1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2013 by Delphix. All rights reserved.
  24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
  25  */
  26 
  27 #include <sys/zfs_context.h>
  28 #include <sys/fm/fs/zfs.h>
  29 #include <sys/spa.h>
  30 #include <sys/txg.h>
  31 #include <sys/spa_impl.h>
  32 #include <sys/vdev_impl.h>
  33 #include <sys/zio_impl.h>
  34 #include <sys/zio_compress.h>
  35 #include <sys/zio_checksum.h>
  36 #include <sys/dmu_objset.h>
  37 #include <sys/arc.h>
  38 #include <sys/ddt.h>
  39 
  40 /*
  41  * ==========================================================================
  42  * I/O priority table
  43  * ==========================================================================
  44  */
  45 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
  46         0,      /* ZIO_PRIORITY_NOW             */
  47         0,      /* ZIO_PRIORITY_SYNC_READ       */
  48         0,      /* ZIO_PRIORITY_SYNC_WRITE      */
  49         0,      /* ZIO_PRIORITY_LOG_WRITE       */
  50         1,      /* ZIO_PRIORITY_CACHE_FILL      */
  51         1,      /* ZIO_PRIORITY_AGG             */
  52         4,      /* ZIO_PRIORITY_FREE            */
  53         4,      /* ZIO_PRIORITY_ASYNC_WRITE     */
  54         6,      /* ZIO_PRIORITY_ASYNC_READ      */
  55         10,     /* ZIO_PRIORITY_RESILVER        */
  56         20,     /* ZIO_PRIORITY_SCRUB           */
  57         2,      /* ZIO_PRIORITY_DDT_PREFETCH    */
  58 };
  59 
  60 /*
  61  * ==========================================================================
  62  * I/O type descriptions
  63  * ==========================================================================
  64  */
  65 char *zio_type_name[ZIO_TYPES] = {
  66         "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
  67         "zio_ioctl"
  68 };
  69 
  70 /*
  71  * ==========================================================================
  72  * I/O kmem caches
  73  * ==========================================================================
  74  */
  75 kmem_cache_t *zio_cache;
  76 kmem_cache_t *zio_link_cache;
  77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
  78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
  79 
  80 #ifdef _KERNEL
  81 extern vmem_t *zio_alloc_arena;
  82 #endif
  83 extern int zfs_mg_alloc_failures;
  84 
  85 /*
  86  * The following actions directly effect the spa's sync-to-convergence logic.
  87  * The values below define the sync pass when we start performing the action.
  88  * Care should be taken when changing these values as they directly impact
  89  * spa_sync() performance. Tuning these values may introduce subtle performance
  90  * pathologies and should only be done in the context of performance analysis.
  91  * These tunables will eventually be removed and replaced with #defines once
  92  * enough analysis has been done to determine optimal values.
  93  *
  94  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
  95  * regular blocks are not deferred.
  96  */
  97 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
  98 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
  99 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
 100 
 101 /*
 102  * An allocating zio is one that either currently has the DVA allocate
 103  * stage set or will have it later in its lifetime.
 104  */
 105 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
 106 
 107 boolean_t       zio_requeue_io_start_cut_in_line = B_TRUE;
 108 
 109 #ifdef ZFS_DEBUG
 110 int zio_buf_debug_limit = 16384;
 111 #else
 112 int zio_buf_debug_limit = 0;
 113 #endif
 114 
 115 void
 116 zio_init(void)
 117 {
 118         size_t c;
 119         vmem_t *data_alloc_arena = NULL;
 120 
 121 #ifdef _KERNEL
 122         data_alloc_arena = zio_alloc_arena;
 123 #endif
 124         zio_cache = kmem_cache_create("zio_cache",
 125             sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 126         zio_link_cache = kmem_cache_create("zio_link_cache",
 127             sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 128 
 129         /*
 130          * For small buffers, we want a cache for each multiple of
 131          * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
 132          * for each quarter-power of 2.  For large buffers, we want
 133          * a cache for each multiple of PAGESIZE.
 134          */
 135         for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
 136                 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
 137                 size_t p2 = size;
 138                 size_t align = 0;
 139                 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
 140 
 141                 while (p2 & (p2 - 1))
 142                         p2 &= p2 - 1;
 143 
 144 #ifndef _KERNEL
 145                 /*
 146                  * If we are using watchpoints, put each buffer on its own page,
 147                  * to eliminate the performance overhead of trapping to the
 148                  * kernel when modifying a non-watched buffer that shares the
 149                  * page with a watched buffer.
 150                  */
 151                 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
 152                         continue;
 153 #endif
 154                 if (size <= 4 * SPA_MINBLOCKSIZE) {
 155                         align = SPA_MINBLOCKSIZE;
 156                 } else if (IS_P2ALIGNED(size, PAGESIZE)) {
 157                         align = PAGESIZE;
 158                 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
 159                         align = p2 >> 2;
 160                 }
 161 
 162                 if (align != 0) {
 163                         char name[36];
 164                         (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
 165                         zio_buf_cache[c] = kmem_cache_create(name, size,
 166                             align, NULL, NULL, NULL, NULL, NULL, cflags);
 167 
 168                         /*
 169                          * Since zio_data bufs do not appear in crash dumps, we
 170                          * pass KMC_NOTOUCH so that no allocator metadata is
 171                          * stored with the buffers.
 172                          */
 173                         (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
 174                         zio_data_buf_cache[c] = kmem_cache_create(name, size,
 175                             align, NULL, NULL, NULL, NULL, data_alloc_arena,
 176                             cflags | KMC_NOTOUCH);
 177                 }
 178         }
 179 
 180         while (--c != 0) {
 181                 ASSERT(zio_buf_cache[c] != NULL);
 182                 if (zio_buf_cache[c - 1] == NULL)
 183                         zio_buf_cache[c - 1] = zio_buf_cache[c];
 184 
 185                 ASSERT(zio_data_buf_cache[c] != NULL);
 186                 if (zio_data_buf_cache[c - 1] == NULL)
 187                         zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
 188         }
 189 
 190         /*
 191          * The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs
 192          * to fail 3 times per txg or 8 failures, whichever is greater.
 193          */
 194         zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8);
 195 
 196         zio_inject_init();
 197 }
 198 
 199 void
 200 zio_fini(void)
 201 {
 202         size_t c;
 203         kmem_cache_t *last_cache = NULL;
 204         kmem_cache_t *last_data_cache = NULL;
 205 
 206         for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
 207                 if (zio_buf_cache[c] != last_cache) {
 208                         last_cache = zio_buf_cache[c];
 209                         kmem_cache_destroy(zio_buf_cache[c]);
 210                 }
 211                 zio_buf_cache[c] = NULL;
 212 
 213                 if (zio_data_buf_cache[c] != last_data_cache) {
 214                         last_data_cache = zio_data_buf_cache[c];
 215                         kmem_cache_destroy(zio_data_buf_cache[c]);
 216                 }
 217                 zio_data_buf_cache[c] = NULL;
 218         }
 219 
 220         kmem_cache_destroy(zio_link_cache);
 221         kmem_cache_destroy(zio_cache);
 222 
 223         zio_inject_fini();
 224 }
 225 
 226 /*
 227  * ==========================================================================
 228  * Allocate and free I/O buffers
 229  * ==========================================================================
 230  */
 231 
 232 /*
 233  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
 234  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
 235  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
 236  * excess / transient data in-core during a crashdump.
 237  */
 238 void *
 239 zio_buf_alloc(size_t size)
 240 {
 241         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 242 
 243         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 244 
 245         return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
 246 }
 247 
 248 /*
 249  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
 250  * crashdump if the kernel panics.  This exists so that we will limit the amount
 251  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
 252  * of kernel heap dumped to disk when the kernel panics)
 253  */
 254 void *
 255 zio_data_buf_alloc(size_t size)
 256 {
 257         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 258 
 259         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 260 
 261         return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
 262 }
 263 
 264 void
 265 zio_buf_free(void *buf, size_t size)
 266 {
 267         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 268 
 269         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 270 
 271         kmem_cache_free(zio_buf_cache[c], buf);
 272 }
 273 
 274 void
 275 zio_data_buf_free(void *buf, size_t size)
 276 {
 277         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 278 
 279         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 280 
 281         kmem_cache_free(zio_data_buf_cache[c], buf);
 282 }
 283 
 284 /*
 285  * ==========================================================================
 286  * Push and pop I/O transform buffers
 287  * ==========================================================================
 288  */
 289 static void
 290 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
 291         zio_transform_func_t *transform)
 292 {
 293         zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
 294 
 295         zt->zt_orig_data = zio->io_data;
 296         zt->zt_orig_size = zio->io_size;
 297         zt->zt_bufsize = bufsize;
 298         zt->zt_transform = transform;
 299 
 300         zt->zt_next = zio->io_transform_stack;
 301         zio->io_transform_stack = zt;
 302 
 303         zio->io_data = data;
 304         zio->io_size = size;
 305 }
 306 
 307 static void
 308 zio_pop_transforms(zio_t *zio)
 309 {
 310         zio_transform_t *zt;
 311 
 312         while ((zt = zio->io_transform_stack) != NULL) {
 313                 if (zt->zt_transform != NULL)
 314                         zt->zt_transform(zio,
 315                             zt->zt_orig_data, zt->zt_orig_size);
 316 
 317                 if (zt->zt_bufsize != 0)
 318                         zio_buf_free(zio->io_data, zt->zt_bufsize);
 319 
 320                 zio->io_data = zt->zt_orig_data;
 321                 zio->io_size = zt->zt_orig_size;
 322                 zio->io_transform_stack = zt->zt_next;
 323 
 324                 kmem_free(zt, sizeof (zio_transform_t));
 325         }
 326 }
 327 
 328 /*
 329  * ==========================================================================
 330  * I/O transform callbacks for subblocks and decompression
 331  * ==========================================================================
 332  */
 333 static void
 334 zio_subblock(zio_t *zio, void *data, uint64_t size)
 335 {
 336         ASSERT(zio->io_size > size);
 337 
 338         if (zio->io_type == ZIO_TYPE_READ)
 339                 bcopy(zio->io_data, data, size);
 340 }
 341 
 342 static void
 343 zio_decompress(zio_t *zio, void *data, uint64_t size)
 344 {
 345         if (zio->io_error == 0 &&
 346             zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
 347             zio->io_data, data, zio->io_size, size) != 0)
 348                 zio->io_error = SET_ERROR(EIO);
 349 }
 350 
 351 /*
 352  * ==========================================================================
 353  * I/O parent/child relationships and pipeline interlocks
 354  * ==========================================================================
 355  */
 356 /*
 357  * NOTE - Callers to zio_walk_parents() and zio_walk_children must
 358  *        continue calling these functions until they return NULL.
 359  *        Otherwise, the next caller will pick up the list walk in
 360  *        some indeterminate state.  (Otherwise every caller would
 361  *        have to pass in a cookie to keep the state represented by
 362  *        io_walk_link, which gets annoying.)
 363  */
 364 zio_t *
 365 zio_walk_parents(zio_t *cio)
 366 {
 367         zio_link_t *zl = cio->io_walk_link;
 368         list_t *pl = &cio->io_parent_list;
 369 
 370         zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
 371         cio->io_walk_link = zl;
 372 
 373         if (zl == NULL)
 374                 return (NULL);
 375 
 376         ASSERT(zl->zl_child == cio);
 377         return (zl->zl_parent);
 378 }
 379 
 380 zio_t *
 381 zio_walk_children(zio_t *pio)
 382 {
 383         zio_link_t *zl = pio->io_walk_link;
 384         list_t *cl = &pio->io_child_list;
 385 
 386         zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
 387         pio->io_walk_link = zl;
 388 
 389         if (zl == NULL)
 390                 return (NULL);
 391 
 392         ASSERT(zl->zl_parent == pio);
 393         return (zl->zl_child);
 394 }
 395 
 396 zio_t *
 397 zio_unique_parent(zio_t *cio)
 398 {
 399         zio_t *pio = zio_walk_parents(cio);
 400 
 401         VERIFY(zio_walk_parents(cio) == NULL);
 402         return (pio);
 403 }
 404 
 405 void
 406 zio_add_child(zio_t *pio, zio_t *cio)
 407 {
 408         zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
 409 
 410         /*
 411          * Logical I/Os can have logical, gang, or vdev children.
 412          * Gang I/Os can have gang or vdev children.
