1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 */ 26 27 /* 28 * DVA-based Adjustable Replacement Cache 29 * 30 * While much of the theory of operation used here is 31 * based on the self-tuning, low overhead replacement cache 32 * presented by Megiddo and Modha at FAST 2003, there are some 33 * significant differences: 34 * 35 * 1. The Megiddo and Modha model assumes any page is evictable. 36 * Pages in its cache cannot be "locked" into memory. This makes 37 * the eviction algorithm simple: evict the last page in the list. 38 * This also make the performance characteristics easy to reason 39 * about. Our cache is not so simple. At any given moment, some 40 * subset of the blocks in the cache are un-evictable because we 41 * have handed out a reference to them. Blocks are only evictable 42 * when there are no external references active. This makes 43 * eviction far more problematic: we choose to evict the evictable 44 * blocks that are the "lowest" in the list. 45 * 46 * There are times when it is not possible to evict the requested 47 * space. In these circumstances we are unable to adjust the cache 48 * size. To prevent the cache growing unbounded at these times we 49 * implement a "cache throttle" that slows the flow of new data 50 * into the cache until we can make space available. 51 * 52 * 2. The Megiddo and Modha model assumes a fixed cache size. 53 * Pages are evicted when the cache is full and there is a cache 54 * miss. Our model has a variable sized cache. It grows with 55 * high use, but also tries to react to memory pressure from the 56 * operating system: decreasing its size when system memory is 57 * tight. 58 * 59 * 3. The Megiddo and Modha model assumes a fixed page size. All 60 * elements of the cache are therefor exactly the same size. So 61 * when adjusting the cache size following a cache miss, its simply 62 * a matter of choosing a single page to evict. In our model, we 63 * have variable sized cache blocks (rangeing from 512 bytes to 64 * 128K bytes). We therefor choose a set of blocks to evict to make 65 * space for a cache miss that approximates as closely as possible 66 * the space used by the new block. 67 * 68 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 69 * by N. Megiddo & D. Modha, FAST 2003 70 */ 71 72 /* 73 * The locking model: 74 * 75 * A new reference to a cache buffer can be obtained in two 76 * ways: 1) via a hash table lookup using the DVA as a key, 77 * or 2) via one of the ARC lists. The arc_read() interface 78 * uses method 1, while the internal arc algorithms for 79 * adjusting the cache use method 2. We therefor provide two 80 * types of locks: 1) the hash table lock array, and 2) the 81 * arc list locks. 82 * 83 * Buffers do not have their own mutexes, rather they rely on the 84 * hash table mutexes for the bulk of their protection (i.e. most 85 * fields in the arc_buf_hdr_t are protected by these mutexes). 86 * 87 * buf_hash_find() returns the appropriate mutex (held) when it 88 * locates the requested buffer in the hash table. It returns 89 * NULL for the mutex if the buffer was not in the table. 90 * 91 * buf_hash_remove() expects the appropriate hash mutex to be 92 * already held before it is invoked. 93 * 94 * Each arc state also has a mutex which is used to protect the 95 * buffer list associated with the state. When attempting to 96 * obtain a hash table lock while holding an arc list lock you 97 * must use: mutex_tryenter() to avoid deadlock. Also note that 98 * the active state mutex must be held before the ghost state mutex. 99 * 100 * Arc buffers may have an associated eviction callback function. 101 * This function will be invoked prior to removing the buffer (e.g. 102 * in arc_do_user_evicts()). Note however that the data associated 103 * with the buffer may be evicted prior to the callback. The callback 104 * must be made with *no locks held* (to prevent deadlock). Additionally, 105 * the users of callbacks must ensure that their private data is 106 * protected from simultaneous callbacks from arc_buf_evict() 107 * and arc_do_user_evicts(). 108 * 109 * Note that the majority of the performance stats are manipulated 110 * with atomic operations. 111 * 112 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 113 * 114 * - L2ARC buflist creation 115 * - L2ARC buflist eviction 116 * - L2ARC write completion, which walks L2ARC buflists 117 * - ARC header destruction, as it removes from L2ARC buflists 118 * - ARC header release, as it removes from L2ARC buflists 119 */ 120 121 #include <sys/spa.h> 122 #include <sys/zio.h> 123 #include <sys/zfs_context.h> 124 #include <sys/arc.h> 125 #include <sys/refcount.h> 126 #include <sys/vdev.h> 127 #include <sys/vdev_impl.h> 128 #ifdef _KERNEL 129 #include <sys/vmsystm.h> 130 #include <vm/anon.h> 131 #include <sys/fs/swapnode.h> 132 #include <sys/dnlc.h> 133 #endif 134 #include <sys/callb.h> 135 #include <sys/kstat.h> 136 #include <zfs_fletcher.h> 137 138 #ifndef _KERNEL 139 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 140 boolean_t arc_watch = B_FALSE; 141 int arc_procfd; 142 #endif 143 144 static kmutex_t arc_reclaim_thr_lock; 145 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 146 static uint8_t arc_thread_exit; 147 148 extern int zfs_write_limit_shift; 149 extern uint64_t zfs_write_limit_max; 150 extern kmutex_t zfs_write_limit_lock; 151 152 #define ARC_REDUCE_DNLC_PERCENT 3 153 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 154 155 typedef enum arc_reclaim_strategy { 156 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 157 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 158 } arc_reclaim_strategy_t; 159 160 /* number of seconds before growing cache again */ 161 static int arc_grow_retry = 60; 162 163 /* shift of arc_c for calculating both min and max arc_p */ 164 static int arc_p_min_shift = 4; 165 166 /* log2(fraction of arc to reclaim) */ 167 static int arc_shrink_shift = 5; 168 169 /* 170 * minimum lifespan of a prefetch block in clock ticks 171 * (initialized in arc_init()) 172 */ 173 static int arc_min_prefetch_lifespan; 174 175 static int arc_dead; 176 177 /* 178 * The arc has filled available memory and has now warmed up. 179 */ 180 static boolean_t arc_warm; 181 182 /* 183 * These tunables are for performance analysis. 184 */ 185 uint64_t zfs_arc_max; 186 uint64_t zfs_arc_min; 187 uint64_t zfs_arc_meta_limit = 0; 188 int zfs_arc_grow_retry = 0; 189 int zfs_arc_shrink_shift = 0; 190 int zfs_arc_p_min_shift = 0; 191 int zfs_disable_dup_eviction = 0; 192 193 /* 194 * Note that buffers can be in one of 6 states: 195 * ARC_anon - anonymous (discussed below) 196 * ARC_mru - recently used, currently cached 197 * ARC_mru_ghost - recentely used, no longer in cache 198 * ARC_mfu - frequently used, currently cached 199 * ARC_mfu_ghost - frequently used, no longer in cache 200 * ARC_l2c_only - exists in L2ARC but not other states 201 * When there are no active references to the buffer, they are 202 * are linked onto a list in one of these arc states. These are 203 * the only buffers that can be evicted or deleted. Within each 204 * state there are multiple lists, one for meta-data and one for 205 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 206 * etc.) is tracked separately so that it can be managed more 207 * explicitly: favored over data, limited explicitly. 208 * 209 * Anonymous buffers are buffers that are not associated with 210 * a DVA. These are buffers that hold dirty block copies 211 * before they are written to stable storage. By definition, 212 * they are "ref'd" and are considered part of arc_mru 213 * that cannot be freed. Generally, they will aquire a DVA 214 * as they are written and migrate onto the arc_mru list. 215 * 216 * The ARC_l2c_only state is for buffers that are in the second 217 * level ARC but no longer in any of the ARC_m* lists. The second 218 * level ARC itself may also contain buffers that are in any of 219 * the ARC_m* states - meaning that a buffer can exist in two 220 * places. The reason for the ARC_l2c_only state is to keep the 221 * buffer header in the hash table, so that reads that hit the 222 * second level ARC benefit from these fast lookups. 223 */ 224 225 typedef struct arc_state { 226 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 227 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 228 uint64_t arcs_size; /* total amount of data in this state */ 229 kmutex_t arcs_mtx; 230 } arc_state_t; 231 232 /* The 6 states: */ 233 static arc_state_t ARC_anon; 234 static arc_state_t ARC_mru; 235 static arc_state_t ARC_mru_ghost; 236 static arc_state_t ARC_mfu; 237 static arc_state_t ARC_mfu_ghost; 238 static arc_state_t ARC_l2c_only; 239 240 typedef struct arc_stats { 241 kstat_named_t arcstat_hits; 242 kstat_named_t arcstat_misses; 243 kstat_named_t arcstat_demand_data_hits; 244 kstat_named_t arcstat_demand_data_misses; 245 kstat_named_t arcstat_demand_metadata_hits; 246 kstat_named_t arcstat_demand_metadata_misses; 247 kstat_named_t arcstat_prefetch_data_hits; 248 kstat_named_t arcstat_prefetch_data_misses; 249 kstat_named_t arcstat_prefetch_metadata_hits; 250 kstat_named_t arcstat_prefetch_metadata_misses; 251 kstat_named_t arcstat_mru_hits; 252 kstat_named_t arcstat_mru_ghost_hits; 253 kstat_named_t arcstat_mfu_hits; 254 kstat_named_t arcstat_mfu_ghost_hits; 255 kstat_named_t arcstat_deleted; 256 kstat_named_t arcstat_recycle_miss; 257 kstat_named_t arcstat_mutex_miss; 258 kstat_named_t arcstat_evict_skip; 259 kstat_named_t arcstat_evict_l2_cached; 260 kstat_named_t arcstat_evict_l2_eligible; 261 kstat_named_t arcstat_evict_l2_ineligible; 262 kstat_named_t arcstat_hash_elements; 263 kstat_named_t arcstat_hash_elements_max; 264 kstat_named_t arcstat_hash_collisions; 265 kstat_named_t arcstat_hash_chains; 266 kstat_named_t arcstat_hash_chain_max; 267 kstat_named_t arcstat_p; 268 kstat_named_t arcstat_c; 269 kstat_named_t arcstat_c_min; 270 kstat_named_t arcstat_c_max; 271 kstat_named_t arcstat_size; 272 kstat_named_t arcstat_hdr_size; 273 kstat_named_t arcstat_data_size; 274 kstat_named_t arcstat_other_size; 275 kstat_named_t arcstat_l2_hits; 276 kstat_named_t arcstat_l2_misses; 277 kstat_named_t arcstat_l2_feeds; 278 kstat_named_t arcstat_l2_rw_clash; 279 kstat_named_t arcstat_l2_read_bytes; 280 kstat_named_t arcstat_l2_write_bytes; 281 kstat_named_t arcstat_l2_writes_sent; 282 kstat_named_t arcstat_l2_writes_done; 283 kstat_named_t arcstat_l2_writes_error; 284 kstat_named_t arcstat_l2_writes_hdr_miss; 285 kstat_named_t arcstat_l2_evict_lock_retry; 286 kstat_named_t arcstat_l2_evict_reading; 287 kstat_named_t arcstat_l2_free_on_write; 288 kstat_named_t arcstat_l2_abort_lowmem; 289 kstat_named_t arcstat_l2_cksum_bad; 290 kstat_named_t arcstat_l2_io_error; 291 kstat_named_t arcstat_l2_size; 292 kstat_named_t arcstat_l2_hdr_size; 293 kstat_named_t arcstat_memory_throttle_count; 294 kstat_named_t arcstat_duplicate_buffers; 295 kstat_named_t arcstat_duplicate_buffers_size; 296 kstat_named_t arcstat_duplicate_reads; 297 kstat_named_t arcstat_meta_used; 298 kstat_named_t arcstat_meta_limit; 299 kstat_named_t arcstat_meta_max; 300 } arc_stats_t; 301 302 static arc_stats_t arc_stats = { 303 { "hits", KSTAT_DATA_UINT64 }, 304 { "misses", KSTAT_DATA_UINT64 }, 305 { "demand_data_hits", KSTAT_DATA_UINT64 }, 306 { "demand_data_misses", KSTAT_DATA_UINT64 }, 307 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 308 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 309 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 310 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 311 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 312 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 313 { "mru_hits", KSTAT_DATA_UINT64 }, 314 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 315 { "mfu_hits", KSTAT_DATA_UINT64 }, 316 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 317 { "deleted", KSTAT_DATA_UINT64 }, 318 { "recycle_miss", KSTAT_DATA_UINT64 }, 319 { "mutex_miss", KSTAT_DATA_UINT64 }, 320 { "evict_skip", KSTAT_DATA_UINT64 }, 321 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 322 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 323 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 324 { "hash_elements", KSTAT_DATA_UINT64 }, 325 { "hash_elements_max", KSTAT_DATA_UINT64 }, 326 { "hash_collisions", KSTAT_DATA_UINT64 }, 327 { "hash_chains", KSTAT_DATA_UINT64 }, 328 { "hash_chain_max", KSTAT_DATA_UINT64 }, 329 { "p", KSTAT_DATA_UINT64 }, 330 { "c", KSTAT_DATA_UINT64 }, 331 { "c_min", KSTAT_DATA_UINT64 }, 332 { "c_max", KSTAT_DATA_UINT64 }, 333 { "size", KSTAT_DATA_UINT64 }, 334 { "hdr_size", KSTAT_DATA_UINT64 }, 335 { "data_size", KSTAT_DATA_UINT64 }, 336 { "other_size", KSTAT_DATA_UINT64 }, 337 { "l2_hits", KSTAT_DATA_UINT64 }, 338 { "l2_misses", KSTAT_DATA_UINT64 }, 339 { "l2_feeds", KSTAT_DATA_UINT64 }, 340 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 341 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 342 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 343 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 344 { "l2_writes_done", KSTAT_DATA_UINT64 }, 345 { "l2_writes_error", KSTAT_DATA_UINT64 }, 346 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 347 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 348 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 349 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 350 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 351 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 352 { "l2_io_error", KSTAT_DATA_UINT64 }, 353 { "l2_size", KSTAT_DATA_UINT64 }, 354 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 355 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 356 { "duplicate_buffers", KSTAT_DATA_UINT64 }, 357 { "duplicate_buffers_size", KSTAT_DATA_UINT64 }, 358 { "duplicate_reads", KSTAT_DATA_UINT64 }, 359 { "arc_meta_used", KSTAT_DATA_UINT64 }, 360 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 361 { "arc_meta_max", KSTAT_DATA_UINT64 } 362 }; 363 364 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 365 366 #define ARCSTAT_INCR(stat, val) \ 367 atomic_add_64(&arc_stats.stat.value.ui64, (val)); 368 369 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 370 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 371 372 #define ARCSTAT_MAX(stat, val) { \ 373 uint64_t m; \ 374 while ((val) > (m = arc_stats.stat.value.ui64) && \ 375 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 376 continue; \ 377 } 378 379 #define ARCSTAT_MAXSTAT(stat) \ 380 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 381 382 /* 383 * We define a macro to allow ARC hits/misses to be easily broken down by 384 * two separate conditions, giving a total of four different subtypes for 385 * each of hits and misses (so eight statistics total). 386 */ 387 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 388 if (cond1) { \ 389 if (cond2) { \ 390 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 391 } else { \ 392 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 393 } \ 394 } else { \ 395 if (cond2) { \ 396 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 397 } else { \ 398 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 399 } \ 400 } 401 402 kstat_t *arc_ksp; 403 static arc_state_t *arc_anon; 404 static arc_state_t *arc_mru; 405 static arc_state_t *arc_mru_ghost; 406 static arc_state_t *arc_mfu; 407 static arc_state_t *arc_mfu_ghost; 408 static arc_state_t *arc_l2c_only; 409 410 /* 411 * There are several ARC variables that are critical to export as kstats -- 412 * but we don't want to have to grovel around in the kstat whenever we wish to 413 * manipulate them. For these variables, we therefore define them to be in 414 * terms of the statistic variable. This assures that we are not introducing 415 * the possibility of inconsistency by having shadow copies of the variables, 416 * while still allowing the code to be readable. 