Print this page
    
3749 zfs event processing should work on R/O root filesystems
Submitted by:   Justin Gibbs <justing@spectralogic.com>
Reviewed by:    Matthew Ahrens <mahrens@delphix.com>
Reviewed by:    Eric Schrock <eric.schrock@delphix.com>
    
      
        | Split | Close | 
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/common/fs/zfs/spa.c
          +++ new/usr/src/uts/common/fs/zfs/spa.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  
  22   22  /*
  23   23   * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24   24   * Copyright (c) 2013 by Delphix. All rights reserved.
  25   25   * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
  26   26   */
  27   27  
  28   28  /*
  29   29   * This file contains all the routines used when modifying on-disk SPA state.
  30   30   * This includes opening, importing, destroying, exporting a pool, and syncing a
  31   31   * pool.
  32   32   */
  33   33  
  34   34  #include <sys/zfs_context.h>
  35   35  #include <sys/fm/fs/zfs.h>
  36   36  #include <sys/spa_impl.h>
  37   37  #include <sys/zio.h>
  38   38  #include <sys/zio_checksum.h>
  39   39  #include <sys/dmu.h>
  40   40  #include <sys/dmu_tx.h>
  41   41  #include <sys/zap.h>
  42   42  #include <sys/zil.h>
  43   43  #include <sys/ddt.h>
  44   44  #include <sys/vdev_impl.h>
  45   45  #include <sys/metaslab.h>
  46   46  #include <sys/metaslab_impl.h>
  47   47  #include <sys/uberblock_impl.h>
  48   48  #include <sys/txg.h>
  49   49  #include <sys/avl.h>
  50   50  #include <sys/dmu_traverse.h>
  51   51  #include <sys/dmu_objset.h>
  52   52  #include <sys/unique.h>
  53   53  #include <sys/dsl_pool.h>
  54   54  #include <sys/dsl_dataset.h>
  55   55  #include <sys/dsl_dir.h>
  56   56  #include <sys/dsl_prop.h>
  57   57  #include <sys/dsl_synctask.h>
  58   58  #include <sys/fs/zfs.h>
  59   59  #include <sys/arc.h>
  60   60  #include <sys/callb.h>
  61   61  #include <sys/systeminfo.h>
  62   62  #include <sys/spa_boot.h>
  63   63  #include <sys/zfs_ioctl.h>
  64   64  #include <sys/dsl_scan.h>
  65   65  #include <sys/zfeature.h>
  66   66  #include <sys/dsl_destroy.h>
  67   67  
  68   68  #ifdef  _KERNEL
  69   69  #include <sys/bootprops.h>
  
    | ↓ open down ↓ | 69 lines elided | ↑ open up ↑ | 
  70   70  #include <sys/callb.h>
  71   71  #include <sys/cpupart.h>
  72   72  #include <sys/pool.h>
  73   73  #include <sys/sysdc.h>
  74   74  #include <sys/zone.h>
  75   75  #endif  /* _KERNEL */
  76   76  
  77   77  #include "zfs_prop.h"
  78   78  #include "zfs_comutil.h"
  79   79  
       80 +/*
       81 + * The interval, in seconds, at which failed configuration cache file writes
       82 + * should be retried.
       83 + */
       84 +static int zfs_ccw_retry_interval = 300;
       85 +
  80   86  typedef enum zti_modes {
  81   87          ZTI_MODE_FIXED,                 /* value is # of threads (min 1) */
  82   88          ZTI_MODE_ONLINE_PERCENT,        /* value is % of online CPUs */
  83   89          ZTI_MODE_BATCH,                 /* cpu-intensive; value is ignored */
  84   90          ZTI_MODE_NULL,                  /* don't create a taskq */
  85   91          ZTI_NMODES
  86   92  } zti_modes_t;
  87   93  
  88   94  #define ZTI_P(n, q)     { ZTI_MODE_FIXED, (n), (q) }
  89   95  #define ZTI_PCT(n)      { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
  90   96  #define ZTI_BATCH       { ZTI_MODE_BATCH, 0, 1 }
  91   97  #define ZTI_NULL        { ZTI_MODE_NULL, 0, 0 }
  92   98  
  93   99  #define ZTI_N(n)        ZTI_P(n, 1)
  94  100  #define ZTI_ONE         ZTI_N(1)
  95  101  
  96  102  typedef struct zio_taskq_info {
  97  103          zti_modes_t zti_mode;
  98  104          uint_t zti_value;
  99  105          uint_t zti_count;
 100  106  } zio_taskq_info_t;
 101  107  
 102  108  static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
 103  109          "issue", "issue_high", "intr", "intr_high"
 104  110  };
 105  111  
 106  112  /*
 107  113   * This table defines the taskq settings for each ZFS I/O type. When
 108  114   * initializing a pool, we use this table to create an appropriately sized
 109  115   * taskq. Some operations are low volume and therefore have a small, static
 110  116   * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
 111  117   * macros. Other operations process a large amount of data; the ZTI_BATCH
 112  118   * macro causes us to create a taskq oriented for throughput. Some operations
 113  119   * are so high frequency and short-lived that the taskq itself can become a a
 114  120   * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
 115  121   * additional degree of parallelism specified by the number of threads per-
 116  122   * taskq and the number of taskqs; when dispatching an event in this case, the
 117  123   * particular taskq is chosen at random.
 118  124   *
 119  125   * The different taskq priorities are to handle the different contexts (issue
 120  126   * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
 121  127   * need to be handled with minimum delay.
 122  128   */
 123  129  const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
 124  130          /* ISSUE        ISSUE_HIGH      INTR            INTR_HIGH */
 125  131          { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* NULL */
 126  132          { ZTI_N(8),     ZTI_NULL,       ZTI_BATCH,      ZTI_NULL }, /* READ */
 127  133          { ZTI_BATCH,    ZTI_N(5),       ZTI_N(8),       ZTI_N(5) }, /* WRITE */
 128  134          { ZTI_P(12, 8), ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* FREE */
 129  135          { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* CLAIM */
 130  136          { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* IOCTL */
 131  137  };
 132  138  
 133  139  static void spa_sync_version(void *arg, dmu_tx_t *tx);
 134  140  static void spa_sync_props(void *arg, dmu_tx_t *tx);
 135  141  static boolean_t spa_has_active_shared_spare(spa_t *spa);
 136  142  static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
 137  143      spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
 138  144      char **ereport);
 139  145  static void spa_vdev_resilver_done(spa_t *spa);
 140  146  
 141  147  uint_t          zio_taskq_batch_pct = 100;      /* 1 thread per cpu in pset */
 142  148  id_t            zio_taskq_psrset_bind = PS_NONE;
 143  149  boolean_t       zio_taskq_sysdc = B_TRUE;       /* use SDC scheduling class */
 144  150  uint_t          zio_taskq_basedc = 80;          /* base duty cycle */
 145  151  
 146  152  boolean_t       spa_create_process = B_TRUE;    /* no process ==> no sysdc */
 147  153  extern int      zfs_sync_pass_deferred_free;
 148  154  
 149  155  /*
 150  156   * This (illegal) pool name is used when temporarily importing a spa_t in order
 151  157   * to get the vdev stats associated with the imported devices.
 152  158   */
 153  159  #define TRYIMPORT_NAME  "$import"
 154  160  
 155  161  /*
 156  162   * ==========================================================================
 157  163   * SPA properties routines
 158  164   * ==========================================================================
 159  165   */
 160  166  
 161  167  /*
 162  168   * Add a (source=src, propname=propval) list to an nvlist.
 163  169   */
 164  170  static void
 165  171  spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
 166  172      uint64_t intval, zprop_source_t src)
 167  173  {
 168  174          const char *propname = zpool_prop_to_name(prop);
 169  175          nvlist_t *propval;
 170  176  
 171  177          VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 172  178          VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
 173  179  
 174  180          if (strval != NULL)
 175  181                  VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
 176  182          else
 177  183                  VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
 178  184  
 179  185          VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
 180  186          nvlist_free(propval);
 181  187  }
 182  188  
 183  189  /*
 184  190   * Get property values from the spa configuration.
 185  191   */
 186  192  static void
 187  193  spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
 188  194  {
 189  195          vdev_t *rvd = spa->spa_root_vdev;
 190  196          dsl_pool_t *pool = spa->spa_dsl_pool;
 191  197          uint64_t size;
 192  198          uint64_t alloc;
 193  199          uint64_t space;
 194  200          uint64_t cap, version;
 195  201          zprop_source_t src = ZPROP_SRC_NONE;
 196  202          spa_config_dirent_t *dp;
 197  203  
 198  204          ASSERT(MUTEX_HELD(&spa->spa_props_lock));
 199  205  
 200  206          if (rvd != NULL) {
 201  207                  alloc = metaslab_class_get_alloc(spa_normal_class(spa));
 202  208                  size = metaslab_class_get_space(spa_normal_class(spa));
 203  209                  spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
 204  210                  spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
 205  211                  spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
 206  212                  spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
 207  213                      size - alloc, src);
 208  214  
 209  215                  space = 0;
 210  216                  for (int c = 0; c < rvd->vdev_children; c++) {
 211  217                          vdev_t *tvd = rvd->vdev_child[c];
 212  218                          space += tvd->vdev_max_asize - tvd->vdev_asize;
 213  219                  }
 214  220                  spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
 215  221                      src);
 216  222  
 217  223                  spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
 218  224                      (spa_mode(spa) == FREAD), src);
 219  225  
 220  226                  cap = (size == 0) ? 0 : (alloc * 100 / size);
 221  227                  spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
 222  228  
 223  229                  spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
 224  230                      ddt_get_pool_dedup_ratio(spa), src);
 225  231  
 226  232                  spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
 227  233                      rvd->vdev_state, src);
 228  234  
 229  235                  version = spa_version(spa);
 230  236                  if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
 231  237                          src = ZPROP_SRC_DEFAULT;
 232  238                  else
 233  239                          src = ZPROP_SRC_LOCAL;
 234  240                  spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
 235  241          }
 236  242  
 237  243          if (pool != NULL) {
 238  244                  dsl_dir_t *freedir = pool->dp_free_dir;
 239  245  
 240  246                  /*
 241  247                   * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
 242  248                   * when opening pools before this version freedir will be NULL.
 243  249                   */
 244  250                  if (freedir != NULL) {
 245  251                          spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
 246  252                              freedir->dd_phys->dd_used_bytes, src);
 247  253                  } else {
 248  254                          spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
 249  255                              NULL, 0, src);
 250  256                  }
 251  257          }
 252  258  
 253  259          spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
 254  260  
 255  261          if (spa->spa_comment != NULL) {
 256  262                  spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
 257  263                      0, ZPROP_SRC_LOCAL);
 258  264          }
 259  265  
 260  266          if (spa->spa_root != NULL)
 261  267                  spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
 262  268                      0, ZPROP_SRC_LOCAL);
 263  269  
 264  270          if ((dp = list_head(&spa->spa_config_list)) != NULL) {
 265  271                  if (dp->scd_path == NULL) {
 266  272                          spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
 267  273                              "none", 0, ZPROP_SRC_LOCAL);
 268  274                  } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
 269  275                          spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
 270  276                              dp->scd_path, 0, ZPROP_SRC_LOCAL);
 271  277                  }
 272  278          }
 273  279  }
 274  280  
 275  281  /*
 276  282   * Get zpool property values.
 277  283   */
 278  284  int
 279  285  spa_prop_get(spa_t *spa, nvlist_t **nvp)
 280  286  {
 281  287          objset_t *mos = spa->spa_meta_objset;
 282  288          zap_cursor_t zc;
 283  289          zap_attribute_t za;
 284  290          int err;
 285  291  
 286  292          VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 287  293  
 288  294          mutex_enter(&spa->spa_props_lock);
 289  295  
 290  296          /*
 291  297           * Get properties from the spa config.
 292  298           */
 293  299          spa_prop_get_config(spa, nvp);
 294  300  
 295  301          /* If no pool property object, no more prop to get. */
 296  302          if (mos == NULL || spa->spa_pool_props_object == 0) {
 297  303                  mutex_exit(&spa->spa_props_lock);
 298  304                  return (0);
 299  305          }
 300  306  
 301  307          /*
 302  308           * Get properties from the MOS pool property object.
 303  309           */
 304  310          for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
 305  311              (err = zap_cursor_retrieve(&zc, &za)) == 0;
 306  312              zap_cursor_advance(&zc)) {
 307  313                  uint64_t intval = 0;
 308  314                  char *strval = NULL;
 309  315                  zprop_source_t src = ZPROP_SRC_DEFAULT;
 310  316                  zpool_prop_t prop;
 311  317  
 312  318                  if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
 313  319                          continue;
 314  320  
 315  321                  switch (za.za_integer_length) {
 316  322                  case 8:
 317  323                          /* integer property */
 318  324                          if (za.za_first_integer !=
 319  325                              zpool_prop_default_numeric(prop))
 320  326                                  src = ZPROP_SRC_LOCAL;
 321  327  
 322  328                          if (prop == ZPOOL_PROP_BOOTFS) {
 323  329                                  dsl_pool_t *dp;
 324  330                                  dsl_dataset_t *ds = NULL;
 325  331  
 326  332                                  dp = spa_get_dsl(spa);
 327  333                                  dsl_pool_config_enter(dp, FTAG);
 328  334                                  if (err = dsl_dataset_hold_obj(dp,
 329  335                                      za.za_first_integer, FTAG, &ds)) {
 330  336                                          dsl_pool_config_exit(dp, FTAG);
 331  337                                          break;
 332  338                                  }
 333  339  
 334  340                                  strval = kmem_alloc(
 335  341                                      MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
 336  342                                      KM_SLEEP);
 337  343                                  dsl_dataset_name(ds, strval);
 338  344                                  dsl_dataset_rele(ds, FTAG);
 339  345                                  dsl_pool_config_exit(dp, FTAG);
 340  346                          } else {
 341  347                                  strval = NULL;
 342  348                                  intval = za.za_first_integer;
 343  349                          }
 344  350  
 345  351                          spa_prop_add_list(*nvp, prop, strval, intval, src);
 346  352  
 347  353                          if (strval != NULL)
 348  354                                  kmem_free(strval,
 349  355                                      MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
 350  356  
 351  357                          break;
 352  358  
 353  359                  case 1:
 354  360                          /* string property */
 355  361                          strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
 356  362                          err = zap_lookup(mos, spa->spa_pool_props_object,
 357  363                              za.za_name, 1, za.za_num_integers, strval);
 358  364                          if (err) {
 359  365                                  kmem_free(strval, za.za_num_integers);
 360  366                                  break;
 361  367                          }
 362  368                          spa_prop_add_list(*nvp, prop, strval, 0, src);
 363  369                          kmem_free(strval, za.za_num_integers);
 364  370                          break;
 365  371  
 366  372                  default:
 367  373                          break;
 368  374                  }
 369  375          }
 370  376          zap_cursor_fini(&zc);
 371  377          mutex_exit(&spa->spa_props_lock);
 372  378  out:
 373  379          if (err && err != ENOENT) {
 374  380                  nvlist_free(*nvp);
 375  381                  *nvp = NULL;
 376  382                  return (err);
 377  383          }
 378  384  
 379  385          return (0);
 380  386  }
 381  387  
 382  388  /*
 383  389   * Validate the given pool properties nvlist and modify the list
 384  390   * for the property values to be set.
 385  391   */
 386  392  static int
 387  393  spa_prop_validate(spa_t *spa, nvlist_t *props)
 388  394  {
 389  395          nvpair_t *elem;
 390  396          int error = 0, reset_bootfs = 0;
 391  397          uint64_t objnum = 0;
 392  398          boolean_t has_feature = B_FALSE;
 393  399  
 394  400          elem = NULL;
 395  401          while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
 396  402                  uint64_t intval;
 397  403                  char *strval, *slash, *check, *fname;
 398  404                  const char *propname = nvpair_name(elem);
 399  405                  zpool_prop_t prop = zpool_name_to_prop(propname);
 400  406  
 401  407                  switch (prop) {
 402  408                  case ZPROP_INVAL:
 403  409                          if (!zpool_prop_feature(propname)) {
 404  410                                  error = SET_ERROR(EINVAL);
 405  411                                  break;
 406  412                          }
 407  413  
 408  414                          /*
 409  415                           * Sanitize the input.
 410  416                           */
 411  417                          if (nvpair_type(elem) != DATA_TYPE_UINT64) {
 412  418                                  error = SET_ERROR(EINVAL);
 413  419                                  break;
 414  420                          }
 415  421  
 416  422                          if (nvpair_value_uint64(elem, &intval) != 0) {
 417  423                                  error = SET_ERROR(EINVAL);
 418  424                                  break;
 419  425                          }
 420  426  
 421  427                          if (intval != 0) {
 422  428                                  error = SET_ERROR(EINVAL);
 423  429                                  break;
 424  430                          }
 425  431  
 426  432                          fname = strchr(propname, '@') + 1;
 427  433                          if (zfeature_lookup_name(fname, NULL) != 0) {
 428  434                                  error = SET_ERROR(EINVAL);
 429  435                                  break;
 430  436                          }
 431  437  
 432  438                          has_feature = B_TRUE;
 433  439                          break;
 434  440  
 435  441                  case ZPOOL_PROP_VERSION:
 436  442                          error = nvpair_value_uint64(elem, &intval);
 437  443                          if (!error &&
 438  444                              (intval < spa_version(spa) ||
 439  445                              intval > SPA_VERSION_BEFORE_FEATURES ||
 440  446                              has_feature))
 441  447                                  error = SET_ERROR(EINVAL);
 442  448                          break;
 443  449  
 444  450                  case ZPOOL_PROP_DELEGATION:
 445  451                  case ZPOOL_PROP_AUTOREPLACE:
 446  452                  case ZPOOL_PROP_LISTSNAPS:
 447  453                  case ZPOOL_PROP_AUTOEXPAND:
 448  454                          error = nvpair_value_uint64(elem, &intval);
 449  455                          if (!error && intval > 1)
 450  456                                  error = SET_ERROR(EINVAL);
 451  457                          break;
 452  458  
 453  459                  case ZPOOL_PROP_BOOTFS:
 454  460                          /*
 455  461                           * If the pool version is less than SPA_VERSION_BOOTFS,
 456  462                           * or the pool is still being created (version == 0),
 457  463                           * the bootfs property cannot be set.
 458  464                           */
 459  465                          if (spa_version(spa) < SPA_VERSION_BOOTFS) {
 460  466                                  error = SET_ERROR(ENOTSUP);
 461  467                                  break;
 462  468                          }
 463  469  
 464  470                          /*
 465  471                           * Make sure the vdev config is bootable
 466  472                           */
 467  473                          if (!vdev_is_bootable(spa->spa_root_vdev)) {
 468  474                                  error = SET_ERROR(ENOTSUP);
 469  475                                  break;
 470  476                          }
 471  477  
 472  478                          reset_bootfs = 1;
 473  479  
 474  480                          error = nvpair_value_string(elem, &strval);
 475  481  
 476  482                          if (!error) {
 477  483                                  objset_t *os;
 478  484                                  uint64_t compress;
 479  485  
 480  486                                  if (strval == NULL || strval[0] == '\0') {
 481  487                                          objnum = zpool_prop_default_numeric(
 482  488                                              ZPOOL_PROP_BOOTFS);
 483  489                                          break;
 484  490                                  }
 485  491  
 486  492                                  if (error = dmu_objset_hold(strval, FTAG, &os))
 487  493                                          break;
 488  494  
 489  495                                  /* Must be ZPL and not gzip compressed. */
 490  496  
 491  497                                  if (dmu_objset_type(os) != DMU_OST_ZFS) {
 492  498                                          error = SET_ERROR(ENOTSUP);
 493  499                                  } else if ((error =
 494  500                                      dsl_prop_get_int_ds(dmu_objset_ds(os),
 495  501                                      zfs_prop_to_name(ZFS_PROP_COMPRESSION),
 496  502                                      &compress)) == 0 &&
 497  503                                      !BOOTFS_COMPRESS_VALID(compress)) {
 498  504                                          error = SET_ERROR(ENOTSUP);
 499  505                                  } else {
 500  506                                          objnum = dmu_objset_id(os);
 501  507                                  }
 502  508                                  dmu_objset_rele(os, FTAG);
 503  509                          }
 504  510                          break;
 505  511  
 506  512                  case ZPOOL_PROP_FAILUREMODE:
 507  513                          error = nvpair_value_uint64(elem, &intval);
 508  514                          if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
 509  515                              intval > ZIO_FAILURE_MODE_PANIC))
 510  516                                  error = SET_ERROR(EINVAL);
 511  517  
 512  518                          /*
 513  519                           * This is a special case which only occurs when
 514  520                           * the pool has completely failed. This allows
 515  521                           * the user to change the in-core failmode property
 516  522                           * without syncing it out to disk (I/Os might
 517  523                           * currently be blocked). We do this by returning
 518  524                           * EIO to the caller (spa_prop_set) to trick it
 519  525                           * into thinking we encountered a property validation
 520  526                           * error.
 521  527                           */
 522  528                          if (!error && spa_suspended(spa)) {
 523  529                                  spa->spa_failmode = intval;
 524  530                                  error = SET_ERROR(EIO);
 525  531                          }
 526  532                          break;
 527  533  
 528  534                  case ZPOOL_PROP_CACHEFILE:
 529  535                          if ((error = nvpair_value_string(elem, &strval)) != 0)
 530  536                                  break;
 531  537  
 532  538                          if (strval[0] == '\0')
 533  539                                  break;
 534  540  
 535  541                          if (strcmp(strval, "none") == 0)
 536  542                                  break;
 537  543  
 538  544                          if (strval[0] != '/') {
 539  545                                  error = SET_ERROR(EINVAL);
 540  546                                  break;
 541  547                          }
 542  548  
 543  549                          slash = strrchr(strval, '/');
 544  550                          ASSERT(slash != NULL);
 545  551  
 546  552                          if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
 547  553                              strcmp(slash, "/..") == 0)
 548  554                                  error = SET_ERROR(EINVAL);
 549  555                          break;
 550  556  
 551  557                  case ZPOOL_PROP_COMMENT:
 552  558                          if ((error = nvpair_value_string(elem, &strval)) != 0)
 553  559                                  break;
 554  560                          for (check = strval; *check != '\0'; check++) {
 555  561                                  /*
 556  562                                   * The kernel doesn't have an easy isprint()
 557  563                                   * check.  For this kernel check, we merely
 558  564                                   * check ASCII apart from DEL.  Fix this if
 559  565                                   * there is an easy-to-use kernel isprint().
 560  566                                   */
 561  567                                  if (*check >= 0x7f) {
 562  568                                          error = SET_ERROR(EINVAL);
 563  569                                          break;
 564  570                                  }
 565  571                                  check++;
 566  572                          }
 567  573                          if (strlen(strval) > ZPROP_MAX_COMMENT)
 568  574                                  error = E2BIG;
 569  575                          break;
 570  576  
 571  577                  case ZPOOL_PROP_DEDUPDITTO:
 572  578                          if (spa_version(spa) < SPA_VERSION_DEDUP)
 573  579                                  error = SET_ERROR(ENOTSUP);
 574  580                          else
 575  581                                  error = nvpair_value_uint64(elem, &intval);
 576  582                          if (error == 0 &&
 577  583                              intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
 578  584                                  error = SET_ERROR(EINVAL);
 579  585                          break;
 580  586                  }
 581  587  
 582  588                  if (error)
 583  589                          break;
 584  590          }
 585  591  
 586  592          if (!error && reset_bootfs) {
 587  593                  error = nvlist_remove(props,
 588  594                      zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
 589  595  
 590  596                  if (!error) {
 591  597                          error = nvlist_add_uint64(props,
 592  598                              zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
 593  599                  }
 594  600          }
 595  601  
 596  602          return (error);
 597  603  }
 598  604  
 599  605  void
 600  606  spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
 601  607  {
 602  608          char *cachefile;
 603  609          spa_config_dirent_t *dp;
 604  610  
 605  611          if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
 606  612              &cachefile) != 0)
 607  613                  return;
 608  614  
 609  615          dp = kmem_alloc(sizeof (spa_config_dirent_t),
 610  616              KM_SLEEP);
 611  617  
 612  618          if (cachefile[0] == '\0')
 613  619                  dp->scd_path = spa_strdup(spa_config_path);
 614  620          else if (strcmp(cachefile, "none") == 0)
 615  621                  dp->scd_path = NULL;
 616  622          else
 617  623                  dp->scd_path = spa_strdup(cachefile);
 618  624  
 619  625          list_insert_head(&spa->spa_config_list, dp);
 620  626          if (need_sync)
 621  627                  spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
 622  628  }
 623  629  
 624  630  int
 625  631  spa_prop_set(spa_t *spa, nvlist_t *nvp)
 626  632  {
 627  633          int error;
 628  634          nvpair_t *elem = NULL;
 629  635          boolean_t need_sync = B_FALSE;
 630  636  
 631  637          if ((error = spa_prop_validate(spa, nvp)) != 0)
 632  638                  return (error);
 633  639  
 634  640          while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
 635  641                  zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
 636  642  
 637  643                  if (prop == ZPOOL_PROP_CACHEFILE ||
 638  644                      prop == ZPOOL_PROP_ALTROOT ||
 639  645                      prop == ZPOOL_PROP_READONLY)
 640  646                          continue;
 641  647  
 642  648                  if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
 643  649                          uint64_t ver;
 644  650  
 645  651                          if (prop == ZPOOL_PROP_VERSION) {
 646  652                                  VERIFY(nvpair_value_uint64(elem, &ver) == 0);
 647  653                          } else {
 648  654                                  ASSERT(zpool_prop_feature(nvpair_name(elem)));
 649  655                                  ver = SPA_VERSION_FEATURES;
 650  656                                  need_sync = B_TRUE;
 651  657                          }
 652  658  
 653  659                          /* Save time if the version is already set. */
 654  660                          if (ver == spa_version(spa))
 655  661                                  continue;
 656  662  
 657  663                          /*
 658  664                           * In addition to the pool directory object, we might
 659  665                           * create the pool properties object, the features for
 660  666                           * read object, the features for write object, or the
 661  667                           * feature descriptions object.
 662  668                           */
 663  669                          error = dsl_sync_task(spa->spa_name, NULL,
 664  670                              spa_sync_version, &ver, 6);
 665  671                          if (error)
 666  672                                  return (error);
 667  673                          continue;
 668  674                  }
 669  675  
 670  676                  need_sync = B_TRUE;
 671  677                  break;
 672  678          }
 673  679  
 674  680          if (need_sync) {
 675  681                  return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
 676  682                      nvp, 6));
 677  683          }
 678  684  
 679  685          return (0);
 680  686  }
 681  687  
 682  688  /*
 683  689   * If the bootfs property value is dsobj, clear it.
 684  690   */
 685  691  void
 686  692  spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
 687  693  {
 688  694          if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
 689  695                  VERIFY(zap_remove(spa->spa_meta_objset,
 690  696                      spa->spa_pool_props_object,
 691  697                      zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
 692  698                  spa->spa_bootfs = 0;
 693  699          }
 694  700  }
 695  701  
 696  702  /*ARGSUSED*/
 697  703  static int
 698  704  spa_change_guid_check(void *arg, dmu_tx_t *tx)
 699  705  {
 700  706          uint64_t *newguid = arg;
 701  707          spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 702  708          vdev_t *rvd = spa->spa_root_vdev;
 703  709          uint64_t vdev_state;
 704  710  
 705  711          spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 706  712          vdev_state = rvd->vdev_state;
 707  713          spa_config_exit(spa, SCL_STATE, FTAG);
 708  714  
 709  715          if (vdev_state != VDEV_STATE_HEALTHY)
 710  716                  return (SET_ERROR(ENXIO));
 711  717  
 712  718          ASSERT3U(spa_guid(spa), !=, *newguid);
 713  719  
 714  720          return (0);
 715  721  }
 716  722  
 717  723  static void
 718  724  spa_change_guid_sync(void *arg, dmu_tx_t *tx)
 719  725  {
 720  726          uint64_t *newguid = arg;
 721  727          spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 722  728          uint64_t oldguid;
 723  729          vdev_t *rvd = spa->spa_root_vdev;
 724  730  
 725  731          oldguid = spa_guid(spa);
 726  732  
 727  733          spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 728  734          rvd->vdev_guid = *newguid;
 729  735          rvd->vdev_guid_sum += (*newguid - oldguid);
 730  736          vdev_config_dirty(rvd);
 731  737          spa_config_exit(spa, SCL_STATE, FTAG);
 732  738  
 733  739          spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
 734  740              oldguid, *newguid);
 735  741  }
 736  742  
 737  743  /*
 738  744   * Change the GUID for the pool.  This is done so that we can later
 739  745   * re-import a pool built from a clone of our own vdevs.  We will modify
 740  746   * the root vdev's guid, our own pool guid, and then mark all of our
 741  747   * vdevs dirty.  Note that we must make sure that all our vdevs are
 742  748   * online when we do this, or else any vdevs that weren't present
 743  749   * would be orphaned from our pool.  We are also going to issue a
 744  750   * sysevent to update any watchers.
 745  751   */
 746  752  int
 747  753  spa_change_guid(spa_t *spa)
 748  754  {
 749  755          int error;
 750  756          uint64_t guid;
 751  757  
 752  758          mutex_enter(&spa_namespace_lock);
 753  759          guid = spa_generate_guid(NULL);
 754  760  
 755  761          error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
 756  762              spa_change_guid_sync, &guid, 5);
 757  763  
 758  764          if (error == 0) {
 759  765                  spa_config_sync(spa, B_FALSE, B_TRUE);
 760  766                  spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
 761  767          }
 762  768  
 763  769          mutex_exit(&spa_namespace_lock);
 764  770  
 765  771          return (error);
 766  772  }
 767  773  
 768  774  /*
 769  775   * ==========================================================================
 770  776   * SPA state manipulation (open/create/destroy/import/export)
 771  777   * ==========================================================================
 772  778   */
 773  779  
 774  780  static int
 775  781  spa_error_entry_compare(const void *a, const void *b)
 776  782  {
 777  783          spa_error_entry_t *sa = (spa_error_entry_t *)a;
 778  784          spa_error_entry_t *sb = (spa_error_entry_t *)b;
 779  785          int ret;
 780  786  
 781  787          ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
 782  788              sizeof (zbookmark_t));
 783  789  
 784  790          if (ret < 0)
 785  791                  return (-1);
 786  792          else if (ret > 0)
 787  793                  return (1);
 788  794          else
 789  795                  return (0);
 790  796  }
 791  797  
 792  798  /*
 793  799   * Utility function which retrieves copies of the current logs and
 794  800   * re-initializes them in the process.