 413          * Vdev I/Os can only have vdev children.
 414          * The following ASSERT captures all of these constraints.
 415          */
 416         ASSERT(cio->io_child_type <= pio->io_child_type);
 417 
 418         zl->zl_parent = pio;
 419         zl->zl_child = cio;
 420 
 421         mutex_enter(&cio->io_lock);
 422         mutex_enter(&pio->io_lock);
 423 
 424         ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
 425 
 426         for (int w = 0; w < ZIO_WAIT_TYPES; w++)
 427                 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
 428 
 429         list_insert_head(&pio->io_child_list, zl);
 430         list_insert_head(&cio->io_parent_list, zl);
 431 
 432         pio->io_child_count++;
 433         cio->io_parent_count++;
 434 
 435         mutex_exit(&pio->io_lock);
 436         mutex_exit(&cio->io_lock);
 437 }
 438 
 439 static void
 440 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
 441 {
 442         ASSERT(zl->zl_parent == pio);
 443         ASSERT(zl->zl_child == cio);
 444 
 445         mutex_enter(&cio->io_lock);
 446         mutex_enter(&pio->io_lock);
 447 
 448         list_remove(&pio->io_child_list, zl);
 449         list_remove(&cio->io_parent_list, zl);
 450 
 451         pio->io_child_count--;
 452         cio->io_parent_count--;
 453 
 454         mutex_exit(&pio->io_lock);
 455         mutex_exit(&cio->io_lock);
 456 
 457         kmem_cache_free(zio_link_cache, zl);
 458 }
 459 
 460 static boolean_t
 461 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
 462 {
 463         uint64_t *countp = &zio->io_children[child][wait];
 464         boolean_t waiting = B_FALSE;
 465 
 466         mutex_enter(&zio->io_lock);
 467         ASSERT(zio->io_stall == NULL);
 468         if (*countp != 0) {
 469                 zio->io_stage >>= 1;
 470                 zio->io_stall = countp;
 471                 waiting = B_TRUE;
 472         }
 473         mutex_exit(&zio->io_lock);
 474 
 475         return (waiting);
 476 }
 477 
 478 static void
 479 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
 480 {
 481         uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
 482         int *errorp = &pio->io_child_error[zio->io_child_type];
 483 
 484         mutex_enter(&pio->io_lock);
 485         if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
 486                 *errorp = zio_worst_error(*errorp, zio->io_error);
 487         pio->io_reexecute |= zio->io_reexecute;
 488         ASSERT3U(*countp, >, 0);
 489         if (--*countp == 0 && pio->io_stall == countp) {
 490                 pio->io_stall = NULL;
 491                 mutex_exit(&pio->io_lock);
 492                 zio_execute(pio);
 493         } else {
 494                 mutex_exit(&pio->io_lock);
 495         }
 496 }
 497 
 498 static void
 499 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
 500 {
 501         if (zio->io_child_error[c] != 0 && zio->io_error == 0)
 502                 zio->io_error = zio->io_child_error[c];
 503 }
 504 
 505 /*
 506  * ==========================================================================
 507  * Create the various types of I/O (read, write, free, etc)
 508  * ==========================================================================
 509  */
 510 static zio_t *
 511 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
 512     void *data, uint64_t size, zio_done_func_t *done, void *io_private,
 513     zio_type_t type, int priority, enum zio_flag flags,
 514     vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
 515     enum zio_stage stage, enum zio_stage pipeline)
 516 {
 517         zio_t *zio;
 518 
 519         ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
 520         ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
 521         ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
 522 
 523         ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
 524         ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
 525         ASSERT(vd || stage == ZIO_STAGE_OPEN);
 526 
 527         zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
 528         bzero(zio, sizeof (zio_t));
 529 
 530         mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
 531         cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
 532 
 533         list_create(&zio->io_parent_list, sizeof (zio_link_t),
 534             offsetof(zio_link_t, zl_parent_node));
 535         list_create(&zio->io_child_list, sizeof (zio_link_t),
 536             offsetof(zio_link_t, zl_child_node));
 537 
 538         if (vd != NULL)
 539                 zio->io_child_type = ZIO_CHILD_VDEV;
 540         else if (flags & ZIO_FLAG_GANG_CHILD)
 541                 zio->io_child_type = ZIO_CHILD_GANG;
 542         else if (flags & ZIO_FLAG_DDT_CHILD)
 543                 zio->io_child_type = ZIO_CHILD_DDT;
 544         else
 545                 zio->io_child_type = ZIO_CHILD_LOGICAL;
 546 
 547         if (bp != NULL) {
 548                 zio->io_bp = (blkptr_t *)bp;
 549                 zio->io_bp_copy = *bp;
 550                 zio->io_bp_orig = *bp;
 551                 if (type != ZIO_TYPE_WRITE ||
 552                     zio->io_child_type == ZIO_CHILD_DDT)
 553                         zio->io_bp = &zio->io_bp_copy;        /* so caller can free */
 554                 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
 555                         zio->io_logical = zio;
 556                 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
 557                         pipeline |= ZIO_GANG_STAGES;
 558         }
 559 
 560         zio->io_spa = spa;
 561         zio->io_txg = txg;
 562         zio->io_done = done;
 563         zio->io_private = io_private;
 564         zio->io_type = type;
 565         zio->io_priority = priority;
 566         zio->io_vd = vd;
 567         zio->io_offset = offset;
 568         zio->io_orig_data = zio->io_data = data;
 569         zio->io_orig_size = zio->io_size = size;
 570         zio->io_orig_flags = zio->io_flags = flags;
 571         zio->io_orig_stage = zio->io_stage = stage;
 572         zio->io_orig_pipeline = zio->io_pipeline = pipeline;
 573 
 574         zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
 575         zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
 576 
 577         if (zb != NULL)
 578                 zio->io_bookmark = *zb;
 579 
 580         if (pio != NULL) {
 581                 if (zio->io_logical == NULL)
 582                         zio->io_logical = pio->io_logical;
 583                 if (zio->io_child_type == ZIO_CHILD_GANG)
 584                         zio->io_gang_leader = pio->io_gang_leader;
 585                 zio_add_child(pio, zio);
 586         }
 587 
 588         return (zio);
 589 }
 590 
 591 static void
 592 zio_destroy(zio_t *zio)
 593 {
 594         list_destroy(&zio->io_parent_list);
 595         list_destroy(&zio->io_child_list);
 596         mutex_destroy(&zio->io_lock);
 597         cv_destroy(&zio->io_cv);
 598         kmem_cache_free(zio_cache, zio);
 599 }
 600 
 601 zio_t *
 602 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
 603     void *io_private, enum zio_flag flags)
 604 {
 605         zio_t *zio;
 606 
 607         zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, io_private,
 608             ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
 609             ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
 610 
 611         return (zio);
 612 }
 613 
 614 zio_t *
 615 zio_root(spa_t *spa, zio_done_func_t *done, void *io_private,
 616     enum zio_flag flags)
 617 {
 618         return (zio_null(NULL, spa, NULL, done, io_private, flags));
 619 }
 620 
 621 zio_t *
 622 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
 623     void *data, uint64_t size, zio_done_func_t *done, void *io_private,
 624     int priority, enum zio_flag flags, const zbookmark_t *zb)
 625 {
 626         zio_t *zio;
 627 
 628         zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
 629             data, size, done, io_private,
 630             ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
 631             ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
 632             ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
 633 
 634         return (zio);
 635 }
 636 
 637 zio_t *
 638 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
 639     void *data, uint64_t size, const zio_prop_t *zp,
 640     zio_done_func_t *ready, zio_done_func_t *done, void *io_private,
 641     int priority, enum zio_flag flags, const zbookmark_t *zb)
 642 {
 643         zio_t *zio;
 644 
 645         ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
 646             zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
 647             zp->zp_compress >= ZIO_COMPRESS_OFF &&
 648             zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
 649             DMU_OT_IS_VALID(zp->zp_type) &&
 650             zp->zp_level < 32 &&
 651             zp->zp_copies > 0 &&
 652             zp->zp_copies <= spa_max_replication(spa));
 653 
 654         zio = zio_create(pio, spa, txg, bp, data, size, done, io_private,
 655             ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
 656             ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
 657             ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
 658 
 659         zio->io_ready = ready;
 660         zio->io_prop = *zp;
 661 
 662         return (zio);
 663 }
 664 
 665 zio_t *
 666 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
 667     uint64_t size, zio_done_func_t *done, void *io_private, int priority,
 668     enum zio_flag flags, zbookmark_t *zb)
 669 {
 670         zio_t *zio;
 671 
 672         zio = zio_create(pio, spa, txg, bp, data, size, done, io_private,
 673             ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
 674             ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
 675 
 676         return (zio);
 677 }
 678 
 679 void
 680 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
 681 {
 682         ASSERT(zio->io_type == ZIO_TYPE_WRITE);
 683         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
 684         ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
 685         ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
 686 
 687         /*
 688          * We must reset the io_prop to match the values that existed
 689          * when the bp was first written by dmu_sync() keeping in mind
 690          * that nopwrite and dedup are mutually exclusive.
 691          */
 692         zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
 693         zio->io_prop.zp_nopwrite = nopwrite;
 694         zio->io_prop.zp_copies = copies;
 695         zio->io_bp_override = bp;
 696 }
 697 
 698 void
 699 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
 700 {
 701         metaslab_check_free(spa, bp);
 702         bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
 703 }
 704 
 705 zio_t *
 706 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
 707     enum zio_flag flags)
 708 {
 709         zio_t *zio;
 710 
 711         dprintf_bp(bp, "freeing in txg %llu, pass %u",
 712             (longlong_t)txg, spa->spa_sync_pass);
 713 
 714         ASSERT(!BP_IS_HOLE(bp));
 715         ASSERT(spa_syncing_txg(spa) == txg);
 716         ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
 717 
 718         metaslab_check_free(spa, bp);
 719 
 720         zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
 721             NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
 722             NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE);
 723 
 724         return (zio);
 725 }
 726 
 727 zio_t *
 728 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
 729     zio_done_func_t *done, void *io_private, enum zio_flag flags)
 730 {
 731         zio_t *zio;
 732 
 733         /*
 734          * A claim is an allocation of a specific block.  Claims are needed
 735          * to support immediate writes in the intent log.  The issue is that
 736          * immediate writes contain committed data, but in a txg that was
 737          * *not* committed.  Upon opening the pool after an unclean shutdown,
 738          * the intent log claims all blocks that contain immediate write data
 739          * so that the SPA knows they're in use.
 740          *
 741          * All claims *must* be resolved in the first txg -- before the SPA
 742          * starts allocating blocks -- so that nothing is allocated twice.
 743          * If txg == 0 we just verify that the block is claimable.
 744          */
 745         ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
 746         ASSERT(txg == spa_first_txg(spa) || txg == 0);
 747         ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));       /* zdb(1M) */
 748 
 749         zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
 750             done, io_private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
 751             NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
 752 
 753         return (zio);
 754 }
 755 
 756 zio_t *
 757 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
 758     zio_done_func_t *done, void *io_private, int priority, enum zio_flag flags)
 759 {
 760         zio_t *zio;
 761         int c;
 762 
 763         if (vd->vdev_children == 0) {
 764                 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, io_private,
 765                     ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL,
 766                     ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
 767 
 768                 zio->io_cmd = cmd;
 769         } else {
 770                 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
 771 
 772                 for (c = 0; c < vd->vdev_children; c++)
 773                         zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
 774                             done, io_private, priority, flags));
 775         }
 776 
 777         return (zio);
 778 }
 779 
 780 zio_t *
 781 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
 782     void *data, int checksum, zio_done_func_t *done, void *io_private,
 783     int priority, enum zio_flag flags, boolean_t labels)
 784 {
 785         zio_t *zio;
 786 
 787         ASSERT(vd->vdev_children == 0);
 788         ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
 789             offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
 790         ASSERT3U(offset + size, <=, vd->vdev_psize);
 791 
 792         zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done,
 793             io_private, ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
 794             ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
 795 
 796         zio->io_prop.zp_checksum = checksum;
 797 
 798         return (zio);
 799 }
 800 
 801 zio_t *
 802 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
 803     void *data, int checksum, zio_done_func_t *done, void *io_private,
 804     int priority, enum zio_flag flags, boolean_t labels)
 805 {
 806         zio_t *zio;
 807 
 808         ASSERT(vd->vdev_children == 0);
 809         ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
 810             offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
 811         ASSERT3U(offset + size, <=, vd->vdev_psize);
 812 
 813         zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done,
 814             io_private, ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
 815             ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
 816 
 817         zio->io_prop.zp_checksum = checksum;
 818 
 819         if (zio_checksum_table[checksum].ci_eck) {
 820                 /*
 821                  * zec checksums are necessarily destructive -- they modify
 822                  * the end of the write buffer to hold the verifier/checksum.
