 * empty blocks. Also, if we happen accross any level-1 dbufs in the 884 * range that have not already been marked dirty, mark them dirty so 885 * they stay in memory. 886 */ 887 void 888 dbuf_free_range(dnode_t *dn, uint64_t start, uint64_t end, dmu_tx_t *tx) 889 { 890 dmu_buf_impl_t *db, *db_next; 891 uint64_t txg = tx->tx_txg; 892 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 893 uint64_t first_l1 = start >> epbs; 894 uint64_t last_l1 = end >> epbs; 895 list_t evict_list; 896 897 dmu_buf_create_user_evict_list(&evict_list); 898 899 if (end > dn->dn_maxblkid && (end != DMU_SPILL_BLKID)) { 900 end = dn->dn_maxblkid; 901 last_l1 = end >> epbs; 902 } 903 dprintf_dnode(dn, "start=%llu end=%llu\n", start, end); 904 mutex_enter(&dn->dn_dbufs_mtx); 905 for (db = list_head(&dn->dn_dbufs); db; db = db_next) { 906 db_next = list_next(&dn->dn_dbufs, db); 907 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 908 909 if (db->db_level == 1 && 910 db->db_blkid >= first_l1 && db->db_blkid <= last_l1) { 911 mutex_enter(&db->db_mtx); 912 if (db->db_last_dirty && 913 db->db_last_dirty->dr_txg < txg) { 914 dbuf_add_ref(db, FTAG); 915 mutex_exit(&db->db_mtx); 916 dbuf_will_dirty(db, tx); 917 dbuf_rele(db, FTAG); 918 } else { 919 mutex_exit(&db->db_mtx); 920 } 921 } 922 923 if (db->db_level != 0) 924 continue; 925 dprintf_dbuf(db, "found buf %s\n", ""); 926 if (db->db_blkid < start || db->db_blkid > end) 927 continue; 928 929 /* found a level 0 buffer in the range */ 930 mutex_enter(&db->db_mtx); 931 if (dbuf_undirty(db, tx)) { 932 /* mutex has been dropped and dbuf destroyed */ 933 continue; 934 } 935 936 if (db->db_state == DB_UNCACHED || 937 db->db_state == DB_NOFILL || 938 db->db_state == DB_EVICTING) { 939 ASSERT(db->db.db_data == NULL); 940 mutex_exit(&db->db_mtx); 941 continue; 942 } 943 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 944 /* will be handled in dbuf_read_done or dbuf_rele */ 945 db->db_freed_in_flight = TRUE; 946 mutex_exit(&db->db_mtx); 947 continue; 948 } 949 if (refcount_count(&db->db_holds) == 0) { 950 ASSERT(db->db_buf); 951 dbuf_clear(db, &evict_list); 952 continue; 953 } 954 /* The dbuf is referenced */ 955 956 if (db->db_last_dirty != NULL) { 957 dbuf_dirty_record_t *dr = db->db_last_dirty; 958 959 if (dr->dr_txg == txg) { 960 /* 961 * This buffer is "in-use", re-adjust the file 962 * size to reflect that this buffer may 963 * contain new data when we sync. 964 */ 965 if (db->db_blkid != DMU_SPILL_BLKID && 966 db->db_blkid > dn->dn_maxblkid) 967 dn->dn_maxblkid = db->db_blkid; 968 dbuf_unoverride(dr); 969 } else { 970 /* 971 * This dbuf is not dirty in the open context. 972 * Either uncache it (if its not referenced in 973 * the open context) or reset its contents to 974 * empty. 975 */ 976 dbuf_fix_old_data(db, txg, &evict_list); 977 } 978 } 979 /* clear the contents if its cached */ 980 if (db->db_state == DB_CACHED) { 981 ASSERT(db->db.db_data != NULL); 982 arc_release(db->db_buf, db); 983 bzero(db->db.db_data, db->db.db_size); 984 arc_buf_freeze(db->db_buf); 985 } 986 987 mutex_exit(&db->db_mtx); 988 dmu_buf_process_user_evicts(&evict_list); 989 } 990 mutex_exit(&dn->dn_dbufs_mtx); 991 dmu_buf_destroy_user_evict_list(&evict_list); 992 } 993 994 static int 995 dbuf_block_freeable(dmu_buf_impl_t *db) 996 { 997 dsl_dataset_t *ds = db->db_objset->os_dsl_dataset; 998 uint64_t birth_txg = 0; 999 1000 /* 1001 * We don't need any locking to protect db_blkptr: 1002 * If it's syncing, then db_last_dirty will be set 1003 * so we'll ignore db_blkptr. 1004 */ 1005 ASSERT(MUTEX_HELD(&db->db_mtx)); 1006 if (db->db_last_dirty) 1007 birth_txg = db->db_last_dirty->dr_txg; 1008 else if (db->db_blkptr) 1009 birth_txg = db->db_blkptr->blk_birth; 1010 1011 /* 1012 * If we don't exist or are in a snapshot, we can't be freed. 1013 * Don't pass the bp to dsl_dataset_block_freeable() since we 1014 * are holding the db_mtx lock and might deadlock if we are 1015 * prefetching a dedup-ed block. 1016 */ 1017 if (birth_txg) 1018 return (ds == NULL || 1019 dsl_dataset_block_freeable(ds, NULL, birth_txg)); 1020 else 1021 return (FALSE); 1022 } 1023 1024 void 1025 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 1026 { 1027 arc_buf_t *buf, *obuf; 1028 int osize = db->db.db_size; 1029 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1030 dnode_t *dn; 1031 1032 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1033 1034 DB_DNODE_ENTER(db); 1035 dn = DB_DNODE(db); 1036 1037 /* XXX does *this* func really need the lock? */ 1038 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1039 1040 /* 1041 * This call to dbuf_will_dirty() with the dn_struct_rwlock held 1042 * is OK, because there can be no other references to the db 1043 * when we are changing its size, so no concurrent DB_FILL can 1044 * be happening. 1045 */ 1046 /* 1047 * XXX we should be doing a dbuf_read, checking the return 1048 * value and returning that up to our callers 1049 */ 1050 dbuf_will_dirty(db, tx); 1051 1052 /* create the data buffer for the new block */ 1053 buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type); 1054 1055 /* copy old block data to the new block */ 1056 obuf = db->db_buf; 1057 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 1058 /* zero the remainder */ 1059 if (size > osize) 1060 bzero((uint8_t *)buf->b_data + osize, size - osize); 1061 1062 mutex_enter(&db->db_mtx); 1063 dbuf_set_data(db, buf); 1064 VERIFY(arc_buf_remove_ref(obuf, db)); 1065 db->db.db_size = size; 1066 1067 if (db->db_level == 0) { 1068 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1069 db->db_last_dirty->dt.dl.dr_data = buf; 1070 } 1071 mutex_exit(&db->db_mtx); 1072 1073 dnode_willuse_space(dn, size-osize, tx); 1074 DB_DNODE_EXIT(db); 1075 } 1076 1077 void 1078 dbuf_release_bp(dmu_buf_impl_t *db) 1079 { 1080 objset_t *os; 1081 1082 DB_GET_OBJSET(&os, db); 1083 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 1084 ASSERT(arc_released(os->os_phys_buf) || 1085 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 1086 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1087 1088 (void) arc_release(db->db_buf, db); 1089 } 1090 1091 dbuf_dirty_record_t * 1092 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1093 { 1094 dnode_t *dn; 1095 objset_t *os; 1096 dbuf_dirty_record_t **drp, *dr; 1097 int drop_struct_lock = FALSE; 1098 boolean_t do_free_accounting = B_FALSE; 1099 int txgoff = tx->tx_txg & TXG_MASK; 1100 list_t evict_list; 1101 1102 dmu_buf_create_user_evict_list(&evict_list); 1103 1104 ASSERT(tx->tx_txg != 0); 1105 ASSERT(!refcount_is_zero(&db->db_holds)); 1106 DMU_TX_DIRTY_BUF(tx, db); 1107 1108 DB_DNODE_ENTER(db); 1109 dn = DB_DNODE(db); 1110 /* 1111 * Shouldn't dirty a regular buffer in syncing context. Private 1112 * objects may be dirtied in syncing context, but only if they 1113 * were already pre-dirtied in open context. 1114 */ 1115 ASSERT(!dmu_tx_is_syncing(tx) || 1116 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 1117 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1118 dn->dn_objset->os_dsl_dataset == NULL); 1119 /* 1120 * We make this assert for private objects as well, but after we 1121 * check if we're already dirty. They are allowed to re-dirty 1122 * in syncing context. 