1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 /* 29 * This file contains all the routines used when modifying on-disk SPA state. 30 * This includes opening, importing, destroying, exporting a pool, and syncing a 31 * pool. 32 */ 33 34 #include <sys/zfs_context.h> 35 #include <sys/fm/fs/zfs.h> 36 #include <sys/spa_impl.h> 37 #include <sys/zio.h> 38 #include <sys/zio_checksum.h> 39 #include <sys/dmu.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/zap.h> 42 #include <sys/zil.h> 43 #include <sys/ddt.h> 44 #include <sys/vdev_impl.h> 45 #include <sys/metaslab.h> 46 #include <sys/metaslab_impl.h> 47 #include <sys/uberblock_impl.h> 48 #include <sys/txg.h> 49 #include <sys/avl.h> 50 #include <sys/dmu_traverse.h> 51 #include <sys/dmu_objset.h> 52 #include <sys/unique.h> 53 #include <sys/dsl_pool.h> 54 #include <sys/dsl_dataset.h> 55 #include <sys/dsl_dir.h> 56 #include <sys/dsl_prop.h> 57 #include <sys/dsl_synctask.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/arc.h> 60 #include <sys/callb.h> 61 #include <sys/systeminfo.h> 62 #include <sys/spa_boot.h> 63 #include <sys/zfs_ioctl.h> 64 #include <sys/dsl_scan.h> 65 #include <sys/zfeature.h> 66 #include <sys/dsl_destroy.h> 67 68 #ifdef _KERNEL 69 #include <sys/bootprops.h> 70 #include <sys/callb.h> 71 #include <sys/cpupart.h> 72 #include <sys/pool.h> 73 #include <sys/sysdc.h> 74 #include <sys/zone.h> 75 #endif /* _KERNEL */ 76 77 #include "zfs_prop.h" 78 #include "zfs_comutil.h" 79 80 /* 81 * The interval at which failed configuration cache file writes 82 * should be retried. 83 */ 84 static int zfs_ccw_retry_interval = 300; 85 86 typedef enum zti_modes { 87 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 88 ZTI_MODE_ONLINE_PERCENT, /* value is % of online CPUs */ 89 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 90 ZTI_MODE_NULL, /* don't create a taskq */ 91 ZTI_NMODES 92 } zti_modes_t; 93 94 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 95 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 } 96 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 97 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 98 99 #define ZTI_N(n) ZTI_P(n, 1) 100 #define ZTI_ONE ZTI_N(1) 101 102 typedef struct zio_taskq_info { 103 zti_modes_t zti_mode; 104 uint_t zti_value; 105 uint_t zti_count; 106 } zio_taskq_info_t; 107 108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 109 "issue", "issue_high", "intr", "intr_high" 110 }; 111 112 /* 113 * This table defines the taskq settings for each ZFS I/O type. When 114 * initializing a pool, we use this table to create an appropriately sized 115 * taskq. Some operations are low volume and therefore have a small, static 116 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 117 * macros. Other operations process a large amount of data; the ZTI_BATCH 118 * macro causes us to create a taskq oriented for throughput. Some operations 119 * are so high frequency and short-lived that the taskq itself can become a a 120 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 121 * additional degree of parallelism specified by the number of threads per- 122 * taskq and the number of taskqs; when dispatching an event in this case, the 123 * particular taskq is chosen at random. 124 * 125 * The different taskq priorities are to handle the different contexts (issue 126 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 127 * need to be handled with minimum delay. 128 */ 129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 130 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 131 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 132 { ZTI_N(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, /* READ */ 133 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 134 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 135 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 137 }; 138 139 static void spa_sync_version(void *arg, dmu_tx_t *tx); 140 static void spa_sync_props(void *arg, dmu_tx_t *tx); 141 static boolean_t spa_has_active_shared_spare(spa_t *spa); 142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 143 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 144 char **ereport); 145 static void spa_vdev_resilver_done(spa_t *spa); 146 147 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */ 148 id_t zio_taskq_psrset_bind = PS_NONE; 149 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 150 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 151 152 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 153 extern int zfs_sync_pass_deferred_free; 154 155 /* 156 * This (illegal) pool name is used when temporarily importing a spa_t in order 157 * to get the vdev stats associated with the imported devices. 158 */ 159 #define TRYIMPORT_NAME "$import" 160 161 /* 162 * ========================================================================== 163 * SPA properties routines 164 * ========================================================================== 165 */ 166 167 /* 168 * Add a (source=src, propname=propval) list to an nvlist. 169 */ 170 static void 171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 172 uint64_t intval, zprop_source_t src) 173 { 174 const char *propname = zpool_prop_to_name(prop); 175 nvlist_t *propval; 176 177 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 178 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 179 180 if (strval != NULL) 181 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 182 else 183 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 184 185 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 186 nvlist_free(propval); 187 } 188 189 /* 190 * Get property values from the spa configuration. 191 */ 192 static void 193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 194 { 195 vdev_t *rvd = spa->spa_root_vdev; 196 dsl_pool_t *pool = spa->spa_dsl_pool; 197 uint64_t size; 198 uint64_t alloc; 199 uint64_t space; 200 uint64_t cap, version; 201 zprop_source_t src = ZPROP_SRC_NONE; 202 spa_config_dirent_t *dp; 203 204 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 205 206 if (rvd != NULL) { 207 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 208 size = metaslab_class_get_space(spa_normal_class(spa)); 209 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 210 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 211 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 212 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 213 size - alloc, src); 214 215 space = 0; 216 for (int c = 0; c < rvd->vdev_children; c++) { 217 vdev_t *tvd = rvd->vdev_child[c]; 218 space += tvd->vdev_max_asize - tvd->vdev_asize; 219 } 220 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space, 221 src); 222 223 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 224 (spa_mode(spa) == FREAD), src); 225 226 cap = (size == 0) ? 0 : (alloc * 100 / size); 227 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 228 229 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 230 ddt_get_pool_dedup_ratio(spa), src); 231 232 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 233 rvd->vdev_state, src); 234 235 version = spa_version(spa); 236 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 237 src = ZPROP_SRC_DEFAULT; 238 else 239 src = ZPROP_SRC_LOCAL; 240 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 241 } 242 243 if (pool != NULL) { 244 dsl_dir_t *freedir = pool->dp_free_dir; 245 246 /* 247 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 248 * when opening pools before this version freedir will be NULL. 249 */ 250 if (freedir != NULL) { 251 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 252 freedir->dd_phys->dd_used_bytes, src); 253 } else { 254 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 255 NULL, 0, src); 256 } 257 } 258 259 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 260 261 if (spa->spa_comment != NULL) { 262 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 263 0, ZPROP_SRC_LOCAL); 264 } 265 266 if (spa->spa_root != NULL) 267 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 268 0, ZPROP_SRC_LOCAL); 269 270 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 271 if (dp->scd_path == NULL) { 272 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 273 "none", 0, ZPROP_SRC_LOCAL); 274 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 275 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 276 dp->scd_path, 0, ZPROP_SRC_LOCAL); 277 } 278 } 279 } 280 281 /* 282 * Get zpool property values. 283 */ 284 int 285 spa_prop_get(spa_t *spa, nvlist_t **nvp) 286 { 287 objset_t *mos = spa->spa_meta_objset; 288 zap_cursor_t zc; 289 zap_attribute_t za; 290 int err; 291 292 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 293 294 mutex_enter(&spa->spa_props_lock); 295 296 /* 297 * Get properties from the spa config. 298 */ 299 spa_prop_get_config(spa, nvp); 300 301 /* If no pool property object, no more prop to get. */ 302 if (mos == NULL || spa->spa_pool_props_object == 0) { 303 mutex_exit(&spa->spa_props_lock); 304 return (0); 305 } 306 307 /* 308 * Get properties from the MOS pool property object. 309 */ 310 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 311 (err = zap_cursor_retrieve(&zc, &za)) == 0; 312 zap_cursor_advance(&zc)) { 313 uint64_t intval = 0; 314 char *strval = NULL; 315 zprop_source_t src = ZPROP_SRC_DEFAULT; 316 zpool_prop_t prop; 317 318 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 319 continue; 320 321 switch (za.za_integer_length) { 322 case 8: 323 /* integer property */ 324 if (za.za_first_integer != 325 zpool_prop_default_numeric(prop)) 326 src = ZPROP_SRC_LOCAL; 327 328 if (prop == ZPOOL_PROP_BOOTFS) { 329 dsl_pool_t *dp; 330 dsl_dataset_t *ds = NULL; 331 332 dp = spa_get_dsl(spa); 333 dsl_pool_config_enter(dp, FTAG); 334 if (err = dsl_dataset_hold_obj(dp, 335 za.za_first_integer, FTAG, &ds)) { 336 dsl_pool_config_exit(dp, FTAG); 337 break; 338 } 339 340 strval = kmem_alloc( 341 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 342 KM_SLEEP); 343 dsl_dataset_name(ds, strval); 344 dsl_dataset_rele(ds, FTAG); 345 dsl_pool_config_exit(dp, FTAG); 346 } else { 347 strval = NULL; 348 intval = za.za_first_integer; 349 } 350 351 spa_prop_add_list(*nvp, prop, strval, intval, src); 352 353 if (strval != NULL) 354 kmem_free(strval, 355 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 356 357 break; 358 359 case 1: 360 /* string property */ 361 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 362 err = zap_lookup(mos, spa->spa_pool_props_object, 363 za.za_name, 1, za.za_num_integers, strval); 364 if (err) { 365 kmem_free(strval, za.za_num_integers); 366 break; 367 } 368 spa_prop_add_list(*nvp, prop, strval, 0, src); 369 kmem_free(strval, za.za_num_integers); 370 break; 371 372 default: 373 break; 374 } 375 } 376 zap_cursor_fini(&zc); 377 mutex_exit(&spa->spa_props_lock); 378 out: 379 if (err && err != ENOENT) { 380 nvlist_free(*nvp); 381 *nvp = NULL; 382 return (err); 383 } 384 385 return (0); 386 } 387 388 /* 389 * Validate the given pool properties nvlist and modify the list 390 * for the property values to be set. 391 */ 392 static int 393 spa_prop_validate(spa_t *spa, nvlist_t *props) 394 { 395 nvpair_t *elem; 396 int error = 0, reset_bootfs = 0; 397 uint64_t objnum = 0; 398 boolean_t has_feature = B_FALSE; 399 400 elem = NULL; 401 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 402 uint64_t intval; 403 char *strval, *slash, *check, *fname; 404 const char *propname = nvpair_name(elem); 405 zpool_prop_t prop = zpool_name_to_prop(propname); 406 407 switch (prop) { 408 case ZPROP_INVAL: 409 if (!zpool_prop_feature(propname)) { 410 error = SET_ERROR(EINVAL); 411 break; 412 } 413 414 /* 415 * Sanitize the input. 416 */ 417 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 418 error = SET_ERROR(EINVAL); 419 break; 420 } 421 422 if (nvpair_value_uint64(elem, &intval) != 0) { 423 error = SET_ERROR(EINVAL); 424 break; 425 } 426 427 if (intval != 0) { 428 error = SET_ERROR(EINVAL); 429 break; 430 } 431 432 fname = strchr(propname, '@') + 1; 433 if (zfeature_lookup_name(fname, NULL) != 0) { 434 error = SET_ERROR(EINVAL); 435 break; 436 } 437 438 has_feature = B_TRUE; 439 break; 440 441 case ZPOOL_PROP_VERSION: 442 error = nvpair_value_uint64(elem, &intval); 443 if (!error && 444 (intval < spa_version(spa) || 445 intval > SPA_VERSION_BEFORE_FEATURES || 446 has_feature)) 447 error = SET_ERROR(EINVAL); 448 break; 449 450 case ZPOOL_PROP_DELEGATION: 451 case ZPOOL_PROP_AUTOREPLACE: 452 case ZPOOL_PROP_LISTSNAPS: 453 case ZPOOL_PROP_AUTOEXPAND: 454 error = nvpair_value_uint64(elem, &intval); 455 if (!error && intval > 1) 456 error = SET_ERROR(EINVAL); 457 break; 458 459 case ZPOOL_PROP_BOOTFS: 460 /* 461 * If the pool version is less than SPA_VERSION_BOOTFS, 462 * or the pool is still being created (version == 0), 463 * the bootfs property cannot be set. 464 */ 465 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 466 error = SET_ERROR(ENOTSUP); 467 break; 468 } 469 470 /* 471 * Make sure the vdev config is bootable 472 */ 473 if (!vdev_is_bootable(spa->spa_root_vdev)) { 474 error = SET_ERROR(ENOTSUP); 475 break; 476 } 477 478 reset_bootfs = 1; 479 480 error = nvpair_value_string(elem, &strval); 481 482 if (!error) { 483 objset_t *os; 484 uint64_t compress; 485 486 if (strval == NULL || strval[0] == '\0') { 487 objnum = zpool_prop_default_numeric( 488 ZPOOL_PROP_BOOTFS); 489 break; 490 } 491 492 if (error = dmu_objset_hold(strval, FTAG, &os)) 493 break; 494 495 /* Must be ZPL and not gzip compressed. */ 496 497 if (dmu_objset_type(os) != DMU_OST_ZFS) { 498 error = SET_ERROR(ENOTSUP); 499 } else if ((error = 500 dsl_prop_get_int_ds(dmu_objset_ds(os), 501 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 502 &compress)) == 0 && 503 !BOOTFS_COMPRESS_VALID(compress)) { 504 error = SET_ERROR(ENOTSUP); 505 } else { 506 objnum = dmu_objset_id(os); 507 } 508 dmu_objset_rele(os, FTAG); 509 } 510 break; 511 512 case ZPOOL_PROP_FAILUREMODE: 513 error = nvpair_value_uint64(elem, &intval); 514 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 515 intval > ZIO_FAILURE_MODE_PANIC)) 516 error = SET_ERROR(EINVAL); 517 518 /* 519 * This is a special case which only occurs when 520 * the pool has completely failed. This allows 521 * the user to change the in-core failmode property 522 * without syncing it out to disk (I/Os might 523 * currently be blocked). We do this by returning 524 * EIO to the caller (spa_prop_set) to trick it 525 * into thinking we encountered a property validation 526 * error. 527 */ 528 if (!error && spa_suspended(spa)) { 529 spa->spa_failmode = intval; 530 error = SET_ERROR(EIO); 531 } 532 break; 533 534 case ZPOOL_PROP_CACHEFILE: 535 if ((error = nvpair_value_string(elem, &strval)) != 0) 536 break; 537 538 if (strval[0] == '\0') 539 break; 540 541 if (strcmp(strval, "none") == 0) 542 break; 543 544 if (strval[0] != '/') { 545 error = SET_ERROR(EINVAL); 546 break; 547 } 548 549 slash = strrchr(strval, '/'); 550 ASSERT(slash != NULL); 551 552 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 553 strcmp(slash, "/..") == 0) 554 error = SET_ERROR(EINVAL); 555 break; 556 557 case ZPOOL_PROP_COMMENT: 558 if ((error = nvpair_value_string(elem, &strval)) != 0) 559 break; 560 for (check = strval; *check != '\0'; check++) { 561 /* 562 * The kernel doesn't have an easy isprint() 563 * check. For this kernel check, we merely 564 * check ASCII apart from DEL. Fix this if 565 * there is an easy-to-use kernel isprint(). 566 */ 567 if (*check >= 0x7f) { 568 error = SET_ERROR(EINVAL); 569 break; 570 } 571 check++; 572 } 573 if (strlen(strval) > ZPROP_MAX_COMMENT) 574 error = E2BIG; 575 break; 576 577 case ZPOOL_PROP_DEDUPDITTO: 578 if (spa_version(spa) < SPA_VERSION_DEDUP) 579 error = SET_ERROR(ENOTSUP); 580 else 581 error = nvpair_value_uint64(elem, &intval); 582 if (error == 0 && 583 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 584 error = SET_ERROR(EINVAL); 585 break; 586 } 587 588 if (error) 589 break; 590 } 591 592 if (!error && reset_bootfs) { 593 error = nvlist_remove(props, 594 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 595 596 if (!error) { 597 error = nvlist_add_uint64(props, 598 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 599 } 600 } 601 602 return (error); 603 } 604 605 void 606 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 607 { 608 char *cachefile; 609 spa_config_dirent_t *dp; 610 611 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 612 &cachefile) != 0) 613 return; 614 615 dp = kmem_alloc(sizeof (spa_config_dirent_t), 616 KM_SLEEP); 617 618 if (cachefile[0] == '\0') 619 dp->scd_path = spa_strdup(spa_config_path); 620 else if (strcmp(cachefile, "none") == 0) 621 dp->scd_path = NULL; 622 else 623 dp->scd_path = spa_strdup(cachefile); 624 625 list_insert_head(&spa->spa_config_list, dp); 626 if (need_sync) 627 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 628 } 629 630 int 631 spa_prop_set(spa_t *spa, nvlist_t *nvp) 632 { 633 int error; 634 nvpair_t *elem = NULL; 635 boolean_t need_sync = B_FALSE; 636 637 if ((error = spa_prop_validate(spa, nvp)) != 0) 638 return (error); 639 640 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 641 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 642 643 if (prop == ZPOOL_PROP_CACHEFILE || 644 prop == ZPOOL_PROP_ALTROOT || 645 prop == ZPOOL_PROP_READONLY) 646 continue; 647 648 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 649 uint64_t ver; 650 651 if (prop == ZPOOL_PROP_VERSION) { 652 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 653 } else { 654 ASSERT(zpool_prop_feature(nvpair_name(elem))); 655 ver = SPA_VERSION_FEATURES; 656 need_sync = B_TRUE; 657 } 658 659 /* Save time if the version is already set. */ 660 if (ver == spa_version(spa)) 661 continue; 662 663 /* 664 * In addition to the pool directory object, we might 665 * create the pool properties object, the features for 666 * read object, the features for write object, or the 667 * feature descriptions object. 668 */ 669 error = dsl_sync_task(spa->spa_name, NULL, 670 spa_sync_version, &ver, 6); 671 if (error) 672 return (error); 673 continue; 674 } 675 676 need_sync = B_TRUE; 677 break; 678 } 679 680 if (need_sync) { 681 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 682 nvp, 6)); 683 } 684 685 return (0); 686 } 687 688 /* 689 * If the bootfs property value is dsobj, clear it. 690 */ 691 void 692 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 693 { 694 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 695 VERIFY(zap_remove(spa->spa_meta_objset, 696 spa->spa_pool_props_object, 697 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 698 spa->spa_bootfs = 0; 699 } 700 } 701 702 /*ARGSUSED*/ 703 static int 704 spa_change_guid_check(void *arg, dmu_tx_t *tx) 705 { 706 uint64_t *newguid = arg; 707 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 708 vdev_t *rvd = spa->spa_root_vdev; 709 uint64_t vdev_state; 710 711 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 712 vdev_state = rvd->vdev_state; 713 spa_config_exit(spa, SCL_STATE, FTAG); 714 715 if (vdev_state != VDEV_STATE_HEALTHY) 716 return (SET_ERROR(ENXIO)); 717 718 ASSERT3U(spa_guid(spa), !=, *newguid); 719 720 return (0); 721 } 722 723 static void 724 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 725 { 726 uint64_t *newguid = arg; 727 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 728 uint64_t oldguid; 729 vdev_t *rvd = spa->spa_root_vdev; 730 731 oldguid = spa_guid(spa); 732 733 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 734 rvd->vdev_guid = *newguid; 735 rvd->vdev_guid_sum += (*newguid - oldguid); 736 vdev_config_dirty(rvd); 737 spa_config_exit(spa, SCL_STATE, FTAG); 738 739 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 740 oldguid, *newguid); 741 } 742 743 /* 744 * Change the GUID for the pool. This is done so that we can later 745 * re-import a pool built from a clone of our own vdevs. We will modify 746 * the root vdev's guid, our own pool guid, and then mark all of our 747 * vdevs dirty. Note that we must make sure that all our vdevs are 748 * online when we do this, or else any vdevs that weren't present 749 * would be orphaned from our pool. We are also going to issue a 750 * sysevent to update any watchers. 751 */ 752 int 753 spa_change_guid(spa_t *spa) 754 { 755 int error; 756 uint64_t guid; 757 758 mutex_enter(&spa_namespace_lock); 759 guid = spa_generate_guid(NULL); 760 761 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 762 spa_change_guid_sync, &guid, 5); 763 764 if (error == 0) { 765 spa_config_sync(spa, B_FALSE, B_TRUE); 766 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 767 } 768 769 mutex_exit(&spa_namespace_lock); 770 771 return (error); 772 } 773 774 /* 775 * ========================================================================== 776 * SPA state manipulation (open/create/destroy/import/export) 777 * ========================================================================== 778 */ 779 780 static int 781 spa_error_entry_compare(const void *a, const void *b) 782 { 783 spa_error_entry_t *sa = (spa_error_entry_t *)a; 784 spa_error_entry_t *sb = (spa_error_entry_t *)b; 785 int ret; 786 787 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 788 sizeof (zbookmark_t)); 789 790 if (ret < 0) 791 return (-1); 792 else if (ret > 0) 793 return (1); 794 else 795 return (0); 796 } 797 798 /* 799 * Utility function which retrieves copies of the current logs and 800 * re-initializes them in the process. 801 */ 802 void 803 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 804 { 805 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 806 807 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 808 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 809 810 avl_create(&spa->spa_errlist_scrub, 811 spa_error_entry_compare, sizeof (spa_error_entry_t), 812 offsetof(spa_error_entry_t, se_avl)); 813 avl_create(&spa->spa_errlist_last, 814 spa_error_entry_compare, sizeof (spa_error_entry_t), 815 offsetof(spa_error_entry_t, se_avl)); 816 } 817 818 static void 819 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 820 { 821 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 822 enum zti_modes mode = ztip->zti_mode; 823 uint_t value = ztip->zti_value; 824 uint_t count = ztip->zti_count; 825 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 826 char name[32]; 827 uint_t flags = 0; 828 boolean_t batch = B_FALSE; 829 830 if (mode == ZTI_MODE_NULL) { 831 tqs->stqs_count = 0; 832 tqs->stqs_taskq = NULL; 833 return; 834 } 835 836 ASSERT3U(count, >, 0); 837 838 tqs->stqs_count = count; 839 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 840 841 for (uint_t i = 0; i < count; i++) { 842 taskq_t *tq; 843 844 switch (mode) { 845 case ZTI_MODE_FIXED: 846 ASSERT3U(value, >=, 1); 847 value = MAX(value, 1); 848 break; 849 850 case ZTI_MODE_BATCH: 851 batch = B_TRUE; 852 flags |= TASKQ_THREADS_CPU_PCT; 853 value = zio_taskq_batch_pct; 854 break; 855 856 case ZTI_MODE_ONLINE_PERCENT: 857 flags |= TASKQ_THREADS_CPU_PCT; 858 break; 859 860 default: 861 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 862 "spa_activate()", 863 zio_type_name[t], zio_taskq_types[q], mode, value); 864 break; 865 } 866 867 if (count > 1) { 868 (void) snprintf(name, sizeof (name), "%s_%s_%u", 869 zio_type_name[t], zio_taskq_types[q], i); 870 } else { 871 (void) snprintf(name, sizeof (name), "%s_%s", 872 zio_type_name[t], zio_taskq_types[q]); 873 } 874 875 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 876 if (batch) 877 flags |= TASKQ_DC_BATCH; 878 879 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 880 spa->spa_proc, zio_taskq_basedc, flags); 881 } else { 882 tq = taskq_create_proc(name, value, maxclsyspri, 50, 883 INT_MAX, spa->spa_proc, flags); 884 } 885 886 tqs->stqs_taskq[i] = tq; 887 } 888 } 889 890 static void 891 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 892 { 893 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 894 895 if (tqs->stqs_taskq == NULL) { 896 ASSERT0(tqs->stqs_count); 897 return; 898 } 899 900 for (uint_t i = 0; i < tqs->stqs_count; i++) { 901 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 902 taskq_destroy(tqs->stqs_taskq[i]); 903 } 904 905 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 906 tqs->stqs_taskq = NULL; 907 } 908 909 /* 910 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 911 * Note that a type may have multiple discrete taskqs to avoid lock contention 912 * on the taskq itself. In that case we choose which taskq at random by using 913 * the low bits of gethrtime(). 