 823                  * Therefore, we must make a local copy in case the data is
 824                  * being written to multiple places in parallel.
 825                  */
 826                 void *wbuf = zio_buf_alloc(size);
 827                 bcopy(data, wbuf, size);
 828                 zio_push_transform(zio, wbuf, size, size, NULL);
 829         }
 830 
 831         return (zio);
 832 }
 833 
 834 /*
 835  * Create a child I/O to do some work for us.
 836  */
 837 zio_t *
 838 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
 839         void *data, uint64_t size, int type, int priority, enum zio_flag flags,
 840         zio_done_func_t *done, void *io_private)
 841 {
 842         enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
 843         zio_t *zio;
 844 
 845         ASSERT(vd->vdev_parent ==
 846             (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
 847 
 848         if (type == ZIO_TYPE_READ && bp != NULL) {
 849                 /*
 850                  * If we have the bp, then the child should perform the
 851                  * checksum and the parent need not.  This pushes error
 852                  * detection as close to the leaves as possible and
 853                  * eliminates redundant checksums in the interior nodes.
 854                  */
 855                 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
 856                 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
 857         }
 858 
 859         if (vd->vdev_children == 0)
 860                 offset += VDEV_LABEL_START_SIZE;
 861 
 862         flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
 863 
 864         /*
 865          * If we've decided to do a repair, the write is not speculative --
 866          * even if the original read was.
 867          */
 868         if (flags & ZIO_FLAG_IO_REPAIR)
 869                 flags &= ~ZIO_FLAG_SPECULATIVE;
 870 
 871         zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
 872             done, io_private, type, priority, flags, vd, offset,
 873             &pio->io_bookmark, ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
 874 
 875         return (zio);
 876 }
 877 
 878 zio_t *
 879 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
 880         int type, int priority, enum zio_flag flags,
 881         zio_done_func_t *done, void *io_private)
 882 {
 883         zio_t *zio;
 884 
 885         ASSERT(vd->vdev_ops->vdev_op_leaf);
 886 
 887         zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
 888             data, size, done, io_private, type, priority,
 889             flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
 890             vd, offset, NULL,
 891             ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
 892 
 893         return (zio);
 894 }
 895 
 896 void
 897 zio_flush(zio_t *zio, vdev_t *vd)
 898 {
 899         zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
 900             NULL, NULL, ZIO_PRIORITY_NOW,
 901             ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
 902 }
 903 
 904 void
 905 zio_shrink(zio_t *zio, uint64_t size)
 906 {
 907         ASSERT(zio->io_executor == NULL);
 908         ASSERT(zio->io_orig_size == zio->io_size);
 909         ASSERT(size <= zio->io_size);
 910 
 911         /*
 912          * We don't shrink for raidz because of problems with the
 913          * reconstruction when reading back less than the block size.
 914          * Note, BP_IS_RAIDZ() assumes no compression.
 915          */
 916         ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
 917         if (!BP_IS_RAIDZ(zio->io_bp))
 918                 zio->io_orig_size = zio->io_size = size;
 919 }
 920 
 921 /*
 922  * ==========================================================================
 923  * Prepare to read and write logical blocks
 924  * ==========================================================================
 925  */
 926 
 927 static int
 928 zio_read_bp_init(zio_t *zio)
 929 {
 930         blkptr_t *bp = zio->io_bp;
 931 
 932         if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
 933             zio->io_child_type == ZIO_CHILD_LOGICAL &&
 934             !(zio->io_flags & ZIO_FLAG_RAW)) {
 935                 uint64_t psize = BP_GET_PSIZE(bp);
 936                 void *cbuf = zio_buf_alloc(psize);
 937 
 938                 zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
 939         }
 940 
 941         if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
 942                 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
 943 
 944         if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
 945                 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
 946 
 947         if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
 948                 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
 949 
 950         return (ZIO_PIPELINE_CONTINUE);
 951 }
 952 
 953 static int
 954 zio_write_bp_init(zio_t *zio)
 955 {
 956         spa_t *spa = zio->io_spa;
 957         zio_prop_t *zp = &zio->io_prop;
 958         enum zio_compress compress = zp->zp_compress;
 959         blkptr_t *bp = zio->io_bp;
 960         uint64_t lsize = zio->io_size;
 961         uint64_t psize = lsize;
 962         int pass = 1;
 963 
 964         /*
 965          * If our children haven't all reached the ready stage,
 966          * wait for them and then repeat this pipeline stage.
 967          */
 968         if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
 969             zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
 970                 return (ZIO_PIPELINE_STOP);
 971 
 972         if (!IO_IS_ALLOCATING(zio))
 973                 return (ZIO_PIPELINE_CONTINUE);
 974 
 975         ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
 976 
 977         if (zio->io_bp_override) {
 978                 ASSERT(bp->blk_birth != zio->io_txg);
 979                 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
 980 
 981                 *bp = *zio->io_bp_override;
 982                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
 983 
 984                 /*
 985                  * If we've been overridden and nopwrite is set then
 986                  * set the flag accordingly to indicate that a nopwrite
 987                  * has already occurred.
 988                  */
 989                 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
 990                         ASSERT(!zp->zp_dedup);
 991                         zio->io_flags |= ZIO_FLAG_NOPWRITE;
 992                         return (ZIO_PIPELINE_CONTINUE);
 993                 }
 994 
 995                 ASSERT(!zp->zp_nopwrite);
 996 
 997                 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
 998                         return (ZIO_PIPELINE_CONTINUE);
 999 
1000                 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1001                     zp->zp_dedup_verify);
1002 
1003                 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1004                         BP_SET_DEDUP(bp, 1);
1005                         zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1006                         return (ZIO_PIPELINE_CONTINUE);
1007                 }
1008                 zio->io_bp_override = NULL;
1009                 BP_ZERO(bp);
1010         }
1011 
1012         if (bp->blk_birth == zio->io_txg) {
1013                 /*
1014                  * We're rewriting an existing block, which means we're
1015                  * working on behalf of spa_sync().  For spa_sync() to
1016                  * converge, it must eventually be the case that we don't
1017                  * have to allocate new blocks.  But compression changes
1018                  * the blocksize, which forces a reallocate, and makes
1019                  * convergence take longer.  Therefore, after the first
1020                  * few passes, stop compressing to ensure convergence.
1021                  */
1022                 pass = spa_sync_pass(spa);
1023 
1024                 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1025                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1026                 ASSERT(!BP_GET_DEDUP(bp));
1027 
1028                 if (pass >= zfs_sync_pass_dont_compress)
1029                         compress = ZIO_COMPRESS_OFF;
1030 
1031                 /* Make sure someone doesn't change their mind on overwrites */
1032                 ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
1033                     spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1034         }
1035 
1036         if (compress != ZIO_COMPRESS_OFF) {
1037                 void *cbuf = zio_buf_alloc(lsize);
1038                 psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1039                 if (psize == 0 || psize == lsize) {
1040                         compress = ZIO_COMPRESS_OFF;
1041                         zio_buf_free(cbuf, lsize);
1042                 } else {
1043                         ASSERT(psize < lsize);
1044                         zio_push_transform(zio, cbuf, psize, lsize, NULL);
1045                 }
1046         }
1047 
1048         /*
1049          * The final pass of spa_sync() must be all rewrites, but the first
1050          * few passes offer a trade-off: allocating blocks defers convergence,
1051          * but newly allocated blocks are sequential, so they can be written
1052          * to disk faster.  Therefore, we allow the first few passes of
1053          * spa_sync() to allocate new blocks, but force rewrites after that.
1054          * There should only be a handful of blocks after pass 1 in any case.
1055          */
1056         if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
1057             pass >= zfs_sync_pass_rewrite) {
1058                 ASSERT(psize != 0);
1059                 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1060                 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1061                 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1062         } else {
1063                 BP_ZERO(bp);
1064                 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1065         }
1066 
1067         if (psize == 0) {
1068                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1069         } else {
1070                 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1071                 BP_SET_LSIZE(bp, lsize);
1072                 BP_SET_PSIZE(bp, psize);
1073                 BP_SET_COMPRESS(bp, compress);
1074                 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1075                 BP_SET_TYPE(bp, zp->zp_type);
1076                 BP_SET_LEVEL(bp, zp->zp_level);
1077                 BP_SET_DEDUP(bp, zp->zp_dedup);
1078                 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1079                 if (zp->zp_dedup) {
1080                         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1081                         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1082                         zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1083                 }
1084                 if (zp->zp_nopwrite) {
1085                         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1086                         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1087                         zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1088                 }
1089         }
1090 
1091         return (ZIO_PIPELINE_CONTINUE);
1092 }
1093 
1094 static int
1095 zio_free_bp_init(zio_t *zio)
1096 {
1097         blkptr_t *bp = zio->io_bp;
1098 
1099         if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1100                 if (BP_GET_DEDUP(bp))
1101                         zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1102         }
1103 
1104         return (ZIO_PIPELINE_CONTINUE);
1105 }
1106 
1107 /*
1108  * ==========================================================================
1109  * Execute the I/O pipeline
1110  * ==========================================================================
1111  */
1112 
1113 static void
1114 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1115 {
1116         spa_t *spa = zio->io_spa;
1117         zio_type_t t = zio->io_type;
1118         int flags = (cutinline ? TQ_FRONT : 0);
1119 
1120         /*
1121          * If we're a config writer or a probe, the normal issue and
1122          * interrupt threads may all be blocked waiting for the config lock.
1123          * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1124          */
1125         if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1126                 t = ZIO_TYPE_NULL;
1127 
1128         /*
1129          * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1130          */
1131         if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1132                 t = ZIO_TYPE_NULL;
1133 
1134         /*
1135          * If this is a high priority I/O, then use the high priority taskq if
1136          * available.
1137          */
1138         if (zio->io_priority == ZIO_PRIORITY_NOW &&
1139             spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1140                 q++;
1141 
1142         ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1143 
1144         /*
1145          * NB: We are assuming that the zio can only be dispatched
1146          * to a single taskq at a time.  It would be a grievous error
1147          * to dispatch the zio to another taskq at the same time.
1148          */
1149         ASSERT(zio->io_tqent.tqent_next == NULL);
1150         spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1151             flags, &zio->io_tqent);
1152 }
1153 
1154 static boolean_t
1155 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1156 {
1157         kthread_t *executor = zio->io_executor;
1158         spa_t *spa = zio->io_spa;
1159 
1160         for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1161                 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1162                 uint_t i;
1163                 for (i = 0; i < tqs->stqs_count; i++) {
1164                         if (taskq_member(tqs->stqs_taskq[i], executor))
1165                                 return (B_TRUE);
1166                 }
1167         }
1168 
1169         return (B_FALSE);
1170 }
1171 
1172 static int
1173 zio_issue_async(zio_t *zio)
1174 {
1175         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1176 
1177         return (ZIO_PIPELINE_STOP);
1178 }
1179 
1180 void
1181 zio_interrupt(zio_t *zio)
1182 {
1183         zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1184 }
1185 
1186 /*
1187  * Execute the I/O pipeline until one of the following occurs:
1188  * (1) the I/O completes; (2) the pipeline stalls waiting for
1189  * dependent child I/Os; (3) the I/O issues, so we're waiting
1190  * for an I/O completion interrupt; (4) the I/O is delegated by
1191  * vdev-level caching or aggregation; (5) the I/O is deferred
1192  * due to vdev-level queueing; (6) the I/O is handed off to
1193  * another thread.  In all cases, the pipeline stops whenever
1194  * there's no CPU work; it never burns a thread in cv_wait().
1195  *
1196  * There's no locking on io_stage because there's no legitimate way
1197  * for multiple threads to be attempting to process the same I/O.