1123 */ 1124 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1125 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1126 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1127 1128 mutex_enter(&db->db_mtx); 1129 /* 1130 * XXX make this true for indirects too? The problem is that 1131 * transactions created with dmu_tx_create_assigned() from 1132 * syncing context don't bother holding ahead. 1133 */ 1134 ASSERT(db->db_level != 0 || 1135 db->db_state == DB_CACHED || db->db_state == DB_FILL || 1136 db->db_state == DB_NOFILL); 1137 1138 mutex_enter(&dn->dn_mtx); 1139 /* 1140 * Don't set dirtyctx to SYNC if we're just modifying this as we 1141 * initialize the objset. 1142 */ 1143 if (dn->dn_dirtyctx == DN_UNDIRTIED && 1144 !BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 1145 dn->dn_dirtyctx = 1146 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN); 1147 ASSERT(dn->dn_dirtyctx_firstset == NULL); 1148 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 1149 } 1150 mutex_exit(&dn->dn_mtx); 1151 1152 if (db->db_blkid == DMU_SPILL_BLKID) 1153 dn->dn_have_spill = B_TRUE; 1154 1155 /* 1156 * If this buffer is already dirty, we're done. 1157 */ 1158 drp = &db->db_last_dirty; 1159 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg || 1160 db->db.db_object == DMU_META_DNODE_OBJECT); 1161 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg) 1162 drp = &dr->dr_next; 1163 if (dr && dr->dr_txg == tx->tx_txg) { 1164 DB_DNODE_EXIT(db); 1165 1166 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1167 /* 1168 * If this buffer has already been written out, 1169 * we now need to reset its state. 1170 */ 1171 dbuf_unoverride(dr); 1172 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1173 db->db_state != DB_NOFILL) 1174 arc_buf_thaw(db->db_buf); 1175 } 1176 mutex_exit(&db->db_mtx); 1177 dmu_buf_destroy_user_evict_list(&evict_list); 1178 return (dr); 1179 } 1180 1181 /* 1182 * Only valid if not already dirty. 1183 */ 1184 ASSERT(dn->dn_object == 0 || 1185 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1186 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1187 1188 ASSERT3U(dn->dn_nlevels, >, db->db_level); 1189 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 1190 dn->dn_phys->dn_nlevels > db->db_level || 1191 dn->dn_next_nlevels[txgoff] > db->db_level || 1192 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 1193 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 1194 1195 /* 1196 * We should only be dirtying in syncing context if it's the 1197 * mos or we're initializing the os or it's a special object. 1198 * However, we are allowed to dirty in syncing context provided 1199 * we already dirtied it in open context. Hence we must make 1200 * this assertion only if we're not already dirty. 1201 */ 1202 os = dn->dn_objset; 1203 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1204 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 1205 ASSERT(db->db.db_size != 0); 1206 1207 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1208 1209 if (db->db_blkid != DMU_BONUS_BLKID) { 1210 /* 1211 * Update the accounting. 1212 * Note: we delay "free accounting" until after we drop 1213 * the db_mtx. This keeps us from grabbing other locks 1214 * (and possibly deadlocking) in bp_get_dsize() while 1215 * also holding the db_mtx. 1216 */ 1217 dnode_willuse_space(dn, db->db.db_size, tx); 1218 do_free_accounting = dbuf_block_freeable(db); 1219 } 1220 1221 /* 1222 * If this buffer is dirty in an old transaction group we need 1223 * to make a copy of it so that the changes we make in this 1224 * transaction group won't leak out when we sync the older txg. 1225 */ 1226 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 1227 if (db->db_level == 0) { 1228 void *data_old = db->db_buf; 1229 1230 if (db->db_state != DB_NOFILL) { 1231 if (db->db_blkid == DMU_BONUS_BLKID) { 1232 dbuf_fix_old_data(db, tx->tx_txg, &evict_list); 1233 data_old = db->db.db_data; 1234 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1235 /* 1236 * Release the data buffer from the cache so 1237 * that we can modify it without impacting 1238 * possible other users of this cached data 1239 * block. Note that indirect blocks and 1240 * private objects are not released until the 1241 * syncing state (since they are only modified 1242 * then). 1243 */ 1244 arc_release(db->db_buf, db); 1245 dbuf_fix_old_data(db, tx->tx_txg, &evict_list); 1246 data_old = db->db_buf; 1247 } 1248 ASSERT(data_old != NULL); 1249 } 1250 dr->dt.dl.dr_data = data_old; 1251 } else { 1252 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL); 1253 list_create(&dr->dt.di.dr_children, 1254 sizeof (dbuf_dirty_record_t), 1255 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 1256 } 1257 dr->dr_dbuf = db; 1258 dr->dr_txg = tx->tx_txg; 1259 dr->dr_next = *drp; 1260 *drp = dr; 1261 1262 /* 1263 * We could have been freed_in_flight between the dbuf_noread 1264 * and dbuf_dirty. We win, as though the dbuf_noread() had 1265 * happened after the free. 1266 */ 1267 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1268 db->db_blkid != DMU_SPILL_BLKID) { 1269 mutex_enter(&dn->dn_mtx); 1270 dnode_clear_range(dn, db->db_blkid, 1, tx); 1271 mutex_exit(&dn->dn_mtx); 1272 db->db_freed_in_flight = FALSE; 1273 } 1274 1275 /* 1276 * This buffer is now part of this txg 1277 */ 1278 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1279 db->db_dirtycnt += 1; 1280 ASSERT3U(db->db_dirtycnt, <=, 3); 1281 1282 mutex_exit(&db->db_mtx); 1283 dmu_buf_destroy_user_evict_list(&evict_list); 1284 1285 if (db->db_blkid == DMU_BONUS_BLKID || 1286 db->db_blkid == DMU_SPILL_BLKID) { 1287 mutex_enter(&dn->dn_mtx); 1288 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1289 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1290 mutex_exit(&dn->dn_mtx); 1291 dnode_setdirty(dn, tx); 1292 DB_DNODE_EXIT(db); 1293 return (dr); 1294 } else if (do_free_accounting) { 1295 blkptr_t *bp = db->db_blkptr; 1296 int64_t willfree = (bp && !BP_IS_HOLE(bp)) ? 1297 bp_get_dsize(os->os_spa, bp) : db->db.db_size; 1298 /* 1299 * This is only a guess -- if the dbuf is dirty 1300 * in a previous txg, we don't know how much 1301 * space it will use on disk yet. We should 1302 * really have the struct_rwlock to access 1303 * db_blkptr, but since this is just a guess, 1304 * it's OK if we get an odd answer. 