914 */ 915 void 916 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 917 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 918 { 919 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 920 taskq_t *tq; 921 922 ASSERT3P(tqs->stqs_taskq, !=, NULL); 923 ASSERT3U(tqs->stqs_count, !=, 0); 924 925 if (tqs->stqs_count == 1) { 926 tq = tqs->stqs_taskq[0]; 927 } else { 928 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 929 } 930 931 taskq_dispatch_ent(tq, func, arg, flags, ent); 932 } 933 934 static void 935 spa_create_zio_taskqs(spa_t *spa) 936 { 937 for (int t = 0; t < ZIO_TYPES; t++) { 938 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 939 spa_taskqs_init(spa, t, q); 940 } 941 } 942 } 943 944 #ifdef _KERNEL 945 static void 946 spa_thread(void *arg) 947 { 948 callb_cpr_t cprinfo; 949 950 spa_t *spa = arg; 951 user_t *pu = PTOU(curproc); 952 953 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 954 spa->spa_name); 955 956 ASSERT(curproc != &p0); 957 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 958 "zpool-%s", spa->spa_name); 959 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 960 961 /* bind this thread to the requested psrset */ 962 if (zio_taskq_psrset_bind != PS_NONE) { 963 pool_lock(); 964 mutex_enter(&cpu_lock); 965 mutex_enter(&pidlock); 966 mutex_enter(&curproc->p_lock); 967 968 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 969 0, NULL, NULL) == 0) { 970 curthread->t_bind_pset = zio_taskq_psrset_bind; 971 } else { 972 cmn_err(CE_WARN, 973 "Couldn't bind process for zfs pool \"%s\" to " 974 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 975 } 976 977 mutex_exit(&curproc->p_lock); 978 mutex_exit(&pidlock); 979 mutex_exit(&cpu_lock); 980 pool_unlock(); 981 } 982 983 if (zio_taskq_sysdc) { 984 sysdc_thread_enter(curthread, 100, 0); 985 } 986 987 spa->spa_proc = curproc; 988 spa->spa_did = curthread->t_did; 989 990 spa_create_zio_taskqs(spa); 991 992 mutex_enter(&spa->spa_proc_lock); 993 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 994 995 spa->spa_proc_state = SPA_PROC_ACTIVE; 996 cv_broadcast(&spa->spa_proc_cv); 997 998 CALLB_CPR_SAFE_BEGIN(&cprinfo); 999 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1000 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1001 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1002 1003 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1004 spa->spa_proc_state = SPA_PROC_GONE; 1005 spa->spa_proc = &p0; 1006 cv_broadcast(&spa->spa_proc_cv); 1007 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1008 1009 mutex_enter(&curproc->p_lock); 1010 lwp_exit(); 1011 } 1012 #endif 1013 1014 /* 1015 * Activate an uninitialized pool. 1016 */ 1017 static void 1018 spa_activate(spa_t *spa, int mode) 1019 { 1020 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1021 1022 spa->spa_state = POOL_STATE_ACTIVE; 1023 spa->spa_mode = mode; 1024 1025 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1026 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1027 1028 /* Try to create a covering process */ 1029 mutex_enter(&spa->spa_proc_lock); 1030 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1031 ASSERT(spa->spa_proc == &p0); 1032 spa->spa_did = 0; 1033 1034 /* Only create a process if we're going to be around a while. */ 1035 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1036 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1037 NULL, 0) == 0) { 1038 spa->spa_proc_state = SPA_PROC_CREATED; 1039 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1040 cv_wait(&spa->spa_proc_cv, 1041 &spa->spa_proc_lock); 1042 } 1043 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1044 ASSERT(spa->spa_proc != &p0); 1045 ASSERT(spa->spa_did != 0); 1046 } else { 1047 #ifdef _KERNEL 1048 cmn_err(CE_WARN, 1049 "Couldn't create process for zfs pool \"%s\"\n", 1050 spa->spa_name); 1051 #endif 1052 } 1053 } 1054 mutex_exit(&spa->spa_proc_lock); 1055 1056 /* If we didn't create a process, we need to create our taskqs. */ 1057 if (spa->spa_proc == &p0) { 1058 spa_create_zio_taskqs(spa); 1059 } 1060 1061 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1062 offsetof(vdev_t, vdev_config_dirty_node)); 1063 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1064 offsetof(vdev_t, vdev_state_dirty_node)); 1065 1066 txg_list_create(&spa->spa_vdev_txg_list, 1067 offsetof(struct vdev, vdev_txg_node)); 1068 1069 avl_create(&spa->spa_errlist_scrub, 1070 spa_error_entry_compare, sizeof (spa_error_entry_t), 1071 offsetof(spa_error_entry_t, se_avl)); 1072 avl_create(&spa->spa_errlist_last, 1073 spa_error_entry_compare, sizeof (spa_error_entry_t), 1074 offsetof(spa_error_entry_t, se_avl)); 1075 } 1076 1077 /* 1078 * Opposite of spa_activate(). 1079 */ 1080 static void 1081 spa_deactivate(spa_t *spa) 1082 { 1083 ASSERT(spa->spa_sync_on == B_FALSE); 1084 ASSERT(spa->spa_dsl_pool == NULL); 1085 ASSERT(spa->spa_root_vdev == NULL); 1086 ASSERT(spa->spa_async_zio_root == NULL); 1087 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1088 1089 txg_list_destroy(&spa->spa_vdev_txg_list); 1090 1091 list_destroy(&spa->spa_config_dirty_list); 1092 list_destroy(&spa->spa_state_dirty_list); 1093 1094 for (int t = 0; t < ZIO_TYPES; t++) { 1095 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1096 spa_taskqs_fini(spa, t, q); 1097 } 1098 } 1099 1100 metaslab_class_destroy(spa->spa_normal_class); 1101 spa->spa_normal_class = NULL; 1102 1103 metaslab_class_destroy(spa->spa_log_class); 1104 spa->spa_log_class = NULL; 1105 1106 /* 1107 * If this was part of an import or the open otherwise failed, we may 1108 * still have errors left in the queues. Empty them just in case. 1109 */ 1110 spa_errlog_drain(spa); 1111 1112 avl_destroy(&spa->spa_errlist_scrub); 1113 avl_destroy(&spa->spa_errlist_last); 1114 1115 spa->spa_state = POOL_STATE_UNINITIALIZED; 1116 1117 mutex_enter(&spa->spa_proc_lock); 1118 if (spa->spa_proc_state != SPA_PROC_NONE) { 1119 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1120 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1121 cv_broadcast(&spa->spa_proc_cv); 1122 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1123 ASSERT(spa->spa_proc != &p0); 1124 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1125 } 1126 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1127 spa->spa_proc_state = SPA_PROC_NONE; 1128 } 1129 ASSERT(spa->spa_proc == &p0); 1130 mutex_exit(&spa->spa_proc_lock); 1131 1132 /* 1133 * We want to make sure spa_thread() has actually exited the ZFS 1134 * module, so that the module can't be unloaded out from underneath 1135 * it. 1136 */ 1137 if (spa->spa_did != 0) { 1138 thread_join(spa->spa_did); 1139 spa->spa_did = 0; 1140 } 1141 } 1142 1143 /* 1144 * Verify a pool configuration, and construct the vdev tree appropriately. This 1145 * will create all the necessary vdevs in the appropriate layout, with each vdev 1146 * in the CLOSED state. This will prep the pool before open/creation/import. 1147 * All vdev validation is done by the vdev_alloc() routine. 1148 */ 1149 static int 1150 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1151 uint_t id, int atype) 1152 { 1153 nvlist_t **child; 1154 uint_t children; 1155 int error; 1156 1157 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1158 return (error); 1159 1160 if ((*vdp)->vdev_ops->vdev_op_leaf) 1161 return (0); 1162 1163 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1164 &child, &children); 1165 1166 if (error == ENOENT) 1167 return (0); 1168 1169 if (error) { 1170 vdev_free(*vdp); 1171 *vdp = NULL; 1172 return (SET_ERROR(EINVAL)); 1173 } 1174 1175 for (int c = 0; c < children; c++) { 1176 vdev_t *vd; 1177 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1178 atype)) != 0) { 1179 vdev_free(*vdp); 1180 *vdp = NULL; 1181 return (error); 1182 } 1183 } 1184 1185 ASSERT(*vdp != NULL); 1186 1187 return (0); 1188 } 1189 1190 /* 1191 * Opposite of spa_load(). 1192 */ 1193 static void 1194 spa_unload(spa_t *spa) 1195 { 1196 int i; 1197 1198 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1199 1200 /* 1201 * Stop async tasks. 1202 */ 1203 spa_async_suspend(spa); 1204 1205 /* 1206 * Stop syncing. 1207 */ 1208 if (spa->spa_sync_on) { 1209 txg_sync_stop(spa->spa_dsl_pool); 1210 spa->spa_sync_on = B_FALSE; 1211 } 1212 1213 /* 1214 * Wait for any outstanding async I/O to complete. 1215 */ 1216 if (spa->spa_async_zio_root != NULL) { 1217 (void) zio_wait(spa->spa_async_zio_root); 1218 spa->spa_async_zio_root = NULL; 1219 } 1220 1221 bpobj_close(&spa->spa_deferred_bpobj); 1222 1223 /* 1224 * Close the dsl pool. 1225 */ 1226 if (spa->spa_dsl_pool) { 1227 dsl_pool_close(spa->spa_dsl_pool); 1228 spa->spa_dsl_pool = NULL; 1229 spa->spa_meta_objset = NULL; 1230 } 1231 1232 ddt_unload(spa); 1233 1234 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1235 1236 /* 1237 * Drop and purge level 2 cache 1238 */ 1239 spa_l2cache_drop(spa); 1240 1241 /* 1242 * Close all vdevs. 1243 */ 1244 if (spa->spa_root_vdev) 1245 vdev_free(spa->spa_root_vdev); 1246 ASSERT(spa->spa_root_vdev == NULL); 1247 1248 for (i = 0; i < spa->spa_spares.sav_count; i++) 1249 vdev_free(spa->spa_spares.sav_vdevs[i]); 1250 if (spa->spa_spares.sav_vdevs) { 1251 kmem_free(spa->spa_spares.sav_vdevs, 1252 spa->spa_spares.sav_count * sizeof (void *)); 1253 spa->spa_spares.sav_vdevs = NULL; 1254 } 1255 if (spa->spa_spares.sav_config) { 1256 nvlist_free(spa->spa_spares.sav_config); 1257 spa->spa_spares.sav_config = NULL; 1258 } 1259 spa->spa_spares.sav_count = 0; 1260 1261 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1262 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1263 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1264 } 1265 if (spa->spa_l2cache.sav_vdevs) { 1266 kmem_free(spa->spa_l2cache.sav_vdevs, 1267 spa->spa_l2cache.sav_count * sizeof (void *)); 1268 spa->spa_l2cache.sav_vdevs = NULL; 1269 } 1270 if (spa->spa_l2cache.sav_config) { 1271 nvlist_free(spa->spa_l2cache.sav_config); 1272 spa->spa_l2cache.sav_config = NULL; 1273 } 1274 spa->spa_l2cache.sav_count = 0; 1275 1276 spa->spa_async_suspended = 0; 1277 1278 if (spa->spa_comment != NULL) { 1279 spa_strfree(spa->spa_comment); 1280 spa->spa_comment = NULL; 1281 } 1282 1283 spa_config_exit(spa, SCL_ALL, FTAG); 1284 } 1285 1286 /* 1287 * Load (or re-load) the current list of vdevs describing the active spares for 1288 * this pool. When this is called, we have some form of basic information in 1289 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1290 * then re-generate a more complete list including status information. 1291 */ 1292 static void 1293 spa_load_spares(spa_t *spa) 1294 { 1295 nvlist_t **spares; 1296 uint_t nspares; 1297 int i; 1298 vdev_t *vd, *tvd; 1299 1300 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1301 1302 /* 1303 * First, close and free any existing spare vdevs. 1304 */ 1305 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1306 vd = spa->spa_spares.sav_vdevs[i]; 1307 1308 /* Undo the call to spa_activate() below */ 1309 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1310 B_FALSE)) != NULL && tvd->vdev_isspare) 1311 spa_spare_remove(tvd); 1312 vdev_close(vd); 1313 vdev_free(vd); 1314 } 1315 1316 if (spa->spa_spares.sav_vdevs) 1317 kmem_free(spa->spa_spares.sav_vdevs, 1318 spa->spa_spares.sav_count * sizeof (void *)); 1319 1320 if (spa->spa_spares.sav_config == NULL) 1321 nspares = 0; 1322 else 1323 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1324 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1325 1326 spa->spa_spares.sav_count = (int)nspares; 1327 spa->spa_spares.sav_vdevs = NULL; 1328 1329 if (nspares == 0) 1330 return; 1331 1332 /* 1333 * Construct the array of vdevs, opening them to get status in the 1334 * process. For each spare, there is potentially two different vdev_t 1335 * structures associated with it: one in the list of spares (used only 1336 * for basic validation purposes) and one in the active vdev 1337 * configuration (if it's spared in). During this phase we open and 1338 * validate each vdev on the spare list. If the vdev also exists in the 1339 * active configuration, then we also mark this vdev as an active spare. 1340 */ 1341 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1342 KM_SLEEP); 1343 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1344 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1345 VDEV_ALLOC_SPARE) == 0); 1346 ASSERT(vd != NULL); 1347 1348 spa->spa_spares.sav_vdevs[i] = vd; 1349 1350 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1351 B_FALSE)) != NULL) { 1352 if (!tvd->vdev_isspare) 1353 spa_spare_add(tvd); 1354 1355 /* 1356 * We only mark the spare active if we were successfully 1357 * able to load the vdev. Otherwise, importing a pool 1358 * with a bad active spare would result in strange 1359 * behavior, because multiple pool would think the spare 1360 * is actively in use. 1361 * 1362 * There is a vulnerability here to an equally bizarre 1363 * circumstance, where a dead active spare is later 1364 * brought back to life (onlined or otherwise). Given 1365 * the rarity of this scenario, and the extra complexity 1366 * it adds, we ignore the possibility. 1367 */ 1368 if (!vdev_is_dead(tvd)) 1369 spa_spare_activate(tvd); 1370 } 1371 1372 vd->vdev_top = vd; 1373 vd->vdev_aux = &spa->spa_spares; 1374 1375 if (vdev_open(vd) != 0) 1376 continue; 1377 1378 if (vdev_validate_aux(vd) == 0) 1379 spa_spare_add(vd); 1380 } 1381 1382 /* 1383 * Recompute the stashed list of spares, with status information 1384 * this time. 1385 */ 1386 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1387 DATA_TYPE_NVLIST_ARRAY) == 0); 1388 1389 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1390 KM_SLEEP); 1391 for (i = 0; i < spa->spa_spares.sav_count; i++) 1392 spares[i] = vdev_config_generate(spa, 1393 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1394 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1395 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1396 for (i = 0; i < spa->spa_spares.sav_count; i++) 1397 nvlist_free(spares[i]); 1398 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1399 } 1400 1401 /* 1402 * Load (or re-load) the current list of vdevs describing the active l2cache for 1403 * this pool. When this is called, we have some form of basic information in 1404 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1405 * then re-generate a more complete list including status information. 1406 * Devices which are already active have their details maintained, and are 1407 * not re-opened. 1408 */ 1409 static void 1410 spa_load_l2cache(spa_t *spa) 1411 { 1412 nvlist_t **l2cache; 1413 uint_t nl2cache; 1414 int i, j, oldnvdevs; 1415 uint64_t guid; 1416 vdev_t *vd, **oldvdevs, **newvdevs; 1417 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1418 1419 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1420 1421 if (sav->sav_config != NULL) { 1422 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1423 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1424 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1425 } else { 1426 nl2cache = 0; 1427 newvdevs = NULL; 1428 } 1429 1430 oldvdevs = sav->sav_vdevs; 1431 oldnvdevs = sav->sav_count; 1432 sav->sav_vdevs = NULL; 1433 sav->sav_count = 0; 1434 1435 /* 1436 * Process new nvlist of vdevs. 1437 */ 1438 for (i = 0; i < nl2cache; i++) { 1439 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1440 &guid) == 0); 1441 1442 newvdevs[i] = NULL; 1443 for (j = 0; j < oldnvdevs; j++) { 1444 vd = oldvdevs[j]; 1445 if (vd != NULL && guid == vd->vdev_guid) { 1446 /* 1447 * Retain previous vdev for add/remove ops. 1448 */ 1449 newvdevs[i] = vd; 1450 oldvdevs[j] = NULL; 1451 break; 1452 } 1453 } 1454 1455 if (newvdevs[i] == NULL) { 1456 /* 1457 * Create new vdev 1458 */ 1459 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1460 VDEV_ALLOC_L2CACHE) == 0); 1461 ASSERT(vd != NULL); 1462 newvdevs[i] = vd; 1463 1464 /* 1465 * Commit this vdev as an l2cache device, 1466 * even if it fails to open. 1467 */ 1468 spa_l2cache_add(vd); 1469 1470 vd->vdev_top = vd; 1471 vd->vdev_aux = sav; 1472 1473 spa_l2cache_activate(vd); 1474 1475 if (vdev_open(vd) != 0) 1476 continue; 1477 1478 (void) vdev_validate_aux(vd); 1479 1480 if (!vdev_is_dead(vd)) 1481 l2arc_add_vdev(spa, vd); 1482 } 1483 } 1484 1485 /* 1486 * Purge vdevs that were dropped 1487 */ 1488 for (i = 0; i < oldnvdevs; i++) { 1489 uint64_t pool; 1490 1491 vd = oldvdevs[i]; 1492 if (vd != NULL) { 1493 ASSERT(vd->vdev_isl2cache); 1494 1495 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1496 pool != 0ULL && l2arc_vdev_present(vd)) 1497 l2arc_remove_vdev(vd); 1498 vdev_clear_stats(vd); 1499 vdev_free(vd); 1500 } 1501 } 1502 1503 if (oldvdevs) 1504 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1505 1506 if (sav->sav_config == NULL) 1507 goto out; 1508 1509 sav->sav_vdevs = newvdevs; 1510 sav->sav_count = (int)nl2cache; 1511 1512 /* 1513 * Recompute the stashed list of l2cache devices, with status 1514 * information this time. 1515 */ 1516 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1517 DATA_TYPE_NVLIST_ARRAY) == 0); 1518 1519 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1520 for (i = 0; i < sav->sav_count; i++) 1521 l2cache[i] = vdev_config_generate(spa, 1522 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1523 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1524 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1525 out: 1526 for (i = 0; i < sav->sav_count; i++) 1527 nvlist_free(l2cache[i]); 1528 if (sav->sav_count) 1529 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1530 } 1531 1532 static int 1533 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1534 { 1535 dmu_buf_t *db; 1536 char *packed = NULL; 1537 size_t nvsize = 0; 1538 int error; 1539 *value = NULL; 1540 1541 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1542 nvsize = *(uint64_t *)db->db_data; 1543 dmu_buf_rele(db, FTAG); 1544 1545 packed = kmem_alloc(nvsize, KM_SLEEP); 1546 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1547 DMU_READ_PREFETCH); 1548 if (error == 0) 1549 error = nvlist_unpack(packed, nvsize, value, 0); 1550 kmem_free(packed, nvsize); 1551 1552 return (error); 1553 } 1554 1555 /* 1556 * Checks to see if the given vdev could not be opened, in which case we post a 1557 * sysevent to notify the autoreplace code that the device has been removed. 1558 */ 1559 static void 1560 spa_check_removed(vdev_t *vd) 1561 { 1562 for (int c = 0; c < vd->vdev_children; c++) 1563 spa_check_removed(vd->vdev_child[c]); 1564 1565 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1566 !vd->vdev_ishole) { 1567 zfs_post_autoreplace(vd->vdev_spa, vd); 1568 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1569 } 1570 } 1571 1572 /* 1573 * Validate the current config against the MOS config 1574 */ 1575 static boolean_t 1576 spa_config_valid(spa_t *spa, nvlist_t *config) 1577 { 1578 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1579 nvlist_t *nv; 1580 1581 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1582 1583 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1584 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1585 1586 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1587 1588 /* 1589 * If we're doing a normal import, then build up any additional 1590 * diagnostic information about missing devices in this config. 1591 * We'll pass this up to the user for further processing. 1592 */ 1593 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1594 nvlist_t **child, *nv; 1595 uint64_t idx = 0; 1596 1597 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1598 KM_SLEEP); 1599 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1600 1601 for (int c = 0; c < rvd->vdev_children; c++) { 1602 vdev_t *tvd = rvd->vdev_child[c]; 1603 vdev_t *mtvd = mrvd->vdev_child[c]; 1604 1605 if (tvd->vdev_ops == &vdev_missing_ops && 1606 mtvd->vdev_ops != &vdev_missing_ops && 1607 mtvd->vdev_islog) 1608 child[idx++] = vdev_config_generate(spa, mtvd, 1609 B_FALSE, 0); 1610 } 1611 1612 if (idx) { 1613 VERIFY(nvlist_add_nvlist_array(nv, 1614 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1615 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1616 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1617 1618 for (int i = 0; i < idx; i++) 1619 nvlist_free(child[i]); 1620 } 1621 nvlist_free(nv); 1622 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1623 } 1624 1625 /* 1626 * Compare the root vdev tree with the information we have 1627 * from the MOS config (mrvd). Check each top-level vdev 1628 * with the corresponding MOS config top-level (mtvd). 1629 */ 1630 for (int c = 0; c < rvd->vdev_children; c++) { 1631 vdev_t *tvd = rvd->vdev_child[c]; 1632 vdev_t *mtvd = mrvd->vdev_child[c]; 1633 1634 /* 1635 * Resolve any "missing" vdevs in the current configuration. 1636 * If we find that the MOS config has more accurate information 1637 * about the top-level vdev then use that vdev instead. 1638 */ 1639 if (tvd->vdev_ops == &vdev_missing_ops && 1640 mtvd->vdev_ops != &vdev_missing_ops) { 1641 1642 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1643 continue; 1644 1645 /* 1646 * Device specific actions. 1647 */ 1648 if (mtvd->vdev_islog) { 1649 spa_set_log_state(spa, SPA_LOG_CLEAR); 1650 } else { 1651 /* 1652 * XXX - once we have 'readonly' pool 1653 * support we should be able to handle 1654 * missing data devices by transitioning 1655 * the pool to readonly. 1656 */ 1657 continue; 1658 } 1659 1660 /* 1661 * Swap the missing vdev with the data we were 1662 * able to obtain from the MOS config. 1663 */ 1664 vdev_remove_child(rvd, tvd); 1665 vdev_remove_child(mrvd, mtvd); 1666 1667 vdev_add_child(rvd, mtvd); 1668 vdev_add_child(mrvd, tvd); 1669 1670 spa_config_exit(spa, SCL_ALL, FTAG); 1671 vdev_load(mtvd); 1672 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1673 1674 vdev_reopen(rvd); 1675 } else if (mtvd->vdev_islog) { 1676 /* 1677 * Load the slog device's state from the MOS config 1678 * since it's possible that the label does not 1679 * contain the most up-to-date information. 1680 */ 1681 vdev_load_log_state(tvd, mtvd); 1682 vdev_reopen(tvd); 1683 } 1684 } 1685 vdev_free(mrvd); 1686 spa_config_exit(spa, SCL_ALL, FTAG); 1687 1688 /* 1689 * Ensure we were able to validate the config. 1690 */ 1691 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1692 } 1693 1694 /* 1695 * Check for missing log devices 1696 */ 1697 static boolean_t 1698 spa_check_logs(spa_t *spa) 1699 { 1700 boolean_t rv = B_FALSE; 1701 1702 switch (spa->spa_log_state) { 1703 case SPA_LOG_MISSING: 1704 /* need to recheck in case slog has been restored */ 1705 case SPA_LOG_UNKNOWN: 1706 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain, 1707 NULL, DS_FIND_CHILDREN) != 0); 1708 if (rv) 1709 spa_set_log_state(spa, SPA_LOG_MISSING); 1710 break; 1711 } 1712 return (rv); 1713 } 1714 1715 static boolean_t 1716 spa_passivate_log(spa_t *spa) 1717 { 1718 vdev_t *rvd = spa->spa_root_vdev; 1719 boolean_t slog_found = B_FALSE; 1720 1721 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1722 1723 if (!spa_has_slogs(spa)) 1724 return (B_FALSE); 1725 1726 for (int c = 0; c < rvd->vdev_children; c++) { 1727 vdev_t *tvd = rvd->vdev_child[c]; 1728 metaslab_group_t *mg = tvd->vdev_mg; 1729 1730 if (tvd->vdev_islog) { 1731 metaslab_group_passivate(mg); 1732 slog_found = B_TRUE; 1733 } 1734 } 1735 1736 return (slog_found); 1737 } 1738 1739 static void 1740 spa_activate_log(spa_t *spa) 1741 { 1742 vdev_t *rvd = spa->spa_root_vdev; 1743 1744 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1745 1746 for (int c = 0; c < rvd->vdev_children; c++) { 1747 vdev_t *tvd = rvd->vdev_child[c]; 1748 metaslab_group_t *mg = tvd->vdev_mg; 1749 1750 if (tvd->vdev_islog) 1751 metaslab_group_activate(mg); 1752 } 1753 } 1754 1755 int 1756 spa_offline_log(spa_t *spa) 1757 { 1758 int error; 1759 1760 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1761 NULL, DS_FIND_CHILDREN); 1762 if (error == 0) { 1763 /* 1764 * We successfully offlined the log device, sync out the 1765 * current txg so that the "stubby" block can be removed 1766 * by zil_sync(). 