417 */ 418 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 419 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 420 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 421 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 422 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 423 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 424 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */ 425 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 426 427 static int arc_no_grow; /* Don't try to grow cache size */ 428 static uint64_t arc_tempreserve; 429 static uint64_t arc_loaned_bytes; 430 431 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 432 433 typedef struct arc_callback arc_callback_t; 434 435 struct arc_callback { 436 void *acb_private; 437 arc_done_func_t *acb_done; 438 arc_buf_t *acb_buf; 439 zio_t *acb_zio_dummy; 440 arc_callback_t *acb_next; 441 }; 442 443 typedef struct arc_write_callback arc_write_callback_t; 444 445 struct arc_write_callback { 446 void *awcb_private; 447 arc_done_func_t *awcb_ready; 448 arc_done_func_t *awcb_done; 449 arc_buf_t *awcb_buf; 450 }; 451 452 struct arc_buf_hdr { 453 /* protected by hash lock */ 454 dva_t b_dva; 455 uint64_t b_birth; 456 uint64_t b_cksum0; 457 458 kmutex_t b_freeze_lock; 459 zio_cksum_t *b_freeze_cksum; 460 void *b_thawed; 461 462 arc_buf_hdr_t *b_hash_next; 463 arc_buf_t *b_buf; 464 uint32_t b_flags; 465 uint32_t b_datacnt; 466 467 arc_callback_t *b_acb; 468 kcondvar_t b_cv; 469 470 /* immutable */ 471 arc_buf_contents_t b_type; 472 uint64_t b_size; 473 uint64_t b_spa; 474 475 /* protected by arc state mutex */ 476 arc_state_t *b_state; 477 list_node_t b_arc_node; 478 479 /* updated atomically */ 480 clock_t b_arc_access; 481 482 /* self protecting */ 483 refcount_t b_refcnt; 484 485 l2arc_buf_hdr_t *b_l2hdr; 486 list_node_t b_l2node; 487 }; 488 489 static arc_buf_t *arc_eviction_list; 490 static kmutex_t arc_eviction_mtx; 491 static arc_buf_hdr_t arc_eviction_hdr; 492 static void arc_get_data_buf(arc_buf_t *buf); 493 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 494 static int arc_evict_needed(arc_buf_contents_t type); 495 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes); 496 static void arc_buf_watch(arc_buf_t *buf); 497 498 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab); 499 500 #define GHOST_STATE(state) \ 501 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 502 (state) == arc_l2c_only) 503 504 /* 505 * Private ARC flags. These flags are private ARC only flags that will show up 506 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 507 * be passed in as arc_flags in things like arc_read. However, these flags 508 * should never be passed and should only be set by ARC code. When adding new 509 * public flags, make sure not to smash the private ones. 510 */ 511 512 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 513 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 514 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 515 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 516 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 517 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 518 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 519 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 520 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 521 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 522 523 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 524 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 525 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 526 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH) 527 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 528 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 529 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 530 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 531 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 532 (hdr)->b_l2hdr != NULL) 533 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 534 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 535 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 536 537 /* 538 * Other sizes 539 */ 540 541 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 542 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 543 544 /* 545 * Hash table routines 546 */ 547 548 #define HT_LOCK_PAD 64 549 550 struct ht_lock { 551 kmutex_t ht_lock; 552 #ifdef _KERNEL 553 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 554 #endif 555 }; 556 557 #define BUF_LOCKS 256 558 typedef struct buf_hash_table { 559 uint64_t ht_mask; 560 arc_buf_hdr_t **ht_table; 561 struct ht_lock ht_locks[BUF_LOCKS]; 562 } buf_hash_table_t; 563 564 static buf_hash_table_t buf_hash_table; 565 566 #define BUF_HASH_INDEX(spa, dva, birth) \ 567 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 568 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 569 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 570 #define HDR_LOCK(hdr) \ 571 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 572 573 uint64_t zfs_crc64_table[256]; 574 575 /* 576 * Level 2 ARC 577 */ 578 579 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 580 #define L2ARC_HEADROOM 2 /* num of writes */ 581 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 582 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 583 584 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 585 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 586 587 /* 588 * L2ARC Performance Tunables 589 */ 590 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 591 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 592 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 593 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 594 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 595 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 596 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 597 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 598 599 /* 600 * L2ARC Internals 601 */ 602 typedef struct l2arc_dev { 603 vdev_t *l2ad_vdev; /* vdev */ 604 spa_t *l2ad_spa; /* spa */ 605 uint64_t l2ad_hand; /* next write location */ 606 uint64_t l2ad_write; /* desired write size, bytes */ 607 uint64_t l2ad_boost; /* warmup write boost, bytes */ 608 uint64_t l2ad_start; /* first addr on device */ 609 uint64_t l2ad_end; /* last addr on device */ 610 uint64_t l2ad_evict; /* last addr eviction reached */ 611 boolean_t l2ad_first; /* first sweep through */ 612 boolean_t l2ad_writing; /* currently writing */ 613 list_t *l2ad_buflist; /* buffer list */ 614 list_node_t l2ad_node; /* device list node */ 615 } l2arc_dev_t; 616 617 static list_t L2ARC_dev_list; /* device list */ 618 static list_t *l2arc_dev_list; /* device list pointer */ 619 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 620 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 621 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 622 static list_t L2ARC_free_on_write; /* free after write buf list */ 623 static list_t *l2arc_free_on_write; /* free after write list ptr */ 624 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 625 static uint64_t l2arc_ndev; /* number of devices */ 626 627 typedef struct l2arc_read_callback { 628 arc_buf_t *l2rcb_buf; /* read buffer */ 629 spa_t *l2rcb_spa; /* spa */ 630 blkptr_t l2rcb_bp; /* original blkptr */ 631 zbookmark_t l2rcb_zb; /* original bookmark */ 632 int l2rcb_flags; /* original flags */ 633 } l2arc_read_callback_t; 634 635 typedef struct l2arc_write_callback { 636 l2arc_dev_t *l2wcb_dev; /* device info */ 637 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 638 } l2arc_write_callback_t; 639 640 struct l2arc_buf_hdr { 641 /* protected by arc_buf_hdr mutex */ 642 l2arc_dev_t *b_dev; /* L2ARC device */ 643 uint64_t b_daddr; /* disk address, offset byte */ 644 }; 645 646 typedef struct l2arc_data_free { 647 /* protected by l2arc_free_on_write_mtx */ 648 void *l2df_data; 649 size_t l2df_size; 650 void (*l2df_func)(void *, size_t); 651 list_node_t l2df_list_node; 652 } l2arc_data_free_t; 653 654 static kmutex_t l2arc_feed_thr_lock; 655 static kcondvar_t l2arc_feed_thr_cv; 656 static uint8_t l2arc_thread_exit; 657 658 static void l2arc_read_done(zio_t *zio); 659 static void l2arc_hdr_stat_add(void); 660 static void l2arc_hdr_stat_remove(void); 661 662 static uint64_t 663 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 664 { 665 uint8_t *vdva = (uint8_t *)dva; 666 uint64_t crc = -1ULL; 667 int i; 668 669 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 670 671 for (i = 0; i < sizeof (dva_t); i++) 672 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 673 674 crc ^= (spa>>8) ^ birth; 675 676 return (crc); 677 } 678 679 #define BUF_EMPTY(buf) \ 680 ((buf)->b_dva.dva_word[0] == 0 && \ 681 (buf)->b_dva.dva_word[1] == 0 && \ 682 (buf)->b_birth == 0) 683 684 #define BUF_EQUAL(spa, dva, birth, buf) \ 685 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 686 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 687 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 688 689 static void 690 buf_discard_identity(arc_buf_hdr_t *hdr) 691 { 692 hdr->b_dva.dva_word[0] = 0; 693 hdr->b_dva.dva_word[1] = 0; 694 hdr->b_birth = 0; 695 hdr->b_cksum0 = 0; 696 } 697 698 static arc_buf_hdr_t * 699 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp) 700 { 701 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 702 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 703 arc_buf_hdr_t *buf; 704 705 mutex_enter(hash_lock); 706 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 707 buf = buf->b_hash_next) { 708 if (BUF_EQUAL(spa, dva, birth, buf)) { 709 *lockp = hash_lock; 710 return (buf); 711 } 712 } 713 mutex_exit(hash_lock); 714 *lockp = NULL; 715 return (NULL); 716 } 717 718 /* 719 * Insert an entry into the hash table. If there is already an element 720 * equal to elem in the hash table, then the already existing element 721 * will be returned and the new element will not be inserted. 722 * Otherwise returns NULL. 723 */ 724 static arc_buf_hdr_t * 725 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 726 { 727 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 728 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 729 arc_buf_hdr_t *fbuf; 730 uint32_t i; 731 732 ASSERT(!HDR_IN_HASH_TABLE(buf)); 733 *lockp = hash_lock; 734 mutex_enter(hash_lock); 735 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 736 fbuf = fbuf->b_hash_next, i++) { 737 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 738 return (fbuf); 739 } 740 741 buf->b_hash_next = buf_hash_table.ht_table[idx]; 742 buf_hash_table.ht_table[idx] = buf; 743 buf->b_flags |= ARC_IN_HASH_TABLE; 744 745 /* collect some hash table performance data */ 746 if (i > 0) { 747 ARCSTAT_BUMP(arcstat_hash_collisions); 748 if (i == 1) 749 ARCSTAT_BUMP(arcstat_hash_chains); 750 751 ARCSTAT_MAX(arcstat_hash_chain_max, i); 752 } 753 754 ARCSTAT_BUMP(arcstat_hash_elements); 755 ARCSTAT_MAXSTAT(arcstat_hash_elements); 756 757 return (NULL); 758 } 759 760 static void 761 buf_hash_remove(arc_buf_hdr_t *buf) 762 { 763 arc_buf_hdr_t *fbuf, **bufp; 764 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 765 766 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 767 ASSERT(HDR_IN_HASH_TABLE(buf)); 768 769 bufp = &buf_hash_table.ht_table[idx]; 770 while ((fbuf = *bufp) != buf) { 771 ASSERT(fbuf != NULL); 772 bufp = &fbuf->b_hash_next; 773 } 774 *bufp = buf->b_hash_next; 775 buf->b_hash_next = NULL; 776 buf->b_flags &= ~ARC_IN_HASH_TABLE; 777 778 /* collect some hash table performance data */ 779 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 780 781 if (buf_hash_table.ht_table[idx] && 782 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 783 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 784 } 785 786 /* 787 * Global data structures and functions for the buf kmem cache. 788 */ 789 static kmem_cache_t *hdr_cache; 790 static kmem_cache_t *buf_cache; 791 792 static void 793 buf_fini(void) 794 { 795 int i; 796 797 kmem_free(buf_hash_table.ht_table, 798 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 799 for (i = 0; i < BUF_LOCKS; i++) 800 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 801 kmem_cache_destroy(hdr_cache); 802 kmem_cache_destroy(buf_cache); 803 } 804 805 /* 806 * Constructor callback - called when the cache is empty 807 * and a new buf is requested. 808 */ 809 /* ARGSUSED */ 810 static int 811 hdr_cons(void *vbuf, void *unused, int kmflag) 812 { 813 arc_buf_hdr_t *buf = vbuf; 814 815 bzero(buf, sizeof (arc_buf_hdr_t)); 816 refcount_create(&buf->b_refcnt); 817 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 818 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 819 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 820 821 return (0); 822 } 823 824 /* ARGSUSED */ 825 static int 826 buf_cons(void *vbuf, void *unused, int kmflag) 827 { 828 arc_buf_t *buf = vbuf; 829 830 bzero(buf, sizeof (arc_buf_t)); 831 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 832 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 833 834 return (0); 835 } 836 837 /* 838 * Destructor callback - called when a cached buf is 839 * no longer required. 840 */ 841 /* ARGSUSED */ 842 static void 843 hdr_dest(void *vbuf, void *unused) 844 { 845 arc_buf_hdr_t *buf = vbuf; 846 847 ASSERT(BUF_EMPTY(buf)); 848 refcount_destroy(&buf->b_refcnt); 849 cv_destroy(&buf->b_cv); 850 mutex_destroy(&buf->b_freeze_lock); 851 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 852 } 853 854 /* ARGSUSED */ 855 static void 856 buf_dest(void *vbuf, void *unused) 857 { 858 arc_buf_t *buf = vbuf; 859 860 mutex_destroy(&buf->b_evict_lock); 861 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 862 } 863 864 /* 865 * Reclaim callback -- invoked when memory is low. 866 */ 867 /* ARGSUSED */ 868 static void 869 hdr_recl(void *unused) 870 { 871 dprintf("hdr_recl called\n"); 872 /* 873 * umem calls the reclaim func when we destroy the buf cache, 874 * which is after we do arc_fini(). 875 */ 876 if (!arc_dead) 877 cv_signal(&arc_reclaim_thr_cv); 878 } 879 880 static void 881 buf_init(void) 882 { 883 uint64_t *ct; 884 uint64_t hsize = 1ULL << 12; 885 int i, j; 886 887 /* 888 * The hash table is big enough to fill all of physical memory 889 * with an average 64K block size. The table will take up 890 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 891 */ 892 while (hsize * 65536 < physmem * PAGESIZE) 893 hsize <<= 1; 894 retry: 895 buf_hash_table.ht_mask = hsize - 1; 896 buf_hash_table.ht_table = 897 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 898 if (buf_hash_table.ht_table == NULL) { 899 ASSERT(hsize > (1ULL << 8)); 900 hsize >>= 1; 901 goto retry; 902 } 903 904 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 905 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 906 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 907 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 908 909 for (i = 0; i < 256; i++) 910 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 911 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 912 913 for (i = 0; i < BUF_LOCKS; i++) { 914 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 915 NULL, MUTEX_DEFAULT, NULL); 916 } 917 } 918 919 #define ARC_MINTIME (hz>>4) /* 62 ms */ 920 921 static void 922 arc_cksum_verify(arc_buf_t *buf) 923 { 924 zio_cksum_t zc; 925 926 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 927 return; 928 929 mutex_enter(&buf->b_hdr->b_freeze_lock); 930 if (buf->b_hdr->b_freeze_cksum == NULL || 931 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 932 mutex_exit(&buf->b_hdr->b_freeze_lock); 933 return; 934 } 935 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 936 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 937 panic("buffer modified while frozen!"); 938 mutex_exit(&buf->b_hdr->b_freeze_lock); 939 } 940 941 static int 942 arc_cksum_equal(arc_buf_t *buf) 943 { 944 zio_cksum_t zc; 945 int equal; 946 947 mutex_enter(&buf->b_hdr->b_freeze_lock); 948 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 949 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 950 mutex_exit(&buf->b_hdr->b_freeze_lock); 951 952 return (equal); 953 } 954 955 static void 956 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 957 { 958 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 959 return; 960 961 mutex_enter(&buf->b_hdr->b_freeze_lock); 962 if (buf->b_hdr->b_freeze_cksum != NULL) { 963 mutex_exit(&buf->b_hdr->b_freeze_lock); 964 return; 965 } 966 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 967 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 968 buf->b_hdr->b_freeze_cksum); 969 mutex_exit(&buf->b_hdr->b_freeze_lock); 970 arc_buf_watch(buf); 971 } 972 973 #ifndef _KERNEL 974 typedef struct procctl { 975 long cmd; 976 prwatch_t prwatch; 977 } procctl_t; 978 #endif 979 980 /* ARGSUSED */ 981 static void 982 arc_buf_unwatch(arc_buf_t *buf) 983 { 984 #ifndef _KERNEL 985 if (arc_watch) { 986 int result; 987 procctl_t ctl; 988 ctl.cmd = PCWATCH; 989 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 990 ctl.prwatch.pr_size = 0; 991 ctl.prwatch.pr_wflags = 0; 992 result = write(arc_procfd, &ctl, sizeof (ctl)); 993 ASSERT3U(result, ==, sizeof (ctl)); 994 } 995 #endif 996 } 997 998 /* ARGSUSED */ 999 static void 1000 arc_buf_watch(arc_buf_t *buf) 1001 { 1002 #ifndef _KERNEL 1003 if (arc_watch) { 1004 int result; 1005 procctl_t ctl; 1006 ctl.cmd = PCWATCH; 1007 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1008 ctl.prwatch.pr_size = buf->b_hdr->b_size; 1009 ctl.prwatch.pr_wflags = WA_WRITE; 1010 result = write(arc_procfd, &ctl, sizeof (ctl)); 1011 ASSERT3U(result, ==, sizeof (ctl)); 1012 } 1013 #endif 1014 } 1015 1016 void 1017 arc_buf_thaw(arc_buf_t *buf) 1018 { 1019 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1020 if (buf->b_hdr->b_state != arc_anon) 1021 panic("modifying non-anon buffer!"); 1022 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 1023 panic("modifying buffer while i/o in progress!"); 1024 arc_cksum_verify(buf); 1025 } 1026 1027 mutex_enter(&buf->b_hdr->b_freeze_lock); 1028 if (buf->b_hdr->b_freeze_cksum != NULL) { 1029 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1030 buf->b_hdr->b_freeze_cksum = NULL; 1031 } 1032 1033 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1034 if (buf->b_hdr->b_thawed) 1035 kmem_free(buf->b_hdr->b_thawed, 1); 1036 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP); 1037 } 1038 1039 mutex_exit(&buf->b_hdr->b_freeze_lock); 1040 1041 arc_buf_unwatch(buf); 1042 } 1043 1044 void 1045 arc_buf_freeze(arc_buf_t *buf) 1046 { 1047 kmutex_t *hash_lock; 1048 1049 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1050 return; 1051 1052 hash_lock = HDR_LOCK(buf->b_hdr); 1053 mutex_enter(hash_lock); 1054 1055 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 1056 buf->b_hdr->b_state == arc_anon); 1057 arc_cksum_compute(buf, B_FALSE); 1058 mutex_exit(hash_lock); 1059 1060 } 1061 1062 static void 1063 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1064 { 1065 ASSERT(MUTEX_HELD(hash_lock)); 1066 1067 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 1068 (ab->b_state != arc_anon)) { 1069 uint64_t delta = ab->b_size * ab->b_datacnt; 1070 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 1071 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 1072 1073 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 1074 mutex_enter(&ab->b_state->arcs_mtx); 1075 ASSERT(list_link_active(&ab->b_arc_node)); 1076 list_remove(list, ab); 1077 if (GHOST_STATE(ab->b_state)) { 1078 ASSERT0(ab->b_datacnt); 1079 ASSERT3P(ab->b_buf, ==, NULL); 1080 delta = ab->b_size; 1081 } 1082 ASSERT(delta > 0); 1083 ASSERT3U(*size, >=, delta); 1084 atomic_add_64(size, -delta); 1085 mutex_exit(&ab->b_state->arcs_mtx); 1086 /* remove the prefetch flag if we get a reference */ 1087 if (ab->b_flags & ARC_PREFETCH) 1088 ab->b_flags &= ~ARC_PREFETCH; 1089 } 1090 } 1091 1092 static int 1093 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1094 { 1095 int cnt; 1096 arc_state_t *state = ab->b_state; 1097 1098 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1099 ASSERT(!GHOST_STATE(state)); 1100 1101 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 1102 (state != arc_anon)) { 1103 uint64_t *size = &state->arcs_lsize[ab->b_type]; 1104 1105 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1106 mutex_enter(&state->arcs_mtx); 1107 ASSERT(!list_link_active(&ab->b_arc_node)); 1108 list_insert_head(&state->arcs_list[ab->b_type], ab); 1109 ASSERT(ab->b_datacnt > 0); 1110 atomic_add_64(size, ab->b_size * ab->b_datacnt); 1111 mutex_exit(&state->arcs_mtx); 1112 } 1113 return (cnt); 1114 } 1115 1116 /* 1117 * Move the supplied buffer to the indicated state. The mutex 1118 * for the buffer must be held by the caller. 