 795  801   */
 796  802  void
 797  803  spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
 798  804  {
 799  805          ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
 800  806  
 801  807          bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
 802  808          bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
 803  809  
 804  810          avl_create(&spa->spa_errlist_scrub,
 805  811              spa_error_entry_compare, sizeof (spa_error_entry_t),
 806  812              offsetof(spa_error_entry_t, se_avl));
 807  813          avl_create(&spa->spa_errlist_last,
 808  814              spa_error_entry_compare, sizeof (spa_error_entry_t),
 809  815              offsetof(spa_error_entry_t, se_avl));
 810  816  }
 811  817  
 812  818  static void
 813  819  spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
 814  820  {
 815  821          const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
 816  822          enum zti_modes mode = ztip->zti_mode;
 817  823          uint_t value = ztip->zti_value;
 818  824          uint_t count = ztip->zti_count;
 819  825          spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 820  826          char name[32];
 821  827          uint_t flags = 0;
 822  828          boolean_t batch = B_FALSE;
 823  829  
 824  830          if (mode == ZTI_MODE_NULL) {
 825  831                  tqs->stqs_count = 0;
 826  832                  tqs->stqs_taskq = NULL;
 827  833                  return;
 828  834          }
 829  835  
 830  836          ASSERT3U(count, >, 0);
 831  837  
 832  838          tqs->stqs_count = count;
 833  839          tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
 834  840  
 835  841          for (uint_t i = 0; i < count; i++) {
 836  842                  taskq_t *tq;
 837  843  
 838  844                  switch (mode) {
 839  845                  case ZTI_MODE_FIXED:
 840  846                          ASSERT3U(value, >=, 1);
 841  847                          value = MAX(value, 1);
 842  848                          break;
 843  849  
 844  850                  case ZTI_MODE_BATCH:
 845  851                          batch = B_TRUE;
 846  852                          flags |= TASKQ_THREADS_CPU_PCT;
 847  853                          value = zio_taskq_batch_pct;
 848  854                          break;
 849  855  
 850  856                  case ZTI_MODE_ONLINE_PERCENT:
 851  857                          flags |= TASKQ_THREADS_CPU_PCT;
 852  858                          break;
 853  859  
 854  860                  default:
 855  861                          panic("unrecognized mode for %s_%s taskq (%u:%u) in "
 856  862                              "spa_activate()",
 857  863                              zio_type_name[t], zio_taskq_types[q], mode, value);
 858  864                          break;
 859  865                  }
 860  866  
 861  867                  if (count > 1) {
 862  868                          (void) snprintf(name, sizeof (name), "%s_%s_%u",
 863  869                              zio_type_name[t], zio_taskq_types[q], i);
 864  870                  } else {
 865  871                          (void) snprintf(name, sizeof (name), "%s_%s",
 866  872                              zio_type_name[t], zio_taskq_types[q]);
 867  873                  }
 868  874  
 869  875                  if (zio_taskq_sysdc && spa->spa_proc != &p0) {
 870  876                          if (batch)
 871  877                                  flags |= TASKQ_DC_BATCH;
 872  878  
 873  879                          tq = taskq_create_sysdc(name, value, 50, INT_MAX,
 874  880                              spa->spa_proc, zio_taskq_basedc, flags);
 875  881                  } else {
 876  882                          tq = taskq_create_proc(name, value, maxclsyspri, 50,
 877  883                              INT_MAX, spa->spa_proc, flags);
 878  884                  }
 879  885  
 880  886                  tqs->stqs_taskq[i] = tq;
 881  887          }
 882  888  }
 883  889  
 884  890  static void
 885  891  spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
 886  892  {
 887  893          spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 888  894  
 889  895          if (tqs->stqs_taskq == NULL) {
 890  896                  ASSERT0(tqs->stqs_count);
 891  897                  return;
 892  898          }
 893  899  
 894  900          for (uint_t i = 0; i < tqs->stqs_count; i++) {
 895  901                  ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
 896  902                  taskq_destroy(tqs->stqs_taskq[i]);
 897  903          }
 898  904  
 899  905          kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
 900  906          tqs->stqs_taskq = NULL;
 901  907  }
 902  908  
 903  909  /*
 904  910   * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
 905  911   * Note that a type may have multiple discrete taskqs to avoid lock contention
 906  912   * on the taskq itself. In that case we choose which taskq at random by using
 907  913   * the low bits of gethrtime().
 908  914   */
 909  915  void
 910  916  spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
 911  917      task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
 912  918  {
 913  919          spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 914  920          taskq_t *tq;
 915  921  
 916  922          ASSERT3P(tqs->stqs_taskq, !=, NULL);
 917  923          ASSERT3U(tqs->stqs_count, !=, 0);
 918  924  
 919  925          if (tqs->stqs_count == 1) {
 920  926                  tq = tqs->stqs_taskq[0];
 921  927          } else {
 922  928                  tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
 923  929          }
 924  930  
 925  931          taskq_dispatch_ent(tq, func, arg, flags, ent);
 926  932  }
 927  933  
 928  934  static void
 929  935  spa_create_zio_taskqs(spa_t *spa)
 930  936  {
 931  937          for (int t = 0; t < ZIO_TYPES; t++) {
 932  938                  for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
 933  939                          spa_taskqs_init(spa, t, q);
 934  940                  }
 935  941          }
 936  942  }
 937  943  
 938  944  #ifdef _KERNEL
 939  945  static void
 940  946  spa_thread(void *arg)
 941  947  {
 942  948          callb_cpr_t cprinfo;
 943  949  
 944  950          spa_t *spa = arg;
 945  951          user_t *pu = PTOU(curproc);
 946  952  
 947  953          CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
 948  954              spa->spa_name);
 949  955  
 950  956          ASSERT(curproc != &p0);
 951  957          (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
 952  958              "zpool-%s", spa->spa_name);
 953  959          (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
 954  960  
 955  961          /* bind this thread to the requested psrset */
 956  962          if (zio_taskq_psrset_bind != PS_NONE) {
 957  963                  pool_lock();
 958  964                  mutex_enter(&cpu_lock);
 959  965                  mutex_enter(&pidlock);
 960  966                  mutex_enter(&curproc->p_lock);
 961  967  
 962  968                  if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
 963  969                      0, NULL, NULL) == 0)  {
 964  970                          curthread->t_bind_pset = zio_taskq_psrset_bind;
 965  971                  } else {
 966  972                          cmn_err(CE_WARN,
 967  973                              "Couldn't bind process for zfs pool \"%s\" to "
 968  974                              "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
 969  975                  }
 970  976  
 971  977                  mutex_exit(&curproc->p_lock);
 972  978                  mutex_exit(&pidlock);
 973  979                  mutex_exit(&cpu_lock);
 974  980                  pool_unlock();
 975  981          }
 976  982  
 977  983          if (zio_taskq_sysdc) {
 978  984                  sysdc_thread_enter(curthread, 100, 0);
 979  985          }
 980  986  
 981  987          spa->spa_proc = curproc;
 982  988          spa->spa_did = curthread->t_did;
 983  989  
 984  990          spa_create_zio_taskqs(spa);
 985  991  
 986  992          mutex_enter(&spa->spa_proc_lock);
 987  993          ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
 988  994  
 989  995          spa->spa_proc_state = SPA_PROC_ACTIVE;
 990  996          cv_broadcast(&spa->spa_proc_cv);
 991  997  
 992  998          CALLB_CPR_SAFE_BEGIN(&cprinfo);
 993  999          while (spa->spa_proc_state == SPA_PROC_ACTIVE)
 994 1000                  cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
 995 1001          CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
 996 1002  
 997 1003          ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
 998 1004          spa->spa_proc_state = SPA_PROC_GONE;
 999 1005          spa->spa_proc = &p0;
1000 1006          cv_broadcast(&spa->spa_proc_cv);
1001 1007          CALLB_CPR_EXIT(&cprinfo);       /* drops spa_proc_lock */
1002 1008  
1003 1009          mutex_enter(&curproc->p_lock);
1004 1010          lwp_exit();
1005 1011  }
1006 1012  #endif
1007 1013  
1008 1014  /*
1009 1015   * Activate an uninitialized pool.
1010 1016   */
1011 1017  static void
1012 1018  spa_activate(spa_t *spa, int mode)
1013 1019  {
1014 1020          ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1015 1021  
1016 1022          spa->spa_state = POOL_STATE_ACTIVE;
1017 1023          spa->spa_mode = mode;
1018 1024  
1019 1025          spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1020 1026          spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1021 1027  
1022 1028          /* Try to create a covering process */
1023 1029          mutex_enter(&spa->spa_proc_lock);
1024 1030          ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1025 1031          ASSERT(spa->spa_proc == &p0);
1026 1032          spa->spa_did = 0;
1027 1033  
1028 1034          /* Only create a process if we're going to be around a while. */
1029 1035          if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1030 1036                  if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1031 1037                      NULL, 0) == 0) {
1032 1038                          spa->spa_proc_state = SPA_PROC_CREATED;
1033 1039                          while (spa->spa_proc_state == SPA_PROC_CREATED) {
1034 1040                                  cv_wait(&spa->spa_proc_cv,
1035 1041                                      &spa->spa_proc_lock);
1036 1042                          }
1037 1043                          ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1038 1044                          ASSERT(spa->spa_proc != &p0);
1039 1045                          ASSERT(spa->spa_did != 0);
1040 1046                  } else {
1041 1047  #ifdef _KERNEL
1042 1048                          cmn_err(CE_WARN,
1043 1049                              "Couldn't create process for zfs pool \"%s\"\n",
1044 1050                              spa->spa_name);
1045 1051  #endif
1046 1052                  }
1047 1053          }
1048 1054          mutex_exit(&spa->spa_proc_lock);
1049 1055  
1050 1056          /* If we didn't create a process, we need to create our taskqs. */
1051 1057          if (spa->spa_proc == &p0) {
1052 1058                  spa_create_zio_taskqs(spa);
1053 1059          }
1054 1060  
1055 1061          list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1056 1062              offsetof(vdev_t, vdev_config_dirty_node));
1057 1063          list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1058 1064              offsetof(vdev_t, vdev_state_dirty_node));
1059 1065  
1060 1066          txg_list_create(&spa->spa_vdev_txg_list,
1061 1067              offsetof(struct vdev, vdev_txg_node));
1062 1068  
1063 1069          avl_create(&spa->spa_errlist_scrub,
1064 1070              spa_error_entry_compare, sizeof (spa_error_entry_t),
1065 1071              offsetof(spa_error_entry_t, se_avl));
1066 1072          avl_create(&spa->spa_errlist_last,
1067 1073              spa_error_entry_compare, sizeof (spa_error_entry_t),
1068 1074              offsetof(spa_error_entry_t, se_avl));
1069 1075  }
1070 1076  
1071 1077  /*
1072 1078   * Opposite of spa_activate().
1073 1079   */
1074 1080  static void
1075 1081  spa_deactivate(spa_t *spa)
1076 1082  {
1077 1083          ASSERT(spa->spa_sync_on == B_FALSE);
1078 1084          ASSERT(spa->spa_dsl_pool == NULL);
1079 1085          ASSERT(spa->spa_root_vdev == NULL);
1080 1086          ASSERT(spa->spa_async_zio_root == NULL);
1081 1087          ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1082 1088  
1083 1089          txg_list_destroy(&spa->spa_vdev_txg_list);
1084 1090  
1085 1091          list_destroy(&spa->spa_config_dirty_list);
1086 1092          list_destroy(&spa->spa_state_dirty_list);
1087 1093  
1088 1094          for (int t = 0; t < ZIO_TYPES; t++) {
1089 1095                  for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1090 1096                          spa_taskqs_fini(spa, t, q);
1091 1097                  }
1092 1098          }
1093 1099  
1094 1100          metaslab_class_destroy(spa->spa_normal_class);
1095 1101          spa->spa_normal_class = NULL;
1096 1102  
1097 1103          metaslab_class_destroy(spa->spa_log_class);
1098 1104          spa->spa_log_class = NULL;
1099 1105  
1100 1106          /*
1101 1107           * If this was part of an import or the open otherwise failed, we may
1102 1108           * still have errors left in the queues.  Empty them just in case.
1103 1109           */
1104 1110          spa_errlog_drain(spa);
1105 1111  
1106 1112          avl_destroy(&spa->spa_errlist_scrub);
1107 1113          avl_destroy(&spa->spa_errlist_last);
1108 1114  
1109 1115          spa->spa_state = POOL_STATE_UNINITIALIZED;
1110 1116  
1111 1117          mutex_enter(&spa->spa_proc_lock);
1112 1118          if (spa->spa_proc_state != SPA_PROC_NONE) {
1113 1119                  ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1114 1120                  spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1115 1121                  cv_broadcast(&spa->spa_proc_cv);
1116 1122                  while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1117 1123                          ASSERT(spa->spa_proc != &p0);
1118 1124                          cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1119 1125                  }
1120 1126                  ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1121 1127                  spa->spa_proc_state = SPA_PROC_NONE;
1122 1128          }
1123 1129          ASSERT(spa->spa_proc == &p0);
1124 1130          mutex_exit(&spa->spa_proc_lock);
1125 1131  
1126 1132          /*
1127 1133           * We want to make sure spa_thread() has actually exited the ZFS
1128 1134           * module, so that the module can't be unloaded out from underneath
1129 1135           * it.
1130 1136           */
1131 1137          if (spa->spa_did != 0) {
1132 1138                  thread_join(spa->spa_did);
1133 1139                  spa->spa_did = 0;
1134 1140          }
1135 1141  }
1136 1142  
1137 1143  /*
1138 1144   * Verify a pool configuration, and construct the vdev tree appropriately.  This
1139 1145   * will create all the necessary vdevs in the appropriate layout, with each vdev
1140 1146   * in the CLOSED state.  This will prep the pool before open/creation/import.
1141 1147   * All vdev validation is done by the vdev_alloc() routine.
1142 1148   */
1143 1149  static int
1144 1150  spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1145 1151      uint_t id, int atype)
1146 1152  {
1147 1153          nvlist_t **child;
1148 1154          uint_t children;
1149 1155          int error;
1150 1156  
1151 1157          if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1152 1158                  return (error);
1153 1159  
1154 1160          if ((*vdp)->vdev_ops->vdev_op_leaf)
1155 1161                  return (0);
1156 1162  
1157 1163          error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1158 1164              &child, &children);
1159 1165  
1160 1166          if (error == ENOENT)
1161 1167                  return (0);
1162 1168  
1163 1169          if (error) {
1164 1170                  vdev_free(*vdp);
1165 1171                  *vdp = NULL;
1166 1172                  return (SET_ERROR(EINVAL));
1167 1173          }
1168 1174  
1169 1175          for (int c = 0; c < children; c++) {
1170 1176                  vdev_t *vd;
1171 1177                  if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1172 1178                      atype)) != 0) {
1173 1179                          vdev_free(*vdp);
1174 1180                          *vdp = NULL;
1175 1181                          return (error);
1176 1182                  }
1177 1183          }
1178 1184  
1179 1185          ASSERT(*vdp != NULL);
1180 1186  
1181 1187          return (0);
1182 1188  }
1183 1189  
1184 1190  /*
1185 1191   * Opposite of spa_load().
1186 1192   */
1187 1193  static void
1188 1194  spa_unload(spa_t *spa)
1189 1195  {
1190 1196          int i;
1191 1197  
1192 1198          ASSERT(MUTEX_HELD(&spa_namespace_lock));
1193 1199  
1194 1200          /*
1195 1201           * Stop async tasks.
1196 1202           */
1197 1203          spa_async_suspend(spa);
1198 1204  
1199 1205          /*
1200 1206           * Stop syncing.
1201 1207           */
1202 1208          if (spa->spa_sync_on) {
1203 1209                  txg_sync_stop(spa->spa_dsl_pool);
1204 1210                  spa->spa_sync_on = B_FALSE;
1205 1211          }
1206 1212  
1207 1213          /*
1208 1214           * Wait for any outstanding async I/O to complete.
1209 1215           */
1210 1216          if (spa->spa_async_zio_root != NULL) {
1211 1217                  (void) zio_wait(spa->spa_async_zio_root);
1212 1218                  spa->spa_async_zio_root = NULL;
1213 1219          }
1214 1220  
1215 1221          bpobj_close(&spa->spa_deferred_bpobj);
1216 1222  
1217 1223          /*
1218 1224           * Close the dsl pool.
1219 1225           */
1220 1226          if (spa->spa_dsl_pool) {
1221 1227                  dsl_pool_close(spa->spa_dsl_pool);
1222 1228                  spa->spa_dsl_pool = NULL;
1223 1229                  spa->spa_meta_objset = NULL;
1224 1230          }
1225 1231  
1226 1232          ddt_unload(spa);
1227 1233  
1228 1234          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1229 1235  
1230 1236          /*
1231 1237           * Drop and purge level 2 cache
1232 1238           */
1233 1239          spa_l2cache_drop(spa);
1234 1240  
1235 1241          /*
1236 1242           * Close all vdevs.
1237 1243           */
1238 1244          if (spa->spa_root_vdev)
1239 1245                  vdev_free(spa->spa_root_vdev);
1240 1246          ASSERT(spa->spa_root_vdev == NULL);
1241 1247  
1242 1248          for (i = 0; i < spa->spa_spares.sav_count; i++)
1243 1249                  vdev_free(spa->spa_spares.sav_vdevs[i]);
1244 1250          if (spa->spa_spares.sav_vdevs) {
1245 1251                  kmem_free(spa->spa_spares.sav_vdevs,
1246 1252                      spa->spa_spares.sav_count * sizeof (void *));
1247 1253                  spa->spa_spares.sav_vdevs = NULL;
1248 1254          }
1249 1255          if (spa->spa_spares.sav_config) {
1250 1256                  nvlist_free(spa->spa_spares.sav_config);
1251 1257                  spa->spa_spares.sav_config = NULL;
1252 1258          }
1253 1259          spa->spa_spares.sav_count = 0;
1254 1260  
1255 1261          for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1256 1262                  vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1257 1263                  vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1258 1264          }
1259 1265          if (spa->spa_l2cache.sav_vdevs) {
1260 1266                  kmem_free(spa->spa_l2cache.sav_vdevs,
1261 1267                      spa->spa_l2cache.sav_count * sizeof (void *));
1262 1268                  spa->spa_l2cache.sav_vdevs = NULL;
1263 1269          }
1264 1270          if (spa->spa_l2cache.sav_config) {
1265 1271                  nvlist_free(spa->spa_l2cache.sav_config);
1266 1272                  spa->spa_l2cache.sav_config = NULL;
1267 1273          }
1268 1274          spa->spa_l2cache.sav_count = 0;
1269 1275  
1270 1276          spa->spa_async_suspended = 0;
1271 1277  
1272 1278          if (spa->spa_comment != NULL) {
1273 1279                  spa_strfree(spa->spa_comment);
1274 1280                  spa->spa_comment = NULL;
1275 1281          }
1276 1282  
1277 1283          spa_config_exit(spa, SCL_ALL, FTAG);
1278 1284  }
1279 1285  
1280 1286  /*
1281 1287   * Load (or re-load) the current list of vdevs describing the active spares for
1282 1288   * this pool.  When this is called, we have some form of basic information in
1283 1289   * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1284 1290   * then re-generate a more complete list including status information.
1285 1291   */
1286 1292  static void
1287 1293  spa_load_spares(spa_t *spa)
1288 1294  {
1289 1295          nvlist_t **spares;
1290 1296          uint_t nspares;
1291 1297          int i;
1292 1298          vdev_t *vd, *tvd;
1293 1299  
1294 1300          ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1295 1301  
1296 1302          /*
1297 1303           * First, close and free any existing spare vdevs.
1298 1304           */
1299 1305          for (i = 0; i < spa->spa_spares.sav_count; i++) {
1300 1306                  vd = spa->spa_spares.sav_vdevs[i];
1301 1307  
1302 1308                  /* Undo the call to spa_activate() below */
1303 1309                  if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1304 1310                      B_FALSE)) != NULL && tvd->vdev_isspare)
1305 1311                          spa_spare_remove(tvd);
1306 1312                  vdev_close(vd);
1307 1313                  vdev_free(vd);
1308 1314          }
1309 1315  
1310 1316          if (spa->spa_spares.sav_vdevs)
1311 1317                  kmem_free(spa->spa_spares.sav_vdevs,
1312 1318                      spa->spa_spares.sav_count * sizeof (void *));
1313 1319  
1314 1320          if (spa->spa_spares.sav_config == NULL)
1315 1321                  nspares = 0;
1316 1322          else
1317 1323                  VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1318 1324                      ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1319 1325  
1320 1326          spa->spa_spares.sav_count = (int)nspares;
1321 1327          spa->spa_spares.sav_vdevs = NULL;
1322 1328  
1323 1329          if (nspares == 0)
1324 1330                  return;
1325 1331  
1326 1332          /*
1327 1333           * Construct the array of vdevs, opening them to get status in the
1328 1334           * process.   For each spare, there is potentially two different vdev_t
1329 1335           * structures associated with it: one in the list of spares (used only
1330 1336           * for basic validation purposes) and one in the active vdev
1331 1337           * configuration (if it's spared in).  During this phase we open and
1332 1338           * validate each vdev on the spare list.  If the vdev also exists in the
1333 1339           * active configuration, then we also mark this vdev as an active spare.
1334 1340           */
1335 1341          spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1336 1342              KM_SLEEP);
1337 1343          for (i = 0; i < spa->spa_spares.sav_count; i++) {
1338 1344                  VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1339 1345                      VDEV_ALLOC_SPARE) == 0);
1340 1346                  ASSERT(vd != NULL);
1341 1347  
1342 1348                  spa->spa_spares.sav_vdevs[i] = vd;
1343 1349  
1344 1350                  if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1345 1351                      B_FALSE)) != NULL) {
1346 1352                          if (!tvd->vdev_isspare)
1347 1353                                  spa_spare_add(tvd);
1348 1354  
1349 1355                          /*
1350 1356                           * We only mark the spare active if we were successfully
1351 1357                           * able to load the vdev.  Otherwise, importing a pool
1352 1358                           * with a bad active spare would result in strange
1353 1359                           * behavior, because multiple pool would think the spare
1354 1360                           * is actively in use.
1355 1361                           *
1356 1362                           * There is a vulnerability here to an equally bizarre
1357 1363                           * circumstance, where a dead active spare is later
1358 1364                           * brought back to life (onlined or otherwise).  Given
1359 1365                           * the rarity of this scenario, and the extra complexity
1360 1366                           * it adds, we ignore the possibility.
1361 1367                           */
1362 1368                          if (!vdev_is_dead(tvd))
1363 1369                                  spa_spare_activate(tvd);
1364 1370                  }
1365 1371  
1366 1372                  vd->vdev_top = vd;
1367 1373                  vd->vdev_aux = &spa->spa_spares;
1368 1374  
1369 1375                  if (vdev_open(vd) != 0)
1370 1376                          continue;
1371 1377  
1372 1378                  if (vdev_validate_aux(vd) == 0)
1373 1379                          spa_spare_add(vd);
1374 1380          }
1375 1381  
1376 1382          /*
1377 1383           * Recompute the stashed list of spares, with status information
1378 1384           * this time.
1379 1385           */
1380 1386          VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1381 1387              DATA_TYPE_NVLIST_ARRAY) == 0);
1382 1388  
1383 1389          spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1384 1390              KM_SLEEP);
1385 1391          for (i = 0; i < spa->spa_spares.sav_count; i++)
1386 1392                  spares[i] = vdev_config_generate(spa,
1387 1393                      spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1388 1394          VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1389 1395              ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1390 1396          for (i = 0; i < spa->spa_spares.sav_count; i++)
1391 1397                  nvlist_free(spares[i]);
1392 1398          kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1393 1399  }
1394 1400  
1395 1401  /*
1396 1402   * Load (or re-load) the current list of vdevs describing the active l2cache for
1397 1403   * this pool.  When this is called, we have some form of basic information in
1398 1404   * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1399 1405   * then re-generate a more complete list including status information.
1400 1406   * Devices which are already active have their details maintained, and are
1401 1407   * not re-opened.
1402 1408   */
1403 1409  static void
1404 1410  spa_load_l2cache(spa_t *spa)
1405 1411  {
1406 1412          nvlist_t **l2cache;
1407 1413          uint_t nl2cache;
1408 1414          int i, j, oldnvdevs;
1409 1415          uint64_t guid;
1410 1416          vdev_t *vd, **oldvdevs, **newvdevs;
1411 1417          spa_aux_vdev_t *sav = &spa->spa_l2cache;
1412 1418  
1413 1419          ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1414 1420  
1415 1421          if (sav->sav_config != NULL) {
1416 1422                  VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1417 1423                      ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1418 1424                  newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1419 1425          } else {
1420 1426                  nl2cache = 0;
1421 1427                  newvdevs = NULL;
1422 1428          }
1423 1429  
1424 1430          oldvdevs = sav->sav_vdevs;
1425 1431          oldnvdevs = sav->sav_count;
1426 1432          sav->sav_vdevs = NULL;
1427 1433          sav->sav_count = 0;
1428 1434  
1429 1435          /*
1430 1436           * Process new nvlist of vdevs.
1431 1437           */
1432 1438          for (i = 0; i < nl2cache; i++) {
1433 1439                  VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1434 1440                      &guid) == 0);
1435 1441  
1436 1442                  newvdevs[i] = NULL;
1437 1443                  for (j = 0; j < oldnvdevs; j++) {
1438 1444                          vd = oldvdevs[j];
1439 1445                          if (vd != NULL && guid == vd->vdev_guid) {
1440 1446                                  /*
1441 1447                                   * Retain previous vdev for add/remove ops.
1442 1448                                   */
1443 1449                                  newvdevs[i] = vd;
1444 1450                                  oldvdevs[j] = NULL;
1445 1451                                  break;
1446 1452                          }
1447 1453                  }
1448 1454  
1449 1455                  if (newvdevs[i] == NULL) {
1450 1456                          /*
1451 1457                           * Create new vdev
1452 1458                           */
1453 1459                          VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1454 1460                              VDEV_ALLOC_L2CACHE) == 0);
1455 1461                          ASSERT(vd != NULL);
1456 1462                          newvdevs[i] = vd;
1457 1463  
1458 1464                          /*
1459 1465                           * Commit this vdev as an l2cache device,
1460 1466                           * even if it fails to open.
1461 1467                           */
1462 1468                          spa_l2cache_add(vd);
1463 1469  
1464 1470                          vd->vdev_top = vd;
1465 1471                          vd->vdev_aux = sav;
1466 1472  
1467 1473                          spa_l2cache_activate(vd);
1468 1474  
1469 1475                          if (vdev_open(vd) != 0)
1470 1476                                  continue;
1471 1477  
1472 1478                          (void) vdev_validate_aux(vd);
1473 1479  
1474 1480                          if (!vdev_is_dead(vd))
1475 1481                                  l2arc_add_vdev(spa, vd);
1476 1482                  }
1477 1483          }
1478 1484  
1479 1485          /*
1480 1486           * Purge vdevs that were dropped
1481 1487           */
1482 1488          for (i = 0; i < oldnvdevs; i++) {
1483 1489                  uint64_t pool;
1484 1490  
1485 1491                  vd = oldvdevs[i];
1486 1492                  if (vd != NULL) {
1487 1493                          ASSERT(vd->vdev_isl2cache);
1488 1494  
1489 1495                          if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1490 1496                              pool != 0ULL && l2arc_vdev_present(vd))
1491 1497                                  l2arc_remove_vdev(vd);
1492 1498                          vdev_clear_stats(vd);
1493 1499                          vdev_free(vd);
1494 1500                  }
1495 1501          }
1496 1502  
1497 1503          if (oldvdevs)
1498 1504                  kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1499 1505  
1500 1506          if (sav->sav_config == NULL)
1501 1507                  goto out;
1502 1508  
1503 1509          sav->sav_vdevs = newvdevs;
1504 1510          sav->sav_count = (int)nl2cache;
1505 1511  
1506 1512          /*
1507 1513           * Recompute the stashed list of l2cache devices, with status
1508 1514           * information this time.
1509 1515           */
1510 1516          VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1511 1517              DATA_TYPE_NVLIST_ARRAY) == 0);
1512 1518  
1513 1519          l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1514 1520          for (i = 0; i < sav->sav_count; i++)
1515 1521                  l2cache[i] = vdev_config_generate(spa,
1516 1522                      sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1517 1523          VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1518 1524              ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1519 1525  out:
1520 1526          for (i = 0; i < sav->sav_count; i++)
1521 1527                  nvlist_free(l2cache[i]);
1522 1528          if (sav->sav_count)
1523 1529                  kmem_free(l2cache, sav->sav_count * sizeof (void *));
1524 1530  }
1525 1531  
1526 1532  static int
1527 1533  load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1528 1534  {
1529 1535          dmu_buf_t *db;
1530 1536          char *packed = NULL;
1531 1537          size_t nvsize = 0;
1532 1538          int error;
1533 1539          *value = NULL;
1534 1540  
1535 1541          VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1536 1542          nvsize = *(uint64_t *)db->db_data;
1537 1543          dmu_buf_rele(db, FTAG);
1538 1544  
1539 1545          packed = kmem_alloc(nvsize, KM_SLEEP);
1540 1546          error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1541 1547              DMU_READ_PREFETCH);
1542 1548          if (error == 0)
1543 1549                  error = nvlist_unpack(packed, nvsize, value, 0);
1544 1550          kmem_free(packed, nvsize);
1545 1551  
1546 1552          return (error);
1547 1553  }
1548 1554  
1549 1555  /*
1550 1556   * Checks to see if the given vdev could not be opened, in which case we post a
1551 1557   * sysevent to notify the autoreplace code that the device has been removed.
1552 1558   */
1553 1559  static void
1554 1560  spa_check_removed(vdev_t *vd)
1555 1561  {
1556 1562          for (int c = 0; c < vd->vdev_children; c++)
1557 1563                  spa_check_removed(vd->vdev_child[c]);
1558 1564  
1559 1565          if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1560 1566              !vd->vdev_ishole) {
1561 1567                  zfs_post_autoreplace(vd->vdev_spa, vd);
1562 1568                  spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1563 1569          }
1564 1570  }
1565 1571  
1566 1572  /*
1567 1573   * Validate the current config against the MOS config
1568 1574   */
1569 1575  static boolean_t
1570 1576  spa_config_valid(spa_t *spa, nvlist_t *config)
1571 1577  {
1572 1578          vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1573 1579          nvlist_t *nv;
1574 1580  
1575 1581          VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1576 1582  
1577 1583          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1578 1584          VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1579 1585  
1580 1586          ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1581 1587  
1582 1588          /*
1583 1589           * If we're doing a normal import, then build up any additional
1584 1590           * diagnostic information about missing devices in this config.
1585 1591           * We'll pass this up to the user for further processing.
1586 1592           */
1587 1593          if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1588 1594                  nvlist_t **child, *nv;
1589 1595                  uint64_t idx = 0;
1590 1596  
1591 1597                  child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1592 1598                      KM_SLEEP);
1593 1599                  VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1594 1600  
1595 1601                  for (int c = 0; c < rvd->vdev_children; c++) {
1596 1602                          vdev_t *tvd = rvd->vdev_child[c];
1597 1603                          vdev_t *mtvd  = mrvd->vdev_child[c];
1598 1604  
1599 1605                          if (tvd->vdev_ops == &vdev_missing_ops &&
1600 1606                              mtvd->vdev_ops != &vdev_missing_ops &&
1601 1607                              mtvd->vdev_islog)
1602 1608                                  child[idx++] = vdev_config_generate(spa, mtvd,
1603 1609                                      B_FALSE, 0);
1604 1610                  }
1605 1611  
1606 1612                  if (idx) {
1607 1613                          VERIFY(nvlist_add_nvlist_array(nv,
1608 1614                              ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1609 1615                          VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1610 1616                              ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1611 1617  
1612 1618                          for (int i = 0; i < idx; i++)
1613 1619                                  nvlist_free(child[i]);
1614 1620                  }
1615 1621                  nvlist_free(nv);
1616 1622                  kmem_free(child, rvd->vdev_children * sizeof (char **));
1617 1623          }
1618 1624  
1619 1625          /*
1620 1626           * Compare the root vdev tree with the information we have
1621 1627           * from the MOS config (mrvd). Check each top-level vdev
1622 1628           * with the corresponding MOS config top-level (mtvd).