1767 */ 1768 txg_wait_synced(spa->spa_dsl_pool, 0); 1769 } 1770 return (error); 1771 } 1772 1773 static void 1774 spa_aux_check_removed(spa_aux_vdev_t *sav) 1775 { 1776 for (int i = 0; i < sav->sav_count; i++) 1777 spa_check_removed(sav->sav_vdevs[i]); 1778 } 1779 1780 void 1781 spa_claim_notify(zio_t *zio) 1782 { 1783 spa_t *spa = zio->io_spa; 1784 1785 if (zio->io_error) 1786 return; 1787 1788 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1789 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1790 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1791 mutex_exit(&spa->spa_props_lock); 1792 } 1793 1794 typedef struct spa_load_error { 1795 uint64_t sle_meta_count; 1796 uint64_t sle_data_count; 1797 } spa_load_error_t; 1798 1799 static void 1800 spa_load_verify_done(zio_t *zio) 1801 { 1802 blkptr_t *bp = zio->io_bp; 1803 spa_load_error_t *sle = zio->io_private; 1804 dmu_object_type_t type = BP_GET_TYPE(bp); 1805 int error = zio->io_error; 1806 1807 if (error) { 1808 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1809 type != DMU_OT_INTENT_LOG) 1810 atomic_add_64(&sle->sle_meta_count, 1); 1811 else 1812 atomic_add_64(&sle->sle_data_count, 1); 1813 } 1814 zio_data_buf_free(zio->io_data, zio->io_size); 1815 } 1816 1817 /*ARGSUSED*/ 1818 static int 1819 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1820 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1821 { 1822 if (bp != NULL) { 1823 zio_t *rio = arg; 1824 size_t size = BP_GET_PSIZE(bp); 1825 void *data = zio_data_buf_alloc(size); 1826 1827 zio_nowait(zio_read(rio, spa, bp, data, size, 1828 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1829 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1830 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1831 } 1832 return (0); 1833 } 1834 1835 static int 1836 spa_load_verify(spa_t *spa) 1837 { 1838 zio_t *rio; 1839 spa_load_error_t sle = { 0 }; 1840 zpool_rewind_policy_t policy; 1841 boolean_t verify_ok = B_FALSE; 1842 int error; 1843 1844 zpool_get_rewind_policy(spa->spa_config, &policy); 1845 1846 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1847 return (0); 1848 1849 rio = zio_root(spa, NULL, &sle, 1850 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1851 1852 error = traverse_pool(spa, spa->spa_verify_min_txg, 1853 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1854 1855 (void) zio_wait(rio); 1856 1857 spa->spa_load_meta_errors = sle.sle_meta_count; 1858 spa->spa_load_data_errors = sle.sle_data_count; 1859 1860 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1861 sle.sle_data_count <= policy.zrp_maxdata) { 1862 int64_t loss = 0; 1863 1864 verify_ok = B_TRUE; 1865 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1866 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1867 1868 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1869 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1870 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1871 VERIFY(nvlist_add_int64(spa->spa_load_info, 1872 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1873 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1874 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1875 } else { 1876 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1877 } 1878 1879 if (error) { 1880 if (error != ENXIO && error != EIO) 1881 error = SET_ERROR(EIO); 1882 return (error); 1883 } 1884 1885 return (verify_ok ? 0 : EIO); 1886 } 1887 1888 /* 1889 * Find a value in the pool props object. 1890 */ 1891 static void 1892 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1893 { 1894 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1895 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1896 } 1897 1898 /* 1899 * Find a value in the pool directory object. 1900 */ 1901 static int 1902 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1903 { 1904 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1905 name, sizeof (uint64_t), 1, val)); 1906 } 1907 1908 static int 1909 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1910 { 1911 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1912 return (err); 1913 } 1914 1915 /* 1916 * Fix up config after a partly-completed split. This is done with the 1917 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1918 * pool have that entry in their config, but only the splitting one contains 1919 * a list of all the guids of the vdevs that are being split off. 1920 * 1921 * This function determines what to do with that list: either rejoin 1922 * all the disks to the pool, or complete the splitting process. To attempt 1923 * the rejoin, each disk that is offlined is marked online again, and 1924 * we do a reopen() call. If the vdev label for every disk that was 1925 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1926 * then we call vdev_split() on each disk, and complete the split. 1927 * 1928 * Otherwise we leave the config alone, with all the vdevs in place in 1929 * the original pool. 1930 */ 1931 static void 1932 spa_try_repair(spa_t *spa, nvlist_t *config) 1933 { 1934 uint_t extracted; 1935 uint64_t *glist; 1936 uint_t i, gcount; 1937 nvlist_t *nvl; 1938 vdev_t **vd; 1939 boolean_t attempt_reopen; 1940 1941 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1942 return; 1943 1944 /* check that the config is complete */ 1945 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1946 &glist, &gcount) != 0) 1947 return; 1948 1949 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1950 1951 /* attempt to online all the vdevs & validate */ 1952 attempt_reopen = B_TRUE; 1953 for (i = 0; i < gcount; i++) { 1954 if (glist[i] == 0) /* vdev is hole */ 1955 continue; 1956 1957 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1958 if (vd[i] == NULL) { 1959 /* 1960 * Don't bother attempting to reopen the disks; 1961 * just do the split. 1962 */ 1963 attempt_reopen = B_FALSE; 1964 } else { 1965 /* attempt to re-online it */ 1966 vd[i]->vdev_offline = B_FALSE; 1967 } 1968 } 1969 1970 if (attempt_reopen) { 1971 vdev_reopen(spa->spa_root_vdev); 1972 1973 /* check each device to see what state it's in */ 1974 for (extracted = 0, i = 0; i < gcount; i++) { 1975 if (vd[i] != NULL && 1976 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1977 break; 1978 ++extracted; 1979 } 1980 } 1981 1982 /* 1983 * If every disk has been moved to the new pool, or if we never 1984 * even attempted to look at them, then we split them off for 1985 * good. 1986 */ 1987 if (!attempt_reopen || gcount == extracted) { 1988 for (i = 0; i < gcount; i++) 1989 if (vd[i] != NULL) 1990 vdev_split(vd[i]); 1991 vdev_reopen(spa->spa_root_vdev); 1992 } 1993 1994 kmem_free(vd, gcount * sizeof (vdev_t *)); 1995 } 1996 1997 static int 1998 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 1999 boolean_t mosconfig) 2000 { 2001 nvlist_t *config = spa->spa_config; 2002 char *ereport = FM_EREPORT_ZFS_POOL; 2003 char *comment; 2004 int error; 2005 uint64_t pool_guid; 2006 nvlist_t *nvl; 2007 2008 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2009 return (SET_ERROR(EINVAL)); 2010 2011 ASSERT(spa->spa_comment == NULL); 2012 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2013 spa->spa_comment = spa_strdup(comment); 2014 2015 /* 2016 * Versioning wasn't explicitly added to the label until later, so if 2017 * it's not present treat it as the initial version. 2018 */ 2019 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2020 &spa->spa_ubsync.ub_version) != 0) 2021 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2022 2023 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2024 &spa->spa_config_txg); 2025 2026 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2027 spa_guid_exists(pool_guid, 0)) { 2028 error = SET_ERROR(EEXIST); 2029 } else { 2030 spa->spa_config_guid = pool_guid; 2031 2032 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2033 &nvl) == 0) { 2034 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2035 KM_SLEEP) == 0); 2036 } 2037 2038 nvlist_free(spa->spa_load_info); 2039 spa->spa_load_info = fnvlist_alloc(); 2040 2041 gethrestime(&spa->spa_loaded_ts); 2042 error = spa_load_impl(spa, pool_guid, config, state, type, 2043 mosconfig, &ereport); 2044 } 2045 2046 spa->spa_minref = refcount_count(&spa->spa_refcount); 2047 if (error) { 2048 if (error != EEXIST) { 2049 spa->spa_loaded_ts.tv_sec = 0; 2050 spa->spa_loaded_ts.tv_nsec = 0; 2051 } 2052 if (error != EBADF) { 2053 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2054 } 2055 } 2056 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2057 spa->spa_ena = 0; 2058 2059 return (error); 2060 } 2061 2062 /* 2063 * Load an existing storage pool, using the pool's builtin spa_config as a 2064 * source of configuration information. 2065 */ 2066 static int 2067 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2068 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2069 char **ereport) 2070 { 2071 int error = 0; 2072 nvlist_t *nvroot = NULL; 2073 nvlist_t *label; 2074 vdev_t *rvd; 2075 uberblock_t *ub = &spa->spa_uberblock; 2076 uint64_t children, config_cache_txg = spa->spa_config_txg; 2077 int orig_mode = spa->spa_mode; 2078 int parse; 2079 uint64_t obj; 2080 boolean_t missing_feat_write = B_FALSE; 2081 2082 /* 2083 * If this is an untrusted config, access the pool in read-only mode. 2084 * This prevents things like resilvering recently removed devices. 2085 */ 2086 if (!mosconfig) 2087 spa->spa_mode = FREAD; 2088 2089 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2090 2091 spa->spa_load_state = state; 2092 2093 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2094 return (SET_ERROR(EINVAL)); 2095 2096 parse = (type == SPA_IMPORT_EXISTING ? 2097 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2098 2099 /* 2100 * Create "The Godfather" zio to hold all async IOs 2101 */ 2102 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2103 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2104 2105 /* 2106 * Parse the configuration into a vdev tree. We explicitly set the 2107 * value that will be returned by spa_version() since parsing the 2108 * configuration requires knowing the version number. 2109 */ 2110 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2111 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2112 spa_config_exit(spa, SCL_ALL, FTAG); 2113 2114 if (error != 0) 2115 return (error); 2116 2117 ASSERT(spa->spa_root_vdev == rvd); 2118 2119 if (type != SPA_IMPORT_ASSEMBLE) { 2120 ASSERT(spa_guid(spa) == pool_guid); 2121 } 2122 2123 /* 2124 * Try to open all vdevs, loading each label in the process. 2125 */ 2126 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2127 error = vdev_open(rvd); 2128 spa_config_exit(spa, SCL_ALL, FTAG); 2129 if (error != 0) 2130 return (error); 2131 2132 /* 2133 * We need to validate the vdev labels against the configuration that 2134 * we have in hand, which is dependent on the setting of mosconfig. If 2135 * mosconfig is true then we're validating the vdev labels based on 2136 * that config. Otherwise, we're validating against the cached config 2137 * (zpool.cache) that was read when we loaded the zfs module, and then 2138 * later we will recursively call spa_load() and validate against 2139 * the vdev config. 2140 * 2141 * If we're assembling a new pool that's been split off from an 2142 * existing pool, the labels haven't yet been updated so we skip 2143 * validation for now. 2144 */ 2145 if (type != SPA_IMPORT_ASSEMBLE) { 2146 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2147 error = vdev_validate(rvd, mosconfig); 2148 spa_config_exit(spa, SCL_ALL, FTAG); 2149 2150 if (error != 0) 2151 return (error); 2152 2153 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2154 return (SET_ERROR(ENXIO)); 2155 } 2156 2157 /* 2158 * Find the best uberblock. 2159 */ 2160 vdev_uberblock_load(rvd, ub, &label); 2161 2162 /* 2163 * If we weren't able to find a single valid uberblock, return failure. 2164 */ 2165 if (ub->ub_txg == 0) { 2166 nvlist_free(label); 2167 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2168 } 2169 2170 /* 2171 * If the pool has an unsupported version we can't open it. 2172 */ 2173 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2174 nvlist_free(label); 2175 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2176 } 2177 2178 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2179 nvlist_t *features; 2180 2181 /* 2182 * If we weren't able to find what's necessary for reading the 2183 * MOS in the label, return failure. 2184 */ 2185 if (label == NULL || nvlist_lookup_nvlist(label, 2186 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2187 nvlist_free(label); 2188 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2189 ENXIO)); 2190 } 2191 2192 /* 2193 * Update our in-core representation with the definitive values 2194 * from the label. 2195 */ 2196 nvlist_free(spa->spa_label_features); 2197 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2198 } 2199 2200 nvlist_free(label); 2201 2202 /* 2203 * Look through entries in the label nvlist's features_for_read. If 2204 * there is a feature listed there which we don't understand then we 2205 * cannot open a pool. 2206 */ 2207 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2208 nvlist_t *unsup_feat; 2209 2210 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2211 0); 2212 2213 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2214 NULL); nvp != NULL; 2215 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2216 if (!zfeature_is_supported(nvpair_name(nvp))) { 2217 VERIFY(nvlist_add_string(unsup_feat, 2218 nvpair_name(nvp), "") == 0); 2219 } 2220 } 2221 2222 if (!nvlist_empty(unsup_feat)) { 2223 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2224 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2225 nvlist_free(unsup_feat); 2226 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2227 ENOTSUP)); 2228 } 2229 2230 nvlist_free(unsup_feat); 2231 } 2232 2233 /* 2234 * If the vdev guid sum doesn't match the uberblock, we have an 2235 * incomplete configuration. We first check to see if the pool 2236 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2237 * If it is, defer the vdev_guid_sum check till later so we 2238 * can handle missing vdevs. 2239 */ 2240 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2241 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2242 rvd->vdev_guid_sum != ub->ub_guid_sum) 2243 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2244 2245 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2246 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2247 spa_try_repair(spa, config); 2248 spa_config_exit(spa, SCL_ALL, FTAG); 2249 nvlist_free(spa->spa_config_splitting); 2250 spa->spa_config_splitting = NULL; 2251 } 2252 2253 /* 2254 * Initialize internal SPA structures. 2255 */ 2256 spa->spa_state = POOL_STATE_ACTIVE; 2257 spa->spa_ubsync = spa->spa_uberblock; 2258 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2259 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2260 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2261 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2262 spa->spa_claim_max_txg = spa->spa_first_txg; 2263 spa->spa_prev_software_version = ub->ub_software_version; 2264 2265 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2266 if (error) 2267 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2268 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2269 2270 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2271 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2272 2273 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2274 boolean_t missing_feat_read = B_FALSE; 2275 nvlist_t *unsup_feat, *enabled_feat; 2276 2277 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2278 &spa->spa_feat_for_read_obj) != 0) { 2279 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2280 } 2281 2282 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2283 &spa->spa_feat_for_write_obj) != 0) { 2284 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2285 } 2286 2287 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2288 &spa->spa_feat_desc_obj) != 0) { 2289 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2290 } 2291 2292 enabled_feat = fnvlist_alloc(); 2293 unsup_feat = fnvlist_alloc(); 2294 2295 if (!feature_is_supported(spa->spa_meta_objset, 2296 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj, 2297 unsup_feat, enabled_feat)) 2298 missing_feat_read = B_TRUE; 2299 2300 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2301 if (!feature_is_supported(spa->spa_meta_objset, 2302 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj, 2303 unsup_feat, enabled_feat)) { 2304 missing_feat_write = B_TRUE; 2305 } 2306 } 2307 2308 fnvlist_add_nvlist(spa->spa_load_info, 2309 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2310 2311 if (!nvlist_empty(unsup_feat)) { 2312 fnvlist_add_nvlist(spa->spa_load_info, 2313 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2314 } 2315 2316 fnvlist_free(enabled_feat); 2317 fnvlist_free(unsup_feat); 2318 2319 if (!missing_feat_read) { 2320 fnvlist_add_boolean(spa->spa_load_info, 2321 ZPOOL_CONFIG_CAN_RDONLY); 2322 } 2323 2324 /* 2325 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2326 * twofold: to determine whether the pool is available for 2327 * import in read-write mode and (if it is not) whether the 2328 * pool is available for import in read-only mode. If the pool 2329 * is available for import in read-write mode, it is displayed 2330 * as available in userland; if it is not available for import 2331 * in read-only mode, it is displayed as unavailable in 2332 * userland. If the pool is available for import in read-only 2333 * mode but not read-write mode, it is displayed as unavailable 2334 * in userland with a special note that the pool is actually 2335 * available for open in read-only mode. 2336 * 2337 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2338 * missing a feature for write, we must first determine whether 2339 * the pool can be opened read-only before returning to 2340 * userland in order to know whether to display the 2341 * abovementioned note. 2342 */ 2343 if (missing_feat_read || (missing_feat_write && 2344 spa_writeable(spa))) { 2345 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2346 ENOTSUP)); 2347 } 2348 } 2349 2350 spa->spa_is_initializing = B_TRUE; 2351 error = dsl_pool_open(spa->spa_dsl_pool); 2352 spa->spa_is_initializing = B_FALSE; 2353 if (error != 0) 2354 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2355 2356 if (!mosconfig) { 2357 uint64_t hostid; 2358 nvlist_t *policy = NULL, *nvconfig; 2359 2360 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2361 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2362 2363 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2364 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2365 char *hostname; 2366 unsigned long myhostid = 0; 2367 2368 VERIFY(nvlist_lookup_string(nvconfig, 2369 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2370 2371 #ifdef _KERNEL 2372 myhostid = zone_get_hostid(NULL); 2373 #else /* _KERNEL */ 2374 /* 2375 * We're emulating the system's hostid in userland, so 2376 * we can't use zone_get_hostid(). 2377 */ 2378 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2379 #endif /* _KERNEL */ 2380 if (hostid != 0 && myhostid != 0 && 2381 hostid != myhostid) { 2382 nvlist_free(nvconfig); 2383 cmn_err(CE_WARN, "pool '%s' could not be " 2384 "loaded as it was last accessed by " 2385 "another system (host: %s hostid: 0x%lx). " 2386 "See: http://illumos.org/msg/ZFS-8000-EY", 2387 spa_name(spa), hostname, 2388 (unsigned long)hostid); 2389 return (SET_ERROR(EBADF)); 2390 } 2391 } 2392 if (nvlist_lookup_nvlist(spa->spa_config, 2393 ZPOOL_REWIND_POLICY, &policy) == 0) 2394 VERIFY(nvlist_add_nvlist(nvconfig, 2395 ZPOOL_REWIND_POLICY, policy) == 0); 2396 2397 spa_config_set(spa, nvconfig); 2398 spa_unload(spa); 2399 spa_deactivate(spa); 2400 spa_activate(spa, orig_mode); 2401 2402 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2403 } 2404 2405 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2406 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2407 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2408 if (error != 0) 2409 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2410 2411 /* 2412 * Load the bit that tells us to use the new accounting function 2413 * (raid-z deflation). If we have an older pool, this will not 2414 * be present. 2415 */ 2416 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2417 if (error != 0 && error != ENOENT) 2418 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2419 2420 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2421 &spa->spa_creation_version); 2422 if (error != 0 && error != ENOENT) 2423 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2424 2425 /* 2426 * Load the persistent error log. If we have an older pool, this will 2427 * not be present. 2428 */ 2429 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2430 if (error != 0 && error != ENOENT) 2431 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2432 2433 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2434 &spa->spa_errlog_scrub); 2435 if (error != 0 && error != ENOENT) 2436 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2437 2438 /* 2439 * Load the history object. If we have an older pool, this 2440 * will not be present. 2441 */ 2442 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2443 if (error != 0 && error != ENOENT) 2444 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2445 2446 /* 2447 * If we're assembling the pool from the split-off vdevs of 2448 * an existing pool, we don't want to attach the spares & cache 2449 * devices. 