1119 */ 1120 static void 1121 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 1122 { 1123 arc_state_t *old_state = ab->b_state; 1124 int64_t refcnt = refcount_count(&ab->b_refcnt); 1125 uint64_t from_delta, to_delta; 1126 1127 ASSERT(MUTEX_HELD(hash_lock)); 1128 ASSERT(new_state != old_state); 1129 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 1130 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 1131 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon); 1132 1133 from_delta = to_delta = ab->b_datacnt * ab->b_size; 1134 1135 /* 1136 * If this buffer is evictable, transfer it from the 1137 * old state list to the new state list. 1138 */ 1139 if (refcnt == 0) { 1140 if (old_state != arc_anon) { 1141 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1142 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1143 1144 if (use_mutex) 1145 mutex_enter(&old_state->arcs_mtx); 1146 1147 ASSERT(list_link_active(&ab->b_arc_node)); 1148 list_remove(&old_state->arcs_list[ab->b_type], ab); 1149 1150 /* 1151 * If prefetching out of the ghost cache, 1152 * we will have a non-zero datacnt. 1153 */ 1154 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1155 /* ghost elements have a ghost size */ 1156 ASSERT(ab->b_buf == NULL); 1157 from_delta = ab->b_size; 1158 } 1159 ASSERT3U(*size, >=, from_delta); 1160 atomic_add_64(size, -from_delta); 1161 1162 if (use_mutex) 1163 mutex_exit(&old_state->arcs_mtx); 1164 } 1165 if (new_state != arc_anon) { 1166 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1167 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1168 1169 if (use_mutex) 1170 mutex_enter(&new_state->arcs_mtx); 1171 1172 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1173 1174 /* ghost elements have a ghost size */ 1175 if (GHOST_STATE(new_state)) { 1176 ASSERT(ab->b_datacnt == 0); 1177 ASSERT(ab->b_buf == NULL); 1178 to_delta = ab->b_size; 1179 } 1180 atomic_add_64(size, to_delta); 1181 1182 if (use_mutex) 1183 mutex_exit(&new_state->arcs_mtx); 1184 } 1185 } 1186 1187 ASSERT(!BUF_EMPTY(ab)); 1188 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab)) 1189 buf_hash_remove(ab); 1190 1191 /* adjust state sizes */ 1192 if (to_delta) 1193 atomic_add_64(&new_state->arcs_size, to_delta); 1194 if (from_delta) { 1195 ASSERT3U(old_state->arcs_size, >=, from_delta); 1196 atomic_add_64(&old_state->arcs_size, -from_delta); 1197 } 1198 ab->b_state = new_state; 1199 1200 /* adjust l2arc hdr stats */ 1201 if (new_state == arc_l2c_only) 1202 l2arc_hdr_stat_add(); 1203 else if (old_state == arc_l2c_only) 1204 l2arc_hdr_stat_remove(); 1205 } 1206 1207 void 1208 arc_space_consume(uint64_t space, arc_space_type_t type) 1209 { 1210 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1211 1212 switch (type) { 1213 case ARC_SPACE_DATA: 1214 ARCSTAT_INCR(arcstat_data_size, space); 1215 break; 1216 case ARC_SPACE_OTHER: 1217 ARCSTAT_INCR(arcstat_other_size, space); 1218 break; 1219 case ARC_SPACE_HDRS: 1220 ARCSTAT_INCR(arcstat_hdr_size, space); 1221 break; 1222 case ARC_SPACE_L2HDRS: 1223 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1224 break; 1225 } 1226 1227 ARCSTAT_INCR(arcstat_meta_used, space); 1228 atomic_add_64(&arc_size, space); 1229 } 1230 1231 void 1232 arc_space_return(uint64_t space, arc_space_type_t type) 1233 { 1234 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1235 1236 switch (type) { 1237 case ARC_SPACE_DATA: 1238 ARCSTAT_INCR(arcstat_data_size, -space); 1239 break; 1240 case ARC_SPACE_OTHER: 1241 ARCSTAT_INCR(arcstat_other_size, -space); 1242 break; 1243 case ARC_SPACE_HDRS: 1244 ARCSTAT_INCR(arcstat_hdr_size, -space); 1245 break; 1246 case ARC_SPACE_L2HDRS: 1247 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1248 break; 1249 } 1250 1251 ASSERT(arc_meta_used >= space); 1252 if (arc_meta_max < arc_meta_used) 1253 arc_meta_max = arc_meta_used; 1254 ARCSTAT_INCR(arcstat_meta_used, -space); 1255 ASSERT(arc_size >= space); 1256 atomic_add_64(&arc_size, -space); 1257 } 1258 1259 void * 1260 arc_data_buf_alloc(uint64_t size) 1261 { 1262 if (arc_evict_needed(ARC_BUFC_DATA)) 1263 cv_signal(&arc_reclaim_thr_cv); 1264 atomic_add_64(&arc_size, size); 1265 return (zio_data_buf_alloc(size)); 1266 } 1267 1268 void 1269 arc_data_buf_free(void *buf, uint64_t size) 1270 { 1271 zio_data_buf_free(buf, size); 1272 ASSERT(arc_size >= size); 1273 atomic_add_64(&arc_size, -size); 1274 } 1275 1276 arc_buf_t * 1277 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1278 { 1279 arc_buf_hdr_t *hdr; 1280 arc_buf_t *buf; 1281 1282 ASSERT3U(size, >, 0); 1283 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1284 ASSERT(BUF_EMPTY(hdr)); 1285 hdr->b_size = size; 1286 hdr->b_type = type; 1287 hdr->b_spa = spa_load_guid(spa); 1288 hdr->b_state = arc_anon; 1289 hdr->b_arc_access = 0; 1290 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1291 buf->b_hdr = hdr; 1292 buf->b_data = NULL; 1293 buf->b_efunc = NULL; 1294 buf->b_private = NULL; 1295 buf->b_next = NULL; 1296 hdr->b_buf = buf; 1297 arc_get_data_buf(buf); 1298 hdr->b_datacnt = 1; 1299 hdr->b_flags = 0; 1300 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1301 (void) refcount_add(&hdr->b_refcnt, tag); 1302 1303 return (buf); 1304 } 1305 1306 static char *arc_onloan_tag = "onloan"; 1307 1308 /* 1309 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 1310 * flight data by arc_tempreserve_space() until they are "returned". Loaned 1311 * buffers must be returned to the arc before they can be used by the DMU or 1312 * freed. 1313 */ 1314 arc_buf_t * 1315 arc_loan_buf(spa_t *spa, int size) 1316 { 1317 arc_buf_t *buf; 1318 1319 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 1320 1321 atomic_add_64(&arc_loaned_bytes, size); 1322 return (buf); 1323 } 1324 1325 /* 1326 * Return a loaned arc buffer to the arc. 1327 */ 1328 void 1329 arc_return_buf(arc_buf_t *buf, void *tag) 1330 { 1331 arc_buf_hdr_t *hdr = buf->b_hdr; 1332 1333 ASSERT(buf->b_data != NULL); 1334 (void) refcount_add(&hdr->b_refcnt, tag); 1335 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag); 1336 1337 atomic_add_64(&arc_loaned_bytes, -hdr->b_size); 1338 } 1339 1340 /* Detach an arc_buf from a dbuf (tag) */ 1341 void 1342 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 1343 { 1344 arc_buf_hdr_t *hdr; 1345 1346 ASSERT(buf->b_data != NULL); 1347 hdr = buf->b_hdr; 1348 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag); 1349 (void) refcount_remove(&hdr->b_refcnt, tag); 1350 buf->b_efunc = NULL; 1351 buf->b_private = NULL; 1352 1353 atomic_add_64(&arc_loaned_bytes, hdr->b_size); 1354 } 1355 1356 static arc_buf_t * 1357 arc_buf_clone(arc_buf_t *from) 1358 { 1359 arc_buf_t *buf; 1360 arc_buf_hdr_t *hdr = from->b_hdr; 1361 uint64_t size = hdr->b_size; 1362 1363 ASSERT(hdr->b_state != arc_anon); 1364 1365 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1366 buf->b_hdr = hdr; 1367 buf->b_data = NULL; 1368 buf->b_efunc = NULL; 1369 buf->b_private = NULL; 1370 buf->b_next = hdr->b_buf; 1371 hdr->b_buf = buf; 1372 arc_get_data_buf(buf); 1373 bcopy(from->b_data, buf->b_data, size); 1374 1375 /* 1376 * This buffer already exists in the arc so create a duplicate 1377 * copy for the caller. If the buffer is associated with user data 1378 * then track the size and number of duplicates. These stats will be 1379 * updated as duplicate buffers are created and destroyed. 1380 */ 1381 if (hdr->b_type == ARC_BUFC_DATA) { 1382 ARCSTAT_BUMP(arcstat_duplicate_buffers); 1383 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size); 1384 } 1385 hdr->b_datacnt += 1; 1386 return (buf); 1387 } 1388 1389 void 1390 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1391 { 1392 arc_buf_hdr_t *hdr; 1393 kmutex_t *hash_lock; 1394 1395 /* 1396 * Check to see if this buffer is evicted. Callers 1397 * must verify b_data != NULL to know if the add_ref 1398 * was successful. 1399 */ 1400 mutex_enter(&buf->b_evict_lock); 1401 if (buf->b_data == NULL) { 1402 mutex_exit(&buf->b_evict_lock); 1403 return; 1404 } 1405 hash_lock = HDR_LOCK(buf->b_hdr); 1406 mutex_enter(hash_lock); 1407 hdr = buf->b_hdr; 1408 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1409 mutex_exit(&buf->b_evict_lock); 1410 1411 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1412 add_reference(hdr, hash_lock, tag); 1413 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1414 arc_access(hdr, hash_lock); 1415 mutex_exit(hash_lock); 1416 ARCSTAT_BUMP(arcstat_hits); 1417 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1418 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1419 data, metadata, hits); 1420 } 1421 1422 /* 1423 * Free the arc data buffer. If it is an l2arc write in progress, 1424 * the buffer is placed on l2arc_free_on_write to be freed later. 1425 */ 1426 static void 1427 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t)) 1428 { 1429 arc_buf_hdr_t *hdr = buf->b_hdr; 1430 1431 if (HDR_L2_WRITING(hdr)) { 1432 l2arc_data_free_t *df; 1433 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1434 df->l2df_data = buf->b_data; 1435 df->l2df_size = hdr->b_size; 1436 df->l2df_func = free_func; 1437 mutex_enter(&l2arc_free_on_write_mtx); 1438 list_insert_head(l2arc_free_on_write, df); 1439 mutex_exit(&l2arc_free_on_write_mtx); 1440 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1441 } else { 1442 free_func(buf->b_data, hdr->b_size); 1443 } 1444 } 1445 1446 static void 1447 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 1448 { 1449 arc_buf_t **bufp; 1450 1451 /* free up data associated with the buf */ 1452 if (buf->b_data) { 1453 arc_state_t *state = buf->b_hdr->b_state; 1454 uint64_t size = buf->b_hdr->b_size; 1455 arc_buf_contents_t type = buf->b_hdr->b_type; 1456 1457 arc_cksum_verify(buf); 1458 arc_buf_unwatch(buf); 1459 1460 if (!recycle) { 1461 if (type == ARC_BUFC_METADATA) { 1462 arc_buf_data_free(buf, zio_buf_free); 1463 arc_space_return(size, ARC_SPACE_DATA); 1464 } else { 1465 ASSERT(type == ARC_BUFC_DATA); 1466 arc_buf_data_free(buf, zio_data_buf_free); 1467 ARCSTAT_INCR(arcstat_data_size, -size); 1468 atomic_add_64(&arc_size, -size); 1469 } 1470 } 1471 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1472 uint64_t *cnt = &state->arcs_lsize[type]; 1473 1474 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1475 ASSERT(state != arc_anon); 1476 1477 ASSERT3U(*cnt, >=, size); 1478 atomic_add_64(cnt, -size); 1479 } 1480 ASSERT3U(state->arcs_size, >=, size); 1481 atomic_add_64(&state->arcs_size, -size); 1482 buf->b_data = NULL; 1483 1484 /* 1485 * If we're destroying a duplicate buffer make sure 1486 * that the appropriate statistics are updated. 1487 */ 1488 if (buf->b_hdr->b_datacnt > 1 && 1489 buf->b_hdr->b_type == ARC_BUFC_DATA) { 1490 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 1491 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size); 1492 } 1493 ASSERT(buf->b_hdr->b_datacnt > 0); 1494 buf->b_hdr->b_datacnt -= 1; 1495 } 1496 1497 /* only remove the buf if requested */ 1498 if (!all) 1499 return; 1500 1501 /* remove the buf from the hdr list */ 1502 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1503 continue; 1504 *bufp = buf->b_next; 1505 buf->b_next = NULL; 1506 1507 ASSERT(buf->b_efunc == NULL); 1508 1509 /* clean up the buf */ 1510 buf->b_hdr = NULL; 1511 kmem_cache_free(buf_cache, buf); 1512 } 1513 1514 static void 1515 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1516 { 1517 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1518 ASSERT3P(hdr->b_state, ==, arc_anon); 1519 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1520 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; 1521 1522 if (l2hdr != NULL) { 1523 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx); 1524 /* 1525 * To prevent arc_free() and l2arc_evict() from 1526 * attempting to free the same buffer at the same time, 1527 * a FREE_IN_PROGRESS flag is given to arc_free() to 1528 * give it priority. l2arc_evict() can't destroy this 1529 * header while we are waiting on l2arc_buflist_mtx. 1530 * 1531 * The hdr may be removed from l2ad_buflist before we 1532 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1533 */ 1534 if (!buflist_held) { 1535 mutex_enter(&l2arc_buflist_mtx); 1536 l2hdr = hdr->b_l2hdr; 1537 } 1538 1539 if (l2hdr != NULL) { 1540 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 1541 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1542 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 1543 if (hdr->b_state == arc_l2c_only) 1544 l2arc_hdr_stat_remove(); 1545 hdr->b_l2hdr = NULL; 1546 } 1547 1548 if (!buflist_held) 1549 mutex_exit(&l2arc_buflist_mtx); 1550 } 1551 1552 if (!BUF_EMPTY(hdr)) { 1553 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1554 buf_discard_identity(hdr); 1555 } 1556 while (hdr->b_buf) { 1557 arc_buf_t *buf = hdr->b_buf; 1558 1559 if (buf->b_efunc) { 1560 mutex_enter(&arc_eviction_mtx); 1561 mutex_enter(&buf->b_evict_lock); 1562 ASSERT(buf->b_hdr != NULL); 1563 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1564 hdr->b_buf = buf->b_next; 1565 buf->b_hdr = &arc_eviction_hdr; 1566 buf->b_next = arc_eviction_list; 1567 arc_eviction_list = buf; 1568 mutex_exit(&buf->b_evict_lock); 1569 mutex_exit(&arc_eviction_mtx); 1570 } else { 1571 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1572 } 1573 } 1574 if (hdr->b_freeze_cksum != NULL) { 1575 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1576 hdr->b_freeze_cksum = NULL; 1577 } 1578 if (hdr->b_thawed) { 1579 kmem_free(hdr->b_thawed, 1); 1580 hdr->b_thawed = NULL; 1581 } 1582 1583 ASSERT(!list_link_active(&hdr->b_arc_node)); 1584 ASSERT3P(hdr->b_hash_next, ==, NULL); 1585 ASSERT3P(hdr->b_acb, ==, NULL); 1586 kmem_cache_free(hdr_cache, hdr); 1587 } 1588 1589 void 1590 arc_buf_free(arc_buf_t *buf, void *tag) 1591 { 1592 arc_buf_hdr_t *hdr = buf->b_hdr; 1593 int hashed = hdr->b_state != arc_anon; 1594 1595 ASSERT(buf->b_efunc == NULL); 1596 ASSERT(buf->b_data != NULL); 1597 1598 if (hashed) { 1599 kmutex_t *hash_lock = HDR_LOCK(hdr); 1600 1601 mutex_enter(hash_lock); 1602 hdr = buf->b_hdr; 1603 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1604 1605 (void) remove_reference(hdr, hash_lock, tag); 1606 if (hdr->b_datacnt > 1) { 1607 arc_buf_destroy(buf, FALSE, TRUE); 1608 } else { 1609 ASSERT(buf == hdr->b_buf); 1610 ASSERT(buf->b_efunc == NULL); 1611 hdr->b_flags |= ARC_BUF_AVAILABLE; 1612 } 1613 mutex_exit(hash_lock); 1614 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1615 int destroy_hdr; 1616 /* 1617 * We are in the middle of an async write. Don't destroy 1618 * this buffer unless the write completes before we finish 1619 * decrementing the reference count. 1620 */ 1621 mutex_enter(&arc_eviction_mtx); 1622 (void) remove_reference(hdr, NULL, tag); 1623 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1624 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1625 mutex_exit(&arc_eviction_mtx); 1626 if (destroy_hdr) 1627 arc_hdr_destroy(hdr); 1628 } else { 1629 if (remove_reference(hdr, NULL, tag) > 0) 1630 arc_buf_destroy(buf, FALSE, TRUE); 1631 else 1632 arc_hdr_destroy(hdr); 1633 } 1634 } 1635 1636 boolean_t 1637 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1638 { 1639 arc_buf_hdr_t *hdr = buf->b_hdr; 1640 kmutex_t *hash_lock = HDR_LOCK(hdr); 1641 boolean_t no_callback = (buf->b_efunc == NULL); 1642 1643 if (hdr->b_state == arc_anon) { 1644 ASSERT(hdr->b_datacnt == 1); 1645 arc_buf_free(buf, tag); 1646 return (no_callback); 1647 } 1648 1649 mutex_enter(hash_lock); 1650 hdr = buf->b_hdr; 1651 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1652 ASSERT(hdr->b_state != arc_anon); 1653 ASSERT(buf->b_data != NULL); 1654 1655 (void) remove_reference(hdr, hash_lock, tag); 1656 if (hdr->b_datacnt > 1) { 1657 if (no_callback) 1658 arc_buf_destroy(buf, FALSE, TRUE); 1659 } else if (no_callback) { 1660 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1661 ASSERT(buf->b_efunc == NULL); 1662 hdr->b_flags |= ARC_BUF_AVAILABLE; 1663 } 1664 ASSERT(no_callback || hdr->b_datacnt > 1 || 1665 refcount_is_zero(&hdr->b_refcnt)); 1666 mutex_exit(hash_lock); 1667 return (no_callback); 1668 } 1669 1670 int 1671 arc_buf_size(arc_buf_t *buf) 1672 { 1673 return (buf->b_hdr->b_size); 1674 } 1675 1676 /* 1677 * Called from the DMU to determine if the current buffer should be 1678 * evicted. In order to ensure proper locking, the eviction must be initiated 1679 * from the DMU. Return true if the buffer is associated with user data and 1680 * duplicate buffers still exist. 1681 */ 1682 boolean_t 1683 arc_buf_eviction_needed(arc_buf_t *buf) 1684 { 1685 arc_buf_hdr_t *hdr; 1686 boolean_t evict_needed = B_FALSE; 1687 1688 if (zfs_disable_dup_eviction) 1689 return (B_FALSE); 1690 1691 mutex_enter(&buf->b_evict_lock); 1692 hdr = buf->b_hdr; 1693 if (hdr == NULL) { 1694 /* 1695 * We are in arc_do_user_evicts(); let that function 1696 * perform the eviction. 1697 */ 1698 ASSERT(buf->b_data == NULL); 1699 mutex_exit(&buf->b_evict_lock); 1700 return (B_FALSE); 1701 } else if (buf->b_data == NULL) { 1702 /* 1703 * We have already been added to the arc eviction list; 1704 * recommend eviction. 1705 */ 1706 ASSERT3P(hdr, ==, &arc_eviction_hdr); 1707 mutex_exit(&buf->b_evict_lock); 1708 return (B_TRUE); 1709 } 1710 1711 if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA) 1712 evict_needed = B_TRUE; 1713 1714 mutex_exit(&buf->b_evict_lock); 1715 return (evict_needed); 1716 } 1717 1718 /* 1719 * Evict buffers from list until we've removed the specified number of 1720 * bytes. Move the removed buffers to the appropriate evict state. 1721 * If the recycle flag is set, then attempt to "recycle" a buffer: 1722 * - look for a buffer to evict that is `bytes' long. 1723 * - return the data block from this buffer rather than freeing it. 1724 * This flag is used by callers that are trying to make space for a 1725 * new buffer in a full arc cache. 1726 * 1727 * This function makes a "best effort". It skips over any buffers 1728 * it can't get a hash_lock on, and so may not catch all candidates. 1729 * It may also return without evicting as much space as requested. 