1305 */ 1306 ddt_prefetch(os->os_spa, bp); 1307 dnode_willuse_space(dn, -willfree, tx); 1308 } 1309 1310 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1311 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1312 drop_struct_lock = TRUE; 1313 } 1314 1315 if (db->db_level == 0) { 1316 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock); 1317 ASSERT(dn->dn_maxblkid >= db->db_blkid); 1318 } 1319 1320 if (db->db_level+1 < dn->dn_nlevels) { 1321 dmu_buf_impl_t *parent = db->db_parent; 1322 dbuf_dirty_record_t *di; 1323 int parent_held = FALSE; 1324 1325 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 1326 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1327 1328 parent = dbuf_hold_level(dn, db->db_level+1, 1329 db->db_blkid >> epbs, FTAG); 1330 ASSERT(parent != NULL); 1331 parent_held = TRUE; 1332 } 1333 if (drop_struct_lock) 1334 rw_exit(&dn->dn_struct_rwlock); 1335 ASSERT3U(db->db_level+1, ==, parent->db_level); 1336 di = dbuf_dirty(parent, tx); 1337 if (parent_held) 1338 dbuf_rele(parent, FTAG); 1339 1340 mutex_enter(&db->db_mtx); 1341 /* possible race with dbuf_undirty() */ 1342 if (db->db_last_dirty == dr || 1343 dn->dn_object == DMU_META_DNODE_OBJECT) { 1344 mutex_enter(&di->dt.di.dr_mtx); 1345 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 1346 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1347 list_insert_tail(&di->dt.di.dr_children, dr); 1348 mutex_exit(&di->dt.di.dr_mtx); 1349 dr->dr_parent = di; 1350 } 1351 mutex_exit(&db->db_mtx); 1352 } else { 1353 ASSERT(db->db_level+1 == dn->dn_nlevels); 1354 ASSERT(db->db_blkid < dn->dn_nblkptr); 1355 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 1356 mutex_enter(&dn->dn_mtx); 1357 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1358 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1359 mutex_exit(&dn->dn_mtx); 1360 if (drop_struct_lock) 1361 rw_exit(&dn->dn_struct_rwlock); 1362 } 1363 1364 dnode_setdirty(dn, tx); 1365 DB_DNODE_EXIT(db); 1366 return (dr); 1367 } 1368 1369 /* 1370 * Return TRUE if this evicted the dbuf. 1371 */ 1372 static boolean_t 1373 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1374 { 1375 dnode_t *dn; 1376 uint64_t txg = tx->tx_txg; 1377 dbuf_dirty_record_t *dr, **drp; 1378 list_t evict_list; 1379 1380 ASSERT(txg != 0); 1381 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1382 ASSERT0(db->db_level); 1383 ASSERT(MUTEX_HELD(&db->db_mtx)); 1384 1385 /* 1386 * If this buffer is not dirty, we're done. 1387 */ 1388 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) 1389 if (dr->dr_txg <= txg) 1390 break; 1391 if (dr == NULL || dr->dr_txg < txg) 1392 return (B_FALSE); 1393 ASSERT(dr->dr_txg == txg); 1394 ASSERT(dr->dr_dbuf == db); 1395 1396 dmu_buf_create_user_evict_list(&evict_list); 1397 1398 DB_DNODE_ENTER(db); 1399 dn = DB_DNODE(db); 1400 1401 /* 1402 * Note: This code will probably work even if there are concurrent 1403 * holders, but it is untested in that scenerio, as the ZPL and 1404 * ztest have additional locking (the range locks) that prevents 1405 * that type of concurrent access. 1406 */ 1407 ASSERT3U(refcount_count(&db->db_holds), ==, db->db_dirtycnt); 1408 1409 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1410 1411 ASSERT(db->db.db_size != 0); 1412 1413 /* XXX would be nice to fix up dn_towrite_space[] */ 1414 1415 *drp = dr->dr_next; 1416 1417 /* 1418 * Note that there are three places in dbuf_dirty() 1419 * where this dirty record may be put on a list. 1420 * Make sure to do a list_remove corresponding to 1421 * every one of those list_insert calls. 1422 */ 1423 if (dr->dr_parent) { 1424 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 1425 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 1426 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 1427 } else if (db->db_blkid == DMU_SPILL_BLKID || 1428 db->db_level+1 == dn->dn_nlevels) { 1429 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 1430 mutex_enter(&dn->dn_mtx); 1431 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 1432 mutex_exit(&dn->dn_mtx); 1433 } 1434 DB_DNODE_EXIT(db); 1435 1436 if (db->db_state != DB_NOFILL) { 1437 dbuf_unoverride(dr); 1438 1439 ASSERT(db->db_buf != NULL); 1440 ASSERT(dr->dt.dl.dr_data != NULL); 1441 if (dr->dt.dl.dr_data != db->db_buf) 1442 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db)); 1443 } 1444 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 1445 1446 ASSERT(db->db_dirtycnt > 0); 1447 db->db_dirtycnt -= 1; 1448 1449 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 1450 arc_buf_t *buf = db->db_buf; 1451 1452 ASSERT(db->db_state == DB_NOFILL || arc_released(buf)); 1453 dbuf_clear_data(db, &evict_list); 1454 VERIFY(arc_buf_remove_ref(buf, db)); 1455 dbuf_evict(db, &evict_list); 1456 dmu_buf_destroy_user_evict_list(&evict_list); 1457 return (B_TRUE); 1458 } 1459 1460 dmu_buf_destroy_user_evict_list(&evict_list); 1461 return (B_FALSE); 1462 } 1463 1464 #pragma weak dmu_buf_will_dirty = dbuf_will_dirty 1465 void 1466 dbuf_will_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1467 { 1468 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH; 1469 1470 ASSERT(tx->tx_txg != 0); 1471 ASSERT(!refcount_is_zero(&db->db_holds)); 1472 1473 DB_DNODE_ENTER(db); 1474 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 1475 rf |= DB_RF_HAVESTRUCT; 1476 DB_DNODE_EXIT(db); 1477 (void) dbuf_read(db, NULL, rf); 1478 (void) dbuf_dirty(db, tx); 1479 } 1480 1481 void 1482 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1483 { 1484 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1485 1486 db->db_state = DB_NOFILL; 1487 1488 dmu_buf_will_fill(db_fake, tx); 1489 } 1490 1491 void 1492 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1493 { 1494 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1495 1496 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1497 ASSERT(tx->tx_txg != 0); 1498 ASSERT(db->db_level == 0); 1499 ASSERT(!refcount_is_zero(&db->db_holds)); 1500 1501 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1502 dmu_tx_private_ok(tx)); 1503 1504 dbuf_noread(db); 1505 (void) dbuf_dirty(db, tx); 1506 } 1507 1508 #pragma weak dmu_buf_fill_done = dbuf_fill_done 1509 /* ARGSUSED */ 1510 void 1511 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 1512 { 1513 mutex_enter(&db->db_mtx); 1514 DBUF_VERIFY(db); 1515 1516 if (db->db_state == DB_FILL) { 1517 if (db->db_level == 0 && db->db_freed_in_flight) { 1518 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1519 /* we were freed while filling */ 1520 /* XXX dbuf_undirty? */ 1521 bzero(db->db.db_data, db->db.db_size); 1522 db->db_freed_in_flight = FALSE; 1523 } 1524 db->db_state = DB_CACHED; 1525 cv_broadcast(&db->db_changed); 1526 } 1527 mutex_exit(&db->db_mtx); 1528 } 1529 1530 /* 1531 * Directly assign a provided arc buf to a given dbuf if it's not referenced 1532 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 1533 */ 1534 void 1535 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 1536 { 1537 ASSERT(!refcount_is_zero(&db->db_holds)); 1538 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1539 ASSERT(db->db_level == 0); 1540 ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA); 1541 ASSERT(buf != NULL); 1542 ASSERT(arc_buf_size(buf) == db->db.db_size); 1543 ASSERT(tx->tx_txg != 0); 1544 1545 arc_return_buf(buf, db); 1546 ASSERT(arc_released(buf)); 1547 1548 mutex_enter(&db->db_mtx); 1549 1550 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1551 cv_wait(&db->db_changed, &db->db_mtx); 1552 1553 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 1554 1555 if (db->db_state == DB_CACHED && 1556 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 1557 mutex_exit(&db->db_mtx); 1558 (void) dbuf_dirty(db, tx); 1559 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 1560 VERIFY(arc_buf_remove_ref(buf, db)); 1561 xuio_stat_wbuf_copied(); 1562 return; 1563 } 1564 1565 xuio_stat_wbuf_nocopy(); 1566 if (db->db_state == DB_CACHED) { 1567 dbuf_dirty_record_t *dr = db->db_last_dirty; 1568 1569 ASSERT(db->db_buf != NULL); 1570 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 1571 ASSERT(dr->dt.dl.dr_data == db->db_buf); 1572 if (!arc_released(db->db_buf)) { 1573 ASSERT(dr->dt.dl.dr_override_state == 1574 DR_OVERRIDDEN); 1575 arc_release(db->db_buf, db); 1576 } 1577 dr->dt.dl.dr_data = buf; 1578 VERIFY(arc_buf_remove_ref(db->db_buf, db)); 1579 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 1580 arc_release(db->db_buf, db); 1581 VERIFY(arc_buf_remove_ref(db->db_buf, db)); 1582 } 1583 db->db_buf = NULL; 1584 } 1585 ASSERT(db->db_buf == NULL); 1586 dbuf_set_data(db, buf); 1587 db->db_state = DB_FILL; 1588 mutex_exit(&db->db_mtx); 1589 (void) dbuf_dirty(db, tx); 1590 dbuf_fill_done(db, tx); 1591 } 1592 1593 /* 1594 * "Clear" the contents of this dbuf. This will mark the dbuf 1595 * EVICTING and clear *most* of its references. Unfortunetely, 1596 * when we are not holding the dn_dbufs_mtx, we can't clear the 1597 * entry in the dn_dbufs list. We have to wait until dbuf_destroy() 1598 * in this case. For callers from the DMU we will usually see: 1599 * dbuf_clear()->arc_buf_evict()->dbuf_do_evict()->dbuf_destroy() 1600 * For the arc callback, we will usually see: 1601 * dbuf_do_evict()->dbuf_clear();dbuf_destroy() 1602 * Sometimes, though, we will get a mix of these two: 1603 * DMU: dbuf_clear()->arc_buf_evict() 1604 * ARC: dbuf_do_evict()->dbuf_destroy() 1605 */ 1606 void 1607 dbuf_clear(dmu_buf_impl_t *db, list_t *evict_list_p) 1608 { 1609 dnode_t *dn; 1610 dmu_buf_impl_t *parent = db->db_parent; 1611 dmu_buf_impl_t *dndb; 1612 int dbuf_gone = FALSE; 1613 1614 ASSERT(MUTEX_HELD(&db->db_mtx)); 1615 ASSERT(refcount_is_zero(&db->db_holds)); 1616 1617 dbuf_evict_user(db, evict_list_p); 1618 1619 if (db->db_state == DB_CACHED) { 1620 ASSERT(db->db.db_data != NULL); 1621 if (db->db_blkid == DMU_BONUS_BLKID) { 1622 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); 1623 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 1624 } 1625 db->db.db_data = NULL; 1626 db->db_state = DB_UNCACHED; 1627 } 1628 1629 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 1630 ASSERT(db->db_data_pending == NULL); 1631 1632 db->db_state = DB_EVICTING; 1633 db->db_blkptr = NULL; 1634 1635 DB_DNODE_ENTER(db); 1636 dn = DB_DNODE(db); 1637 dndb = dn->dn_dbuf; 1638 if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) { 1639 list_remove(&dn->dn_dbufs, db); 1640 (void) atomic_dec_32_nv(&dn->dn_dbufs_count); 1641 membar_producer(); 1642 DB_DNODE_EXIT(db); 1643 /* 1644 * Decrementing the dbuf count means that the hold corresponding 1645 * to the removed dbuf is no longer discounted in dnode_move(), 1646 * so the dnode cannot be moved until after we release the hold. 1647 * The membar_producer() ensures visibility of the decremented 1648 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 1649 * release any lock. 1650 */ 1651 dnode_rele(dn, db); 1652 db->db_dnode_handle = NULL; 1653 } else { 1654 DB_DNODE_EXIT(db); 1655 } 1656 1657 if (db->db_buf) 1658 dbuf_gone = arc_buf_evict(db->db_buf); 1659 1660 if (!dbuf_gone) 1661 mutex_exit(&db->db_mtx); 1662 1663 /* 1664 * If this dbuf is referenced from an indirect dbuf, 1665 * decrement the ref count on the indirect dbuf. 1666 */ 1667 if (parent && parent != dndb) 1668 dbuf_rele(parent, db); 1669 } 1670 1671 static int 1672 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 1673 dmu_buf_impl_t **parentp, blkptr_t **bpp) 1674 { 1675 int nlevels, epbs; 1676 1677 *parentp = NULL; 1678 *bpp = NULL; 1679 1680 ASSERT(blkid != DMU_BONUS_BLKID); 1681 1682 if (blkid == DMU_SPILL_BLKID) { 1683 mutex_enter(&dn->dn_mtx); 1684 if (dn->dn_have_spill && 1685 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1686 *bpp = &dn->dn_phys->dn_spill; 1687 else 1688 *bpp = NULL; 1689 dbuf_add_ref(dn->dn_dbuf, NULL); 1690 *parentp = dn->dn_dbuf; 1691 mutex_exit(&dn->dn_mtx); 1692 return (0); 1693 } 1694 1695 if (dn->dn_phys->dn_nlevels == 0) 1696 nlevels = 1; 1697 else 1698 nlevels = dn->dn_phys->dn_nlevels; 1699 1700 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1701 1702 ASSERT3U(level * epbs, <, 64); 1703 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1704 if (level >= nlevels || 1705 (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 1706 /* the buffer has no parent yet */ 1707 return (SET_ERROR(ENOENT)); 1708 } else if (level < nlevels-1) { 1709 /* this block is referenced from an indirect block */ 1710 int err = dbuf_hold_impl(dn, level+1, 1711 blkid >> epbs, fail_sparse, NULL, parentp); 1712 if (err) 1713 return (err); 1714 err = dbuf_read(*parentp, NULL, 1715 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 1716 if (err) { 1717 dbuf_rele(*parentp, NULL); 1718 *parentp = NULL; 1719 return (err); 1720 } 1721 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 1722 (blkid & ((1ULL << epbs) - 1)); 1723 return (0); 1724 } else { 1725 /* the block is referenced from the dnode */ 1726 ASSERT3U(level, ==, nlevels-1); 1727 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 1728 blkid < dn->dn_phys->dn_nblkptr); 1729 if (dn->dn_dbuf) { 1730 dbuf_add_ref(dn->dn_dbuf, NULL); 1731 *parentp = dn->dn_dbuf; 1732 } 1733 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 1734 return (0); 1735 } 1736 } 1737 1738 static dmu_buf_impl_t * 1739 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 1740 dmu_buf_impl_t *parent, blkptr_t *blkptr) 1741 { 1742 objset_t *os = dn->dn_objset; 1743 dmu_buf_impl_t *db, *odb; 1744 1745 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1746 ASSERT(dn->dn_type != DMU_OT_NONE); 1747 1748 db = kmem_cache_alloc(dbuf_cache, KM_SLEEP); 1749 1750 db->db_objset = os; 1751 db->db.db_object = dn->dn_object; 1752 db->db_level = level; 1753 db->db_blkid = blkid; 1754 db->db_last_dirty = NULL; 1755 db->db_dirtycnt = 0; 1756 db->db_dnode_handle = dn->dn_handle; 1757 db->db_parent = parent; 1758 db->db_blkptr = blkptr; 1759 1760 db->db_user = NULL; 1761 db->db_immediate_evict = 0; 1762 db->db_freed_in_flight = 0; 1763 1764 if (blkid == DMU_BONUS_BLKID) { 1765 ASSERT3P(parent, ==, dn->dn_dbuf); 1766 db->db.db_size = DN_MAX_BONUSLEN - 1767 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 1768 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1769 db->db.db_offset = DMU_BONUS_BLKID; 1770 db->db_state = DB_UNCACHED; 1771 /* the bonus dbuf is not placed in the hash table */ 1772 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1773 return (db); 1774 } else if (blkid == DMU_SPILL_BLKID) { 1775 db->db.db_size = (blkptr != NULL) ? 1776 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 1777 db->db.db_offset = 0; 1778 } else { 1779 int blocksize = 1780 db->db_level ? 