2450 */ 2451 2452 /* 2453 * Load any hot spares for this pool. 2454 */ 2455 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2456 if (error != 0 && error != ENOENT) 2457 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2458 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2459 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2460 if (load_nvlist(spa, spa->spa_spares.sav_object, 2461 &spa->spa_spares.sav_config) != 0) 2462 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2463 2464 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2465 spa_load_spares(spa); 2466 spa_config_exit(spa, SCL_ALL, FTAG); 2467 } else if (error == 0) { 2468 spa->spa_spares.sav_sync = B_TRUE; 2469 } 2470 2471 /* 2472 * Load any level 2 ARC devices for this pool. 2473 */ 2474 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2475 &spa->spa_l2cache.sav_object); 2476 if (error != 0 && error != ENOENT) 2477 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2478 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2479 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2480 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2481 &spa->spa_l2cache.sav_config) != 0) 2482 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2483 2484 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2485 spa_load_l2cache(spa); 2486 spa_config_exit(spa, SCL_ALL, FTAG); 2487 } else if (error == 0) { 2488 spa->spa_l2cache.sav_sync = B_TRUE; 2489 } 2490 2491 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2492 2493 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2494 if (error && error != ENOENT) 2495 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2496 2497 if (error == 0) { 2498 uint64_t autoreplace; 2499 2500 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2501 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2502 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2503 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2504 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2505 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2506 &spa->spa_dedup_ditto); 2507 2508 spa->spa_autoreplace = (autoreplace != 0); 2509 } 2510 2511 /* 2512 * If the 'autoreplace' property is set, then post a resource notifying 2513 * the ZFS DE that it should not issue any faults for unopenable 2514 * devices. We also iterate over the vdevs, and post a sysevent for any 2515 * unopenable vdevs so that the normal autoreplace handler can take 2516 * over. 2517 */ 2518 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2519 spa_check_removed(spa->spa_root_vdev); 2520 /* 2521 * For the import case, this is done in spa_import(), because 2522 * at this point we're using the spare definitions from 2523 * the MOS config, not necessarily from the userland config. 2524 */ 2525 if (state != SPA_LOAD_IMPORT) { 2526 spa_aux_check_removed(&spa->spa_spares); 2527 spa_aux_check_removed(&spa->spa_l2cache); 2528 } 2529 } 2530 2531 /* 2532 * Load the vdev state for all toplevel vdevs. 2533 */ 2534 vdev_load(rvd); 2535 2536 /* 2537 * Propagate the leaf DTLs we just loaded all the way up the tree. 2538 */ 2539 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2540 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2541 spa_config_exit(spa, SCL_ALL, FTAG); 2542 2543 /* 2544 * Load the DDTs (dedup tables). 2545 */ 2546 error = ddt_load(spa); 2547 if (error != 0) 2548 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2549 2550 spa_update_dspace(spa); 2551 2552 /* 2553 * Validate the config, using the MOS config to fill in any 2554 * information which might be missing. If we fail to validate 2555 * the config then declare the pool unfit for use. If we're 2556 * assembling a pool from a split, the log is not transferred 2557 * over. 2558 */ 2559 if (type != SPA_IMPORT_ASSEMBLE) { 2560 nvlist_t *nvconfig; 2561 2562 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2563 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2564 2565 if (!spa_config_valid(spa, nvconfig)) { 2566 nvlist_free(nvconfig); 2567 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2568 ENXIO)); 2569 } 2570 nvlist_free(nvconfig); 2571 2572 /* 2573 * Now that we've validated the config, check the state of the 2574 * root vdev. If it can't be opened, it indicates one or 2575 * more toplevel vdevs are faulted. 2576 */ 2577 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2578 return (SET_ERROR(ENXIO)); 2579 2580 if (spa_check_logs(spa)) { 2581 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2582 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2583 } 2584 } 2585 2586 if (missing_feat_write) { 2587 ASSERT(state == SPA_LOAD_TRYIMPORT); 2588 2589 /* 2590 * At this point, we know that we can open the pool in 2591 * read-only mode but not read-write mode. We now have enough 2592 * information and can return to userland. 2593 */ 2594 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2595 } 2596 2597 /* 2598 * We've successfully opened the pool, verify that we're ready 2599 * to start pushing transactions. 2600 */ 2601 if (state != SPA_LOAD_TRYIMPORT) { 2602 if (error = spa_load_verify(spa)) 2603 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2604 error)); 2605 } 2606 2607 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2608 spa->spa_load_max_txg == UINT64_MAX)) { 2609 dmu_tx_t *tx; 2610 int need_update = B_FALSE; 2611 2612 ASSERT(state != SPA_LOAD_TRYIMPORT); 2613 2614 /* 2615 * Claim log blocks that haven't been committed yet. 2616 * This must all happen in a single txg. 2617 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2618 * invoked from zil_claim_log_block()'s i/o done callback. 2619 * Price of rollback is that we abandon the log. 2620 */ 2621 spa->spa_claiming = B_TRUE; 2622 2623 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2624 spa_first_txg(spa)); 2625 (void) dmu_objset_find(spa_name(spa), 2626 zil_claim, tx, DS_FIND_CHILDREN); 2627 dmu_tx_commit(tx); 2628 2629 spa->spa_claiming = B_FALSE; 2630 2631 spa_set_log_state(spa, SPA_LOG_GOOD); 2632 spa->spa_sync_on = B_TRUE; 2633 txg_sync_start(spa->spa_dsl_pool); 2634 2635 /* 2636 * Wait for all claims to sync. We sync up to the highest 2637 * claimed log block birth time so that claimed log blocks 2638 * don't appear to be from the future. spa_claim_max_txg 2639 * will have been set for us by either zil_check_log_chain() 2640 * (invoked from spa_check_logs()) or zil_claim() above. 2641 */ 2642 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2643 2644 /* 2645 * If the config cache is stale, or we have uninitialized 2646 * metaslabs (see spa_vdev_add()), then update the config. 2647 * 2648 * If this is a verbatim import, trust the current 2649 * in-core spa_config and update the disk labels. 2650 */ 2651 if (config_cache_txg != spa->spa_config_txg || 2652 state == SPA_LOAD_IMPORT || 2653 state == SPA_LOAD_RECOVER || 2654 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2655 need_update = B_TRUE; 2656 2657 for (int c = 0; c < rvd->vdev_children; c++) 2658 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2659 need_update = B_TRUE; 2660 2661 /* 2662 * Update the config cache asychronously in case we're the 2663 * root pool, in which case the config cache isn't writable yet. 2664 */ 2665 if (need_update) 2666 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2667 2668 /* 2669 * Check all DTLs to see if anything needs resilvering. 2670 */ 2671 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2672 vdev_resilver_needed(rvd, NULL, NULL)) 2673 spa_async_request(spa, SPA_ASYNC_RESILVER); 2674 2675 /* 2676 * Log the fact that we booted up (so that we can detect if 2677 * we rebooted in the middle of an operation). 2678 */ 2679 spa_history_log_version(spa, "open"); 2680 2681 /* 2682 * Delete any inconsistent datasets. 2683 */ 2684 (void) dmu_objset_find(spa_name(spa), 2685 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2686 2687 /* 2688 * Clean up any stale temporary dataset userrefs. 2689 */ 2690 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2691 } 2692 2693 return (0); 2694 } 2695 2696 static int 2697 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2698 { 2699 int mode = spa->spa_mode; 2700 2701 spa_unload(spa); 2702 spa_deactivate(spa); 2703 2704 spa->spa_load_max_txg--; 2705 2706 spa_activate(spa, mode); 2707 spa_async_suspend(spa); 2708 2709 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2710 } 2711 2712 /* 2713 * If spa_load() fails this function will try loading prior txg's. If 2714 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2715 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2716 * function will not rewind the pool and will return the same error as 2717 * spa_load(). 2718 */ 2719 static int 2720 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2721 uint64_t max_request, int rewind_flags) 2722 { 2723 nvlist_t *loadinfo = NULL; 2724 nvlist_t *config = NULL; 2725 int load_error, rewind_error; 2726 uint64_t safe_rewind_txg; 2727 uint64_t min_txg; 2728 2729 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2730 spa->spa_load_max_txg = spa->spa_load_txg; 2731 spa_set_log_state(spa, SPA_LOG_CLEAR); 2732 } else { 2733 spa->spa_load_max_txg = max_request; 2734 } 2735 2736 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2737 mosconfig); 2738 if (load_error == 0) 2739 return (0); 2740 2741 if (spa->spa_root_vdev != NULL) 2742 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2743 2744 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2745 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2746 2747 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2748 nvlist_free(config); 2749 return (load_error); 2750 } 2751 2752 if (state == SPA_LOAD_RECOVER) { 2753 /* Price of rolling back is discarding txgs, including log */ 2754 spa_set_log_state(spa, SPA_LOG_CLEAR); 2755 } else { 2756 /* 2757 * If we aren't rolling back save the load info from our first 2758 * import attempt so that we can restore it after attempting 2759 * to rewind. 2760 */ 2761 loadinfo = spa->spa_load_info; 2762 spa->spa_load_info = fnvlist_alloc(); 2763 } 2764 2765 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2766 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2767 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2768 TXG_INITIAL : safe_rewind_txg; 2769 2770 /* 2771 * Continue as long as we're finding errors, we're still within 2772 * the acceptable rewind range, and we're still finding uberblocks 2773 */ 2774 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2775 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2776 if (spa->spa_load_max_txg < safe_rewind_txg) 2777 spa->spa_extreme_rewind = B_TRUE; 2778 rewind_error = spa_load_retry(spa, state, mosconfig); 2779 } 2780 2781 spa->spa_extreme_rewind = B_FALSE; 2782 spa->spa_load_max_txg = UINT64_MAX; 2783 2784 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2785 spa_config_set(spa, config); 2786 2787 if (state == SPA_LOAD_RECOVER) { 2788 ASSERT3P(loadinfo, ==, NULL); 2789 return (rewind_error); 2790 } else { 2791 /* Store the rewind info as part of the initial load info */ 2792 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2793 spa->spa_load_info); 2794 2795 /* Restore the initial load info */ 2796 fnvlist_free(spa->spa_load_info); 2797 spa->spa_load_info = loadinfo; 2798 2799 return (load_error); 2800 } 2801 } 2802 2803 /* 2804 * Pool Open/Import 2805 * 2806 * The import case is identical to an open except that the configuration is sent 2807 * down from userland, instead of grabbed from the configuration cache. For the 2808 * case of an open, the pool configuration will exist in the 2809 * POOL_STATE_UNINITIALIZED state. 2810 * 2811 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2812 * the same time open the pool, without having to keep around the spa_t in some 2813 * ambiguous state. 2814 */ 2815 static int 2816 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2817 nvlist_t **config) 2818 { 2819 spa_t *spa; 2820 spa_load_state_t state = SPA_LOAD_OPEN; 2821 int error; 2822 int locked = B_FALSE; 2823 2824 *spapp = NULL; 2825 2826 /* 2827 * As disgusting as this is, we need to support recursive calls to this 2828 * function because dsl_dir_open() is called during spa_load(), and ends 2829 * up calling spa_open() again. The real fix is to figure out how to 2830 * avoid dsl_dir_open() calling this in the first place. 2831 */ 2832 if (mutex_owner(&spa_namespace_lock) != curthread) { 2833 mutex_enter(&spa_namespace_lock); 2834 locked = B_TRUE; 2835 } 2836 2837 if ((spa = spa_lookup(pool)) == NULL) { 2838 if (locked) 2839 mutex_exit(&spa_namespace_lock); 2840 return (SET_ERROR(ENOENT)); 2841 } 2842 2843 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2844 zpool_rewind_policy_t policy; 2845 2846 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2847 &policy); 2848 if (policy.zrp_request & ZPOOL_DO_REWIND) 2849 state = SPA_LOAD_RECOVER; 2850 2851 spa_activate(spa, spa_mode_global); 2852 2853 if (state != SPA_LOAD_RECOVER) 2854 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2855 2856 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2857 policy.zrp_request); 2858 2859 if (error == EBADF) { 2860 /* 2861 * If vdev_validate() returns failure (indicated by 2862 * EBADF), it indicates that one of the vdevs indicates 2863 * that the pool has been exported or destroyed. If 2864 * this is the case, the config cache is out of sync and 2865 * we should remove the pool from the namespace. 2866 */ 2867 spa_unload(spa); 2868 spa_deactivate(spa); 2869 spa_config_sync(spa, B_TRUE, B_TRUE); 2870 spa_remove(spa); 2871 if (locked) 2872 mutex_exit(&spa_namespace_lock); 2873 return (SET_ERROR(ENOENT)); 2874 } 2875 2876 if (error) { 2877 /* 2878 * We can't open the pool, but we still have useful 2879 * information: the state of each vdev after the 2880 * attempted vdev_open(). Return this to the user. 2881 */ 2882 if (config != NULL && spa->spa_config) { 2883 VERIFY(nvlist_dup(spa->spa_config, config, 2884 KM_SLEEP) == 0); 2885 VERIFY(nvlist_add_nvlist(*config, 2886 ZPOOL_CONFIG_LOAD_INFO, 2887 spa->spa_load_info) == 0); 2888 } 2889 spa_unload(spa); 2890 spa_deactivate(spa); 2891 spa->spa_last_open_failed = error; 2892 if (locked) 2893 mutex_exit(&spa_namespace_lock); 2894 *spapp = NULL; 2895 return (error); 2896 } 2897 } 2898 2899 spa_open_ref(spa, tag); 2900 2901 if (config != NULL) 2902 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2903 2904 /* 2905 * If we've recovered the pool, pass back any information we 2906 * gathered while doing the load. 2907 */ 2908 if (state == SPA_LOAD_RECOVER) { 2909 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 2910 spa->spa_load_info) == 0); 2911 } 2912 2913 if (locked) { 2914 spa->spa_last_open_failed = 0; 2915 spa->spa_last_ubsync_txg = 0; 2916 spa->spa_load_txg = 0; 2917 mutex_exit(&spa_namespace_lock); 2918 } 2919 2920 *spapp = spa; 2921 2922 return (0); 2923 } 2924 2925 int 2926 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2927 nvlist_t **config) 2928 { 2929 return (spa_open_common(name, spapp, tag, policy, config)); 2930 } 2931 2932 int 2933 spa_open(const char *name, spa_t **spapp, void *tag) 2934 { 2935 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2936 } 2937 2938 /* 2939 * Lookup the given spa_t, incrementing the inject count in the process, 2940 * preventing it from being exported or destroyed. 2941 */ 2942 spa_t * 2943 spa_inject_addref(char *name) 2944 { 2945 spa_t *spa; 2946 2947 mutex_enter(&spa_namespace_lock); 2948 if ((spa = spa_lookup(name)) == NULL) { 2949 mutex_exit(&spa_namespace_lock); 2950 return (NULL); 2951 } 2952 spa->spa_inject_ref++; 2953 mutex_exit(&spa_namespace_lock); 2954 2955 return (spa); 2956 } 2957 2958 void 2959 spa_inject_delref(spa_t *spa) 2960 { 2961 mutex_enter(&spa_namespace_lock); 2962 spa->spa_inject_ref--; 2963 mutex_exit(&spa_namespace_lock); 2964 } 2965 2966 /* 2967 * Add spares device information to the nvlist. 2968 */ 2969 static void 2970 spa_add_spares(spa_t *spa, nvlist_t *config) 2971 { 2972 nvlist_t **spares; 2973 uint_t i, nspares; 2974 nvlist_t *nvroot; 2975 uint64_t guid; 2976 vdev_stat_t *vs; 2977 uint_t vsc; 2978 uint64_t pool; 2979 2980 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2981 2982 if (spa->spa_spares.sav_count == 0) 2983 return; 2984 2985 VERIFY(nvlist_lookup_nvlist(config, 2986 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2987 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2988 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2989 if (nspares != 0) { 2990 VERIFY(nvlist_add_nvlist_array(nvroot, 2991 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2992 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2993 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2994 2995 /* 2996 * Go through and find any spares which have since been 2997 * repurposed as an active spare. If this is the case, update 2998 * their status appropriately. 2999 */ 3000 for (i = 0; i < nspares; i++) { 3001 VERIFY(nvlist_lookup_uint64(spares[i], 3002 ZPOOL_CONFIG_GUID, &guid) == 0); 3003 if (spa_spare_exists(guid, &pool, NULL) && 3004 pool != 0ULL) { 3005 VERIFY(nvlist_lookup_uint64_array( 3006 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3007 (uint64_t **)&vs, &vsc) == 0); 3008 vs->vs_state = VDEV_STATE_CANT_OPEN; 3009 vs->vs_aux = VDEV_AUX_SPARED; 3010 } 3011 } 3012 } 3013 } 3014 3015 /* 3016 * Add l2cache device information to the nvlist, including vdev stats. 3017 */ 3018 static void 3019 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3020 { 3021 nvlist_t **l2cache; 3022 uint_t i, j, nl2cache; 3023 nvlist_t *nvroot; 3024 uint64_t guid; 3025 vdev_t *vd; 3026 vdev_stat_t *vs; 3027 uint_t vsc; 3028 3029 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3030 3031 if (spa->spa_l2cache.sav_count == 0) 3032 return; 3033 3034 VERIFY(nvlist_lookup_nvlist(config, 3035 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3036 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3037 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3038 if (nl2cache != 0) { 3039 VERIFY(nvlist_add_nvlist_array(nvroot, 3040 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3041 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3042 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3043 3044 /* 3045 * Update level 2 cache device stats. 3046 */ 3047 3048 for (i = 0; i < nl2cache; i++) { 3049 VERIFY(nvlist_lookup_uint64(l2cache[i], 3050 ZPOOL_CONFIG_GUID, &guid) == 0); 3051 3052 vd = NULL; 3053 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3054 if (guid == 3055 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3056 vd = spa->spa_l2cache.sav_vdevs[j]; 3057 break; 3058 } 3059 } 3060 ASSERT(vd != NULL); 3061 3062 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3063 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3064 == 0); 3065 vdev_get_stats(vd, vs); 3066 } 3067 } 3068 } 3069 3070 static void 3071 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3072 { 3073 nvlist_t *features; 3074 zap_cursor_t zc; 3075 zap_attribute_t za; 3076 3077 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3078 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3079 3080 if (spa->spa_feat_for_read_obj != 0) { 3081 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3082 spa->spa_feat_for_read_obj); 3083 zap_cursor_retrieve(&zc, &za) == 0; 3084 zap_cursor_advance(&zc)) { 3085 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3086 za.za_num_integers == 1); 3087 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3088 za.za_first_integer)); 3089 } 3090 zap_cursor_fini(&zc); 3091 } 3092 3093 if (spa->spa_feat_for_write_obj != 0) { 3094 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3095 spa->spa_feat_for_write_obj); 3096 zap_cursor_retrieve(&zc, &za) == 0; 3097 zap_cursor_advance(&zc)) { 3098 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3099 za.za_num_integers == 1); 3100 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3101 za.za_first_integer)); 3102 } 3103 zap_cursor_fini(&zc); 3104 } 3105 3106 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3107 features) == 0); 3108 nvlist_free(features); 3109 } 3110 3111 int 3112 spa_get_stats(const char *name, nvlist_t **config, 3113 char *altroot, size_t buflen) 3114 { 3115 int error; 3116 spa_t *spa; 3117 3118 *config = NULL; 3119 error = spa_open_common(name, &spa, FTAG, NULL, config); 3120 3121 if (spa != NULL) { 3122 /* 3123 * This still leaves a window of inconsistency where the spares 3124 * or l2cache devices could change and the config would be 3125 * self-inconsistent. 3126 */ 3127 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3128 3129 if (*config != NULL) { 3130 uint64_t loadtimes[2]; 3131 3132 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3133 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3134 VERIFY(nvlist_add_uint64_array(*config, 3135 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3136 3137 VERIFY(nvlist_add_uint64(*config, 3138 ZPOOL_CONFIG_ERRCOUNT, 3139 spa_get_errlog_size(spa)) == 0); 3140 3141 if (spa_suspended(spa)) 3142 VERIFY(nvlist_add_uint64(*config, 3143 ZPOOL_CONFIG_SUSPENDED, 3144 spa->spa_failmode) == 0); 3145 3146 spa_add_spares(spa, *config); 3147 spa_add_l2cache(spa, *config); 3148 spa_add_feature_stats(spa, *config); 3149 } 3150 } 3151 3152 /* 3153 * We want to get the alternate root even for faulted pools, so we cheat 3154 * and call spa_lookup() directly. 3155 */ 3156 if (altroot) { 3157 if (spa == NULL) { 3158 mutex_enter(&spa_namespace_lock); 3159 spa = spa_lookup(name); 3160 if (spa) 3161 spa_altroot(spa, altroot, buflen); 3162 else 3163 altroot[0] = '\0'; 3164 spa = NULL; 3165 mutex_exit(&spa_namespace_lock); 3166 } else { 3167 spa_altroot(spa, altroot, buflen); 3168 } 3169 } 3170 3171 if (spa != NULL) { 3172 spa_config_exit(spa, SCL_CONFIG, FTAG); 3173 spa_close(spa, FTAG); 3174 } 3175 3176 return (error); 3177 } 3178 3179 /* 3180 * Validate that the auxiliary device array is well formed. We must have an 3181 * array of nvlists, each which describes a valid leaf vdev. If this is an 3182 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3183 * specified, as long as they are well-formed. 3184 */ 3185 static int 3186 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3187 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3188 vdev_labeltype_t label) 3189 { 3190 nvlist_t **dev; 3191 uint_t i, ndev; 3192 vdev_t *vd; 3193 int error; 3194 3195 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3196 3197 /* 3198 * It's acceptable to have no devs specified. 3199 */ 3200 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3201 return (0); 3202 3203 if (ndev == 0) 3204 return (SET_ERROR(EINVAL)); 3205 3206 /* 3207 * Make sure the pool is formatted with a version that supports this 3208 * device type. 3209 */ 3210 if (spa_version(spa) < version) 3211 return (SET_ERROR(ENOTSUP)); 3212 3213 /* 3214 * Set the pending device list so we correctly handle device in-use 3215 * checking. 3216 */ 3217 sav->sav_pending = dev; 3218 sav->sav_npending = ndev; 3219 3220 for (i = 0; i < ndev; i++) { 3221 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3222 mode)) != 0) 3223 goto out; 3224 3225 if (!vd->vdev_ops->vdev_op_leaf) { 3226 vdev_free(vd); 3227 error = SET_ERROR(EINVAL); 3228 goto out; 3229 } 3230 3231 /* 3232 * The L2ARC currently only supports disk devices in 3233 * kernel context. For user-level testing, we allow it. 3234 */ 3235 #ifdef _KERNEL 3236 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3237 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3238 error = SET_ERROR(ENOTBLK); 3239 vdev_free(vd); 3240 goto out; 3241 } 3242 #endif 3243 vd->vdev_top = vd; 3244 3245 if ((error = vdev_open(vd)) == 0 && 3246 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3247 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3248 vd->vdev_guid) == 0); 3249 } 3250 3251 vdev_free(vd); 3252 3253 if (error && 3254 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3255 goto out; 3256 else 3257 error = 0; 3258 } 3259 3260 out: 3261 sav->sav_pending = NULL; 3262 sav->sav_npending = 0; 3263 return (error); 3264 } 3265 3266 static int 3267 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3268 { 3269 int error; 3270 3271 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3272 3273 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3274 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3275 VDEV_LABEL_SPARE)) != 0) { 3276 return (error); 3277 } 3278 3279 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3280 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3281 VDEV_LABEL_L2CACHE)); 3282 } 3283 3284 static void 3285 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3286 const char *config) 3287 { 3288 int i; 3289 3290 if (sav->sav_config != NULL) { 3291 nvlist_t **olddevs; 3292 uint_t oldndevs; 3293 nvlist_t **newdevs; 3294 3295 /* 3296 * Generate new dev list by concatentating with the 3297 * current dev list. 3298 */ 3299 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3300 &olddevs, &oldndevs) == 0); 3301 3302 newdevs = kmem_alloc(sizeof (void *) * 3303 (ndevs + oldndevs), KM_SLEEP); 3304 for (i = 0; i < oldndevs; i++) 3305 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3306 KM_SLEEP) == 0); 3307 for (i = 0; i < ndevs; i++) 3308 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3309 KM_SLEEP) == 0); 3310 3311 VERIFY(nvlist_remove(sav->sav_config, config, 3312 DATA_TYPE_NVLIST_ARRAY) == 0); 3313 3314 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3315 config, newdevs, ndevs + oldndevs) == 0); 3316 for (i = 0; i < oldndevs + ndevs; i++) 3317 nvlist_free(newdevs[i]); 3318 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3319 } else { 3320 /* 3321 * Generate a new dev list. 3322 */ 3323 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3324 KM_SLEEP) == 0); 3325 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3326 devs, ndevs) == 0); 3327 } 3328 } 3329 3330 /* 3331 * Stop and drop level 2 ARC devices 3332 */ 3333 void 3334 spa_l2cache_drop(spa_t *spa) 3335 { 3336 vdev_t *vd; 3337 int i; 3338 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3339 3340 for (i = 0; i < sav->sav_count; i++) { 3341 uint64_t pool; 3342 3343 vd = sav->sav_vdevs[i]; 3344 ASSERT(vd != NULL); 3345 3346 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3347 pool != 0ULL && l2arc_vdev_present(vd)) 3348 l2arc_remove_vdev(vd); 3349 } 3350 } 3351 3352 /* 3353 * Pool Creation 3354 */ 3355 int 3356 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3357 nvlist_t *zplprops) 3358 { 3359 spa_t *spa; 3360 char *altroot = NULL; 3361 vdev_t *rvd; 3362 dsl_pool_t *dp; 3363 dmu_tx_t *tx; 3364 int error = 0; 3365 uint64_t txg = TXG_INITIAL; 3366 nvlist_t **spares, **l2cache; 3367 uint_t nspares, nl2cache; 3368 uint64_t version, obj; 3369 boolean_t has_features; 3370 3371 /* 3372 * If this pool already exists, return failure. 