1730 */ 1731 static void * 1732 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, 1733 arc_buf_contents_t type) 1734 { 1735 arc_state_t *evicted_state; 1736 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1737 arc_buf_hdr_t *ab, *ab_prev = NULL; 1738 list_t *list = &state->arcs_list[type]; 1739 kmutex_t *hash_lock; 1740 boolean_t have_lock; 1741 void *stolen = NULL; 1742 1743 ASSERT(state == arc_mru || state == arc_mfu); 1744 1745 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1746 1747 mutex_enter(&state->arcs_mtx); 1748 mutex_enter(&evicted_state->arcs_mtx); 1749 1750 for (ab = list_tail(list); ab; ab = ab_prev) { 1751 ab_prev = list_prev(list, ab); 1752 /* prefetch buffers have a minimum lifespan */ 1753 if (HDR_IO_IN_PROGRESS(ab) || 1754 (spa && ab->b_spa != spa) || 1755 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1756 ddi_get_lbolt() - ab->b_arc_access < 1757 arc_min_prefetch_lifespan)) { 1758 skipped++; 1759 continue; 1760 } 1761 /* "lookahead" for better eviction candidate */ 1762 if (recycle && ab->b_size != bytes && 1763 ab_prev && ab_prev->b_size == bytes) 1764 continue; 1765 hash_lock = HDR_LOCK(ab); 1766 have_lock = MUTEX_HELD(hash_lock); 1767 if (have_lock || mutex_tryenter(hash_lock)) { 1768 ASSERT0(refcount_count(&ab->b_refcnt)); 1769 ASSERT(ab->b_datacnt > 0); 1770 while (ab->b_buf) { 1771 arc_buf_t *buf = ab->b_buf; 1772 if (!mutex_tryenter(&buf->b_evict_lock)) { 1773 missed += 1; 1774 break; 1775 } 1776 if (buf->b_data) { 1777 bytes_evicted += ab->b_size; 1778 if (recycle && ab->b_type == type && 1779 ab->b_size == bytes && 1780 !HDR_L2_WRITING(ab)) { 1781 stolen = buf->b_data; 1782 recycle = FALSE; 1783 } 1784 } 1785 if (buf->b_efunc) { 1786 mutex_enter(&arc_eviction_mtx); 1787 arc_buf_destroy(buf, 1788 buf->b_data == stolen, FALSE); 1789 ab->b_buf = buf->b_next; 1790 buf->b_hdr = &arc_eviction_hdr; 1791 buf->b_next = arc_eviction_list; 1792 arc_eviction_list = buf; 1793 mutex_exit(&arc_eviction_mtx); 1794 mutex_exit(&buf->b_evict_lock); 1795 } else { 1796 mutex_exit(&buf->b_evict_lock); 1797 arc_buf_destroy(buf, 1798 buf->b_data == stolen, TRUE); 1799 } 1800 } 1801 1802 if (ab->b_l2hdr) { 1803 ARCSTAT_INCR(arcstat_evict_l2_cached, 1804 ab->b_size); 1805 } else { 1806 if (l2arc_write_eligible(ab->b_spa, ab)) { 1807 ARCSTAT_INCR(arcstat_evict_l2_eligible, 1808 ab->b_size); 1809 } else { 1810 ARCSTAT_INCR( 1811 arcstat_evict_l2_ineligible, 1812 ab->b_size); 1813 } 1814 } 1815 1816 if (ab->b_datacnt == 0) { 1817 arc_change_state(evicted_state, ab, hash_lock); 1818 ASSERT(HDR_IN_HASH_TABLE(ab)); 1819 ab->b_flags |= ARC_IN_HASH_TABLE; 1820 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1821 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1822 } 1823 if (!have_lock) 1824 mutex_exit(hash_lock); 1825 if (bytes >= 0 && bytes_evicted >= bytes) 1826 break; 1827 } else { 1828 missed += 1; 1829 } 1830 } 1831 1832 mutex_exit(&evicted_state->arcs_mtx); 1833 mutex_exit(&state->arcs_mtx); 1834 1835 if (bytes_evicted < bytes) 1836 dprintf("only evicted %lld bytes from %x", 1837 (longlong_t)bytes_evicted, state); 1838 1839 if (skipped) 1840 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1841 1842 if (missed) 1843 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1844 1845 /* 1846 * We have just evicted some data into the ghost state, make 1847 * sure we also adjust the ghost state size if necessary. 1848 */ 1849 if (arc_no_grow && 1850 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) { 1851 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size + 1852 arc_mru_ghost->arcs_size - arc_c; 1853 1854 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) { 1855 int64_t todelete = 1856 MIN(arc_mru_ghost->arcs_lsize[type], mru_over); 1857 arc_evict_ghost(arc_mru_ghost, NULL, todelete); 1858 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) { 1859 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type], 1860 arc_mru_ghost->arcs_size + 1861 arc_mfu_ghost->arcs_size - arc_c); 1862 arc_evict_ghost(arc_mfu_ghost, NULL, todelete); 1863 } 1864 } 1865 1866 return (stolen); 1867 } 1868 1869 /* 1870 * Remove buffers from list until we've removed the specified number of 1871 * bytes. Destroy the buffers that are removed. 1872 */ 1873 static void 1874 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes) 1875 { 1876 arc_buf_hdr_t *ab, *ab_prev; 1877 arc_buf_hdr_t marker = { 0 }; 1878 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1879 kmutex_t *hash_lock; 1880 uint64_t bytes_deleted = 0; 1881 uint64_t bufs_skipped = 0; 1882 1883 ASSERT(GHOST_STATE(state)); 1884 top: 1885 mutex_enter(&state->arcs_mtx); 1886 for (ab = list_tail(list); ab; ab = ab_prev) { 1887 ab_prev = list_prev(list, ab); 1888 if (spa && ab->b_spa != spa) 1889 continue; 1890 1891 /* ignore markers */ 1892 if (ab->b_spa == 0) 1893 continue; 1894 1895 hash_lock = HDR_LOCK(ab); 1896 /* caller may be trying to modify this buffer, skip it */ 1897 if (MUTEX_HELD(hash_lock)) 1898 continue; 1899 if (mutex_tryenter(hash_lock)) { 1900 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1901 ASSERT(ab->b_buf == NULL); 1902 ARCSTAT_BUMP(arcstat_deleted); 1903 bytes_deleted += ab->b_size; 1904 1905 if (ab->b_l2hdr != NULL) { 1906 /* 1907 * This buffer is cached on the 2nd Level ARC; 1908 * don't destroy the header. 1909 */ 1910 arc_change_state(arc_l2c_only, ab, hash_lock); 1911 mutex_exit(hash_lock); 1912 } else { 1913 arc_change_state(arc_anon, ab, hash_lock); 1914 mutex_exit(hash_lock); 1915 arc_hdr_destroy(ab); 1916 } 1917 1918 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1919 if (bytes >= 0 && bytes_deleted >= bytes) 1920 break; 1921 } else if (bytes < 0) { 1922 /* 1923 * Insert a list marker and then wait for the 1924 * hash lock to become available. Once its 1925 * available, restart from where we left off. 1926 */ 1927 list_insert_after(list, ab, &marker); 1928 mutex_exit(&state->arcs_mtx); 1929 mutex_enter(hash_lock); 1930 mutex_exit(hash_lock); 1931 mutex_enter(&state->arcs_mtx); 1932 ab_prev = list_prev(list, &marker); 1933 list_remove(list, &marker); 1934 } else 1935 bufs_skipped += 1; 1936 } 1937 mutex_exit(&state->arcs_mtx); 1938 1939 if (list == &state->arcs_list[ARC_BUFC_DATA] && 1940 (bytes < 0 || bytes_deleted < bytes)) { 1941 list = &state->arcs_list[ARC_BUFC_METADATA]; 1942 goto top; 1943 } 1944 1945 if (bufs_skipped) { 1946 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 1947 ASSERT(bytes >= 0); 1948 } 1949 1950 if (bytes_deleted < bytes) 1951 dprintf("only deleted %lld bytes from %p", 1952 (longlong_t)bytes_deleted, state); 1953 } 1954 1955 static void 1956 arc_adjust(void) 1957 { 1958 int64_t adjustment, delta; 1959 1960 /* 1961 * Adjust MRU size 1962 */ 1963 1964 adjustment = MIN((int64_t)(arc_size - arc_c), 1965 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - 1966 arc_p)); 1967 1968 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 1969 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); 1970 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA); 1971 adjustment -= delta; 1972 } 1973 1974 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1975 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); 1976 (void) arc_evict(arc_mru, NULL, delta, FALSE, 1977 ARC_BUFC_METADATA); 1978 } 1979 1980 /* 1981 * Adjust MFU size 1982 */ 1983 1984 adjustment = arc_size - arc_c; 1985 1986 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 1987 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); 1988 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA); 1989 adjustment -= delta; 1990 } 1991 1992 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1993 int64_t delta = MIN(adjustment, 1994 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); 1995 (void) arc_evict(arc_mfu, NULL, delta, FALSE, 1996 ARC_BUFC_METADATA); 1997 } 1998 1999 /* 2000 * Adjust ghost lists 2001 */ 2002 2003 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; 2004 2005 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { 2006 delta = MIN(arc_mru_ghost->arcs_size, adjustment); 2007 arc_evict_ghost(arc_mru_ghost, NULL, delta); 2008 } 2009 2010 adjustment = 2011 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; 2012 2013 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { 2014 delta = MIN(arc_mfu_ghost->arcs_size, adjustment); 2015 arc_evict_ghost(arc_mfu_ghost, NULL, delta); 2016 } 2017 } 2018 2019 static void 2020 arc_do_user_evicts(void) 2021 { 2022 mutex_enter(&arc_eviction_mtx); 2023 while (arc_eviction_list != NULL) { 2024 arc_buf_t *buf = arc_eviction_list; 2025 arc_eviction_list = buf->b_next; 2026 mutex_enter(&buf->b_evict_lock); 2027 buf->b_hdr = NULL; 2028 mutex_exit(&buf->b_evict_lock); 2029 mutex_exit(&arc_eviction_mtx); 2030 2031 if (buf->b_efunc != NULL) 2032 VERIFY(buf->b_efunc(buf) == 0); 2033 2034 buf->b_efunc = NULL; 2035 buf->b_private = NULL; 2036 kmem_cache_free(buf_cache, buf); 2037 mutex_enter(&arc_eviction_mtx); 2038 } 2039 mutex_exit(&arc_eviction_mtx); 2040 } 2041 2042 /* 2043 * Flush all *evictable* data from the cache for the given spa. 2044 * NOTE: this will not touch "active" (i.e. referenced) data. 2045 */ 2046 void 2047 arc_flush(spa_t *spa) 2048 { 2049 uint64_t guid = 0; 2050 2051 if (spa) 2052 guid = spa_load_guid(spa); 2053 2054 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 2055 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); 2056 if (spa) 2057 break; 2058 } 2059 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 2060 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); 2061 if (spa) 2062 break; 2063 } 2064 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 2065 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); 2066 if (spa) 2067 break; 2068 } 2069 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 2070 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); 2071 if (spa) 2072 break; 2073 } 2074 2075 arc_evict_ghost(arc_mru_ghost, guid, -1); 2076 arc_evict_ghost(arc_mfu_ghost, guid, -1); 2077 2078 mutex_enter(&arc_reclaim_thr_lock); 2079 arc_do_user_evicts(); 2080 mutex_exit(&arc_reclaim_thr_lock); 2081 ASSERT(spa || arc_eviction_list == NULL); 2082 } 2083 2084 void 2085 arc_shrink(void) 2086 { 2087 if (arc_c > arc_c_min) { 2088 uint64_t to_free; 2089 2090 #ifdef _KERNEL 2091 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 2092 #else 2093 to_free = arc_c >> arc_shrink_shift; 2094 #endif 2095 if (arc_c > arc_c_min + to_free) 2096 atomic_add_64(&arc_c, -to_free); 2097 else 2098 arc_c = arc_c_min; 2099 2100 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 2101 if (arc_c > arc_size) 2102 arc_c = MAX(arc_size, arc_c_min); 2103 if (arc_p > arc_c) 2104 arc_p = (arc_c >> 1); 2105 ASSERT(arc_c >= arc_c_min); 2106 ASSERT((int64_t)arc_p >= 0); 2107 } 2108 2109 if (arc_size > arc_c) 2110 arc_adjust(); 2111 } 2112 2113 /* 2114 * Determine if the system is under memory pressure and is asking 2115 * to reclaim memory. A return value of 1 indicates that the system 2116 * is under memory pressure and that the arc should adjust accordingly. 2117 */ 2118 static int 2119 arc_reclaim_needed(void) 2120 { 2121 uint64_t extra; 2122 2123 #ifdef _KERNEL 2124 2125 if (needfree) 2126 return (1); 2127 2128 /* 2129 * take 'desfree' extra pages, so we reclaim sooner, rather than later 2130 */ 2131 extra = desfree; 2132 2133 /* 2134 * check that we're out of range of the pageout scanner. It starts to 2135 * schedule paging if freemem is less than lotsfree and needfree. 2136 * lotsfree is the high-water mark for pageout, and needfree is the 2137 * number of needed free pages. We add extra pages here to make sure 2138 * the scanner doesn't start up while we're freeing memory. 2139 */ 2140 if (freemem < lotsfree + needfree + extra) 2141 return (1); 2142 2143 /* 2144 * check to make sure that swapfs has enough space so that anon 2145 * reservations can still succeed. anon_resvmem() checks that the 2146 * availrmem is greater than swapfs_minfree, and the number of reserved 2147 * swap pages. We also add a bit of extra here just to prevent 2148 * circumstances from getting really dire. 2149 */ 2150 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 2151 return (1); 2152 2153 #if defined(__i386) 2154 /* 2155 * If we're on an i386 platform, it's possible that we'll exhaust the 2156 * kernel heap space before we ever run out of available physical 2157 * memory. Most checks of the size of the heap_area compare against 2158 * tune.t_minarmem, which is the minimum available real memory that we 2159 * can have in the system. However, this is generally fixed at 25 pages 2160 * which is so low that it's useless. In this comparison, we seek to 2161 * calculate the total heap-size, and reclaim if more than 3/4ths of the 2162 * heap is allocated. (Or, in the calculation, if less than 1/4th is 2163 * free) 2164 */ 2165 if (vmem_size(heap_arena, VMEM_FREE) < 2166 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2)) 2167 return (1); 2168 #endif 2169 2170 /* 2171 * If zio data pages are being allocated out of a separate heap segment, 2172 * then enforce that the size of available vmem for this arena remains 2173 * above about 1/16th free. 2174 * 2175 * Note: The 1/16th arena free requirement was put in place 2176 * to aggressively evict memory from the arc in order to avoid 2177 * memory fragmentation issues. 2178 */ 2179 if (zio_arena != NULL && 2180 vmem_size(zio_arena, VMEM_FREE) < 2181 (vmem_size(zio_arena, VMEM_ALLOC) >> 4)) 2182 return (1); 2183 #else 2184 if (spa_get_random(100) == 0) 2185 return (1); 2186 #endif 2187 return (0); 2188 } 2189 2190 static void 2191 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 2192 { 2193 size_t i; 2194 kmem_cache_t *prev_cache = NULL; 2195 kmem_cache_t *prev_data_cache = NULL; 2196 extern kmem_cache_t *zio_buf_cache[]; 2197 extern kmem_cache_t *zio_data_buf_cache[]; 2198 2199 #ifdef _KERNEL 2200 if (arc_meta_used >= arc_meta_limit) { 2201 /* 2202 * We are exceeding our meta-data cache limit. 2203 * Purge some DNLC entries to release holds on meta-data. 2204 */ 2205 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 2206 } 2207 #if defined(__i386) 2208 /* 2209 * Reclaim unused memory from all kmem caches. 2210 */ 2211 kmem_reap(); 2212 #endif 2213 #endif 2214 2215 /* 2216 * An aggressive reclamation will shrink the cache size as well as 2217 * reap free buffers from the arc kmem caches. 2218 */ 2219 if (strat == ARC_RECLAIM_AGGR) 2220 arc_shrink(); 2221 2222 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 2223 if (zio_buf_cache[i] != prev_cache) { 2224 prev_cache = zio_buf_cache[i]; 2225 kmem_cache_reap_now(zio_buf_cache[i]); 2226 } 2227 if (zio_data_buf_cache[i] != prev_data_cache) { 2228 prev_data_cache = zio_data_buf_cache[i]; 2229 kmem_cache_reap_now(zio_data_buf_cache[i]); 2230 } 2231 } 2232 kmem_cache_reap_now(buf_cache); 2233 kmem_cache_reap_now(hdr_cache); 2234 2235 /* 2236 * Ask the vmem areana to reclaim unused memory from its 2237 * quantum caches. 2238 */ 2239 if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR) 2240 vmem_qcache_reap(zio_arena); 2241 } 2242 2243 static void 2244 arc_reclaim_thread(void) 2245 { 2246 clock_t growtime = 0; 2247 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 2248 callb_cpr_t cpr; 2249 2250 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 2251 2252 mutex_enter(&arc_reclaim_thr_lock); 2253 while (arc_thread_exit == 0) { 2254 if (arc_reclaim_needed()) { 2255 2256 if (arc_no_grow) { 2257 if (last_reclaim == ARC_RECLAIM_CONS) { 2258 last_reclaim = ARC_RECLAIM_AGGR; 2259 } else { 2260 last_reclaim = ARC_RECLAIM_CONS; 2261 } 2262 } else { 2263 arc_no_grow = TRUE; 2264 last_reclaim = ARC_RECLAIM_AGGR; 2265 membar_producer(); 2266 } 2267 2268 /* reset the growth delay for every reclaim */ 2269 growtime = ddi_get_lbolt() + (arc_grow_retry * hz); 2270 2271 arc_kmem_reap_now(last_reclaim); 2272 arc_warm = B_TRUE; 2273 2274 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) { 2275 arc_no_grow = FALSE; 2276 } 2277 2278 arc_adjust(); 2279 2280 if (arc_eviction_list != NULL) 2281 arc_do_user_evicts(); 2282 2283 /* block until needed, or one second, whichever is shorter */ 2284 CALLB_CPR_SAFE_BEGIN(&cpr); 2285 (void) cv_timedwait(&arc_reclaim_thr_cv, 2286 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz)); 2287 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 2288 } 2289 2290 arc_thread_exit = 0; 2291 cv_broadcast(&arc_reclaim_thr_cv); 2292 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 2293 thread_exit(); 2294 } 2295 2296 /* 2297 * Adapt arc info given the number of bytes we are trying to add and 2298 * the state that we are comming from. This function is only called 2299 * when we are adding new content to the cache. 2300 */ 2301 static void 2302 arc_adapt(int bytes, arc_state_t *state) 2303 { 2304 int mult; 2305 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 2306 2307 if (state == arc_l2c_only) 2308 return; 2309 2310 ASSERT(bytes > 0); 2311 /* 2312 * Adapt the target size of the MRU list: 2313 * - if we just hit in the MRU ghost list, then increase 2314 * the target size of the MRU list. 2315 * - if we just hit in the MFU ghost list, then increase 2316 * the target size of the MFU list by decreasing the 2317 * target size of the MRU list. 2318 */ 2319 if (state == arc_mru_ghost) { 2320 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2321 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2322 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 2323 2324 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 2325 } else if (state == arc_mfu_ghost) { 2326 uint64_t delta; 2327 2328 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2329 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2330 mult = MIN(mult, 10); 2331 2332 delta = MIN(bytes * mult, arc_p); 2333 arc_p = MAX(arc_p_min, arc_p - delta); 2334 } 2335 ASSERT((int64_t)arc_p >= 0); 2336 2337 if (arc_reclaim_needed()) { 2338 cv_signal(&arc_reclaim_thr_cv); 2339 return; 2340 } 2341 2342 if (arc_no_grow) 2343 return; 2344 2345 if (arc_c >= arc_c_max) 2346 return; 2347 2348 /* 2349 * If we're within (2 * maxblocksize) bytes of the target 2350 * cache size, increment the target cache size 2351 */ 2352 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2353 atomic_add_64(&arc_c, (int64_t)bytes); 2354 if (arc_c > arc_c_max) 2355 arc_c = arc_c_max; 2356 else if (state == arc_anon) 2357 atomic_add_64(&arc_p, (int64_t)bytes); 2358 if (arc_p > arc_c) 2359 arc_p = arc_c; 2360 } 2361 ASSERT((int64_t)arc_p >= 0); 2362 } 2363 2364 /* 2365 * Check if the cache has reached its limits and eviction is required 2366 * prior to insert. 