1623 1629           */
1624 1630          for (int c = 0; c < rvd->vdev_children; c++) {
1625 1631                  vdev_t *tvd = rvd->vdev_child[c];
1626 1632                  vdev_t *mtvd  = mrvd->vdev_child[c];
1627 1633  
1628 1634                  /*
1629 1635                   * Resolve any "missing" vdevs in the current configuration.
1630 1636                   * If we find that the MOS config has more accurate information
1631 1637                   * about the top-level vdev then use that vdev instead.
1632 1638                   */
1633 1639                  if (tvd->vdev_ops == &vdev_missing_ops &&
1634 1640                      mtvd->vdev_ops != &vdev_missing_ops) {
1635 1641  
1636 1642                          if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1637 1643                                  continue;
1638 1644  
1639 1645                          /*
1640 1646                           * Device specific actions.
1641 1647                           */
1642 1648                          if (mtvd->vdev_islog) {
1643 1649                                  spa_set_log_state(spa, SPA_LOG_CLEAR);
1644 1650                          } else {
1645 1651                                  /*
1646 1652                                   * XXX - once we have 'readonly' pool
1647 1653                                   * support we should be able to handle
1648 1654                                   * missing data devices by transitioning
1649 1655                                   * the pool to readonly.
1650 1656                                   */
1651 1657                                  continue;
1652 1658                          }
1653 1659  
1654 1660                          /*
1655 1661                           * Swap the missing vdev with the data we were
1656 1662                           * able to obtain from the MOS config.
1657 1663                           */
1658 1664                          vdev_remove_child(rvd, tvd);
1659 1665                          vdev_remove_child(mrvd, mtvd);
1660 1666  
1661 1667                          vdev_add_child(rvd, mtvd);
1662 1668                          vdev_add_child(mrvd, tvd);
1663 1669  
1664 1670                          spa_config_exit(spa, SCL_ALL, FTAG);
1665 1671                          vdev_load(mtvd);
1666 1672                          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1667 1673  
1668 1674                          vdev_reopen(rvd);
1669 1675                  } else if (mtvd->vdev_islog) {
1670 1676                          /*
1671 1677                           * Load the slog device's state from the MOS config
1672 1678                           * since it's possible that the label does not
1673 1679                           * contain the most up-to-date information.
1674 1680                           */
1675 1681                          vdev_load_log_state(tvd, mtvd);
1676 1682                          vdev_reopen(tvd);
1677 1683                  }
1678 1684          }
1679 1685          vdev_free(mrvd);
1680 1686          spa_config_exit(spa, SCL_ALL, FTAG);
1681 1687  
1682 1688          /*
1683 1689           * Ensure we were able to validate the config.
1684 1690           */
1685 1691          return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1686 1692  }
1687 1693  
1688 1694  /*
1689 1695   * Check for missing log devices
1690 1696   */
1691 1697  static boolean_t
1692 1698  spa_check_logs(spa_t *spa)
1693 1699  {
1694 1700          boolean_t rv = B_FALSE;
1695 1701  
1696 1702          switch (spa->spa_log_state) {
1697 1703          case SPA_LOG_MISSING:
1698 1704                  /* need to recheck in case slog has been restored */
1699 1705          case SPA_LOG_UNKNOWN:
1700 1706                  rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1701 1707                      NULL, DS_FIND_CHILDREN) != 0);
1702 1708                  if (rv)
1703 1709                          spa_set_log_state(spa, SPA_LOG_MISSING);
1704 1710                  break;
1705 1711          }
1706 1712          return (rv);
1707 1713  }
1708 1714  
1709 1715  static boolean_t
1710 1716  spa_passivate_log(spa_t *spa)
1711 1717  {
1712 1718          vdev_t *rvd = spa->spa_root_vdev;
1713 1719          boolean_t slog_found = B_FALSE;
1714 1720  
1715 1721          ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1716 1722  
1717 1723          if (!spa_has_slogs(spa))
1718 1724                  return (B_FALSE);
1719 1725  
1720 1726          for (int c = 0; c < rvd->vdev_children; c++) {
1721 1727                  vdev_t *tvd = rvd->vdev_child[c];
1722 1728                  metaslab_group_t *mg = tvd->vdev_mg;
1723 1729  
1724 1730                  if (tvd->vdev_islog) {
1725 1731                          metaslab_group_passivate(mg);
1726 1732                          slog_found = B_TRUE;
1727 1733                  }
1728 1734          }
1729 1735  
1730 1736          return (slog_found);
1731 1737  }
1732 1738  
1733 1739  static void
1734 1740  spa_activate_log(spa_t *spa)
1735 1741  {
1736 1742          vdev_t *rvd = spa->spa_root_vdev;
1737 1743  
1738 1744          ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1739 1745  
1740 1746          for (int c = 0; c < rvd->vdev_children; c++) {
1741 1747                  vdev_t *tvd = rvd->vdev_child[c];
1742 1748                  metaslab_group_t *mg = tvd->vdev_mg;
1743 1749  
1744 1750                  if (tvd->vdev_islog)
1745 1751                          metaslab_group_activate(mg);
1746 1752          }
1747 1753  }
1748 1754  
1749 1755  int
1750 1756  spa_offline_log(spa_t *spa)
1751 1757  {
1752 1758          int error;
1753 1759  
1754 1760          error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1755 1761              NULL, DS_FIND_CHILDREN);
1756 1762          if (error == 0) {
1757 1763                  /*
1758 1764                   * We successfully offlined the log device, sync out the
1759 1765                   * current txg so that the "stubby" block can be removed
1760 1766                   * by zil_sync().
1761 1767                   */
1762 1768                  txg_wait_synced(spa->spa_dsl_pool, 0);
1763 1769          }
1764 1770          return (error);
1765 1771  }
1766 1772  
1767 1773  static void
1768 1774  spa_aux_check_removed(spa_aux_vdev_t *sav)
1769 1775  {
1770 1776          for (int i = 0; i < sav->sav_count; i++)
1771 1777                  spa_check_removed(sav->sav_vdevs[i]);
1772 1778  }
1773 1779  
1774 1780  void
1775 1781  spa_claim_notify(zio_t *zio)
1776 1782  {
1777 1783          spa_t *spa = zio->io_spa;
1778 1784  
1779 1785          if (zio->io_error)
1780 1786                  return;
1781 1787  
1782 1788          mutex_enter(&spa->spa_props_lock);      /* any mutex will do */
1783 1789          if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1784 1790                  spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1785 1791          mutex_exit(&spa->spa_props_lock);
1786 1792  }
1787 1793  
1788 1794  typedef struct spa_load_error {
1789 1795          uint64_t        sle_meta_count;
1790 1796          uint64_t        sle_data_count;
1791 1797  } spa_load_error_t;
1792 1798  
1793 1799  static void
1794 1800  spa_load_verify_done(zio_t *zio)
1795 1801  {
1796 1802          blkptr_t *bp = zio->io_bp;
1797 1803          spa_load_error_t *sle = zio->io_private;
1798 1804          dmu_object_type_t type = BP_GET_TYPE(bp);
1799 1805          int error = zio->io_error;
1800 1806  
1801 1807          if (error) {
1802 1808                  if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1803 1809                      type != DMU_OT_INTENT_LOG)
1804 1810                          atomic_add_64(&sle->sle_meta_count, 1);
1805 1811                  else
1806 1812                          atomic_add_64(&sle->sle_data_count, 1);
1807 1813          }
1808 1814          zio_data_buf_free(zio->io_data, zio->io_size);
1809 1815  }
1810 1816  
1811 1817  /*ARGSUSED*/
1812 1818  static int
1813 1819  spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1814 1820      const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1815 1821  {
1816 1822          if (bp != NULL) {
1817 1823                  zio_t *rio = arg;
1818 1824                  size_t size = BP_GET_PSIZE(bp);
1819 1825                  void *data = zio_data_buf_alloc(size);
1820 1826  
1821 1827                  zio_nowait(zio_read(rio, spa, bp, data, size,
1822 1828                      spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1823 1829                      ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1824 1830                      ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1825 1831          }
1826 1832          return (0);
1827 1833  }
1828 1834  
1829 1835  static int
1830 1836  spa_load_verify(spa_t *spa)
1831 1837  {
1832 1838          zio_t *rio;
1833 1839          spa_load_error_t sle = { 0 };
1834 1840          zpool_rewind_policy_t policy;
1835 1841          boolean_t verify_ok = B_FALSE;
1836 1842          int error;
1837 1843  
1838 1844          zpool_get_rewind_policy(spa->spa_config, &policy);
1839 1845  
1840 1846          if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1841 1847                  return (0);
1842 1848  
1843 1849          rio = zio_root(spa, NULL, &sle,
1844 1850              ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1845 1851  
1846 1852          error = traverse_pool(spa, spa->spa_verify_min_txg,
1847 1853              TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1848 1854  
1849 1855          (void) zio_wait(rio);
1850 1856  
1851 1857          spa->spa_load_meta_errors = sle.sle_meta_count;
1852 1858          spa->spa_load_data_errors = sle.sle_data_count;
1853 1859  
1854 1860          if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1855 1861              sle.sle_data_count <= policy.zrp_maxdata) {
1856 1862                  int64_t loss = 0;
1857 1863  
1858 1864                  verify_ok = B_TRUE;
1859 1865                  spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1860 1866                  spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1861 1867  
1862 1868                  loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1863 1869                  VERIFY(nvlist_add_uint64(spa->spa_load_info,
1864 1870                      ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1865 1871                  VERIFY(nvlist_add_int64(spa->spa_load_info,
1866 1872                      ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1867 1873                  VERIFY(nvlist_add_uint64(spa->spa_load_info,
1868 1874                      ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1869 1875          } else {
1870 1876                  spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1871 1877          }
1872 1878  
1873 1879          if (error) {
1874 1880                  if (error != ENXIO && error != EIO)
1875 1881                          error = SET_ERROR(EIO);
1876 1882                  return (error);
1877 1883          }
1878 1884  
1879 1885          return (verify_ok ? 0 : EIO);
1880 1886  }
1881 1887  
1882 1888  /*
1883 1889   * Find a value in the pool props object.
1884 1890   */
1885 1891  static void
1886 1892  spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1887 1893  {
1888 1894          (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1889 1895              zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1890 1896  }
1891 1897  
1892 1898  /*
1893 1899   * Find a value in the pool directory object.
1894 1900   */
1895 1901  static int
1896 1902  spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1897 1903  {
1898 1904          return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1899 1905              name, sizeof (uint64_t), 1, val));
1900 1906  }
1901 1907  
1902 1908  static int
1903 1909  spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1904 1910  {
1905 1911          vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1906 1912          return (err);
1907 1913  }
1908 1914  
1909 1915  /*
1910 1916   * Fix up config after a partly-completed split.  This is done with the
1911 1917   * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1912 1918   * pool have that entry in their config, but only the splitting one contains
1913 1919   * a list of all the guids of the vdevs that are being split off.
1914 1920   *
1915 1921   * This function determines what to do with that list: either rejoin
1916 1922   * all the disks to the pool, or complete the splitting process.  To attempt
1917 1923   * the rejoin, each disk that is offlined is marked online again, and
1918 1924   * we do a reopen() call.  If the vdev label for every disk that was
1919 1925   * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1920 1926   * then we call vdev_split() on each disk, and complete the split.
1921 1927   *
1922 1928   * Otherwise we leave the config alone, with all the vdevs in place in
1923 1929   * the original pool.
1924 1930   */
1925 1931  static void
1926 1932  spa_try_repair(spa_t *spa, nvlist_t *config)
1927 1933  {
1928 1934          uint_t extracted;
1929 1935          uint64_t *glist;
1930 1936          uint_t i, gcount;
1931 1937          nvlist_t *nvl;
1932 1938          vdev_t **vd;
1933 1939          boolean_t attempt_reopen;
1934 1940  
1935 1941          if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1936 1942                  return;
1937 1943  
1938 1944          /* check that the config is complete */
1939 1945          if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1940 1946              &glist, &gcount) != 0)
1941 1947                  return;
1942 1948  
1943 1949          vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1944 1950  
1945 1951          /* attempt to online all the vdevs & validate */
1946 1952          attempt_reopen = B_TRUE;
1947 1953          for (i = 0; i < gcount; i++) {
1948 1954                  if (glist[i] == 0)      /* vdev is hole */
1949 1955                          continue;
1950 1956  
1951 1957                  vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1952 1958                  if (vd[i] == NULL) {
1953 1959                          /*
1954 1960                           * Don't bother attempting to reopen the disks;
1955 1961                           * just do the split.
1956 1962                           */
1957 1963                          attempt_reopen = B_FALSE;
1958 1964                  } else {
1959 1965                          /* attempt to re-online it */
1960 1966                          vd[i]->vdev_offline = B_FALSE;
1961 1967                  }
1962 1968          }
1963 1969  
1964 1970          if (attempt_reopen) {
1965 1971                  vdev_reopen(spa->spa_root_vdev);
1966 1972  
1967 1973                  /* check each device to see what state it's in */
1968 1974                  for (extracted = 0, i = 0; i < gcount; i++) {
1969 1975                          if (vd[i] != NULL &&
1970 1976                              vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1971 1977                                  break;
1972 1978                          ++extracted;
1973 1979                  }
1974 1980          }
1975 1981  
1976 1982          /*
1977 1983           * If every disk has been moved to the new pool, or if we never
1978 1984           * even attempted to look at them, then we split them off for
1979 1985           * good.
1980 1986           */
1981 1987          if (!attempt_reopen || gcount == extracted) {
1982 1988                  for (i = 0; i < gcount; i++)
1983 1989                          if (vd[i] != NULL)
1984 1990                                  vdev_split(vd[i]);
1985 1991                  vdev_reopen(spa->spa_root_vdev);
1986 1992          }
1987 1993  
1988 1994          kmem_free(vd, gcount * sizeof (vdev_t *));
1989 1995  }
1990 1996  
1991 1997  static int
1992 1998  spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1993 1999      boolean_t mosconfig)
1994 2000  {
1995 2001          nvlist_t *config = spa->spa_config;
1996 2002          char *ereport = FM_EREPORT_ZFS_POOL;
1997 2003          char *comment;
1998 2004          int error;
1999 2005          uint64_t pool_guid;
2000 2006          nvlist_t *nvl;
2001 2007  
2002 2008          if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2003 2009                  return (SET_ERROR(EINVAL));
2004 2010  
2005 2011          ASSERT(spa->spa_comment == NULL);
2006 2012          if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2007 2013                  spa->spa_comment = spa_strdup(comment);
2008 2014  
2009 2015          /*
2010 2016           * Versioning wasn't explicitly added to the label until later, so if
2011 2017           * it's not present treat it as the initial version.
2012 2018           */
2013 2019          if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2014 2020              &spa->spa_ubsync.ub_version) != 0)
2015 2021                  spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2016 2022  
2017 2023          (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2018 2024              &spa->spa_config_txg);
2019 2025  
2020 2026          if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2021 2027              spa_guid_exists(pool_guid, 0)) {
2022 2028                  error = SET_ERROR(EEXIST);
2023 2029          } else {
2024 2030                  spa->spa_config_guid = pool_guid;
2025 2031  
2026 2032                  if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2027 2033                      &nvl) == 0) {
2028 2034                          VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2029 2035                              KM_SLEEP) == 0);
2030 2036                  }
2031 2037  
2032 2038                  nvlist_free(spa->spa_load_info);
2033 2039                  spa->spa_load_info = fnvlist_alloc();
2034 2040  
2035 2041                  gethrestime(&spa->spa_loaded_ts);
2036 2042                  error = spa_load_impl(spa, pool_guid, config, state, type,
2037 2043                      mosconfig, &ereport);
2038 2044          }
2039 2045  
2040 2046          spa->spa_minref = refcount_count(&spa->spa_refcount);
2041 2047          if (error) {
2042 2048                  if (error != EEXIST) {
2043 2049                          spa->spa_loaded_ts.tv_sec = 0;
2044 2050                          spa->spa_loaded_ts.tv_nsec = 0;
2045 2051                  }
2046 2052                  if (error != EBADF) {
2047 2053                          zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2048 2054                  }
2049 2055          }
2050 2056          spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2051 2057          spa->spa_ena = 0;
2052 2058  
2053 2059          return (error);
2054 2060  }
2055 2061  
2056 2062  /*
2057 2063   * Load an existing storage pool, using the pool's builtin spa_config as a
2058 2064   * source of configuration information.
2059 2065   */
2060 2066  static int
2061 2067  spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2062 2068      spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2063 2069      char **ereport)
2064 2070  {
2065 2071          int error = 0;
2066 2072          nvlist_t *nvroot = NULL;
2067 2073          nvlist_t *label;
2068 2074          vdev_t *rvd;
2069 2075          uberblock_t *ub = &spa->spa_uberblock;
2070 2076          uint64_t children, config_cache_txg = spa->spa_config_txg;
2071 2077          int orig_mode = spa->spa_mode;
2072 2078          int parse;
2073 2079          uint64_t obj;
2074 2080          boolean_t missing_feat_write = B_FALSE;
2075 2081  
2076 2082          /*
2077 2083           * If this is an untrusted config, access the pool in read-only mode.
2078 2084           * This prevents things like resilvering recently removed devices.
2079 2085           */
2080 2086          if (!mosconfig)
2081 2087                  spa->spa_mode = FREAD;
2082 2088  
2083 2089          ASSERT(MUTEX_HELD(&spa_namespace_lock));
2084 2090  
2085 2091          spa->spa_load_state = state;
2086 2092  
2087 2093          if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2088 2094                  return (SET_ERROR(EINVAL));
2089 2095  
2090 2096          parse = (type == SPA_IMPORT_EXISTING ?
2091 2097              VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2092 2098  
2093 2099          /*
2094 2100           * Create "The Godfather" zio to hold all async IOs
2095 2101           */
2096 2102          spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2097 2103              ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2098 2104  
2099 2105          /*
2100 2106           * Parse the configuration into a vdev tree.  We explicitly set the
2101 2107           * value that will be returned by spa_version() since parsing the
2102 2108           * configuration requires knowing the version number.
2103 2109           */
2104 2110          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2105 2111          error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2106 2112          spa_config_exit(spa, SCL_ALL, FTAG);
2107 2113  
2108 2114          if (error != 0)
2109 2115                  return (error);
2110 2116  
2111 2117          ASSERT(spa->spa_root_vdev == rvd);
2112 2118  
2113 2119          if (type != SPA_IMPORT_ASSEMBLE) {
2114 2120                  ASSERT(spa_guid(spa) == pool_guid);
2115 2121          }
2116 2122  
2117 2123          /*
2118 2124           * Try to open all vdevs, loading each label in the process.
2119 2125           */
2120 2126          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2121 2127          error = vdev_open(rvd);
2122 2128          spa_config_exit(spa, SCL_ALL, FTAG);
2123 2129          if (error != 0)
2124 2130                  return (error);
2125 2131  
2126 2132          /*
2127 2133           * We need to validate the vdev labels against the configuration that
2128 2134           * we have in hand, which is dependent on the setting of mosconfig. If
2129 2135           * mosconfig is true then we're validating the vdev labels based on
2130 2136           * that config.  Otherwise, we're validating against the cached config
2131 2137           * (zpool.cache) that was read when we loaded the zfs module, and then
2132 2138           * later we will recursively call spa_load() and validate against
2133 2139           * the vdev config.
2134 2140           *
2135 2141           * If we're assembling a new pool that's been split off from an
2136 2142           * existing pool, the labels haven't yet been updated so we skip
2137 2143           * validation for now.
2138 2144           */
2139 2145          if (type != SPA_IMPORT_ASSEMBLE) {
2140 2146                  spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2141 2147                  error = vdev_validate(rvd, mosconfig);
2142 2148                  spa_config_exit(spa, SCL_ALL, FTAG);
2143 2149  
2144 2150                  if (error != 0)
2145 2151                          return (error);
2146 2152  
2147 2153                  if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2148 2154                          return (SET_ERROR(ENXIO));
2149 2155          }
2150 2156  
2151 2157          /*
2152 2158           * Find the best uberblock.
2153 2159           */
2154 2160          vdev_uberblock_load(rvd, ub, &label);
2155 2161  
2156 2162          /*
2157 2163           * If we weren't able to find a single valid uberblock, return failure.
2158 2164           */
2159 2165          if (ub->ub_txg == 0) {
2160 2166                  nvlist_free(label);
2161 2167                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2162 2168          }
2163 2169  
2164 2170          /*
2165 2171           * If the pool has an unsupported version we can't open it.
2166 2172           */
2167 2173          if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2168 2174                  nvlist_free(label);
2169 2175                  return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2170 2176          }
2171 2177  
2172 2178          if (ub->ub_version >= SPA_VERSION_FEATURES) {
2173 2179                  nvlist_t *features;
2174 2180  
2175 2181                  /*
2176 2182                   * If we weren't able to find what's necessary for reading the
2177 2183                   * MOS in the label, return failure.
2178 2184                   */
2179 2185                  if (label == NULL || nvlist_lookup_nvlist(label,
2180 2186                      ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2181 2187                          nvlist_free(label);
2182 2188                          return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2183 2189                              ENXIO));
2184 2190                  }
2185 2191  
2186 2192                  /*
2187 2193                   * Update our in-core representation with the definitive values
2188 2194                   * from the label.
2189 2195                   */
2190 2196                  nvlist_free(spa->spa_label_features);
2191 2197                  VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2192 2198          }
2193 2199  
2194 2200          nvlist_free(label);
2195 2201  
2196 2202          /*
2197 2203           * Look through entries in the label nvlist's features_for_read. If
2198 2204           * there is a feature listed there which we don't understand then we
2199 2205           * cannot open a pool.
2200 2206           */
2201 2207          if (ub->ub_version >= SPA_VERSION_FEATURES) {
2202 2208                  nvlist_t *unsup_feat;
2203 2209  
2204 2210                  VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2205 2211                      0);
2206 2212  
2207 2213                  for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2208 2214                      NULL); nvp != NULL;
2209 2215                      nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2210 2216                          if (!zfeature_is_supported(nvpair_name(nvp))) {
2211 2217                                  VERIFY(nvlist_add_string(unsup_feat,
2212 2218                                      nvpair_name(nvp), "") == 0);
2213 2219                          }
2214 2220                  }
2215 2221  
2216 2222                  if (!nvlist_empty(unsup_feat)) {
2217 2223                          VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2218 2224                              ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2219 2225                          nvlist_free(unsup_feat);
2220 2226                          return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2221 2227                              ENOTSUP));
2222 2228                  }
2223 2229  
2224 2230                  nvlist_free(unsup_feat);
2225 2231          }
2226 2232  
2227 2233          /*
2228 2234           * If the vdev guid sum doesn't match the uberblock, we have an
2229 2235           * incomplete configuration.  We first check to see if the pool
2230 2236           * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2231 2237           * If it is, defer the vdev_guid_sum check till later so we
2232 2238           * can handle missing vdevs.
2233 2239           */
2234 2240          if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2235 2241              &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2236 2242              rvd->vdev_guid_sum != ub->ub_guid_sum)
2237 2243                  return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2238 2244  
2239 2245          if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2240 2246                  spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2241 2247                  spa_try_repair(spa, config);
2242 2248                  spa_config_exit(spa, SCL_ALL, FTAG);
2243 2249                  nvlist_free(spa->spa_config_splitting);
2244 2250                  spa->spa_config_splitting = NULL;
2245 2251          }
2246 2252  
2247 2253          /*
2248 2254           * Initialize internal SPA structures.
2249 2255           */
2250 2256          spa->spa_state = POOL_STATE_ACTIVE;
2251 2257          spa->spa_ubsync = spa->spa_uberblock;
2252 2258          spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2253 2259              TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2254 2260          spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2255 2261              spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2256 2262          spa->spa_claim_max_txg = spa->spa_first_txg;
2257 2263          spa->spa_prev_software_version = ub->ub_software_version;
2258 2264  
2259 2265          error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2260 2266          if (error)
2261 2267                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2262 2268          spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2263 2269  
2264 2270          if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2265 2271                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2266 2272  
2267 2273          if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2268 2274                  boolean_t missing_feat_read = B_FALSE;
2269 2275                  nvlist_t *unsup_feat, *enabled_feat;
2270 2276  
2271 2277                  if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2272 2278                      &spa->spa_feat_for_read_obj) != 0) {
2273 2279                          return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2274 2280                  }
2275 2281  
2276 2282                  if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2277 2283                      &spa->spa_feat_for_write_obj) != 0) {
2278 2284                          return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2279 2285                  }
2280 2286  
2281 2287                  if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2282 2288                      &spa->spa_feat_desc_obj) != 0) {
2283 2289                          return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2284 2290                  }
2285 2291  
2286 2292                  enabled_feat = fnvlist_alloc();
2287 2293                  unsup_feat = fnvlist_alloc();
2288 2294  
2289 2295                  if (!feature_is_supported(spa->spa_meta_objset,
2290 2296                      spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2291 2297                      unsup_feat, enabled_feat))
2292 2298                          missing_feat_read = B_TRUE;
2293 2299  
2294 2300                  if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2295 2301                          if (!feature_is_supported(spa->spa_meta_objset,
2296 2302                              spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2297 2303                              unsup_feat, enabled_feat)) {
2298 2304                                  missing_feat_write = B_TRUE;
2299 2305                          }
2300 2306                  }
2301 2307  
2302 2308                  fnvlist_add_nvlist(spa->spa_load_info,
2303 2309                      ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2304 2310  
2305 2311                  if (!nvlist_empty(unsup_feat)) {
2306 2312                          fnvlist_add_nvlist(spa->spa_load_info,
2307 2313                              ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2308 2314                  }
2309 2315  
2310 2316                  fnvlist_free(enabled_feat);
2311 2317                  fnvlist_free(unsup_feat);
2312 2318  
2313 2319                  if (!missing_feat_read) {
2314 2320                          fnvlist_add_boolean(spa->spa_load_info,
2315 2321                              ZPOOL_CONFIG_CAN_RDONLY);
2316 2322                  }
2317 2323  
2318 2324                  /*
2319 2325                   * If the state is SPA_LOAD_TRYIMPORT, our objective is
2320 2326                   * twofold: to determine whether the pool is available for
2321 2327                   * import in read-write mode and (if it is not) whether the
2322 2328                   * pool is available for import in read-only mode. If the pool
2323 2329                   * is available for import in read-write mode, it is displayed
2324 2330                   * as available in userland; if it is not available for import
2325 2331                   * in read-only mode, it is displayed as unavailable in
2326 2332                   * userland. If the pool is available for import in read-only
2327 2333                   * mode but not read-write mode, it is displayed as unavailable
2328 2334                   * in userland with a special note that the pool is actually
2329 2335                   * available for open in read-only mode.
2330 2336                   *
2331 2337                   * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2332 2338                   * missing a feature for write, we must first determine whether
2333 2339                   * the pool can be opened read-only before returning to
2334 2340                   * userland in order to know whether to display the
2335 2341                   * abovementioned note.
2336 2342                   */
2337 2343                  if (missing_feat_read || (missing_feat_write &&
2338 2344                      spa_writeable(spa))) {
2339 2345                          return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2340 2346                              ENOTSUP));
2341 2347                  }
2342 2348          }
2343 2349  
2344 2350          spa->spa_is_initializing = B_TRUE;
2345 2351          error = dsl_pool_open(spa->spa_dsl_pool);
2346 2352          spa->spa_is_initializing = B_FALSE;
2347 2353          if (error != 0)
2348 2354                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2349 2355  
2350 2356          if (!mosconfig) {
2351 2357                  uint64_t hostid;
2352 2358                  nvlist_t *policy = NULL, *nvconfig;
2353 2359  
2354 2360                  if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2355 2361                          return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2356 2362  
2357 2363                  if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2358 2364                      ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2359 2365                          char *hostname;
2360 2366                          unsigned long myhostid = 0;
2361 2367  
2362 2368                          VERIFY(nvlist_lookup_string(nvconfig,
2363 2369                              ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2364 2370  
2365 2371  #ifdef  _KERNEL
2366 2372                          myhostid = zone_get_hostid(NULL);
2367 2373  #else   /* _KERNEL */
2368 2374                          /*
2369 2375                           * We're emulating the system's hostid in userland, so
2370 2376                           * we can't use zone_get_hostid().
2371 2377                           */
2372 2378                          (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2373 2379  #endif  /* _KERNEL */
2374 2380                          if (hostid != 0 && myhostid != 0 &&
2375 2381                              hostid != myhostid) {
2376 2382                                  nvlist_free(nvconfig);
2377 2383                                  cmn_err(CE_WARN, "pool '%s' could not be "
2378 2384                                      "loaded as it was last accessed by "
2379 2385                                      "another system (host: %s hostid: 0x%lx). "
2380 2386                                      "See: http://illumos.org/msg/ZFS-8000-EY",
2381 2387                                      spa_name(spa), hostname,
2382 2388                                      (unsigned long)hostid);
2383 2389                                  return (SET_ERROR(EBADF));
2384 2390                          }
2385 2391                  }
2386 2392                  if (nvlist_lookup_nvlist(spa->spa_config,
2387 2393                      ZPOOL_REWIND_POLICY, &policy) == 0)
2388 2394                          VERIFY(nvlist_add_nvlist(nvconfig,
2389 2395                              ZPOOL_REWIND_POLICY, policy) == 0);
2390 2396  
2391 2397                  spa_config_set(spa, nvconfig);
2392 2398                  spa_unload(spa);
2393 2399                  spa_deactivate(spa);
2394 2400                  spa_activate(spa, orig_mode);
2395 2401  
2396 2402                  return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2397 2403          }
2398 2404  
2399 2405          if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2400 2406                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2401 2407          error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2402 2408          if (error != 0)
2403 2409                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2404 2410  
2405 2411          /*
2406 2412           * Load the bit that tells us to use the new accounting function
2407 2413           * (raid-z deflation).  If we have an older pool, this will not
2408 2414           * be present.
2409 2415           */
2410 2416          error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2411 2417          if (error != 0 && error != ENOENT)
2412 2418                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2413 2419  
2414 2420          error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2415 2421              &spa->spa_creation_version);
2416 2422          if (error != 0 && error != ENOENT)
2417 2423                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2418 2424  
2419 2425          /*
2420 2426           * Load the persistent error log.  If we have an older pool, this will
2421 2427           * not be present.
2422 2428           */
2423 2429          error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2424 2430          if (error != 0 && error != ENOENT)
2425 2431                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2426 2432  
2427 2433          error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2428 2434              &spa->spa_errlog_scrub);
2429 2435          if (error != 0 && error != ENOENT)
2430 2436                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2431 2437  
2432 2438          /*
2433 2439           * Load the history object.  If we have an older pool, this
2434 2440           * will not be present.
2435 2441           */
2436 2442          error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2437 2443          if (error != 0 && error != ENOENT)
2438 2444                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2439 2445  
2440 2446          /*
2441 2447           * If we're assembling the pool from the split-off vdevs of
2442 2448           * an existing pool, we don't want to attach the spares & cache
2443 2449           * devices.