3373 */ 3374 mutex_enter(&spa_namespace_lock); 3375 if (spa_lookup(pool) != NULL) { 3376 mutex_exit(&spa_namespace_lock); 3377 return (SET_ERROR(EEXIST)); 3378 } 3379 3380 /* 3381 * Allocate a new spa_t structure. 3382 */ 3383 (void) nvlist_lookup_string(props, 3384 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3385 spa = spa_add(pool, NULL, altroot); 3386 spa_activate(spa, spa_mode_global); 3387 3388 if (props && (error = spa_prop_validate(spa, props))) { 3389 spa_deactivate(spa); 3390 spa_remove(spa); 3391 mutex_exit(&spa_namespace_lock); 3392 return (error); 3393 } 3394 3395 has_features = B_FALSE; 3396 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3397 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3398 if (zpool_prop_feature(nvpair_name(elem))) 3399 has_features = B_TRUE; 3400 } 3401 3402 if (has_features || nvlist_lookup_uint64(props, 3403 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3404 version = SPA_VERSION; 3405 } 3406 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3407 3408 spa->spa_first_txg = txg; 3409 spa->spa_uberblock.ub_txg = txg - 1; 3410 spa->spa_uberblock.ub_version = version; 3411 spa->spa_ubsync = spa->spa_uberblock; 3412 3413 /* 3414 * Create "The Godfather" zio to hold all async IOs 3415 */ 3416 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 3417 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 3418 3419 /* 3420 * Create the root vdev. 3421 */ 3422 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3423 3424 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3425 3426 ASSERT(error != 0 || rvd != NULL); 3427 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3428 3429 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3430 error = SET_ERROR(EINVAL); 3431 3432 if (error == 0 && 3433 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3434 (error = spa_validate_aux(spa, nvroot, txg, 3435 VDEV_ALLOC_ADD)) == 0) { 3436 for (int c = 0; c < rvd->vdev_children; c++) { 3437 vdev_metaslab_set_size(rvd->vdev_child[c]); 3438 vdev_expand(rvd->vdev_child[c], txg); 3439 } 3440 } 3441 3442 spa_config_exit(spa, SCL_ALL, FTAG); 3443 3444 if (error != 0) { 3445 spa_unload(spa); 3446 spa_deactivate(spa); 3447 spa_remove(spa); 3448 mutex_exit(&spa_namespace_lock); 3449 return (error); 3450 } 3451 3452 /* 3453 * Get the list of spares, if specified. 3454 */ 3455 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3456 &spares, &nspares) == 0) { 3457 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3458 KM_SLEEP) == 0); 3459 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3460 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3461 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3462 spa_load_spares(spa); 3463 spa_config_exit(spa, SCL_ALL, FTAG); 3464 spa->spa_spares.sav_sync = B_TRUE; 3465 } 3466 3467 /* 3468 * Get the list of level 2 cache devices, if specified. 3469 */ 3470 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3471 &l2cache, &nl2cache) == 0) { 3472 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3473 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3474 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3475 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3476 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3477 spa_load_l2cache(spa); 3478 spa_config_exit(spa, SCL_ALL, FTAG); 3479 spa->spa_l2cache.sav_sync = B_TRUE; 3480 } 3481 3482 spa->spa_is_initializing = B_TRUE; 3483 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3484 spa->spa_meta_objset = dp->dp_meta_objset; 3485 spa->spa_is_initializing = B_FALSE; 3486 3487 /* 3488 * Create DDTs (dedup tables). 3489 */ 3490 ddt_create(spa); 3491 3492 spa_update_dspace(spa); 3493 3494 tx = dmu_tx_create_assigned(dp, txg); 3495 3496 /* 3497 * Create the pool config object. 3498 */ 3499 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3500 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3501 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3502 3503 if (zap_add(spa->spa_meta_objset, 3504 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3505 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3506 cmn_err(CE_PANIC, "failed to add pool config"); 3507 } 3508 3509 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3510 spa_feature_create_zap_objects(spa, tx); 3511 3512 if (zap_add(spa->spa_meta_objset, 3513 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3514 sizeof (uint64_t), 1, &version, tx) != 0) { 3515 cmn_err(CE_PANIC, "failed to add pool version"); 3516 } 3517 3518 /* Newly created pools with the right version are always deflated. */ 3519 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3520 spa->spa_deflate = TRUE; 3521 if (zap_add(spa->spa_meta_objset, 3522 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3523 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3524 cmn_err(CE_PANIC, "failed to add deflate"); 3525 } 3526 } 3527 3528 /* 3529 * Create the deferred-free bpobj. Turn off compression 3530 * because sync-to-convergence takes longer if the blocksize 3531 * keeps changing. 3532 */ 3533 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3534 dmu_object_set_compress(spa->spa_meta_objset, obj, 3535 ZIO_COMPRESS_OFF, tx); 3536 if (zap_add(spa->spa_meta_objset, 3537 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3538 sizeof (uint64_t), 1, &obj, tx) != 0) { 3539 cmn_err(CE_PANIC, "failed to add bpobj"); 3540 } 3541 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3542 spa->spa_meta_objset, obj)); 3543 3544 /* 3545 * Create the pool's history object. 3546 */ 3547 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3548 spa_history_create_obj(spa, tx); 3549 3550 /* 3551 * Set pool properties. 3552 */ 3553 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3554 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3555 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3556 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3557 3558 if (props != NULL) { 3559 spa_configfile_set(spa, props, B_FALSE); 3560 spa_sync_props(props, tx); 3561 } 3562 3563 dmu_tx_commit(tx); 3564 3565 spa->spa_sync_on = B_TRUE; 3566 txg_sync_start(spa->spa_dsl_pool); 3567 3568 /* 3569 * We explicitly wait for the first transaction to complete so that our 3570 * bean counters are appropriately updated. 3571 */ 3572 txg_wait_synced(spa->spa_dsl_pool, txg); 3573 3574 spa_config_sync(spa, B_FALSE, B_TRUE); 3575 3576 spa_history_log_version(spa, "create"); 3577 3578 spa->spa_minref = refcount_count(&spa->spa_refcount); 3579 3580 mutex_exit(&spa_namespace_lock); 3581 3582 return (0); 3583 } 3584 3585 #ifdef _KERNEL 3586 /* 3587 * Get the root pool information from the root disk, then import the root pool 3588 * during the system boot up time. 3589 */ 3590 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3591 3592 static nvlist_t * 3593 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3594 { 3595 nvlist_t *config; 3596 nvlist_t *nvtop, *nvroot; 3597 uint64_t pgid; 3598 3599 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3600 return (NULL); 3601 3602 /* 3603 * Add this top-level vdev to the child array. 3604 */ 3605 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3606 &nvtop) == 0); 3607 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3608 &pgid) == 0); 3609 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3610 3611 /* 3612 * Put this pool's top-level vdevs into a root vdev. 3613 */ 3614 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3615 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3616 VDEV_TYPE_ROOT) == 0); 3617 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3618 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3619 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3620 &nvtop, 1) == 0); 3621 3622 /* 3623 * Replace the existing vdev_tree with the new root vdev in 3624 * this pool's configuration (remove the old, add the new). 3625 */ 3626 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3627 nvlist_free(nvroot); 3628 return (config); 3629 } 3630 3631 /* 3632 * Walk the vdev tree and see if we can find a device with "better" 3633 * configuration. A configuration is "better" if the label on that 3634 * device has a more recent txg. 3635 */ 3636 static void 3637 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3638 { 3639 for (int c = 0; c < vd->vdev_children; c++) 3640 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3641 3642 if (vd->vdev_ops->vdev_op_leaf) { 3643 nvlist_t *label; 3644 uint64_t label_txg; 3645 3646 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3647 &label) != 0) 3648 return; 3649 3650 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3651 &label_txg) == 0); 3652 3653 /* 3654 * Do we have a better boot device? 3655 */ 3656 if (label_txg > *txg) { 3657 *txg = label_txg; 3658 *avd = vd; 3659 } 3660 nvlist_free(label); 3661 } 3662 } 3663 3664 /* 3665 * Import a root pool. 3666 * 3667 * For x86. devpath_list will consist of devid and/or physpath name of 3668 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3669 * The GRUB "findroot" command will return the vdev we should boot. 3670 * 3671 * For Sparc, devpath_list consists the physpath name of the booting device 3672 * no matter the rootpool is a single device pool or a mirrored pool. 3673 * e.g. 3674 * "/pci@1f,0/ide@d/disk@0,0:a" 3675 */ 3676 int 3677 spa_import_rootpool(char *devpath, char *devid) 3678 { 3679 spa_t *spa; 3680 vdev_t *rvd, *bvd, *avd = NULL; 3681 nvlist_t *config, *nvtop; 3682 uint64_t guid, txg; 3683 char *pname; 3684 int error; 3685 3686 /* 3687 * Read the label from the boot device and generate a configuration. 3688 */ 3689 config = spa_generate_rootconf(devpath, devid, &guid); 3690 #if defined(_OBP) && defined(_KERNEL) 3691 if (config == NULL) { 3692 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3693 /* iscsi boot */ 3694 get_iscsi_bootpath_phy(devpath); 3695 config = spa_generate_rootconf(devpath, devid, &guid); 3696 } 3697 } 3698 #endif 3699 if (config == NULL) { 3700 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3701 devpath); 3702 return (SET_ERROR(EIO)); 3703 } 3704 3705 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3706 &pname) == 0); 3707 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3708 3709 mutex_enter(&spa_namespace_lock); 3710 if ((spa = spa_lookup(pname)) != NULL) { 3711 /* 3712 * Remove the existing root pool from the namespace so that we 3713 * can replace it with the correct config we just read in. 3714 */ 3715 spa_remove(spa); 3716 } 3717 3718 spa = spa_add(pname, config, NULL); 3719 spa->spa_is_root = B_TRUE; 3720 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3721 3722 /* 3723 * Build up a vdev tree based on the boot device's label config. 3724 */ 3725 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3726 &nvtop) == 0); 3727 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3728 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3729 VDEV_ALLOC_ROOTPOOL); 3730 spa_config_exit(spa, SCL_ALL, FTAG); 3731 if (error) { 3732 mutex_exit(&spa_namespace_lock); 3733 nvlist_free(config); 3734 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3735 pname); 3736 return (error); 3737 } 3738 3739 /* 3740 * Get the boot vdev. 3741 */ 3742 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3743 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3744 (u_longlong_t)guid); 3745 error = SET_ERROR(ENOENT); 3746 goto out; 3747 } 3748 3749 /* 3750 * Determine if there is a better boot device. 3751 */ 3752 avd = bvd; 3753 spa_alt_rootvdev(rvd, &avd, &txg); 3754 if (avd != bvd) { 3755 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3756 "try booting from '%s'", avd->vdev_path); 3757 error = SET_ERROR(EINVAL); 3758 goto out; 3759 } 3760 3761 /* 3762 * If the boot device is part of a spare vdev then ensure that 3763 * we're booting off the active spare. 3764 */ 3765 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3766 !bvd->vdev_isspare) { 3767 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3768 "try booting from '%s'", 3769 bvd->vdev_parent-> 3770 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3771 error = SET_ERROR(EINVAL); 3772 goto out; 3773 } 3774 3775 error = 0; 3776 out: 3777 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3778 vdev_free(rvd); 3779 spa_config_exit(spa, SCL_ALL, FTAG); 3780 mutex_exit(&spa_namespace_lock); 3781 3782 nvlist_free(config); 3783 return (error); 3784 } 3785 3786 #endif 3787 3788 /* 3789 * Import a non-root pool into the system. 3790 */ 3791 int 3792 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3793 { 3794 spa_t *spa; 3795 char *altroot = NULL; 3796 spa_load_state_t state = SPA_LOAD_IMPORT; 3797 zpool_rewind_policy_t policy; 3798 uint64_t mode = spa_mode_global; 3799 uint64_t readonly = B_FALSE; 3800 int error; 3801 nvlist_t *nvroot; 3802 nvlist_t **spares, **l2cache; 3803 uint_t nspares, nl2cache; 3804 3805 /* 3806 * If a pool with this name exists, return failure. 3807 */ 3808 mutex_enter(&spa_namespace_lock); 3809 if (spa_lookup(pool) != NULL) { 3810 mutex_exit(&spa_namespace_lock); 3811 return (SET_ERROR(EEXIST)); 3812 } 3813 3814 /* 3815 * Create and initialize the spa structure. 3816 */ 3817 (void) nvlist_lookup_string(props, 3818 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3819 (void) nvlist_lookup_uint64(props, 3820 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3821 if (readonly) 3822 mode = FREAD; 3823 spa = spa_add(pool, config, altroot); 3824 spa->spa_import_flags = flags; 3825 3826 /* 3827 * Verbatim import - Take a pool and insert it into the namespace 3828 * as if it had been loaded at boot. 3829 */ 3830 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3831 if (props != NULL) 3832 spa_configfile_set(spa, props, B_FALSE); 3833 3834 spa_config_sync(spa, B_FALSE, B_TRUE); 3835 3836 mutex_exit(&spa_namespace_lock); 3837 spa_history_log_version(spa, "import"); 3838 3839 return (0); 3840 } 3841 3842 spa_activate(spa, mode); 3843 3844 /* 3845 * Don't start async tasks until we know everything is healthy. 3846 */ 3847 spa_async_suspend(spa); 3848 3849 zpool_get_rewind_policy(config, &policy); 3850 if (policy.zrp_request & ZPOOL_DO_REWIND) 3851 state = SPA_LOAD_RECOVER; 3852 3853 /* 3854 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3855 * because the user-supplied config is actually the one to trust when 3856 * doing an import. 3857 */ 3858 if (state != SPA_LOAD_RECOVER) 3859 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3860 3861 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3862 policy.zrp_request); 3863 3864 /* 3865 * Propagate anything learned while loading the pool and pass it 3866 * back to caller (i.e. rewind info, missing devices, etc). 3867 */ 3868 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3869 spa->spa_load_info) == 0); 3870 3871 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3872 /* 3873 * Toss any existing sparelist, as it doesn't have any validity 3874 * anymore, and conflicts with spa_has_spare(). 3875 */ 3876 if (spa->spa_spares.sav_config) { 3877 nvlist_free(spa->spa_spares.sav_config); 3878 spa->spa_spares.sav_config = NULL; 3879 spa_load_spares(spa); 3880 } 3881 if (spa->spa_l2cache.sav_config) { 3882 nvlist_free(spa->spa_l2cache.sav_config); 3883 spa->spa_l2cache.sav_config = NULL; 3884 spa_load_l2cache(spa); 3885 } 3886 3887 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3888 &nvroot) == 0); 3889 if (error == 0) 3890 error = spa_validate_aux(spa, nvroot, -1ULL, 3891 VDEV_ALLOC_SPARE); 3892 if (error == 0) 3893 error = spa_validate_aux(spa, nvroot, -1ULL, 3894 VDEV_ALLOC_L2CACHE); 3895 spa_config_exit(spa, SCL_ALL, FTAG); 3896 3897 if (props != NULL) 3898 spa_configfile_set(spa, props, B_FALSE); 3899 3900 if (error != 0 || (props && spa_writeable(spa) && 3901 (error = spa_prop_set(spa, props)))) { 3902 spa_unload(spa); 3903 spa_deactivate(spa); 3904 spa_remove(spa); 3905 mutex_exit(&spa_namespace_lock); 3906 return (error); 3907 } 3908 3909 spa_async_resume(spa); 3910 3911 /* 3912 * Override any spares and level 2 cache devices as specified by 3913 * the user, as these may have correct device names/devids, etc. 3914 */ 3915 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3916 &spares, &nspares) == 0) { 3917 if (spa->spa_spares.sav_config) 3918 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3919 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3920 else 3921 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3922 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3923 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3924 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3925 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3926 spa_load_spares(spa); 3927 spa_config_exit(spa, SCL_ALL, FTAG); 3928 spa->spa_spares.sav_sync = B_TRUE; 3929 } 3930 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3931 &l2cache, &nl2cache) == 0) { 3932 if (spa->spa_l2cache.sav_config) 3933 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3934 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3935 else 3936 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3937 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3938 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3939 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3940 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3941 spa_load_l2cache(spa); 3942 spa_config_exit(spa, SCL_ALL, FTAG); 3943 spa->spa_l2cache.sav_sync = B_TRUE; 3944 } 3945 3946 /* 3947 * Check for any removed devices. 3948 */ 3949 if (spa->spa_autoreplace) { 3950 spa_aux_check_removed(&spa->spa_spares); 3951 spa_aux_check_removed(&spa->spa_l2cache); 3952 } 3953 3954 if (spa_writeable(spa)) { 3955 /* 3956 * Update the config cache to include the newly-imported pool. 3957 */ 3958 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3959 } 3960 3961 /* 3962 * It's possible that the pool was expanded while it was exported. 3963 * We kick off an async task to handle this for us. 3964 */ 3965 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3966 3967 mutex_exit(&spa_namespace_lock); 3968 spa_history_log_version(spa, "import"); 3969 3970 return (0); 3971 } 3972 3973 nvlist_t * 3974 spa_tryimport(nvlist_t *tryconfig) 3975 { 3976 nvlist_t *config = NULL; 3977 char *poolname; 3978 spa_t *spa; 3979 uint64_t state; 3980 int error; 3981 3982 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3983 return (NULL); 3984 3985 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3986 return (NULL); 3987 3988 /* 3989 * Create and initialize the spa structure. 3990 */ 3991 mutex_enter(&spa_namespace_lock); 3992 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 3993 spa_activate(spa, FREAD); 3994 3995 /* 3996 * Pass off the heavy lifting to spa_load(). 3997 * Pass TRUE for mosconfig because the user-supplied config 3998 * is actually the one to trust when doing an import. 3999 */ 4000 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4001 4002 /* 4003 * If 'tryconfig' was at least parsable, return the current config. 4004 */ 4005 if (spa->spa_root_vdev != NULL) { 4006 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4007 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4008 poolname) == 0); 4009 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4010 state) == 0); 4011 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4012 spa->spa_uberblock.ub_timestamp) == 0); 4013 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4014 spa->spa_load_info) == 0); 4015 4016 /* 4017 * If the bootfs property exists on this pool then we 4018 * copy it out so that external consumers can tell which 4019 * pools are bootable. 4020 */ 4021 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4022 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4023 4024 /* 4025 * We have to play games with the name since the 4026 * pool was opened as TRYIMPORT_NAME. 4027 */ 4028 if (dsl_dsobj_to_dsname(spa_name(spa), 4029 spa->spa_bootfs, tmpname) == 0) { 4030 char *cp; 4031 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4032 4033 cp = strchr(tmpname, '/'); 4034 if (cp == NULL) { 4035 (void) strlcpy(dsname, tmpname, 4036 MAXPATHLEN); 4037 } else { 4038 (void) snprintf(dsname, MAXPATHLEN, 4039 "%s/%s", poolname, ++cp); 4040 } 4041 VERIFY(nvlist_add_string(config, 4042 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4043 kmem_free(dsname, MAXPATHLEN); 4044 } 4045 kmem_free(tmpname, MAXPATHLEN); 4046 } 4047 4048 /* 4049 * Add the list of hot spares and level 2 cache devices. 4050 */ 4051 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4052 spa_add_spares(spa, config); 4053 spa_add_l2cache(spa, config); 4054 spa_config_exit(spa, SCL_CONFIG, FTAG); 4055 } 4056 4057 spa_unload(spa); 4058 spa_deactivate(spa); 4059 spa_remove(spa); 4060 mutex_exit(&spa_namespace_lock); 4061 4062 return (config); 4063 } 4064 4065 /* 4066 * Pool export/destroy 4067 * 4068 * The act of destroying or exporting a pool is very simple. We make sure there 4069 * is no more pending I/O and any references to the pool are gone. Then, we 4070 * update the pool state and sync all the labels to disk, removing the 4071 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4072 * we don't sync the labels or remove the configuration cache. 4073 */ 4074 static int 4075 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4076 boolean_t force, boolean_t hardforce) 4077 { 4078 spa_t *spa; 4079 4080 if (oldconfig) 4081 *oldconfig = NULL; 4082 4083 if (!(spa_mode_global & FWRITE)) 4084 return (SET_ERROR(EROFS)); 4085 4086 mutex_enter(&spa_namespace_lock); 4087 if ((spa = spa_lookup(pool)) == NULL) { 4088 mutex_exit(&spa_namespace_lock); 4089 return (SET_ERROR(ENOENT)); 4090 } 4091 4092 /* 4093 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4094 * reacquire the namespace lock, and see if we can export. 4095 */ 4096 spa_open_ref(spa, FTAG); 4097 mutex_exit(&spa_namespace_lock); 4098 spa_async_suspend(spa); 4099 mutex_enter(&spa_namespace_lock); 4100 spa_close(spa, FTAG); 4101 4102 /* 4103 * The pool will be in core if it's openable, 4104 * in which case we can modify its state. 4105 */ 4106 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4107 /* 4108 * Objsets may be open only because they're dirty, so we 4109 * have to force it to sync before checking spa_refcnt. 