1198  */
1199 static zio_pipe_stage_t *zio_pipeline[];
1200 
1201 void
1202 zio_execute(zio_t *zio)
1203 {
1204         zio->io_executor = curthread;
1205 
1206         while (zio->io_stage < ZIO_STAGE_DONE) {
1207                 enum zio_stage pipeline = zio->io_pipeline;
1208                 enum zio_stage stage = zio->io_stage;
1209                 int rv;
1210 
1211                 ASSERT(!MUTEX_HELD(&zio->io_lock));
1212                 ASSERT(ISP2(stage));
1213                 ASSERT(zio->io_stall == NULL);
1214 
1215                 do {
1216                         stage <<= 1;
1217                 } while ((stage & pipeline) == 0);
1218 
1219                 ASSERT(stage <= ZIO_STAGE_DONE);
1220 
1221                 /*
1222                  * If we are in interrupt context and this pipeline stage
1223                  * will grab a config lock that is held across I/O,
1224                  * or may wait for an I/O that needs an interrupt thread
1225                  * to complete, issue async to avoid deadlock.
1226                  *
1227                  * For VDEV_IO_START, we cut in line so that the io will
1228                  * be sent to disk promptly.
1229                  */
1230                 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1231                     zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1232                         boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1233                             zio_requeue_io_start_cut_in_line : B_FALSE;
1234                         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1235                         return;
1236                 }
1237 
1238                 zio->io_stage = stage;
1239                 rv = zio_pipeline[highbit(stage) - 1](zio);
1240 
1241                 if (rv == ZIO_PIPELINE_STOP)
1242                         return;
1243 
1244                 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1245         }
1246 }
1247 
1248 /*
1249  * ==========================================================================
1250  * Initiate I/O, either sync or async
1251  * ==========================================================================
1252  */
1253 int
1254 zio_wait(zio_t *zio)
1255 {
1256         int error;
1257 
1258         ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1259         ASSERT(zio->io_executor == NULL);
1260 
1261         zio->io_waiter = curthread;
1262 
1263         zio_execute(zio);
1264 
1265         mutex_enter(&zio->io_lock);
1266         while (zio->io_executor != NULL)
1267                 cv_wait(&zio->io_cv, &zio->io_lock);
1268         mutex_exit(&zio->io_lock);
1269 
1270         error = zio->io_error;
1271         zio_destroy(zio);
1272 
1273         return (error);
1274 }
1275 
1276 void
1277 zio_nowait(zio_t *zio)
1278 {
1279         ASSERT(zio->io_executor == NULL);
1280 
1281         if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1282             zio_unique_parent(zio) == NULL) {
1283                 /*
1284                  * This is a logical async I/O with no parent to wait for it.
1285                  * We add it to the spa_async_root_zio "Godfather" I/O which
1286                  * will ensure they complete prior to unloading the pool.
1287                  */
1288                 spa_t *spa = zio->io_spa;
1289 
1290                 zio_add_child(spa->spa_async_zio_root, zio);
1291         }
1292 
1293         zio_execute(zio);
1294 }
1295 
1296 /*
1297  * ==========================================================================
1298  * Reexecute or suspend/resume failed I/O
1299  * ==========================================================================
1300  */
1301 
1302 static void
1303 zio_reexecute(zio_t *pio)
1304 {
1305         zio_t *cio, *cio_next;
1306 
1307         ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1308         ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1309         ASSERT(pio->io_gang_leader == NULL);
1310         ASSERT(pio->io_gang_tree == NULL);
1311 
1312         pio->io_flags = pio->io_orig_flags;
1313         pio->io_stage = pio->io_orig_stage;
1314         pio->io_pipeline = pio->io_orig_pipeline;
1315         pio->io_reexecute = 0;
1316         pio->io_flags |= ZIO_FLAG_REEXECUTED;
1317         pio->io_error = 0;
1318         for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1319                 pio->io_state[w] = 0;
1320         for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1321                 pio->io_child_error[c] = 0;
1322 
1323         if (IO_IS_ALLOCATING(pio))
1324                 BP_ZERO(pio->io_bp);
1325 
1326         /*
1327          * As we reexecute pio's children, new children could be created.
1328          * New children go to the head of pio's io_child_list, however,
1329          * so we will (correctly) not reexecute them.  The key is that
1330          * the remainder of pio's io_child_list, from 'cio_next' onward,
1331          * cannot be affected by any side effects of reexecuting 'cio'.
1332          */
1333         for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1334                 cio_next = zio_walk_children(pio);
1335                 mutex_enter(&pio->io_lock);
1336                 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1337                         pio->io_children[cio->io_child_type][w]++;
1338                 mutex_exit(&pio->io_lock);
1339                 zio_reexecute(cio);
1340         }
1341 
1342         /*
1343          * Now that all children have been reexecuted, execute the parent.
1344          * We don't reexecute "The Godfather" I/O here as it's the
1345          * responsibility of the caller to wait on him.
1346          */
1347         if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1348                 zio_execute(pio);
1349 }
1350 
1351 void
1352 zio_suspend(spa_t *spa, zio_t *zio)
1353 {
1354         if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1355                 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1356                     "failure and the failure mode property for this pool "
1357                     "is set to panic.", spa_name(spa));
1358 
1359         zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1360 
1361         mutex_enter(&spa->spa_suspend_lock);
1362 
1363         if (spa->spa_suspend_zio_root == NULL)
1364                 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1365                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1366                     ZIO_FLAG_GODFATHER);
1367 
1368         spa->spa_suspended = B_TRUE;
1369 
1370         if (zio != NULL) {
1371                 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1372                 ASSERT(zio != spa->spa_suspend_zio_root);
1373                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1374                 ASSERT(zio_unique_parent(zio) == NULL);
1375                 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1376                 zio_add_child(spa->spa_suspend_zio_root, zio);
1377         }
1378 
1379         mutex_exit(&spa->spa_suspend_lock);
1380 }
1381 
1382 int
1383 zio_resume(spa_t *spa)
1384 {
1385         zio_t *pio;
1386 
1387         /*
1388          * Reexecute all previously suspended i/o.
1389          */
1390         mutex_enter(&spa->spa_suspend_lock);
1391         spa->spa_suspended = B_FALSE;
1392         cv_broadcast(&spa->spa_suspend_cv);
1393         pio = spa->spa_suspend_zio_root;
1394         spa->spa_suspend_zio_root = NULL;
1395         mutex_exit(&spa->spa_suspend_lock);
1396 
1397         if (pio == NULL)
1398                 return (0);
1399 
1400         zio_reexecute(pio);
1401         return (zio_wait(pio));
1402 }
1403 
1404 void
1405 zio_resume_wait(spa_t *spa)
1406 {
1407         mutex_enter(&spa->spa_suspend_lock);
1408         while (spa_suspended(spa))
1409                 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1410         mutex_exit(&spa->spa_suspend_lock);
1411 }
1412 
1413 /*
1414  * ==========================================================================
1415  * Gang blocks.
1416  *
1417  * A gang block is a collection of small blocks that looks to the DMU
1418  * like one large block.  When zio_dva_allocate() cannot find a block
1419  * of the requested size, due to either severe fragmentation or the pool
1420  * being nearly full, it calls zio_write_gang_block() to construct the
1421  * block from smaller fragments.
1422  *
1423  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1424  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1425  * an indirect block: it's an array of block pointers.  It consumes
1426  * only one sector and hence is allocatable regardless of fragmentation.
1427  * The gang header's bps point to its gang members, which hold the data.
1428  *
1429  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1430  * as the verifier to ensure uniqueness of the SHA256 checksum.
1431  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1432  * not the gang header.  This ensures that data block signatures (needed for
1433  * deduplication) are independent of how the block is physically stored.
1434  *
1435  * Gang blocks can be nested: a gang member may itself be a gang block.
1436  * Thus every gang block is a tree in which root and all interior nodes are
1437  * gang headers, and the leaves are normal blocks that contain user data.
1438  * The root of the gang tree is called the gang leader.
1439  *
1440  * To perform any operation (read, rewrite, free, claim) on a gang block,
1441  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1442  * in the io_gang_tree field of the original logical i/o by recursively
1443  * reading the gang leader and all gang headers below it.  This yields
1444  * an in-core tree containing the contents of every gang header and the
1445  * bps for every constituent of the gang block.
1446  *
1447  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1448  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1449  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1450  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1451  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1452  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1453  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1454  * of the gang header plus zio_checksum_compute() of the data to update the
1455  * gang header's blk_cksum as described above.
1456  *
1457  * The two-phase assemble/issue model solves the problem of partial failure --
1458  * what if you'd freed part of a gang block but then couldn't read the
1459  * gang header for another part?  Assembling the entire gang tree first
1460  * ensures that all the necessary gang header I/O has succeeded before
1461  * starting the actual work of free, claim, or write.  Once the gang tree
1462  * is assembled, free and claim are in-memory operations that cannot fail.
1463  *
1464  * In the event that a gang write fails, zio_dva_unallocate() walks the
1465  * gang tree to immediately free (i.e. insert back into the space map)
1466  * everything we've allocated.  This ensures that we don't get ENOSPC
1467  * errors during repeated suspend/resume cycles due to a flaky device.
1468  *
1469  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1470  * the gang tree, we won't modify the block, so we can safely defer the free
1471  * (knowing that the block is still intact).  If we *can* assemble the gang
1472  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1473  * each constituent bp and we can allocate a new block on the next sync pass.
1474  *
1475  * In all cases, the gang tree allows complete recovery from partial failure.
1476  * ==========================================================================
1477  */
1478 
1479 static zio_t *
1480 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1481 {
1482         if (gn != NULL)
1483                 return (pio);
1484 
1485         return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1486             NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1487             &pio->io_bookmark));
1488 }
1489 
1490 zio_t *
1491 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1492 {
1493         zio_t *zio;
1494 
1495         if (gn != NULL) {
1496                 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1497                     gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1498                     ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1499                 /*
1500                  * As we rewrite each gang header, the pipeline will compute
1501                  * a new gang block header checksum for it; but no one will
1502                  * compute a new data checksum, so we do that here.  The one
1503                  * exception is the gang leader: the pipeline already computed
1504                  * its data checksum because that stage precedes gang assembly.
1505                  * (Presently, nothing actually uses interior data checksums;
1506                  * this is just good hygiene.)
1507                  */
1508                 if (gn != pio->io_gang_leader->io_gang_tree) {
1509                         zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1510                             data, BP_GET_PSIZE(bp));
1511                 }
1512                 /*
1513                  * If we are here to damage data for testing purposes,
1514                  * leave the GBH alone so that we can detect the damage.
1515                  */
1516                 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1517                         zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1518         } else {
1519                 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1520                     data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1521                     ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1522         }
1523 
1524         return (zio);
1525 }
1526 
1527 /* ARGSUSED */
1528 zio_t *
1529 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1530 {
1531         return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1532             ZIO_GANG_CHILD_FLAGS(pio)));
1533 }
1534 
1535 /* ARGSUSED */
1536 zio_t *
1537 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1538 {
1539         return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1540             NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1541 }
1542 
1543 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1544         NULL,
1545         zio_read_gang,
1546         zio_rewrite_gang,
1547         zio_free_gang,
1548         zio_claim_gang,
1549         NULL
1550 };
1551 
1552 static void zio_gang_tree_assemble_done(zio_t *zio);
1553 
1554 static zio_gang_node_t *
1555 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1556 {
1557         zio_gang_node_t *gn;
1558 
1559         ASSERT(*gnpp == NULL);
1560 
1561         gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1562         gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1563         *gnpp = gn;
1564 
1565         return (gn);
1566 }
1567 
1568 static void
1569 zio_gang_node_free(zio_gang_node_t **gnpp)
1570 {
1571         zio_gang_node_t *gn = *gnpp;
1572 
1573         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1574                 ASSERT(gn->gn_child[g] == NULL);
1575 
1576         zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1577         kmem_free(gn, sizeof (*gn));
1578         *gnpp = NULL;
1579 }
1580 
1581 static void
1582 zio_gang_tree_free(zio_gang_node_t **gnpp)
1583 {
1584         zio_gang_node_t *gn = *gnpp;
1585 
1586         if (gn == NULL)
1587                 return;
1588 
1589         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1590                 zio_gang_tree_free(&gn->gn_child[g]);
1591 
1592         zio_gang_node_free(gnpp);
1593 }
1594 
1595 static void
1596 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1597 {
1598         zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1599 
1600         ASSERT(gio->io_gang_leader == gio);
1601         ASSERT(BP_IS_GANG(bp));
1602 
1603         zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1604             SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1605             gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1606 }
1607 
1608 static void
1609 zio_gang_tree_assemble_done(zio_t *zio)
1610 {
1611         zio_t *gio = zio->io_gang_leader;
1612         zio_gang_node_t *gn = zio->io_private;
1613         blkptr_t *bp = zio->io_bp;
1614 
1615         ASSERT(gio == zio_unique_parent(zio));
1616         ASSERT(zio->io_child_count == 0);
1617 
1618         if (zio->io_error)
1619                 return;
1620 
1621         if (BP_SHOULD_BYTESWAP(bp))
1622                 byteswap_uint64_array(zio->io_data, zio->io_size);
1623 
1624         ASSERT(zio->io_data == gn->gn_gbh);
1625         ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1626         ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1627 
1628         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1629                 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1630                 if (!BP_IS_GANG(gbp))
1631                         continue;
1632                 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1633         }
1634 }
1635 
1636 static void
1637 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1638 {
1639         zio_t *gio = pio->io_gang_leader;
1640         zio_t *zio;
1641 
1642         ASSERT(BP_IS_GANG(bp) == !!gn);
1643         ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1644         ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1645 
1646         /*
1647          * If you're a gang header, your data is in gn->gn_gbh.