2444 2450           */
2445 2451  
2446 2452          /*
2447 2453           * Load any hot spares for this pool.
2448 2454           */
2449 2455          error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2450 2456          if (error != 0 && error != ENOENT)
2451 2457                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2452 2458          if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2453 2459                  ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2454 2460                  if (load_nvlist(spa, spa->spa_spares.sav_object,
2455 2461                      &spa->spa_spares.sav_config) != 0)
2456 2462                          return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2457 2463  
2458 2464                  spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2459 2465                  spa_load_spares(spa);
2460 2466                  spa_config_exit(spa, SCL_ALL, FTAG);
2461 2467          } else if (error == 0) {
2462 2468                  spa->spa_spares.sav_sync = B_TRUE;
2463 2469          }
2464 2470  
2465 2471          /*
2466 2472           * Load any level 2 ARC devices for this pool.
2467 2473           */
2468 2474          error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2469 2475              &spa->spa_l2cache.sav_object);
2470 2476          if (error != 0 && error != ENOENT)
2471 2477                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2472 2478          if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2473 2479                  ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2474 2480                  if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2475 2481                      &spa->spa_l2cache.sav_config) != 0)
2476 2482                          return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2477 2483  
2478 2484                  spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2479 2485                  spa_load_l2cache(spa);
2480 2486                  spa_config_exit(spa, SCL_ALL, FTAG);
2481 2487          } else if (error == 0) {
2482 2488                  spa->spa_l2cache.sav_sync = B_TRUE;
2483 2489          }
2484 2490  
2485 2491          spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2486 2492  
2487 2493          error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2488 2494          if (error && error != ENOENT)
2489 2495                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2490 2496  
2491 2497          if (error == 0) {
2492 2498                  uint64_t autoreplace;
2493 2499  
2494 2500                  spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2495 2501                  spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2496 2502                  spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2497 2503                  spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2498 2504                  spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2499 2505                  spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2500 2506                      &spa->spa_dedup_ditto);
2501 2507  
2502 2508                  spa->spa_autoreplace = (autoreplace != 0);
2503 2509          }
2504 2510  
2505 2511          /*
2506 2512           * If the 'autoreplace' property is set, then post a resource notifying
2507 2513           * the ZFS DE that it should not issue any faults for unopenable
2508 2514           * devices.  We also iterate over the vdevs, and post a sysevent for any
2509 2515           * unopenable vdevs so that the normal autoreplace handler can take
2510 2516           * over.
2511 2517           */
2512 2518          if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2513 2519                  spa_check_removed(spa->spa_root_vdev);
2514 2520                  /*
2515 2521                   * For the import case, this is done in spa_import(), because
2516 2522                   * at this point we're using the spare definitions from
2517 2523                   * the MOS config, not necessarily from the userland config.
2518 2524                   */
2519 2525                  if (state != SPA_LOAD_IMPORT) {
2520 2526                          spa_aux_check_removed(&spa->spa_spares);
2521 2527                          spa_aux_check_removed(&spa->spa_l2cache);
2522 2528                  }
2523 2529          }
2524 2530  
2525 2531          /*
2526 2532           * Load the vdev state for all toplevel vdevs.
2527 2533           */
2528 2534          vdev_load(rvd);
2529 2535  
2530 2536          /*
2531 2537           * Propagate the leaf DTLs we just loaded all the way up the tree.
2532 2538           */
2533 2539          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2534 2540          vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2535 2541          spa_config_exit(spa, SCL_ALL, FTAG);
2536 2542  
2537 2543          /*
2538 2544           * Load the DDTs (dedup tables).
2539 2545           */
2540 2546          error = ddt_load(spa);
2541 2547          if (error != 0)
2542 2548                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2543 2549  
2544 2550          spa_update_dspace(spa);
2545 2551  
2546 2552          /*
2547 2553           * Validate the config, using the MOS config to fill in any
2548 2554           * information which might be missing.  If we fail to validate
2549 2555           * the config then declare the pool unfit for use. If we're
2550 2556           * assembling a pool from a split, the log is not transferred
2551 2557           * over.
2552 2558           */
2553 2559          if (type != SPA_IMPORT_ASSEMBLE) {
2554 2560                  nvlist_t *nvconfig;
2555 2561  
2556 2562                  if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2557 2563                          return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2558 2564  
2559 2565                  if (!spa_config_valid(spa, nvconfig)) {
2560 2566                          nvlist_free(nvconfig);
2561 2567                          return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2562 2568                              ENXIO));
2563 2569                  }
2564 2570                  nvlist_free(nvconfig);
2565 2571  
2566 2572                  /*
2567 2573                   * Now that we've validated the config, check the state of the
2568 2574                   * root vdev.  If it can't be opened, it indicates one or
2569 2575                   * more toplevel vdevs are faulted.
2570 2576                   */
2571 2577                  if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2572 2578                          return (SET_ERROR(ENXIO));
2573 2579  
2574 2580                  if (spa_check_logs(spa)) {
2575 2581                          *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2576 2582                          return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2577 2583                  }
2578 2584          }
2579 2585  
2580 2586          if (missing_feat_write) {
2581 2587                  ASSERT(state == SPA_LOAD_TRYIMPORT);
2582 2588  
2583 2589                  /*
2584 2590                   * At this point, we know that we can open the pool in
2585 2591                   * read-only mode but not read-write mode. We now have enough
2586 2592                   * information and can return to userland.
2587 2593                   */
2588 2594                  return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2589 2595          }
2590 2596  
2591 2597          /*
2592 2598           * We've successfully opened the pool, verify that we're ready
2593 2599           * to start pushing transactions.
2594 2600           */
2595 2601          if (state != SPA_LOAD_TRYIMPORT) {
2596 2602                  if (error = spa_load_verify(spa))
2597 2603                          return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2598 2604                              error));
2599 2605          }
2600 2606  
2601 2607          if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2602 2608              spa->spa_load_max_txg == UINT64_MAX)) {
2603 2609                  dmu_tx_t *tx;
2604 2610                  int need_update = B_FALSE;
2605 2611  
2606 2612                  ASSERT(state != SPA_LOAD_TRYIMPORT);
2607 2613  
2608 2614                  /*
2609 2615                   * Claim log blocks that haven't been committed yet.
2610 2616                   * This must all happen in a single txg.
2611 2617                   * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2612 2618                   * invoked from zil_claim_log_block()'s i/o done callback.
2613 2619                   * Price of rollback is that we abandon the log.
2614 2620                   */
2615 2621                  spa->spa_claiming = B_TRUE;
2616 2622  
2617 2623                  tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2618 2624                      spa_first_txg(spa));
2619 2625                  (void) dmu_objset_find(spa_name(spa),
2620 2626                      zil_claim, tx, DS_FIND_CHILDREN);
2621 2627                  dmu_tx_commit(tx);
2622 2628  
2623 2629                  spa->spa_claiming = B_FALSE;
2624 2630  
2625 2631                  spa_set_log_state(spa, SPA_LOG_GOOD);
2626 2632                  spa->spa_sync_on = B_TRUE;
2627 2633                  txg_sync_start(spa->spa_dsl_pool);
2628 2634  
2629 2635                  /*
2630 2636                   * Wait for all claims to sync.  We sync up to the highest
2631 2637                   * claimed log block birth time so that claimed log blocks
2632 2638                   * don't appear to be from the future.  spa_claim_max_txg
2633 2639                   * will have been set for us by either zil_check_log_chain()
2634 2640                   * (invoked from spa_check_logs()) or zil_claim() above.
2635 2641                   */
2636 2642                  txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2637 2643  
2638 2644                  /*
2639 2645                   * If the config cache is stale, or we have uninitialized
2640 2646                   * metaslabs (see spa_vdev_add()), then update the config.
2641 2647                   *
2642 2648                   * If this is a verbatim import, trust the current
2643 2649                   * in-core spa_config and update the disk labels.
2644 2650                   */
2645 2651                  if (config_cache_txg != spa->spa_config_txg ||
2646 2652                      state == SPA_LOAD_IMPORT ||
2647 2653                      state == SPA_LOAD_RECOVER ||
2648 2654                      (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2649 2655                          need_update = B_TRUE;
2650 2656  
2651 2657                  for (int c = 0; c < rvd->vdev_children; c++)
2652 2658                          if (rvd->vdev_child[c]->vdev_ms_array == 0)
2653 2659                                  need_update = B_TRUE;
2654 2660  
2655 2661                  /*
2656 2662                   * Update the config cache asychronously in case we're the
2657 2663                   * root pool, in which case the config cache isn't writable yet.
2658 2664                   */
2659 2665                  if (need_update)
2660 2666                          spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2661 2667  
2662 2668                  /*
2663 2669                   * Check all DTLs to see if anything needs resilvering.
2664 2670                   */
2665 2671                  if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2666 2672                      vdev_resilver_needed(rvd, NULL, NULL))
2667 2673                          spa_async_request(spa, SPA_ASYNC_RESILVER);
2668 2674  
2669 2675                  /*
2670 2676                   * Log the fact that we booted up (so that we can detect if
2671 2677                   * we rebooted in the middle of an operation).
2672 2678                   */
2673 2679                  spa_history_log_version(spa, "open");
2674 2680  
2675 2681                  /*
2676 2682                   * Delete any inconsistent datasets.
2677 2683                   */
2678 2684                  (void) dmu_objset_find(spa_name(spa),
2679 2685                      dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2680 2686  
2681 2687                  /*
2682 2688                   * Clean up any stale temporary dataset userrefs.
2683 2689                   */
2684 2690                  dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2685 2691          }
2686 2692  
2687 2693          return (0);
2688 2694  }
2689 2695  
2690 2696  static int
2691 2697  spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2692 2698  {
2693 2699          int mode = spa->spa_mode;
2694 2700  
2695 2701          spa_unload(spa);
2696 2702          spa_deactivate(spa);
2697 2703  
2698 2704          spa->spa_load_max_txg--;
2699 2705  
2700 2706          spa_activate(spa, mode);
2701 2707          spa_async_suspend(spa);
2702 2708  
2703 2709          return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2704 2710  }
2705 2711  
2706 2712  /*
2707 2713   * If spa_load() fails this function will try loading prior txg's. If
2708 2714   * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2709 2715   * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2710 2716   * function will not rewind the pool and will return the same error as
2711 2717   * spa_load().
2712 2718   */
2713 2719  static int
2714 2720  spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2715 2721      uint64_t max_request, int rewind_flags)
2716 2722  {
2717 2723          nvlist_t *loadinfo = NULL;
2718 2724          nvlist_t *config = NULL;
2719 2725          int load_error, rewind_error;
2720 2726          uint64_t safe_rewind_txg;
2721 2727          uint64_t min_txg;
2722 2728  
2723 2729          if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2724 2730                  spa->spa_load_max_txg = spa->spa_load_txg;
2725 2731                  spa_set_log_state(spa, SPA_LOG_CLEAR);
2726 2732          } else {
2727 2733                  spa->spa_load_max_txg = max_request;
2728 2734          }
2729 2735  
2730 2736          load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2731 2737              mosconfig);
2732 2738          if (load_error == 0)
2733 2739                  return (0);
2734 2740  
2735 2741          if (spa->spa_root_vdev != NULL)
2736 2742                  config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2737 2743  
2738 2744          spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2739 2745          spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2740 2746  
2741 2747          if (rewind_flags & ZPOOL_NEVER_REWIND) {
2742 2748                  nvlist_free(config);
2743 2749                  return (load_error);
2744 2750          }
2745 2751  
2746 2752          if (state == SPA_LOAD_RECOVER) {
2747 2753                  /* Price of rolling back is discarding txgs, including log */
2748 2754                  spa_set_log_state(spa, SPA_LOG_CLEAR);
2749 2755          } else {
2750 2756                  /*
2751 2757                   * If we aren't rolling back save the load info from our first
2752 2758                   * import attempt so that we can restore it after attempting
2753 2759                   * to rewind.
2754 2760                   */
2755 2761                  loadinfo = spa->spa_load_info;
2756 2762                  spa->spa_load_info = fnvlist_alloc();
2757 2763          }
2758 2764  
2759 2765          spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2760 2766          safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2761 2767          min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2762 2768              TXG_INITIAL : safe_rewind_txg;
2763 2769  
2764 2770          /*
2765 2771           * Continue as long as we're finding errors, we're still within
2766 2772           * the acceptable rewind range, and we're still finding uberblocks
2767 2773           */
2768 2774          while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2769 2775              spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2770 2776                  if (spa->spa_load_max_txg < safe_rewind_txg)
2771 2777                          spa->spa_extreme_rewind = B_TRUE;
2772 2778                  rewind_error = spa_load_retry(spa, state, mosconfig);
2773 2779          }
2774 2780  
2775 2781          spa->spa_extreme_rewind = B_FALSE;
2776 2782          spa->spa_load_max_txg = UINT64_MAX;
2777 2783  
2778 2784          if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2779 2785                  spa_config_set(spa, config);
2780 2786  
2781 2787          if (state == SPA_LOAD_RECOVER) {
2782 2788                  ASSERT3P(loadinfo, ==, NULL);
2783 2789                  return (rewind_error);
2784 2790          } else {
2785 2791                  /* Store the rewind info as part of the initial load info */
2786 2792                  fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2787 2793                      spa->spa_load_info);
2788 2794  
2789 2795                  /* Restore the initial load info */
2790 2796                  fnvlist_free(spa->spa_load_info);
2791 2797                  spa->spa_load_info = loadinfo;
2792 2798  
2793 2799                  return (load_error);
2794 2800          }
2795 2801  }
2796 2802  
2797 2803  /*
2798 2804   * Pool Open/Import
2799 2805   *
2800 2806   * The import case is identical to an open except that the configuration is sent
2801 2807   * down from userland, instead of grabbed from the configuration cache.  For the
2802 2808   * case of an open, the pool configuration will exist in the
2803 2809   * POOL_STATE_UNINITIALIZED state.
2804 2810   *
2805 2811   * The stats information (gen/count/ustats) is used to gather vdev statistics at
2806 2812   * the same time open the pool, without having to keep around the spa_t in some
2807 2813   * ambiguous state.
2808 2814   */
2809 2815  static int
2810 2816  spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2811 2817      nvlist_t **config)
2812 2818  {
2813 2819          spa_t *spa;
2814 2820          spa_load_state_t state = SPA_LOAD_OPEN;
2815 2821          int error;
2816 2822          int locked = B_FALSE;
2817 2823  
2818 2824          *spapp = NULL;
2819 2825  
2820 2826          /*
2821 2827           * As disgusting as this is, we need to support recursive calls to this
2822 2828           * function because dsl_dir_open() is called during spa_load(), and ends
2823 2829           * up calling spa_open() again.  The real fix is to figure out how to
2824 2830           * avoid dsl_dir_open() calling this in the first place.
2825 2831           */
2826 2832          if (mutex_owner(&spa_namespace_lock) != curthread) {
2827 2833                  mutex_enter(&spa_namespace_lock);
2828 2834                  locked = B_TRUE;
2829 2835          }
2830 2836  
2831 2837          if ((spa = spa_lookup(pool)) == NULL) {
2832 2838                  if (locked)
2833 2839                          mutex_exit(&spa_namespace_lock);
2834 2840                  return (SET_ERROR(ENOENT));
2835 2841          }
2836 2842  
2837 2843          if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2838 2844                  zpool_rewind_policy_t policy;
2839 2845  
2840 2846                  zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2841 2847                      &policy);
2842 2848                  if (policy.zrp_request & ZPOOL_DO_REWIND)
2843 2849                          state = SPA_LOAD_RECOVER;
2844 2850  
2845 2851                  spa_activate(spa, spa_mode_global);
2846 2852  
2847 2853                  if (state != SPA_LOAD_RECOVER)
2848 2854                          spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2849 2855  
2850 2856                  error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2851 2857                      policy.zrp_request);
2852 2858  
2853 2859                  if (error == EBADF) {
2854 2860                          /*
2855 2861                           * If vdev_validate() returns failure (indicated by
2856 2862                           * EBADF), it indicates that one of the vdevs indicates
2857 2863                           * that the pool has been exported or destroyed.  If
2858 2864                           * this is the case, the config cache is out of sync and
2859 2865                           * we should remove the pool from the namespace.
2860 2866                           */
2861 2867                          spa_unload(spa);
2862 2868                          spa_deactivate(spa);
2863 2869                          spa_config_sync(spa, B_TRUE, B_TRUE);
2864 2870                          spa_remove(spa);
2865 2871                          if (locked)
2866 2872                                  mutex_exit(&spa_namespace_lock);
2867 2873                          return (SET_ERROR(ENOENT));
2868 2874                  }
2869 2875  
2870 2876                  if (error) {
2871 2877                          /*
2872 2878                           * We can't open the pool, but we still have useful
2873 2879                           * information: the state of each vdev after the
2874 2880                           * attempted vdev_open().  Return this to the user.
2875 2881                           */
2876 2882                          if (config != NULL && spa->spa_config) {
2877 2883                                  VERIFY(nvlist_dup(spa->spa_config, config,
2878 2884                                      KM_SLEEP) == 0);
2879 2885                                  VERIFY(nvlist_add_nvlist(*config,
2880 2886                                      ZPOOL_CONFIG_LOAD_INFO,
2881 2887                                      spa->spa_load_info) == 0);
2882 2888                          }
2883 2889                          spa_unload(spa);
2884 2890                          spa_deactivate(spa);
2885 2891                          spa->spa_last_open_failed = error;
2886 2892                          if (locked)
2887 2893                                  mutex_exit(&spa_namespace_lock);
2888 2894                          *spapp = NULL;
2889 2895                          return (error);
2890 2896                  }
2891 2897          }
2892 2898  
2893 2899          spa_open_ref(spa, tag);
2894 2900  
2895 2901          if (config != NULL)
2896 2902                  *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2897 2903  
2898 2904          /*
2899 2905           * If we've recovered the pool, pass back any information we
2900 2906           * gathered while doing the load.
2901 2907           */
2902 2908          if (state == SPA_LOAD_RECOVER) {
2903 2909                  VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2904 2910                      spa->spa_load_info) == 0);
2905 2911          }
2906 2912  
2907 2913          if (locked) {
2908 2914                  spa->spa_last_open_failed = 0;
2909 2915                  spa->spa_last_ubsync_txg = 0;
2910 2916                  spa->spa_load_txg = 0;
2911 2917                  mutex_exit(&spa_namespace_lock);
2912 2918          }
2913 2919  
2914 2920          *spapp = spa;
2915 2921  
2916 2922          return (0);
2917 2923  }
2918 2924  
2919 2925  int
2920 2926  spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2921 2927      nvlist_t **config)
2922 2928  {
2923 2929          return (spa_open_common(name, spapp, tag, policy, config));
2924 2930  }
2925 2931  
2926 2932  int
2927 2933  spa_open(const char *name, spa_t **spapp, void *tag)
2928 2934  {
2929 2935          return (spa_open_common(name, spapp, tag, NULL, NULL));
2930 2936  }
2931 2937  
2932 2938  /*
2933 2939   * Lookup the given spa_t, incrementing the inject count in the process,
2934 2940   * preventing it from being exported or destroyed.
2935 2941   */
2936 2942  spa_t *
2937 2943  spa_inject_addref(char *name)
2938 2944  {
2939 2945          spa_t *spa;
2940 2946  
2941 2947          mutex_enter(&spa_namespace_lock);
2942 2948          if ((spa = spa_lookup(name)) == NULL) {
2943 2949                  mutex_exit(&spa_namespace_lock);
2944 2950                  return (NULL);
2945 2951          }
2946 2952          spa->spa_inject_ref++;
2947 2953          mutex_exit(&spa_namespace_lock);
2948 2954  
2949 2955          return (spa);
2950 2956  }
2951 2957  
2952 2958  void
2953 2959  spa_inject_delref(spa_t *spa)
2954 2960  {
2955 2961          mutex_enter(&spa_namespace_lock);
2956 2962          spa->spa_inject_ref--;
2957 2963          mutex_exit(&spa_namespace_lock);
2958 2964  }
2959 2965  
2960 2966  /*
2961 2967   * Add spares device information to the nvlist.
2962 2968   */
2963 2969  static void
2964 2970  spa_add_spares(spa_t *spa, nvlist_t *config)
2965 2971  {
2966 2972          nvlist_t **spares;
2967 2973          uint_t i, nspares;
2968 2974          nvlist_t *nvroot;
2969 2975          uint64_t guid;
2970 2976          vdev_stat_t *vs;
2971 2977          uint_t vsc;
2972 2978          uint64_t pool;
2973 2979  
2974 2980          ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2975 2981  
2976 2982          if (spa->spa_spares.sav_count == 0)
2977 2983                  return;
2978 2984  
2979 2985          VERIFY(nvlist_lookup_nvlist(config,
2980 2986              ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2981 2987          VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2982 2988              ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2983 2989          if (nspares != 0) {
2984 2990                  VERIFY(nvlist_add_nvlist_array(nvroot,
2985 2991                      ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2986 2992                  VERIFY(nvlist_lookup_nvlist_array(nvroot,
2987 2993                      ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2988 2994  
2989 2995                  /*
2990 2996                   * Go through and find any spares which have since been
2991 2997                   * repurposed as an active spare.  If this is the case, update
2992 2998                   * their status appropriately.
2993 2999                   */
2994 3000                  for (i = 0; i < nspares; i++) {
2995 3001                          VERIFY(nvlist_lookup_uint64(spares[i],
2996 3002                              ZPOOL_CONFIG_GUID, &guid) == 0);
2997 3003                          if (spa_spare_exists(guid, &pool, NULL) &&
2998 3004                              pool != 0ULL) {
2999 3005                                  VERIFY(nvlist_lookup_uint64_array(
3000 3006                                      spares[i], ZPOOL_CONFIG_VDEV_STATS,
3001 3007                                      (uint64_t **)&vs, &vsc) == 0);
3002 3008                                  vs->vs_state = VDEV_STATE_CANT_OPEN;
3003 3009                                  vs->vs_aux = VDEV_AUX_SPARED;
3004 3010                          }
3005 3011                  }
3006 3012          }
3007 3013  }
3008 3014  
3009 3015  /*
3010 3016   * Add l2cache device information to the nvlist, including vdev stats.
3011 3017   */
3012 3018  static void
3013 3019  spa_add_l2cache(spa_t *spa, nvlist_t *config)
3014 3020  {
3015 3021          nvlist_t **l2cache;
3016 3022          uint_t i, j, nl2cache;
3017 3023          nvlist_t *nvroot;
3018 3024          uint64_t guid;
3019 3025          vdev_t *vd;
3020 3026          vdev_stat_t *vs;
3021 3027          uint_t vsc;
3022 3028  
3023 3029          ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3024 3030  
3025 3031          if (spa->spa_l2cache.sav_count == 0)
3026 3032                  return;
3027 3033  
3028 3034          VERIFY(nvlist_lookup_nvlist(config,
3029 3035              ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3030 3036          VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3031 3037              ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3032 3038          if (nl2cache != 0) {
3033 3039                  VERIFY(nvlist_add_nvlist_array(nvroot,
3034 3040                      ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3035 3041                  VERIFY(nvlist_lookup_nvlist_array(nvroot,
3036 3042                      ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3037 3043  
3038 3044                  /*
3039 3045                   * Update level 2 cache device stats.
3040 3046                   */
3041 3047  
3042 3048                  for (i = 0; i < nl2cache; i++) {
3043 3049                          VERIFY(nvlist_lookup_uint64(l2cache[i],
3044 3050                              ZPOOL_CONFIG_GUID, &guid) == 0);
3045 3051  
3046 3052                          vd = NULL;
3047 3053                          for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3048 3054                                  if (guid ==
3049 3055                                      spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3050 3056                                          vd = spa->spa_l2cache.sav_vdevs[j];
3051 3057                                          break;
3052 3058                                  }
3053 3059                          }
3054 3060                          ASSERT(vd != NULL);
3055 3061  
3056 3062                          VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3057 3063                              ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3058 3064                              == 0);
3059 3065                          vdev_get_stats(vd, vs);
3060 3066                  }
3061 3067          }
3062 3068  }
3063 3069  
3064 3070  static void
3065 3071  spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3066 3072  {
3067 3073          nvlist_t *features;
3068 3074          zap_cursor_t zc;
3069 3075          zap_attribute_t za;
3070 3076  
3071 3077          ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3072 3078          VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3073 3079  
3074 3080          if (spa->spa_feat_for_read_obj != 0) {
3075 3081                  for (zap_cursor_init(&zc, spa->spa_meta_objset,
3076 3082                      spa->spa_feat_for_read_obj);
3077 3083                      zap_cursor_retrieve(&zc, &za) == 0;
3078 3084                      zap_cursor_advance(&zc)) {
3079 3085                          ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3080 3086                              za.za_num_integers == 1);
3081 3087                          VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3082 3088                              za.za_first_integer));
3083 3089                  }
3084 3090                  zap_cursor_fini(&zc);
3085 3091          }
3086 3092  
3087 3093          if (spa->spa_feat_for_write_obj != 0) {
3088 3094                  for (zap_cursor_init(&zc, spa->spa_meta_objset,
3089 3095                      spa->spa_feat_for_write_obj);
3090 3096                      zap_cursor_retrieve(&zc, &za) == 0;
3091 3097                      zap_cursor_advance(&zc)) {
3092 3098                          ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3093 3099                              za.za_num_integers == 1);
3094 3100                          VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3095 3101                              za.za_first_integer));
3096 3102                  }
3097 3103                  zap_cursor_fini(&zc);
3098 3104          }
3099 3105  
3100 3106          VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3101 3107              features) == 0);
3102 3108          nvlist_free(features);
3103 3109  }
3104 3110  
3105 3111  int
3106 3112  spa_get_stats(const char *name, nvlist_t **config,
3107 3113      char *altroot, size_t buflen)
3108 3114  {
3109 3115          int error;
3110 3116          spa_t *spa;
3111 3117  
3112 3118          *config = NULL;
3113 3119          error = spa_open_common(name, &spa, FTAG, NULL, config);
3114 3120  
3115 3121          if (spa != NULL) {
3116 3122                  /*
3117 3123                   * This still leaves a window of inconsistency where the spares
3118 3124                   * or l2cache devices could change and the config would be
3119 3125                   * self-inconsistent.
3120 3126                   */
3121 3127                  spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3122 3128  
3123 3129                  if (*config != NULL) {
3124 3130                          uint64_t loadtimes[2];
3125 3131  
3126 3132                          loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3127 3133                          loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3128 3134                          VERIFY(nvlist_add_uint64_array(*config,
3129 3135                              ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3130 3136  
3131 3137                          VERIFY(nvlist_add_uint64(*config,
3132 3138                              ZPOOL_CONFIG_ERRCOUNT,
3133 3139                              spa_get_errlog_size(spa)) == 0);
3134 3140  
3135 3141                          if (spa_suspended(spa))
3136 3142                                  VERIFY(nvlist_add_uint64(*config,
3137 3143                                      ZPOOL_CONFIG_SUSPENDED,
3138 3144                                      spa->spa_failmode) == 0);
3139 3145  
3140 3146                          spa_add_spares(spa, *config);
3141 3147                          spa_add_l2cache(spa, *config);
3142 3148                          spa_add_feature_stats(spa, *config);
3143 3149                  }
3144 3150          }
3145 3151  
3146 3152          /*
3147 3153           * We want to get the alternate root even for faulted pools, so we cheat
3148 3154           * and call spa_lookup() directly.
3149 3155           */
3150 3156          if (altroot) {
3151 3157                  if (spa == NULL) {
3152 3158                          mutex_enter(&spa_namespace_lock);
3153 3159                          spa = spa_lookup(name);
3154 3160                          if (spa)
3155 3161                                  spa_altroot(spa, altroot, buflen);
3156 3162                          else
3157 3163                                  altroot[0] = '\0';
3158 3164                          spa = NULL;
3159 3165                          mutex_exit(&spa_namespace_lock);
3160 3166                  } else {
3161 3167                          spa_altroot(spa, altroot, buflen);
3162 3168                  }
3163 3169          }
3164 3170  
3165 3171          if (spa != NULL) {
3166 3172                  spa_config_exit(spa, SCL_CONFIG, FTAG);
3167 3173                  spa_close(spa, FTAG);
3168 3174          }
3169 3175  
3170 3176          return (error);
3171 3177  }
3172 3178  
3173 3179  /*
3174 3180   * Validate that the auxiliary device array is well formed.  We must have an
3175 3181   * array of nvlists, each which describes a valid leaf vdev.  If this is an
3176 3182   * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3177 3183   * specified, as long as they are well-formed.
3178 3184   */
3179 3185  static int
3180 3186  spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3181 3187      spa_aux_vdev_t *sav, const char *config, uint64_t version,
3182 3188      vdev_labeltype_t label)
3183 3189  {
3184 3190          nvlist_t **dev;
3185 3191          uint_t i, ndev;
3186 3192          vdev_t *vd;
3187 3193          int error;
3188 3194  
3189 3195          ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3190 3196  
3191 3197          /*
3192 3198           * It's acceptable to have no devs specified.
3193 3199           */
3194 3200          if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3195 3201                  return (0);
3196 3202  
3197 3203          if (ndev == 0)
3198 3204                  return (SET_ERROR(EINVAL));
3199 3205  
3200 3206          /*
3201 3207           * Make sure the pool is formatted with a version that supports this
3202 3208           * device type.
3203 3209           */
3204 3210          if (spa_version(spa) < version)
3205 3211                  return (SET_ERROR(ENOTSUP));
3206 3212  
3207 3213          /*
3208 3214           * Set the pending device list so we correctly handle device in-use
3209 3215           * checking.
3210 3216           */
3211 3217          sav->sav_pending = dev;
3212 3218          sav->sav_npending = ndev;
3213 3219  
3214 3220          for (i = 0; i < ndev; i++) {
3215 3221                  if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3216 3222                      mode)) != 0)
3217 3223                          goto out;
3218 3224  
3219 3225                  if (!vd->vdev_ops->vdev_op_leaf) {
3220 3226                          vdev_free(vd);
3221 3227                          error = SET_ERROR(EINVAL);
3222 3228                          goto out;
3223 3229                  }
3224 3230  
3225 3231                  /*
3226 3232                   * The L2ARC currently only supports disk devices in
3227 3233                   * kernel context.  For user-level testing, we allow it.
3228 3234                   */
3229 3235  #ifdef _KERNEL
3230 3236                  if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3231 3237                      strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3232 3238                          error = SET_ERROR(ENOTBLK);
3233 3239                          vdev_free(vd);
3234 3240                          goto out;
3235 3241                  }
3236 3242  #endif
3237 3243                  vd->vdev_top = vd;
3238 3244  
3239 3245                  if ((error = vdev_open(vd)) == 0 &&
3240 3246                      (error = vdev_label_init(vd, crtxg, label)) == 0) {
3241 3247                          VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3242 3248                              vd->vdev_guid) == 0);
3243 3249                  }
3244 3250  
3245 3251                  vdev_free(vd);
3246 3252  
3247 3253                  if (error &&
3248 3254                      (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3249 3255                          goto out;
3250 3256                  else
3251 3257                          error = 0;
3252 3258          }
3253 3259  
3254 3260  out:
3255 3261          sav->sav_pending = NULL;
3256 3262          sav->sav_npending = 0;
3257 3263          return (error);
3258 3264  }
3259 3265  
3260 3266  static int
3261 3267  spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3262 3268  {
3263 3269          int error;
3264 3270  
3265 3271          ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3266 3272  
3267 3273          if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3268 3274              &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3269 3275              VDEV_LABEL_SPARE)) != 0) {
3270 3276                  return (error);
3271 3277          }
3272 3278  
3273 3279          return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3274 3280              &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3275 3281              VDEV_LABEL_L2CACHE));
3276 3282  }
3277 3283  
3278 3284  static void
3279 3285  spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3280 3286      const char *config)
3281 3287  {
3282 3288          int i;
3283 3289  
3284 3290          if (sav->sav_config != NULL) {
3285 3291                  nvlist_t **olddevs;
3286 3292                  uint_t oldndevs;
3287 3293                  nvlist_t **newdevs;
3288 3294  
3289 3295                  /*
3290 3296                   * Generate new dev list by concatentating with the
3291 3297                   * current dev list.