4110 */ 4111 txg_wait_synced(spa->spa_dsl_pool, 0); 4112 4113 /* 4114 * A pool cannot be exported or destroyed if there are active 4115 * references. If we are resetting a pool, allow references by 4116 * fault injection handlers. 4117 */ 4118 if (!spa_refcount_zero(spa) || 4119 (spa->spa_inject_ref != 0 && 4120 new_state != POOL_STATE_UNINITIALIZED)) { 4121 spa_async_resume(spa); 4122 mutex_exit(&spa_namespace_lock); 4123 return (SET_ERROR(EBUSY)); 4124 } 4125 4126 /* 4127 * A pool cannot be exported if it has an active shared spare. 4128 * This is to prevent other pools stealing the active spare 4129 * from an exported pool. At user's own will, such pool can 4130 * be forcedly exported. 4131 */ 4132 if (!force && new_state == POOL_STATE_EXPORTED && 4133 spa_has_active_shared_spare(spa)) { 4134 spa_async_resume(spa); 4135 mutex_exit(&spa_namespace_lock); 4136 return (SET_ERROR(EXDEV)); 4137 } 4138 4139 /* 4140 * We want this to be reflected on every label, 4141 * so mark them all dirty. spa_unload() will do the 4142 * final sync that pushes these changes out. 4143 */ 4144 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4145 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4146 spa->spa_state = new_state; 4147 spa->spa_final_txg = spa_last_synced_txg(spa) + 4148 TXG_DEFER_SIZE + 1; 4149 vdev_config_dirty(spa->spa_root_vdev); 4150 spa_config_exit(spa, SCL_ALL, FTAG); 4151 } 4152 } 4153 4154 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4155 4156 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4157 spa_unload(spa); 4158 spa_deactivate(spa); 4159 } 4160 4161 if (oldconfig && spa->spa_config) 4162 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4163 4164 if (new_state != POOL_STATE_UNINITIALIZED) { 4165 if (!hardforce) 4166 spa_config_sync(spa, B_TRUE, B_TRUE); 4167 spa_remove(spa); 4168 } 4169 mutex_exit(&spa_namespace_lock); 4170 4171 return (0); 4172 } 4173 4174 /* 4175 * Destroy a storage pool. 4176 */ 4177 int 4178 spa_destroy(char *pool) 4179 { 4180 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4181 B_FALSE, B_FALSE)); 4182 } 4183 4184 /* 4185 * Export a storage pool. 4186 */ 4187 int 4188 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4189 boolean_t hardforce) 4190 { 4191 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4192 force, hardforce)); 4193 } 4194 4195 /* 4196 * Similar to spa_export(), this unloads the spa_t without actually removing it 4197 * from the namespace in any way. 4198 */ 4199 int 4200 spa_reset(char *pool) 4201 { 4202 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4203 B_FALSE, B_FALSE)); 4204 } 4205 4206 /* 4207 * ========================================================================== 4208 * Device manipulation 4209 * ========================================================================== 4210 */ 4211 4212 /* 4213 * Add a device to a storage pool. 4214 */ 4215 int 4216 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4217 { 4218 uint64_t txg, id; 4219 int error; 4220 vdev_t *rvd = spa->spa_root_vdev; 4221 vdev_t *vd, *tvd; 4222 nvlist_t **spares, **l2cache; 4223 uint_t nspares, nl2cache; 4224 4225 ASSERT(spa_writeable(spa)); 4226 4227 txg = spa_vdev_enter(spa); 4228 4229 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4230 VDEV_ALLOC_ADD)) != 0) 4231 return (spa_vdev_exit(spa, NULL, txg, error)); 4232 4233 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4234 4235 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4236 &nspares) != 0) 4237 nspares = 0; 4238 4239 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4240 &nl2cache) != 0) 4241 nl2cache = 0; 4242 4243 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4244 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4245 4246 if (vd->vdev_children != 0 && 4247 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4248 return (spa_vdev_exit(spa, vd, txg, error)); 4249 4250 /* 4251 * We must validate the spares and l2cache devices after checking the 4252 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4253 */ 4254 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4255 return (spa_vdev_exit(spa, vd, txg, error)); 4256 4257 /* 4258 * Transfer each new top-level vdev from vd to rvd. 4259 */ 4260 for (int c = 0; c < vd->vdev_children; c++) { 4261 4262 /* 4263 * Set the vdev id to the first hole, if one exists. 4264 */ 4265 for (id = 0; id < rvd->vdev_children; id++) { 4266 if (rvd->vdev_child[id]->vdev_ishole) { 4267 vdev_free(rvd->vdev_child[id]); 4268 break; 4269 } 4270 } 4271 tvd = vd->vdev_child[c]; 4272 vdev_remove_child(vd, tvd); 4273 tvd->vdev_id = id; 4274 vdev_add_child(rvd, tvd); 4275 vdev_config_dirty(tvd); 4276 } 4277 4278 if (nspares != 0) { 4279 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4280 ZPOOL_CONFIG_SPARES); 4281 spa_load_spares(spa); 4282 spa->spa_spares.sav_sync = B_TRUE; 4283 } 4284 4285 if (nl2cache != 0) { 4286 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4287 ZPOOL_CONFIG_L2CACHE); 4288 spa_load_l2cache(spa); 4289 spa->spa_l2cache.sav_sync = B_TRUE; 4290 } 4291 4292 /* 4293 * We have to be careful when adding new vdevs to an existing pool. 4294 * If other threads start allocating from these vdevs before we 4295 * sync the config cache, and we lose power, then upon reboot we may 4296 * fail to open the pool because there are DVAs that the config cache 4297 * can't translate. Therefore, we first add the vdevs without 4298 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4299 * and then let spa_config_update() initialize the new metaslabs. 4300 * 4301 * spa_load() checks for added-but-not-initialized vdevs, so that 4302 * if we lose power at any point in this sequence, the remaining 4303 * steps will be completed the next time we load the pool. 4304 */ 4305 (void) spa_vdev_exit(spa, vd, txg, 0); 4306 4307 mutex_enter(&spa_namespace_lock); 4308 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4309 mutex_exit(&spa_namespace_lock); 4310 4311 return (0); 4312 } 4313 4314 /* 4315 * Attach a device to a mirror. The arguments are the path to any device 4316 * in the mirror, and the nvroot for the new device. If the path specifies 4317 * a device that is not mirrored, we automatically insert the mirror vdev. 4318 * 4319 * If 'replacing' is specified, the new device is intended to replace the 4320 * existing device; in this case the two devices are made into their own 4321 * mirror using the 'replacing' vdev, which is functionally identical to 4322 * the mirror vdev (it actually reuses all the same ops) but has a few 4323 * extra rules: you can't attach to it after it's been created, and upon 4324 * completion of resilvering, the first disk (the one being replaced) 4325 * is automatically detached. 4326 */ 4327 int 4328 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4329 { 4330 uint64_t txg, dtl_max_txg; 4331 vdev_t *rvd = spa->spa_root_vdev; 4332 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4333 vdev_ops_t *pvops; 4334 char *oldvdpath, *newvdpath; 4335 int newvd_isspare; 4336 int error; 4337 4338 ASSERT(spa_writeable(spa)); 4339 4340 txg = spa_vdev_enter(spa); 4341 4342 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4343 4344 if (oldvd == NULL) 4345 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4346 4347 if (!oldvd->vdev_ops->vdev_op_leaf) 4348 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4349 4350 pvd = oldvd->vdev_parent; 4351 4352 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4353 VDEV_ALLOC_ATTACH)) != 0) 4354 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4355 4356 if (newrootvd->vdev_children != 1) 4357 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4358 4359 newvd = newrootvd->vdev_child[0]; 4360 4361 if (!newvd->vdev_ops->vdev_op_leaf) 4362 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4363 4364 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4365 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4366 4367 /* 4368 * Spares can't replace logs 4369 */ 4370 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4371 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4372 4373 if (!replacing) { 4374 /* 4375 * For attach, the only allowable parent is a mirror or the root 4376 * vdev. 4377 */ 4378 if (pvd->vdev_ops != &vdev_mirror_ops && 4379 pvd->vdev_ops != &vdev_root_ops) 4380 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4381 4382 pvops = &vdev_mirror_ops; 4383 } else { 4384 /* 4385 * Active hot spares can only be replaced by inactive hot 4386 * spares. 4387 */ 4388 if (pvd->vdev_ops == &vdev_spare_ops && 4389 oldvd->vdev_isspare && 4390 !spa_has_spare(spa, newvd->vdev_guid)) 4391 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4392 4393 /* 4394 * If the source is a hot spare, and the parent isn't already a 4395 * spare, then we want to create a new hot spare. Otherwise, we 4396 * want to create a replacing vdev. The user is not allowed to 4397 * attach to a spared vdev child unless the 'isspare' state is 4398 * the same (spare replaces spare, non-spare replaces 4399 * non-spare). 4400 */ 4401 if (pvd->vdev_ops == &vdev_replacing_ops && 4402 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4403 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4404 } else if (pvd->vdev_ops == &vdev_spare_ops && 4405 newvd->vdev_isspare != oldvd->vdev_isspare) { 4406 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4407 } 4408 4409 if (newvd->vdev_isspare) 4410 pvops = &vdev_spare_ops; 4411 else 4412 pvops = &vdev_replacing_ops; 4413 } 4414 4415 /* 4416 * Make sure the new device is big enough. 4417 */ 4418 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4419 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4420 4421 /* 4422 * The new device cannot have a higher alignment requirement 4423 * than the top-level vdev. 4424 */ 4425 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4426 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4427 4428 /* 4429 * If this is an in-place replacement, update oldvd's path and devid 4430 * to make it distinguishable from newvd, and unopenable from now on. 4431 */ 4432 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4433 spa_strfree(oldvd->vdev_path); 4434 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4435 KM_SLEEP); 4436 (void) sprintf(oldvd->vdev_path, "%s/%s", 4437 newvd->vdev_path, "old"); 4438 if (oldvd->vdev_devid != NULL) { 4439 spa_strfree(oldvd->vdev_devid); 4440 oldvd->vdev_devid = NULL; 4441 } 4442 } 4443 4444 /* mark the device being resilvered */ 4445 newvd->vdev_resilvering = B_TRUE; 4446 4447 /* 4448 * If the parent is not a mirror, or if we're replacing, insert the new 4449 * mirror/replacing/spare vdev above oldvd. 4450 */ 4451 if (pvd->vdev_ops != pvops) 4452 pvd = vdev_add_parent(oldvd, pvops); 4453 4454 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4455 ASSERT(pvd->vdev_ops == pvops); 4456 ASSERT(oldvd->vdev_parent == pvd); 4457 4458 /* 4459 * Extract the new device from its root and add it to pvd. 4460 */ 4461 vdev_remove_child(newrootvd, newvd); 4462 newvd->vdev_id = pvd->vdev_children; 4463 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4464 vdev_add_child(pvd, newvd); 4465 4466 tvd = newvd->vdev_top; 4467 ASSERT(pvd->vdev_top == tvd); 4468 ASSERT(tvd->vdev_parent == rvd); 4469 4470 vdev_config_dirty(tvd); 4471 4472 /* 4473 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4474 * for any dmu_sync-ed blocks. It will propagate upward when 4475 * spa_vdev_exit() calls vdev_dtl_reassess(). 4476 */ 4477 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4478 4479 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4480 dtl_max_txg - TXG_INITIAL); 4481 4482 if (newvd->vdev_isspare) { 4483 spa_spare_activate(newvd); 4484 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4485 } 4486 4487 oldvdpath = spa_strdup(oldvd->vdev_path); 4488 newvdpath = spa_strdup(newvd->vdev_path); 4489 newvd_isspare = newvd->vdev_isspare; 4490 4491 /* 4492 * Mark newvd's DTL dirty in this txg. 4493 */ 4494 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4495 4496 /* 4497 * Restart the resilver 4498 */ 4499 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4500 4501 /* 4502 * Commit the config 4503 */ 4504 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4505 4506 spa_history_log_internal(spa, "vdev attach", NULL, 4507 "%s vdev=%s %s vdev=%s", 4508 replacing && newvd_isspare ? "spare in" : 4509 replacing ? "replace" : "attach", newvdpath, 4510 replacing ? "for" : "to", oldvdpath); 4511 4512 spa_strfree(oldvdpath); 4513 spa_strfree(newvdpath); 4514 4515 if (spa->spa_bootfs) 4516 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4517 4518 return (0); 4519 } 4520 4521 /* 4522 * Detach a device from a mirror or replacing vdev. 4523 * If 'replace_done' is specified, only detach if the parent 4524 * is a replacing vdev. 4525 */ 4526 int 4527 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4528 { 4529 uint64_t txg; 4530 int error; 4531 vdev_t *rvd = spa->spa_root_vdev; 4532 vdev_t *vd, *pvd, *cvd, *tvd; 4533 boolean_t unspare = B_FALSE; 4534 uint64_t unspare_guid = 0; 4535 char *vdpath; 4536 4537 ASSERT(spa_writeable(spa)); 4538 4539 txg = spa_vdev_enter(spa); 4540 4541 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4542 4543 if (vd == NULL) 4544 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4545 4546 if (!vd->vdev_ops->vdev_op_leaf) 4547 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4548 4549 pvd = vd->vdev_parent; 4550 4551 /* 4552 * If the parent/child relationship is not as expected, don't do it. 4553 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4554 * vdev that's replacing B with C. The user's intent in replacing 4555 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4556 * the replace by detaching C, the expected behavior is to end up 4557 * M(A,B). But suppose that right after deciding to detach C, 4558 * the replacement of B completes. We would have M(A,C), and then 4559 * ask to detach C, which would leave us with just A -- not what 4560 * the user wanted. To prevent this, we make sure that the 4561 * parent/child relationship hasn't changed -- in this example, 4562 * that C's parent is still the replacing vdev R. 4563 */ 4564 if (pvd->vdev_guid != pguid && pguid != 0) 4565 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4566 4567 /* 4568 * Only 'replacing' or 'spare' vdevs can be replaced. 4569 */ 4570 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4571 pvd->vdev_ops != &vdev_spare_ops) 4572 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4573 4574 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4575 spa_version(spa) >= SPA_VERSION_SPARES); 4576 4577 /* 4578 * Only mirror, replacing, and spare vdevs support detach. 4579 */ 4580 if (pvd->vdev_ops != &vdev_replacing_ops && 4581 pvd->vdev_ops != &vdev_mirror_ops && 4582 pvd->vdev_ops != &vdev_spare_ops) 4583 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4584 4585 /* 4586 * If this device has the only valid copy of some data, 4587 * we cannot safely detach it. 4588 */ 4589 if (vdev_dtl_required(vd)) 4590 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4591 4592 ASSERT(pvd->vdev_children >= 2); 4593 4594 /* 4595 * If we are detaching the second disk from a replacing vdev, then 4596 * check to see if we changed the original vdev's path to have "/old" 4597 * at the end in spa_vdev_attach(). If so, undo that change now. 4598 */ 4599 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4600 vd->vdev_path != NULL) { 4601 size_t len = strlen(vd->vdev_path); 4602 4603 for (int c = 0; c < pvd->vdev_children; c++) { 4604 cvd = pvd->vdev_child[c]; 4605 4606 if (cvd == vd || cvd->vdev_path == NULL) 4607 continue; 4608 4609 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4610 strcmp(cvd->vdev_path + len, "/old") == 0) { 4611 spa_strfree(cvd->vdev_path); 4612 cvd->vdev_path = spa_strdup(vd->vdev_path); 4613 break; 4614 } 4615 } 4616 } 4617 4618 /* 4619 * If we are detaching the original disk from a spare, then it implies 4620 * that the spare should become a real disk, and be removed from the 4621 * active spare list for the pool. 4622 */ 4623 if (pvd->vdev_ops == &vdev_spare_ops && 4624 vd->vdev_id == 0 && 4625 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4626 unspare = B_TRUE; 4627 4628 /* 4629 * Erase the disk labels so the disk can be used for other things. 4630 * This must be done after all other error cases are handled, 4631 * but before we disembowel vd (so we can still do I/O to it). 4632 * But if we can't do it, don't treat the error as fatal -- 4633 * it may be that the unwritability of the disk is the reason 4634 * it's being detached! 4635 */ 4636 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4637 4638 /* 4639 * Remove vd from its parent and compact the parent's children. 4640 */ 4641 vdev_remove_child(pvd, vd); 4642 vdev_compact_children(pvd); 4643 4644 /* 4645 * Remember one of the remaining children so we can get tvd below. 4646 */ 4647 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4648 4649 /* 4650 * If we need to remove the remaining child from the list of hot spares, 4651 * do it now, marking the vdev as no longer a spare in the process. 4652 * We must do this before vdev_remove_parent(), because that can 4653 * change the GUID if it creates a new toplevel GUID. For a similar 4654 * reason, we must remove the spare now, in the same txg as the detach; 4655 * otherwise someone could attach a new sibling, change the GUID, and 4656 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4657 */ 4658 if (unspare) { 4659 ASSERT(cvd->vdev_isspare); 4660 spa_spare_remove(cvd); 4661 unspare_guid = cvd->vdev_guid; 4662 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4663 cvd->vdev_unspare = B_TRUE; 4664 } 4665 4666 /* 4667 * If the parent mirror/replacing vdev only has one child, 4668 * the parent is no longer needed. Remove it from the tree. 4669 */ 4670 if (pvd->vdev_children == 1) { 4671 if (pvd->vdev_ops == &vdev_spare_ops) 4672 cvd->vdev_unspare = B_FALSE; 4673 vdev_remove_parent(cvd); 4674 cvd->vdev_resilvering = B_FALSE; 4675 } 4676 4677 4678 /* 4679 * We don't set tvd until now because the parent we just removed 4680 * may have been the previous top-level vdev. 4681 */ 4682 tvd = cvd->vdev_top; 4683 ASSERT(tvd->vdev_parent == rvd); 4684 4685 /* 4686 * Reevaluate the parent vdev state. 4687 */ 4688 vdev_propagate_state(cvd); 4689 4690 /* 4691 * If the 'autoexpand' property is set on the pool then automatically 4692 * try to expand the size of the pool. For example if the device we 4693 * just detached was smaller than the others, it may be possible to 4694 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4695 * first so that we can obtain the updated sizes of the leaf vdevs. 4696 */ 4697 if (spa->spa_autoexpand) { 4698 vdev_reopen(tvd); 4699 vdev_expand(tvd, txg); 4700 } 4701 4702 vdev_config_dirty(tvd); 4703 4704 /* 4705 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4706 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4707 * But first make sure we're not on any *other* txg's DTL list, to 4708 * prevent vd from being accessed after it's freed. 4709 */ 4710 vdpath = spa_strdup(vd->vdev_path); 4711 for (int t = 0; t < TXG_SIZE; t++) 4712 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4713 vd->vdev_detached = B_TRUE; 4714 vdev_dirty(tvd, VDD_DTL, vd, txg); 4715 4716 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4717 4718 /* hang on to the spa before we release the lock */ 4719 spa_open_ref(spa, FTAG); 4720 4721 error = spa_vdev_exit(spa, vd, txg, 0); 4722 4723 spa_history_log_internal(spa, "detach", NULL, 4724 "vdev=%s", vdpath); 4725 spa_strfree(vdpath); 4726 4727 /* 4728 * If this was the removal of the original device in a hot spare vdev, 4729 * then we want to go through and remove the device from the hot spare 4730 * list of every other pool. 4731 */ 4732 if (unspare) { 4733 spa_t *altspa = NULL; 4734 4735 mutex_enter(&spa_namespace_lock); 4736 while ((altspa = spa_next(altspa)) != NULL) { 4737 if (altspa->spa_state != POOL_STATE_ACTIVE || 4738 altspa == spa) 4739 continue; 4740 4741 spa_open_ref(altspa, FTAG); 4742 mutex_exit(&spa_namespace_lock); 4743 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4744 mutex_enter(&spa_namespace_lock); 4745 spa_close(altspa, FTAG); 4746 } 4747 mutex_exit(&spa_namespace_lock); 4748 4749 /* search the rest of the vdevs for spares to remove */ 4750 spa_vdev_resilver_done(spa); 4751 } 4752 4753 /* all done with the spa; OK to release */ 4754 mutex_enter(&spa_namespace_lock); 4755 spa_close(spa, FTAG); 4756 mutex_exit(&spa_namespace_lock); 4757 4758 return (error); 4759 } 4760 4761 /* 4762 * Split a set of devices from their mirrors, and create a new pool from them. 4763 */ 4764 int 4765 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4766 nvlist_t *props, boolean_t exp) 4767 { 4768 int error = 0; 4769 uint64_t txg, *glist; 4770 spa_t *newspa; 4771 uint_t c, children, lastlog; 4772 nvlist_t **child, *nvl, *tmp; 4773 dmu_tx_t *tx; 4774 char *altroot = NULL; 4775 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4776 boolean_t activate_slog; 4777 4778 ASSERT(spa_writeable(spa)); 4779 4780 txg = spa_vdev_enter(spa); 4781 4782 /* clear the log and flush everything up to now */ 4783 activate_slog = spa_passivate_log(spa); 4784 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4785 error = spa_offline_log(spa); 4786 txg = spa_vdev_config_enter(spa); 4787 4788 if (activate_slog) 4789 spa_activate_log(spa); 4790 4791 if (error != 0) 4792 return (spa_vdev_exit(spa, NULL, txg, error)); 4793 4794 /* check new spa name before going any further */ 4795 if (spa_lookup(newname) != NULL) 4796 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4797 4798 /* 4799 * scan through all the children to ensure they're all mirrors 4800 */ 4801 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4802 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4803 &children) != 0) 4804 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4805 4806 /* first, check to ensure we've got the right child count */ 4807 rvd = spa->spa_root_vdev; 4808 lastlog = 0; 4809 for (c = 0; c < rvd->vdev_children; c++) { 4810 vdev_t *vd = rvd->vdev_child[c]; 4811 4812 /* don't count the holes & logs as children */ 4813 if (vd->vdev_islog || vd->vdev_ishole) { 4814 if (lastlog == 0) 4815 lastlog = c; 4816 continue; 4817 } 4818 4819 lastlog = 0; 4820 } 4821 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4822 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4823 4824 /* next, ensure no spare or cache devices are part of the split */ 4825 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4826 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4827 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4828 4829 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4830 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4831 4832 /* then, loop over each vdev and validate it */ 4833 for (c = 0; c < children; c++) { 4834 uint64_t is_hole = 0; 4835 4836 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4837 &is_hole); 4838 4839 if (is_hole != 0) { 4840 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4841 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4842 continue; 4843 } else { 4844 error = SET_ERROR(EINVAL); 4845 break; 4846 } 4847 } 4848 4849 /* which disk is going to be split? */ 4850 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4851 &glist[c]) != 0) { 4852 error = SET_ERROR(EINVAL); 4853 break; 4854 } 4855 4856 /* look it up in the spa */ 4857 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4858 if (vml[c] == NULL) { 4859 error = SET_ERROR(ENODEV); 4860 break; 4861 } 4862 4863 /* make sure there's nothing stopping the split */ 4864 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4865 vml[c]->vdev_islog || 4866 vml[c]->vdev_ishole || 4867 vml[c]->vdev_isspare || 4868 vml[c]->vdev_isl2cache || 4869 !vdev_writeable(vml[c]) || 4870 vml[c]->vdev_children != 0 || 4871 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4872 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4873 error = SET_ERROR(EINVAL); 4874 break; 4875 } 4876 4877 if (vdev_dtl_required(vml[c])) { 4878 error = SET_ERROR(EBUSY); 4879 break; 4880 } 4881 4882 /* we need certain info from the top level */ 4883 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4884 vml[c]->vdev_top->vdev_ms_array) == 0); 4885 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4886 vml[c]->vdev_top->vdev_ms_shift) == 0); 4887 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4888 vml[c]->vdev_top->vdev_asize) == 0); 4889 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4890 vml[c]->vdev_top->vdev_ashift) == 0); 4891 } 4892 4893 if (error != 0) { 4894 kmem_free(vml, children * sizeof (vdev_t *)); 4895 kmem_free(glist, children * sizeof (uint64_t)); 4896 return (spa_vdev_exit(spa, NULL, txg, error)); 4897 } 4898 4899 /* stop writers from using the disks */ 4900 for (c = 0; c < children; c++) { 4901 if (vml[c] != NULL) 4902 vml[c]->vdev_offline = B_TRUE; 4903 } 4904 vdev_reopen(spa->spa_root_vdev); 4905 4906 /* 4907 * Temporarily record the splitting vdevs in the spa config. This 4908 * will disappear once the config is regenerated. 