1648          * If you're a gang member, your data is in 'data' and gn == NULL.
1649          */
1650         zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1651 
1652         if (gn != NULL) {
1653                 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1654 
1655                 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1656                         blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1657                         if (BP_IS_HOLE(gbp))
1658                                 continue;
1659                         zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1660                         data = (char *)data + BP_GET_PSIZE(gbp);
1661                 }
1662         }
1663 
1664         if (gn == gio->io_gang_tree)
1665                 ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1666 
1667         if (zio != pio)
1668                 zio_nowait(zio);
1669 }
1670 
1671 static int
1672 zio_gang_assemble(zio_t *zio)
1673 {
1674         blkptr_t *bp = zio->io_bp;
1675 
1676         ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1677         ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1678 
1679         zio->io_gang_leader = zio;
1680 
1681         zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1682 
1683         return (ZIO_PIPELINE_CONTINUE);
1684 }
1685 
1686 static int
1687 zio_gang_issue(zio_t *zio)
1688 {
1689         blkptr_t *bp = zio->io_bp;
1690 
1691         if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1692                 return (ZIO_PIPELINE_STOP);
1693 
1694         ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1695         ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1696 
1697         if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1698                 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1699         else
1700                 zio_gang_tree_free(&zio->io_gang_tree);
1701 
1702         zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1703 
1704         return (ZIO_PIPELINE_CONTINUE);
1705 }
1706 
1707 static void
1708 zio_write_gang_member_ready(zio_t *zio)
1709 {
1710         zio_t *pio = zio_unique_parent(zio);
1711         zio_t *gio = zio->io_gang_leader;
1712         dva_t *cdva = zio->io_bp->blk_dva;
1713         dva_t *pdva = pio->io_bp->blk_dva;
1714         uint64_t asize;
1715 
1716         if (BP_IS_HOLE(zio->io_bp))
1717                 return;
1718 
1719         ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1720 
1721         ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1722         ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1723         ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1724         ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1725         ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1726 
1727         mutex_enter(&pio->io_lock);
1728         for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1729                 ASSERT(DVA_GET_GANG(&pdva[d]));
1730                 asize = DVA_GET_ASIZE(&pdva[d]);
1731                 asize += DVA_GET_ASIZE(&cdva[d]);
1732                 DVA_SET_ASIZE(&pdva[d], asize);
1733         }
1734         mutex_exit(&pio->io_lock);
1735 }
1736 
1737 static int
1738 zio_write_gang_block(zio_t *pio)
1739 {
1740         spa_t *spa = pio->io_spa;
1741         blkptr_t *bp = pio->io_bp;
1742         zio_t *gio = pio->io_gang_leader;
1743         zio_t *zio;
1744         zio_gang_node_t *gn, **gnpp;
1745         zio_gbh_phys_t *gbh;
1746         uint64_t txg = pio->io_txg;
1747         uint64_t resid = pio->io_size;
1748         uint64_t lsize;
1749         int copies = gio->io_prop.zp_copies;
1750         int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1751         zio_prop_t zp;
1752         int error;
1753 
1754         error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1755             bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1756             METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1757         if (error) {
1758                 pio->io_error = error;
1759                 return (ZIO_PIPELINE_CONTINUE);
1760         }
1761 
1762         if (pio == gio) {
1763                 gnpp = &gio->io_gang_tree;
1764         } else {
1765                 gnpp = pio->io_private;
1766                 ASSERT(pio->io_ready == zio_write_gang_member_ready);
1767         }
1768 
1769         gn = zio_gang_node_alloc(gnpp);
1770         gbh = gn->gn_gbh;
1771         bzero(gbh, SPA_GANGBLOCKSIZE);
1772 
1773         /*
1774          * Create the gang header.
1775          */
1776         zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1777             pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1778 
1779         /*
1780          * Create and nowait the gang children.
1781          */
1782         for (int g = 0; resid != 0; resid -= lsize, g++) {
1783                 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1784                     SPA_MINBLOCKSIZE);
1785                 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1786 
1787                 zp.zp_checksum = gio->io_prop.zp_checksum;
1788                 zp.zp_compress = ZIO_COMPRESS_OFF;
1789                 zp.zp_type = DMU_OT_NONE;
1790                 zp.zp_level = 0;
1791                 zp.zp_copies = gio->io_prop.zp_copies;
1792                 zp.zp_dedup = B_FALSE;
1793                 zp.zp_dedup_verify = B_FALSE;
1794                 zp.zp_nopwrite = B_FALSE;
1795 
1796                 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1797                     (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1798                     zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1799                     pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1800                     &pio->io_bookmark));
1801         }
1802 
1803         /*
1804          * Set pio's pipeline to just wait for zio to finish.
1805          */
1806         pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1807 
1808         zio_nowait(zio);
1809 
1810         return (ZIO_PIPELINE_CONTINUE);
1811 }
1812 
1813 /*
1814  * The zio_nop_write stage in the pipeline determines if allocating
1815  * a new bp is necessary.  By leveraging a cryptographically secure checksum,
1816  * such as SHA256, we can compare the checksums of the new data and the old
1817  * to determine if allocating a new block is required.  The nopwrite
1818  * feature can handle writes in either syncing or open context (i.e. zil
1819  * writes) and as a result is mutually exclusive with dedup.
1820  */
1821 static int
1822 zio_nop_write(zio_t *zio)
1823 {
1824         blkptr_t *bp = zio->io_bp;
1825         blkptr_t *bp_orig = &zio->io_bp_orig;
1826         zio_prop_t *zp = &zio->io_prop;
1827 
1828         ASSERT(BP_GET_LEVEL(bp) == 0);
1829         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1830         ASSERT(zp->zp_nopwrite);
1831         ASSERT(!zp->zp_dedup);
1832         ASSERT(zio->io_bp_override == NULL);
1833         ASSERT(IO_IS_ALLOCATING(zio));
1834 
1835         /*
1836          * Check to see if the original bp and the new bp have matching
1837          * characteristics (i.e. same checksum, compression algorithms, etc).
1838          * If they don't then just continue with the pipeline which will
1839          * allocate a new bp.
1840          */
1841         if (BP_IS_HOLE(bp_orig) ||
1842             !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
1843             BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
1844             BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
1845             BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
1846             zp->zp_copies != BP_GET_NDVAS(bp_orig))
1847                 return (ZIO_PIPELINE_CONTINUE);
1848 
1849         /*
1850          * If the checksums match then reset the pipeline so that we
1851          * avoid allocating a new bp and issuing any I/O.
1852          */
1853         if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
1854                 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
1855                 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
1856                 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
1857                 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
1858                 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
1859                     sizeof (uint64_t)) == 0);
1860 
1861                 *bp = *bp_orig;
1862                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1863                 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1864         }
1865 
1866         return (ZIO_PIPELINE_CONTINUE);
1867 }
1868 
1869 /*
1870  * ==========================================================================
1871  * Dedup
1872  * ==========================================================================
1873  */
1874 static void
1875 zio_ddt_child_read_done(zio_t *zio)
1876 {
1877         blkptr_t *bp = zio->io_bp;
1878         ddt_entry_t *dde = zio->io_private;
1879         ddt_phys_t *ddp;
1880         zio_t *pio = zio_unique_parent(zio);
1881 
1882         mutex_enter(&pio->io_lock);
1883         ddp = ddt_phys_select(dde, bp);
1884         if (zio->io_error == 0)
1885                 ddt_phys_clear(ddp);    /* this ddp doesn't need repair */
1886         if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1887                 dde->dde_repair_data = zio->io_data;
1888         else
1889                 zio_buf_free(zio->io_data, zio->io_size);
1890         mutex_exit(&pio->io_lock);
1891 }
1892 
1893 static int
1894 zio_ddt_read_start(zio_t *zio)
1895 {
1896         blkptr_t *bp = zio->io_bp;
1897 
1898         ASSERT(BP_GET_DEDUP(bp));
1899         ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1900         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1901 
1902         if (zio->io_child_error[ZIO_CHILD_DDT]) {
1903                 ddt_t *ddt = ddt_select(zio->io_spa, bp);
1904                 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
1905                 ddt_phys_t *ddp = dde->dde_phys;
1906                 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
1907                 blkptr_t blk;
1908 
1909                 ASSERT(zio->io_vsd == NULL);
1910                 zio->io_vsd = dde;
1911 
1912                 if (ddp_self == NULL)
1913                         return (ZIO_PIPELINE_CONTINUE);
1914 
1915                 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1916                         if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
1917                                 continue;
1918                         ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
1919                             &blk);
1920                         zio_nowait(zio_read(zio, zio->io_spa, &blk,
1921                             zio_buf_alloc(zio->io_size), zio->io_size,
1922                             zio_ddt_child_read_done, dde, zio->io_priority,
1923                             ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
1924                             &zio->io_bookmark));
1925                 }
1926                 return (ZIO_PIPELINE_CONTINUE);
1927         }
1928 
1929         zio_nowait(zio_read(zio, zio->io_spa, bp,
1930             zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
1931             ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
1932 
1933         return (ZIO_PIPELINE_CONTINUE);
1934 }
1935 
1936 static int
1937 zio_ddt_read_done(zio_t *zio)
1938 {
1939         blkptr_t *bp = zio->io_bp;
1940 
1941         if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
1942                 return (ZIO_PIPELINE_STOP);
1943 
1944         ASSERT(BP_GET_DEDUP(bp));
1945         ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1946         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1947 
1948         if (zio->io_child_error[ZIO_CHILD_DDT]) {
1949                 ddt_t *ddt = ddt_select(zio->io_spa, bp);
1950                 ddt_entry_t *dde = zio->io_vsd;
1951                 if (ddt == NULL) {
1952                         ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
1953                         return (ZIO_PIPELINE_CONTINUE);
1954                 }
1955                 if (dde == NULL) {
1956                         zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
1957                         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1958                         return (ZIO_PIPELINE_STOP);
1959                 }
1960                 if (dde->dde_repair_data != NULL) {
1961                         bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
1962                         zio->io_child_error[ZIO_CHILD_DDT] = 0;
1963                 }
1964                 ddt_repair_done(ddt, dde);
1965                 zio->io_vsd = NULL;
1966         }
1967 
1968         ASSERT(zio->io_vsd == NULL);
1969 
1970         return (ZIO_PIPELINE_CONTINUE);
1971 }
1972 
1973 static boolean_t
1974 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
1975 {
1976         spa_t *spa = zio->io_spa;
1977 
1978         /*
1979          * Note: we compare the original data, not the transformed data,
1980          * because when zio->io_bp is an override bp, we will not have
1981          * pushed the I/O transforms.  That's an important optimization
1982          * because otherwise we'd compress/encrypt all dmu_sync() data twice.