3292 3298                   */
3293 3299                  VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3294 3300                      &olddevs, &oldndevs) == 0);
3295 3301  
3296 3302                  newdevs = kmem_alloc(sizeof (void *) *
3297 3303                      (ndevs + oldndevs), KM_SLEEP);
3298 3304                  for (i = 0; i < oldndevs; i++)
3299 3305                          VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3300 3306                              KM_SLEEP) == 0);
3301 3307                  for (i = 0; i < ndevs; i++)
3302 3308                          VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3303 3309                              KM_SLEEP) == 0);
3304 3310  
3305 3311                  VERIFY(nvlist_remove(sav->sav_config, config,
3306 3312                      DATA_TYPE_NVLIST_ARRAY) == 0);
3307 3313  
3308 3314                  VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3309 3315                      config, newdevs, ndevs + oldndevs) == 0);
3310 3316                  for (i = 0; i < oldndevs + ndevs; i++)
3311 3317                          nvlist_free(newdevs[i]);
3312 3318                  kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3313 3319          } else {
3314 3320                  /*
3315 3321                   * Generate a new dev list.
3316 3322                   */
3317 3323                  VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3318 3324                      KM_SLEEP) == 0);
3319 3325                  VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3320 3326                      devs, ndevs) == 0);
3321 3327          }
3322 3328  }
3323 3329  
3324 3330  /*
3325 3331   * Stop and drop level 2 ARC devices
3326 3332   */
3327 3333  void
3328 3334  spa_l2cache_drop(spa_t *spa)
3329 3335  {
3330 3336          vdev_t *vd;
3331 3337          int i;
3332 3338          spa_aux_vdev_t *sav = &spa->spa_l2cache;
3333 3339  
3334 3340          for (i = 0; i < sav->sav_count; i++) {
3335 3341                  uint64_t pool;
3336 3342  
3337 3343                  vd = sav->sav_vdevs[i];
3338 3344                  ASSERT(vd != NULL);
3339 3345  
3340 3346                  if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3341 3347                      pool != 0ULL && l2arc_vdev_present(vd))
3342 3348                          l2arc_remove_vdev(vd);
3343 3349          }
3344 3350  }
3345 3351  
3346 3352  /*
3347 3353   * Pool Creation
3348 3354   */
3349 3355  int
3350 3356  spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3351 3357      nvlist_t *zplprops)
3352 3358  {
3353 3359          spa_t *spa;
3354 3360          char *altroot = NULL;
3355 3361          vdev_t *rvd;
3356 3362          dsl_pool_t *dp;
3357 3363          dmu_tx_t *tx;
3358 3364          int error = 0;
3359 3365          uint64_t txg = TXG_INITIAL;
3360 3366          nvlist_t **spares, **l2cache;
3361 3367          uint_t nspares, nl2cache;
3362 3368          uint64_t version, obj;
3363 3369          boolean_t has_features;
3364 3370  
3365 3371          /*
3366 3372           * If this pool already exists, return failure.
3367 3373           */
3368 3374          mutex_enter(&spa_namespace_lock);
3369 3375          if (spa_lookup(pool) != NULL) {
3370 3376                  mutex_exit(&spa_namespace_lock);
3371 3377                  return (SET_ERROR(EEXIST));
3372 3378          }
3373 3379  
3374 3380          /*
3375 3381           * Allocate a new spa_t structure.
3376 3382           */
3377 3383          (void) nvlist_lookup_string(props,
3378 3384              zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3379 3385          spa = spa_add(pool, NULL, altroot);
3380 3386          spa_activate(spa, spa_mode_global);
3381 3387  
3382 3388          if (props && (error = spa_prop_validate(spa, props))) {
3383 3389                  spa_deactivate(spa);
3384 3390                  spa_remove(spa);
3385 3391                  mutex_exit(&spa_namespace_lock);
3386 3392                  return (error);
3387 3393          }
3388 3394  
3389 3395          has_features = B_FALSE;
3390 3396          for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3391 3397              elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3392 3398                  if (zpool_prop_feature(nvpair_name(elem)))
3393 3399                          has_features = B_TRUE;
3394 3400          }
3395 3401  
3396 3402          if (has_features || nvlist_lookup_uint64(props,
3397 3403              zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3398 3404                  version = SPA_VERSION;
3399 3405          }
3400 3406          ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3401 3407  
3402 3408          spa->spa_first_txg = txg;
3403 3409          spa->spa_uberblock.ub_txg = txg - 1;
3404 3410          spa->spa_uberblock.ub_version = version;
3405 3411          spa->spa_ubsync = spa->spa_uberblock;
3406 3412  
3407 3413          /*
3408 3414           * Create "The Godfather" zio to hold all async IOs
3409 3415           */
3410 3416          spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3411 3417              ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3412 3418  
3413 3419          /*
3414 3420           * Create the root vdev.
3415 3421           */
3416 3422          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3417 3423  
3418 3424          error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3419 3425  
3420 3426          ASSERT(error != 0 || rvd != NULL);
3421 3427          ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3422 3428  
3423 3429          if (error == 0 && !zfs_allocatable_devs(nvroot))
3424 3430                  error = SET_ERROR(EINVAL);
3425 3431  
3426 3432          if (error == 0 &&
3427 3433              (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3428 3434              (error = spa_validate_aux(spa, nvroot, txg,
3429 3435              VDEV_ALLOC_ADD)) == 0) {
3430 3436                  for (int c = 0; c < rvd->vdev_children; c++) {
3431 3437                          vdev_metaslab_set_size(rvd->vdev_child[c]);
3432 3438                          vdev_expand(rvd->vdev_child[c], txg);
3433 3439                  }
3434 3440          }
3435 3441  
3436 3442          spa_config_exit(spa, SCL_ALL, FTAG);
3437 3443  
3438 3444          if (error != 0) {
3439 3445                  spa_unload(spa);
3440 3446                  spa_deactivate(spa);
3441 3447                  spa_remove(spa);
3442 3448                  mutex_exit(&spa_namespace_lock);
3443 3449                  return (error);
3444 3450          }
3445 3451  
3446 3452          /*
3447 3453           * Get the list of spares, if specified.
3448 3454           */
3449 3455          if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3450 3456              &spares, &nspares) == 0) {
3451 3457                  VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3452 3458                      KM_SLEEP) == 0);
3453 3459                  VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3454 3460                      ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3455 3461                  spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3456 3462                  spa_load_spares(spa);
3457 3463                  spa_config_exit(spa, SCL_ALL, FTAG);
3458 3464                  spa->spa_spares.sav_sync = B_TRUE;
3459 3465          }
3460 3466  
3461 3467          /*
3462 3468           * Get the list of level 2 cache devices, if specified.
3463 3469           */
3464 3470          if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3465 3471              &l2cache, &nl2cache) == 0) {
3466 3472                  VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3467 3473                      NV_UNIQUE_NAME, KM_SLEEP) == 0);
3468 3474                  VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3469 3475                      ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3470 3476                  spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3471 3477                  spa_load_l2cache(spa);
3472 3478                  spa_config_exit(spa, SCL_ALL, FTAG);
3473 3479                  spa->spa_l2cache.sav_sync = B_TRUE;
3474 3480          }
3475 3481  
3476 3482          spa->spa_is_initializing = B_TRUE;
3477 3483          spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3478 3484          spa->spa_meta_objset = dp->dp_meta_objset;
3479 3485          spa->spa_is_initializing = B_FALSE;
3480 3486  
3481 3487          /*
3482 3488           * Create DDTs (dedup tables).
3483 3489           */
3484 3490          ddt_create(spa);
3485 3491  
3486 3492          spa_update_dspace(spa);
3487 3493  
3488 3494          tx = dmu_tx_create_assigned(dp, txg);
3489 3495  
3490 3496          /*
3491 3497           * Create the pool config object.
3492 3498           */
3493 3499          spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3494 3500              DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3495 3501              DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3496 3502  
3497 3503          if (zap_add(spa->spa_meta_objset,
3498 3504              DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3499 3505              sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3500 3506                  cmn_err(CE_PANIC, "failed to add pool config");
3501 3507          }
3502 3508  
3503 3509          if (spa_version(spa) >= SPA_VERSION_FEATURES)
3504 3510                  spa_feature_create_zap_objects(spa, tx);
3505 3511  
3506 3512          if (zap_add(spa->spa_meta_objset,
3507 3513              DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3508 3514              sizeof (uint64_t), 1, &version, tx) != 0) {
3509 3515                  cmn_err(CE_PANIC, "failed to add pool version");
3510 3516          }
3511 3517  
3512 3518          /* Newly created pools with the right version are always deflated. */
3513 3519          if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3514 3520                  spa->spa_deflate = TRUE;
3515 3521                  if (zap_add(spa->spa_meta_objset,
3516 3522                      DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3517 3523                      sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3518 3524                          cmn_err(CE_PANIC, "failed to add deflate");
3519 3525                  }
3520 3526          }
3521 3527  
3522 3528          /*
3523 3529           * Create the deferred-free bpobj.  Turn off compression
3524 3530           * because sync-to-convergence takes longer if the blocksize
3525 3531           * keeps changing.
3526 3532           */
3527 3533          obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3528 3534          dmu_object_set_compress(spa->spa_meta_objset, obj,
3529 3535              ZIO_COMPRESS_OFF, tx);
3530 3536          if (zap_add(spa->spa_meta_objset,
3531 3537              DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3532 3538              sizeof (uint64_t), 1, &obj, tx) != 0) {
3533 3539                  cmn_err(CE_PANIC, "failed to add bpobj");
3534 3540          }
3535 3541          VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3536 3542              spa->spa_meta_objset, obj));
3537 3543  
3538 3544          /*
3539 3545           * Create the pool's history object.
3540 3546           */
3541 3547          if (version >= SPA_VERSION_ZPOOL_HISTORY)
3542 3548                  spa_history_create_obj(spa, tx);
3543 3549  
3544 3550          /*
3545 3551           * Set pool properties.
3546 3552           */
3547 3553          spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3548 3554          spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3549 3555          spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3550 3556          spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3551 3557  
3552 3558          if (props != NULL) {
3553 3559                  spa_configfile_set(spa, props, B_FALSE);
3554 3560                  spa_sync_props(props, tx);
3555 3561          }
3556 3562  
3557 3563          dmu_tx_commit(tx);
3558 3564  
3559 3565          spa->spa_sync_on = B_TRUE;
3560 3566          txg_sync_start(spa->spa_dsl_pool);
3561 3567  
3562 3568          /*
3563 3569           * We explicitly wait for the first transaction to complete so that our
3564 3570           * bean counters are appropriately updated.
3565 3571           */
3566 3572          txg_wait_synced(spa->spa_dsl_pool, txg);
3567 3573  
3568 3574          spa_config_sync(spa, B_FALSE, B_TRUE);
3569 3575  
3570 3576          spa_history_log_version(spa, "create");
3571 3577  
3572 3578          spa->spa_minref = refcount_count(&spa->spa_refcount);
3573 3579  
3574 3580          mutex_exit(&spa_namespace_lock);
3575 3581  
3576 3582          return (0);
3577 3583  }
3578 3584  
3579 3585  #ifdef _KERNEL
3580 3586  /*
3581 3587   * Get the root pool information from the root disk, then import the root pool
3582 3588   * during the system boot up time.
3583 3589   */
3584 3590  extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3585 3591  
3586 3592  static nvlist_t *
3587 3593  spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3588 3594  {
3589 3595          nvlist_t *config;
3590 3596          nvlist_t *nvtop, *nvroot;
3591 3597          uint64_t pgid;
3592 3598  
3593 3599          if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3594 3600                  return (NULL);
3595 3601  
3596 3602          /*
3597 3603           * Add this top-level vdev to the child array.
3598 3604           */
3599 3605          VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3600 3606              &nvtop) == 0);
3601 3607          VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3602 3608              &pgid) == 0);
3603 3609          VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3604 3610  
3605 3611          /*
3606 3612           * Put this pool's top-level vdevs into a root vdev.
3607 3613           */
3608 3614          VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3609 3615          VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3610 3616              VDEV_TYPE_ROOT) == 0);
3611 3617          VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3612 3618          VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3613 3619          VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3614 3620              &nvtop, 1) == 0);
3615 3621  
3616 3622          /*
3617 3623           * Replace the existing vdev_tree with the new root vdev in
3618 3624           * this pool's configuration (remove the old, add the new).
3619 3625           */
3620 3626          VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3621 3627          nvlist_free(nvroot);
3622 3628          return (config);
3623 3629  }
3624 3630  
3625 3631  /*
3626 3632   * Walk the vdev tree and see if we can find a device with "better"
3627 3633   * configuration. A configuration is "better" if the label on that
3628 3634   * device has a more recent txg.
3629 3635   */
3630 3636  static void
3631 3637  spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3632 3638  {
3633 3639          for (int c = 0; c < vd->vdev_children; c++)
3634 3640                  spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3635 3641  
3636 3642          if (vd->vdev_ops->vdev_op_leaf) {
3637 3643                  nvlist_t *label;
3638 3644                  uint64_t label_txg;
3639 3645  
3640 3646                  if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3641 3647                      &label) != 0)
3642 3648                          return;
3643 3649  
3644 3650                  VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3645 3651                      &label_txg) == 0);
3646 3652  
3647 3653                  /*
3648 3654                   * Do we have a better boot device?
3649 3655                   */
3650 3656                  if (label_txg > *txg) {
3651 3657                          *txg = label_txg;
3652 3658                          *avd = vd;
3653 3659                  }
3654 3660                  nvlist_free(label);
3655 3661          }
3656 3662  }
3657 3663  
3658 3664  /*
3659 3665   * Import a root pool.
3660 3666   *
3661 3667   * For x86. devpath_list will consist of devid and/or physpath name of
3662 3668   * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3663 3669   * The GRUB "findroot" command will return the vdev we should boot.
3664 3670   *
3665 3671   * For Sparc, devpath_list consists the physpath name of the booting device
3666 3672   * no matter the rootpool is a single device pool or a mirrored pool.
3667 3673   * e.g.
3668 3674   *      "/pci@1f,0/ide@d/disk@0,0:a"
3669 3675   */
3670 3676  int
3671 3677  spa_import_rootpool(char *devpath, char *devid)
3672 3678  {
3673 3679          spa_t *spa;
3674 3680          vdev_t *rvd, *bvd, *avd = NULL;
3675 3681          nvlist_t *config, *nvtop;
3676 3682          uint64_t guid, txg;
3677 3683          char *pname;
3678 3684          int error;
3679 3685  
3680 3686          /*
3681 3687           * Read the label from the boot device and generate a configuration.
3682 3688           */
3683 3689          config = spa_generate_rootconf(devpath, devid, &guid);
3684 3690  #if defined(_OBP) && defined(_KERNEL)
3685 3691          if (config == NULL) {
3686 3692                  if (strstr(devpath, "/iscsi/ssd") != NULL) {
3687 3693                          /* iscsi boot */
3688 3694                          get_iscsi_bootpath_phy(devpath);
3689 3695                          config = spa_generate_rootconf(devpath, devid, &guid);
3690 3696                  }
3691 3697          }
3692 3698  #endif
3693 3699          if (config == NULL) {
3694 3700                  cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3695 3701                      devpath);
3696 3702                  return (SET_ERROR(EIO));
3697 3703          }
3698 3704  
3699 3705          VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3700 3706              &pname) == 0);
3701 3707          VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3702 3708  
3703 3709          mutex_enter(&spa_namespace_lock);
3704 3710          if ((spa = spa_lookup(pname)) != NULL) {
3705 3711                  /*
3706 3712                   * Remove the existing root pool from the namespace so that we
3707 3713                   * can replace it with the correct config we just read in.
3708 3714                   */
3709 3715                  spa_remove(spa);
3710 3716          }
3711 3717  
3712 3718          spa = spa_add(pname, config, NULL);
3713 3719          spa->spa_is_root = B_TRUE;
3714 3720          spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3715 3721  
3716 3722          /*
3717 3723           * Build up a vdev tree based on the boot device's label config.
3718 3724           */
3719 3725          VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3720 3726              &nvtop) == 0);
3721 3727          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3722 3728          error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3723 3729              VDEV_ALLOC_ROOTPOOL);
3724 3730          spa_config_exit(spa, SCL_ALL, FTAG);
3725 3731          if (error) {
3726 3732                  mutex_exit(&spa_namespace_lock);
3727 3733                  nvlist_free(config);
3728 3734                  cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3729 3735                      pname);
3730 3736                  return (error);
3731 3737          }
3732 3738  
3733 3739          /*
3734 3740           * Get the boot vdev.
3735 3741           */
3736 3742          if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3737 3743                  cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3738 3744                      (u_longlong_t)guid);
3739 3745                  error = SET_ERROR(ENOENT);
3740 3746                  goto out;
3741 3747          }
3742 3748  
3743 3749          /*
3744 3750           * Determine if there is a better boot device.
3745 3751           */
3746 3752          avd = bvd;
3747 3753          spa_alt_rootvdev(rvd, &avd, &txg);
3748 3754          if (avd != bvd) {
3749 3755                  cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3750 3756                      "try booting from '%s'", avd->vdev_path);
3751 3757                  error = SET_ERROR(EINVAL);
3752 3758                  goto out;
3753 3759          }
3754 3760  
3755 3761          /*
3756 3762           * If the boot device is part of a spare vdev then ensure that
3757 3763           * we're booting off the active spare.
3758 3764           */
3759 3765          if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3760 3766              !bvd->vdev_isspare) {
3761 3767                  cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3762 3768                      "try booting from '%s'",
3763 3769                      bvd->vdev_parent->
3764 3770                      vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3765 3771                  error = SET_ERROR(EINVAL);
3766 3772                  goto out;
3767 3773          }
3768 3774  
3769 3775          error = 0;
3770 3776  out:
3771 3777          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3772 3778          vdev_free(rvd);
3773 3779          spa_config_exit(spa, SCL_ALL, FTAG);
3774 3780          mutex_exit(&spa_namespace_lock);
3775 3781  
3776 3782          nvlist_free(config);
3777 3783          return (error);
3778 3784  }
3779 3785  
3780 3786  #endif
3781 3787  
3782 3788  /*
3783 3789   * Import a non-root pool into the system.
3784 3790   */
3785 3791  int
3786 3792  spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3787 3793  {
3788 3794          spa_t *spa;
3789 3795          char *altroot = NULL;
3790 3796          spa_load_state_t state = SPA_LOAD_IMPORT;
3791 3797          zpool_rewind_policy_t policy;
3792 3798          uint64_t mode = spa_mode_global;
3793 3799          uint64_t readonly = B_FALSE;
3794 3800          int error;
3795 3801          nvlist_t *nvroot;
3796 3802          nvlist_t **spares, **l2cache;
3797 3803          uint_t nspares, nl2cache;
3798 3804  
3799 3805          /*
3800 3806           * If a pool with this name exists, return failure.
3801 3807           */
3802 3808          mutex_enter(&spa_namespace_lock);
3803 3809          if (spa_lookup(pool) != NULL) {
3804 3810                  mutex_exit(&spa_namespace_lock);
3805 3811                  return (SET_ERROR(EEXIST));
3806 3812          }
3807 3813  
3808 3814          /*
3809 3815           * Create and initialize the spa structure.
3810 3816           */
3811 3817          (void) nvlist_lookup_string(props,
3812 3818              zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3813 3819          (void) nvlist_lookup_uint64(props,
3814 3820              zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3815 3821          if (readonly)
3816 3822                  mode = FREAD;
3817 3823          spa = spa_add(pool, config, altroot);
3818 3824          spa->spa_import_flags = flags;
3819 3825  
3820 3826          /*
3821 3827           * Verbatim import - Take a pool and insert it into the namespace
3822 3828           * as if it had been loaded at boot.
3823 3829           */
3824 3830          if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3825 3831                  if (props != NULL)
3826 3832                          spa_configfile_set(spa, props, B_FALSE);
3827 3833  
3828 3834                  spa_config_sync(spa, B_FALSE, B_TRUE);
3829 3835  
3830 3836                  mutex_exit(&spa_namespace_lock);
3831 3837                  spa_history_log_version(spa, "import");
3832 3838  
3833 3839                  return (0);
3834 3840          }
3835 3841  
3836 3842          spa_activate(spa, mode);
3837 3843  
3838 3844          /*
3839 3845           * Don't start async tasks until we know everything is healthy.
3840 3846           */
3841 3847          spa_async_suspend(spa);
3842 3848  
3843 3849          zpool_get_rewind_policy(config, &policy);
3844 3850          if (policy.zrp_request & ZPOOL_DO_REWIND)
3845 3851                  state = SPA_LOAD_RECOVER;
3846 3852  
3847 3853          /*
3848 3854           * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3849 3855           * because the user-supplied config is actually the one to trust when
3850 3856           * doing an import.
3851 3857           */
3852 3858          if (state != SPA_LOAD_RECOVER)
3853 3859                  spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3854 3860  
3855 3861          error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3856 3862              policy.zrp_request);
3857 3863  
3858 3864          /*
3859 3865           * Propagate anything learned while loading the pool and pass it
3860 3866           * back to caller (i.e. rewind info, missing devices, etc).
3861 3867           */
3862 3868          VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3863 3869              spa->spa_load_info) == 0);
3864 3870  
3865 3871          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3866 3872          /*
3867 3873           * Toss any existing sparelist, as it doesn't have any validity
3868 3874           * anymore, and conflicts with spa_has_spare().
3869 3875           */
3870 3876          if (spa->spa_spares.sav_config) {
3871 3877                  nvlist_free(spa->spa_spares.sav_config);
3872 3878                  spa->spa_spares.sav_config = NULL;
3873 3879                  spa_load_spares(spa);
3874 3880          }
3875 3881          if (spa->spa_l2cache.sav_config) {
3876 3882                  nvlist_free(spa->spa_l2cache.sav_config);
3877 3883                  spa->spa_l2cache.sav_config = NULL;
3878 3884                  spa_load_l2cache(spa);
3879 3885          }
3880 3886  
3881 3887          VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3882 3888              &nvroot) == 0);
3883 3889          if (error == 0)
3884 3890                  error = spa_validate_aux(spa, nvroot, -1ULL,
3885 3891                      VDEV_ALLOC_SPARE);
3886 3892          if (error == 0)
3887 3893                  error = spa_validate_aux(spa, nvroot, -1ULL,
3888 3894                      VDEV_ALLOC_L2CACHE);
3889 3895          spa_config_exit(spa, SCL_ALL, FTAG);
3890 3896  
3891 3897          if (props != NULL)
3892 3898                  spa_configfile_set(spa, props, B_FALSE);
3893 3899  
3894 3900          if (error != 0 || (props && spa_writeable(spa) &&
3895 3901              (error = spa_prop_set(spa, props)))) {
3896 3902                  spa_unload(spa);
3897 3903                  spa_deactivate(spa);
3898 3904                  spa_remove(spa);
3899 3905                  mutex_exit(&spa_namespace_lock);
3900 3906                  return (error);
3901 3907          }
3902 3908  
3903 3909          spa_async_resume(spa);
3904 3910  
3905 3911          /*
3906 3912           * Override any spares and level 2 cache devices as specified by
3907 3913           * the user, as these may have correct device names/devids, etc.
3908 3914           */
3909 3915          if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3910 3916              &spares, &nspares) == 0) {
3911 3917                  if (spa->spa_spares.sav_config)
3912 3918                          VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3913 3919                              ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3914 3920                  else
3915 3921                          VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3916 3922                              NV_UNIQUE_NAME, KM_SLEEP) == 0);
3917 3923                  VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3918 3924                      ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3919 3925                  spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3920 3926                  spa_load_spares(spa);
3921 3927                  spa_config_exit(spa, SCL_ALL, FTAG);
3922 3928                  spa->spa_spares.sav_sync = B_TRUE;
3923 3929          }
3924 3930          if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3925 3931              &l2cache, &nl2cache) == 0) {
3926 3932                  if (spa->spa_l2cache.sav_config)
3927 3933                          VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3928 3934                              ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3929 3935                  else
3930 3936                          VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3931 3937                              NV_UNIQUE_NAME, KM_SLEEP) == 0);
3932 3938                  VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3933 3939                      ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3934 3940                  spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3935 3941                  spa_load_l2cache(spa);
3936 3942                  spa_config_exit(spa, SCL_ALL, FTAG);
3937 3943                  spa->spa_l2cache.sav_sync = B_TRUE;
3938 3944          }
3939 3945  
3940 3946          /*
3941 3947           * Check for any removed devices.
3942 3948           */
3943 3949          if (spa->spa_autoreplace) {
3944 3950                  spa_aux_check_removed(&spa->spa_spares);
3945 3951                  spa_aux_check_removed(&spa->spa_l2cache);
3946 3952          }
3947 3953  
3948 3954          if (spa_writeable(spa)) {
3949 3955                  /*
3950 3956                   * Update the config cache to include the newly-imported pool.
3951 3957                   */
3952 3958                  spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3953 3959          }
3954 3960  
3955 3961          /*
3956 3962           * It's possible that the pool was expanded while it was exported.
3957 3963           * We kick off an async task to handle this for us.
3958 3964           */
3959 3965          spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3960 3966  
3961 3967          mutex_exit(&spa_namespace_lock);
3962 3968          spa_history_log_version(spa, "import");
3963 3969  
3964 3970          return (0);
3965 3971  }
3966 3972  
3967 3973  nvlist_t *
3968 3974  spa_tryimport(nvlist_t *tryconfig)
3969 3975  {
3970 3976          nvlist_t *config = NULL;
3971 3977          char *poolname;
3972 3978          spa_t *spa;
3973 3979          uint64_t state;
3974 3980          int error;
3975 3981  
3976 3982          if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3977 3983                  return (NULL);
3978 3984  
3979 3985          if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3980 3986                  return (NULL);
3981 3987  
3982 3988          /*
3983 3989           * Create and initialize the spa structure.
3984 3990           */
3985 3991          mutex_enter(&spa_namespace_lock);
3986 3992          spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3987 3993          spa_activate(spa, FREAD);
3988 3994  
3989 3995          /*
3990 3996           * Pass off the heavy lifting to spa_load().
3991 3997           * Pass TRUE for mosconfig because the user-supplied config
3992 3998           * is actually the one to trust when doing an import.
3993 3999           */
3994 4000          error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3995 4001  
3996 4002          /*
3997 4003           * If 'tryconfig' was at least parsable, return the current config.
3998 4004           */
3999 4005          if (spa->spa_root_vdev != NULL) {
4000 4006                  config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4001 4007                  VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4002 4008                      poolname) == 0);
4003 4009                  VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4004 4010                      state) == 0);
4005 4011                  VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4006 4012                      spa->spa_uberblock.ub_timestamp) == 0);
4007 4013                  VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4008 4014                      spa->spa_load_info) == 0);
4009 4015  
4010 4016                  /*
4011 4017                   * If the bootfs property exists on this pool then we
4012 4018                   * copy it out so that external consumers can tell which
4013 4019                   * pools are bootable.
4014 4020                   */
4015 4021                  if ((!error || error == EEXIST) && spa->spa_bootfs) {
4016 4022                          char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4017 4023  
4018 4024                          /*
4019 4025                           * We have to play games with the name since the
4020 4026                           * pool was opened as TRYIMPORT_NAME.
4021 4027                           */
4022 4028                          if (dsl_dsobj_to_dsname(spa_name(spa),
4023 4029                              spa->spa_bootfs, tmpname) == 0) {
4024 4030                                  char *cp;
4025 4031                                  char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4026 4032  
4027 4033                                  cp = strchr(tmpname, '/');
4028 4034                                  if (cp == NULL) {
4029 4035                                          (void) strlcpy(dsname, tmpname,
4030 4036                                              MAXPATHLEN);
4031 4037                                  } else {
4032 4038                                          (void) snprintf(dsname, MAXPATHLEN,
4033 4039                                              "%s/%s", poolname, ++cp);
4034 4040                                  }
4035 4041                                  VERIFY(nvlist_add_string(config,
4036 4042                                      ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4037 4043                                  kmem_free(dsname, MAXPATHLEN);
4038 4044                          }
4039 4045                          kmem_free(tmpname, MAXPATHLEN);
4040 4046                  }
4041 4047  
4042 4048                  /*
4043 4049                   * Add the list of hot spares and level 2 cache devices.
4044 4050                   */
4045 4051                  spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4046 4052                  spa_add_spares(spa, config);
4047 4053                  spa_add_l2cache(spa, config);
4048 4054                  spa_config_exit(spa, SCL_CONFIG, FTAG);
4049 4055          }
4050 4056  
4051 4057          spa_unload(spa);
4052 4058          spa_deactivate(spa);
4053 4059          spa_remove(spa);
4054 4060          mutex_exit(&spa_namespace_lock);
4055 4061  
4056 4062          return (config);
4057 4063  }
4058 4064  
4059 4065  /*
4060 4066   * Pool export/destroy
4061 4067   *
4062 4068   * The act of destroying or exporting a pool is very simple.  We make sure there
4063 4069   * is no more pending I/O and any references to the pool are gone.  Then, we
4064 4070   * update the pool state and sync all the labels to disk, removing the
4065 4071   * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4066 4072   * we don't sync the labels or remove the configuration cache.
4067 4073   */
4068 4074  static int
4069 4075  spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4070 4076      boolean_t force, boolean_t hardforce)
4071 4077  {
4072 4078          spa_t *spa;
4073 4079  
4074 4080          if (oldconfig)
4075 4081                  *oldconfig = NULL;
4076 4082  
4077 4083          if (!(spa_mode_global & FWRITE))
4078 4084                  return (SET_ERROR(EROFS));
4079 4085  
4080 4086          mutex_enter(&spa_namespace_lock);
4081 4087          if ((spa = spa_lookup(pool)) == NULL) {
4082 4088                  mutex_exit(&spa_namespace_lock);
4083 4089                  return (SET_ERROR(ENOENT));
4084 4090          }
4085 4091  
4086 4092          /*
4087 4093           * Put a hold on the pool, drop the namespace lock, stop async tasks,
4088 4094           * reacquire the namespace lock, and see if we can export.
4089 4095           */
4090 4096          spa_open_ref(spa, FTAG);
4091 4097          mutex_exit(&spa_namespace_lock);
4092 4098          spa_async_suspend(spa);
4093 4099          mutex_enter(&spa_namespace_lock);
4094 4100          spa_close(spa, FTAG);
4095 4101  
4096 4102          /*
4097 4103           * The pool will be in core if it's openable,
4098 4104           * in which case we can modify its state.
4099 4105           */
4100 4106          if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4101 4107                  /*
4102 4108                   * Objsets may be open only because they're dirty, so we
4103 4109                   * have to force it to sync before checking spa_refcnt.