4909 */ 4910 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4911 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4912 glist, children) == 0); 4913 kmem_free(glist, children * sizeof (uint64_t)); 4914 4915 mutex_enter(&spa->spa_props_lock); 4916 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4917 nvl) == 0); 4918 mutex_exit(&spa->spa_props_lock); 4919 spa->spa_config_splitting = nvl; 4920 vdev_config_dirty(spa->spa_root_vdev); 4921 4922 /* configure and create the new pool */ 4923 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4924 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4925 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4926 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4927 spa_version(spa)) == 0); 4928 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4929 spa->spa_config_txg) == 0); 4930 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4931 spa_generate_guid(NULL)) == 0); 4932 (void) nvlist_lookup_string(props, 4933 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4934 4935 /* add the new pool to the namespace */ 4936 newspa = spa_add(newname, config, altroot); 4937 newspa->spa_config_txg = spa->spa_config_txg; 4938 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4939 4940 /* release the spa config lock, retaining the namespace lock */ 4941 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4942 4943 if (zio_injection_enabled) 4944 zio_handle_panic_injection(spa, FTAG, 1); 4945 4946 spa_activate(newspa, spa_mode_global); 4947 spa_async_suspend(newspa); 4948 4949 /* create the new pool from the disks of the original pool */ 4950 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4951 if (error) 4952 goto out; 4953 4954 /* if that worked, generate a real config for the new pool */ 4955 if (newspa->spa_root_vdev != NULL) { 4956 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4957 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4958 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4959 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4960 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4961 B_TRUE)); 4962 } 4963 4964 /* set the props */ 4965 if (props != NULL) { 4966 spa_configfile_set(newspa, props, B_FALSE); 4967 error = spa_prop_set(newspa, props); 4968 if (error) 4969 goto out; 4970 } 4971 4972 /* flush everything */ 4973 txg = spa_vdev_config_enter(newspa); 4974 vdev_config_dirty(newspa->spa_root_vdev); 4975 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 4976 4977 if (zio_injection_enabled) 4978 zio_handle_panic_injection(spa, FTAG, 2); 4979 4980 spa_async_resume(newspa); 4981 4982 /* finally, update the original pool's config */ 4983 txg = spa_vdev_config_enter(spa); 4984 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 4985 error = dmu_tx_assign(tx, TXG_WAIT); 4986 if (error != 0) 4987 dmu_tx_abort(tx); 4988 for (c = 0; c < children; c++) { 4989 if (vml[c] != NULL) { 4990 vdev_split(vml[c]); 4991 if (error == 0) 4992 spa_history_log_internal(spa, "detach", tx, 4993 "vdev=%s", vml[c]->vdev_path); 4994 vdev_free(vml[c]); 4995 } 4996 } 4997 vdev_config_dirty(spa->spa_root_vdev); 4998 spa->spa_config_splitting = NULL; 4999 nvlist_free(nvl); 5000 if (error == 0) 5001 dmu_tx_commit(tx); 5002 (void) spa_vdev_exit(spa, NULL, txg, 0); 5003 5004 if (zio_injection_enabled) 5005 zio_handle_panic_injection(spa, FTAG, 3); 5006 5007 /* split is complete; log a history record */ 5008 spa_history_log_internal(newspa, "split", NULL, 5009 "from pool %s", spa_name(spa)); 5010 5011 kmem_free(vml, children * sizeof (vdev_t *)); 5012 5013 /* if we're not going to mount the filesystems in userland, export */ 5014 if (exp) 5015 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5016 B_FALSE, B_FALSE); 5017 5018 return (error); 5019 5020 out: 5021 spa_unload(newspa); 5022 spa_deactivate(newspa); 5023 spa_remove(newspa); 5024 5025 txg = spa_vdev_config_enter(spa); 5026 5027 /* re-online all offlined disks */ 5028 for (c = 0; c < children; c++) { 5029 if (vml[c] != NULL) 5030 vml[c]->vdev_offline = B_FALSE; 5031 } 5032 vdev_reopen(spa->spa_root_vdev); 5033 5034 nvlist_free(spa->spa_config_splitting); 5035 spa->spa_config_splitting = NULL; 5036 (void) spa_vdev_exit(spa, NULL, txg, error); 5037 5038 kmem_free(vml, children * sizeof (vdev_t *)); 5039 return (error); 5040 } 5041 5042 static nvlist_t * 5043 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5044 { 5045 for (int i = 0; i < count; i++) { 5046 uint64_t guid; 5047 5048 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5049 &guid) == 0); 5050 5051 if (guid == target_guid) 5052 return (nvpp[i]); 5053 } 5054 5055 return (NULL); 5056 } 5057 5058 static void 5059 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5060 nvlist_t *dev_to_remove) 5061 { 5062 nvlist_t **newdev = NULL; 5063 5064 if (count > 1) 5065 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5066 5067 for (int i = 0, j = 0; i < count; i++) { 5068 if (dev[i] == dev_to_remove) 5069 continue; 5070 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5071 } 5072 5073 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5074 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5075 5076 for (int i = 0; i < count - 1; i++) 5077 nvlist_free(newdev[i]); 5078 5079 if (count > 1) 5080 kmem_free(newdev, (count - 1) * sizeof (void *)); 5081 } 5082 5083 /* 5084 * Evacuate the device. 5085 */ 5086 static int 5087 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5088 { 5089 uint64_t txg; 5090 int error = 0; 5091 5092 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5093 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5094 ASSERT(vd == vd->vdev_top); 5095 5096 /* 5097 * Evacuate the device. We don't hold the config lock as writer 5098 * since we need to do I/O but we do keep the 5099 * spa_namespace_lock held. Once this completes the device 5100 * should no longer have any blocks allocated on it. 5101 */ 5102 if (vd->vdev_islog) { 5103 if (vd->vdev_stat.vs_alloc != 0) 5104 error = spa_offline_log(spa); 5105 } else { 5106 error = SET_ERROR(ENOTSUP); 5107 } 5108 5109 if (error) 5110 return (error); 5111 5112 /* 5113 * The evacuation succeeded. Remove any remaining MOS metadata 5114 * associated with this vdev, and wait for these changes to sync. 5115 */ 5116 ASSERT0(vd->vdev_stat.vs_alloc); 5117 txg = spa_vdev_config_enter(spa); 5118 vd->vdev_removing = B_TRUE; 5119 vdev_dirty(vd, 0, NULL, txg); 5120 vdev_config_dirty(vd); 5121 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5122 5123 return (0); 5124 } 5125 5126 /* 5127 * Complete the removal by cleaning up the namespace. 5128 */ 5129 static void 5130 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5131 { 5132 vdev_t *rvd = spa->spa_root_vdev; 5133 uint64_t id = vd->vdev_id; 5134 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5135 5136 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5137 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5138 ASSERT(vd == vd->vdev_top); 5139 5140 /* 5141 * Only remove any devices which are empty. 5142 */ 5143 if (vd->vdev_stat.vs_alloc != 0) 5144 return; 5145 5146 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5147 5148 if (list_link_active(&vd->vdev_state_dirty_node)) 5149 vdev_state_clean(vd); 5150 if (list_link_active(&vd->vdev_config_dirty_node)) 5151 vdev_config_clean(vd); 5152 5153 vdev_free(vd); 5154 5155 if (last_vdev) { 5156 vdev_compact_children(rvd); 5157 } else { 5158 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5159 vdev_add_child(rvd, vd); 5160 } 5161 vdev_config_dirty(rvd); 5162 5163 /* 5164 * Reassess the health of our root vdev. 5165 */ 5166 vdev_reopen(rvd); 5167 } 5168 5169 /* 5170 * Remove a device from the pool - 5171 * 5172 * Removing a device from the vdev namespace requires several steps 5173 * and can take a significant amount of time. As a result we use 5174 * the spa_vdev_config_[enter/exit] functions which allow us to 5175 * grab and release the spa_config_lock while still holding the namespace 5176 * lock. During each step the configuration is synced out. 5177 */ 5178 5179 /* 5180 * Remove a device from the pool. Currently, this supports removing only hot 5181 * spares, slogs, and level 2 ARC devices. 5182 */ 5183 int 5184 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5185 { 5186 vdev_t *vd; 5187 metaslab_group_t *mg; 5188 nvlist_t **spares, **l2cache, *nv; 5189 uint64_t txg = 0; 5190 uint_t nspares, nl2cache; 5191 int error = 0; 5192 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5193 5194 ASSERT(spa_writeable(spa)); 5195 5196 if (!locked) 5197 txg = spa_vdev_enter(spa); 5198 5199 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5200 5201 if (spa->spa_spares.sav_vdevs != NULL && 5202 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5203 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5204 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5205 /* 5206 * Only remove the hot spare if it's not currently in use 5207 * in this pool. 5208 */ 5209 if (vd == NULL || unspare) { 5210 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5211 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5212 spa_load_spares(spa); 5213 spa->spa_spares.sav_sync = B_TRUE; 5214 } else { 5215 error = SET_ERROR(EBUSY); 5216 } 5217 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5218 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5219 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5220 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5221 /* 5222 * Cache devices can always be removed. 5223 */ 5224 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5225 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5226 spa_load_l2cache(spa); 5227 spa->spa_l2cache.sav_sync = B_TRUE; 5228 } else if (vd != NULL && vd->vdev_islog) { 5229 ASSERT(!locked); 5230 ASSERT(vd == vd->vdev_top); 5231 5232 /* 5233 * XXX - Once we have bp-rewrite this should 5234 * become the common case. 5235 */ 5236 5237 mg = vd->vdev_mg; 5238 5239 /* 5240 * Stop allocating from this vdev. 5241 */ 5242 metaslab_group_passivate(mg); 5243 5244 /* 5245 * Wait for the youngest allocations and frees to sync, 5246 * and then wait for the deferral of those frees to finish. 5247 */ 5248 spa_vdev_config_exit(spa, NULL, 5249 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5250 5251 /* 5252 * Attempt to evacuate the vdev. 5253 */ 5254 error = spa_vdev_remove_evacuate(spa, vd); 5255 5256 txg = spa_vdev_config_enter(spa); 5257 5258 /* 5259 * If we couldn't evacuate the vdev, unwind. 5260 */ 5261 if (error) { 5262 metaslab_group_activate(mg); 5263 return (spa_vdev_exit(spa, NULL, txg, error)); 5264 } 5265 5266 /* 5267 * Clean up the vdev namespace. 5268 */ 5269 spa_vdev_remove_from_namespace(spa, vd); 5270 5271 } else if (vd != NULL) { 5272 /* 5273 * Normal vdevs cannot be removed (yet). 5274 */ 5275 error = SET_ERROR(ENOTSUP); 5276 } else { 5277 /* 5278 * There is no vdev of any kind with the specified guid. 5279 */ 5280 error = SET_ERROR(ENOENT); 5281 } 5282 5283 if (!locked) 5284 return (spa_vdev_exit(spa, NULL, txg, error)); 5285 5286 return (error); 5287 } 5288 5289 /* 5290 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5291 * current spared, so we can detach it. 5292 */ 5293 static vdev_t * 5294 spa_vdev_resilver_done_hunt(vdev_t *vd) 5295 { 5296 vdev_t *newvd, *oldvd; 5297 5298 for (int c = 0; c < vd->vdev_children; c++) { 5299 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5300 if (oldvd != NULL) 5301 return (oldvd); 5302 } 5303 5304 /* 5305 * Check for a completed replacement. We always consider the first 5306 * vdev in the list to be the oldest vdev, and the last one to be 5307 * the newest (see spa_vdev_attach() for how that works). In 5308 * the case where the newest vdev is faulted, we will not automatically 5309 * remove it after a resilver completes. This is OK as it will require 5310 * user intervention to determine which disk the admin wishes to keep. 5311 */ 5312 if (vd->vdev_ops == &vdev_replacing_ops) { 5313 ASSERT(vd->vdev_children > 1); 5314 5315 newvd = vd->vdev_child[vd->vdev_children - 1]; 5316 oldvd = vd->vdev_child[0]; 5317 5318 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5319 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5320 !vdev_dtl_required(oldvd)) 5321 return (oldvd); 5322 } 5323 5324 /* 5325 * Check for a completed resilver with the 'unspare' flag set. 5326 */ 5327 if (vd->vdev_ops == &vdev_spare_ops) { 5328 vdev_t *first = vd->vdev_child[0]; 5329 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5330 5331 if (last->vdev_unspare) { 5332 oldvd = first; 5333 newvd = last; 5334 } else if (first->vdev_unspare) { 5335 oldvd = last; 5336 newvd = first; 5337 } else { 5338 oldvd = NULL; 5339 } 5340 5341 if (oldvd != NULL && 5342 vdev_dtl_empty(newvd, DTL_MISSING) && 5343 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5344 !vdev_dtl_required(oldvd)) 5345 return (oldvd); 5346 5347 /* 5348 * If there are more than two spares attached to a disk, 5349 * and those spares are not required, then we want to 5350 * attempt to free them up now so that they can be used 5351 * by other pools. Once we're back down to a single 5352 * disk+spare, we stop removing them. 5353 */ 5354 if (vd->vdev_children > 2) { 5355 newvd = vd->vdev_child[1]; 5356 5357 if (newvd->vdev_isspare && last->vdev_isspare && 5358 vdev_dtl_empty(last, DTL_MISSING) && 5359 vdev_dtl_empty(last, DTL_OUTAGE) && 5360 !vdev_dtl_required(newvd)) 5361 return (newvd); 5362 } 5363 } 5364 5365 return (NULL); 5366 } 5367 5368 static void 5369 spa_vdev_resilver_done(spa_t *spa) 5370 { 5371 vdev_t *vd, *pvd, *ppvd; 5372 uint64_t guid, sguid, pguid, ppguid; 5373 5374 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5375 5376 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5377 pvd = vd->vdev_parent; 5378 ppvd = pvd->vdev_parent; 5379 guid = vd->vdev_guid; 5380 pguid = pvd->vdev_guid; 5381 ppguid = ppvd->vdev_guid; 5382 sguid = 0; 5383 /* 5384 * If we have just finished replacing a hot spared device, then 5385 * we need to detach the parent's first child (the original hot 5386 * spare) as well. 5387 */ 5388 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5389 ppvd->vdev_children == 2) { 5390 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5391 sguid = ppvd->vdev_child[1]->vdev_guid; 5392 } 5393 spa_config_exit(spa, SCL_ALL, FTAG); 5394 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5395 return; 5396 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5397 return; 5398 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5399 } 5400 5401 spa_config_exit(spa, SCL_ALL, FTAG); 5402 } 5403 5404 /* 5405 * Update the stored path or FRU for this vdev. 5406 */ 5407 int 5408 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5409 boolean_t ispath) 5410 { 5411 vdev_t *vd; 5412 boolean_t sync = B_FALSE; 5413 5414 ASSERT(spa_writeable(spa)); 5415 5416 spa_vdev_state_enter(spa, SCL_ALL); 5417 5418 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5419 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5420 5421 if (!vd->vdev_ops->vdev_op_leaf) 5422 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5423 5424 if (ispath) { 5425 if (strcmp(value, vd->vdev_path) != 0) { 5426 spa_strfree(vd->vdev_path); 5427 vd->vdev_path = spa_strdup(value); 5428 sync = B_TRUE; 5429 } 5430 } else { 5431 if (vd->vdev_fru == NULL) { 5432 vd->vdev_fru = spa_strdup(value); 5433 sync = B_TRUE; 5434 } else if (strcmp(value, vd->vdev_fru) != 0) { 5435 spa_strfree(vd->vdev_fru); 5436 vd->vdev_fru = spa_strdup(value); 5437 sync = B_TRUE; 5438 } 5439 } 5440 5441 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5442 } 5443 5444 int 5445 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5446 { 5447 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5448 } 5449 5450 int 5451 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5452 { 5453 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5454 } 5455 5456 /* 5457 * ========================================================================== 5458 * SPA Scanning 5459 * ========================================================================== 5460 */ 5461 5462 int 5463 spa_scan_stop(spa_t *spa) 5464 { 5465 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5466 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5467 return (SET_ERROR(EBUSY)); 5468 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5469 } 5470 5471 int 5472 spa_scan(spa_t *spa, pool_scan_func_t func) 5473 { 5474 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5475 5476 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5477 return (SET_ERROR(ENOTSUP)); 5478 5479 /* 5480 * If a resilver was requested, but there is no DTL on a 5481 * writeable leaf device, we have nothing to do. 5482 */ 5483 if (func == POOL_SCAN_RESILVER && 5484 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5485 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5486 return (0); 5487 } 5488 5489 return (dsl_scan(spa->spa_dsl_pool, func)); 5490 } 5491 5492 /* 5493 * ========================================================================== 5494 * SPA async task processing 5495 * ========================================================================== 5496 */ 5497 5498 static void 5499 spa_async_remove(spa_t *spa, vdev_t *vd) 5500 { 5501 if (vd->vdev_remove_wanted) { 5502 vd->vdev_remove_wanted = B_FALSE; 5503 vd->vdev_delayed_close = B_FALSE; 5504 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5505 5506 /* 5507 * We want to clear the stats, but we don't want to do a full 5508 * vdev_clear() as that will cause us to throw away 5509 * degraded/faulted state as well as attempt to reopen the 5510 * device, all of which is a waste. 5511 */ 5512 vd->vdev_stat.vs_read_errors = 0; 5513 vd->vdev_stat.vs_write_errors = 0; 5514 vd->vdev_stat.vs_checksum_errors = 0; 5515 5516 vdev_state_dirty(vd->vdev_top); 5517 } 5518 5519 for (int c = 0; c < vd->vdev_children; c++) 5520 spa_async_remove(spa, vd->vdev_child[c]); 5521 } 5522 5523 static void 5524 spa_async_probe(spa_t *spa, vdev_t *vd) 5525 { 5526 if (vd->vdev_probe_wanted) { 5527 vd->vdev_probe_wanted = B_FALSE; 5528 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5529 } 5530 5531 for (int c = 0; c < vd->vdev_children; c++) 5532 spa_async_probe(spa, vd->vdev_child[c]); 5533 } 5534 5535 static void 5536 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5537 { 5538 sysevent_id_t eid; 5539 nvlist_t *attr; 5540 char *physpath; 5541 5542 if (!spa->spa_autoexpand) 5543 return; 5544 5545 for (int c = 0; c < vd->vdev_children; c++) { 5546 vdev_t *cvd = vd->vdev_child[c]; 5547 spa_async_autoexpand(spa, cvd); 5548 } 5549 5550 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5551 return; 5552 5553 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5554 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5555 5556 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5557 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5558 5559 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5560 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5561 5562 nvlist_free(attr); 5563 kmem_free(physpath, MAXPATHLEN); 5564 } 5565 5566 static void 5567 spa_async_thread(spa_t *spa) 5568 { 5569 int tasks; 5570 5571 ASSERT(spa->spa_sync_on); 5572 5573 mutex_enter(&spa->spa_async_lock); 5574 tasks = spa->spa_async_tasks; 5575 spa->spa_async_tasks = 0; 5576 mutex_exit(&spa->spa_async_lock); 5577 5578 /* 5579 * See if the config needs to be updated. 5580 */ 5581 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5582 uint64_t old_space, new_space; 5583 5584 mutex_enter(&spa_namespace_lock); 5585 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5586 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5587 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5588 mutex_exit(&spa_namespace_lock); 5589 5590 /* 5591 * If the pool grew as a result of the config update, 5592 * then log an internal history event. 5593 */ 5594 if (new_space != old_space) { 5595 spa_history_log_internal(spa, "vdev online", NULL, 5596 "pool '%s' size: %llu(+%llu)", 5597 spa_name(spa), new_space, new_space - old_space); 5598 } 5599 } 5600 5601 /* 5602 * See if any devices need to be marked REMOVED. 5603 */ 5604 if (tasks & SPA_ASYNC_REMOVE) { 5605 spa_vdev_state_enter(spa, SCL_NONE); 5606 spa_async_remove(spa, spa->spa_root_vdev); 5607 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5608 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5609 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5610 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5611 (void) spa_vdev_state_exit(spa, NULL, 0); 5612 } 5613 5614 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5615 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5616 spa_async_autoexpand(spa, spa->spa_root_vdev); 5617 spa_config_exit(spa, SCL_CONFIG, FTAG); 5618 } 5619 5620 /* 5621 * See if any devices need to be probed. 5622 */ 5623 if (tasks & SPA_ASYNC_PROBE) { 5624 spa_vdev_state_enter(spa, SCL_NONE); 5625 spa_async_probe(spa, spa->spa_root_vdev); 5626 (void) spa_vdev_state_exit(spa, NULL, 0); 5627 } 5628 5629 /* 5630 * If any devices are done replacing, detach them. 5631 */ 5632 if (tasks & SPA_ASYNC_RESILVER_DONE) 5633 spa_vdev_resilver_done(spa); 5634 5635 /* 5636 * Kick off a resilver. 