1<<dn->dn_indblkshift : dn->dn_datablksz; 1781 db->db.db_size = blocksize; 1782 db->db.db_offset = db->db_blkid * blocksize; 1783 } 1784 1785 /* 1786 * Hold the dn_dbufs_mtx while we get the new dbuf 1787 * in the hash table *and* added to the dbufs list. 1788 * This prevents a possible deadlock with someone 1789 * trying to look up this dbuf before its added to the 1790 * dn_dbufs list. 1791 */ 1792 mutex_enter(&dn->dn_dbufs_mtx); 1793 db->db_state = DB_EVICTING; 1794 if ((odb = dbuf_hash_insert(db)) != NULL) { 1795 /* someone else inserted it first */ 1796 kmem_cache_free(dbuf_cache, db); 1797 mutex_exit(&dn->dn_dbufs_mtx); 1798 return (odb); 1799 } 1800 list_insert_head(&dn->dn_dbufs, db); 1801 db->db_state = DB_UNCACHED; 1802 mutex_exit(&dn->dn_dbufs_mtx); 1803 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1804 1805 if (parent && parent != dn->dn_dbuf) 1806 dbuf_add_ref(parent, db); 1807 1808 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1809 refcount_count(&dn->dn_holds) > 0); 1810 (void) refcount_add(&dn->dn_holds, db); 1811 (void) atomic_inc_32_nv(&dn->dn_dbufs_count); 1812 1813 dprintf_dbuf(db, "db=%p\n", db); 1814 1815 return (db); 1816 } 1817 1818 static int 1819 dbuf_do_evict(void *private) 1820 { 1821 arc_buf_t *buf = private; 1822 dmu_buf_impl_t *db = buf->b_private; 1823 list_t evict_list; 1824 1825 dmu_buf_create_user_evict_list(&evict_list); 1826 1827 if (!MUTEX_HELD(&db->db_mtx)) 1828 mutex_enter(&db->db_mtx); 1829 1830 ASSERT(refcount_is_zero(&db->db_holds)); 1831 1832 if (db->db_state != DB_EVICTING) { 1833 ASSERT(db->db_state == DB_CACHED); 1834 DBUF_VERIFY(db); 1835 db->db_buf = NULL; 1836 dbuf_evict(db, &evict_list); 1837 } else { 1838 mutex_exit(&db->db_mtx); 1839 dbuf_destroy(db); 1840 } 1841 dmu_buf_destroy_user_evict_list(&evict_list); 1842 return (0); 1843 } 1844 1845 static void 1846 dbuf_destroy(dmu_buf_impl_t *db) 1847 { 1848 ASSERT(refcount_is_zero(&db->db_holds)); 1849 1850 if (db->db_blkid != DMU_BONUS_BLKID) { 1851 /* 1852 * If this dbuf is still on the dn_dbufs list, 1853 * remove it from that list. 1854 */ 1855 if (db->db_dnode_handle != NULL) { 1856 dnode_t *dn; 1857 1858 DB_DNODE_ENTER(db); 1859 dn = DB_DNODE(db); 1860 mutex_enter(&dn->dn_dbufs_mtx); 1861 list_remove(&dn->dn_dbufs, db); 1862 (void) atomic_dec_32_nv(&dn->dn_dbufs_count); 1863 mutex_exit(&dn->dn_dbufs_mtx); 1864 DB_DNODE_EXIT(db); 1865 /* 1866 * Decrementing the dbuf count means that the hold 1867 * corresponding to the removed dbuf is no longer 1868 * discounted in dnode_move(), so the dnode cannot be 1869 * moved until after we release the hold. 1870 */ 1871 dnode_rele(dn, db); 1872 db->db_dnode_handle = NULL; 1873 } 1874 dbuf_hash_remove(db); 1875 } 1876 db->db_parent = NULL; 1877 db->db_buf = NULL; 1878 1879 ASSERT(!list_link_active(&db->db_link)); 1880 ASSERT(db->db.db_data == NULL); 1881 ASSERT(db->db_hash_next == NULL); 1882 ASSERT(db->db_blkptr == NULL); 1883 ASSERT(db->db_data_pending == NULL); 1884 1885 kmem_cache_free(dbuf_cache, db); 1886 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1887 } 1888 1889 void 1890 dbuf_prefetch(dnode_t *dn, uint64_t blkid) 1891 { 1892 dmu_buf_impl_t *db = NULL; 1893 blkptr_t *bp = NULL; 1894 1895 ASSERT(blkid != DMU_BONUS_BLKID); 1896 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1897 1898 if (dnode_block_freed(dn, blkid)) 1899 return; 1900 1901 /* dbuf_find() returns with db_mtx held */ 1902 if (db = dbuf_find(dn, 0, blkid)) { 1903 /* 1904 * This dbuf is already in the cache. We assume that 1905 * it is already CACHED, or else about to be either 1906 * read or filled. 1907 */ 1908 mutex_exit(&db->db_mtx); 1909 return; 1910 } 1911 1912 if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp) == 0) { 1913 if (bp && !BP_IS_HOLE(bp)) { 1914 int priority = dn->dn_type == DMU_OT_DDT_ZAP ? 1915 ZIO_PRIORITY_DDT_PREFETCH : ZIO_PRIORITY_ASYNC_READ; 1916 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 1917 uint32_t aflags = ARC_NOWAIT | ARC_PREFETCH; 1918 zbookmark_t zb; 1919 1920 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 1921 dn->dn_object, 0, blkid); 1922 1923 (void) arc_read(NULL, dn->dn_objset->os_spa, 1924 bp, NULL, NULL, priority, 1925 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 1926 &aflags, &zb); 1927 } 1928 if (db) 1929 dbuf_rele(db, NULL); 1930 } 1931 } 1932 1933 /* 1934 * Returns with db_holds incremented, and db_mtx not held. 1935 * Note: dn_struct_rwlock must be held. 1936 */ 1937 int 1938 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse, 1939 void *tag, dmu_buf_impl_t **dbp) 1940 { 1941 dmu_buf_impl_t *db, *parent = NULL; 1942 list_t evict_list; 1943 1944 ASSERT(blkid != DMU_BONUS_BLKID); 1945 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1946 ASSERT3U(dn->dn_nlevels, >, level); 1947 1948 dmu_buf_create_user_evict_list(&evict_list); 1949 1950 *dbp = NULL; 1951 top: 1952 /* dbuf_find() returns with db_mtx held */ 1953 db = dbuf_find(dn, level, blkid); 1954 1955 if (db == NULL) { 1956 blkptr_t *bp = NULL; 1957 int err; 1958 1959 ASSERT3P(parent, ==, NULL); 1960 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 1961 if (fail_sparse) { 1962 if (err == 0 && bp && BP_IS_HOLE(bp)) 1963 err = SET_ERROR(ENOENT); 1964 if (err) { 1965 if (parent) 1966 dbuf_rele(parent, NULL); 1967 return (err); 1968 } 1969 } 1970 if (err && err != ENOENT) 1971 return (err); 1972 db = dbuf_create(dn, level, blkid, parent, bp); 1973 } 1974 1975 if (db->db_buf && refcount_is_zero(&db->db_holds)) { 1976 arc_buf_add_ref(db->db_buf, db); 1977 if (db->db_buf->b_data == NULL) { 1978 dbuf_clear(db, &evict_list); 1979 if (parent) { 1980 dbuf_rele(parent, NULL); 1981 parent = NULL; 1982 } 1983 goto top; 1984 } 1985 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 1986 } 1987 1988 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 1989 1990 /* 1991 * If this buffer is currently syncing out, and we are are 1992 * still referencing it from db_data, we need to make a copy 1993 * of it in case we decide we want to dirty it again in this txg. 1994 */ 1995 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1996 dn->dn_object != DMU_META_DNODE_OBJECT && 1997 db->db_state == DB_CACHED && db->db_data_pending) { 1998 dbuf_dirty_record_t *dr = db->db_data_pending; 1999 2000 if (dr->dt.dl.dr_data == db->db_buf) { 2001 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2002 2003 dbuf_set_data(db, 2004 arc_buf_alloc(dn->dn_objset->os_spa, 2005 db->db.db_size, db, type)); 2006 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data, 2007 db->db.db_size); 2008 } 2009 } 2010 2011 (void) refcount_add(&db->db_holds, tag); 2012 DBUF_VERIFY(db); 2013 mutex_exit(&db->db_mtx); 2014 2015 dmu_buf_destroy_user_evict_list(&evict_list); 2016 2017 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 2018 if (parent) 2019 dbuf_rele(parent, NULL); 2020 2021 ASSERT3P(DB_DNODE(db), ==, dn); 2022 ASSERT3U(db->db_blkid, ==, blkid); 2023 ASSERT3U(db->db_level, ==, level); 2024 *dbp = db; 2025 2026 return (0); 2027 } 2028 2029 dmu_buf_impl_t * 2030 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 2031 { 2032 dmu_buf_impl_t *db; 2033 int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db); 2034 return (err ? NULL : db); 2035 } 2036 2037 dmu_buf_impl_t * 2038 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 2039 { 2040 dmu_buf_impl_t *db; 2041 int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db); 2042 return (err ? NULL : db); 2043 } 2044 2045 void 2046 dbuf_create_bonus(dnode_t *dn) 2047 { 2048 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 2049 2050 ASSERT(dn->dn_bonus == NULL); 2051 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 2052 } 2053 2054 int 2055 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 2056 { 2057 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2058 dnode_t *dn; 2059 2060 if (db->db_blkid != DMU_SPILL_BLKID) 2061 return (SET_ERROR(ENOTSUP)); 2062 if (blksz == 0) 2063 blksz = SPA_MINBLOCKSIZE; 