4104 4110                   */
4105 4111                  txg_wait_synced(spa->spa_dsl_pool, 0);
4106 4112  
4107 4113                  /*
4108 4114                   * A pool cannot be exported or destroyed if there are active
4109 4115                   * references.  If we are resetting a pool, allow references by
4110 4116                   * fault injection handlers.
4111 4117                   */
4112 4118                  if (!spa_refcount_zero(spa) ||
4113 4119                      (spa->spa_inject_ref != 0 &&
4114 4120                      new_state != POOL_STATE_UNINITIALIZED)) {
4115 4121                          spa_async_resume(spa);
4116 4122                          mutex_exit(&spa_namespace_lock);
4117 4123                          return (SET_ERROR(EBUSY));
4118 4124                  }
4119 4125  
4120 4126                  /*
4121 4127                   * A pool cannot be exported if it has an active shared spare.
4122 4128                   * This is to prevent other pools stealing the active spare
4123 4129                   * from an exported pool. At user's own will, such pool can
4124 4130                   * be forcedly exported.
4125 4131                   */
4126 4132                  if (!force && new_state == POOL_STATE_EXPORTED &&
4127 4133                      spa_has_active_shared_spare(spa)) {
4128 4134                          spa_async_resume(spa);
4129 4135                          mutex_exit(&spa_namespace_lock);
4130 4136                          return (SET_ERROR(EXDEV));
4131 4137                  }
4132 4138  
4133 4139                  /*
4134 4140                   * We want this to be reflected on every label,
4135 4141                   * so mark them all dirty.  spa_unload() will do the
4136 4142                   * final sync that pushes these changes out.
4137 4143                   */
4138 4144                  if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4139 4145                          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4140 4146                          spa->spa_state = new_state;
4141 4147                          spa->spa_final_txg = spa_last_synced_txg(spa) +
4142 4148                              TXG_DEFER_SIZE + 1;
4143 4149                          vdev_config_dirty(spa->spa_root_vdev);
4144 4150                          spa_config_exit(spa, SCL_ALL, FTAG);
4145 4151                  }
4146 4152          }
4147 4153  
4148 4154          spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4149 4155  
4150 4156          if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4151 4157                  spa_unload(spa);
4152 4158                  spa_deactivate(spa);
4153 4159          }
4154 4160  
4155 4161          if (oldconfig && spa->spa_config)
4156 4162                  VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4157 4163  
4158 4164          if (new_state != POOL_STATE_UNINITIALIZED) {
4159 4165                  if (!hardforce)
4160 4166                          spa_config_sync(spa, B_TRUE, B_TRUE);
4161 4167                  spa_remove(spa);
4162 4168          }
4163 4169          mutex_exit(&spa_namespace_lock);
4164 4170  
4165 4171          return (0);
4166 4172  }
4167 4173  
4168 4174  /*
4169 4175   * Destroy a storage pool.
4170 4176   */
4171 4177  int
4172 4178  spa_destroy(char *pool)
4173 4179  {
4174 4180          return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4175 4181              B_FALSE, B_FALSE));
4176 4182  }
4177 4183  
4178 4184  /*
4179 4185   * Export a storage pool.
4180 4186   */
4181 4187  int
4182 4188  spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4183 4189      boolean_t hardforce)
4184 4190  {
4185 4191          return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4186 4192              force, hardforce));
4187 4193  }
4188 4194  
4189 4195  /*
4190 4196   * Similar to spa_export(), this unloads the spa_t without actually removing it
4191 4197   * from the namespace in any way.
4192 4198   */
4193 4199  int
4194 4200  spa_reset(char *pool)
4195 4201  {
4196 4202          return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4197 4203              B_FALSE, B_FALSE));
4198 4204  }
4199 4205  
4200 4206  /*
4201 4207   * ==========================================================================
4202 4208   * Device manipulation
4203 4209   * ==========================================================================
4204 4210   */
4205 4211  
4206 4212  /*
4207 4213   * Add a device to a storage pool.
4208 4214   */
4209 4215  int
4210 4216  spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4211 4217  {
4212 4218          uint64_t txg, id;
4213 4219          int error;
4214 4220          vdev_t *rvd = spa->spa_root_vdev;
4215 4221          vdev_t *vd, *tvd;
4216 4222          nvlist_t **spares, **l2cache;
4217 4223          uint_t nspares, nl2cache;
4218 4224  
4219 4225          ASSERT(spa_writeable(spa));
4220 4226  
4221 4227          txg = spa_vdev_enter(spa);
4222 4228  
4223 4229          if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4224 4230              VDEV_ALLOC_ADD)) != 0)
4225 4231                  return (spa_vdev_exit(spa, NULL, txg, error));
4226 4232  
4227 4233          spa->spa_pending_vdev = vd;     /* spa_vdev_exit() will clear this */
4228 4234  
4229 4235          if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4230 4236              &nspares) != 0)
4231 4237                  nspares = 0;
4232 4238  
4233 4239          if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4234 4240              &nl2cache) != 0)
4235 4241                  nl2cache = 0;
4236 4242  
4237 4243          if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4238 4244                  return (spa_vdev_exit(spa, vd, txg, EINVAL));
4239 4245  
4240 4246          if (vd->vdev_children != 0 &&
4241 4247              (error = vdev_create(vd, txg, B_FALSE)) != 0)
4242 4248                  return (spa_vdev_exit(spa, vd, txg, error));
4243 4249  
4244 4250          /*
4245 4251           * We must validate the spares and l2cache devices after checking the
4246 4252           * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4247 4253           */
4248 4254          if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4249 4255                  return (spa_vdev_exit(spa, vd, txg, error));
4250 4256  
4251 4257          /*
4252 4258           * Transfer each new top-level vdev from vd to rvd.
4253 4259           */
4254 4260          for (int c = 0; c < vd->vdev_children; c++) {
4255 4261  
4256 4262                  /*
4257 4263                   * Set the vdev id to the first hole, if one exists.
4258 4264                   */
4259 4265                  for (id = 0; id < rvd->vdev_children; id++) {
4260 4266                          if (rvd->vdev_child[id]->vdev_ishole) {
4261 4267                                  vdev_free(rvd->vdev_child[id]);
4262 4268                                  break;
4263 4269                          }
4264 4270                  }
4265 4271                  tvd = vd->vdev_child[c];
4266 4272                  vdev_remove_child(vd, tvd);
4267 4273                  tvd->vdev_id = id;
4268 4274                  vdev_add_child(rvd, tvd);
4269 4275                  vdev_config_dirty(tvd);
4270 4276          }
4271 4277  
4272 4278          if (nspares != 0) {
4273 4279                  spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4274 4280                      ZPOOL_CONFIG_SPARES);
4275 4281                  spa_load_spares(spa);
4276 4282                  spa->spa_spares.sav_sync = B_TRUE;
4277 4283          }
4278 4284  
4279 4285          if (nl2cache != 0) {
4280 4286                  spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4281 4287                      ZPOOL_CONFIG_L2CACHE);
4282 4288                  spa_load_l2cache(spa);
4283 4289                  spa->spa_l2cache.sav_sync = B_TRUE;
4284 4290          }
4285 4291  
4286 4292          /*
4287 4293           * We have to be careful when adding new vdevs to an existing pool.
4288 4294           * If other threads start allocating from these vdevs before we
4289 4295           * sync the config cache, and we lose power, then upon reboot we may
4290 4296           * fail to open the pool because there are DVAs that the config cache
4291 4297           * can't translate.  Therefore, we first add the vdevs without
4292 4298           * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4293 4299           * and then let spa_config_update() initialize the new metaslabs.
4294 4300           *
4295 4301           * spa_load() checks for added-but-not-initialized vdevs, so that
4296 4302           * if we lose power at any point in this sequence, the remaining
4297 4303           * steps will be completed the next time we load the pool.
4298 4304           */
4299 4305          (void) spa_vdev_exit(spa, vd, txg, 0);
4300 4306  
4301 4307          mutex_enter(&spa_namespace_lock);
4302 4308          spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4303 4309          mutex_exit(&spa_namespace_lock);
4304 4310  
4305 4311          return (0);
4306 4312  }
4307 4313  
4308 4314  /*
4309 4315   * Attach a device to a mirror.  The arguments are the path to any device
4310 4316   * in the mirror, and the nvroot for the new device.  If the path specifies
4311 4317   * a device that is not mirrored, we automatically insert the mirror vdev.
4312 4318   *
4313 4319   * If 'replacing' is specified, the new device is intended to replace the
4314 4320   * existing device; in this case the two devices are made into their own
4315 4321   * mirror using the 'replacing' vdev, which is functionally identical to
4316 4322   * the mirror vdev (it actually reuses all the same ops) but has a few
4317 4323   * extra rules: you can't attach to it after it's been created, and upon
4318 4324   * completion of resilvering, the first disk (the one being replaced)
4319 4325   * is automatically detached.
4320 4326   */
4321 4327  int
4322 4328  spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4323 4329  {
4324 4330          uint64_t txg, dtl_max_txg;
4325 4331          vdev_t *rvd = spa->spa_root_vdev;
4326 4332          vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4327 4333          vdev_ops_t *pvops;
4328 4334          char *oldvdpath, *newvdpath;
4329 4335          int newvd_isspare;
4330 4336          int error;
4331 4337  
4332 4338          ASSERT(spa_writeable(spa));
4333 4339  
4334 4340          txg = spa_vdev_enter(spa);
4335 4341  
4336 4342          oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4337 4343  
4338 4344          if (oldvd == NULL)
4339 4345                  return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4340 4346  
4341 4347          if (!oldvd->vdev_ops->vdev_op_leaf)
4342 4348                  return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4343 4349  
4344 4350          pvd = oldvd->vdev_parent;
4345 4351  
4346 4352          if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4347 4353              VDEV_ALLOC_ATTACH)) != 0)
4348 4354                  return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4349 4355  
4350 4356          if (newrootvd->vdev_children != 1)
4351 4357                  return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4352 4358  
4353 4359          newvd = newrootvd->vdev_child[0];
4354 4360  
4355 4361          if (!newvd->vdev_ops->vdev_op_leaf)
4356 4362                  return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4357 4363  
4358 4364          if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4359 4365                  return (spa_vdev_exit(spa, newrootvd, txg, error));
4360 4366  
4361 4367          /*
4362 4368           * Spares can't replace logs
4363 4369           */
4364 4370          if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4365 4371                  return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4366 4372  
4367 4373          if (!replacing) {
4368 4374                  /*
4369 4375                   * For attach, the only allowable parent is a mirror or the root
4370 4376                   * vdev.
4371 4377                   */
4372 4378                  if (pvd->vdev_ops != &vdev_mirror_ops &&
4373 4379                      pvd->vdev_ops != &vdev_root_ops)
4374 4380                          return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4375 4381  
4376 4382                  pvops = &vdev_mirror_ops;
4377 4383          } else {
4378 4384                  /*
4379 4385                   * Active hot spares can only be replaced by inactive hot
4380 4386                   * spares.
4381 4387                   */
4382 4388                  if (pvd->vdev_ops == &vdev_spare_ops &&
4383 4389                      oldvd->vdev_isspare &&
4384 4390                      !spa_has_spare(spa, newvd->vdev_guid))
4385 4391                          return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4386 4392  
4387 4393                  /*
4388 4394                   * If the source is a hot spare, and the parent isn't already a
4389 4395                   * spare, then we want to create a new hot spare.  Otherwise, we
4390 4396                   * want to create a replacing vdev.  The user is not allowed to
4391 4397                   * attach to a spared vdev child unless the 'isspare' state is
4392 4398                   * the same (spare replaces spare, non-spare replaces
4393 4399                   * non-spare).
4394 4400                   */
4395 4401                  if (pvd->vdev_ops == &vdev_replacing_ops &&
4396 4402                      spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4397 4403                          return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4398 4404                  } else if (pvd->vdev_ops == &vdev_spare_ops &&
4399 4405                      newvd->vdev_isspare != oldvd->vdev_isspare) {
4400 4406                          return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4401 4407                  }
4402 4408  
4403 4409                  if (newvd->vdev_isspare)
4404 4410                          pvops = &vdev_spare_ops;
4405 4411                  else
4406 4412                          pvops = &vdev_replacing_ops;
4407 4413          }
4408 4414  
4409 4415          /*
4410 4416           * Make sure the new device is big enough.
4411 4417           */
4412 4418          if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4413 4419                  return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4414 4420  
4415 4421          /*
4416 4422           * The new device cannot have a higher alignment requirement
4417 4423           * than the top-level vdev.
4418 4424           */
4419 4425          if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4420 4426                  return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4421 4427  
4422 4428          /*
4423 4429           * If this is an in-place replacement, update oldvd's path and devid
4424 4430           * to make it distinguishable from newvd, and unopenable from now on.
4425 4431           */
4426 4432          if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4427 4433                  spa_strfree(oldvd->vdev_path);
4428 4434                  oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4429 4435                      KM_SLEEP);
4430 4436                  (void) sprintf(oldvd->vdev_path, "%s/%s",
4431 4437                      newvd->vdev_path, "old");
4432 4438                  if (oldvd->vdev_devid != NULL) {
4433 4439                          spa_strfree(oldvd->vdev_devid);
4434 4440                          oldvd->vdev_devid = NULL;
4435 4441                  }
4436 4442          }
4437 4443  
4438 4444          /* mark the device being resilvered */
4439 4445          newvd->vdev_resilvering = B_TRUE;
4440 4446  
4441 4447          /*
4442 4448           * If the parent is not a mirror, or if we're replacing, insert the new
4443 4449           * mirror/replacing/spare vdev above oldvd.
4444 4450           */
4445 4451          if (pvd->vdev_ops != pvops)
4446 4452                  pvd = vdev_add_parent(oldvd, pvops);
4447 4453  
4448 4454          ASSERT(pvd->vdev_top->vdev_parent == rvd);
4449 4455          ASSERT(pvd->vdev_ops == pvops);
4450 4456          ASSERT(oldvd->vdev_parent == pvd);
4451 4457  
4452 4458          /*
4453 4459           * Extract the new device from its root and add it to pvd.
4454 4460           */
4455 4461          vdev_remove_child(newrootvd, newvd);
4456 4462          newvd->vdev_id = pvd->vdev_children;
4457 4463          newvd->vdev_crtxg = oldvd->vdev_crtxg;
4458 4464          vdev_add_child(pvd, newvd);
4459 4465  
4460 4466          tvd = newvd->vdev_top;
4461 4467          ASSERT(pvd->vdev_top == tvd);
4462 4468          ASSERT(tvd->vdev_parent == rvd);
4463 4469  
4464 4470          vdev_config_dirty(tvd);
4465 4471  
4466 4472          /*
4467 4473           * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4468 4474           * for any dmu_sync-ed blocks.  It will propagate upward when
4469 4475           * spa_vdev_exit() calls vdev_dtl_reassess().
4470 4476           */
4471 4477          dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4472 4478  
4473 4479          vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4474 4480              dtl_max_txg - TXG_INITIAL);
4475 4481  
4476 4482          if (newvd->vdev_isspare) {
4477 4483                  spa_spare_activate(newvd);
4478 4484                  spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4479 4485          }
4480 4486  
4481 4487          oldvdpath = spa_strdup(oldvd->vdev_path);
4482 4488          newvdpath = spa_strdup(newvd->vdev_path);
4483 4489          newvd_isspare = newvd->vdev_isspare;
4484 4490  
4485 4491          /*
4486 4492           * Mark newvd's DTL dirty in this txg.
4487 4493           */
4488 4494          vdev_dirty(tvd, VDD_DTL, newvd, txg);
4489 4495  
4490 4496          /*
4491 4497           * Restart the resilver
4492 4498           */
4493 4499          dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4494 4500  
4495 4501          /*
4496 4502           * Commit the config
4497 4503           */
4498 4504          (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4499 4505  
4500 4506          spa_history_log_internal(spa, "vdev attach", NULL,
4501 4507              "%s vdev=%s %s vdev=%s",
4502 4508              replacing && newvd_isspare ? "spare in" :
4503 4509              replacing ? "replace" : "attach", newvdpath,
4504 4510              replacing ? "for" : "to", oldvdpath);
4505 4511  
4506 4512          spa_strfree(oldvdpath);
4507 4513          spa_strfree(newvdpath);
4508 4514  
4509 4515          if (spa->spa_bootfs)
4510 4516                  spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4511 4517  
4512 4518          return (0);
4513 4519  }
4514 4520  
4515 4521  /*
4516 4522   * Detach a device from a mirror or replacing vdev.
4517 4523   * If 'replace_done' is specified, only detach if the parent
4518 4524   * is a replacing vdev.
4519 4525   */
4520 4526  int
4521 4527  spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4522 4528  {
4523 4529          uint64_t txg;
4524 4530          int error;
4525 4531          vdev_t *rvd = spa->spa_root_vdev;
4526 4532          vdev_t *vd, *pvd, *cvd, *tvd;
4527 4533          boolean_t unspare = B_FALSE;
4528 4534          uint64_t unspare_guid = 0;
4529 4535          char *vdpath;
4530 4536  
4531 4537          ASSERT(spa_writeable(spa));
4532 4538  
4533 4539          txg = spa_vdev_enter(spa);
4534 4540  
4535 4541          vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4536 4542  
4537 4543          if (vd == NULL)
4538 4544                  return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4539 4545  
4540 4546          if (!vd->vdev_ops->vdev_op_leaf)
4541 4547                  return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4542 4548  
4543 4549          pvd = vd->vdev_parent;
4544 4550  
4545 4551          /*
4546 4552           * If the parent/child relationship is not as expected, don't do it.
4547 4553           * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4548 4554           * vdev that's replacing B with C.  The user's intent in replacing
4549 4555           * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4550 4556           * the replace by detaching C, the expected behavior is to end up
4551 4557           * M(A,B).  But suppose that right after deciding to detach C,
4552 4558           * the replacement of B completes.  We would have M(A,C), and then
4553 4559           * ask to detach C, which would leave us with just A -- not what
4554 4560           * the user wanted.  To prevent this, we make sure that the
4555 4561           * parent/child relationship hasn't changed -- in this example,
4556 4562           * that C's parent is still the replacing vdev R.
4557 4563           */
4558 4564          if (pvd->vdev_guid != pguid && pguid != 0)
4559 4565                  return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4560 4566  
4561 4567          /*
4562 4568           * Only 'replacing' or 'spare' vdevs can be replaced.
4563 4569           */
4564 4570          if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4565 4571              pvd->vdev_ops != &vdev_spare_ops)
4566 4572                  return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4567 4573  
4568 4574          ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4569 4575              spa_version(spa) >= SPA_VERSION_SPARES);
4570 4576  
4571 4577          /*
4572 4578           * Only mirror, replacing, and spare vdevs support detach.
4573 4579           */
4574 4580          if (pvd->vdev_ops != &vdev_replacing_ops &&
4575 4581              pvd->vdev_ops != &vdev_mirror_ops &&
4576 4582              pvd->vdev_ops != &vdev_spare_ops)
4577 4583                  return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4578 4584  
4579 4585          /*
4580 4586           * If this device has the only valid copy of some data,
4581 4587           * we cannot safely detach it.
4582 4588           */
4583 4589          if (vdev_dtl_required(vd))
4584 4590                  return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4585 4591  
4586 4592          ASSERT(pvd->vdev_children >= 2);
4587 4593  
4588 4594          /*
4589 4595           * If we are detaching the second disk from a replacing vdev, then
4590 4596           * check to see if we changed the original vdev's path to have "/old"
4591 4597           * at the end in spa_vdev_attach().  If so, undo that change now.
4592 4598           */
4593 4599          if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4594 4600              vd->vdev_path != NULL) {
4595 4601                  size_t len = strlen(vd->vdev_path);
4596 4602  
4597 4603                  for (int c = 0; c < pvd->vdev_children; c++) {
4598 4604                          cvd = pvd->vdev_child[c];
4599 4605  
4600 4606                          if (cvd == vd || cvd->vdev_path == NULL)
4601 4607                                  continue;
4602 4608  
4603 4609                          if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4604 4610                              strcmp(cvd->vdev_path + len, "/old") == 0) {
4605 4611                                  spa_strfree(cvd->vdev_path);
4606 4612                                  cvd->vdev_path = spa_strdup(vd->vdev_path);
4607 4613                                  break;
4608 4614                          }
4609 4615                  }
4610 4616          }
4611 4617  
4612 4618          /*
4613 4619           * If we are detaching the original disk from a spare, then it implies
4614 4620           * that the spare should become a real disk, and be removed from the
4615 4621           * active spare list for the pool.
4616 4622           */
4617 4623          if (pvd->vdev_ops == &vdev_spare_ops &&
4618 4624              vd->vdev_id == 0 &&
4619 4625              pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4620 4626                  unspare = B_TRUE;
4621 4627  
4622 4628          /*
4623 4629           * Erase the disk labels so the disk can be used for other things.
4624 4630           * This must be done after all other error cases are handled,
4625 4631           * but before we disembowel vd (so we can still do I/O to it).
4626 4632           * But if we can't do it, don't treat the error as fatal --
4627 4633           * it may be that the unwritability of the disk is the reason
4628 4634           * it's being detached!
4629 4635           */
4630 4636          error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4631 4637  
4632 4638          /*
4633 4639           * Remove vd from its parent and compact the parent's children.
4634 4640           */
4635 4641          vdev_remove_child(pvd, vd);
4636 4642          vdev_compact_children(pvd);
4637 4643  
4638 4644          /*
4639 4645           * Remember one of the remaining children so we can get tvd below.
4640 4646           */
4641 4647          cvd = pvd->vdev_child[pvd->vdev_children - 1];
4642 4648  
4643 4649          /*
4644 4650           * If we need to remove the remaining child from the list of hot spares,
4645 4651           * do it now, marking the vdev as no longer a spare in the process.
4646 4652           * We must do this before vdev_remove_parent(), because that can
4647 4653           * change the GUID if it creates a new toplevel GUID.  For a similar
4648 4654           * reason, we must remove the spare now, in the same txg as the detach;
4649 4655           * otherwise someone could attach a new sibling, change the GUID, and
4650 4656           * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4651 4657           */
4652 4658          if (unspare) {
4653 4659                  ASSERT(cvd->vdev_isspare);
4654 4660                  spa_spare_remove(cvd);
4655 4661                  unspare_guid = cvd->vdev_guid;
4656 4662                  (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4657 4663                  cvd->vdev_unspare = B_TRUE;
4658 4664          }
4659 4665  
4660 4666          /*
4661 4667           * If the parent mirror/replacing vdev only has one child,
4662 4668           * the parent is no longer needed.  Remove it from the tree.
4663 4669           */
4664 4670          if (pvd->vdev_children == 1) {
4665 4671                  if (pvd->vdev_ops == &vdev_spare_ops)
4666 4672                          cvd->vdev_unspare = B_FALSE;
4667 4673                  vdev_remove_parent(cvd);
4668 4674                  cvd->vdev_resilvering = B_FALSE;
4669 4675          }
4670 4676  
4671 4677  
4672 4678          /*
4673 4679           * We don't set tvd until now because the parent we just removed
4674 4680           * may have been the previous top-level vdev.
4675 4681           */
4676 4682          tvd = cvd->vdev_top;
4677 4683          ASSERT(tvd->vdev_parent == rvd);
4678 4684  
4679 4685          /*
4680 4686           * Reevaluate the parent vdev state.
4681 4687           */
4682 4688          vdev_propagate_state(cvd);
4683 4689  
4684 4690          /*
4685 4691           * If the 'autoexpand' property is set on the pool then automatically
4686 4692           * try to expand the size of the pool. For example if the device we
4687 4693           * just detached was smaller than the others, it may be possible to
4688 4694           * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4689 4695           * first so that we can obtain the updated sizes of the leaf vdevs.
4690 4696           */
4691 4697          if (spa->spa_autoexpand) {
4692 4698                  vdev_reopen(tvd);
4693 4699                  vdev_expand(tvd, txg);
4694 4700          }
4695 4701  
4696 4702          vdev_config_dirty(tvd);
4697 4703  
4698 4704          /*
4699 4705           * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4700 4706           * vd->vdev_detached is set and free vd's DTL object in syncing context.
4701 4707           * But first make sure we're not on any *other* txg's DTL list, to
4702 4708           * prevent vd from being accessed after it's freed.
4703 4709           */
4704 4710          vdpath = spa_strdup(vd->vdev_path);
4705 4711          for (int t = 0; t < TXG_SIZE; t++)
4706 4712                  (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4707 4713          vd->vdev_detached = B_TRUE;
4708 4714          vdev_dirty(tvd, VDD_DTL, vd, txg);
4709 4715  
4710 4716          spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4711 4717  
4712 4718          /* hang on to the spa before we release the lock */
4713 4719          spa_open_ref(spa, FTAG);
4714 4720  
4715 4721          error = spa_vdev_exit(spa, vd, txg, 0);
4716 4722  
4717 4723          spa_history_log_internal(spa, "detach", NULL,
4718 4724              "vdev=%s", vdpath);
4719 4725          spa_strfree(vdpath);
4720 4726  
4721 4727          /*
4722 4728           * If this was the removal of the original device in a hot spare vdev,
4723 4729           * then we want to go through and remove the device from the hot spare
4724 4730           * list of every other pool.
4725 4731           */
4726 4732          if (unspare) {
4727 4733                  spa_t *altspa = NULL;
4728 4734  
4729 4735                  mutex_enter(&spa_namespace_lock);
4730 4736                  while ((altspa = spa_next(altspa)) != NULL) {
4731 4737                          if (altspa->spa_state != POOL_STATE_ACTIVE ||
4732 4738                              altspa == spa)
4733 4739                                  continue;
4734 4740  
4735 4741                          spa_open_ref(altspa, FTAG);
4736 4742                          mutex_exit(&spa_namespace_lock);
4737 4743                          (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4738 4744                          mutex_enter(&spa_namespace_lock);
4739 4745                          spa_close(altspa, FTAG);
4740 4746                  }
4741 4747                  mutex_exit(&spa_namespace_lock);
4742 4748  
4743 4749                  /* search the rest of the vdevs for spares to remove */
4744 4750                  spa_vdev_resilver_done(spa);
4745 4751          }
4746 4752  
4747 4753          /* all done with the spa; OK to release */
4748 4754          mutex_enter(&spa_namespace_lock);
4749 4755          spa_close(spa, FTAG);
4750 4756          mutex_exit(&spa_namespace_lock);
4751 4757  
4752 4758          return (error);
4753 4759  }
4754 4760  
4755 4761  /*
4756 4762   * Split a set of devices from their mirrors, and create a new pool from them.
4757 4763   */
4758 4764  int
4759 4765  spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4760 4766      nvlist_t *props, boolean_t exp)
4761 4767  {
4762 4768          int error = 0;
4763 4769          uint64_t txg, *glist;
4764 4770          spa_t *newspa;
4765 4771          uint_t c, children, lastlog;
4766 4772          nvlist_t **child, *nvl, *tmp;
4767 4773          dmu_tx_t *tx;
4768 4774          char *altroot = NULL;
4769 4775          vdev_t *rvd, **vml = NULL;                      /* vdev modify list */
4770 4776          boolean_t activate_slog;
4771 4777  
4772 4778          ASSERT(spa_writeable(spa));
4773 4779  
4774 4780          txg = spa_vdev_enter(spa);
4775 4781  
4776 4782          /* clear the log and flush everything up to now */
4777 4783          activate_slog = spa_passivate_log(spa);
4778 4784          (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4779 4785          error = spa_offline_log(spa);
4780 4786          txg = spa_vdev_config_enter(spa);
4781 4787  
4782 4788          if (activate_slog)
4783 4789                  spa_activate_log(spa);
4784 4790  
4785 4791          if (error != 0)
4786 4792                  return (spa_vdev_exit(spa, NULL, txg, error));
4787 4793  
4788 4794          /* check new spa name before going any further */
4789 4795          if (spa_lookup(newname) != NULL)
4790 4796                  return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4791 4797  
4792 4798          /*
4793 4799           * scan through all the children to ensure they're all mirrors
4794 4800           */
4795 4801          if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4796 4802              nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4797 4803              &children) != 0)
4798 4804                  return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4799 4805  
4800 4806          /* first, check to ensure we've got the right child count */
4801 4807          rvd = spa->spa_root_vdev;
4802 4808          lastlog = 0;
4803 4809          for (c = 0; c < rvd->vdev_children; c++) {
4804 4810                  vdev_t *vd = rvd->vdev_child[c];
4805 4811  
4806 4812                  /* don't count the holes & logs as children */
4807 4813                  if (vd->vdev_islog || vd->vdev_ishole) {
4808 4814                          if (lastlog == 0)
4809 4815                                  lastlog = c;
4810 4816                          continue;
4811 4817                  }
4812 4818  
4813 4819                  lastlog = 0;
4814 4820          }
4815 4821          if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4816 4822                  return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4817 4823  
4818 4824          /* next, ensure no spare or cache devices are part of the split */
4819 4825          if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4820 4826              nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4821 4827                  return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4822 4828  
4823 4829          vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4824 4830          glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4825 4831  
4826 4832          /* then, loop over each vdev and validate it */
4827 4833          for (c = 0; c < children; c++) {
4828 4834                  uint64_t is_hole = 0;
4829 4835  
4830 4836                  (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4831 4837                      &is_hole);
4832 4838  
4833 4839                  if (is_hole != 0) {
4834 4840                          if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4835 4841                              spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4836 4842                                  continue;
4837 4843                          } else {
4838 4844                                  error = SET_ERROR(EINVAL);
4839 4845                                  break;
4840 4846                          }
4841 4847                  }
4842 4848  
4843 4849                  /* which disk is going to be split? */
4844 4850                  if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4845 4851                      &glist[c]) != 0) {
4846 4852                          error = SET_ERROR(EINVAL);
4847 4853                          break;
4848 4854                  }
4849 4855  
4850 4856                  /* look it up in the spa */
4851 4857                  vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4852 4858                  if (vml[c] == NULL) {
4853 4859                          error = SET_ERROR(ENODEV);
4854 4860                          break;
4855 4861                  }
4856 4862  
4857 4863                  /* make sure there's nothing stopping the split */
4858 4864                  if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4859 4865                      vml[c]->vdev_islog ||
4860 4866                      vml[c]->vdev_ishole ||
4861 4867                      vml[c]->vdev_isspare ||
4862 4868                      vml[c]->vdev_isl2cache ||
4863 4869                      !vdev_writeable(vml[c]) ||
4864 4870                      vml[c]->vdev_children != 0 ||
4865 4871                      vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4866 4872                      c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4867 4873                          error = SET_ERROR(EINVAL);
4868 4874                          break;
4869 4875                  }
4870 4876  
4871 4877                  if (vdev_dtl_required(vml[c])) {
4872 4878                          error = SET_ERROR(EBUSY);
4873 4879                          break;
4874 4880                  }
4875 4881  
4876 4882                  /* we need certain info from the top level */
4877 4883                  VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4878 4884                      vml[c]->vdev_top->vdev_ms_array) == 0);
4879 4885                  VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4880 4886                      vml[c]->vdev_top->vdev_ms_shift) == 0);
4881 4887                  VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4882 4888                      vml[c]->vdev_top->vdev_asize) == 0);
4883 4889                  VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4884 4890                      vml[c]->vdev_top->vdev_ashift) == 0);
4885 4891          }
4886 4892  
4887 4893          if (error != 0) {
4888 4894                  kmem_free(vml, children * sizeof (vdev_t *));
4889 4895                  kmem_free(glist, children * sizeof (uint64_t));
4890 4896                  return (spa_vdev_exit(spa, NULL, txg, error));
4891 4897          }
4892 4898  
4893 4899          /* stop writers from using the disks */
4894 4900          for (c = 0; c < children; c++) {
4895 4901                  if (vml[c] != NULL)
4896 4902                          vml[c]->vdev_offline = B_TRUE;
4897 4903          }
4898 4904          vdev_reopen(spa->spa_root_vdev);
4899 4905  
4900 4906          /*
4901 4907           * Temporarily record the splitting vdevs in the spa config.  This
4902 4908           * will disappear once the config is regenerated.