5637 */ 5638 if (tasks & SPA_ASYNC_RESILVER) 5639 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5640 5641 /* 5642 * Let the world know that we're done. 5643 */ 5644 mutex_enter(&spa->spa_async_lock); 5645 spa->spa_async_thread = NULL; 5646 cv_broadcast(&spa->spa_async_cv); 5647 mutex_exit(&spa->spa_async_lock); 5648 thread_exit(); 5649 } 5650 5651 void 5652 spa_async_suspend(spa_t *spa) 5653 { 5654 mutex_enter(&spa->spa_async_lock); 5655 spa->spa_async_suspended++; 5656 while (spa->spa_async_thread != NULL) 5657 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5658 mutex_exit(&spa->spa_async_lock); 5659 } 5660 5661 void 5662 spa_async_resume(spa_t *spa) 5663 { 5664 mutex_enter(&spa->spa_async_lock); 5665 ASSERT(spa->spa_async_suspended != 0); 5666 spa->spa_async_suspended--; 5667 mutex_exit(&spa->spa_async_lock); 5668 } 5669 5670 static int 5671 spa_async_tasks_pending(spa_t *spa) 5672 { 5673 u_int non_config_tasks; 5674 u_int config_task; 5675 boolean_t config_task_suspended; 5676 5677 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5678 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5679 if (spa->spa_ccw_fail_time == 0) 5680 config_task_suspended = B_FALSE; 5681 else 5682 config_task_suspended = 5683 (ddi_get_lbolt64() - spa->spa_ccw_fail_time) 5684 < (zfs_ccw_retry_interval * hz); 5685 5686 return (non_config_tasks || (config_task && !config_task_suspended)); 5687 } 5688 5689 static void 5690 spa_async_dispatch(spa_t *spa) 5691 { 5692 mutex_enter(&spa->spa_async_lock); 5693 if (spa_async_tasks_pending(spa) && 5694 !spa->spa_async_suspended && 5695 spa->spa_async_thread == NULL && 5696 rootdir != NULL) 5697 spa->spa_async_thread = thread_create(NULL, 0, 5698 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5699 mutex_exit(&spa->spa_async_lock); 5700 } 5701 5702 void 5703 spa_async_request(spa_t *spa, int task) 5704 { 5705 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5706 mutex_enter(&spa->spa_async_lock); 5707 spa->spa_async_tasks |= task; 5708 mutex_exit(&spa->spa_async_lock); 5709 } 5710 5711 /* 5712 * ========================================================================== 5713 * SPA syncing routines 5714 * ========================================================================== 5715 */ 5716 5717 static int 5718 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5719 { 5720 bpobj_t *bpo = arg; 5721 bpobj_enqueue(bpo, bp, tx); 5722 return (0); 5723 } 5724 5725 static int 5726 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5727 { 5728 zio_t *zio = arg; 5729 5730 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5731 zio->io_flags)); 5732 return (0); 5733 } 5734 5735 static void 5736 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5737 { 5738 char *packed = NULL; 5739 size_t bufsize; 5740 size_t nvsize = 0; 5741 dmu_buf_t *db; 5742 5743 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5744 5745 /* 5746 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5747 * information. This avoids the dbuf_will_dirty() path and 5748 * saves us a pre-read to get data we don't actually care about. 5749 */ 5750 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5751 packed = kmem_alloc(bufsize, KM_SLEEP); 5752 5753 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5754 KM_SLEEP) == 0); 5755 bzero(packed + nvsize, bufsize - nvsize); 5756 5757 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5758 5759 kmem_free(packed, bufsize); 5760 5761 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5762 dmu_buf_will_dirty(db, tx); 5763 *(uint64_t *)db->db_data = nvsize; 5764 dmu_buf_rele(db, FTAG); 5765 } 5766 5767 static void 5768 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5769 const char *config, const char *entry) 5770 { 5771 nvlist_t *nvroot; 5772 nvlist_t **list; 5773 int i; 5774 5775 if (!sav->sav_sync) 5776 return; 5777 5778 /* 5779 * Update the MOS nvlist describing the list of available devices. 5780 * spa_validate_aux() will have already made sure this nvlist is 5781 * valid and the vdevs are labeled appropriately. 5782 */ 5783 if (sav->sav_object == 0) { 5784 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5785 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5786 sizeof (uint64_t), tx); 5787 VERIFY(zap_update(spa->spa_meta_objset, 5788 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5789 &sav->sav_object, tx) == 0); 5790 } 5791 5792 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5793 if (sav->sav_count == 0) { 5794 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5795 } else { 5796 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5797 for (i = 0; i < sav->sav_count; i++) 5798 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5799 B_FALSE, VDEV_CONFIG_L2CACHE); 5800 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5801 sav->sav_count) == 0); 5802 for (i = 0; i < sav->sav_count; i++) 5803 nvlist_free(list[i]); 5804 kmem_free(list, sav->sav_count * sizeof (void *)); 5805 } 5806 5807 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5808 nvlist_free(nvroot); 5809 5810 sav->sav_sync = B_FALSE; 5811 } 5812 5813 static void 5814 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5815 { 5816 nvlist_t *config; 5817 5818 if (list_is_empty(&spa->spa_config_dirty_list)) 5819 return; 5820 5821 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5822 5823 config = spa_config_generate(spa, spa->spa_root_vdev, 5824 dmu_tx_get_txg(tx), B_FALSE); 5825 5826 /* 5827 * If we're upgrading the spa version then make sure that 5828 * the config object gets updated with the correct version. 5829 */ 5830 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 5831 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5832 spa->spa_uberblock.ub_version); 5833 5834 spa_config_exit(spa, SCL_STATE, FTAG); 5835 5836 if (spa->spa_config_syncing) 5837 nvlist_free(spa->spa_config_syncing); 5838 spa->spa_config_syncing = config; 5839 5840 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5841 } 5842 5843 static void 5844 spa_sync_version(void *arg, dmu_tx_t *tx) 5845 { 5846 uint64_t *versionp = arg; 5847 uint64_t version = *versionp; 5848 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5849 5850 /* 5851 * Setting the version is special cased when first creating the pool. 5852 */ 5853 ASSERT(tx->tx_txg != TXG_INITIAL); 5854 5855 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5856 ASSERT(version >= spa_version(spa)); 5857 5858 spa->spa_uberblock.ub_version = version; 5859 vdev_config_dirty(spa->spa_root_vdev); 5860 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 5861 } 5862 5863 /* 5864 * Set zpool properties. 5865 */ 5866 static void 5867 spa_sync_props(void *arg, dmu_tx_t *tx) 5868 { 5869 nvlist_t *nvp = arg; 5870 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5871 objset_t *mos = spa->spa_meta_objset; 5872 nvpair_t *elem = NULL; 5873 5874 mutex_enter(&spa->spa_props_lock); 5875 5876 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5877 uint64_t intval; 5878 char *strval, *fname; 5879 zpool_prop_t prop; 5880 const char *propname; 5881 zprop_type_t proptype; 5882 zfeature_info_t *feature; 5883 5884 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5885 case ZPROP_INVAL: 5886 /* 5887 * We checked this earlier in spa_prop_validate(). 5888 */ 5889 ASSERT(zpool_prop_feature(nvpair_name(elem))); 5890 5891 fname = strchr(nvpair_name(elem), '@') + 1; 5892 VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature)); 5893 5894 spa_feature_enable(spa, feature, tx); 5895 spa_history_log_internal(spa, "set", tx, 5896 "%s=enabled", nvpair_name(elem)); 5897 break; 5898 5899 case ZPOOL_PROP_VERSION: 5900 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5901 /* 5902 * The version is synced seperatly before other 5903 * properties and should be correct by now. 5904 */ 5905 ASSERT3U(spa_version(spa), >=, intval); 5906 break; 5907 5908 case ZPOOL_PROP_ALTROOT: 5909 /* 5910 * 'altroot' is a non-persistent property. It should 5911 * have been set temporarily at creation or import time. 5912 */ 5913 ASSERT(spa->spa_root != NULL); 5914 break; 5915 5916 case ZPOOL_PROP_READONLY: 5917 case ZPOOL_PROP_CACHEFILE: 5918 /* 5919 * 'readonly' and 'cachefile' are also non-persisitent 5920 * properties. 5921 */ 5922 break; 5923 case ZPOOL_PROP_COMMENT: 5924 VERIFY(nvpair_value_string(elem, &strval) == 0); 5925 if (spa->spa_comment != NULL) 5926 spa_strfree(spa->spa_comment); 5927 spa->spa_comment = spa_strdup(strval); 5928 /* 5929 * We need to dirty the configuration on all the vdevs 5930 * so that their labels get updated. It's unnecessary 5931 * to do this for pool creation since the vdev's 5932 * configuratoin has already been dirtied. 5933 */ 5934 if (tx->tx_txg != TXG_INITIAL) 5935 vdev_config_dirty(spa->spa_root_vdev); 5936 spa_history_log_internal(spa, "set", tx, 5937 "%s=%s", nvpair_name(elem), strval); 5938 break; 5939 default: 5940 /* 5941 * Set pool property values in the poolprops mos object. 5942 */ 5943 if (spa->spa_pool_props_object == 0) { 5944 spa->spa_pool_props_object = 5945 zap_create_link(mos, DMU_OT_POOL_PROPS, 5946 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 5947 tx); 5948 } 5949 5950 /* normalize the property name */ 5951 propname = zpool_prop_to_name(prop); 5952 proptype = zpool_prop_get_type(prop); 5953 5954 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5955 ASSERT(proptype == PROP_TYPE_STRING); 5956 VERIFY(nvpair_value_string(elem, &strval) == 0); 5957 VERIFY(zap_update(mos, 5958 spa->spa_pool_props_object, propname, 5959 1, strlen(strval) + 1, strval, tx) == 0); 5960 spa_history_log_internal(spa, "set", tx, 5961 "%s=%s", nvpair_name(elem), strval); 5962 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5963 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5964 5965 if (proptype == PROP_TYPE_INDEX) { 5966 const char *unused; 5967 VERIFY(zpool_prop_index_to_string( 5968 prop, intval, &unused) == 0); 5969 } 5970 VERIFY(zap_update(mos, 5971 spa->spa_pool_props_object, propname, 5972 8, 1, &intval, tx) == 0); 5973 spa_history_log_internal(spa, "set", tx, 5974 "%s=%lld", nvpair_name(elem), intval); 5975 } else { 5976 ASSERT(0); /* not allowed */ 5977 } 5978 5979 switch (prop) { 5980 case ZPOOL_PROP_DELEGATION: 5981 spa->spa_delegation = intval; 5982 break; 5983 case ZPOOL_PROP_BOOTFS: 5984 spa->spa_bootfs = intval; 5985 break; 5986 case ZPOOL_PROP_FAILUREMODE: 5987 spa->spa_failmode = intval; 5988 break; 5989 case ZPOOL_PROP_AUTOEXPAND: 5990 spa->spa_autoexpand = intval; 5991 if (tx->tx_txg != TXG_INITIAL) 5992 spa_async_request(spa, 5993 SPA_ASYNC_AUTOEXPAND); 5994 break; 5995 case ZPOOL_PROP_DEDUPDITTO: 5996 spa->spa_dedup_ditto = intval; 5997 break; 5998 default: 5999 break; 6000 } 6001 } 6002 6003 } 6004 6005 mutex_exit(&spa->spa_props_lock); 6006 } 6007 6008 /* 6009 * Perform one-time upgrade on-disk changes. spa_version() does not 6010 * reflect the new version this txg, so there must be no changes this 6011 * txg to anything that the upgrade code depends on after it executes. 6012 * Therefore this must be called after dsl_pool_sync() does the sync 6013 * tasks. 6014 */ 6015 static void 6016 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6017 { 6018 dsl_pool_t *dp = spa->spa_dsl_pool; 6019 6020 ASSERT(spa->spa_sync_pass == 1); 6021 6022 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6023 6024 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6025 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6026 dsl_pool_create_origin(dp, tx); 6027 6028 /* Keeping the origin open increases spa_minref */ 6029 spa->spa_minref += 3; 6030 } 6031 6032 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6033 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6034 dsl_pool_upgrade_clones(dp, tx); 6035 } 6036 6037 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6038 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6039 dsl_pool_upgrade_dir_clones(dp, tx); 6040 6041 /* Keeping the freedir open increases spa_minref */ 6042 spa->spa_minref += 3; 6043 } 6044 6045 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6046 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6047 spa_feature_create_zap_objects(spa, tx); 6048 } 6049 rrw_exit(&dp->dp_config_rwlock, FTAG); 6050 } 6051 6052 /* 6053 * Sync the specified transaction group. New blocks may be dirtied as 6054 * part of the process, so we iterate until it converges. 6055 */ 6056 void 6057 spa_sync(spa_t *spa, uint64_t txg) 6058 { 6059 dsl_pool_t *dp = spa->spa_dsl_pool; 6060 objset_t *mos = spa->spa_meta_objset; 6061 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj; 6062 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6063 vdev_t *rvd = spa->spa_root_vdev; 6064 vdev_t *vd; 6065 dmu_tx_t *tx; 6066 int error; 6067 6068 VERIFY(spa_writeable(spa)); 6069 6070 /* 6071 * Lock out configuration changes. 6072 */ 6073 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6074 6075 spa->spa_syncing_txg = txg; 6076 spa->spa_sync_pass = 0; 6077 6078 /* 6079 * If there are any pending vdev state changes, convert them 6080 * into config changes that go out with this transaction group. 6081 */ 6082 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6083 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6084 /* 6085 * We need the write lock here because, for aux vdevs, 6086 * calling vdev_config_dirty() modifies sav_config. 6087 * This is ugly and will become unnecessary when we 6088 * eliminate the aux vdev wart by integrating all vdevs 6089 * into the root vdev tree. 6090 */ 6091 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6092 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6093 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6094 vdev_state_clean(vd); 6095 vdev_config_dirty(vd); 6096 } 6097 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6098 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6099 } 6100 spa_config_exit(spa, SCL_STATE, FTAG); 6101 6102 tx = dmu_tx_create_assigned(dp, txg); 6103 6104 spa->spa_sync_starttime = gethrtime(); 6105 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6106 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6107 6108 /* 6109 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6110 * set spa_deflate if we have no raid-z vdevs. 6111 */ 6112 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6113 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6114 int i; 6115 6116 for (i = 0; i < rvd->vdev_children; i++) { 6117 vd = rvd->vdev_child[i]; 6118 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6119 break; 6120 } 6121 if (i == rvd->vdev_children) { 6122 spa->spa_deflate = TRUE; 6123 VERIFY(0 == zap_add(spa->spa_meta_objset, 6124 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6125 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6126 } 6127 } 6128 6129 /* 6130 * If anything has changed in this txg, or if someone is waiting 6131 * for this txg to sync (eg, spa_vdev_remove()), push the 6132 * deferred frees from the previous txg. If not, leave them 6133 * alone so that we don't generate work on an otherwise idle 6134 * system. 6135 */ 6136 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 6137 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 6138 !txg_list_empty(&dp->dp_sync_tasks, txg) || 6139 ((dsl_scan_active(dp->dp_scan) || 6140 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 6141 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6142 VERIFY3U(bpobj_iterate(defer_bpo, 6143 spa_free_sync_cb, zio, tx), ==, 0); 6144 VERIFY0(zio_wait(zio)); 6145 } 6146 6147 /* 6148 * Iterate to convergence. 6149 */ 6150 do { 6151 int pass = ++spa->spa_sync_pass; 6152 6153 spa_sync_config_object(spa, tx); 6154 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6155 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6156 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6157 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6158 spa_errlog_sync(spa, txg); 6159 dsl_pool_sync(dp, txg); 6160 6161 if (pass < zfs_sync_pass_deferred_free) { 6162 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6163 bplist_iterate(free_bpl, spa_free_sync_cb, 6164 zio, tx); 6165 VERIFY(zio_wait(zio) == 0); 6166 } else { 6167 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6168 defer_bpo, tx); 6169 } 6170 6171 ddt_sync(spa, txg); 6172 dsl_scan_sync(dp, tx); 6173 6174 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6175 vdev_sync(vd, txg); 6176 6177 if (pass == 1) 6178 spa_sync_upgrades(spa, tx); 6179 6180 } while (dmu_objset_is_dirty(mos, txg)); 6181 6182 /* 6183 * Rewrite the vdev configuration (which includes the uberblock) 6184 * to commit the transaction group. 6185 * 6186 * If there are no dirty vdevs, we sync the uberblock to a few 6187 * random top-level vdevs that are known to be visible in the 6188 * config cache (see spa_vdev_add() for a complete description). 6189 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6190 */ 6191 for (;;) { 6192 /* 6193 * We hold SCL_STATE to prevent vdev open/close/etc. 6194 * while we're attempting to write the vdev labels. 6195 */ 6196 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6197 6198 if (list_is_empty(&spa->spa_config_dirty_list)) { 6199 vdev_t *svd[SPA_DVAS_PER_BP]; 6200 int svdcount = 0; 6201 int children = rvd->vdev_children; 6202 int c0 = spa_get_random(children); 6203 6204 for (int c = 0; c < children; c++) { 6205 vd = rvd->vdev_child[(c0 + c) % children]; 6206 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6207 continue; 6208 svd[svdcount++] = vd; 6209 if (svdcount == SPA_DVAS_PER_BP) 6210 break; 6211 } 6212 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6213 if (error != 0) 6214 error = vdev_config_sync(svd, svdcount, txg, 6215 B_TRUE); 6216 } else { 6217 error = vdev_config_sync(rvd->vdev_child, 6218 rvd->vdev_children, txg, B_FALSE); 6219 if (error != 0) 6220 error = vdev_config_sync(rvd->vdev_child, 6221 rvd->vdev_children, txg, B_TRUE); 6222 } 6223 6224 if (error == 0) 6225 spa->spa_last_synced_guid = rvd->vdev_guid; 6226 6227 spa_config_exit(spa, SCL_STATE, FTAG); 6228 6229 if (error == 0) 6230 break; 6231 zio_suspend(spa, NULL); 6232 zio_resume_wait(spa); 6233 } 6234 dmu_tx_commit(tx); 6235 6236 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6237 6238 /* 6239 * Clear the dirty config list. 6240 */ 6241 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6242 vdev_config_clean(vd); 6243 6244 /* 6245 * Now that the new config has synced transactionally, 6246 * let it become visible to the config cache. 6247 */ 6248 if (spa->spa_config_syncing != NULL) { 6249 spa_config_set(spa, spa->spa_config_syncing); 6250 spa->spa_config_txg = txg; 6251 spa->spa_config_syncing = NULL; 6252 } 6253 6254 spa->spa_ubsync = spa->spa_uberblock; 6255 6256 dsl_pool_sync_done(dp, txg); 6257 6258 /* 6259 * Update usable space statistics. 6260 */ 6261 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6262 vdev_sync_done(vd, txg); 6263 6264 spa_update_dspace(spa); 6265 6266 /* 6267 * It had better be the case that we didn't dirty anything 6268 * since vdev_config_sync(). 6269 */ 6270 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6271 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6272 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6273 6274 spa->spa_sync_pass = 0; 6275 6276 spa_config_exit(spa, SCL_CONFIG, FTAG); 6277 6278 spa_handle_ignored_writes(spa); 6279 6280 /* 6281 * If any async tasks have been requested, kick them off. 6282 */ 6283 spa_async_dispatch(spa); 6284 } 6285 6286 /* 6287 * Sync all pools. We don't want to hold the namespace lock across these 6288 * operations, so we take a reference on the spa_t and drop the lock during the 6289 * sync. 6290 */ 6291 void 6292 spa_sync_allpools(void) 6293 { 6294 spa_t *spa = NULL; 6295 mutex_enter(&spa_namespace_lock); 6296 while ((spa = spa_next(spa)) != NULL) { 6297 if (spa_state(spa) != POOL_STATE_ACTIVE || 6298 !spa_writeable(spa) || spa_suspended(spa)) 6299 continue; 6300 spa_open_ref(spa, FTAG); 6301 mutex_exit(&spa_namespace_lock); 6302 txg_wait_synced(spa_get_dsl(spa), 0); 6303 mutex_enter(&spa_namespace_lock); 6304 spa_close(spa, FTAG); 6305 } 6306 mutex_exit(&spa_namespace_lock); 6307 } 6308 6309 /* 6310 * ========================================================================== 6311 * Miscellaneous routines 6312 * ========================================================================== 6313 */ 6314 6315 /* 6316 * Remove all pools in the system. 6317 */ 6318 void 6319 spa_evict_all(void) 6320 { 6321 spa_t *spa; 6322 6323 /* 6324 * Remove all cached state. All pools should be closed now, 6325 * so every spa in the AVL tree should be unreferenced. 6326 */ 6327 mutex_enter(&spa_namespace_lock); 6328 while ((spa = spa_next(NULL)) != NULL) { 6329 /* 6330 * Stop async tasks. The async thread may need to detach 6331 * a device that's been replaced, which requires grabbing 6332 * spa_namespace_lock, so we must drop it here. 6333 */ 6334 spa_open_ref(spa, FTAG); 6335 mutex_exit(&spa_namespace_lock); 6336 spa_async_suspend(spa); 6337 mutex_enter(&spa_namespace_lock); 6338 spa_close(spa, FTAG); 6339 6340 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6341 spa_unload(spa); 6342 spa_deactivate(spa); 6343 } 6344 spa_remove(spa); 6345 } 6346 mutex_exit(&spa_namespace_lock); 6347 } 6348 6349 vdev_t * 6350 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6351 { 6352 vdev_t *vd; 6353 int i; 6354 6355 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6356 return (vd); 6357 6358 if (aux) { 6359 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6360 vd = spa->spa_l2cache.sav_vdevs[i]; 6361 if (vd->vdev_guid == guid) 6362 return (vd); 6363 } 6364 6365 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6366 vd = spa->spa_spares.sav_vdevs[i]; 6367 if (vd->vdev_guid == guid) 6368 return (vd); 6369 } 6370 } 6371 6372 return (NULL); 6373 } 6374 6375 void 6376 spa_upgrade(spa_t *spa, uint64_t version) 6377 { 6378 ASSERT(spa_writeable(spa)); 6379 6380 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6381 6382 /* 6383 * This should only be called for a non-faulted pool, and since a 6384 * future version would result in an unopenable pool, this shouldn't be 6385 * possible. 6386 */ 6387 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6388 ASSERT(version >= spa->spa_uberblock.ub_version); 6389 6390 spa->spa_uberblock.ub_version = version; 6391 vdev_config_dirty(spa->spa_root_vdev); 6392 6393 spa_config_exit(spa, SCL_ALL, FTAG); 6394 6395 txg_wait_synced(spa_get_dsl(spa), 0); 6396 } 6397 6398 boolean_t 6399 spa_has_spare(spa_t *spa, uint64_t guid) 6400 { 6401 int i; 6402 uint64_t spareguid; 6403 spa_aux_vdev_t *sav = &spa->spa_spares; 6404 6405 for (i = 0; i < sav->sav_count; i++) 6406 if (sav->sav_vdevs[i]->vdev_guid == guid) 6407 return (B_TRUE); 6408 6409 for (i = 0; i < sav->sav_npending; i++) { 6410 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6411 &spareguid) == 0 && spareguid == guid) 6412 return (B_TRUE); 6413 } 6414 6415 return (B_FALSE); 6416 } 6417 6418 /* 6419 * Check if a pool has an active shared spare device. 6420 * Note: reference count of an active spare is 2, as a spare and as a replace 6421 */ 6422 static boolean_t 6423 spa_has_active_shared_spare(spa_t *spa) 6424 { 6425 int i, refcnt; 6426 uint64_t pool; 6427 spa_aux_vdev_t *sav = &spa->spa_spares; 6428 6429 for (i = 0; i < sav->sav_count; i++) { 6430 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6431 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6432 refcnt > 2) 6433 return (B_TRUE); 6434 } 6435 6436 return (B_FALSE); 6437 } 6438 6439 /* 6440 * Post a sysevent corresponding to the given event. The 'name' must be one of 6441 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6442 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6443 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6444 * or zdb as real changes. 6445 */ 6446 void 6447 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6448 { 6449 #ifdef _KERNEL 6450 sysevent_t *ev; 6451 sysevent_attr_list_t *attr = NULL; 6452 sysevent_value_t value; 6453 sysevent_id_t eid; 6454 6455 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6456 SE_SLEEP); 6457 6458 value.value_type = SE_DATA_TYPE_STRING; 6459 value.value.sv_string = spa_name(spa); 6460 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6461 goto done; 6462 6463 value.value_type = SE_DATA_TYPE_UINT64; 6464 value.value.sv_uint64 = spa_guid(spa); 6465 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6466 goto done; 6467 6468 if (vd) { 6469 value.value_type = SE_DATA_TYPE_UINT64; 6470 value.value.sv_uint64 = vd->vdev_guid; 6471 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6472 SE_SLEEP) != 0) 6473 goto done; 6474 6475 if (vd->vdev_path) { 6476 value.value_type = SE_DATA_TYPE_STRING; 6477 value.value.sv_string = vd->vdev_path; 6478 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6479 &value, SE_SLEEP) != 0) 6480 goto done; 6481 } 6482 } 6483 6484 if (sysevent_attach_attributes(ev, attr) != 0) 6485 goto done; 6486 attr = NULL; 6487 6488 (void) log_sysevent(ev, SE_SLEEP, &eid); 6489 6490 done: 6491 if (attr) 6492 sysevent_free_attr(attr); 6493 sysevent_free(ev); 6494 #endif 6495 }