2064 if (blksz > SPA_MAXBLOCKSIZE) 2065 blksz = SPA_MAXBLOCKSIZE; 2066 else 2067 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 2068 2069 DB_DNODE_ENTER(db); 2070 dn = DB_DNODE(db); 2071 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2072 dbuf_new_size(db, blksz, tx); 2073 rw_exit(&dn->dn_struct_rwlock); 2074 DB_DNODE_EXIT(db); 2075 2076 return (0); 2077 } 2078 2079 void 2080 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 2081 { 2082 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 2083 } 2084 2085 #pragma weak dmu_buf_add_ref = dbuf_add_ref 2086 void 2087 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 2088 { 2089 int64_t holds = refcount_add(&db->db_holds, tag); 2090 ASSERT(holds > 1); 2091 } 2092 2093 /* 2094 * If you call dbuf_rele() you had better not be referencing the dnode handle 2095 * unless you have some other direct or indirect hold on the dnode. (An indirect 2096 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 2097 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 2098 * dnode's parent dbuf evicting its dnode handles. 2099 */ 2100 #pragma weak dmu_buf_rele = dbuf_rele 2101 void 2102 dbuf_rele(dmu_buf_impl_t *db, void *tag) 2103 { 2104 mutex_enter(&db->db_mtx); 2105 dbuf_rele_and_unlock(db, tag); 2106 } 2107 2108 /* 2109 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 2110 * db_dirtycnt and db_holds to be updated atomically. 2111 */ 2112 void 2113 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag) 2114 { 2115 int64_t holds; 2116 list_t evict_list; 2117 2118 ASSERT(MUTEX_HELD(&db->db_mtx)); 2119 DBUF_VERIFY(db); 2120 2121 dmu_buf_create_user_evict_list(&evict_list); 2122 2123 /* 2124 * Remove the reference to the dbuf before removing its hold on the 2125 * dnode so we can guarantee in dnode_move() that a referenced bonus 2126 * buffer has a corresponding dnode hold. 2127 */ 2128 holds = refcount_remove(&db->db_holds, tag); 2129 ASSERT(holds >= 0); 2130 2131 /* 2132 * We can't freeze indirects if there is a possibility that they 2133 * may be modified in the current syncing context. 2134 */ 2135 if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) 2136 arc_buf_freeze(db->db_buf); 2137 2138 if (holds == db->db_dirtycnt && 2139 db->db_level == 0 && db->db_immediate_evict) 2140 dbuf_evict_user(db, &evict_list); 2141 2142 if (holds == 0) { 2143 if (db->db_blkid == DMU_BONUS_BLKID) { 2144 mutex_exit(&db->db_mtx); 2145 2146 /* 2147 * If the dnode moves here, we cannot cross this barrier 2148 * until the move completes. 2149 */ 2150 DB_DNODE_ENTER(db); 2151 (void) atomic_dec_32_nv(&DB_DNODE(db)->dn_dbufs_count); 2152 DB_DNODE_EXIT(db); 2153 /* 2154 * The bonus buffer's dnode hold is no longer discounted 2155 * in dnode_move(). The dnode cannot move until after 2156 * the dnode_rele(). 2157 */ 2158 dnode_rele(DB_DNODE(db), db); 2159 } else if (db->db_buf == NULL) { 2160 /* 2161 * This is a special case: we never associated this 2162 * dbuf with any data allocated from the ARC. 2163 */ 2164 ASSERT(db->db_state == DB_UNCACHED || 2165 db->db_state == DB_NOFILL); 2166 dbuf_evict(db, &evict_list); 2167 } else if (arc_released(db->db_buf)) { 2168 arc_buf_t *buf = db->db_buf; 2169 /* 2170 * This dbuf has anonymous data associated with it. 2171 */ 2172 dbuf_clear_data(db, &evict_list); 2173 VERIFY(arc_buf_remove_ref(buf, db)); 2174 dbuf_evict(db, &evict_list); 2175 } else { 2176 VERIFY(!arc_buf_remove_ref(db->db_buf, db)); 2177 2178 /* 2179 * A dbuf will be eligible for eviction if either the 2180 * 'primarycache' property is set or a duplicate 2181 * copy of this buffer is already cached in the arc. 2182 * 2183 * In the case of the 'primarycache' a buffer 2184 * is considered for eviction if it matches the 2185 * criteria set in the property. 2186 * 2187 * To decide if our buffer is considered a 2188 * duplicate, we must call into the arc to determine 2189 * if multiple buffers are referencing the same 2190 * block on-disk. If so, then we simply evict 2191 * ourselves. 2192 */ 2193 if (!DBUF_IS_CACHEABLE(db) || 2194 arc_buf_eviction_needed(db->db_buf)) 2195 dbuf_clear(db, &evict_list); 2196 else 2197 mutex_exit(&db->db_mtx); 2198 } 2199 } else { 2200 mutex_exit(&db->db_mtx); 2201 } 2202 dmu_buf_destroy_user_evict_list(&evict_list); 2203 } 2204 2205 #pragma weak dmu_buf_refcount = dbuf_refcount 2206 uint64_t 2207 dbuf_refcount(dmu_buf_impl_t *db) 2208 { 2209 return (refcount_count(&db->db_holds)); 2210 } 2211 2212 boolean_t 2213 dmu_buf_freeable(dmu_buf_t *dbuf) 2214 { 2215 boolean_t res = B_FALSE; 2216 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2217 2218 if (db->db_blkptr) 2219 res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset, 2220 db->db_blkptr, db->db_blkptr->blk_birth); 2221 2222 return (res); 2223 } 2224 2225 blkptr_t * 2226 dmu_buf_get_blkptr(dmu_buf_t *db) 2227 { 2228 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2229 return (dbi->db_blkptr); 2230 } 2231 2232 static void 2233 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 2234 { 2235 /* ASSERT(dmu_tx_is_syncing(tx) */ 2236 ASSERT(MUTEX_HELD(&db->db_mtx)); 2237 2238 if (db->db_blkptr != NULL) 2239 return; 2240 2241 if (db->db_blkid == DMU_SPILL_BLKID) { 2242 db->db_blkptr = &dn->dn_phys->dn_spill; 2243 BP_ZERO(db->db_blkptr); 2244 return; 2245 } 2246 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 2247 /* 2248 * This buffer was allocated at a time when there was 2249 * no available blkptrs from the dnode, or it was 2250 * inappropriate to hook it in (i.e., nlevels mis-match). 2251 */ 2252 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 2253 ASSERT(db->db_parent == NULL); 2254 db->db_parent = dn->dn_dbuf; 2255 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 2256 DBUF_VERIFY(db); 2257 } else { 2258 dmu_buf_impl_t *parent = db->db_parent; 2259 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2260 2261 ASSERT(dn->dn_phys->dn_nlevels > 1); 2262 if (parent == NULL) { 2263 mutex_exit(&db->db_mtx); 2264 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2265 (void) dbuf_hold_impl(dn, db->db_level+1, 2266 db->db_blkid >> epbs, FALSE, db, &parent); 2267 rw_exit(&dn->dn_struct_rwlock); 2268 mutex_enter(&db->db_mtx); 2269 db->db_parent = parent; 2270 } 2271 db->db_blkptr = (blkptr_t *)parent->db.db_data + 2272 (db->db_blkid & ((1ULL << epbs) - 1)); 2273 DBUF_VERIFY(db); 2274 } 2275 } 2276 2277 static void 2278 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2279 { 2280 dmu_buf_impl_t *db = dr->dr_dbuf; 2281 dnode_t *dn; 2282 zio_t *zio; 2283 2284 ASSERT(dmu_tx_is_syncing(tx)); 2285 2286 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2287 2288 mutex_enter(&db->db_mtx); 2289 2290 ASSERT(db->db_level > 0); 2291 DBUF_VERIFY(db); 2292 2293 if (db->db_buf == NULL) { 2294 mutex_exit(&db->db_mtx); 2295 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 2296 mutex_enter(&db->db_mtx); 2297 } 2298 ASSERT3U(db->db_state, ==, DB_CACHED); 2299 ASSERT(db->db_buf != NULL); 2300 2301 DB_DNODE_ENTER(db); 2302 dn = DB_DNODE(db); 2303 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2304 dbuf_check_blkptr(dn, db); 2305 DB_DNODE_EXIT(db); 2306 2307 db->db_data_pending = dr; 2308 2309 mutex_exit(&db->db_mtx); 2310 dbuf_write(dr, db->db_buf, tx); 2311 2312 zio = dr->dr_zio; 2313 mutex_enter(&dr->dt.di.dr_mtx); 2314 dbuf_sync_list(&dr->dt.di.dr_children, tx); 2315 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 2316 mutex_exit(&dr->dt.di.dr_mtx); 2317 zio_nowait(zio); 2318 } 2319 2320 static void 2321 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2322 { 2323 arc_buf_t **datap = &dr->dt.dl.dr_data; 2324 dmu_buf_impl_t *db = dr->dr_dbuf; 2325 dnode_t *dn; 2326 objset_t *os; 2327 uint64_t txg = tx->tx_txg; 2328 2329 ASSERT(dmu_tx_is_syncing(tx)); 2330 2331 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2332 2333 mutex_enter(&db->db_mtx); 2334 /* 2335 * To be synced, we must be dirtied. But we 2336 * might have been freed after the dirty. 