1983          */
1984         for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1985                 zio_t *lio = dde->dde_lead_zio[p];
1986 
1987                 if (lio != NULL) {
1988                         return (lio->io_orig_size != zio->io_orig_size ||
1989                             bcmp(zio->io_orig_data, lio->io_orig_data,
1990                             zio->io_orig_size) != 0);
1991                 }
1992         }
1993 
1994         for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1995                 ddt_phys_t *ddp = &dde->dde_phys[p];
1996 
1997                 if (ddp->ddp_phys_birth != 0) {
1998                         arc_buf_t *abuf = NULL;
1999                         uint32_t aflags = ARC_WAIT;
2000                         blkptr_t blk = *zio->io_bp;
2001                         int error;
2002 
2003                         ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2004 
2005                         ddt_exit(ddt);
2006 
2007                         error = arc_read(NULL, spa, &blk,
2008                             arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2009                             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2010                             &aflags, &zio->io_bookmark);
2011 
2012                         if (error == 0) {
2013                                 if (arc_buf_size(abuf) != zio->io_orig_size ||
2014                                     bcmp(abuf->b_data, zio->io_orig_data,
2015                                     zio->io_orig_size) != 0)
2016                                         error = SET_ERROR(EEXIST);
2017                                 VERIFY(arc_buf_remove_ref(abuf, &abuf));
2018                         }
2019 
2020                         ddt_enter(ddt);
2021                         return (error != 0);
2022                 }
2023         }
2024 
2025         return (B_FALSE);
2026 }
2027 
2028 static void
2029 zio_ddt_child_write_ready(zio_t *zio)
2030 {
2031         int p = zio->io_prop.zp_copies;
2032         ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2033         ddt_entry_t *dde = zio->io_private;
2034         ddt_phys_t *ddp = &dde->dde_phys[p];
2035         zio_t *pio;
2036 
2037         if (zio->io_error)
2038                 return;
2039 
2040         ddt_enter(ddt);
2041 
2042         ASSERT(dde->dde_lead_zio[p] == zio);
2043 
2044         ddt_phys_fill(ddp, zio->io_bp);
2045 
2046         while ((pio = zio_walk_parents(zio)) != NULL)
2047                 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2048 
2049         ddt_exit(ddt);
2050 }
2051 
2052 static void
2053 zio_ddt_child_write_done(zio_t *zio)
2054 {
2055         int p = zio->io_prop.zp_copies;
2056         ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2057         ddt_entry_t *dde = zio->io_private;
2058         ddt_phys_t *ddp = &dde->dde_phys[p];
2059 
2060         ddt_enter(ddt);
2061 
2062         ASSERT(ddp->ddp_refcnt == 0);
2063         ASSERT(dde->dde_lead_zio[p] == zio);
2064         dde->dde_lead_zio[p] = NULL;
2065 
2066         if (zio->io_error == 0) {
2067                 while (zio_walk_parents(zio) != NULL)
2068                         ddt_phys_addref(ddp);
2069         } else {
2070                 ddt_phys_clear(ddp);
2071         }
2072 
2073         ddt_exit(ddt);
2074 }
2075 
2076 static void
2077 zio_ddt_ditto_write_done(zio_t *zio)
2078 {
2079         int p = DDT_PHYS_DITTO;
2080         zio_prop_t *zp = &zio->io_prop;
2081         blkptr_t *bp = zio->io_bp;
2082         ddt_t *ddt = ddt_select(zio->io_spa, bp);
2083         ddt_entry_t *dde = zio->io_private;
2084         ddt_phys_t *ddp = &dde->dde_phys[p];
2085         ddt_key_t *ddk = &dde->dde_key;
2086 
2087         ddt_enter(ddt);
2088 
2089         ASSERT(ddp->ddp_refcnt == 0);
2090         ASSERT(dde->dde_lead_zio[p] == zio);
2091         dde->dde_lead_zio[p] = NULL;
2092 
2093         if (zio->io_error == 0) {
2094                 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2095                 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2096                 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2097                 if (ddp->ddp_phys_birth != 0)
2098                         ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2099                 ddt_phys_fill(ddp, bp);
2100         }
2101 
2102         ddt_exit(ddt);
2103 }
2104 
2105 static int
2106 zio_ddt_write(zio_t *zio)
2107 {
2108         spa_t *spa = zio->io_spa;
2109         blkptr_t *bp = zio->io_bp;
2110         uint64_t txg = zio->io_txg;
2111         zio_prop_t *zp = &zio->io_prop;
2112         int p = zp->zp_copies;
2113         int ditto_copies;
2114         zio_t *cio = NULL;
2115         zio_t *dio = NULL;
2116         ddt_t *ddt = ddt_select(spa, bp);
2117         ddt_entry_t *dde;
2118         ddt_phys_t *ddp;
2119 
2120         ASSERT(BP_GET_DEDUP(bp));
2121         ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2122         ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2123 
2124         ddt_enter(ddt);
2125         dde = ddt_lookup(ddt, bp, B_TRUE);
2126         ddp = &dde->dde_phys[p];
2127 
2128         if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2129                 /*
2130                  * If we're using a weak checksum, upgrade to a strong checksum
2131                  * and try again.  If we're already using a strong checksum,
2132                  * we can't resolve it, so just convert to an ordinary write.
2133                  * (And automatically e-mail a paper to Nature?)
2134                  */
2135                 if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2136                         zp->zp_checksum = spa_dedup_checksum(spa);
2137                         zio_pop_transforms(zio);
2138                         zio->io_stage = ZIO_STAGE_OPEN;
2139                         BP_ZERO(bp);
2140                 } else {
2141                         zp->zp_dedup = B_FALSE;
2142                 }
2143                 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2144                 ddt_exit(ddt);
2145                 return (ZIO_PIPELINE_CONTINUE);
2146         }
2147 
2148         ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2149         ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2150 
2151         if (ditto_copies > ddt_ditto_copies_present(dde) &&
2152             dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2153                 zio_prop_t czp = *zp;
2154 
2155                 czp.zp_copies = ditto_copies;
2156 
2157                 /*
2158                  * If we arrived here with an override bp, we won't have run
2159                  * the transform stack, so we won't have the data we need to
2160                  * generate a child i/o.  So, toss the override bp and restart.
2161                  * This is safe, because using the override bp is just an
2162                  * optimization; and it's rare, so the cost doesn't matter.
2163                  */
2164                 if (zio->io_bp_override) {
2165                         zio_pop_transforms(zio);
2166                         zio->io_stage = ZIO_STAGE_OPEN;
2167                         zio->io_pipeline = ZIO_WRITE_PIPELINE;
2168                         zio->io_bp_override = NULL;
2169                         BP_ZERO(bp);
2170                         ddt_exit(ddt);
2171                         return (ZIO_PIPELINE_CONTINUE);
2172                 }
2173 
2174                 dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2175                     zio->io_orig_size, &czp, NULL,
2176                     zio_ddt_ditto_write_done, dde, zio->io_priority,
2177                     ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2178 
2179                 zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2180                 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2181         }
2182 
2183         if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2184                 if (ddp->ddp_phys_birth != 0)
2185                         ddt_bp_fill(ddp, bp, txg);
2186                 if (dde->dde_lead_zio[p] != NULL)
2187                         zio_add_child(zio, dde->dde_lead_zio[p]);
2188                 else
2189                         ddt_phys_addref(ddp);
2190         } else if (zio->io_bp_override) {
2191                 ASSERT(bp->blk_birth == txg);
2192                 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2193                 ddt_phys_fill(ddp, bp);
2194                 ddt_phys_addref(ddp);
2195         } else {
2196                 cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2197                     zio->io_orig_size, zp, zio_ddt_child_write_ready,
2198                     zio_ddt_child_write_done, dde, zio->io_priority,
2199                     ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2200 
2201                 zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2202                 dde->dde_lead_zio[p] = cio;
2203         }
2204 
2205         ddt_exit(ddt);
2206 
2207         if (cio)
2208                 zio_nowait(cio);
2209         if (dio)
2210                 zio_nowait(dio);
2211 
2212         return (ZIO_PIPELINE_CONTINUE);
2213 }
2214 
2215 ddt_entry_t *freedde; /* for debugging */
2216 
2217 static int
2218 zio_ddt_free(zio_t *zio)
2219 {
2220         spa_t *spa = zio->io_spa;
2221         blkptr_t *bp = zio->io_bp;
2222         ddt_t *ddt = ddt_select(spa, bp);
2223         ddt_entry_t *dde;
2224         ddt_phys_t *ddp;
2225 
2226         ASSERT(BP_GET_DEDUP(bp));
2227         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2228 
2229         ddt_enter(ddt);
2230         freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2231         ddp = ddt_phys_select(dde, bp);
2232         ddt_phys_decref(ddp);
2233         ddt_exit(ddt);
2234 
2235         return (ZIO_PIPELINE_CONTINUE);
2236 }
2237 
2238 /*
2239  * ==========================================================================
2240  * Allocate and free blocks
2241  * ==========================================================================
2242  */
2243 static int
2244 zio_dva_allocate(zio_t *zio)
2245 {
2246         spa_t *spa = zio->io_spa;
2247         metaslab_class_t *mc = spa_normal_class(spa);
2248         blkptr_t *bp = zio->io_bp;
2249         int error;
2250         int flags = 0;
2251 
2252         if (zio->io_gang_leader == NULL) {
2253                 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2254                 zio->io_gang_leader = zio;
2255         }
2256 
2257         ASSERT(BP_IS_HOLE(bp));
2258         ASSERT0(BP_GET_NDVAS(bp));
2259         ASSERT3U(zio->io_prop.zp_copies, >, 0);
2260         ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2261         ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2262 
2263         /*
2264          * The dump device does not support gang blocks so allocation on
2265          * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2266          * the "fast" gang feature.
2267          */
2268         flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2269         flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2270             METASLAB_GANG_CHILD : 0;
2271         error = metaslab_alloc(spa, mc, zio->io_size, bp,
2272             zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2273 
2274         if (error) {
2275                 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2276                     "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2277                     error);
2278                 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2279                         return (zio_write_gang_block(zio));
2280                 zio->io_error = error;
2281         }
2282 
2283         return (ZIO_PIPELINE_CONTINUE);
2284 }
2285 
2286 static int
2287 zio_dva_free(zio_t *zio)
2288 {
2289         metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2290 
2291         return (ZIO_PIPELINE_CONTINUE);
2292 }
2293 
2294 static int
2295 zio_dva_claim(zio_t *zio)
2296 {
2297         int error;
2298 
2299         error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2300         if (error)
2301                 zio->io_error = error;
2302 
2303         return (ZIO_PIPELINE_CONTINUE);
2304 }
2305 
2306 /*
2307  * Undo an allocation.  This is used by zio_done() when an I/O fails
2308  * and we want to give back the block we just allocated.
2309  * This handles both normal blocks and gang blocks.
2310  */
2311 static void
2312 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2313 {
2314         ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2315         ASSERT(zio->io_bp_override == NULL);
2316 
2317         if (!BP_IS_HOLE(bp))
2318                 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2319 
2320         if (gn != NULL) {
2321                 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2322                         zio_dva_unallocate(zio, gn->gn_child[g],
2323                             &gn->gn_gbh->zg_blkptr[g]);
2324                 }
2325         }
2326 }
2327 
2328 /*
2329  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2330  */
2331 int
2332 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2333     uint64_t size, boolean_t use_slog)
2334 {
2335         int error = 1;
2336 
2337         ASSERT(txg > spa_syncing_txg(spa));
2338 
2339         /*
2340          * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2341          * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2342          * when allocating them.
2343          */
2344         if (use_slog) {
2345                 error = metaslab_alloc(spa, spa_log_class(spa), size,
2346                     new_bp, 1, txg, old_bp,
2347                     METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2348         }
2349 
2350         if (error) {
2351                 error = metaslab_alloc(spa, spa_normal_class(spa), size,
2352                     new_bp, 1, txg, old_bp,
2353                     METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2354         }
2355 
2356         if (error == 0) {
2357                 BP_SET_LSIZE(new_bp, size);
2358                 BP_SET_PSIZE(new_bp, size);
2359                 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2360                 BP_SET_CHECKSUM(new_bp,
2361                     spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2362                     ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2363                 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2364                 BP_SET_LEVEL(new_bp, 0);
2365                 BP_SET_DEDUP(new_bp, 0);
2366                 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2367         }
2368 
2369         return (error);
2370 }
2371 
2372 /*
2373  * Free an intent log block.
2374  */
2375 void
2376 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2377 {
2378         ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2379         ASSERT(!BP_IS_GANG(bp));
2380 
2381         zio_free(spa, txg, bp);
2382 }
2383 
2384 /*
2385  * ==========================================================================
2386  * Read and write to physical devices
2387  * ==========================================================================
2388  */
2389 static int
2390 zio_vdev_io_start(zio_t *zio)
2391 {
2392         vdev_t *vd = zio->io_vd;
2393         uint64_t align;
2394         spa_t *spa = zio->io_spa;
2395 
2396         ASSERT(zio->io_error == 0);
2397         ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2398 
2399         if (vd == NULL) {
2400                 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2401                         spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2402 
2403                 /*
2404                  * The mirror_ops handle multiple DVAs in a single BP.