2367 */ 2368 static int 2369 arc_evict_needed(arc_buf_contents_t type) 2370 { 2371 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2372 return (1); 2373 2374 if (arc_reclaim_needed()) 2375 return (1); 2376 2377 return (arc_size > arc_c); 2378 } 2379 2380 /* 2381 * The buffer, supplied as the first argument, needs a data block. 2382 * So, if we are at cache max, determine which cache should be victimized. 2383 * We have the following cases: 2384 * 2385 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2386 * In this situation if we're out of space, but the resident size of the MFU is 2387 * under the limit, victimize the MFU cache to satisfy this insertion request. 2388 * 2389 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2390 * Here, we've used up all of the available space for the MRU, so we need to 2391 * evict from our own cache instead. Evict from the set of resident MRU 2392 * entries. 2393 * 2394 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2395 * c minus p represents the MFU space in the cache, since p is the size of the 2396 * cache that is dedicated to the MRU. In this situation there's still space on 2397 * the MFU side, so the MRU side needs to be victimized. 2398 * 2399 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2400 * MFU's resident set is consuming more space than it has been allotted. In 2401 * this situation, we must victimize our own cache, the MFU, for this insertion. 2402 */ 2403 static void 2404 arc_get_data_buf(arc_buf_t *buf) 2405 { 2406 arc_state_t *state = buf->b_hdr->b_state; 2407 uint64_t size = buf->b_hdr->b_size; 2408 arc_buf_contents_t type = buf->b_hdr->b_type; 2409 2410 arc_adapt(size, state); 2411 2412 /* 2413 * We have not yet reached cache maximum size, 2414 * just allocate a new buffer. 2415 */ 2416 if (!arc_evict_needed(type)) { 2417 if (type == ARC_BUFC_METADATA) { 2418 buf->b_data = zio_buf_alloc(size); 2419 arc_space_consume(size, ARC_SPACE_DATA); 2420 } else { 2421 ASSERT(type == ARC_BUFC_DATA); 2422 buf->b_data = zio_data_buf_alloc(size); 2423 ARCSTAT_INCR(arcstat_data_size, size); 2424 atomic_add_64(&arc_size, size); 2425 } 2426 goto out; 2427 } 2428 2429 /* 2430 * If we are prefetching from the mfu ghost list, this buffer 2431 * will end up on the mru list; so steal space from there. 2432 */ 2433 if (state == arc_mfu_ghost) 2434 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2435 else if (state == arc_mru_ghost) 2436 state = arc_mru; 2437 2438 if (state == arc_mru || state == arc_anon) { 2439 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2440 state = (arc_mfu->arcs_lsize[type] >= size && 2441 arc_p > mru_used) ? arc_mfu : arc_mru; 2442 } else { 2443 /* MFU cases */ 2444 uint64_t mfu_space = arc_c - arc_p; 2445 state = (arc_mru->arcs_lsize[type] >= size && 2446 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2447 } 2448 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2449 if (type == ARC_BUFC_METADATA) { 2450 buf->b_data = zio_buf_alloc(size); 2451 arc_space_consume(size, ARC_SPACE_DATA); 2452 } else { 2453 ASSERT(type == ARC_BUFC_DATA); 2454 buf->b_data = zio_data_buf_alloc(size); 2455 ARCSTAT_INCR(arcstat_data_size, size); 2456 atomic_add_64(&arc_size, size); 2457 } 2458 ARCSTAT_BUMP(arcstat_recycle_miss); 2459 } 2460 ASSERT(buf->b_data != NULL); 2461 out: 2462 /* 2463 * Update the state size. Note that ghost states have a 2464 * "ghost size" and so don't need to be updated. 2465 */ 2466 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2467 arc_buf_hdr_t *hdr = buf->b_hdr; 2468 2469 atomic_add_64(&hdr->b_state->arcs_size, size); 2470 if (list_link_active(&hdr->b_arc_node)) { 2471 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2472 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2473 } 2474 /* 2475 * If we are growing the cache, and we are adding anonymous 2476 * data, and we have outgrown arc_p, update arc_p 2477 */ 2478 if (arc_size < arc_c && hdr->b_state == arc_anon && 2479 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2480 arc_p = MIN(arc_c, arc_p + size); 2481 } 2482 } 2483 2484 /* 2485 * This routine is called whenever a buffer is accessed. 2486 * NOTE: the hash lock is dropped in this function. 2487 */ 2488 static void 2489 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2490 { 2491 clock_t now; 2492 2493 ASSERT(MUTEX_HELD(hash_lock)); 2494 2495 if (buf->b_state == arc_anon) { 2496 /* 2497 * This buffer is not in the cache, and does not 2498 * appear in our "ghost" list. Add the new buffer 2499 * to the MRU state. 2500 */ 2501 2502 ASSERT(buf->b_arc_access == 0); 2503 buf->b_arc_access = ddi_get_lbolt(); 2504 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2505 arc_change_state(arc_mru, buf, hash_lock); 2506 2507 } else if (buf->b_state == arc_mru) { 2508 now = ddi_get_lbolt(); 2509 2510 /* 2511 * If this buffer is here because of a prefetch, then either: 2512 * - clear the flag if this is a "referencing" read 2513 * (any subsequent access will bump this into the MFU state). 2514 * or 2515 * - move the buffer to the head of the list if this is 2516 * another prefetch (to make it less likely to be evicted). 2517 */ 2518 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2519 if (refcount_count(&buf->b_refcnt) == 0) { 2520 ASSERT(list_link_active(&buf->b_arc_node)); 2521 } else { 2522 buf->b_flags &= ~ARC_PREFETCH; 2523 ARCSTAT_BUMP(arcstat_mru_hits); 2524 } 2525 buf->b_arc_access = now; 2526 return; 2527 } 2528 2529 /* 2530 * This buffer has been "accessed" only once so far, 2531 * but it is still in the cache. Move it to the MFU 2532 * state. 2533 */ 2534 if (now > buf->b_arc_access + ARC_MINTIME) { 2535 /* 2536 * More than 125ms have passed since we 2537 * instantiated this buffer. Move it to the 2538 * most frequently used state. 2539 */ 2540 buf->b_arc_access = now; 2541 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2542 arc_change_state(arc_mfu, buf, hash_lock); 2543 } 2544 ARCSTAT_BUMP(arcstat_mru_hits); 2545 } else if (buf->b_state == arc_mru_ghost) { 2546 arc_state_t *new_state; 2547 /* 2548 * This buffer has been "accessed" recently, but 2549 * was evicted from the cache. Move it to the 2550 * MFU state. 2551 */ 2552 2553 if (buf->b_flags & ARC_PREFETCH) { 2554 new_state = arc_mru; 2555 if (refcount_count(&buf->b_refcnt) > 0) 2556 buf->b_flags &= ~ARC_PREFETCH; 2557 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2558 } else { 2559 new_state = arc_mfu; 2560 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2561 } 2562 2563 buf->b_arc_access = ddi_get_lbolt(); 2564 arc_change_state(new_state, buf, hash_lock); 2565 2566 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2567 } else if (buf->b_state == arc_mfu) { 2568 /* 2569 * This buffer has been accessed more than once and is 2570 * still in the cache. Keep it in the MFU state. 2571 * 2572 * NOTE: an add_reference() that occurred when we did 2573 * the arc_read() will have kicked this off the list. 2574 * If it was a prefetch, we will explicitly move it to 2575 * the head of the list now. 2576 */ 2577 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2578 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2579 ASSERT(list_link_active(&buf->b_arc_node)); 2580 } 2581 ARCSTAT_BUMP(arcstat_mfu_hits); 2582 buf->b_arc_access = ddi_get_lbolt(); 2583 } else if (buf->b_state == arc_mfu_ghost) { 2584 arc_state_t *new_state = arc_mfu; 2585 /* 2586 * This buffer has been accessed more than once but has 2587 * been evicted from the cache. Move it back to the 2588 * MFU state. 2589 */ 2590 2591 if (buf->b_flags & ARC_PREFETCH) { 2592 /* 2593 * This is a prefetch access... 2594 * move this block back to the MRU state. 2595 */ 2596 ASSERT0(refcount_count(&buf->b_refcnt)); 2597 new_state = arc_mru; 2598 } 2599 2600 buf->b_arc_access = ddi_get_lbolt(); 2601 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2602 arc_change_state(new_state, buf, hash_lock); 2603 2604 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2605 } else if (buf->b_state == arc_l2c_only) { 2606 /* 2607 * This buffer is on the 2nd Level ARC. 2608 */ 2609 2610 buf->b_arc_access = ddi_get_lbolt(); 2611 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2612 arc_change_state(arc_mfu, buf, hash_lock); 2613 } else { 2614 ASSERT(!"invalid arc state"); 2615 } 2616 } 2617 2618 /* a generic arc_done_func_t which you can use */ 2619 /* ARGSUSED */ 2620 void 2621 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2622 { 2623 if (zio == NULL || zio->io_error == 0) 2624 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2625 VERIFY(arc_buf_remove_ref(buf, arg)); 2626 } 2627 2628 /* a generic arc_done_func_t */ 2629 void 2630 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2631 { 2632 arc_buf_t **bufp = arg; 2633 if (zio && zio->io_error) { 2634 VERIFY(arc_buf_remove_ref(buf, arg)); 2635 *bufp = NULL; 2636 } else { 2637 *bufp = buf; 2638 ASSERT(buf->b_data); 2639 } 2640 } 2641 2642 static void 2643 arc_read_done(zio_t *zio) 2644 { 2645 arc_buf_hdr_t *hdr, *found; 2646 arc_buf_t *buf; 2647 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2648 kmutex_t *hash_lock; 2649 arc_callback_t *callback_list, *acb; 2650 int freeable = FALSE; 2651 2652 buf = zio->io_private; 2653 hdr = buf->b_hdr; 2654 2655 /* 2656 * The hdr was inserted into hash-table and removed from lists 2657 * prior to starting I/O. We should find this header, since 2658 * it's in the hash table, and it should be legit since it's 2659 * not possible to evict it during the I/O. The only possible 2660 * reason for it not to be found is if we were freed during the 2661 * read. 2662 */ 2663 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth, 2664 &hash_lock); 2665 2666 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 2667 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2668 (found == hdr && HDR_L2_READING(hdr))); 2669 2670 hdr->b_flags &= ~ARC_L2_EVICTED; 2671 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2672 hdr->b_flags &= ~ARC_L2CACHE; 2673 2674 /* byteswap if necessary */ 2675 callback_list = hdr->b_acb; 2676 ASSERT(callback_list != NULL); 2677 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { 2678 dmu_object_byteswap_t bswap = 2679 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 2680 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2681 byteswap_uint64_array : 2682 dmu_ot_byteswap[bswap].ob_func; 2683 func(buf->b_data, hdr->b_size); 2684 } 2685 2686 arc_cksum_compute(buf, B_FALSE); 2687 arc_buf_watch(buf); 2688 2689 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) { 2690 /* 2691 * Only call arc_access on anonymous buffers. This is because 2692 * if we've issued an I/O for an evicted buffer, we've already 2693 * called arc_access (to prevent any simultaneous readers from 2694 * getting confused). 2695 */ 2696 arc_access(hdr, hash_lock); 2697 } 2698 2699 /* create copies of the data buffer for the callers */ 2700 abuf = buf; 2701 for (acb = callback_list; acb; acb = acb->acb_next) { 2702 if (acb->acb_done) { 2703 if (abuf == NULL) { 2704 ARCSTAT_BUMP(arcstat_duplicate_reads); 2705 abuf = arc_buf_clone(buf); 2706 } 2707 acb->acb_buf = abuf; 2708 abuf = NULL; 2709 } 2710 } 2711 hdr->b_acb = NULL; 2712 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2713 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2714 if (abuf == buf) { 2715 ASSERT(buf->b_efunc == NULL); 2716 ASSERT(hdr->b_datacnt == 1); 2717 hdr->b_flags |= ARC_BUF_AVAILABLE; 2718 } 2719 2720 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2721 2722 if (zio->io_error != 0) { 2723 hdr->b_flags |= ARC_IO_ERROR; 2724 if (hdr->b_state != arc_anon) 2725 arc_change_state(arc_anon, hdr, hash_lock); 2726 if (HDR_IN_HASH_TABLE(hdr)) 2727 buf_hash_remove(hdr); 2728 freeable = refcount_is_zero(&hdr->b_refcnt); 2729 } 2730 2731 /* 2732 * Broadcast before we drop the hash_lock to avoid the possibility 2733 * that the hdr (and hence the cv) might be freed before we get to 2734 * the cv_broadcast(). 2735 */ 2736 cv_broadcast(&hdr->b_cv); 2737 2738 if (hash_lock) { 2739 mutex_exit(hash_lock); 2740 } else { 2741 /* 2742 * This block was freed while we waited for the read to 2743 * complete. It has been removed from the hash table and 2744 * moved to the anonymous state (so that it won't show up 2745 * in the cache). 2746 */ 2747 ASSERT3P(hdr->b_state, ==, arc_anon); 2748 freeable = refcount_is_zero(&hdr->b_refcnt); 2749 } 2750 2751 /* execute each callback and free its structure */ 2752 while ((acb = callback_list) != NULL) { 2753 if (acb->acb_done) 2754 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2755 2756 if (acb->acb_zio_dummy != NULL) { 2757 acb->acb_zio_dummy->io_error = zio->io_error; 2758 zio_nowait(acb->acb_zio_dummy); 2759 } 2760 2761 callback_list = acb->acb_next; 2762 kmem_free(acb, sizeof (arc_callback_t)); 2763 } 2764 2765 if (freeable) 2766 arc_hdr_destroy(hdr); 2767 } 2768 2769 /* 2770 * "Read" the block at the specified DVA (in bp) via the 2771 * cache. If the block is found in the cache, invoke the provided 2772 * callback immediately and return. Note that the `zio' parameter 2773 * in the callback will be NULL in this case, since no IO was 2774 * required. If the block is not in the cache pass the read request 2775 * on to the spa with a substitute callback function, so that the 2776 * requested block will be added to the cache. 2777 * 2778 * If a read request arrives for a block that has a read in-progress, 2779 * either wait for the in-progress read to complete (and return the 2780 * results); or, if this is a read with a "done" func, add a record 2781 * to the read to invoke the "done" func when the read completes, 2782 * and return; or just return. 2783 * 2784 * arc_read_done() will invoke all the requested "done" functions 2785 * for readers of this block. 2786 */ 2787 int 2788 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, 2789 void *cb_private, int priority, int zio_flags, uint32_t *arc_flags, 2790 const zbookmark_t *zb) 2791 { 2792 arc_buf_hdr_t *hdr; 2793 arc_buf_t *buf = NULL; 2794 kmutex_t *hash_lock; 2795 zio_t *rzio; 2796 uint64_t guid = spa_load_guid(spa); 2797 2798 top: 2799 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp), 2800 &hash_lock); 2801 if (hdr && hdr->b_datacnt > 0) { 2802 2803 *arc_flags |= ARC_CACHED; 2804 2805 if (HDR_IO_IN_PROGRESS(hdr)) { 2806 2807 if (*arc_flags & ARC_WAIT) { 2808 cv_wait(&hdr->b_cv, hash_lock); 2809 mutex_exit(hash_lock); 2810 goto top; 2811 } 2812 ASSERT(*arc_flags & ARC_NOWAIT); 2813 2814 if (done) { 2815 arc_callback_t *acb = NULL; 2816 2817 acb = kmem_zalloc(sizeof (arc_callback_t), 2818 KM_SLEEP); 2819 acb->acb_done = done; 2820 acb->acb_private = cb_private; 2821 if (pio != NULL) 2822 acb->acb_zio_dummy = zio_null(pio, 2823 spa, NULL, NULL, NULL, zio_flags); 2824 2825 ASSERT(acb->acb_done != NULL); 2826 acb->acb_next = hdr->b_acb; 2827 hdr->b_acb = acb; 2828 add_reference(hdr, hash_lock, cb_private); 2829 mutex_exit(hash_lock); 2830 return (0); 2831 } 2832 mutex_exit(hash_lock); 2833 return (0); 2834 } 2835 2836 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2837 2838 if (done) { 2839 add_reference(hdr, hash_lock, cb_private); 2840 /* 2841 * If this block is already in use, create a new 2842 * copy of the data so that we will be guaranteed 2843 * that arc_release() will always succeed. 2844 */ 2845 buf = hdr->b_buf; 2846 ASSERT(buf); 2847 ASSERT(buf->b_data); 2848 if (HDR_BUF_AVAILABLE(hdr)) { 2849 ASSERT(buf->b_efunc == NULL); 2850 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2851 } else { 2852 buf = arc_buf_clone(buf); 2853 } 2854 2855 } else if (*arc_flags & ARC_PREFETCH && 2856 refcount_count(&hdr->b_refcnt) == 0) { 2857 hdr->b_flags |= ARC_PREFETCH; 2858 } 2859 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2860 arc_access(hdr, hash_lock); 2861 if (*arc_flags & ARC_L2CACHE) 2862 hdr->b_flags |= ARC_L2CACHE; 2863 mutex_exit(hash_lock); 2864 ARCSTAT_BUMP(arcstat_hits); 2865 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2866 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2867 data, metadata, hits); 2868 2869 if (done) 2870 done(NULL, buf, cb_private); 2871 } else { 2872 uint64_t size = BP_GET_LSIZE(bp); 2873 arc_callback_t *acb; 2874 vdev_t *vd = NULL; 2875 uint64_t addr = 0; 2876 boolean_t devw = B_FALSE; 2877 2878 if (hdr == NULL) { 2879 /* this block is not in the cache */ 2880 arc_buf_hdr_t *exists; 2881 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 2882 buf = arc_buf_alloc(spa, size, cb_private, type); 2883 hdr = buf->b_hdr; 2884 hdr->b_dva = *BP_IDENTITY(bp); 2885 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 2886 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 2887 exists = buf_hash_insert(hdr, &hash_lock); 2888 if (exists) { 2889 /* somebody beat us to the hash insert */ 2890 mutex_exit(hash_lock); 2891 buf_discard_identity(hdr); 2892 (void) arc_buf_remove_ref(buf, cb_private); 2893 goto top; /* restart the IO request */ 2894 } 2895 /* if this is a prefetch, we don't have a reference */ 2896 if (*arc_flags & ARC_PREFETCH) { 2897 (void) remove_reference(hdr, hash_lock, 2898 cb_private); 2899 hdr->b_flags |= ARC_PREFETCH; 2900 } 2901 if (*arc_flags & ARC_L2CACHE) 2902 hdr->b_flags |= ARC_L2CACHE; 2903 if (BP_GET_LEVEL(bp) > 0) 2904 hdr->b_flags |= ARC_INDIRECT; 2905 } else { 2906 /* this block is in the ghost cache */ 2907 ASSERT(GHOST_STATE(hdr->b_state)); 2908 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2909 ASSERT0(refcount_count(&hdr->b_refcnt)); 2910 ASSERT(hdr->b_buf == NULL); 2911 2912 /* if this is a prefetch, we don't have a reference */ 2913 if (*arc_flags & ARC_PREFETCH) 2914 hdr->b_flags |= ARC_PREFETCH; 2915 else 2916 add_reference(hdr, hash_lock, cb_private); 2917 if (*arc_flags & ARC_L2CACHE) 2918 hdr->b_flags |= ARC_L2CACHE; 2919 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2920 buf->b_hdr = hdr; 2921 buf->b_data = NULL; 2922 buf->b_efunc = NULL; 2923 buf->b_private = NULL; 2924 buf->b_next = NULL; 2925 hdr->b_buf = buf; 2926 ASSERT(hdr->b_datacnt == 0); 2927 hdr->b_datacnt = 1; 2928 arc_get_data_buf(buf); 2929 arc_access(hdr, hash_lock); 2930 } 2931 2932 ASSERT(!GHOST_STATE(hdr->b_state)); 2933 2934 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2935 acb->acb_done = done; 2936 acb->acb_private = cb_private; 2937 2938 ASSERT(hdr->b_acb == NULL); 2939 hdr->b_acb = acb; 2940 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2941 2942 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL && 2943 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 2944 devw = hdr->b_l2hdr->b_dev->l2ad_writing; 2945 addr = hdr->b_l2hdr->b_daddr; 2946 /* 2947 * Lock out device removal. 