2337 */ 2338 if (db->db_state == DB_UNCACHED) { 2339 /* This buffer has been freed since it was dirtied */ 2340 ASSERT(db->db.db_data == NULL); 2341 } else if (db->db_state == DB_FILL) { 2342 /* This buffer was freed and is now being re-filled */ 2343 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 2344 } else { 2345 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 2346 } 2347 DBUF_VERIFY(db); 2348 2349 DB_DNODE_ENTER(db); 2350 dn = DB_DNODE(db); 2351 2352 if (db->db_blkid == DMU_SPILL_BLKID) { 2353 mutex_enter(&dn->dn_mtx); 2354 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 2355 mutex_exit(&dn->dn_mtx); 2356 } 2357 2358 /* 2359 * If this is a bonus buffer, simply copy the bonus data into the 2360 * dnode. It will be written out when the dnode is synced (and it 2361 * will be synced, since it must have been dirty for dbuf_sync to 2362 * be called). 2363 */ 2364 if (db->db_blkid == DMU_BONUS_BLKID) { 2365 dbuf_dirty_record_t **drp; 2366 2367 ASSERT(*datap != NULL); 2368 ASSERT0(db->db_level); 2369 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); 2370 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); 2371 DB_DNODE_EXIT(db); 2372 2373 if (*datap != db->db.db_data) { 2374 zio_buf_free(*datap, DN_MAX_BONUSLEN); 2375 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 2376 } 2377 db->db_data_pending = NULL; 2378 drp = &db->db_last_dirty; 2379 while (*drp != dr) 2380 drp = &(*drp)->dr_next; 2381 ASSERT(dr->dr_next == NULL); 2382 ASSERT(dr->dr_dbuf == db); 2383 *drp = dr->dr_next; 2384 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2385 ASSERT(db->db_dirtycnt > 0); 2386 db->db_dirtycnt -= 1; 2387 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 2388 return; 2389 } 2390 2391 os = dn->dn_objset; 2392 2393 /* 2394 * This function may have dropped the db_mtx lock allowing a dmu_sync 2395 * operation to sneak in. As a result, we need to ensure that we 2396 * don't check the dr_override_state until we have returned from 2397 * dbuf_check_blkptr. 2398 */ 2399 dbuf_check_blkptr(dn, db); 2400 2401 /* 2402 * If this buffer is in the middle of an immediate write, 2403 * wait for the synchronous IO to complete. 2404 */ 2405 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 2406 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 2407 cv_wait(&db->db_changed, &db->db_mtx); 2408 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 2409 } 2410 2411 if (db->db_state != DB_NOFILL && 2412 dn->dn_object != DMU_META_DNODE_OBJECT && 2413 refcount_count(&db->db_holds) > 1 && 2414 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 2415 *datap == db->db_buf) { 2416 /* 2417 * If this buffer is currently "in use" (i.e., there 2418 * are active holds and db_data still references it), 2419 * then make a copy before we start the write so that 2420 * any modifications from the open txg will not leak 2421 * into this write. 2422 * 2423 * NOTE: this copy does not need to be made for 2424 * objects only modified in the syncing context (e.g. 2425 * DNONE_DNODE blocks). 2426 */ 2427 int blksz = arc_buf_size(*datap); 2428 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2429 *datap = arc_buf_alloc(os->os_spa, blksz, db, type); 2430 bcopy(db->db.db_data, (*datap)->b_data, blksz); 2431 } 2432 db->db_data_pending = dr; 2433 2434 mutex_exit(&db->db_mtx); 2435 2436 dbuf_write(dr, *datap, tx); 2437 2438 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2439 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 2440 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr); 2441 DB_DNODE_EXIT(db); 2442 } else { 2443 /* 2444 * Although zio_nowait() does not "wait for an IO", it does 2445 * initiate the IO. If this is an empty write it seems plausible 2446 * that the IO could actually be completed before the nowait 2447 * returns. We need to DB_DNODE_EXIT() first in case 2448 * zio_nowait() invalidates the dbuf. 2449 */ 2450 DB_DNODE_EXIT(db); 2451 zio_nowait(dr->dr_zio); 2452 } 2453 } 2454 2455 void 2456 dbuf_sync_list(list_t *list, dmu_tx_t *tx) 2457 { 2458 dbuf_dirty_record_t *dr; 2459 2460 while (dr = list_head(list)) { 2461 if (dr->dr_zio != NULL) { 2462 /* 2463 * If we find an already initialized zio then we 2464 * are processing the meta-dnode, and we have finished. 2465 * The dbufs for all dnodes are put back on the list 2466 * during processing, so that we can zio_wait() 2467 * these IOs after initiating all child IOs. 2468 */ 2469 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 2470 DMU_META_DNODE_OBJECT); 2471 break; 2472 } 2473 list_remove(list, dr); 2474 if (dr->dr_dbuf->db_level > 0) 2475 dbuf_sync_indirect(dr, tx); 2476 else 2477 dbuf_sync_leaf(dr, tx); 2478 } 2479 } 2480 2481 /* ARGSUSED */ 2482 static void 2483 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 2484 { 2485 dmu_buf_impl_t *db = vdb; 2486 dnode_t *dn; 2487 blkptr_t *bp = zio->io_bp; 2488 blkptr_t *bp_orig = &zio->io_bp_orig; 2489 spa_t *spa = zio->io_spa; 2490 int64_t delta; 2491 uint64_t fill = 0; 2492 int i; 2493 2494 ASSERT(db->db_blkptr == bp); 2495 2496 DB_DNODE_ENTER(db); 2497 dn = DB_DNODE(db); 2498 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 2499 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 2500 zio->io_prev_space_delta = delta; 2501 2502 if (BP_IS_HOLE(bp)) { 2503 ASSERT(bp->blk_fill == 0); 2504 DB_DNODE_EXIT(db); 2505 return; 2506 } 2507 2508 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 2509 BP_GET_TYPE(bp) == dn->dn_type) || 2510 (db->db_blkid == DMU_SPILL_BLKID && 2511 BP_GET_TYPE(bp) == dn->dn_bonustype)); 2512 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 2513 2514 mutex_enter(&db->db_mtx); 2515 2516 #ifdef ZFS_DEBUG 2517 if (db->db_blkid == DMU_SPILL_BLKID) { 2518 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 2519 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 2520 db->db_blkptr == &dn->dn_phys->dn_spill); 2521 } 2522 #endif 2523 2524 if (db->db_level == 0) { 2525 mutex_enter(&dn->dn_mtx); 2526 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 2527 db->db_blkid != DMU_SPILL_BLKID) 2528 dn->dn_phys->dn_maxblkid = db->db_blkid; 2529 mutex_exit(&dn->dn_mtx); 2530 2531 if (dn->dn_type == DMU_OT_DNODE) { 2532 dnode_phys_t *dnp = db->db.db_data; 2533 for (i = db->db.db_size >> DNODE_SHIFT; i > 0; 2534 i--, dnp++) { 2535 if (dnp->dn_type != DMU_OT_NONE) 2536 fill++; 2537 } 2538 } else { 2539 fill = 1; 2540 } 2541 } else { 2542 blkptr_t *ibp = db->db.db_data; 2543 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2544 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 2545 if (BP_IS_HOLE(ibp)) 2546 continue; 2547 fill += ibp->blk_fill; 2548 } 2549 } 2550 DB_DNODE_EXIT(db); 2551 2552 bp->blk_fill = fill; 2553 2554 mutex_exit(&db->db_mtx); 2555 } 2556 2557 /* ARGSUSED */ 2558 static void 2559 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 2560 { 2561 dmu_buf_impl_t *db = vdb; 2562 blkptr_t *bp = zio->io_bp; 2563 blkptr_t *bp_orig = &zio->io_bp_orig; 2564 uint64_t txg = zio->io_txg; 2565 dbuf_dirty_record_t **drp, *dr; 2566 2567 ASSERT0(zio->io_error); 2568 ASSERT(db->db_blkptr == bp); 2569 2570 /* 2571 * For nopwrites and rewrites we ensure that the bp matches our 2572 * original and bypass all the accounting. 