2405                  */
2406                 return (vdev_mirror_ops.vdev_op_io_start(zio));
2407         }
2408 
2409         /*
2410          * We keep track of time-sensitive I/Os so that the scan thread
2411          * can quickly react to certain workloads.  In particular, we care
2412          * about non-scrubbing, top-level reads and writes with the following
2413          * characteristics:
2414          *      - synchronous writes of user data to non-slog devices
2415          *      - any reads of user data
2416          * When these conditions are met, adjust the timestamp of spa_last_io
2417          * which allows the scan thread to adjust its workload accordingly.
2418          */
2419         if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2420             vd == vd->vdev_top && !vd->vdev_islog &&
2421             zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2422             zio->io_txg != spa_syncing_txg(spa)) {
2423                 uint64_t old = spa->spa_last_io;
2424                 uint64_t new = ddi_get_lbolt64();
2425                 if (old != new)
2426                         (void) atomic_cas_64(&spa->spa_last_io, old, new);
2427         }
2428 
2429         align = 1ULL << vd->vdev_top->vdev_ashift;
2430 
2431         if (P2PHASE(zio->io_size, align) != 0) {
2432                 uint64_t asize = P2ROUNDUP(zio->io_size, align);
2433                 char *abuf = zio_buf_alloc(asize);
2434                 ASSERT(vd == vd->vdev_top);
2435                 if (zio->io_type == ZIO_TYPE_WRITE) {
2436                         bcopy(zio->io_data, abuf, zio->io_size);
2437                         bzero(abuf + zio->io_size, asize - zio->io_size);
2438                 }
2439                 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2440         }
2441 
2442         ASSERT(P2PHASE(zio->io_offset, align) == 0);
2443         ASSERT(P2PHASE(zio->io_size, align) == 0);
2444         VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2445 
2446         /*
2447          * If this is a repair I/O, and there's no self-healing involved --
2448          * that is, we're just resilvering what we expect to resilver --
2449          * then don't do the I/O unless zio's txg is actually in vd's DTL.
2450          * This prevents spurious resilvering with nested replication.
2451          * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2452          * A is out of date, we'll read from C+D, then use the data to
2453          * resilver A+B -- but we don't actually want to resilver B, just A.
2454          * The top-level mirror has no way to know this, so instead we just
2455          * discard unnecessary repairs as we work our way down the vdev tree.
2456          * The same logic applies to any form of nested replication:
2457          * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2458          */
2459         if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2460             !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2461             zio->io_txg != 0 &&      /* not a delegated i/o */
2462             !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2463                 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2464                 zio_vdev_io_bypass(zio);
2465                 return (ZIO_PIPELINE_CONTINUE);
2466         }
2467 
2468         if (vd->vdev_ops->vdev_op_leaf &&
2469             (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2470 
2471                 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2472                         return (ZIO_PIPELINE_CONTINUE);
2473 
2474                 if ((zio = vdev_queue_io(zio)) == NULL)
2475                         return (ZIO_PIPELINE_STOP);
2476 
2477                 if (!vdev_accessible(vd, zio)) {
2478                         zio->io_error = SET_ERROR(ENXIO);
2479                         zio_interrupt(zio);
2480                         return (ZIO_PIPELINE_STOP);
2481                 }
2482         }
2483 
2484         return (vd->vdev_ops->vdev_op_io_start(zio));
2485 }
2486 
2487 static int
2488 zio_vdev_io_done(zio_t *zio)
2489 {
2490         vdev_t *vd = zio->io_vd;
2491         vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2492         boolean_t unexpected_error = B_FALSE;
2493 
2494         if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2495                 return (ZIO_PIPELINE_STOP);
2496 
2497         ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2498 
2499         if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2500 
2501                 vdev_queue_io_done(zio);
2502 
2503                 if (zio->io_type == ZIO_TYPE_WRITE)
2504                         vdev_cache_write(zio);
2505 
2506                 if (zio_injection_enabled && zio->io_error == 0)
2507                         zio->io_error = zio_handle_device_injection(vd,
2508                             zio, EIO);
2509 
2510                 if (zio_injection_enabled && zio->io_error == 0)
2511                         zio->io_error = zio_handle_label_injection(zio, EIO);
2512 
2513                 if (zio->io_error) {
2514                         if (!vdev_accessible(vd, zio)) {
2515                                 zio->io_error = SET_ERROR(ENXIO);
2516                         } else {
2517                                 unexpected_error = B_TRUE;
2518                         }
2519                 }
2520         }
2521 
2522         ops->vdev_op_io_done(zio);
2523 
2524         if (unexpected_error)
2525                 VERIFY(vdev_probe(vd, zio) == NULL);
2526 
2527         return (ZIO_PIPELINE_CONTINUE);
2528 }
2529 
2530 /*
2531  * For non-raidz ZIOs, we can just copy aside the bad data read from the
2532  * disk, and use that to finish the checksum ereport later.
2533  */
2534 static void
2535 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2536     const void *good_buf)
2537 {
2538         /* no processing needed */
2539         zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2540 }
2541 
2542 /*ARGSUSED*/
2543 void
2544 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2545 {
2546         void *buf = zio_buf_alloc(zio->io_size);
2547 
2548         bcopy(zio->io_data, buf, zio->io_size);
2549 
2550         zcr->zcr_cbinfo = zio->io_size;
2551         zcr->zcr_cbdata = buf;
2552         zcr->zcr_finish = zio_vsd_default_cksum_finish;
2553         zcr->zcr_free = zio_buf_free;
2554 }
2555 
2556 static int
2557 zio_vdev_io_assess(zio_t *zio)
2558 {
2559         vdev_t *vd = zio->io_vd;
2560 
2561         if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2562                 return (ZIO_PIPELINE_STOP);
2563 
2564         if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2565                 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2566 
2567         if (zio->io_vsd != NULL) {
2568                 zio->io_vsd_ops->vsd_free(zio);
2569                 zio->io_vsd = NULL;
2570         }
2571 
2572         if (zio_injection_enabled && zio->io_error == 0)
2573                 zio->io_error = zio_handle_fault_injection(zio, EIO);
2574 
2575         /*
2576          * If the I/O failed, determine whether we should attempt to retry it.
2577          *
2578          * On retry, we cut in line in the issue queue, since we don't want
2579          * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2580          */
2581         if (zio->io_error && vd == NULL &&
2582             !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2583                 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));  /* not a leaf */
2584                 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));   /* not a leaf */
2585                 zio->io_error = 0;
2586                 zio->io_flags |= ZIO_FLAG_IO_RETRY |
2587                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2588                 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2589                 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2590                     zio_requeue_io_start_cut_in_line);
2591                 return (ZIO_PIPELINE_STOP);
2592         }
2593 
2594         /*
2595          * If we got an error on a leaf device, convert it to ENXIO
2596          * if the device is not accessible at all.
2597          */
2598         if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2599             !vdev_accessible(vd, zio))
2600                 zio->io_error = SET_ERROR(ENXIO);
2601 
2602         /*
2603          * If we can't write to an interior vdev (mirror or RAID-Z),
2604          * set vdev_cant_write so that we stop trying to allocate from it.
2605          */
2606         if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2607             vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2608                 vd->vdev_cant_write = B_TRUE;
2609         }
2610 
2611         if (zio->io_error)
2612                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2613 
2614         return (ZIO_PIPELINE_CONTINUE);
2615 }
2616 
2617 void
2618 zio_vdev_io_reissue(zio_t *zio)
2619 {
2620         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2621         ASSERT(zio->io_error == 0);
2622 
2623         zio->io_stage >>= 1;
2624 }
2625 
2626 void
2627 zio_vdev_io_redone(zio_t *zio)
2628 {
2629         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2630 
2631         zio->io_stage >>= 1;
2632 }
2633 
2634 void
2635 zio_vdev_io_bypass(zio_t *zio)
2636 {
2637         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2638         ASSERT(zio->io_error == 0);
2639 
2640         zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2641         zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2642 }
2643 
2644 /*
2645  * ==========================================================================
2646  * Generate and verify checksums
2647  * ==========================================================================
2648  */
2649 static int
2650 zio_checksum_generate(zio_t *zio)
2651 {
2652         blkptr_t *bp = zio->io_bp;
2653         enum zio_checksum checksum;
2654 
2655         if (bp == NULL) {
2656                 /*
2657                  * This is zio_write_phys().
2658                  * We're either generating a label checksum, or none at all.
2659                  */
2660                 checksum = zio->io_prop.zp_checksum;
2661 
2662                 if (checksum == ZIO_CHECKSUM_OFF)
2663                         return (ZIO_PIPELINE_CONTINUE);
2664 
2665                 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2666         } else {
2667                 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2668                         ASSERT(!IO_IS_ALLOCATING(zio));
2669                         checksum = ZIO_CHECKSUM_GANG_HEADER;
2670                 } else {
2671                         checksum = BP_GET_CHECKSUM(bp);
2672                 }
2673         }
2674 
2675         zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2676 
2677         return (ZIO_PIPELINE_CONTINUE);
2678 }
2679 
2680 static int
2681 zio_checksum_verify(zio_t *zio)
2682 {
2683         zio_bad_cksum_t info;
2684         blkptr_t *bp = zio->io_bp;
2685         int error;
2686 
2687         ASSERT(zio->io_vd != NULL);
2688 
2689         if (bp == NULL) {
2690                 /*
2691                  * This is zio_read_phys().
2692                  * We're either verifying a label checksum, or nothing at all.
2693                  */
2694                 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2695                         return (ZIO_PIPELINE_CONTINUE);
2696 
2697                 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2698         }
2699 
2700         if ((error = zio_checksum_error(zio, &info)) != 0) {
2701                 zio->io_error = error;
2702                 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2703                         zfs_ereport_start_checksum(zio->io_spa,
2704                             zio->io_vd, zio, zio->io_offset,
2705                             zio->io_size, NULL, &info);
2706                 }
2707         }
2708 
2709         return (ZIO_PIPELINE_CONTINUE);
2710 }
2711 
2712 /*
2713  * Called by RAID-Z to ensure we don't compute the checksum twice.
2714  */
2715 void
2716 zio_checksum_verified(zio_t *zio)
2717 {
2718         zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2719 }
2720 
2721 /*
2722  * ==========================================================================
2723  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2724  * An error of 0 indictes success.  ENXIO indicates whole-device failure,
2725  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2726  * indicate errors that are specific to one I/O, and most likely permanent.
2727  * Any other error is presumed to be worse because we weren't expecting it.
2728  * ==========================================================================
2729  */
2730 int
2731 zio_worst_error(int e1, int e2)
2732 {
2733         static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2734         int r1, r2;
2735 
2736         for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2737                 if (e1 == zio_error_rank[r1])
2738                         break;
2739 
2740         for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2741                 if (e2 == zio_error_rank[r2])
2742                         break;
2743 
2744         return (r1 > r2 ? e1 : e2);
2745 }
2746 
2747 /*
2748  * ==========================================================================
2749  * I/O completion
2750  * ==========================================================================
2751  */
2752 static int
2753 zio_ready(zio_t *zio)
2754 {
2755         blkptr_t *bp = zio->io_bp;
2756         zio_t *pio, *pio_next;
2757 
2758         if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2759             zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2760                 return (ZIO_PIPELINE_STOP);
2761 
2762         if (zio->io_ready) {
2763                 ASSERT(IO_IS_ALLOCATING(zio));
2764                 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
2765                     (zio->io_flags & ZIO_FLAG_NOPWRITE));
2766                 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2767 
2768                 zio->io_ready(zio);
2769         }
2770 
2771         if (bp != NULL && bp != &zio->io_bp_copy)
2772                 zio->io_bp_copy = *bp;
2773 
2774         if (zio->io_error)
2775                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2776 
2777         mutex_enter(&zio->io_lock);
2778         zio->io_state[ZIO_WAIT_READY] = 1;
2779         pio = zio_walk_parents(zio);
2780         mutex_exit(&zio->io_lock);
2781 
2782         /*
2783          * As we notify zio's parents, new parents could be added.