2948 */ 2949 if (vdev_is_dead(vd) || 2950 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 2951 vd = NULL; 2952 } 2953 2954 mutex_exit(hash_lock); 2955 2956 ASSERT3U(hdr->b_size, ==, size); 2957 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 2958 uint64_t, size, zbookmark_t *, zb); 2959 ARCSTAT_BUMP(arcstat_misses); 2960 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2961 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2962 data, metadata, misses); 2963 2964 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 2965 /* 2966 * Read from the L2ARC if the following are true: 2967 * 1. The L2ARC vdev was previously cached. 2968 * 2. This buffer still has L2ARC metadata. 2969 * 3. This buffer isn't currently writing to the L2ARC. 2970 * 4. The L2ARC entry wasn't evicted, which may 2971 * also have invalidated the vdev. 2972 * 5. This isn't prefetch and l2arc_noprefetch is set. 2973 */ 2974 if (hdr->b_l2hdr != NULL && 2975 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 2976 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 2977 l2arc_read_callback_t *cb; 2978 2979 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 2980 ARCSTAT_BUMP(arcstat_l2_hits); 2981 2982 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 2983 KM_SLEEP); 2984 cb->l2rcb_buf = buf; 2985 cb->l2rcb_spa = spa; 2986 cb->l2rcb_bp = *bp; 2987 cb->l2rcb_zb = *zb; 2988 cb->l2rcb_flags = zio_flags; 2989 2990 ASSERT(addr >= VDEV_LABEL_START_SIZE && 2991 addr + size < vd->vdev_psize - 2992 VDEV_LABEL_END_SIZE); 2993 2994 /* 2995 * l2arc read. The SCL_L2ARC lock will be 2996 * released by l2arc_read_done(). 2997 */ 2998 rzio = zio_read_phys(pio, vd, addr, size, 2999 buf->b_data, ZIO_CHECKSUM_OFF, 3000 l2arc_read_done, cb, priority, zio_flags | 3001 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 3002 ZIO_FLAG_DONT_PROPAGATE | 3003 ZIO_FLAG_DONT_RETRY, B_FALSE); 3004 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 3005 zio_t *, rzio); 3006 ARCSTAT_INCR(arcstat_l2_read_bytes, size); 3007 3008 if (*arc_flags & ARC_NOWAIT) { 3009 zio_nowait(rzio); 3010 return (0); 3011 } 3012 3013 ASSERT(*arc_flags & ARC_WAIT); 3014 if (zio_wait(rzio) == 0) 3015 return (0); 3016 3017 /* l2arc read error; goto zio_read() */ 3018 } else { 3019 DTRACE_PROBE1(l2arc__miss, 3020 arc_buf_hdr_t *, hdr); 3021 ARCSTAT_BUMP(arcstat_l2_misses); 3022 if (HDR_L2_WRITING(hdr)) 3023 ARCSTAT_BUMP(arcstat_l2_rw_clash); 3024 spa_config_exit(spa, SCL_L2ARC, vd); 3025 } 3026 } else { 3027 if (vd != NULL) 3028 spa_config_exit(spa, SCL_L2ARC, vd); 3029 if (l2arc_ndev != 0) { 3030 DTRACE_PROBE1(l2arc__miss, 3031 arc_buf_hdr_t *, hdr); 3032 ARCSTAT_BUMP(arcstat_l2_misses); 3033 } 3034 } 3035 3036 rzio = zio_read(pio, spa, bp, buf->b_data, size, 3037 arc_read_done, buf, priority, zio_flags, zb); 3038 3039 if (*arc_flags & ARC_WAIT) 3040 return (zio_wait(rzio)); 3041 3042 ASSERT(*arc_flags & ARC_NOWAIT); 3043 zio_nowait(rzio); 3044 } 3045 return (0); 3046 } 3047 3048 void 3049 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *cb_private) 3050 { 3051 ASSERT(buf->b_hdr != NULL); 3052 ASSERT(buf->b_hdr->b_state != arc_anon); 3053 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 3054 ASSERT(buf->b_efunc == NULL); 3055 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); 3056 3057 buf->b_efunc = func; 3058 buf->b_private = cb_private; 3059 } 3060 3061 /* 3062 * This is used by the DMU to let the ARC know that a buffer is 3063 * being evicted, so the ARC should clean up. If this arc buf 3064 * is not yet in the evicted state, it will be put there. 3065 */ 3066 int 3067 arc_buf_evict(arc_buf_t *buf) 3068 { 3069 arc_buf_hdr_t *hdr; 3070 kmutex_t *hash_lock; 3071 arc_buf_t **bufp; 3072 3073 mutex_enter(&buf->b_evict_lock); 3074 hdr = buf->b_hdr; 3075 if (hdr == NULL) { 3076 /* 3077 * We are in arc_do_user_evicts(). 3078 */ 3079 ASSERT(buf->b_data == NULL); 3080 mutex_exit(&buf->b_evict_lock); 3081 return (0); 3082 } else if (buf->b_data == NULL) { 3083 arc_buf_t copy = *buf; /* structure assignment */ 3084 /* 3085 * We are on the eviction list; process this buffer now 3086 * but let arc_do_user_evicts() do the reaping. 3087 */ 3088 buf->b_efunc = NULL; 3089 mutex_exit(&buf->b_evict_lock); 3090 VERIFY(copy.b_efunc(©) == 0); 3091 return (1); 3092 } 3093 hash_lock = HDR_LOCK(hdr); 3094 mutex_enter(hash_lock); 3095 hdr = buf->b_hdr; 3096 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3097 3098 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 3099 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 3100 3101 /* 3102 * Pull this buffer off of the hdr 3103 */ 3104 bufp = &hdr->b_buf; 3105 while (*bufp != buf) 3106 bufp = &(*bufp)->b_next; 3107 *bufp = buf->b_next; 3108 3109 ASSERT(buf->b_data != NULL); 3110 arc_buf_destroy(buf, FALSE, FALSE); 3111 3112 if (hdr->b_datacnt == 0) { 3113 arc_state_t *old_state = hdr->b_state; 3114 arc_state_t *evicted_state; 3115 3116 ASSERT(hdr->b_buf == NULL); 3117 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 3118 3119 evicted_state = 3120 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3121 3122 mutex_enter(&old_state->arcs_mtx); 3123 mutex_enter(&evicted_state->arcs_mtx); 3124 3125 arc_change_state(evicted_state, hdr, hash_lock); 3126 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3127 hdr->b_flags |= ARC_IN_HASH_TABLE; 3128 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 3129 3130 mutex_exit(&evicted_state->arcs_mtx); 3131 mutex_exit(&old_state->arcs_mtx); 3132 } 3133 mutex_exit(hash_lock); 3134 mutex_exit(&buf->b_evict_lock); 3135 3136 VERIFY(buf->b_efunc(buf) == 0); 3137 buf->b_efunc = NULL; 3138 buf->b_private = NULL; 3139 buf->b_hdr = NULL; 3140 buf->b_next = NULL; 3141 kmem_cache_free(buf_cache, buf); 3142 return (1); 3143 } 3144 3145 /* 3146 * Release this buffer from the cache. This must be done 3147 * after a read and prior to modifying the buffer contents. 3148 * If the buffer has more than one reference, we must make 3149 * a new hdr for the buffer. 3150 */ 3151 void 3152 arc_release(arc_buf_t *buf, void *tag) 3153 { 3154 arc_buf_hdr_t *hdr; 3155 kmutex_t *hash_lock = NULL; 3156 l2arc_buf_hdr_t *l2hdr; 3157 uint64_t buf_size; 3158 3159 /* 3160 * It would be nice to assert that if it's DMU metadata (level > 3161 * 0 || it's the dnode file), then it must be syncing context. 3162 * But we don't know that information at this level. 3163 */ 3164 3165 mutex_enter(&buf->b_evict_lock); 3166 hdr = buf->b_hdr; 3167 3168 /* this buffer is not on any list */ 3169 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 3170 3171 if (hdr->b_state == arc_anon) { 3172 /* this buffer is already released */ 3173 ASSERT(buf->b_efunc == NULL); 3174 } else { 3175 hash_lock = HDR_LOCK(hdr); 3176 mutex_enter(hash_lock); 3177 hdr = buf->b_hdr; 3178 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3179 } 3180 3181 l2hdr = hdr->b_l2hdr; 3182 if (l2hdr) { 3183 mutex_enter(&l2arc_buflist_mtx); 3184 hdr->b_l2hdr = NULL; 3185 } 3186 buf_size = hdr->b_size; 3187 3188 /* 3189 * Do we have more than one buf? 3190 */ 3191 if (hdr->b_datacnt > 1) { 3192 arc_buf_hdr_t *nhdr; 3193 arc_buf_t **bufp; 3194 uint64_t blksz = hdr->b_size; 3195 uint64_t spa = hdr->b_spa; 3196 arc_buf_contents_t type = hdr->b_type; 3197 uint32_t flags = hdr->b_flags; 3198 3199 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 3200 /* 3201 * Pull the data off of this hdr and attach it to 3202 * a new anonymous hdr. 3203 */ 3204 (void) remove_reference(hdr, hash_lock, tag); 3205 bufp = &hdr->b_buf; 3206 while (*bufp != buf) 3207 bufp = &(*bufp)->b_next; 3208 *bufp = buf->b_next; 3209 buf->b_next = NULL; 3210 3211 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 3212 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 3213 if (refcount_is_zero(&hdr->b_refcnt)) { 3214 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 3215 ASSERT3U(*size, >=, hdr->b_size); 3216 atomic_add_64(size, -hdr->b_size); 3217 } 3218 3219 /* 3220 * We're releasing a duplicate user data buffer, update 3221 * our statistics accordingly. 3222 */ 3223 if (hdr->b_type == ARC_BUFC_DATA) { 3224 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 3225 ARCSTAT_INCR(arcstat_duplicate_buffers_size, 3226 -hdr->b_size); 3227 } 3228 hdr->b_datacnt -= 1; 3229 arc_cksum_verify(buf); 3230 arc_buf_unwatch(buf); 3231 3232 mutex_exit(hash_lock); 3233 3234 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 3235 nhdr->b_size = blksz; 3236 nhdr->b_spa = spa; 3237 nhdr->b_type = type; 3238 nhdr->b_buf = buf; 3239 nhdr->b_state = arc_anon; 3240 nhdr->b_arc_access = 0; 3241 nhdr->b_flags = flags & ARC_L2_WRITING; 3242 nhdr->b_l2hdr = NULL; 3243 nhdr->b_datacnt = 1; 3244 nhdr->b_freeze_cksum = NULL; 3245 (void) refcount_add(&nhdr->b_refcnt, tag); 3246 buf->b_hdr = nhdr; 3247 mutex_exit(&buf->b_evict_lock); 3248 atomic_add_64(&arc_anon->arcs_size, blksz); 3249 } else { 3250 mutex_exit(&buf->b_evict_lock); 3251 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 3252 ASSERT(!list_link_active(&hdr->b_arc_node)); 3253 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3254 if (hdr->b_state != arc_anon) 3255 arc_change_state(arc_anon, hdr, hash_lock); 3256 hdr->b_arc_access = 0; 3257 if (hash_lock) 3258 mutex_exit(hash_lock); 3259 3260 buf_discard_identity(hdr); 3261 arc_buf_thaw(buf); 3262 } 3263 buf->b_efunc = NULL; 3264 buf->b_private = NULL; 3265 3266 if (l2hdr) { 3267 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 3268 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 3269 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 3270 mutex_exit(&l2arc_buflist_mtx); 3271 } 3272 } 3273 3274 int 3275 arc_released(arc_buf_t *buf) 3276 { 3277 int released; 3278 3279 mutex_enter(&buf->b_evict_lock); 3280 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 3281 mutex_exit(&buf->b_evict_lock); 3282 return (released); 3283 } 3284 3285 int 3286 arc_has_callback(arc_buf_t *buf) 3287 { 3288 int callback; 3289 3290 mutex_enter(&buf->b_evict_lock); 3291 callback = (buf->b_efunc != NULL); 3292 mutex_exit(&buf->b_evict_lock); 3293 return (callback); 3294 } 3295 3296 #ifdef ZFS_DEBUG 3297 int 3298 arc_referenced(arc_buf_t *buf) 3299 { 3300 int referenced; 3301 3302 mutex_enter(&buf->b_evict_lock); 3303 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3304 mutex_exit(&buf->b_evict_lock); 3305 return (referenced); 3306 } 3307 #endif 3308 3309 static void 3310 arc_write_ready(zio_t *zio) 3311 { 3312 arc_write_callback_t *callback = zio->io_private; 3313 arc_buf_t *buf = callback->awcb_buf; 3314 arc_buf_hdr_t *hdr = buf->b_hdr; 3315 3316 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3317 callback->awcb_ready(zio, buf, callback->awcb_private); 3318 3319 /* 3320 * If the IO is already in progress, then this is a re-write 3321 * attempt, so we need to thaw and re-compute the cksum. 3322 * It is the responsibility of the callback to handle the 3323 * accounting for any re-write attempt. 3324 */ 3325 if (HDR_IO_IN_PROGRESS(hdr)) { 3326 mutex_enter(&hdr->b_freeze_lock); 3327 if (hdr->b_freeze_cksum != NULL) { 3328 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3329 hdr->b_freeze_cksum = NULL; 3330 } 3331 mutex_exit(&hdr->b_freeze_lock); 3332 } 3333 arc_cksum_compute(buf, B_FALSE); 3334 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3335 } 3336 3337 static void 3338 arc_write_done(zio_t *zio) 3339 { 3340 arc_write_callback_t *callback = zio->io_private; 3341 arc_buf_t *buf = callback->awcb_buf; 3342 arc_buf_hdr_t *hdr = buf->b_hdr; 3343 3344 ASSERT(hdr->b_acb == NULL); 3345 3346 if (zio->io_error == 0) { 3347 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3348 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 3349 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3350 } else { 3351 ASSERT(BUF_EMPTY(hdr)); 3352 } 3353 3354 /* 3355 * If the block to be written was all-zero, we may have 3356 * compressed it away. In this case no write was performed 3357 * so there will be no dva/birth/checksum. The buffer must 3358 * therefore remain anonymous (and uncached). 3359 */ 3360 if (!BUF_EMPTY(hdr)) { 3361 arc_buf_hdr_t *exists; 3362 kmutex_t *hash_lock; 3363 3364 ASSERT(zio->io_error == 0); 3365 3366 arc_cksum_verify(buf); 3367 3368 exists = buf_hash_insert(hdr, &hash_lock); 3369 if (exists) { 3370 /* 3371 * This can only happen if we overwrite for 3372 * sync-to-convergence, because we remove 3373 * buffers from the hash table when we arc_free(). 3374 */ 3375 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 3376 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3377 panic("bad overwrite, hdr=%p exists=%p", 3378 (void *)hdr, (void *)exists); 3379 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3380 arc_change_state(arc_anon, exists, hash_lock); 3381 mutex_exit(hash_lock); 3382 arc_hdr_destroy(exists); 3383 exists = buf_hash_insert(hdr, &hash_lock); 3384 ASSERT3P(exists, ==, NULL); 3385 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 3386 /* nopwrite */ 3387 ASSERT(zio->io_prop.zp_nopwrite); 3388 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3389 panic("bad nopwrite, hdr=%p exists=%p", 3390 (void *)hdr, (void *)exists); 3391 } else { 3392 /* Dedup */ 3393 ASSERT(hdr->b_datacnt == 1); 3394 ASSERT(hdr->b_state == arc_anon); 3395 ASSERT(BP_GET_DEDUP(zio->io_bp)); 3396 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 3397 } 3398 } 3399 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3400 /* if it's not anon, we are doing a scrub */ 3401 if (!exists && hdr->b_state == arc_anon) 3402 arc_access(hdr, hash_lock); 3403 mutex_exit(hash_lock); 3404 } else { 3405 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3406 } 3407 3408 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3409 callback->awcb_done(zio, buf, callback->awcb_private); 3410 3411 kmem_free(callback, sizeof (arc_write_callback_t)); 3412 } 3413 3414 zio_t * 3415 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 3416 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp, 3417 arc_done_func_t *ready, arc_done_func_t *done, void *cb_private, 3418 int priority, int zio_flags, const zbookmark_t *zb) 3419 { 3420 arc_buf_hdr_t *hdr = buf->b_hdr; 3421 arc_write_callback_t *callback; 3422 zio_t *zio; 3423 3424 ASSERT(ready != NULL); 3425 ASSERT(done != NULL); 3426 ASSERT(!HDR_IO_ERROR(hdr)); 3427 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3428 ASSERT(hdr->b_acb == NULL); 3429 if (l2arc) 3430 hdr->b_flags |= ARC_L2CACHE; 3431 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3432 callback->awcb_ready = ready; 3433 callback->awcb_done = done; 3434 callback->awcb_private = cb_private; 3435 callback->awcb_buf = buf; 3436 3437 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, 3438 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb); 3439 3440 return (zio); 3441 } 3442 3443 static int 3444 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg) 3445 { 3446 #ifdef _KERNEL 3447 uint64_t available_memory = ptob(freemem); 3448 static uint64_t page_load = 0; 3449 static uint64_t last_txg = 0; 3450 3451 #if defined(__i386) 3452 available_memory = 3453 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3454 #endif 3455 if (available_memory >= zfs_write_limit_max) 3456 return (0); 3457 3458 if (txg > last_txg) { 3459 last_txg = txg; 3460 page_load = 0; 3461 } 3462 /* 3463 * If we are in pageout, we know that memory is already tight, 3464 * the arc is already going to be evicting, so we just want to 3465 * continue to let page writes occur as quickly as possible. 3466 */ 3467 if (curproc == proc_pageout) { 3468 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3469 return (SET_ERROR(ERESTART)); 3470 /* Note: reserve is inflated, so we deflate */ 3471 page_load += reserve / 8; 3472 return (0); 3473 } else if (page_load > 0 && arc_reclaim_needed()) { 3474 /* memory is low, delay before restarting */ 3475 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3476 return (SET_ERROR(EAGAIN)); 3477 } 3478 page_load = 0; 3479 3480 if (arc_size > arc_c_min) { 3481 uint64_t evictable_memory = 3482 arc_mru->arcs_lsize[ARC_BUFC_DATA] + 3483 arc_mru->arcs_lsize[ARC_BUFC_METADATA] + 3484 arc_mfu->arcs_lsize[ARC_BUFC_DATA] + 3485 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]; 3486 available_memory += MIN(evictable_memory, arc_size - arc_c_min); 3487 } 3488 3489 if (inflight_data > available_memory / 4) { 3490 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3491 return (SET_ERROR(ERESTART)); 3492 } 3493 #endif 3494 return (0); 3495 } 3496 3497 void 3498 arc_tempreserve_clear(uint64_t reserve) 3499 { 3500 atomic_add_64(&arc_tempreserve, -reserve); 3501 ASSERT((int64_t)arc_tempreserve >= 0); 3502 } 3503 3504 int 3505 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3506 { 3507 int error; 3508 uint64_t anon_size; 3509 3510 #ifdef ZFS_DEBUG 3511 /* 3512 * Once in a while, fail for no reason. Everything should cope. 3513 */ 3514 if (spa_get_random(10000) == 0) { 3515 dprintf("forcing random failure\n"); 3516 return (SET_ERROR(ERESTART)); 3517 } 3518 #endif 3519 if (reserve > arc_c/4 && !arc_no_grow) 3520 arc_c = MIN(arc_c_max, reserve * 4); 3521 if (reserve > arc_c) 3522 return (SET_ERROR(ENOMEM)); 3523 3524 /* 3525 * Don't count loaned bufs as in flight dirty data to prevent long 3526 * network delays from blocking transactions that are ready to be 3527 * assigned to a txg. 3528 */ 3529 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0); 3530 3531 /* 3532 * Writes will, almost always, require additional memory allocations 3533 * in order to compress/encrypt/etc the data. We therefor need to 3534 * make sure that there is sufficient available memory for this. 3535 */ 3536 if (error = arc_memory_throttle(reserve, anon_size, txg)) 3537 return (error); 3538 3539 /* 3540 * Throttle writes when the amount of dirty data in the cache 3541 * gets too large. We try to keep the cache less than half full 3542 * of dirty blocks so that our sync times don't grow too large. 