2573 */ 2574 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 2575 ASSERT(BP_EQUAL(bp, bp_orig)); 2576 } else { 2577 objset_t *os; 2578 dsl_dataset_t *ds; 2579 dmu_tx_t *tx; 2580 2581 DB_GET_OBJSET(&os, db); 2582 ds = os->os_dsl_dataset; 2583 tx = os->os_synctx; 2584 2585 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 2586 dsl_dataset_block_born(ds, bp, tx); 2587 } 2588 2589 mutex_enter(&db->db_mtx); 2590 2591 DBUF_VERIFY(db); 2592 2593 drp = &db->db_last_dirty; 2594 while ((dr = *drp) != db->db_data_pending) 2595 drp = &dr->dr_next; 2596 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2597 ASSERT(dr->dr_txg == txg); 2598 ASSERT(dr->dr_dbuf == db); 2599 ASSERT(dr->dr_next == NULL); 2600 *drp = dr->dr_next; 2601 2602 #ifdef ZFS_DEBUG 2603 if (db->db_blkid == DMU_SPILL_BLKID) { 2604 dnode_t *dn; 2605 2606 DB_DNODE_ENTER(db); 2607 dn = DB_DNODE(db); 2608 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 2609 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 2610 db->db_blkptr == &dn->dn_phys->dn_spill); 2611 DB_DNODE_EXIT(db); 2612 } 2613 #endif 2614 2615 if (db->db_level == 0) { 2616 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2617 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 2618 if (db->db_state != DB_NOFILL) { 2619 if (dr->dt.dl.dr_data != db->db_buf) 2620 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, 2621 db)); 2622 else if (!arc_released(db->db_buf)) 2623 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2624 } 2625 } else { 2626 dnode_t *dn; 2627 2628 DB_DNODE_ENTER(db); 2629 dn = DB_DNODE(db); 2630 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 2631 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2632 if (!BP_IS_HOLE(db->db_blkptr)) { 2633 int epbs = 2634 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2635 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 2636 db->db.db_size); 2637 ASSERT3U(dn->dn_phys->dn_maxblkid 2638 >> (db->db_level * epbs), >=, db->db_blkid); 2639 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2640 } 2641 DB_DNODE_EXIT(db); 2642 mutex_destroy(&dr->dt.di.dr_mtx); 2643 list_destroy(&dr->dt.di.dr_children); 2644 } 2645 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2646 2647 cv_broadcast(&db->db_changed); 2648 ASSERT(db->db_dirtycnt > 0); 2649 db->db_dirtycnt -= 1; 2650 db->db_data_pending = NULL; 2651 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 2652 } 2653 2654 static void 2655 dbuf_write_nofill_ready(zio_t *zio) 2656 { 2657 dbuf_write_ready(zio, NULL, zio->io_private); 2658 } 2659 2660 static void 2661 dbuf_write_nofill_done(zio_t *zio) 2662 { 2663 dbuf_write_done(zio, NULL, zio->io_private); 2664 } 2665 2666 static void 2667 dbuf_write_override_ready(zio_t *zio) 2668 { 2669 dbuf_dirty_record_t *dr = zio->io_private; 2670 dmu_buf_impl_t *db = dr->dr_dbuf; 2671 2672 dbuf_write_ready(zio, NULL, db); 2673 } 2674 2675 static void 2676 dbuf_write_override_done(zio_t *zio) 2677 { 2678 dbuf_dirty_record_t *dr = zio->io_private; 2679 dmu_buf_impl_t *db = dr->dr_dbuf; 2680 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 2681 2682 mutex_enter(&db->db_mtx); 2683 if (!BP_EQUAL(zio->io_bp, obp)) { 2684 if (!BP_IS_HOLE(obp)) 2685 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 2686 arc_release(dr->dt.dl.dr_data, db); 2687 } 2688 mutex_exit(&db->db_mtx); 2689 2690 dbuf_write_done(zio, NULL, db); 2691 } 2692 2693 static void 2694 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 2695 { 2696 dmu_buf_impl_t *db = dr->dr_dbuf; 2697 dnode_t *dn; 2698 objset_t *os; 2699 dmu_buf_impl_t *parent = db->db_parent; 2700 uint64_t txg = tx->tx_txg; 2701 zbookmark_t zb; 2702 zio_prop_t zp; 2703 zio_t *zio; 2704 int wp_flag = 0; 2705 2706 DB_DNODE_ENTER(db); 2707 dn = DB_DNODE(db); 2708 os = dn->dn_objset; 2709 2710 if (db->db_state != DB_NOFILL) { 2711 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 2712 /* 2713 * Private object buffers are released here rather 2714 * than in dbuf_dirty() since they are only modified 2715 * in the syncing context and we don't want the 2716 * overhead of making multiple copies of the data. 2717 */ 2718 if (BP_IS_HOLE(db->db_blkptr)) { 2719 arc_buf_thaw(data); 2720 } else { 2721 dbuf_release_bp(db); 2722 } 2723 } 2724 } 2725 2726 if (parent != dn->dn_dbuf) { 2727 ASSERT(parent && parent->db_data_pending); 2728 ASSERT(db->db_level == parent->db_level-1); 2729 ASSERT(arc_released(parent->db_buf)); 2730 zio = parent->db_data_pending->dr_zio; 2731 } else { 2732 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 2733 db->db_blkid != DMU_SPILL_BLKID) || 2734 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 2735 if (db->db_blkid != DMU_SPILL_BLKID) 2736 ASSERT3P(db->db_blkptr, ==, 2737 &dn->dn_phys->dn_blkptr[db->db_blkid]); 2738 zio = dn->dn_zio; 2739 } 2740 2741 ASSERT(db->db_level == 0 || data == db->db_buf); 2742 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 2743 ASSERT(zio); 2744 2745 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 2746 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 2747 db->db.db_object, db->db_level, db->db_blkid); 2748 2749 if (db->db_blkid == DMU_SPILL_BLKID) 2750 wp_flag = WP_SPILL; 2751 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 2752 2753 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 2754 DB_DNODE_EXIT(db); 2755 2756 if (db->db_level == 0 && dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 2757 ASSERT(db->db_state != DB_NOFILL); 2758 dr->dr_zio = zio_write(zio, os->os_spa, txg, 2759 db->db_blkptr, data->b_data, arc_buf_size(data), &zp, 2760 dbuf_write_override_ready, dbuf_write_override_done, dr, 2761 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 2762 mutex_enter(&db->db_mtx); 2763 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 2764 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 2765 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 2766 mutex_exit(&db->db_mtx); 2767 } else if (db->db_state == DB_NOFILL) { 2768 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF); 2769 dr->dr_zio = zio_write(zio, os->os_spa, txg, 2770 db->db_blkptr, NULL, db->db.db_size, &zp, 2771 dbuf_write_nofill_ready, dbuf_write_nofill_done, db, 2772 ZIO_PRIORITY_ASYNC_WRITE, 2773 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 2774 } else { 2775 ASSERT(arc_released(data)); 2776 dr->dr_zio = arc_write(zio, os->os_spa, txg, 2777 db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db), &zp, 2778 dbuf_write_ready, dbuf_write_done, db, 2779 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 2780 } 2781 }