2784          * New parents go to the head of zio's io_parent_list, however,
2785          * so we will (correctly) not notify them.  The remainder of zio's
2786          * io_parent_list, from 'pio_next' onward, cannot change because
2787          * all parents must wait for us to be done before they can be done.
2788          */
2789         for (; pio != NULL; pio = pio_next) {
2790                 pio_next = zio_walk_parents(zio);
2791                 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2792         }
2793 
2794         if (zio->io_flags & ZIO_FLAG_NODATA) {
2795                 if (BP_IS_GANG(bp)) {
2796                         zio->io_flags &= ~ZIO_FLAG_NODATA;
2797                 } else {
2798                         ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2799                         zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2800                 }
2801         }
2802 
2803         if (zio_injection_enabled &&
2804             zio->io_spa->spa_syncing_txg == zio->io_txg)
2805                 zio_handle_ignored_writes(zio);
2806 
2807         return (ZIO_PIPELINE_CONTINUE);
2808 }
2809 
2810 static int
2811 zio_done(zio_t *zio)
2812 {
2813         spa_t *spa = zio->io_spa;
2814         zio_t *lio = zio->io_logical;
2815         blkptr_t *bp = zio->io_bp;
2816         vdev_t *vd = zio->io_vd;
2817         uint64_t psize = zio->io_size;
2818         zio_t *pio, *pio_next;
2819 
2820         /*
2821          * If our children haven't all completed,
2822          * wait for them and then repeat this pipeline stage.
2823          */
2824         if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2825             zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2826             zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2827             zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2828                 return (ZIO_PIPELINE_STOP);
2829 
2830         for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2831                 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2832                         ASSERT(zio->io_children[c][w] == 0);
2833 
2834         if (bp != NULL) {
2835                 ASSERT(bp->blk_pad[0] == 0);
2836                 ASSERT(bp->blk_pad[1] == 0);
2837                 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2838                     (bp == zio_unique_parent(zio)->io_bp));
2839                 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2840                     zio->io_bp_override == NULL &&
2841                     !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2842                         ASSERT(!BP_SHOULD_BYTESWAP(bp));
2843                         ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2844                         ASSERT(BP_COUNT_GANG(bp) == 0 ||
2845                             (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2846                 }
2847                 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
2848                         VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
2849         }
2850 
2851         /*
2852          * If there were child vdev/gang/ddt errors, they apply to us now.
2853          */
2854         zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2855         zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2856         zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2857 
2858         /*
2859          * If the I/O on the transformed data was successful, generate any
2860          * checksum reports now while we still have the transformed data.
2861          */
2862         if (zio->io_error == 0) {
2863                 while (zio->io_cksum_report != NULL) {
2864                         zio_cksum_report_t *zcr = zio->io_cksum_report;
2865                         uint64_t align = zcr->zcr_align;
2866                         uint64_t asize = P2ROUNDUP(psize, align);
2867                         char *abuf = zio->io_data;
2868 
2869                         if (asize != psize) {
2870                                 abuf = zio_buf_alloc(asize);
2871                                 bcopy(zio->io_data, abuf, psize);
2872                                 bzero(abuf + psize, asize - psize);
2873                         }
2874 
2875                         zio->io_cksum_report = zcr->zcr_next;
2876                         zcr->zcr_next = NULL;
2877                         zcr->zcr_finish(zcr, abuf);
2878                         zfs_ereport_free_checksum(zcr);
2879 
2880                         if (asize != psize)
2881                                 zio_buf_free(abuf, asize);
2882                 }
2883         }
2884 
2885         zio_pop_transforms(zio);        /* note: may set zio->io_error */
2886 
2887         vdev_stat_update(zio, psize);
2888 
2889         if (zio->io_error) {
2890                 /*
2891                  * If this I/O is attached to a particular vdev,
2892                  * generate an error message describing the I/O failure
2893                  * at the block level.  We ignore these errors if the
2894                  * device is currently unavailable.
2895                  */
2896                 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
2897                         zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
2898 
2899                 if ((zio->io_error == EIO || !(zio->io_flags &
2900                     (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
2901                     zio == lio) {
2902                         /*
2903                          * For logical I/O requests, tell the SPA to log the
2904                          * error and generate a logical data ereport.
2905                          */
2906                         spa_log_error(spa, zio);
2907                         zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
2908                             0, 0);
2909                 }
2910         }
2911 
2912         if (zio->io_error && zio == lio) {
2913                 /*
2914                  * Determine whether zio should be reexecuted.  This will
2915                  * propagate all the way to the root via zio_notify_parent().
2916                  */
2917                 ASSERT(vd == NULL && bp != NULL);
2918                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2919 
2920                 if (IO_IS_ALLOCATING(zio) &&
2921                     !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
2922                         if (zio->io_error != ENOSPC)
2923                                 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
2924                         else
2925                                 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2926                 }
2927 
2928                 if ((zio->io_type == ZIO_TYPE_READ ||
2929                     zio->io_type == ZIO_TYPE_FREE) &&
2930                     !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
2931                     zio->io_error == ENXIO &&
2932                     spa_load_state(spa) == SPA_LOAD_NONE &&
2933                     spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
2934                         zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2935 
2936                 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
2937                         zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2938 
2939                 /*
2940                  * Here is a possibly good place to attempt to do
2941                  * either combinatorial reconstruction or error correction
2942                  * based on checksums.  It also might be a good place
2943                  * to send out preliminary ereports before we suspend
2944                  * processing.
2945                  */
2946         }
2947 
2948         /*
2949          * If there were logical child errors, they apply to us now.
2950          * We defer this until now to avoid conflating logical child
2951          * errors with errors that happened to the zio itself when
2952          * updating vdev stats and reporting FMA events above.
2953          */
2954         zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
2955 
2956         if ((zio->io_error || zio->io_reexecute) &&
2957             IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
2958             !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
2959                 zio_dva_unallocate(zio, zio->io_gang_tree, bp);
2960 
2961         zio_gang_tree_free(&zio->io_gang_tree);
2962 
2963         /*
2964          * Godfather I/Os should never suspend.
2965          */
2966         if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
2967             (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
2968                 zio->io_reexecute = 0;
2969 
2970         if (zio->io_reexecute) {
2971                 /*
2972                  * This is a logical I/O that wants to reexecute.
2973                  *
2974                  * Reexecute is top-down.  When an i/o fails, if it's not
2975                  * the root, it simply notifies its parent and sticks around.
2976                  * The parent, seeing that it still has children in zio_done(),
2977                  * does the same.  This percolates all the way up to the root.
2978                  * The root i/o will reexecute or suspend the entire tree.
2979                  *
2980                  * This approach ensures that zio_reexecute() honors
2981                  * all the original i/o dependency relationships, e.g.
2982                  * parents not executing until children are ready.
2983                  */
2984                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2985 
2986                 zio->io_gang_leader = NULL;
2987 
2988                 mutex_enter(&zio->io_lock);
2989                 zio->io_state[ZIO_WAIT_DONE] = 1;
2990                 mutex_exit(&zio->io_lock);
2991 
2992                 /*
2993                  * "The Godfather" I/O monitors its children but is
2994                  * not a true parent to them. It will track them through
2995                  * the pipeline but severs its ties whenever they get into
2996                  * trouble (e.g. suspended). This allows "The Godfather"
2997                  * I/O to return status without blocking.
2998                  */
2999                 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3000                         zio_link_t *zl = zio->io_walk_link;
3001                         pio_next = zio_walk_parents(zio);
3002 
3003                         if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3004                             (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3005                                 zio_remove_child(pio, zio, zl);
3006                                 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3007                         }
3008                 }
3009 
3010                 if ((pio = zio_unique_parent(zio)) != NULL) {
3011                         /*
3012                          * We're not a root i/o, so there's nothing to do
3013                          * but notify our parent.  Don't propagate errors
3014                          * upward since we haven't permanently failed yet.
3015                          */
3016                         ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3017                         zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3018                         zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3019                 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3020                         /*
3021                          * We'd fail again if we reexecuted now, so suspend
3022                          * until conditions improve (e.g. device comes online).
3023                          */
3024                         zio_suspend(spa, zio);
3025                 } else {
3026                         /*
3027                          * Reexecution is potentially a huge amount of work.
3028                          * Hand it off to the otherwise-unused claim taskq.
3029                          */
3030                         ASSERT(zio->io_tqent.tqent_next == NULL);
3031                         spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3032                             ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3033                             0, &zio->io_tqent);
3034                 }
3035                 return (ZIO_PIPELINE_STOP);
3036         }
3037 
3038         ASSERT(zio->io_child_count == 0);
3039         ASSERT(zio->io_reexecute == 0);
3040         ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3041 
3042         /*
3043          * Report any checksum errors, since the I/O is complete.
3044          */
3045         while (zio->io_cksum_report != NULL) {
3046                 zio_cksum_report_t *zcr = zio->io_cksum_report;
3047                 zio->io_cksum_report = zcr->zcr_next;
3048                 zcr->zcr_next = NULL;
3049                 zcr->zcr_finish(zcr, NULL);
3050                 zfs_ereport_free_checksum(zcr);
3051         }
3052 
3053         /*
3054          * It is the responsibility of the done callback to ensure that this
3055          * particular zio is no longer discoverable for adoption, and as
3056          * such, cannot acquire any new parents.
3057          */
3058         if (zio->io_done)
3059                 zio->io_done(zio);
3060 
3061         mutex_enter(&zio->io_lock);
3062         zio->io_state[ZIO_WAIT_DONE] = 1;
3063         mutex_exit(&zio->io_lock);
3064 
3065         for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3066                 zio_link_t *zl = zio->io_walk_link;
3067                 pio_next = zio_walk_parents(zio);
3068                 zio_remove_child(pio, zio, zl);
3069                 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3070         }
3071 
3072         if (zio->io_waiter != NULL) {
3073                 mutex_enter(&zio->io_lock);
3074                 zio->io_executor = NULL;
3075                 cv_broadcast(&zio->io_cv);
3076                 mutex_exit(&zio->io_lock);
3077         } else {
3078                 zio_destroy(zio);
3079         }
3080 
3081         return (ZIO_PIPELINE_STOP);
3082 }
3083 
3084 /*
3085  * ==========================================================================
3086  * I/O pipeline definition
3087  * ==========================================================================
3088  */
3089 static zio_pipe_stage_t *zio_pipeline[] = {
3090         NULL,
3091         zio_read_bp_init,
3092         zio_free_bp_init,
3093         zio_issue_async,
3094         zio_write_bp_init,
3095         zio_checksum_generate,
3096         zio_nop_write,
3097         zio_ddt_read_start,
3098         zio_ddt_read_done,
3099         zio_ddt_write,
3100         zio_ddt_free,
3101         zio_gang_assemble,
3102         zio_gang_issue,
3103         zio_dva_allocate,
3104         zio_dva_free,
3105         zio_dva_claim,
3106         zio_ready,
3107         zio_vdev_io_start,
3108         zio_vdev_io_done,
3109         zio_vdev_io_assess,
3110         zio_checksum_verify,
3111         zio_done
3112 };
3113 
3114 /* dnp is the dnode for zb1->zb_object */
3115 boolean_t
3116 zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1,
3117     const zbookmark_t *zb2)
3118 {
3119         uint64_t zb1nextL0, zb2thisobj;
3120 
3121         ASSERT(zb1->zb_objset == zb2->zb_objset);
3122         ASSERT(zb2->zb_level == 0);
3123 
3124         /*
3125          * A bookmark in the deadlist is considered to be after
3126          * everything else.
3127          */
3128         if (zb2->zb_object == DMU_DEADLIST_OBJECT)
3129                 return (B_TRUE);
3130 
3131         /* The objset_phys_t isn't before anything. */
3132         if (dnp == NULL)
3133                 return (B_FALSE);
3134 
3135         zb1nextL0 = (zb1->zb_blkid + 1) <<
3136             ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3137 
3138         zb2thisobj = zb2->zb_object ? zb2->zb_object :
3139             zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3140 
3141         if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3142                 uint64_t nextobj = zb1nextL0 *
3143                     (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3144                 return (nextobj <= zb2thisobj);
3145         }
3146 
3147         if (zb1->zb_object < zb2thisobj)
3148                 return (B_TRUE);
3149         if (zb1->zb_object > zb2thisobj)
3150                 return (B_FALSE);
3151         if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3152                 return (B_FALSE);
3153         return (zb1nextL0 <= zb2->zb_blkid);
3154 }