4903 4909           */
4904 4910          VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4905 4911          VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4906 4912              glist, children) == 0);
4907 4913          kmem_free(glist, children * sizeof (uint64_t));
4908 4914  
4909 4915          mutex_enter(&spa->spa_props_lock);
4910 4916          VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4911 4917              nvl) == 0);
4912 4918          mutex_exit(&spa->spa_props_lock);
4913 4919          spa->spa_config_splitting = nvl;
4914 4920          vdev_config_dirty(spa->spa_root_vdev);
4915 4921  
4916 4922          /* configure and create the new pool */
4917 4923          VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4918 4924          VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4919 4925              exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4920 4926          VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4921 4927              spa_version(spa)) == 0);
4922 4928          VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4923 4929              spa->spa_config_txg) == 0);
4924 4930          VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4925 4931              spa_generate_guid(NULL)) == 0);
4926 4932          (void) nvlist_lookup_string(props,
4927 4933              zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4928 4934  
4929 4935          /* add the new pool to the namespace */
4930 4936          newspa = spa_add(newname, config, altroot);
4931 4937          newspa->spa_config_txg = spa->spa_config_txg;
4932 4938          spa_set_log_state(newspa, SPA_LOG_CLEAR);
4933 4939  
4934 4940          /* release the spa config lock, retaining the namespace lock */
4935 4941          spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4936 4942  
4937 4943          if (zio_injection_enabled)
4938 4944                  zio_handle_panic_injection(spa, FTAG, 1);
4939 4945  
4940 4946          spa_activate(newspa, spa_mode_global);
4941 4947          spa_async_suspend(newspa);
4942 4948  
4943 4949          /* create the new pool from the disks of the original pool */
4944 4950          error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4945 4951          if (error)
4946 4952                  goto out;
4947 4953  
4948 4954          /* if that worked, generate a real config for the new pool */
4949 4955          if (newspa->spa_root_vdev != NULL) {
4950 4956                  VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4951 4957                      NV_UNIQUE_NAME, KM_SLEEP) == 0);
4952 4958                  VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4953 4959                      ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4954 4960                  spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4955 4961                      B_TRUE));
4956 4962          }
4957 4963  
4958 4964          /* set the props */
4959 4965          if (props != NULL) {
4960 4966                  spa_configfile_set(newspa, props, B_FALSE);
4961 4967                  error = spa_prop_set(newspa, props);
4962 4968                  if (error)
4963 4969                          goto out;
4964 4970          }
4965 4971  
4966 4972          /* flush everything */
4967 4973          txg = spa_vdev_config_enter(newspa);
4968 4974          vdev_config_dirty(newspa->spa_root_vdev);
4969 4975          (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4970 4976  
4971 4977          if (zio_injection_enabled)
4972 4978                  zio_handle_panic_injection(spa, FTAG, 2);
4973 4979  
4974 4980          spa_async_resume(newspa);
4975 4981  
4976 4982          /* finally, update the original pool's config */
4977 4983          txg = spa_vdev_config_enter(spa);
4978 4984          tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4979 4985          error = dmu_tx_assign(tx, TXG_WAIT);
4980 4986          if (error != 0)
4981 4987                  dmu_tx_abort(tx);
4982 4988          for (c = 0; c < children; c++) {
4983 4989                  if (vml[c] != NULL) {
4984 4990                          vdev_split(vml[c]);
4985 4991                          if (error == 0)
4986 4992                                  spa_history_log_internal(spa, "detach", tx,
4987 4993                                      "vdev=%s", vml[c]->vdev_path);
4988 4994                          vdev_free(vml[c]);
4989 4995                  }
4990 4996          }
4991 4997          vdev_config_dirty(spa->spa_root_vdev);
4992 4998          spa->spa_config_splitting = NULL;
4993 4999          nvlist_free(nvl);
4994 5000          if (error == 0)
4995 5001                  dmu_tx_commit(tx);
4996 5002          (void) spa_vdev_exit(spa, NULL, txg, 0);
4997 5003  
4998 5004          if (zio_injection_enabled)
4999 5005                  zio_handle_panic_injection(spa, FTAG, 3);
5000 5006  
5001 5007          /* split is complete; log a history record */
5002 5008          spa_history_log_internal(newspa, "split", NULL,
5003 5009              "from pool %s", spa_name(spa));
5004 5010  
5005 5011          kmem_free(vml, children * sizeof (vdev_t *));
5006 5012  
5007 5013          /* if we're not going to mount the filesystems in userland, export */
5008 5014          if (exp)
5009 5015                  error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5010 5016                      B_FALSE, B_FALSE);
5011 5017  
5012 5018          return (error);
5013 5019  
5014 5020  out:
5015 5021          spa_unload(newspa);
5016 5022          spa_deactivate(newspa);
5017 5023          spa_remove(newspa);
5018 5024  
5019 5025          txg = spa_vdev_config_enter(spa);
5020 5026  
5021 5027          /* re-online all offlined disks */
5022 5028          for (c = 0; c < children; c++) {
5023 5029                  if (vml[c] != NULL)
5024 5030                          vml[c]->vdev_offline = B_FALSE;
5025 5031          }
5026 5032          vdev_reopen(spa->spa_root_vdev);
5027 5033  
5028 5034          nvlist_free(spa->spa_config_splitting);
5029 5035          spa->spa_config_splitting = NULL;
5030 5036          (void) spa_vdev_exit(spa, NULL, txg, error);
5031 5037  
5032 5038          kmem_free(vml, children * sizeof (vdev_t *));
5033 5039          return (error);
5034 5040  }
5035 5041  
5036 5042  static nvlist_t *
5037 5043  spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5038 5044  {
5039 5045          for (int i = 0; i < count; i++) {
5040 5046                  uint64_t guid;
5041 5047  
5042 5048                  VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5043 5049                      &guid) == 0);
5044 5050  
5045 5051                  if (guid == target_guid)
5046 5052                          return (nvpp[i]);
5047 5053          }
5048 5054  
5049 5055          return (NULL);
5050 5056  }
5051 5057  
5052 5058  static void
5053 5059  spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5054 5060          nvlist_t *dev_to_remove)
5055 5061  {
5056 5062          nvlist_t **newdev = NULL;
5057 5063  
5058 5064          if (count > 1)
5059 5065                  newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5060 5066  
5061 5067          for (int i = 0, j = 0; i < count; i++) {
5062 5068                  if (dev[i] == dev_to_remove)
5063 5069                          continue;
5064 5070                  VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5065 5071          }
5066 5072  
5067 5073          VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5068 5074          VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5069 5075  
5070 5076          for (int i = 0; i < count - 1; i++)
5071 5077                  nvlist_free(newdev[i]);
5072 5078  
5073 5079          if (count > 1)
5074 5080                  kmem_free(newdev, (count - 1) * sizeof (void *));
5075 5081  }
5076 5082  
5077 5083  /*
5078 5084   * Evacuate the device.
5079 5085   */
5080 5086  static int
5081 5087  spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5082 5088  {
5083 5089          uint64_t txg;
5084 5090          int error = 0;
5085 5091  
5086 5092          ASSERT(MUTEX_HELD(&spa_namespace_lock));
5087 5093          ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5088 5094          ASSERT(vd == vd->vdev_top);
5089 5095  
5090 5096          /*
5091 5097           * Evacuate the device.  We don't hold the config lock as writer
5092 5098           * since we need to do I/O but we do keep the
5093 5099           * spa_namespace_lock held.  Once this completes the device
5094 5100           * should no longer have any blocks allocated on it.
5095 5101           */
5096 5102          if (vd->vdev_islog) {
5097 5103                  if (vd->vdev_stat.vs_alloc != 0)
5098 5104                          error = spa_offline_log(spa);
5099 5105          } else {
5100 5106                  error = SET_ERROR(ENOTSUP);
5101 5107          }
5102 5108  
5103 5109          if (error)
5104 5110                  return (error);
5105 5111  
5106 5112          /*
5107 5113           * The evacuation succeeded.  Remove any remaining MOS metadata
5108 5114           * associated with this vdev, and wait for these changes to sync.
5109 5115           */
5110 5116          ASSERT0(vd->vdev_stat.vs_alloc);
5111 5117          txg = spa_vdev_config_enter(spa);
5112 5118          vd->vdev_removing = B_TRUE;
5113 5119          vdev_dirty(vd, 0, NULL, txg);
5114 5120          vdev_config_dirty(vd);
5115 5121          spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5116 5122  
5117 5123          return (0);
5118 5124  }
5119 5125  
5120 5126  /*
5121 5127   * Complete the removal by cleaning up the namespace.
5122 5128   */
5123 5129  static void
5124 5130  spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5125 5131  {
5126 5132          vdev_t *rvd = spa->spa_root_vdev;
5127 5133          uint64_t id = vd->vdev_id;
5128 5134          boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5129 5135  
5130 5136          ASSERT(MUTEX_HELD(&spa_namespace_lock));
5131 5137          ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5132 5138          ASSERT(vd == vd->vdev_top);
5133 5139  
5134 5140          /*
5135 5141           * Only remove any devices which are empty.
5136 5142           */
5137 5143          if (vd->vdev_stat.vs_alloc != 0)
5138 5144                  return;
5139 5145  
5140 5146          (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5141 5147  
5142 5148          if (list_link_active(&vd->vdev_state_dirty_node))
5143 5149                  vdev_state_clean(vd);
5144 5150          if (list_link_active(&vd->vdev_config_dirty_node))
5145 5151                  vdev_config_clean(vd);
5146 5152  
5147 5153          vdev_free(vd);
5148 5154  
5149 5155          if (last_vdev) {
5150 5156                  vdev_compact_children(rvd);
5151 5157          } else {
5152 5158                  vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5153 5159                  vdev_add_child(rvd, vd);
5154 5160          }
5155 5161          vdev_config_dirty(rvd);
5156 5162  
5157 5163          /*
5158 5164           * Reassess the health of our root vdev.
5159 5165           */
5160 5166          vdev_reopen(rvd);
5161 5167  }
5162 5168  
5163 5169  /*
5164 5170   * Remove a device from the pool -
5165 5171   *
5166 5172   * Removing a device from the vdev namespace requires several steps
5167 5173   * and can take a significant amount of time.  As a result we use
5168 5174   * the spa_vdev_config_[enter/exit] functions which allow us to
5169 5175   * grab and release the spa_config_lock while still holding the namespace
5170 5176   * lock.  During each step the configuration is synced out.
5171 5177   */
5172 5178  
5173 5179  /*
5174 5180   * Remove a device from the pool.  Currently, this supports removing only hot
5175 5181   * spares, slogs, and level 2 ARC devices.
5176 5182   */
5177 5183  int
5178 5184  spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5179 5185  {
5180 5186          vdev_t *vd;
5181 5187          metaslab_group_t *mg;
5182 5188          nvlist_t **spares, **l2cache, *nv;
5183 5189          uint64_t txg = 0;
5184 5190          uint_t nspares, nl2cache;
5185 5191          int error = 0;
5186 5192          boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5187 5193  
5188 5194          ASSERT(spa_writeable(spa));
5189 5195  
5190 5196          if (!locked)
5191 5197                  txg = spa_vdev_enter(spa);
5192 5198  
5193 5199          vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5194 5200  
5195 5201          if (spa->spa_spares.sav_vdevs != NULL &&
5196 5202              nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5197 5203              ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5198 5204              (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5199 5205                  /*
5200 5206                   * Only remove the hot spare if it's not currently in use
5201 5207                   * in this pool.
5202 5208                   */
5203 5209                  if (vd == NULL || unspare) {
5204 5210                          spa_vdev_remove_aux(spa->spa_spares.sav_config,
5205 5211                              ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5206 5212                          spa_load_spares(spa);
5207 5213                          spa->spa_spares.sav_sync = B_TRUE;
5208 5214                  } else {
5209 5215                          error = SET_ERROR(EBUSY);
5210 5216                  }
5211 5217          } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5212 5218              nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5213 5219              ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5214 5220              (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5215 5221                  /*
5216 5222                   * Cache devices can always be removed.
5217 5223                   */
5218 5224                  spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5219 5225                      ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5220 5226                  spa_load_l2cache(spa);
5221 5227                  spa->spa_l2cache.sav_sync = B_TRUE;
5222 5228          } else if (vd != NULL && vd->vdev_islog) {
5223 5229                  ASSERT(!locked);
5224 5230                  ASSERT(vd == vd->vdev_top);
5225 5231  
5226 5232                  /*
5227 5233                   * XXX - Once we have bp-rewrite this should
5228 5234                   * become the common case.
5229 5235                   */
5230 5236  
5231 5237                  mg = vd->vdev_mg;
5232 5238  
5233 5239                  /*
5234 5240                   * Stop allocating from this vdev.
5235 5241                   */
5236 5242                  metaslab_group_passivate(mg);
5237 5243  
5238 5244                  /*
5239 5245                   * Wait for the youngest allocations and frees to sync,
5240 5246                   * and then wait for the deferral of those frees to finish.
5241 5247                   */
5242 5248                  spa_vdev_config_exit(spa, NULL,
5243 5249                      txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5244 5250  
5245 5251                  /*
5246 5252                   * Attempt to evacuate the vdev.
5247 5253                   */
5248 5254                  error = spa_vdev_remove_evacuate(spa, vd);
5249 5255  
5250 5256                  txg = spa_vdev_config_enter(spa);
5251 5257  
5252 5258                  /*
5253 5259                   * If we couldn't evacuate the vdev, unwind.
5254 5260                   */
5255 5261                  if (error) {
5256 5262                          metaslab_group_activate(mg);
5257 5263                          return (spa_vdev_exit(spa, NULL, txg, error));
5258 5264                  }
5259 5265  
5260 5266                  /*
5261 5267                   * Clean up the vdev namespace.
5262 5268                   */
5263 5269                  spa_vdev_remove_from_namespace(spa, vd);
5264 5270  
5265 5271          } else if (vd != NULL) {
5266 5272                  /*
5267 5273                   * Normal vdevs cannot be removed (yet).
5268 5274                   */
5269 5275                  error = SET_ERROR(ENOTSUP);
5270 5276          } else {
5271 5277                  /*
5272 5278                   * There is no vdev of any kind with the specified guid.
5273 5279                   */
5274 5280                  error = SET_ERROR(ENOENT);
5275 5281          }
5276 5282  
5277 5283          if (!locked)
5278 5284                  return (spa_vdev_exit(spa, NULL, txg, error));
5279 5285  
5280 5286          return (error);
5281 5287  }
5282 5288  
5283 5289  /*
5284 5290   * Find any device that's done replacing, or a vdev marked 'unspare' that's
5285 5291   * current spared, so we can detach it.
5286 5292   */
5287 5293  static vdev_t *
5288 5294  spa_vdev_resilver_done_hunt(vdev_t *vd)
5289 5295  {
5290 5296          vdev_t *newvd, *oldvd;
5291 5297  
5292 5298          for (int c = 0; c < vd->vdev_children; c++) {
5293 5299                  oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5294 5300                  if (oldvd != NULL)
5295 5301                          return (oldvd);
5296 5302          }
5297 5303  
5298 5304          /*
5299 5305           * Check for a completed replacement.  We always consider the first
5300 5306           * vdev in the list to be the oldest vdev, and the last one to be
5301 5307           * the newest (see spa_vdev_attach() for how that works).  In
5302 5308           * the case where the newest vdev is faulted, we will not automatically
5303 5309           * remove it after a resilver completes.  This is OK as it will require
5304 5310           * user intervention to determine which disk the admin wishes to keep.
5305 5311           */
5306 5312          if (vd->vdev_ops == &vdev_replacing_ops) {
5307 5313                  ASSERT(vd->vdev_children > 1);
5308 5314  
5309 5315                  newvd = vd->vdev_child[vd->vdev_children - 1];
5310 5316                  oldvd = vd->vdev_child[0];
5311 5317  
5312 5318                  if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5313 5319                      vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5314 5320                      !vdev_dtl_required(oldvd))
5315 5321                          return (oldvd);
5316 5322          }
5317 5323  
5318 5324          /*
5319 5325           * Check for a completed resilver with the 'unspare' flag set.
5320 5326           */
5321 5327          if (vd->vdev_ops == &vdev_spare_ops) {
5322 5328                  vdev_t *first = vd->vdev_child[0];
5323 5329                  vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5324 5330  
5325 5331                  if (last->vdev_unspare) {
5326 5332                          oldvd = first;
5327 5333                          newvd = last;
5328 5334                  } else if (first->vdev_unspare) {
5329 5335                          oldvd = last;
5330 5336                          newvd = first;
5331 5337                  } else {
5332 5338                          oldvd = NULL;
5333 5339                  }
5334 5340  
5335 5341                  if (oldvd != NULL &&
5336 5342                      vdev_dtl_empty(newvd, DTL_MISSING) &&
5337 5343                      vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5338 5344                      !vdev_dtl_required(oldvd))
5339 5345                          return (oldvd);
5340 5346  
5341 5347                  /*
5342 5348                   * If there are more than two spares attached to a disk,
5343 5349                   * and those spares are not required, then we want to
5344 5350                   * attempt to free them up now so that they can be used
5345 5351                   * by other pools.  Once we're back down to a single
5346 5352                   * disk+spare, we stop removing them.
5347 5353                   */
5348 5354                  if (vd->vdev_children > 2) {
5349 5355                          newvd = vd->vdev_child[1];
5350 5356  
5351 5357                          if (newvd->vdev_isspare && last->vdev_isspare &&
5352 5358                              vdev_dtl_empty(last, DTL_MISSING) &&
5353 5359                              vdev_dtl_empty(last, DTL_OUTAGE) &&
5354 5360                              !vdev_dtl_required(newvd))
5355 5361                                  return (newvd);
5356 5362                  }
5357 5363          }
5358 5364  
5359 5365          return (NULL);
5360 5366  }
5361 5367  
5362 5368  static void
5363 5369  spa_vdev_resilver_done(spa_t *spa)
5364 5370  {
5365 5371          vdev_t *vd, *pvd, *ppvd;
5366 5372          uint64_t guid, sguid, pguid, ppguid;
5367 5373  
5368 5374          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5369 5375  
5370 5376          while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5371 5377                  pvd = vd->vdev_parent;
5372 5378                  ppvd = pvd->vdev_parent;
5373 5379                  guid = vd->vdev_guid;
5374 5380                  pguid = pvd->vdev_guid;
5375 5381                  ppguid = ppvd->vdev_guid;
5376 5382                  sguid = 0;
5377 5383                  /*
5378 5384                   * If we have just finished replacing a hot spared device, then
5379 5385                   * we need to detach the parent's first child (the original hot
5380 5386                   * spare) as well.
5381 5387                   */
5382 5388                  if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5383 5389                      ppvd->vdev_children == 2) {
5384 5390                          ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5385 5391                          sguid = ppvd->vdev_child[1]->vdev_guid;
5386 5392                  }
5387 5393                  spa_config_exit(spa, SCL_ALL, FTAG);
5388 5394                  if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5389 5395                          return;
5390 5396                  if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5391 5397                          return;
5392 5398                  spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5393 5399          }
5394 5400  
5395 5401          spa_config_exit(spa, SCL_ALL, FTAG);
5396 5402  }
5397 5403  
5398 5404  /*
5399 5405   * Update the stored path or FRU for this vdev.
5400 5406   */
5401 5407  int
5402 5408  spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5403 5409      boolean_t ispath)
5404 5410  {
5405 5411          vdev_t *vd;
5406 5412          boolean_t sync = B_FALSE;
5407 5413  
5408 5414          ASSERT(spa_writeable(spa));
5409 5415  
5410 5416          spa_vdev_state_enter(spa, SCL_ALL);
5411 5417  
5412 5418          if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5413 5419                  return (spa_vdev_state_exit(spa, NULL, ENOENT));
5414 5420  
5415 5421          if (!vd->vdev_ops->vdev_op_leaf)
5416 5422                  return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5417 5423  
5418 5424          if (ispath) {
5419 5425                  if (strcmp(value, vd->vdev_path) != 0) {
5420 5426                          spa_strfree(vd->vdev_path);
5421 5427                          vd->vdev_path = spa_strdup(value);
5422 5428                          sync = B_TRUE;
5423 5429                  }
5424 5430          } else {
5425 5431                  if (vd->vdev_fru == NULL) {
5426 5432                          vd->vdev_fru = spa_strdup(value);
5427 5433                          sync = B_TRUE;
5428 5434                  } else if (strcmp(value, vd->vdev_fru) != 0) {
5429 5435                          spa_strfree(vd->vdev_fru);
5430 5436                          vd->vdev_fru = spa_strdup(value);
5431 5437                          sync = B_TRUE;
5432 5438                  }
5433 5439          }
5434 5440  
5435 5441          return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5436 5442  }
5437 5443  
5438 5444  int
5439 5445  spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5440 5446  {
5441 5447          return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5442 5448  }
5443 5449  
5444 5450  int
5445 5451  spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5446 5452  {
5447 5453          return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5448 5454  }
5449 5455  
5450 5456  /*
5451 5457   * ==========================================================================
5452 5458   * SPA Scanning
5453 5459   * ==========================================================================
5454 5460   */
5455 5461  
5456 5462  int
5457 5463  spa_scan_stop(spa_t *spa)
5458 5464  {
5459 5465          ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5460 5466          if (dsl_scan_resilvering(spa->spa_dsl_pool))
5461 5467                  return (SET_ERROR(EBUSY));
5462 5468          return (dsl_scan_cancel(spa->spa_dsl_pool));
5463 5469  }
5464 5470  
5465 5471  int
5466 5472  spa_scan(spa_t *spa, pool_scan_func_t func)
5467 5473  {
5468 5474          ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5469 5475  
5470 5476          if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5471 5477                  return (SET_ERROR(ENOTSUP));
5472 5478  
5473 5479          /*
5474 5480           * If a resilver was requested, but there is no DTL on a
5475 5481           * writeable leaf device, we have nothing to do.
5476 5482           */
5477 5483          if (func == POOL_SCAN_RESILVER &&
5478 5484              !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5479 5485                  spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5480 5486                  return (0);
5481 5487          }
5482 5488  
5483 5489          return (dsl_scan(spa->spa_dsl_pool, func));
5484 5490  }
5485 5491  
5486 5492  /*
5487 5493   * ==========================================================================
5488 5494   * SPA async task processing
5489 5495   * ==========================================================================
5490 5496   */
5491 5497  
5492 5498  static void
5493 5499  spa_async_remove(spa_t *spa, vdev_t *vd)
5494 5500  {
5495 5501          if (vd->vdev_remove_wanted) {
5496 5502                  vd->vdev_remove_wanted = B_FALSE;
5497 5503                  vd->vdev_delayed_close = B_FALSE;
5498 5504                  vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5499 5505  
5500 5506                  /*
5501 5507                   * We want to clear the stats, but we don't want to do a full
5502 5508                   * vdev_clear() as that will cause us to throw away
5503 5509                   * degraded/faulted state as well as attempt to reopen the
5504 5510                   * device, all of which is a waste.
5505 5511                   */
5506 5512                  vd->vdev_stat.vs_read_errors = 0;
5507 5513                  vd->vdev_stat.vs_write_errors = 0;
5508 5514                  vd->vdev_stat.vs_checksum_errors = 0;
5509 5515  
5510 5516                  vdev_state_dirty(vd->vdev_top);
5511 5517          }
5512 5518  
5513 5519          for (int c = 0; c < vd->vdev_children; c++)
5514 5520                  spa_async_remove(spa, vd->vdev_child[c]);
5515 5521  }
5516 5522  
5517 5523  static void
5518 5524  spa_async_probe(spa_t *spa, vdev_t *vd)
5519 5525  {
5520 5526          if (vd->vdev_probe_wanted) {
5521 5527                  vd->vdev_probe_wanted = B_FALSE;
5522 5528                  vdev_reopen(vd);        /* vdev_open() does the actual probe */
5523 5529          }
5524 5530  
5525 5531          for (int c = 0; c < vd->vdev_children; c++)
5526 5532                  spa_async_probe(spa, vd->vdev_child[c]);
5527 5533  }
5528 5534  
5529 5535  static void
5530 5536  spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5531 5537  {
5532 5538          sysevent_id_t eid;
5533 5539          nvlist_t *attr;
5534 5540          char *physpath;
5535 5541  
5536 5542          if (!spa->spa_autoexpand)
5537 5543                  return;
5538 5544  
5539 5545          for (int c = 0; c < vd->vdev_children; c++) {
5540 5546                  vdev_t *cvd = vd->vdev_child[c];
5541 5547                  spa_async_autoexpand(spa, cvd);
5542 5548          }
5543 5549  
5544 5550          if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5545 5551                  return;
5546 5552  
5547 5553          physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5548 5554          (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5549 5555  
5550 5556          VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5551 5557          VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5552 5558  
5553 5559          (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5554 5560              ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5555 5561  
5556 5562          nvlist_free(attr);
5557 5563          kmem_free(physpath, MAXPATHLEN);
5558 5564  }
5559 5565  
5560 5566  static void
5561 5567  spa_async_thread(spa_t *spa)
5562 5568  {
5563 5569          int tasks;
5564 5570  
5565 5571          ASSERT(spa->spa_sync_on);
5566 5572  
5567 5573          mutex_enter(&spa->spa_async_lock);
5568 5574          tasks = spa->spa_async_tasks;
5569 5575          spa->spa_async_tasks = 0;
5570 5576          mutex_exit(&spa->spa_async_lock);
5571 5577  
5572 5578          /*
5573 5579           * See if the config needs to be updated.
5574 5580           */
5575 5581          if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5576 5582                  uint64_t old_space, new_space;
5577 5583  
5578 5584                  mutex_enter(&spa_namespace_lock);
5579 5585                  old_space = metaslab_class_get_space(spa_normal_class(spa));
5580 5586                  spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5581 5587                  new_space = metaslab_class_get_space(spa_normal_class(spa));
5582 5588                  mutex_exit(&spa_namespace_lock);
5583 5589  
5584 5590                  /*
5585 5591                   * If the pool grew as a result of the config update,
5586 5592                   * then log an internal history event.
5587 5593                   */
5588 5594                  if (new_space != old_space) {
5589 5595                          spa_history_log_internal(spa, "vdev online", NULL,
5590 5596                              "pool '%s' size: %llu(+%llu)",
5591 5597                              spa_name(spa), new_space, new_space - old_space);
5592 5598                  }
5593 5599          }
5594 5600  
5595 5601          /*
5596 5602           * See if any devices need to be marked REMOVED.
5597 5603           */
5598 5604          if (tasks & SPA_ASYNC_REMOVE) {
5599 5605                  spa_vdev_state_enter(spa, SCL_NONE);
5600 5606                  spa_async_remove(spa, spa->spa_root_vdev);
5601 5607                  for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5602 5608                          spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5603 5609                  for (int i = 0; i < spa->spa_spares.sav_count; i++)
5604 5610                          spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5605 5611                  (void) spa_vdev_state_exit(spa, NULL, 0);
5606 5612          }
5607 5613  
5608 5614          if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5609 5615                  spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5610 5616                  spa_async_autoexpand(spa, spa->spa_root_vdev);
5611 5617                  spa_config_exit(spa, SCL_CONFIG, FTAG);
5612 5618          }
5613 5619  
5614 5620          /*
5615 5621           * See if any devices need to be probed.
5616 5622           */
5617 5623          if (tasks & SPA_ASYNC_PROBE) {
5618 5624                  spa_vdev_state_enter(spa, SCL_NONE);
5619 5625                  spa_async_probe(spa, spa->spa_root_vdev);
5620 5626                  (void) spa_vdev_state_exit(spa, NULL, 0);
5621 5627          }
5622 5628  
5623 5629          /*
5624 5630           * If any devices are done replacing, detach them.
5625 5631           */
5626 5632          if (tasks & SPA_ASYNC_RESILVER_DONE)
5627 5633                  spa_vdev_resilver_done(spa);
5628 5634  
5629 5635          /*
5630 5636           * Kick off a resilver.
5631 5637           */
5632 5638          if (tasks & SPA_ASYNC_RESILVER)
5633 5639                  dsl_resilver_restart(spa->spa_dsl_pool, 0);
5634 5640  
5635 5641          /*
5636 5642           * Let the world know that we're done.
5637 5643           */
5638 5644          mutex_enter(&spa->spa_async_lock);
5639 5645          spa->spa_async_thread = NULL;
5640 5646          cv_broadcast(&spa->spa_async_cv);
5641 5647          mutex_exit(&spa->spa_async_lock);
5642 5648          thread_exit();
5643 5649  }
5644 5650  
5645 5651  void
5646 5652  spa_async_suspend(spa_t *spa)
5647 5653  {
5648 5654          mutex_enter(&spa->spa_async_lock);
5649 5655          spa->spa_async_suspended++;
5650 5656          while (spa->spa_async_thread != NULL)
5651 5657                  cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5652 5658          mutex_exit(&spa->spa_async_lock);
5653 5659  }
  
    | ↓ open down ↓ | 5564 lines elided | ↑ open up ↑ | 
5654 5660  
5655 5661  void
5656 5662  spa_async_resume(spa_t *spa)
5657 5663  {
5658 5664          mutex_enter(&spa->spa_async_lock);
5659 5665          ASSERT(spa->spa_async_suspended != 0);
5660 5666          spa->spa_async_suspended--;
5661 5667          mutex_exit(&spa->spa_async_lock);
5662 5668  }
5663 5669  
     5670 +static boolean_t
     5671 +spa_async_tasks_pending(spa_t *spa)
     5672 +{
     5673 +        u_int non_config_tasks;
     5674 +        u_int config_task;
     5675 +        boolean_t config_task_suspended;
     5676 +
     5677 +        non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
     5678 +        config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
     5679 +        if (spa->spa_ccw_fail_time == 0) {
     5680 +                config_task_suspended = B_FALSE;
     5681 +        } else {
     5682 +                config_task_suspended =
     5683 +                    (gethrtime() - spa->spa_ccw_fail_time) <
     5684 +                    (zfs_ccw_retry_interval * NANOSEC);
     5685 +        }
     5686 +
     5687 +        return (non_config_tasks || (config_task && !config_task_suspended));
     5688 +}
     5689 +
5664 5690  static void
5665 5691  spa_async_dispatch(spa_t *spa)
5666 5692  {
5667 5693          mutex_enter(&spa->spa_async_lock);
5668      -        if (spa->spa_async_tasks && !spa->spa_async_suspended &&
     5694 +        if (spa_async_tasks_pending(spa) &&
     5695 +            !spa->spa_async_suspended &&
5669 5696              spa->spa_async_thread == NULL &&
5670      -            rootdir != NULL && !vn_is_readonly(rootdir))
     5697 +            rootdir != NULL)
5671 5698                  spa->spa_async_thread = thread_create(NULL, 0,
5672 5699                      spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5673 5700          mutex_exit(&spa->spa_async_lock);
5674 5701  }
5675 5702  
5676 5703  void
5677 5704  spa_async_request(spa_t *spa, int task)
5678 5705  {
5679 5706          zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5680 5707          mutex_enter(&spa->spa_async_lock);
5681 5708          spa->spa_async_tasks |= task;
5682 5709          mutex_exit(&spa->spa_async_lock);
5683 5710  }
5684 5711  
5685 5712  /*
5686 5713   * ==========================================================================
5687 5714   * SPA syncing routines
5688 5715   * ==========================================================================
5689 5716   */
5690 5717  
5691 5718  static int
5692 5719  bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5693 5720  {
5694 5721          bpobj_t *bpo = arg;
5695 5722          bpobj_enqueue(bpo, bp, tx);
5696 5723          return (0);
5697 5724  }
5698 5725  
5699 5726  static int
5700 5727  spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5701 5728  {
5702 5729          zio_t *zio = arg;
5703 5730  
5704 5731          zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5705 5732              zio->io_flags));
5706 5733          return (0);
5707 5734  }
5708 5735  
5709 5736  static void
5710 5737  spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5711 5738  {
5712 5739          char *packed = NULL;
5713 5740          size_t bufsize;
5714 5741          size_t nvsize = 0;
5715 5742          dmu_buf_t *db;
5716 5743  
5717 5744          VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5718 5745  
5719 5746          /*
5720 5747           * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5721 5748           * information.  This avoids the dbuf_will_dirty() path and
5722 5749           * saves us a pre-read to get data we don't actually care about.