3543 * Note: if two requests come in concurrently, we might let them 3544 * both succeed, when one of them should fail. Not a huge deal. 3545 */ 3546 3547 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 3548 anon_size > arc_c / 4) { 3549 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3550 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3551 arc_tempreserve>>10, 3552 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3553 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3554 reserve>>10, arc_c>>10); 3555 return (SET_ERROR(ERESTART)); 3556 } 3557 atomic_add_64(&arc_tempreserve, reserve); 3558 return (0); 3559 } 3560 3561 void 3562 arc_init(void) 3563 { 3564 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3565 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3566 3567 /* Convert seconds to clock ticks */ 3568 arc_min_prefetch_lifespan = 1 * hz; 3569 3570 /* Start out with 1/8 of all memory */ 3571 arc_c = physmem * PAGESIZE / 8; 3572 3573 #ifdef _KERNEL 3574 /* 3575 * On architectures where the physical memory can be larger 3576 * than the addressable space (intel in 32-bit mode), we may 3577 * need to limit the cache to 1/8 of VM size. 3578 */ 3579 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3580 #endif 3581 3582 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3583 arc_c_min = MAX(arc_c / 4, 64<<20); 3584 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3585 if (arc_c * 8 >= 1<<30) 3586 arc_c_max = (arc_c * 8) - (1<<30); 3587 else 3588 arc_c_max = arc_c_min; 3589 arc_c_max = MAX(arc_c * 6, arc_c_max); 3590 3591 /* 3592 * Allow the tunables to override our calculations if they are 3593 * reasonable (ie. over 64MB) 3594 */ 3595 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3596 arc_c_max = zfs_arc_max; 3597 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3598 arc_c_min = zfs_arc_min; 3599 3600 arc_c = arc_c_max; 3601 arc_p = (arc_c >> 1); 3602 3603 /* limit meta-data to 1/4 of the arc capacity */ 3604 arc_meta_limit = arc_c_max / 4; 3605 3606 /* Allow the tunable to override if it is reasonable */ 3607 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3608 arc_meta_limit = zfs_arc_meta_limit; 3609 3610 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3611 arc_c_min = arc_meta_limit / 2; 3612 3613 if (zfs_arc_grow_retry > 0) 3614 arc_grow_retry = zfs_arc_grow_retry; 3615 3616 if (zfs_arc_shrink_shift > 0) 3617 arc_shrink_shift = zfs_arc_shrink_shift; 3618 3619 if (zfs_arc_p_min_shift > 0) 3620 arc_p_min_shift = zfs_arc_p_min_shift; 3621 3622 /* if kmem_flags are set, lets try to use less memory */ 3623 if (kmem_debugging()) 3624 arc_c = arc_c / 2; 3625 if (arc_c < arc_c_min) 3626 arc_c = arc_c_min; 3627 3628 arc_anon = &ARC_anon; 3629 arc_mru = &ARC_mru; 3630 arc_mru_ghost = &ARC_mru_ghost; 3631 arc_mfu = &ARC_mfu; 3632 arc_mfu_ghost = &ARC_mfu_ghost; 3633 arc_l2c_only = &ARC_l2c_only; 3634 arc_size = 0; 3635 3636 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3637 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3638 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3639 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3640 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3641 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3642 3643 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3644 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3645 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3646 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3647 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3648 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3649 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3650 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3651 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3652 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3653 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3654 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3655 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3656 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3657 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3658 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3659 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3660 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3661 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3662 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3663 3664 buf_init(); 3665 3666 arc_thread_exit = 0; 3667 arc_eviction_list = NULL; 3668 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3669 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3670 3671 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3672 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3673 3674 if (arc_ksp != NULL) { 3675 arc_ksp->ks_data = &arc_stats; 3676 kstat_install(arc_ksp); 3677 } 3678 3679 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3680 TS_RUN, minclsyspri); 3681 3682 arc_dead = FALSE; 3683 arc_warm = B_FALSE; 3684 3685 if (zfs_write_limit_max == 0) 3686 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift; 3687 else 3688 zfs_write_limit_shift = 0; 3689 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL); 3690 } 3691 3692 void 3693 arc_fini(void) 3694 { 3695 mutex_enter(&arc_reclaim_thr_lock); 3696 arc_thread_exit = 1; 3697 while (arc_thread_exit != 0) 3698 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3699 mutex_exit(&arc_reclaim_thr_lock); 3700 3701 arc_flush(NULL); 3702 3703 arc_dead = TRUE; 3704 3705 if (arc_ksp != NULL) { 3706 kstat_delete(arc_ksp); 3707 arc_ksp = NULL; 3708 } 3709 3710 mutex_destroy(&arc_eviction_mtx); 3711 mutex_destroy(&arc_reclaim_thr_lock); 3712 cv_destroy(&arc_reclaim_thr_cv); 3713 3714 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3715 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3716 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3717 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3718 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3719 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3720 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3721 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3722 3723 mutex_destroy(&arc_anon->arcs_mtx); 3724 mutex_destroy(&arc_mru->arcs_mtx); 3725 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3726 mutex_destroy(&arc_mfu->arcs_mtx); 3727 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3728 mutex_destroy(&arc_l2c_only->arcs_mtx); 3729 3730 mutex_destroy(&zfs_write_limit_lock); 3731 3732 buf_fini(); 3733 3734 ASSERT(arc_loaned_bytes == 0); 3735 } 3736 3737 /* 3738 * Level 2 ARC 3739 * 3740 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3741 * It uses dedicated storage devices to hold cached data, which are populated 3742 * using large infrequent writes. The main role of this cache is to boost 3743 * the performance of random read workloads. The intended L2ARC devices 3744 * include short-stroked disks, solid state disks, and other media with 3745 * substantially faster read latency than disk. 3746 * 3747 * +-----------------------+ 3748 * | ARC | 3749 * +-----------------------+ 3750 * | ^ ^ 3751 * | | | 3752 * l2arc_feed_thread() arc_read() 3753 * | | | 3754 * | l2arc read | 3755 * V | | 3756 * +---------------+ | 3757 * | L2ARC | | 3758 * +---------------+ | 3759 * | ^ | 3760 * l2arc_write() | | 3761 * | | | 3762 * V | | 3763 * +-------+ +-------+ 3764 * | vdev | | vdev | 3765 * | cache | | cache | 3766 * +-------+ +-------+ 3767 * +=========+ .-----. 3768 * : L2ARC : |-_____-| 3769 * : devices : | Disks | 3770 * +=========+ `-_____-' 3771 * 3772 * Read requests are satisfied from the following sources, in order: 3773 * 3774 * 1) ARC 3775 * 2) vdev cache of L2ARC devices 3776 * 3) L2ARC devices 3777 * 4) vdev cache of disks 3778 * 5) disks 3779 * 3780 * Some L2ARC device types exhibit extremely slow write performance. 3781 * To accommodate for this there are some significant differences between 3782 * the L2ARC and traditional cache design: 3783 * 3784 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3785 * the ARC behave as usual, freeing buffers and placing headers on ghost 3786 * lists. The ARC does not send buffers to the L2ARC during eviction as 3787 * this would add inflated write latencies for all ARC memory pressure. 3788 * 3789 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3790 * It does this by periodically scanning buffers from the eviction-end of 3791 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3792 * not already there. It scans until a headroom of buffers is satisfied, 3793 * which itself is a buffer for ARC eviction. The thread that does this is 3794 * l2arc_feed_thread(), illustrated below; example sizes are included to 3795 * provide a better sense of ratio than this diagram: 3796 * 3797 * head --> tail 3798 * +---------------------+----------+ 3799 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3800 * +---------------------+----------+ | o L2ARC eligible 3801 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3802 * +---------------------+----------+ | 3803 * 15.9 Gbytes ^ 32 Mbytes | 3804 * headroom | 3805 * l2arc_feed_thread() 3806 * | 3807 * l2arc write hand <--[oooo]--' 3808 * | 8 Mbyte 3809 * | write max 3810 * V 3811 * +==============================+ 3812 * L2ARC dev |####|#|###|###| |####| ... | 3813 * +==============================+ 3814 * 32 Gbytes 3815 * 3816 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 3817 * evicted, then the L2ARC has cached a buffer much sooner than it probably 3818 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 3819 * safe to say that this is an uncommon case, since buffers at the end of 3820 * the ARC lists have moved there due to inactivity. 3821 * 3822 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 3823 * then the L2ARC simply misses copying some buffers. This serves as a 3824 * pressure valve to prevent heavy read workloads from both stalling the ARC 3825 * with waits and clogging the L2ARC with writes. This also helps prevent 3826 * the potential for the L2ARC to churn if it attempts to cache content too 3827 * quickly, such as during backups of the entire pool. 3828 * 3829 * 5. After system boot and before the ARC has filled main memory, there are 3830 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 3831 * lists can remain mostly static. Instead of searching from tail of these 3832 * lists as pictured, the l2arc_feed_thread() will search from the list heads 3833 * for eligible buffers, greatly increasing its chance of finding them. 3834 * 3835 * The L2ARC device write speed is also boosted during this time so that 3836 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 3837 * there are no L2ARC reads, and no fear of degrading read performance 3838 * through increased writes. 3839 * 3840 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 3841 * the vdev queue can aggregate them into larger and fewer writes. Each 3842 * device is written to in a rotor fashion, sweeping writes through 3843 * available space then repeating. 3844 * 3845 * 7. The L2ARC does not store dirty content. It never needs to flush 3846 * write buffers back to disk based storage. 3847 * 3848 * 8. If an ARC buffer is written (and dirtied) which also exists in the 3849 * L2ARC, the now stale L2ARC buffer is immediately dropped. 3850 * 3851 * The performance of the L2ARC can be tweaked by a number of tunables, which 3852 * may be necessary for different workloads: 3853 * 3854 * l2arc_write_max max write bytes per interval 3855 * l2arc_write_boost extra write bytes during device warmup 3856 * l2arc_noprefetch skip caching prefetched buffers 3857 * l2arc_headroom number of max device writes to precache 3858 * l2arc_feed_secs seconds between L2ARC writing 3859 * 3860 * Tunables may be removed or added as future performance improvements are 3861 * integrated, and also may become zpool properties. 3862 * 3863 * There are three key functions that control how the L2ARC warms up: 3864 * 3865 * l2arc_write_eligible() check if a buffer is eligible to cache 3866 * l2arc_write_size() calculate how much to write 3867 * l2arc_write_interval() calculate sleep delay between writes 3868 * 3869 * These three functions determine what to write, how much, and how quickly 3870 * to send writes. 3871 */ 3872 3873 static boolean_t 3874 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab) 3875 { 3876 /* 3877 * A buffer is *not* eligible for the L2ARC if it: 3878 * 1. belongs to a different spa. 3879 * 2. is already cached on the L2ARC. 3880 * 3. has an I/O in progress (it may be an incomplete read). 3881 * 4. is flagged not eligible (zfs property). 3882 */ 3883 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL || 3884 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) 3885 return (B_FALSE); 3886 3887 return (B_TRUE); 3888 } 3889 3890 static uint64_t 3891 l2arc_write_size(l2arc_dev_t *dev) 3892 { 3893 uint64_t size; 3894 3895 size = dev->l2ad_write; 3896 3897 if (arc_warm == B_FALSE) 3898 size += dev->l2ad_boost; 3899 3900 return (size); 3901 3902 } 3903 3904 static clock_t 3905 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 3906 { 3907 clock_t interval, next, now; 3908 3909 /* 3910 * If the ARC lists are busy, increase our write rate; if the 3911 * lists are stale, idle back. This is achieved by checking 3912 * how much we previously wrote - if it was more than half of 3913 * what we wanted, schedule the next write much sooner. 3914 */ 3915 if (l2arc_feed_again && wrote > (wanted / 2)) 3916 interval = (hz * l2arc_feed_min_ms) / 1000; 3917 else 3918 interval = hz * l2arc_feed_secs; 3919 3920 now = ddi_get_lbolt(); 3921 next = MAX(now, MIN(now + interval, began + interval)); 3922 3923 return (next); 3924 } 3925 3926 static void 3927 l2arc_hdr_stat_add(void) 3928 { 3929 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 3930 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 3931 } 3932 3933 static void 3934 l2arc_hdr_stat_remove(void) 3935 { 3936 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 3937 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 3938 } 3939 3940 /* 3941 * Cycle through L2ARC devices. This is how L2ARC load balances. 3942 * If a device is returned, this also returns holding the spa config lock. 3943 */ 3944 static l2arc_dev_t * 3945 l2arc_dev_get_next(void) 3946 { 3947 l2arc_dev_t *first, *next = NULL; 3948 3949 /* 3950 * Lock out the removal of spas (spa_namespace_lock), then removal 3951 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 3952 * both locks will be dropped and a spa config lock held instead. 3953 */ 3954 mutex_enter(&spa_namespace_lock); 3955 mutex_enter(&l2arc_dev_mtx); 3956 3957 /* if there are no vdevs, there is nothing to do */ 3958 if (l2arc_ndev == 0) 3959 goto out; 3960 3961 first = NULL; 3962 next = l2arc_dev_last; 3963 do { 3964 /* loop around the list looking for a non-faulted vdev */ 3965 if (next == NULL) { 3966 next = list_head(l2arc_dev_list); 3967 } else { 3968 next = list_next(l2arc_dev_list, next); 3969 if (next == NULL) 3970 next = list_head(l2arc_dev_list); 3971 } 3972 3973 /* if we have come back to the start, bail out */ 3974 if (first == NULL) 3975 first = next; 3976 else if (next == first) 3977 break; 3978 3979 } while (vdev_is_dead(next->l2ad_vdev)); 3980 3981 /* if we were unable to find any usable vdevs, return NULL */ 3982 if (vdev_is_dead(next->l2ad_vdev)) 3983 next = NULL; 3984 3985 l2arc_dev_last = next; 3986 3987 out: 3988 mutex_exit(&l2arc_dev_mtx); 3989 3990 /* 3991 * Grab the config lock to prevent the 'next' device from being 3992 * removed while we are writing to it. 3993 */ 3994 if (next != NULL) 3995 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 3996 mutex_exit(&spa_namespace_lock); 3997 3998 return (next); 3999 } 4000 4001 /* 4002 * Free buffers that were tagged for destruction. 4003 */ 4004 static void 4005 l2arc_do_free_on_write() 4006 { 4007 list_t *buflist; 4008 l2arc_data_free_t *df, *df_prev; 4009 4010 mutex_enter(&l2arc_free_on_write_mtx); 4011 buflist = l2arc_free_on_write; 4012 4013 for (df = list_tail(buflist); df; df = df_prev) { 4014 df_prev = list_prev(buflist, df); 4015 ASSERT(df->l2df_data != NULL); 4016 ASSERT(df->l2df_func != NULL); 4017 df->l2df_func(df->l2df_data, df->l2df_size); 4018 list_remove(buflist, df); 4019 kmem_free(df, sizeof (l2arc_data_free_t)); 4020 } 4021 4022 mutex_exit(&l2arc_free_on_write_mtx); 4023 } 4024 4025 /* 4026 * A write to a cache device has completed. Update all headers to allow 4027 * reads from these buffers to begin. 4028 */ 4029 static void 4030 l2arc_write_done(zio_t *zio) 4031 { 4032 l2arc_write_callback_t *cb; 4033 l2arc_dev_t *dev; 4034 list_t *buflist; 4035 arc_buf_hdr_t *head, *ab, *ab_prev; 4036 l2arc_buf_hdr_t *abl2; 4037 kmutex_t *hash_lock; 4038 4039 cb = zio->io_private; 4040 ASSERT(cb != NULL); 4041 dev = cb->l2wcb_dev; 4042 ASSERT(dev != NULL); 4043 head = cb->l2wcb_head; 4044 ASSERT(head != NULL); 4045 buflist = dev->l2ad_buflist; 4046 ASSERT(buflist != NULL); 4047 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 4048 l2arc_write_callback_t *, cb); 4049 4050 if (zio->io_error != 0) 4051 ARCSTAT_BUMP(arcstat_l2_writes_error); 4052 4053 mutex_enter(&l2arc_buflist_mtx); 4054 4055 /* 4056 * All writes completed, or an error was hit. 4057 */ 4058 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 4059 ab_prev = list_prev(buflist, ab); 4060 4061 hash_lock = HDR_LOCK(ab); 4062 if (!mutex_tryenter(hash_lock)) { 4063 /* 4064 * This buffer misses out. It may be in a stage 4065 * of eviction. Its ARC_L2_WRITING flag will be 4066 * left set, denying reads to this buffer. 4067 */ 4068 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 4069 continue; 4070 } 4071 4072 if (zio->io_error != 0) { 4073 /* 4074 * Error - drop L2ARC entry. 4075 */ 4076 list_remove(buflist, ab); 4077 abl2 = ab->b_l2hdr; 4078 ab->b_l2hdr = NULL; 4079 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4080 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4081 } 4082 4083 /* 4084 * Allow ARC to begin reads to this L2ARC entry. 4085 */ 4086 ab->b_flags &= ~ARC_L2_WRITING; 4087 4088 mutex_exit(hash_lock); 4089 } 4090 4091 atomic_inc_64(&l2arc_writes_done); 4092 list_remove(buflist, head); 4093 kmem_cache_free(hdr_cache, head); 4094 mutex_exit(&l2arc_buflist_mtx); 4095 4096 l2arc_do_free_on_write(); 4097 4098 kmem_free(cb, sizeof (l2arc_write_callback_t)); 4099 } 4100 4101 /* 4102 * A read to a cache device completed. Validate buffer contents before 4103 * handing over to the regular ARC routines. 4104 */ 4105 static void 4106 l2arc_read_done(zio_t *zio) 4107 { 4108 l2arc_read_callback_t *cb; 4109 arc_buf_hdr_t *hdr; 4110 arc_buf_t *buf; 4111 kmutex_t *hash_lock; 4112 int equal; 4113 4114 ASSERT(zio->io_vd != NULL); 4115 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 4116 4117 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 4118 4119 cb = zio->io_private; 4120 ASSERT(cb != NULL); 4121 buf = cb->l2rcb_buf; 4122 ASSERT(buf != NULL); 4123 4124 hash_lock = HDR_LOCK(buf->b_hdr); 4125 mutex_enter(hash_lock); 4126 hdr = buf->b_hdr; 4127 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 4128 4129 /* 4130 * Check this survived the L2ARC journey. 4131 */ 4132 equal = arc_cksum_equal(buf); 4133 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 4134 mutex_exit(hash_lock); 4135 zio->io_private = buf; 4136 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 4137 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 4138 arc_read_done(zio); 4139 } else { 4140 mutex_exit(hash_lock); 4141 /* 4142 * Buffer didn't survive caching. Increment stats and 4143 * reissue to the original storage device. 4144 */ 4145 if (zio->io_error != 0) { 4146 ARCSTAT_BUMP(arcstat_l2_io_error); 4147 } else { 4148 zio->io_error = SET_ERROR(EIO); 4149 } 4150 if (!equal) 4151 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 4152 4153 /* 4154 * If there's no waiter, issue an async i/o to the primary 4155 * storage now. If there *is* a waiter, the caller must 4156 * issue the i/o in a context where it's OK to block. 4157 */ 4158 if (zio->io_waiter == NULL) { 4159 zio_t *pio = zio_unique_parent(zio); 4160 4161 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 4162 4163 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 4164 buf->b_data, zio->io_size, arc_read_done, buf, 4165 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 4166 } 4167 } 4168 4169 kmem_free(cb, sizeof (l2arc_read_callback_t)); 4170 } 4171 4172 /* 4173 * This is the list priority from which the L2ARC will search for pages to 4174 * cache. This is used within loops (0..3) to cycle through lists in the 4175 * desired order. This order can have a significant effect on cache 4176 * performance. 4177 * 4178 * Currently the metadata lists are hit first, MFU then MRU, followed by 4179 * the data lists. This function returns a locked list, and also returns 4180 * the lock pointer. 4181 */ 4182 static list_t * 4183 l2arc_list_locked(int list_num, kmutex_t **lock) 4184 { 4185 list_t *list = NULL; 4186 4187 ASSERT(list_num >= 0 && list_num <= 3); 4188 4189 switch (list_num) { 4190 case 0: 4191 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 4192 *lock = &arc_mfu->arcs_mtx; 4193 break; 4194 case 1: 4195 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 4196 *lock = &arc_mru->arcs_mtx; 4197 break; 4198 case 2: 4199 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 4200 *lock = &arc_mfu->arcs_mtx; 4201 break; 4202 case 3: 4203 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 4204 *lock = &arc_mru->arcs_mtx; 4205 break; 4206 } 4207 4208 ASSERT(!(MUTEX_HELD(*lock))); 4209 mutex_enter(*lock); 4210 return (list); 4211 } 4212 4213 /* 4214 * Evict buffers from the device write hand to the distance specified in 4215 * bytes. This distance may span populated buffers, it may span nothing. 4216 * This is clearing a region on the L2ARC device ready for writing. 4217 * If the 'all' boolean is set, every buffer is evicted. 4218 */ 4219 static void 4220 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4221 { 4222 list_t *buflist; 4223 l2arc_buf_hdr_t *abl2; 4224 arc_buf_hdr_t *ab, *ab_prev; 4225 kmutex_t *hash_lock; 4226 uint64_t taddr; 4227 4228 buflist = dev->l2ad_buflist; 4229 4230 if (buflist == NULL) 4231 return; 4232 4233 if (!all && dev->l2ad_first) { 4234 /* 4235 * This is the first sweep through the device. There is 4236 * nothing to evict. 4237 */ 4238 return; 4239 } 4240 4241 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4242 /* 4243 * When nearing the end of the device, evict to the end 4244 * before the device write hand jumps to the start. 4245 */ 4246 taddr = dev->l2ad_end; 4247 } else { 4248 taddr = dev->l2ad_hand + distance; 4249 } 4250 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4251 uint64_t, taddr, boolean_t, all); 4252 4253 top: 4254 mutex_enter(&l2arc_buflist_mtx); 4255 for (ab = list_tail(buflist); ab; ab = ab_prev) { 4256 ab_prev = list_prev(buflist, ab); 4257 4258 hash_lock = HDR_LOCK(ab); 4259 if (!mutex_tryenter(hash_lock)) { 4260 /* 4261 * Missed the hash lock. Retry. 4262 */ 4263 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4264 mutex_exit(&l2arc_buflist_mtx); 4265 mutex_enter(hash_lock); 4266 mutex_exit(hash_lock); 4267 goto top; 4268 } 4269 4270 if (HDR_L2_WRITE_HEAD(ab)) { 4271 /* 4272 * We hit a write head node. Leave it for 4273 * l2arc_write_done(). 4274 */ 4275 list_remove(buflist, ab); 4276 mutex_exit(hash_lock); 4277 continue; 4278 } 4279 4280 if (!all && ab->b_l2hdr != NULL && 4281 (ab->b_l2hdr->b_daddr > taddr || 4282 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4283 /* 4284 * We've evicted to the target address, 4285 * or the end of the device. 4286 */ 4287 mutex_exit(hash_lock); 4288 break; 4289 } 4290 4291 if (HDR_FREE_IN_PROGRESS(ab)) { 4292 /* 4293 * Already on the path to destruction. 4294 */ 4295 mutex_exit(hash_lock); 4296 continue; 4297 } 4298 4299 if (ab->b_state == arc_l2c_only) { 4300 ASSERT(!HDR_L2_READING(ab)); 4301 /* 4302 * This doesn't exist in the ARC. Destroy. 4303 * arc_hdr_destroy() will call list_remove() 4304 * and decrement arcstat_l2_size. 4305 */ 4306 arc_change_state(arc_anon, ab, hash_lock); 4307 arc_hdr_destroy(ab); 4308 } else { 4309 /* 4310 * Invalidate issued or about to be issued 4311 * reads, since we may be about to write 4312 * over this location. 4313 */ 4314 if (HDR_L2_READING(ab)) { 4315 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4316 ab->b_flags |= ARC_L2_EVICTED; 4317 } 4318 4319 /* 4320 * Tell ARC this no longer exists in L2ARC. 4321 */ 4322 if (ab->b_l2hdr != NULL) { 4323 abl2 = ab->b_l2hdr; 4324 ab->b_l2hdr = NULL; 4325 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4326 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4327 } 4328 list_remove(buflist, ab); 4329 4330 /* 4331 * This may have been leftover after a 4332 * failed write. 4333 */ 4334 ab->b_flags &= ~ARC_L2_WRITING; 4335 } 4336 mutex_exit(hash_lock); 4337 } 4338 mutex_exit(&l2arc_buflist_mtx); 4339 4340 vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0); 4341 dev->l2ad_evict = taddr; 4342 } 4343 4344 /* 4345 * Find and write ARC buffers to the L2ARC device. 4346 * 4347 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4348 * for reading until they have completed writing. 4349 */ 4350 static uint64_t 4351 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 4352 { 4353 arc_buf_hdr_t *ab, *ab_prev, *head; 4354 l2arc_buf_hdr_t *hdrl2; 4355 list_t *list; 4356 uint64_t passed_sz, write_sz, buf_sz, headroom; 4357 void *buf_data; 4358 kmutex_t *hash_lock, *list_lock; 4359 boolean_t have_lock, full; 4360 l2arc_write_callback_t *cb; 4361 zio_t *pio, *wzio; 4362 uint64_t guid = spa_load_guid(spa); 4363 4364 ASSERT(dev->l2ad_vdev != NULL); 4365 4366 pio = NULL; 4367 write_sz = 0; 4368 full = B_FALSE; 4369 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4370 head->b_flags |= ARC_L2_WRITE_HEAD; 4371 4372 /* 4373 * Copy buffers for L2ARC writing. 4374 */ 4375 mutex_enter(&l2arc_buflist_mtx); 4376 for (int try = 0; try <= 3; try++) { 4377 list = l2arc_list_locked(try, &list_lock); 4378 passed_sz = 0; 4379 4380 /* 4381 * L2ARC fast warmup. 4382 * 4383 * Until the ARC is warm and starts to evict, read from the 4384 * head of the ARC lists rather than the tail. 4385 */ 4386 headroom = target_sz * l2arc_headroom; 4387 if (arc_warm == B_FALSE) 4388 ab = list_head(list); 4389 else 4390 ab = list_tail(list); 4391 4392 for (; ab; ab = ab_prev) { 4393 if (arc_warm == B_FALSE) 4394 ab_prev = list_next(list, ab); 4395 else 4396 ab_prev = list_prev(list, ab); 4397 4398 hash_lock = HDR_LOCK(ab); 4399 have_lock = MUTEX_HELD(hash_lock); 4400 if (!have_lock && !mutex_tryenter(hash_lock)) { 4401 /* 4402 * Skip this buffer rather than waiting. 4403 */ 4404 continue; 4405 } 4406 4407 passed_sz += ab->b_size; 4408 if (passed_sz > headroom) { 4409 /* 4410 * Searched too far. 4411 */ 4412 mutex_exit(hash_lock); 4413 break; 4414 } 4415 4416 if (!l2arc_write_eligible(guid, ab)) { 4417 mutex_exit(hash_lock); 4418 continue; 4419 } 4420 4421 if ((write_sz + ab->b_size) > target_sz) { 4422 full = B_TRUE; 4423 mutex_exit(hash_lock); 4424 break; 4425 } 4426 4427 if (pio == NULL) { 4428 /* 4429 * Insert a dummy header on the buflist so 4430 * l2arc_write_done() can find where the 4431 * write buffers begin without searching. 4432 */ 4433 list_insert_head(dev->l2ad_buflist, head); 4434 4435 cb = kmem_alloc( 4436 sizeof (l2arc_write_callback_t), KM_SLEEP); 4437 cb->l2wcb_dev = dev; 4438 cb->l2wcb_head = head; 4439 pio = zio_root(spa, l2arc_write_done, cb, 4440 ZIO_FLAG_CANFAIL); 4441 } 4442 4443 /* 4444 * Create and add a new L2ARC header. 4445 */ 4446 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4447 hdrl2->b_dev = dev; 4448 hdrl2->b_daddr = dev->l2ad_hand; 4449 4450 ab->b_flags |= ARC_L2_WRITING; 4451 ab->b_l2hdr = hdrl2; 4452 list_insert_head(dev->l2ad_buflist, ab); 4453 buf_data = ab->b_buf->b_data; 4454 buf_sz = ab->b_size; 4455 4456 /* 4457 * Compute and store the buffer cksum before 4458 * writing. On debug the cksum is verified first. 4459 */ 4460 arc_cksum_verify(ab->b_buf); 4461 arc_cksum_compute(ab->b_buf, B_TRUE); 4462 4463 mutex_exit(hash_lock); 4464 4465 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4466 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4467 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4468 ZIO_FLAG_CANFAIL, B_FALSE); 4469 4470 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4471 zio_t *, wzio); 4472 (void) zio_nowait(wzio); 4473 4474 /* 4475 * Keep the clock hand suitably device-aligned. 4476 */ 4477 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4478 4479 write_sz += buf_sz; 4480 dev->l2ad_hand += buf_sz; 4481 } 4482 4483 mutex_exit(list_lock); 4484 4485 if (full == B_TRUE) 4486 break; 4487 } 4488 mutex_exit(&l2arc_buflist_mtx); 4489 4490 if (pio == NULL) { 4491 ASSERT0(write_sz); 4492 kmem_cache_free(hdr_cache, head); 4493 return (0); 4494 } 4495 4496 ASSERT3U(write_sz, <=, target_sz); 4497 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4498 ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz); 4499 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4500 vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0); 4501 4502 /* 4503 * Bump device hand to the device start if it is approaching the end. 4504 * l2arc_evict() will already have evicted ahead for this case. 4505 */ 4506 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4507 vdev_space_update(dev->l2ad_vdev, 4508 dev->l2ad_end - dev->l2ad_hand, 0, 0); 4509 dev->l2ad_hand = dev->l2ad_start; 4510 dev->l2ad_evict = dev->l2ad_start; 4511 dev->l2ad_first = B_FALSE; 4512 } 4513 4514 dev->l2ad_writing = B_TRUE; 4515 (void) zio_wait(pio); 4516 dev->l2ad_writing = B_FALSE; 4517 4518 return (write_sz); 4519 } 4520 4521 /* 4522 * This thread feeds the L2ARC at regular intervals. This is the beating 4523 * heart of the L2ARC. 4524 */ 4525 static void 4526 l2arc_feed_thread(void) 4527 { 4528 callb_cpr_t cpr; 4529 l2arc_dev_t *dev; 4530 spa_t *spa; 4531 uint64_t size, wrote; 4532 clock_t begin, next = ddi_get_lbolt(); 4533 4534 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 4535 4536 mutex_enter(&l2arc_feed_thr_lock); 4537 4538 while (l2arc_thread_exit == 0) { 4539 CALLB_CPR_SAFE_BEGIN(&cpr); 4540 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 4541 next); 4542 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 4543 next = ddi_get_lbolt() + hz; 4544 4545 /* 4546 * Quick check for L2ARC devices. 4547 */ 4548 mutex_enter(&l2arc_dev_mtx); 4549 if (l2arc_ndev == 0) { 4550 mutex_exit(&l2arc_dev_mtx); 4551 continue; 4552 } 4553 mutex_exit(&l2arc_dev_mtx); 4554 begin = ddi_get_lbolt(); 4555 4556 /* 4557 * This selects the next l2arc device to write to, and in 4558 * doing so the next spa to feed from: dev->l2ad_spa. This 4559 * will return NULL if there are now no l2arc devices or if 4560 * they are all faulted. 4561 * 4562 * If a device is returned, its spa's config lock is also 4563 * held to prevent device removal. l2arc_dev_get_next() 4564 * will grab and release l2arc_dev_mtx. 4565 */ 4566 if ((dev = l2arc_dev_get_next()) == NULL) 4567 continue; 4568 4569 spa = dev->l2ad_spa; 4570 ASSERT(spa != NULL); 4571 4572 /* 4573 * If the pool is read-only then force the feed thread to 4574 * sleep a little longer. 4575 */ 4576 if (!spa_writeable(spa)) { 4577 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 4578 spa_config_exit(spa, SCL_L2ARC, dev); 4579 continue; 4580 } 4581 4582 /* 4583 * Avoid contributing to memory pressure. 4584 */ 4585 if (arc_reclaim_needed()) { 4586 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 4587 spa_config_exit(spa, SCL_L2ARC, dev); 4588 continue; 4589 } 4590 4591 ARCSTAT_BUMP(arcstat_l2_feeds); 4592 4593 size = l2arc_write_size(dev); 4594 4595 /* 4596 * Evict L2ARC buffers that will be overwritten. 4597 */ 4598 l2arc_evict(dev, size, B_FALSE); 4599 4600 /* 4601 * Write ARC buffers. 4602 */ 4603 wrote = l2arc_write_buffers(spa, dev, size); 4604 4605 /* 4606 * Calculate interval between writes. 4607 */ 4608 next = l2arc_write_interval(begin, size, wrote); 4609 spa_config_exit(spa, SCL_L2ARC, dev); 4610 } 4611 4612 l2arc_thread_exit = 0; 4613 cv_broadcast(&l2arc_feed_thr_cv); 4614 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 4615 thread_exit(); 4616 } 4617 4618 boolean_t 4619 l2arc_vdev_present(vdev_t *vd) 4620 { 4621 l2arc_dev_t *dev; 4622 4623 mutex_enter(&l2arc_dev_mtx); 4624 for (dev = list_head(l2arc_dev_list); dev != NULL; 4625 dev = list_next(l2arc_dev_list, dev)) { 4626 if (dev->l2ad_vdev == vd) 4627 break; 4628 } 4629 mutex_exit(&l2arc_dev_mtx); 4630 4631 return (dev != NULL); 4632 } 4633 4634 /* 4635 * Add a vdev for use by the L2ARC. By this point the spa has already 4636 * validated the vdev and opened it. 4637 */ 4638 void 4639 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 4640 { 4641 l2arc_dev_t *adddev; 4642 4643 ASSERT(!l2arc_vdev_present(vd)); 4644 4645 /* 4646 * Create a new l2arc device entry. 4647 */ 4648 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 4649 adddev->l2ad_spa = spa; 4650 adddev->l2ad_vdev = vd; 4651 adddev->l2ad_write = l2arc_write_max; 4652 adddev->l2ad_boost = l2arc_write_boost; 4653 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 4654 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 4655 adddev->l2ad_hand = adddev->l2ad_start; 4656 adddev->l2ad_evict = adddev->l2ad_start; 4657 adddev->l2ad_first = B_TRUE; 4658 adddev->l2ad_writing = B_FALSE; 4659 ASSERT3U(adddev->l2ad_write, >, 0); 4660 4661 /* 4662 * This is a list of all ARC buffers that are still valid on the 4663 * device. 4664 */ 4665 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 4666 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 4667 offsetof(arc_buf_hdr_t, b_l2node)); 4668 4669 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 4670 4671 /* 4672 * Add device to global list 4673 */ 4674 mutex_enter(&l2arc_dev_mtx); 4675 list_insert_head(l2arc_dev_list, adddev); 4676 atomic_inc_64(&l2arc_ndev); 4677 mutex_exit(&l2arc_dev_mtx); 4678 } 4679 4680 /* 4681 * Remove a vdev from the L2ARC. 4682 */ 4683 void 4684 l2arc_remove_vdev(vdev_t *vd) 4685 { 4686 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 4687 4688 /* 4689 * Find the device by vdev 4690 */ 4691 mutex_enter(&l2arc_dev_mtx); 4692 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 4693 nextdev = list_next(l2arc_dev_list, dev); 4694 if (vd == dev->l2ad_vdev) { 4695 remdev = dev; 4696 break; 4697 } 4698 } 4699 ASSERT(remdev != NULL); 4700 4701 /* 4702 * Remove device from global list 4703 */ 4704 list_remove(l2arc_dev_list, remdev); 4705 l2arc_dev_last = NULL; /* may have been invalidated */ 4706 atomic_dec_64(&l2arc_ndev); 4707 mutex_exit(&l2arc_dev_mtx); 4708 4709 /* 4710 * Clear all buflists and ARC references. L2ARC device flush. 4711 */ 4712 l2arc_evict(remdev, 0, B_TRUE); 4713 list_destroy(remdev->l2ad_buflist); 4714 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 4715 kmem_free(remdev, sizeof (l2arc_dev_t)); 4716 } 4717 4718 void 4719 l2arc_init(void) 4720 { 4721 l2arc_thread_exit = 0; 4722 l2arc_ndev = 0; 4723 l2arc_writes_sent = 0; 4724 l2arc_writes_done = 0; 4725 4726 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 4727 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 4728 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 4729 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 4730 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 4731 4732 l2arc_dev_list = &L2ARC_dev_list; 4733 l2arc_free_on_write = &L2ARC_free_on_write; 4734 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 4735 offsetof(l2arc_dev_t, l2ad_node)); 4736 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 4737 offsetof(l2arc_data_free_t, l2df_list_node)); 4738 } 4739 4740 void 4741 l2arc_fini(void) 4742 { 4743 /* 4744 * This is called from dmu_fini(), which is called from spa_fini(); 4745 * Because of this, we can assume that all l2arc devices have 4746 * already been removed when the pools themselves were removed. 4747 */ 4748 4749 l2arc_do_free_on_write(); 4750 4751 mutex_destroy(&l2arc_feed_thr_lock); 4752 cv_destroy(&l2arc_feed_thr_cv); 4753 mutex_destroy(&l2arc_dev_mtx); 4754 mutex_destroy(&l2arc_buflist_mtx); 4755 mutex_destroy(&l2arc_free_on_write_mtx); 4756 4757 list_destroy(l2arc_dev_list); 4758 list_destroy(l2arc_free_on_write); 4759 } 4760 4761 void 4762 l2arc_start(void) 4763 { 4764 if (!(spa_mode_global & FWRITE)) 4765 return; 4766 4767 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 4768 TS_RUN, minclsyspri); 4769 } 4770 4771 void 4772 l2arc_stop(void) 4773 { 4774 if (!(spa_mode_global & FWRITE)) 4775 return; 4776 4777 mutex_enter(&l2arc_feed_thr_lock); 4778 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 4779 l2arc_thread_exit = 1; 4780 while (l2arc_thread_exit != 0) 4781 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 4782 mutex_exit(&l2arc_feed_thr_lock); 4783 }