5723 5750           */
5724 5751          bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5725 5752          packed = kmem_alloc(bufsize, KM_SLEEP);
5726 5753  
5727 5754          VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5728 5755              KM_SLEEP) == 0);
5729 5756          bzero(packed + nvsize, bufsize - nvsize);
5730 5757  
5731 5758          dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5732 5759  
5733 5760          kmem_free(packed, bufsize);
5734 5761  
5735 5762          VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5736 5763          dmu_buf_will_dirty(db, tx);
5737 5764          *(uint64_t *)db->db_data = nvsize;
5738 5765          dmu_buf_rele(db, FTAG);
5739 5766  }
5740 5767  
5741 5768  static void
5742 5769  spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5743 5770      const char *config, const char *entry)
5744 5771  {
5745 5772          nvlist_t *nvroot;
5746 5773          nvlist_t **list;
5747 5774          int i;
5748 5775  
5749 5776          if (!sav->sav_sync)
5750 5777                  return;
5751 5778  
5752 5779          /*
5753 5780           * Update the MOS nvlist describing the list of available devices.
5754 5781           * spa_validate_aux() will have already made sure this nvlist is
5755 5782           * valid and the vdevs are labeled appropriately.
5756 5783           */
5757 5784          if (sav->sav_object == 0) {
5758 5785                  sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5759 5786                      DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5760 5787                      sizeof (uint64_t), tx);
5761 5788                  VERIFY(zap_update(spa->spa_meta_objset,
5762 5789                      DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5763 5790                      &sav->sav_object, tx) == 0);
5764 5791          }
5765 5792  
5766 5793          VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5767 5794          if (sav->sav_count == 0) {
5768 5795                  VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5769 5796          } else {
5770 5797                  list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5771 5798                  for (i = 0; i < sav->sav_count; i++)
5772 5799                          list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5773 5800                              B_FALSE, VDEV_CONFIG_L2CACHE);
5774 5801                  VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5775 5802                      sav->sav_count) == 0);
5776 5803                  for (i = 0; i < sav->sav_count; i++)
5777 5804                          nvlist_free(list[i]);
5778 5805                  kmem_free(list, sav->sav_count * sizeof (void *));
5779 5806          }
5780 5807  
5781 5808          spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5782 5809          nvlist_free(nvroot);
5783 5810  
5784 5811          sav->sav_sync = B_FALSE;
5785 5812  }
5786 5813  
5787 5814  static void
5788 5815  spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5789 5816  {
5790 5817          nvlist_t *config;
5791 5818  
5792 5819          if (list_is_empty(&spa->spa_config_dirty_list))
5793 5820                  return;
5794 5821  
5795 5822          spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5796 5823  
5797 5824          config = spa_config_generate(spa, spa->spa_root_vdev,
5798 5825              dmu_tx_get_txg(tx), B_FALSE);
5799 5826  
5800 5827          /*
5801 5828           * If we're upgrading the spa version then make sure that
5802 5829           * the config object gets updated with the correct version.
5803 5830           */
5804 5831          if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5805 5832                  fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5806 5833                      spa->spa_uberblock.ub_version);
5807 5834  
5808 5835          spa_config_exit(spa, SCL_STATE, FTAG);
5809 5836  
5810 5837          if (spa->spa_config_syncing)
5811 5838                  nvlist_free(spa->spa_config_syncing);
5812 5839          spa->spa_config_syncing = config;
5813 5840  
5814 5841          spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5815 5842  }
5816 5843  
5817 5844  static void
5818 5845  spa_sync_version(void *arg, dmu_tx_t *tx)
5819 5846  {
5820 5847          uint64_t *versionp = arg;
5821 5848          uint64_t version = *versionp;
5822 5849          spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5823 5850  
5824 5851          /*
5825 5852           * Setting the version is special cased when first creating the pool.
5826 5853           */
5827 5854          ASSERT(tx->tx_txg != TXG_INITIAL);
5828 5855  
5829 5856          ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5830 5857          ASSERT(version >= spa_version(spa));
5831 5858  
5832 5859          spa->spa_uberblock.ub_version = version;
5833 5860          vdev_config_dirty(spa->spa_root_vdev);
5834 5861          spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5835 5862  }
5836 5863  
5837 5864  /*
5838 5865   * Set zpool properties.
5839 5866   */
5840 5867  static void
5841 5868  spa_sync_props(void *arg, dmu_tx_t *tx)
5842 5869  {
5843 5870          nvlist_t *nvp = arg;
5844 5871          spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5845 5872          objset_t *mos = spa->spa_meta_objset;
5846 5873          nvpair_t *elem = NULL;
5847 5874  
5848 5875          mutex_enter(&spa->spa_props_lock);
5849 5876  
5850 5877          while ((elem = nvlist_next_nvpair(nvp, elem))) {
5851 5878                  uint64_t intval;
5852 5879                  char *strval, *fname;
5853 5880                  zpool_prop_t prop;
5854 5881                  const char *propname;
5855 5882                  zprop_type_t proptype;
5856 5883                  zfeature_info_t *feature;
5857 5884  
5858 5885                  switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5859 5886                  case ZPROP_INVAL:
5860 5887                          /*
5861 5888                           * We checked this earlier in spa_prop_validate().
5862 5889                           */
5863 5890                          ASSERT(zpool_prop_feature(nvpair_name(elem)));
5864 5891  
5865 5892                          fname = strchr(nvpair_name(elem), '@') + 1;
5866 5893                          VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
5867 5894  
5868 5895                          spa_feature_enable(spa, feature, tx);
5869 5896                          spa_history_log_internal(spa, "set", tx,
5870 5897                              "%s=enabled", nvpair_name(elem));
5871 5898                          break;
5872 5899  
5873 5900                  case ZPOOL_PROP_VERSION:
5874 5901                          VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5875 5902                          /*
5876 5903                           * The version is synced seperatly before other
5877 5904                           * properties and should be correct by now.
5878 5905                           */
5879 5906                          ASSERT3U(spa_version(spa), >=, intval);
5880 5907                          break;
5881 5908  
5882 5909                  case ZPOOL_PROP_ALTROOT:
5883 5910                          /*
5884 5911                           * 'altroot' is a non-persistent property. It should
5885 5912                           * have been set temporarily at creation or import time.
5886 5913                           */
5887 5914                          ASSERT(spa->spa_root != NULL);
5888 5915                          break;
5889 5916  
5890 5917                  case ZPOOL_PROP_READONLY:
5891 5918                  case ZPOOL_PROP_CACHEFILE:
5892 5919                          /*
5893 5920                           * 'readonly' and 'cachefile' are also non-persisitent
5894 5921                           * properties.
5895 5922                           */
5896 5923                          break;
5897 5924                  case ZPOOL_PROP_COMMENT:
5898 5925                          VERIFY(nvpair_value_string(elem, &strval) == 0);
5899 5926                          if (spa->spa_comment != NULL)
5900 5927                                  spa_strfree(spa->spa_comment);
5901 5928                          spa->spa_comment = spa_strdup(strval);
5902 5929                          /*
5903 5930                           * We need to dirty the configuration on all the vdevs
5904 5931                           * so that their labels get updated.  It's unnecessary
5905 5932                           * to do this for pool creation since the vdev's
5906 5933                           * configuratoin has already been dirtied.
5907 5934                           */
5908 5935                          if (tx->tx_txg != TXG_INITIAL)
5909 5936                                  vdev_config_dirty(spa->spa_root_vdev);
5910 5937                          spa_history_log_internal(spa, "set", tx,
5911 5938                              "%s=%s", nvpair_name(elem), strval);
5912 5939                          break;
5913 5940                  default:
5914 5941                          /*
5915 5942                           * Set pool property values in the poolprops mos object.
5916 5943                           */
5917 5944                          if (spa->spa_pool_props_object == 0) {
5918 5945                                  spa->spa_pool_props_object =
5919 5946                                      zap_create_link(mos, DMU_OT_POOL_PROPS,
5920 5947                                      DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5921 5948                                      tx);
5922 5949                          }
5923 5950  
5924 5951                          /* normalize the property name */
5925 5952                          propname = zpool_prop_to_name(prop);
5926 5953                          proptype = zpool_prop_get_type(prop);
5927 5954  
5928 5955                          if (nvpair_type(elem) == DATA_TYPE_STRING) {
5929 5956                                  ASSERT(proptype == PROP_TYPE_STRING);
5930 5957                                  VERIFY(nvpair_value_string(elem, &strval) == 0);
5931 5958                                  VERIFY(zap_update(mos,
5932 5959                                      spa->spa_pool_props_object, propname,
5933 5960                                      1, strlen(strval) + 1, strval, tx) == 0);
5934 5961                                  spa_history_log_internal(spa, "set", tx,
5935 5962                                      "%s=%s", nvpair_name(elem), strval);
5936 5963                          } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5937 5964                                  VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5938 5965  
5939 5966                                  if (proptype == PROP_TYPE_INDEX) {
5940 5967                                          const char *unused;
5941 5968                                          VERIFY(zpool_prop_index_to_string(
5942 5969                                              prop, intval, &unused) == 0);
5943 5970                                  }
5944 5971                                  VERIFY(zap_update(mos,
5945 5972                                      spa->spa_pool_props_object, propname,
5946 5973                                      8, 1, &intval, tx) == 0);
5947 5974                                  spa_history_log_internal(spa, "set", tx,
5948 5975                                      "%s=%lld", nvpair_name(elem), intval);
5949 5976                          } else {
5950 5977                                  ASSERT(0); /* not allowed */
5951 5978                          }
5952 5979  
5953 5980                          switch (prop) {
5954 5981                          case ZPOOL_PROP_DELEGATION:
5955 5982                                  spa->spa_delegation = intval;
5956 5983                                  break;
5957 5984                          case ZPOOL_PROP_BOOTFS:
5958 5985                                  spa->spa_bootfs = intval;
5959 5986                                  break;
5960 5987                          case ZPOOL_PROP_FAILUREMODE:
5961 5988                                  spa->spa_failmode = intval;
5962 5989                                  break;
5963 5990                          case ZPOOL_PROP_AUTOEXPAND:
5964 5991                                  spa->spa_autoexpand = intval;
5965 5992                                  if (tx->tx_txg != TXG_INITIAL)
5966 5993                                          spa_async_request(spa,
5967 5994                                              SPA_ASYNC_AUTOEXPAND);
5968 5995                                  break;
5969 5996                          case ZPOOL_PROP_DEDUPDITTO:
5970 5997                                  spa->spa_dedup_ditto = intval;
5971 5998                                  break;
5972 5999                          default:
5973 6000                                  break;
5974 6001                          }
5975 6002                  }
5976 6003  
5977 6004          }
5978 6005  
5979 6006          mutex_exit(&spa->spa_props_lock);
5980 6007  }
5981 6008  
5982 6009  /*
5983 6010   * Perform one-time upgrade on-disk changes.  spa_version() does not
5984 6011   * reflect the new version this txg, so there must be no changes this
5985 6012   * txg to anything that the upgrade code depends on after it executes.
5986 6013   * Therefore this must be called after dsl_pool_sync() does the sync
5987 6014   * tasks.
5988 6015   */
5989 6016  static void
5990 6017  spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5991 6018  {
5992 6019          dsl_pool_t *dp = spa->spa_dsl_pool;
5993 6020  
5994 6021          ASSERT(spa->spa_sync_pass == 1);
5995 6022  
5996 6023          rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
5997 6024  
5998 6025          if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5999 6026              spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6000 6027                  dsl_pool_create_origin(dp, tx);
6001 6028  
6002 6029                  /* Keeping the origin open increases spa_minref */
6003 6030                  spa->spa_minref += 3;
6004 6031          }
6005 6032  
6006 6033          if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6007 6034              spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6008 6035                  dsl_pool_upgrade_clones(dp, tx);
6009 6036          }
6010 6037  
6011 6038          if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6012 6039              spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6013 6040                  dsl_pool_upgrade_dir_clones(dp, tx);
6014 6041  
6015 6042                  /* Keeping the freedir open increases spa_minref */
6016 6043                  spa->spa_minref += 3;
6017 6044          }
6018 6045  
6019 6046          if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6020 6047              spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6021 6048                  spa_feature_create_zap_objects(spa, tx);
6022 6049          }
6023 6050          rrw_exit(&dp->dp_config_rwlock, FTAG);
6024 6051  }
6025 6052  
6026 6053  /*
6027 6054   * Sync the specified transaction group.  New blocks may be dirtied as
6028 6055   * part of the process, so we iterate until it converges.
6029 6056   */
6030 6057  void
6031 6058  spa_sync(spa_t *spa, uint64_t txg)
6032 6059  {
6033 6060          dsl_pool_t *dp = spa->spa_dsl_pool;
6034 6061          objset_t *mos = spa->spa_meta_objset;
6035 6062          bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
6036 6063          bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6037 6064          vdev_t *rvd = spa->spa_root_vdev;
6038 6065          vdev_t *vd;
6039 6066          dmu_tx_t *tx;
6040 6067          int error;
6041 6068  
6042 6069          VERIFY(spa_writeable(spa));
6043 6070  
6044 6071          /*
6045 6072           * Lock out configuration changes.
6046 6073           */
6047 6074          spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6048 6075  
6049 6076          spa->spa_syncing_txg = txg;
6050 6077          spa->spa_sync_pass = 0;
6051 6078  
6052 6079          /*
6053 6080           * If there are any pending vdev state changes, convert them
6054 6081           * into config changes that go out with this transaction group.
6055 6082           */
6056 6083          spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6057 6084          while (list_head(&spa->spa_state_dirty_list) != NULL) {
6058 6085                  /*
6059 6086                   * We need the write lock here because, for aux vdevs,
6060 6087                   * calling vdev_config_dirty() modifies sav_config.
6061 6088                   * This is ugly and will become unnecessary when we
6062 6089                   * eliminate the aux vdev wart by integrating all vdevs
6063 6090                   * into the root vdev tree.
6064 6091                   */
6065 6092                  spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6066 6093                  spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6067 6094                  while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6068 6095                          vdev_state_clean(vd);
6069 6096                          vdev_config_dirty(vd);
6070 6097                  }
6071 6098                  spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6072 6099                  spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6073 6100          }
6074 6101          spa_config_exit(spa, SCL_STATE, FTAG);
6075 6102  
6076 6103          tx = dmu_tx_create_assigned(dp, txg);
6077 6104  
6078 6105          spa->spa_sync_starttime = gethrtime();
6079 6106          VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6080 6107              spa->spa_sync_starttime + spa->spa_deadman_synctime));
6081 6108  
6082 6109          /*
6083 6110           * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6084 6111           * set spa_deflate if we have no raid-z vdevs.
6085 6112           */
6086 6113          if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6087 6114              spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6088 6115                  int i;
6089 6116  
6090 6117                  for (i = 0; i < rvd->vdev_children; i++) {
6091 6118                          vd = rvd->vdev_child[i];
6092 6119                          if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6093 6120                                  break;
6094 6121                  }
6095 6122                  if (i == rvd->vdev_children) {
6096 6123                          spa->spa_deflate = TRUE;
6097 6124                          VERIFY(0 == zap_add(spa->spa_meta_objset,
6098 6125                              DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6099 6126                              sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6100 6127                  }
6101 6128          }
6102 6129  
6103 6130          /*
6104 6131           * If anything has changed in this txg, or if someone is waiting
6105 6132           * for this txg to sync (eg, spa_vdev_remove()), push the
6106 6133           * deferred frees from the previous txg.  If not, leave them
6107 6134           * alone so that we don't generate work on an otherwise idle
6108 6135           * system.
6109 6136           */
6110 6137          if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6111 6138              !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6112 6139              !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6113 6140              ((dsl_scan_active(dp->dp_scan) ||
6114 6141              txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6115 6142                  zio_t *zio = zio_root(spa, NULL, NULL, 0);
6116 6143                  VERIFY3U(bpobj_iterate(defer_bpo,
6117 6144                      spa_free_sync_cb, zio, tx), ==, 0);
6118 6145                  VERIFY0(zio_wait(zio));
6119 6146          }
6120 6147  
6121 6148          /*
6122 6149           * Iterate to convergence.
6123 6150           */
6124 6151          do {
6125 6152                  int pass = ++spa->spa_sync_pass;
6126 6153  
6127 6154                  spa_sync_config_object(spa, tx);
6128 6155                  spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6129 6156                      ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6130 6157                  spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6131 6158                      ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6132 6159                  spa_errlog_sync(spa, txg);
6133 6160                  dsl_pool_sync(dp, txg);
6134 6161  
6135 6162                  if (pass < zfs_sync_pass_deferred_free) {
6136 6163                          zio_t *zio = zio_root(spa, NULL, NULL, 0);
6137 6164                          bplist_iterate(free_bpl, spa_free_sync_cb,
6138 6165                              zio, tx);
6139 6166                          VERIFY(zio_wait(zio) == 0);
6140 6167                  } else {
6141 6168                          bplist_iterate(free_bpl, bpobj_enqueue_cb,
6142 6169                              defer_bpo, tx);
6143 6170                  }
6144 6171  
6145 6172                  ddt_sync(spa, txg);
6146 6173                  dsl_scan_sync(dp, tx);
6147 6174  
6148 6175                  while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6149 6176                          vdev_sync(vd, txg);
6150 6177  
6151 6178                  if (pass == 1)
6152 6179                          spa_sync_upgrades(spa, tx);
6153 6180  
6154 6181          } while (dmu_objset_is_dirty(mos, txg));
6155 6182  
6156 6183          /*
6157 6184           * Rewrite the vdev configuration (which includes the uberblock)
6158 6185           * to commit the transaction group.
6159 6186           *
6160 6187           * If there are no dirty vdevs, we sync the uberblock to a few
6161 6188           * random top-level vdevs that are known to be visible in the
6162 6189           * config cache (see spa_vdev_add() for a complete description).
6163 6190           * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6164 6191           */
6165 6192          for (;;) {
6166 6193                  /*
6167 6194                   * We hold SCL_STATE to prevent vdev open/close/etc.
6168 6195                   * while we're attempting to write the vdev labels.
6169 6196                   */
6170 6197                  spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6171 6198  
6172 6199                  if (list_is_empty(&spa->spa_config_dirty_list)) {
6173 6200                          vdev_t *svd[SPA_DVAS_PER_BP];
6174 6201                          int svdcount = 0;
6175 6202                          int children = rvd->vdev_children;
6176 6203                          int c0 = spa_get_random(children);
6177 6204  
6178 6205                          for (int c = 0; c < children; c++) {
6179 6206                                  vd = rvd->vdev_child[(c0 + c) % children];
6180 6207                                  if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6181 6208                                          continue;
6182 6209                                  svd[svdcount++] = vd;
6183 6210                                  if (svdcount == SPA_DVAS_PER_BP)
6184 6211                                          break;
6185 6212                          }
6186 6213                          error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6187 6214                          if (error != 0)
6188 6215                                  error = vdev_config_sync(svd, svdcount, txg,
6189 6216                                      B_TRUE);
6190 6217                  } else {
6191 6218                          error = vdev_config_sync(rvd->vdev_child,
6192 6219                              rvd->vdev_children, txg, B_FALSE);
6193 6220                          if (error != 0)
6194 6221                                  error = vdev_config_sync(rvd->vdev_child,
6195 6222                                      rvd->vdev_children, txg, B_TRUE);
6196 6223                  }
6197 6224  
6198 6225                  if (error == 0)
6199 6226                          spa->spa_last_synced_guid = rvd->vdev_guid;
6200 6227  
6201 6228                  spa_config_exit(spa, SCL_STATE, FTAG);
6202 6229  
6203 6230                  if (error == 0)
6204 6231                          break;
6205 6232                  zio_suspend(spa, NULL);
6206 6233                  zio_resume_wait(spa);
6207 6234          }
6208 6235          dmu_tx_commit(tx);
6209 6236  
6210 6237          VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6211 6238  
6212 6239          /*
6213 6240           * Clear the dirty config list.
6214 6241           */
6215 6242          while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6216 6243                  vdev_config_clean(vd);
6217 6244  
6218 6245          /*
6219 6246           * Now that the new config has synced transactionally,
6220 6247           * let it become visible to the config cache.
6221 6248           */
6222 6249          if (spa->spa_config_syncing != NULL) {
6223 6250                  spa_config_set(spa, spa->spa_config_syncing);
6224 6251                  spa->spa_config_txg = txg;
6225 6252                  spa->spa_config_syncing = NULL;
6226 6253          }
6227 6254  
6228 6255          spa->spa_ubsync = spa->spa_uberblock;
6229 6256  
6230 6257          dsl_pool_sync_done(dp, txg);
6231 6258  
6232 6259          /*
6233 6260           * Update usable space statistics.
6234 6261           */
6235 6262          while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6236 6263                  vdev_sync_done(vd, txg);
6237 6264  
6238 6265          spa_update_dspace(spa);
6239 6266  
6240 6267          /*
6241 6268           * It had better be the case that we didn't dirty anything
6242 6269           * since vdev_config_sync().
6243 6270           */
6244 6271          ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6245 6272          ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6246 6273          ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6247 6274  
6248 6275          spa->spa_sync_pass = 0;
6249 6276  
6250 6277          spa_config_exit(spa, SCL_CONFIG, FTAG);
6251 6278  
6252 6279          spa_handle_ignored_writes(spa);
6253 6280  
6254 6281          /*
6255 6282           * If any async tasks have been requested, kick them off.
6256 6283           */
6257 6284          spa_async_dispatch(spa);
6258 6285  }
6259 6286  
6260 6287  /*
6261 6288   * Sync all pools.  We don't want to hold the namespace lock across these
6262 6289   * operations, so we take a reference on the spa_t and drop the lock during the
6263 6290   * sync.
6264 6291   */
6265 6292  void
6266 6293  spa_sync_allpools(void)
6267 6294  {
6268 6295          spa_t *spa = NULL;
6269 6296          mutex_enter(&spa_namespace_lock);
6270 6297          while ((spa = spa_next(spa)) != NULL) {
6271 6298                  if (spa_state(spa) != POOL_STATE_ACTIVE ||
6272 6299                      !spa_writeable(spa) || spa_suspended(spa))
6273 6300                          continue;
6274 6301                  spa_open_ref(spa, FTAG);
6275 6302                  mutex_exit(&spa_namespace_lock);
6276 6303                  txg_wait_synced(spa_get_dsl(spa), 0);
6277 6304                  mutex_enter(&spa_namespace_lock);
6278 6305                  spa_close(spa, FTAG);
6279 6306          }
6280 6307          mutex_exit(&spa_namespace_lock);
6281 6308  }
6282 6309  
6283 6310  /*
6284 6311   * ==========================================================================
6285 6312   * Miscellaneous routines
6286 6313   * ==========================================================================
6287 6314   */
6288 6315  
6289 6316  /*
6290 6317   * Remove all pools in the system.
6291 6318   */
6292 6319  void
6293 6320  spa_evict_all(void)
6294 6321  {
6295 6322          spa_t *spa;
6296 6323  
6297 6324          /*
6298 6325           * Remove all cached state.  All pools should be closed now,
6299 6326           * so every spa in the AVL tree should be unreferenced.
6300 6327           */
6301 6328          mutex_enter(&spa_namespace_lock);
6302 6329          while ((spa = spa_next(NULL)) != NULL) {
6303 6330                  /*
6304 6331                   * Stop async tasks.  The async thread may need to detach
6305 6332                   * a device that's been replaced, which requires grabbing
6306 6333                   * spa_namespace_lock, so we must drop it here.
6307 6334                   */
6308 6335                  spa_open_ref(spa, FTAG);
6309 6336                  mutex_exit(&spa_namespace_lock);
6310 6337                  spa_async_suspend(spa);
6311 6338                  mutex_enter(&spa_namespace_lock);
6312 6339                  spa_close(spa, FTAG);
6313 6340  
6314 6341                  if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6315 6342                          spa_unload(spa);
6316 6343                          spa_deactivate(spa);
6317 6344                  }
6318 6345                  spa_remove(spa);
6319 6346          }
6320 6347          mutex_exit(&spa_namespace_lock);
6321 6348  }
6322 6349  
6323 6350  vdev_t *
6324 6351  spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6325 6352  {
6326 6353          vdev_t *vd;
6327 6354          int i;
6328 6355  
6329 6356          if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6330 6357                  return (vd);
6331 6358  
6332 6359          if (aux) {
6333 6360                  for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6334 6361                          vd = spa->spa_l2cache.sav_vdevs[i];
6335 6362                          if (vd->vdev_guid == guid)
6336 6363                                  return (vd);
6337 6364                  }
6338 6365  
6339 6366                  for (i = 0; i < spa->spa_spares.sav_count; i++) {
6340 6367                          vd = spa->spa_spares.sav_vdevs[i];
6341 6368                          if (vd->vdev_guid == guid)
6342 6369                                  return (vd);
6343 6370                  }
6344 6371          }
6345 6372  
6346 6373          return (NULL);
6347 6374  }
6348 6375  
6349 6376  void
6350 6377  spa_upgrade(spa_t *spa, uint64_t version)
6351 6378  {
6352 6379          ASSERT(spa_writeable(spa));
6353 6380  
6354 6381          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6355 6382  
6356 6383          /*
6357 6384           * This should only be called for a non-faulted pool, and since a
6358 6385           * future version would result in an unopenable pool, this shouldn't be
6359 6386           * possible.
6360 6387           */
6361 6388          ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6362 6389          ASSERT(version >= spa->spa_uberblock.ub_version);
6363 6390  
6364 6391          spa->spa_uberblock.ub_version = version;
6365 6392          vdev_config_dirty(spa->spa_root_vdev);
6366 6393  
6367 6394          spa_config_exit(spa, SCL_ALL, FTAG);
6368 6395  
6369 6396          txg_wait_synced(spa_get_dsl(spa), 0);
6370 6397  }
6371 6398  
6372 6399  boolean_t
6373 6400  spa_has_spare(spa_t *spa, uint64_t guid)
6374 6401  {
6375 6402          int i;
6376 6403          uint64_t spareguid;
6377 6404          spa_aux_vdev_t *sav = &spa->spa_spares;
6378 6405  
6379 6406          for (i = 0; i < sav->sav_count; i++)
6380 6407                  if (sav->sav_vdevs[i]->vdev_guid == guid)
6381 6408                          return (B_TRUE);
6382 6409  
6383 6410          for (i = 0; i < sav->sav_npending; i++) {
6384 6411                  if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6385 6412                      &spareguid) == 0 && spareguid == guid)
6386 6413                          return (B_TRUE);
6387 6414          }
6388 6415  
6389 6416          return (B_FALSE);
6390 6417  }
6391 6418  
6392 6419  /*
6393 6420   * Check if a pool has an active shared spare device.
6394 6421   * Note: reference count of an active spare is 2, as a spare and as a replace
6395 6422   */
6396 6423  static boolean_t
6397 6424  spa_has_active_shared_spare(spa_t *spa)
6398 6425  {
6399 6426          int i, refcnt;
6400 6427          uint64_t pool;
6401 6428          spa_aux_vdev_t *sav = &spa->spa_spares;
6402 6429  
6403 6430          for (i = 0; i < sav->sav_count; i++) {
6404 6431                  if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6405 6432                      &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6406 6433                      refcnt > 2)
6407 6434                          return (B_TRUE);
6408 6435          }
6409 6436  
6410 6437          return (B_FALSE);
6411 6438  }
6412 6439  
6413 6440  /*
6414 6441   * Post a sysevent corresponding to the given event.  The 'name' must be one of
6415 6442   * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6416 6443   * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6417 6444   * in the userland libzpool, as we don't want consumers to misinterpret ztest
6418 6445   * or zdb as real changes.
6419 6446   */
6420 6447  void
6421 6448  spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6422 6449  {
6423 6450  #ifdef _KERNEL
6424 6451          sysevent_t              *ev;
6425 6452          sysevent_attr_list_t    *attr = NULL;
6426 6453          sysevent_value_t        value;
6427 6454          sysevent_id_t           eid;
6428 6455  
6429 6456          ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6430 6457              SE_SLEEP);
6431 6458  
6432 6459          value.value_type = SE_DATA_TYPE_STRING;
6433 6460          value.value.sv_string = spa_name(spa);
6434 6461          if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6435 6462                  goto done;
6436 6463  
6437 6464          value.value_type = SE_DATA_TYPE_UINT64;
6438 6465          value.value.sv_uint64 = spa_guid(spa);
6439 6466          if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6440 6467                  goto done;
6441 6468  
6442 6469          if (vd) {
6443 6470                  value.value_type = SE_DATA_TYPE_UINT64;
6444 6471                  value.value.sv_uint64 = vd->vdev_guid;
6445 6472                  if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6446 6473                      SE_SLEEP) != 0)
6447 6474                          goto done;
6448 6475  
6449 6476                  if (vd->vdev_path) {
6450 6477                          value.value_type = SE_DATA_TYPE_STRING;
6451 6478                          value.value.sv_string = vd->vdev_path;
6452 6479                          if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6453 6480                              &value, SE_SLEEP) != 0)
6454 6481                                  goto done;
6455 6482                  }
6456 6483          }
6457 6484  
6458 6485          if (sysevent_attach_attributes(ev, attr) != 0)
6459 6486                  goto done;
6460 6487          attr = NULL;
6461 6488  
6462 6489          (void) log_sysevent(ev, SE_SLEEP, &eid);
6463 6490  
6464 6491  done:
6465 6492          if (attr)
6466 6493                  sysevent_free_attr(attr);
6467 6494          sysevent_free(ev);
6468 6495  #endif
6469 6496  }
  
    | ↓ open down ↓ | 789 lines elided | ↑ open up ↑ | 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX