
new/usr/src/cmd/zfs/Makefile 1

**
 2842 Tue Apr 30 17:10:57 2013
new/usr/src/cmd/zfs/Makefile
3748 zfs headers should be C++ compatible
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Will Andrews <willa@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2010 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 # Copyright 2010 Nexenta Systems, Inc. All rights reserved.
25 # Copyright (c) 2012 by Delphix. All rights reserved.
26 #

28 PROG= zfs
29 OBJS= zfs_main.o zfs_iter.o
30 OUTPUTS= $(OBJS) zfs_hdrck.cpp zfs_hdrck.o
31 #endif /* ! codereview */
32 SRCS= $(OBJS:%.o=%.c)
33 POFILES= zfs_main.po zfs_iter.po
34 POFILE= zfs.po

36 include ../Makefile.cmd
37 include ../Makefile.ctf

39 FSTYPE= zfs
40 LINKPROGS= mount umount
41 ROOTETCFSTYPE= $(ROOTETC)/fs/$(FSTYPE)
42 USRLIBFSTYPE= $(ROOTLIB)/fs/$(FSTYPE)

44 LDLIBS += -lzfs_core -lzfs -luutil -lumem -lnvpair -lsec -lidmap

46 INCS += -I../../common/zfs

48 C99MODE= -xc99=%all
49 C99LMODE= -Xc99=%all

51 CPPFLAGS += -D_LARGEFILE64_SOURCE=1 -D_REENTRANT $(INCS)
52 $(NOT_RELEASE_BUILD)CPPFLAGS += -DDEBUG

54 # lint complains about unused _umem_* functions
55 LINTFLAGS += -xerroff=E_NAME_DEF_NOT_USED2
56 LINTFLAGS64 += -xerroff=E_NAME_DEF_NOT_USED2

58 CERRWARN += -_gcc=-Wno-switch

new/usr/src/cmd/zfs/Makefile 2

59 CERRWARN += -_gcc=-Wno-type-limits
60 CERRWARN += -_gcc=-Wno-parentheses
61 CERRWARN += -_gcc=-Wno-uninitialized
62 CERRWARN += -_gcc=-Wno-old-style-declaration

64 ROOTUSRSBINLINKS = $(PROG:%=$(ROOTUSRSBIN)/%)
65 USRLIBFSTYPELINKS = $(LINKPROGS:%=$(USRLIBFSTYPE)/%)
66 ROOTETCFSTYPELINKS = $(LINKPROGS:%=$(ROOTETCFSTYPE)/%)

68 .KEEP_STATE:

70 .PARALLEL:

72 all: $(PROG)

74 $(PROG): $(OUTPUTS)
30 $(PROG): $(OBJS)
75 $(LINK.c) -o $@ $(OBJS) $(LDLIBS)
76 $(POST_PROCESS)

78 install: all $(ROOTSBINPROG) $(ROOTUSRSBINLINKS) $(USRLIBFSTYPELINKS) \
79 $(ROOTETCFSTYPELINKS)

81 zfs_hdrck.o: zfs_hdrck.cpp
82 $(COMPILE.cc) -o $@ $^

84 zfs_hdrck.cpp:
85 find . -name ’*.[ch]’ | xargs grep -h ’^#include <’ > $@

87 #endif /* ! codereview */
88 $(POFILE): $(POFILES)
89 $(RM) $@
90 cat $(POFILES) > $@

92 clean:
93 $(RM) $(PROG) $(OUTPUTS)
37 $(RM) $(OBJS)

95 lint: lint_SRCS

97 # Links from /usr/sbin to /sbin
98 $(ROOTUSRSBINLINKS):
99 -$(RM) $@; $(SYMLINK) ../../sbin/$(PROG) $@

101 # Links from /usr/lib/fs/zfs to /sbin
102 $(USRLIBFSTYPELINKS):
103 -$(RM) $@; $(SYMLINK) ../../../../sbin/$(PROG) $@

105 # Links from /etc/fs/zfs to /sbin
106 $(ROOTETCFSTYPELINKS):
107 -$(RM) $@; $(SYMLINK) ../../../sbin/$(PROG) $@

109 FRC:

111 include ../Makefile.targ

new/usr/src/cmd/zpool/Makefile 1

**
 2406 Tue Apr 30 17:10:57 2013
new/usr/src/cmd/zpool/Makefile
3748 zfs headers should be C++ compatible
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Will Andrews <willa@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 #

25 PROG= zpool
26 OBJS= zpool_main.o zpool_vdev.o zpool_iter.o zpool_util.o
27 SRCS= $(OBJS:%.o=%.c)
28 POFILES=$(OBJS:%.o=%.po)
29 POFILE= zpool.po

31 include ../Makefile.cmd
32 include ../Makefile.ctf

34 STATCOMMONDIR = $(SRC)/cmd/stat/common

36 STAT_COMMON_OBJS = timestamp.o
37 STAT_COMMON_SRCS = $(STAT_COMMON_OBJS:%.o=$(STATCOMMONDIR)/%.c)
38 SRCS += $(STAT_COMMON_SRCS)

40 OUTPUTS=$(OBJS) $(STAT_COMMON_OBJS) zpool_hdrck.cpp zpool_hdrck.o

42 #endif /* ! codereview */
43 LDLIBS += -lzfs -lnvpair -ldevid -lefi -ldiskmgt -luutil -lumem

45 INCS += -I../../common/zfs -I$(STATCOMMONDIR)

47 CPPFLAGS += -D_LARGEFILE64_SOURCE=1 -D_REENTRANT $(INCS)
48 $(NOT_RELEASE_BUILD)CPPFLAGS += -DDEBUG

50 # lint complains about unused _umem_* functions
51 LINTFLAGS += -xerroff=E_NAME_DEF_NOT_USED2
52 LINTFLAGS64 += -xerroff=E_NAME_DEF_NOT_USED2

54 CERRWARN += -_gcc=-Wno-unused-function
55 CERRWARN += -_gcc=-Wno-uninitialized
56 CERRWARN += -_gcc=-Wno-parentheses

58 ROOTUSRSBINLINKS = $(PROG:%=$(ROOTUSRSBIN)/%)

new/usr/src/cmd/zpool/Makefile 2

60 .KEEP_STATE:

62 all: $(PROG)

64 $(PROG): $(OUTPUTS)
40 $(PROG): $(OBJS) $(STAT_COMMON_OBJS)
65 $(LINK.c) -o $@ $(OBJS) $(STAT_COMMON_OBJS) $(LDLIBS)
66 $(POST_PROCESS)

68 zpool_hdrck.o: zpool_hdrck.cpp
69 $(COMPILE.cc) -o $@ $^

71 zpool_hdrck.cpp:
72 find . -name ’*.[ch]’ | xargs grep -h ’^#include <’ > $@

74 #endif /* ! codereview */
75 %.o: $(STATCOMMONDIR)/%.c
76 $(COMPILE.c) $<
77 $(POST_PROCESS_O)

79 install: all $(ROOTSBINPROG) $(ROOTUSRSBINLINKS)

81 $(POFILE): $(POFILES)
82 $(RM) $@
83 $(CAT) $(POFILES) > $@

85 clean:
86 $(RM) $(PROG) $(OUTPUTS)
44 $(RM) $(OBJS) $(STAT_COMMON_OBJS)

88 lint: lint_SRCS

90 # Links from /usr/sbin to /sbin
91 $(ROOTUSRSBINLINKS):
92 -$(RM) $@; $(SYMLINK) ../../sbin/$(@F) $@

94 include ../Makefile.targ

new/usr/src/lib/libzpool/Makefile.com 1

**
 2929 Tue Apr 30 17:10:57 2013
new/usr/src/lib/libzpool/Makefile.com
3748 zfs headers should be C++ compatible
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Will Andrews <willa@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 # Copyright (c) 2013 by Delphix. All rights reserved.
24 #

26 LIBRARY= libzpool.a
27 VERS= .1

29 # include the list of ZFS sources
30 include ../../../uts/common/Makefile.files
31 KERNEL_OBJS = kernel.o taskq.o util.o
32 DTRACE_OBJS = zfs.o

34 OBJECTS=$(ZFS_COMMON_OBJS) $(ZFS_SHARED_OBJS) $(KERNEL_OBJS)

36 # include library definitions
37 include ../../Makefile.lib

39 ZFS_COMMON_SRCS= $(ZFS_COMMON_OBJS:%.o=../../../uts/common/fs/zfs/%.c)
40 ZFS_SHARED_SRCS= $(ZFS_SHARED_OBJS:%.o=../../../common/zfs/%.c)
41 KERNEL_SRCS= $(KERNEL_OBJS:%.o=../common/%.c)

43 SRCS=$(ZFS_COMMON_SRCS) $(ZFS_SHARED_SRCS) $(KERNEL_SRCS)
44 SRCDIR= ../common

46 # There should be a mapfile here
47 MAPFILES =

49 LIBS += $(LINTLIB)

51 INCS += -I../common
52 INCS += -I../../../uts/common/fs/zfs
53 INCS += -I../../../common/zfs
54 INCS += -I../../../common

56 CLEANFILES += ../common/zfs.h

58 $(LINTLIB) := SRCS= $(SRCDIR)/$(LINTSRC)

new/usr/src/lib/libzpool/Makefile.com 2

59 $(LINTLIB): ../common/zfs.h

61 C99MODE= -xc99=%all
62 C99LMODE= -Xc99=%all

64 CFLAGS += -g $(CCVERBOSE) $(CNOGLOBAL)
65 CFLAGS64 += -g $(CCVERBOSE) $(CNOGLOBAL)
66 LDLIBS += -lcmdutils -lumem -lavl -lnvpair -lz -lc -lsysevent -lmd
67 CPPFLAGS += $(INCS) -DDEBUG

69 CERRWARN += -_gcc=-Wno-parentheses
70 CERRWARN += -_gcc=-Wno-switch
71 CERRWARN += -_gcc=-Wno-type-limits
72 CERRWARN += -_gcc=-Wno-unused-variable
73 CERRWARN += -_gcc=-Wno-uninitialized
74 CERRWARN += -_gcc=-Wno-empty-body
75 CERRWARN += -_gcc=-Wno-unused-function
76 CERRWARN += -_gcc=-Wno-unused-label

78 .KEEP_STATE:

80 all: $(LIBS)

82 $(LIBS): libzpool_hdrck.o

84 #endif /* ! codereview */
85 lint: $(LINTLIB)

87 include ../../Makefile.targ

89 EXTPICS= $(DTRACE_OBJS:%=pics/%)

91 libzpool_hdrck.o: libzpool_hdrck.cpp
92 $(COMPILE.cc) -DB_FALSE=_B_FALSE -DB_TRUE=_B_TRUE -o $@ $^

94 libzpool_hdrck.cpp:
95 find .. -name ’*.[ch]’ | xargs grep -h ’^#include <’ > $@

97 #endif /* ! codereview */
98 pics/%.o: ../../../uts/common/fs/zfs/%.c ../common/zfs.h
99 $(COMPILE.c) -o $@ $<
100 $(POST_PROCESS_O)

102 pics/%.o: ../../../common/zfs/%.c ../common/zfs.h
103 $(COMPILE.c) -o $@ $<
104 $(POST_PROCESS_O)

106 pics/%.o: ../common/%.d $(PICS)
107 $(COMPILE.d) -C -s $< -o $@ $(PICS)
108 $(POST_PROCESS_O)

110 ../common/%.h: ../common/%.d
111 $(DTRACE) -xnolibs -h -s $< -o $@

new/usr/src/uts/common/fs/zfs/arc.c 1

**
 134667 Tue Apr 30 17:10:57 2013
new/usr/src/uts/common/fs/zfs/arc.c
3748 zfs headers should be C++ compatible
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Will Andrews <willa@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
**
______unchanged_portion_omitted_

2769 /*
2770 * "Read" the block at the specified DVA (in bp) via the
2771 * cache. If the block is found in the cache, invoke the provided
2772 * callback immediately and return. Note that the ‘zio’ parameter
2773 * in the callback will be NULL in this case, since no IO was
2774 * required. If the block is not in the cache pass the read request
2775 * on to the spa with a substitute callback function, so that the
2776 * requested block will be added to the cache.
2777 *
2778 * If a read request arrives for a block that has a read in-progress,
2779 * either wait for the in-progress read to complete (and return the
2780 * results); or, if this is a read with a "done" func, add a record
2781 * to the read to invoke the "done" func when the read completes,
2782 * and return; or just return.
2783 *
2784 * arc_read_done() will invoke all the requested "done" functions
2785 * for readers of this block.
2786 */
2787 int
2788 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
2789 void *cb_private, int priority, int zio_flags, uint32_t *arc_flags,
2789 void *private, int priority, int zio_flags, uint32_t *arc_flags,
2790 const zbookmark_t *zb)
2791 {
2792 arc_buf_hdr_t *hdr;
2793 arc_buf_t *buf = NULL;
2794 kmutex_t *hash_lock;
2795 zio_t *rzio;
2796 uint64_t guid = spa_load_guid(spa);

2798 top:
2799 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
2800 &hash_lock);
2801 if (hdr && hdr->b_datacnt > 0) {

2803 *arc_flags |= ARC_CACHED;

2805 if (HDR_IO_IN_PROGRESS(hdr)) {

2807 if (*arc_flags & ARC_WAIT) {
2808 cv_wait(&hdr->b_cv, hash_lock);
2809 mutex_exit(hash_lock);
2810 goto top;
2811 }
2812 ASSERT(*arc_flags & ARC_NOWAIT);

2814 if (done) {
2815 arc_callback_t *acb = NULL;

2817 acb = kmem_zalloc(sizeof (arc_callback_t),
2818 KM_SLEEP);
2819 acb->acb_done = done;
2820 acb->acb_private = cb_private;
2820 acb->acb_private = private;
2821 if (pio != NULL)
2822 acb->acb_zio_dummy = zio_null(pio,

new/usr/src/uts/common/fs/zfs/arc.c 2

2823 spa, NULL, NULL, NULL, zio_flags);

2825 ASSERT(acb->acb_done != NULL);
2826 acb->acb_next = hdr->b_acb;
2827 hdr->b_acb = acb;
2828 add_reference(hdr, hash_lock, cb_private);
2828 add_reference(hdr, hash_lock, private);
2829 mutex_exit(hash_lock);
2830 return (0);
2831 }
2832 mutex_exit(hash_lock);
2833 return (0);
2834 }

2836 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);

2838 if (done) {
2839 add_reference(hdr, hash_lock, cb_private);
2839 add_reference(hdr, hash_lock, private);
2840 /*
2841 * If this block is already in use, create a new
2842 * copy of the data so that we will be guaranteed
2843 * that arc_release() will always succeed.
2844 */
2845 buf = hdr->b_buf;
2846 ASSERT(buf);
2847 ASSERT(buf->b_data);
2848 if (HDR_BUF_AVAILABLE(hdr)) {
2849 ASSERT(buf->b_efunc == NULL);
2850 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2851 } else {
2852 buf = arc_buf_clone(buf);
2853 }

2855 } else if (*arc_flags & ARC_PREFETCH &&
2856 refcount_count(&hdr->b_refcnt) == 0) {
2857 hdr->b_flags |= ARC_PREFETCH;
2858 }
2859 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2860 arc_access(hdr, hash_lock);
2861 if (*arc_flags & ARC_L2CACHE)
2862 hdr->b_flags |= ARC_L2CACHE;
2863 mutex_exit(hash_lock);
2864 ARCSTAT_BUMP(arcstat_hits);
2865 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2866 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2867 data, metadata, hits);

2869 if (done)
2870 done(NULL, buf, cb_private);
2870 done(NULL, buf, private);
2871 } else {
2872 uint64_t size = BP_GET_LSIZE(bp);
2873 arc_callback_t *acb;
2874 vdev_t *vd = NULL;
2875 uint64_t addr = 0;
2876 boolean_t devw = B_FALSE;

2878 if (hdr == NULL) {
2879 /* this block is not in the cache */
2880 arc_buf_hdr_t *exists;
2881 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2882 buf = arc_buf_alloc(spa, size, cb_private, type);
2882 buf = arc_buf_alloc(spa, size, private, type);
2883 hdr = buf->b_hdr;
2884 hdr->b_dva = *BP_IDENTITY(bp);

new/usr/src/uts/common/fs/zfs/arc.c 3

2885 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
2886 hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2887 exists = buf_hash_insert(hdr, &hash_lock);
2888 if (exists) {
2889 /* somebody beat us to the hash insert */
2890 mutex_exit(hash_lock);
2891 buf_discard_identity(hdr);
2892 (void) arc_buf_remove_ref(buf, cb_private);
2892 (void) arc_buf_remove_ref(buf, private);
2893 goto top; /* restart the IO request */
2894 }
2895 /* if this is a prefetch, we don’t have a reference */
2896 if (*arc_flags & ARC_PREFETCH) {
2897 (void) remove_reference(hdr, hash_lock,
2898 cb_private);
2898 private);
2899 hdr->b_flags |= ARC_PREFETCH;
2900 }
2901 if (*arc_flags & ARC_L2CACHE)
2902 hdr->b_flags |= ARC_L2CACHE;
2903 if (BP_GET_LEVEL(bp) > 0)
2904 hdr->b_flags |= ARC_INDIRECT;
2905 } else {
2906 /* this block is in the ghost cache */
2907 ASSERT(GHOST_STATE(hdr->b_state));
2908 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2909 ASSERT0(refcount_count(&hdr->b_refcnt));
2910 ASSERT(hdr->b_buf == NULL);

2912 /* if this is a prefetch, we don’t have a reference */
2913 if (*arc_flags & ARC_PREFETCH)
2914 hdr->b_flags |= ARC_PREFETCH;
2915 else
2916 add_reference(hdr, hash_lock, cb_private);
2916 add_reference(hdr, hash_lock, private);
2917 if (*arc_flags & ARC_L2CACHE)
2918 hdr->b_flags |= ARC_L2CACHE;
2919 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2920 buf->b_hdr = hdr;
2921 buf->b_data = NULL;
2922 buf->b_efunc = NULL;
2923 buf->b_private = NULL;
2924 buf->b_next = NULL;
2925 hdr->b_buf = buf;
2926 ASSERT(hdr->b_datacnt == 0);
2927 hdr->b_datacnt = 1;
2928 arc_get_data_buf(buf);
2929 arc_access(hdr, hash_lock);
2930 }

2932 ASSERT(!GHOST_STATE(hdr->b_state));

2934 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2935 acb->acb_done = done;
2936 acb->acb_private = cb_private;
2936 acb->acb_private = private;

2938 ASSERT(hdr->b_acb == NULL);
2939 hdr->b_acb = acb;
2940 hdr->b_flags |= ARC_IO_IN_PROGRESS;

2942 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
2943 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
2944 devw = hdr->b_l2hdr->b_dev->l2ad_writing;
2945 addr = hdr->b_l2hdr->b_daddr;
2946 /*

new/usr/src/uts/common/fs/zfs/arc.c 4

2947 * Lock out device removal.
2948 */
2949 if (vdev_is_dead(vd) ||
2950 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
2951 vd = NULL;
2952 }

2954 mutex_exit(hash_lock);

2956 ASSERT3U(hdr->b_size, ==, size);
2957 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
2958 uint64_t, size, zbookmark_t *, zb);
2959 ARCSTAT_BUMP(arcstat_misses);
2960 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2961 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2962 data, metadata, misses);

2964 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
2965 /*
2966 * Read from the L2ARC if the following are true:
2967 * 1. The L2ARC vdev was previously cached.
2968 * 2. This buffer still has L2ARC metadata.
2969 * 3. This buffer isn’t currently writing to the L2ARC.
2970 * 4. The L2ARC entry wasn’t evicted, which may
2971 * also have invalidated the vdev.
2972 * 5. This isn’t prefetch and l2arc_noprefetch is set.
2973 */
2974 if (hdr->b_l2hdr != NULL &&
2975 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
2976 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
2977 l2arc_read_callback_t *cb;

2979 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2980 ARCSTAT_BUMP(arcstat_l2_hits);

2982 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
2983 KM_SLEEP);
2984 cb->l2rcb_buf = buf;
2985 cb->l2rcb_spa = spa;
2986 cb->l2rcb_bp = *bp;
2987 cb->l2rcb_zb = *zb;
2988 cb->l2rcb_flags = zio_flags;

2990 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
2991 addr + size < vd->vdev_psize -
2992 VDEV_LABEL_END_SIZE);

2994 /*
2995 * l2arc read. The SCL_L2ARC lock will be
2996 * released by l2arc_read_done().
2997 */
2998 rzio = zio_read_phys(pio, vd, addr, size,
2999 buf->b_data, ZIO_CHECKSUM_OFF,
3000 l2arc_read_done, cb, priority, zio_flags |
3001 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
3002 ZIO_FLAG_DONT_PROPAGATE |
3003 ZIO_FLAG_DONT_RETRY, B_FALSE);
3004 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3005 zio_t *, rzio);
3006 ARCSTAT_INCR(arcstat_l2_read_bytes, size);

3008 if (*arc_flags & ARC_NOWAIT) {
3009 zio_nowait(rzio);
3010 return (0);
3011 }

new/usr/src/uts/common/fs/zfs/arc.c 5

3013 ASSERT(*arc_flags & ARC_WAIT);
3014 if (zio_wait(rzio) == 0)
3015 return (0);

3017 /* l2arc read error; goto zio_read() */
3018 } else {
3019 DTRACE_PROBE1(l2arc__miss,
3020 arc_buf_hdr_t *, hdr);
3021 ARCSTAT_BUMP(arcstat_l2_misses);
3022 if (HDR_L2_WRITING(hdr))
3023 ARCSTAT_BUMP(arcstat_l2_rw_clash);
3024 spa_config_exit(spa, SCL_L2ARC, vd);
3025 }
3026 } else {
3027 if (vd != NULL)
3028 spa_config_exit(spa, SCL_L2ARC, vd);
3029 if (l2arc_ndev != 0) {
3030 DTRACE_PROBE1(l2arc__miss,
3031 arc_buf_hdr_t *, hdr);
3032 ARCSTAT_BUMP(arcstat_l2_misses);
3033 }
3034 }

3036 rzio = zio_read(pio, spa, bp, buf->b_data, size,
3037 arc_read_done, buf, priority, zio_flags, zb);

3039 if (*arc_flags & ARC_WAIT)
3040 return (zio_wait(rzio));

3042 ASSERT(*arc_flags & ARC_NOWAIT);
3043 zio_nowait(rzio);
3044 }
3045 return (0);
3046 }

3048 void
3049 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *cb_private)
3049 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3050 {
3051 ASSERT(buf->b_hdr != NULL);
3052 ASSERT(buf->b_hdr->b_state != arc_anon);
3053 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3054 ASSERT(buf->b_efunc == NULL);
3055 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));

3057 buf->b_efunc = func;
3058 buf->b_private = cb_private;
3058 buf->b_private = private;
3059 }
______unchanged_portion_omitted_

3414 zio_t *
3415 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3416 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp,
3417 arc_done_func_t *ready, arc_done_func_t *done, void *cb_private,
3417 arc_done_func_t *ready, arc_done_func_t *done, void *private,
3418 int priority, int zio_flags, const zbookmark_t *zb)
3419 {
3420 arc_buf_hdr_t *hdr = buf->b_hdr;
3421 arc_write_callback_t *callback;
3422 zio_t *zio;

3424 ASSERT(ready != NULL);
3425 ASSERT(done != NULL);
3426 ASSERT(!HDR_IO_ERROR(hdr));
3427 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);

new/usr/src/uts/common/fs/zfs/arc.c 6

3428 ASSERT(hdr->b_acb == NULL);
3429 if (l2arc)
3430 hdr->b_flags |= ARC_L2CACHE;
3431 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3432 callback->awcb_ready = ready;
3433 callback->awcb_done = done;
3434 callback->awcb_private = cb_private;
3434 callback->awcb_private = private;
3435 callback->awcb_buf = buf;

3437 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3438 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);

3440 return (zio);
3441 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/ddt.c 1

**
 27528 Tue Apr 30 17:10:58 2013
new/usr/src/uts/common/fs/zfs/ddt.c
3748 zfs headers should be C++ compatible
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Will Andrews <willa@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
**
______unchanged_portion_omitted_

180 int
181 ddt_object_update(ddt_t *ddt, enum ddt_type type, enum ddt_class ddt_class,
181 ddt_object_update(ddt_t *ddt, enum ddt_type type, enum ddt_class class,
182 ddt_entry_t *dde, dmu_tx_t *tx)
183 {
184 ASSERT(ddt_object_exists(ddt, type, ddt_class));
184 ASSERT(ddt_object_exists(ddt, type, class));

186 return (ddt_ops[type]->ddt_op_update(ddt->ddt_os,
187 ddt->ddt_object[type][ddt_class], dde, tx));
187 ddt->ddt_object[type][class], dde, tx));
188 }

______unchanged_portion_omitted_

200 int
201 ddt_object_walk(ddt_t *ddt, enum ddt_type type, enum ddt_class ddt_class,
201 ddt_object_walk(ddt_t *ddt, enum ddt_type type, enum ddt_class class,
202 uint64_t *walk, ddt_entry_t *dde)
203 {
204 ASSERT(ddt_object_exists(ddt, type, ddt_class));
204 ASSERT(ddt_object_exists(ddt, type, class));

206 return (ddt_ops[type]->ddt_op_walk(ddt->ddt_os,
207 ddt->ddt_object[type][ddt_class], dde, walk));
207 ddt->ddt_object[type][class], dde, walk));
208 }

210 uint64_t
211 ddt_object_count(ddt_t *ddt, enum ddt_type type, enum ddt_class ddt_class)
211 ddt_object_count(ddt_t *ddt, enum ddt_type type, enum ddt_class class)
212 {
213 ASSERT(ddt_object_exists(ddt, type, ddt_class));
213 ASSERT(ddt_object_exists(ddt, type, class));

215 return (ddt_ops[type]->ddt_op_count(ddt->ddt_os,
216 ddt->ddt_object[type][ddt_class]));
216 ddt->ddt_object[type][class]));
217 }

219 int
220 ddt_object_info(ddt_t *ddt, enum ddt_type type, enum ddt_class ddt_class,
220 ddt_object_info(ddt_t *ddt, enum ddt_type type, enum ddt_class class,
221 dmu_object_info_t *doi)
222 {
223 if (!ddt_object_exists(ddt, type, ddt_class))
223 if (!ddt_object_exists(ddt, type, class))
224 return (SET_ERROR(ENOENT));

226 return (dmu_object_info(ddt->ddt_os, ddt->ddt_object[type][ddt_class],
226 return (dmu_object_info(ddt->ddt_os, ddt->ddt_object[type][class],
227 doi));
228 }

230 boolean_t
231 ddt_object_exists(ddt_t *ddt, enum ddt_type type, enum ddt_class ddt_class)
231 ddt_object_exists(ddt_t *ddt, enum ddt_type type, enum ddt_class class)

new/usr/src/uts/common/fs/zfs/ddt.c 2

232 {
233 return (!!ddt->ddt_object[type][ddt_class]);
233 return (!!ddt->ddt_object[type][class]);
234 }

236 void
237 ddt_object_name(ddt_t *ddt, enum ddt_type type, enum ddt_class ddt_class,
237 ddt_object_name(ddt_t *ddt, enum ddt_type type, enum ddt_class class,
238 char *name)
239 {
240 (void) sprintf(name, DMU_POOL_DDT,
241 zio_checksum_table[ddt->ddt_checksum].ci_name,
242 ddt_ops[type]->ddt_op_name, ddt_class_name[ddt_class]);
242 ddt_ops[type]->ddt_op_name, ddt_class_name[class]);
243 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/dsl_dataset.c 1

**
 80615 Tue Apr 30 17:10:58 2013
new/usr/src/uts/common/fs/zfs/dsl_dataset.c
3748 zfs headers should be C++ compatible
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Will Andrews <willa@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
**
______unchanged_portion_omitted_

2740 /*
2741 * Return (in *usedp) the amount of space written in new that is not
2742 * present in oldsnap. New may be a snapshot or the head. Old must be
2743 * a snapshot before new, in new’s filesystem (or its origin). If not then
2744 * fail and return EINVAL.
2745 *
2746 * The written space is calculated by considering two components: First, we
2747 * ignore any freed space, and calculate the written as new’s used space
2748 * minus old’s used space. Next, we add in the amount of space that was freed
2749 * between the two snapshots, thus reducing new’s used space relative to old’s.
2750 * Specifically, this is the space that was born before old->ds_creation_txg,
2751 * and freed before new (ie. on new’s deadlist or a previous deadlist).
2752 *
2753 * space freed [---------------------]
2754 * snapshots ---O-------O--------O-------O------
2755 * oldsnap new
2756 */
2757 int
2758 dsl_dataset_space_written(dsl_dataset_t *oldsnap, dsl_dataset_t *newds,
2758 dsl_dataset_space_written(dsl_dataset_t *oldsnap, dsl_dataset_t *new,
2759 uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
2760 {
2761 int err = 0;
2762 uint64_t snapobj;
2763 dsl_pool_t *dp = newds->ds_dir->dd_pool;
2763 dsl_pool_t *dp = new->ds_dir->dd_pool;

2765 ASSERT(dsl_pool_config_held(dp));

2767 *usedp = 0;
2768 *usedp += newds->ds_phys->ds_referenced_bytes;
2768 *usedp += new->ds_phys->ds_referenced_bytes;
2769 *usedp -= oldsnap->ds_phys->ds_referenced_bytes;

2771 *compp = 0;
2772 *compp += newds->ds_phys->ds_compressed_bytes;
2772 *compp += new->ds_phys->ds_compressed_bytes;
2773 *compp -= oldsnap->ds_phys->ds_compressed_bytes;

2775 *uncompp = 0;
2776 *uncompp += newds->ds_phys->ds_uncompressed_bytes;
2776 *uncompp += new->ds_phys->ds_uncompressed_bytes;
2777 *uncompp -= oldsnap->ds_phys->ds_uncompressed_bytes;

2779 snapobj = newds->ds_object;
2779 snapobj = new->ds_object;
2780 while (snapobj != oldsnap->ds_object) {
2781 dsl_dataset_t *snap;
2782 uint64_t used, comp, uncomp;

2784 if (snapobj == newds->ds_object) {
2785 snap = newds;
2784 if (snapobj == new->ds_object) {
2785 snap = new;
2786 } else {
2787 err = dsl_dataset_hold_obj(dp, snapobj, FTAG, &snap);

new/usr/src/uts/common/fs/zfs/dsl_dataset.c 2

2788 if (err != 0)
2789 break;
2790 }

2792 if (snap->ds_phys->ds_prev_snap_txg ==
2793 oldsnap->ds_phys->ds_creation_txg) {
2794 /*
2795 * The blocks in the deadlist can not be born after
2796 * ds_prev_snap_txg, so get the whole deadlist space,
2797 * which is more efficient (especially for old-format
2798 * deadlists). Unfortunately the deadlist code
2799 * doesn’t have enough information to make this
2800 * optimization itself.
2801 */
2802 dsl_deadlist_space(&snap->ds_deadlist,
2803 &used, &comp, &uncomp);
2804 } else {
2805 dsl_deadlist_space_range(&snap->ds_deadlist,
2806 0, oldsnap->ds_phys->ds_creation_txg,
2807 &used, &comp, &uncomp);
2808 }
2809 *usedp += used;
2810 *compp += comp;
2811 *uncompp += uncomp;

2813 /*
2814 * If we get to the beginning of the chain of snapshots
2815 * (ds_prev_snap_obj == 0) before oldsnap, then oldsnap
2816 * was not a snapshot of/before newds.
2816 * was not a snapshot of/before new.
2817 */
2818 snapobj = snap->ds_phys->ds_prev_snap_obj;
2819 if (snap != newds)
2819 if (snap != new)
2820 dsl_dataset_rele(snap, FTAG);
2821 if (snapobj == 0) {
2822 err = SET_ERROR(EINVAL);
2823 break;
2824 }

2826 }
2827 return (err);
2828 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/sys/arc.h 1

**
 4325 Tue Apr 30 17:10:58 2013
new/usr/src/uts/common/fs/zfs/sys/arc.h
3748 zfs headers should be C++ compatible
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Will Andrews <willa@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 */

26 #ifndef _SYS_ARC_H
27 #define _SYS_ARC_H

29 #include <sys/zfs_context.h>

31 #ifdef __cplusplus
32 extern "C" {
33 #endif

35 #include <sys/zio.h>
36 #include <sys/dmu.h>
37 #include <sys/spa.h>

39 typedef struct arc_buf_hdr arc_buf_hdr_t;
40 typedef struct arc_buf arc_buf_t;
41 typedef void arc_done_func_t(zio_t *zio, arc_buf_t *buf, void *cb_private);
42 typedef int arc_evict_func_t(void *cb_private);
41 typedef void arc_done_func_t(zio_t *zio, arc_buf_t *buf, void *private);
42 typedef int arc_evict_func_t(void *private);

44 /* generic arc_done_func_t’s which you can use */
45 arc_done_func_t arc_bcopy_func;
46 arc_done_func_t arc_getbuf_func;

48 struct arc_buf {
49 arc_buf_hdr_t *b_hdr;
50 arc_buf_t *b_next;
51 kmutex_t b_evict_lock;
52 void *b_data;
53 arc_evict_func_t *b_efunc;
54 void *b_private;
55 };

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/sys/arc.h 2

82 void arc_space_consume(uint64_t space, arc_space_type_t type);
83 void arc_space_return(uint64_t space, arc_space_type_t type);
84 void *arc_data_buf_alloc(uint64_t space);
85 void arc_data_buf_free(void *buf, uint64_t space);
86 arc_buf_t *arc_buf_alloc(spa_t *spa, int size, void *tag,
87 arc_buf_contents_t type);
88 arc_buf_t *arc_loan_buf(spa_t *spa, int size);
89 void arc_return_buf(arc_buf_t *buf, void *tag);
90 void arc_loan_inuse_buf(arc_buf_t *buf, void *tag);
91 void arc_buf_add_ref(arc_buf_t *buf, void *tag);
92 boolean_t arc_buf_remove_ref(arc_buf_t *buf, void *tag);
93 int arc_buf_size(arc_buf_t *buf);
94 void arc_release(arc_buf_t *buf, void *tag);
95 int arc_released(arc_buf_t *buf);
96 int arc_has_callback(arc_buf_t *buf);
97 void arc_buf_freeze(arc_buf_t *buf);
98 void arc_buf_thaw(arc_buf_t *buf);
99 boolean_t arc_buf_eviction_needed(arc_buf_t *buf);
100 #ifdef ZFS_DEBUG
101 int arc_referenced(arc_buf_t *buf);
102 #endif

104 int arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
105 arc_done_func_t *done, void *cb_private, int priority, int flags,
105 arc_done_func_t *done, void *private, int priority, int flags,
106 uint32_t *arc_flags, const zbookmark_t *zb);
107 zio_t *arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
108 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp,
109 arc_done_func_t *ready, arc_done_func_t *done, void *cb_private,
109 arc_done_func_t *ready, arc_done_func_t *done, void *private,
110 int priority, int zio_flags, const zbookmark_t *zb);

112 void arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func,
113 void *cb_private);
112 void arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private);
114 int arc_buf_evict(arc_buf_t *buf);

116 void arc_flush(spa_t *spa);
117 void arc_tempreserve_clear(uint64_t reserve);
118 int arc_tempreserve_space(uint64_t reserve, uint64_t txg);

120 void arc_init(void);
121 void arc_fini(void);

123 /*
124 * Level 2 ARC
125 */

127 void l2arc_add_vdev(spa_t *spa, vdev_t *vd);
128 void l2arc_remove_vdev(vdev_t *vd);
129 boolean_t l2arc_vdev_present(vdev_t *vd);
130 void l2arc_init(void);
131 void l2arc_fini(void);
132 void l2arc_start(void);
133 void l2arc_stop(void);

135 #ifndef _KERNEL
136 extern boolean_t arc_watch;
137 extern int arc_procfd;
138 #endif

140 #ifdef __cplusplus
141 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/sys/ddt.h 1

**
 7742 Tue Apr 30 17:10:59 2013
new/usr/src/uts/common/fs/zfs/sys/ddt.h
3748 zfs headers should be C++ compatible
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Will Andrews <willa@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
**
______unchanged_portion_omitted_

169 #define DDT_NAMELEN 80

171 extern void ddt_object_name(ddt_t *ddt, enum ddt_type type,
172 enum ddt_class ddt_class, char *name);
172 enum ddt_class class, char *name);
173 extern int ddt_object_walk(ddt_t *ddt, enum ddt_type type,
174 enum ddt_class ddt_class, uint64_t *walk, ddt_entry_t *dde);
174 enum ddt_class class, uint64_t *walk, ddt_entry_t *dde);
175 extern uint64_t ddt_object_count(ddt_t *ddt, enum ddt_type type,
176 enum ddt_class ddt_class);
176 enum ddt_class class);
177 extern int ddt_object_info(ddt_t *ddt, enum ddt_type type,
178 enum ddt_class ddt_class, dmu_object_info_t *);
178 enum ddt_class class, dmu_object_info_t *);
179 extern boolean_t ddt_object_exists(ddt_t *ddt, enum ddt_type type,
180 enum ddt_class ddt_class);
180 enum ddt_class class);

182 extern void ddt_bp_fill(const ddt_phys_t *ddp, blkptr_t *bp,
183 uint64_t txg);
184 extern void ddt_bp_create(enum zio_checksum checksum, const ddt_key_t *ddk,
185 const ddt_phys_t *ddp, blkptr_t *bp);

187 extern void ddt_key_fill(ddt_key_t *ddk, const blkptr_t *bp);

189 extern void ddt_phys_fill(ddt_phys_t *ddp, const blkptr_t *bp);
190 extern void ddt_phys_clear(ddt_phys_t *ddp);
191 extern void ddt_phys_addref(ddt_phys_t *ddp);
192 extern void ddt_phys_decref(ddt_phys_t *ddp);
193 extern void ddt_phys_free(ddt_t *ddt, ddt_key_t *ddk, ddt_phys_t *ddp,
194 uint64_t txg);
195 extern ddt_phys_t *ddt_phys_select(const ddt_entry_t *dde, const blkptr_t *bp);
196 extern uint64_t ddt_phys_total_refcnt(const ddt_entry_t *dde);

198 extern void ddt_stat_add(ddt_stat_t *dst, const ddt_stat_t *src, uint64_t neg);

200 extern void ddt_histogram_add(ddt_histogram_t *dst, const ddt_histogram_t *src);
201 extern void ddt_histogram_stat(ddt_stat_t *dds, const ddt_histogram_t *ddh);
202 extern boolean_t ddt_histogram_empty(const ddt_histogram_t *ddh);
203 extern void ddt_get_dedup_object_stats(spa_t *spa, ddt_object_t *ddo);
204 extern void ddt_get_dedup_histogram(spa_t *spa, ddt_histogram_t *ddh);
205 extern void ddt_get_dedup_stats(spa_t *spa, ddt_stat_t *dds_total);

207 extern uint64_t ddt_get_dedup_dspace(spa_t *spa);
208 extern uint64_t ddt_get_pool_dedup_ratio(spa_t *spa);

210 extern int ddt_ditto_copies_needed(ddt_t *ddt, ddt_entry_t *dde,
211 ddt_phys_t *ddp_willref);
212 extern int ddt_ditto_copies_present(ddt_entry_t *dde);

214 extern size_t ddt_compress(void *src, uchar_t *dst, size_t s_len, size_t d_len);
215 extern void ddt_decompress(uchar_t *src, void *dst, size_t s_len, size_t d_len);

217 extern ddt_t *ddt_select(spa_t *spa, const blkptr_t *bp);
218 extern void ddt_enter(ddt_t *ddt);
219 extern void ddt_exit(ddt_t *ddt);

new/usr/src/uts/common/fs/zfs/sys/ddt.h 2

220 extern ddt_entry_t *ddt_lookup(ddt_t *ddt, const blkptr_t *bp, boolean_t add);
221 extern void ddt_prefetch(spa_t *spa, const blkptr_t *bp);
222 extern void ddt_remove(ddt_t *ddt, ddt_entry_t *dde);

224 extern boolean_t ddt_class_contains(spa_t *spa, enum ddt_class max_class,
225 const blkptr_t *bp);

227 extern ddt_entry_t *ddt_repair_start(ddt_t *ddt, const blkptr_t *bp);
228 extern void ddt_repair_done(ddt_t *ddt, ddt_entry_t *dde);

230 extern int ddt_entry_compare(const void *x1, const void *x2);

232 extern void ddt_create(spa_t *spa);
233 extern int ddt_load(spa_t *spa);
234 extern void ddt_unload(spa_t *spa);
235 extern void ddt_sync(spa_t *spa, uint64_t txg);
236 extern int ddt_walk(spa_t *spa, ddt_bookmark_t *ddb, ddt_entry_t *dde);
237 extern int ddt_object_update(ddt_t *ddt, enum ddt_type type,
238 enum ddt_class ddt_class, ddt_entry_t *dde, dmu_tx_t *tx);
238 enum ddt_class class, ddt_entry_t *dde, dmu_tx_t *tx);

240 extern const ddt_ops_t ddt_zap_ops;

242 #ifdef __cplusplus
243 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/sys/dsl_dataset.h 1

**
 10244 Tue Apr 30 17:10:59 2013
new/usr/src/uts/common/fs/zfs/sys/dsl_dataset.h
3748 zfs headers should be C++ compatible
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Will Andrews <willa@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
**
______unchanged_portion_omitted_

166 /*
167 * The max length of a temporary tag prefix is the number of hex digits
168 * required to express UINT64_MAX plus one for the hyphen.
169 */
170 #define MAX_TAG_PREFIX_LEN 17

172 #define dsl_dataset_is_snapshot(ds) \
173 ((ds)->ds_phys->ds_num_children != 0)

175 #define DS_UNIQUE_IS_ACCURATE(ds) \
176 (((ds)->ds_phys->ds_flags & DS_FLAG_UNIQUE_ACCURATE) != 0)

178 int dsl_dataset_hold(struct dsl_pool *dp, const char *name, void *tag,
179 dsl_dataset_t **dsp);
180 int dsl_dataset_hold_obj(struct dsl_pool *dp, uint64_t dsobj, void *tag,
181 dsl_dataset_t **);
182 void dsl_dataset_rele(dsl_dataset_t *ds, void *tag);
183 int dsl_dataset_own(struct dsl_pool *dp, const char *name,
184 void *tag, dsl_dataset_t **dsp);
185 int dsl_dataset_own_obj(struct dsl_pool *dp, uint64_t dsobj,
186 void *tag, dsl_dataset_t **dsp);
187 void dsl_dataset_disown(dsl_dataset_t *ds, void *tag);
188 void dsl_dataset_name(dsl_dataset_t *ds, char *name);
189 boolean_t dsl_dataset_tryown(dsl_dataset_t *ds, void *tag);
190 void dsl_register_onexit_hold_cleanup(dsl_dataset_t *ds, const char *htag,
191 minor_t minor);
192 uint64_t dsl_dataset_create_sync(dsl_dir_t *pds, const char *lastname,
193 dsl_dataset_t *origin, uint64_t flags, cred_t *, dmu_tx_t *);
194 uint64_t dsl_dataset_create_sync_dd(dsl_dir_t *dd, dsl_dataset_t *origin,
195 uint64_t flags, dmu_tx_t *tx);
196 int dsl_dataset_snapshot(nvlist_t *snaps, nvlist_t *props, nvlist_t *errors);
197 int dsl_dataset_promote(const char *name, char *conflsnap);
198 int dsl_dataset_clone_swap(dsl_dataset_t *clone, dsl_dataset_t *origin_head,
199 boolean_t force);
200 int dsl_dataset_rename_snapshot(const char *fsname,
201 const char *oldsnapname, const char *newsnapname, boolean_t recursive);
202 int dsl_dataset_snapshot_tmp(const char *fsname, const char *snapname,
203 minor_t cleanup_minor, const char *htag);

205 blkptr_t *dsl_dataset_get_blkptr(dsl_dataset_t *ds);
206 void dsl_dataset_set_blkptr(dsl_dataset_t *ds, blkptr_t *bp, dmu_tx_t *tx);

208 spa_t *dsl_dataset_get_spa(dsl_dataset_t *ds);

210 boolean_t dsl_dataset_modified_since_lastsnap(dsl_dataset_t *ds);

212 void dsl_dataset_sync(dsl_dataset_t *os, zio_t *zio, dmu_tx_t *tx);

214 void dsl_dataset_block_born(dsl_dataset_t *ds, const blkptr_t *bp,
215 dmu_tx_t *tx);
216 int dsl_dataset_block_kill(dsl_dataset_t *ds, const blkptr_t *bp,
217 dmu_tx_t *tx, boolean_t async);
218 boolean_t dsl_dataset_block_freeable(dsl_dataset_t *ds, const blkptr_t *bp,
219 uint64_t blk_birth);
220 uint64_t dsl_dataset_prev_snap_txg(dsl_dataset_t *ds);

new/usr/src/uts/common/fs/zfs/sys/dsl_dataset.h 2

222 void dsl_dataset_dirty(dsl_dataset_t *ds, dmu_tx_t *tx);
223 void dsl_dataset_stats(dsl_dataset_t *os, nvlist_t *nv);
224 void dsl_dataset_fast_stat(dsl_dataset_t *ds, dmu_objset_stats_t *stat);
225 void dsl_dataset_space(dsl_dataset_t *ds,
226 uint64_t *refdbytesp, uint64_t *availbytesp,
227 uint64_t *usedobjsp, uint64_t *availobjsp);
228 uint64_t dsl_dataset_fsid_guid(dsl_dataset_t *ds);
229 int dsl_dataset_space_written(dsl_dataset_t *oldsnap, dsl_dataset_t *newds,
229 int dsl_dataset_space_written(dsl_dataset_t *oldsnap, dsl_dataset_t *new,
230 uint64_t *usedp, uint64_t *compp, uint64_t *uncompp);
231 int dsl_dataset_space_wouldfree(dsl_dataset_t *firstsnap, dsl_dataset_t *last,
232 uint64_t *usedp, uint64_t *compp, uint64_t *uncompp);
233 boolean_t dsl_dataset_is_dirty(dsl_dataset_t *ds);

235 int dsl_dsobj_to_dsname(char *pname, uint64_t obj, char *buf);

237 int dsl_dataset_check_quota(dsl_dataset_t *ds, boolean_t check_quota,
238 uint64_t asize, uint64_t inflight, uint64_t *used,
239 uint64_t *ref_rsrv);
240 int dsl_dataset_set_refquota(const char *dsname, zprop_source_t source,
241 uint64_t quota);
242 int dsl_dataset_set_refreservation(const char *dsname, zprop_source_t source,
243 uint64_t reservation);

245 boolean_t dsl_dataset_is_before(dsl_dataset_t *later, dsl_dataset_t *earlier);
246 void dsl_dataset_long_hold(dsl_dataset_t *ds, void *tag);
247 void dsl_dataset_long_rele(dsl_dataset_t *ds, void *tag);
248 boolean_t dsl_dataset_long_held(dsl_dataset_t *ds);

250 int dsl_dataset_clone_swap_check_impl(dsl_dataset_t *clone,
251 dsl_dataset_t *origin_head, boolean_t force);
252 void dsl_dataset_clone_swap_sync_impl(dsl_dataset_t *clone,
253 dsl_dataset_t *origin_head, dmu_tx_t *tx);
254 int dsl_dataset_snapshot_check_impl(dsl_dataset_t *ds, const char *snapname,
255 dmu_tx_t *tx);
256 void dsl_dataset_snapshot_sync_impl(dsl_dataset_t *ds, const char *snapname,
257 dmu_tx_t *tx);

259 void dsl_dataset_remove_from_next_clones(dsl_dataset_t *ds, uint64_t obj,
260 dmu_tx_t *tx);
261 void dsl_dataset_recalc_head_uniq(dsl_dataset_t *ds);
262 int dsl_dataset_get_snapname(dsl_dataset_t *ds);
263 int dsl_dataset_snap_lookup(dsl_dataset_t *ds, const char *name,
264 uint64_t *value);
265 int dsl_dataset_snap_remove(dsl_dataset_t *ds, const char *name, dmu_tx_t *tx);
266 void dsl_dataset_set_refreservation_sync_impl(dsl_dataset_t *ds,
267 zprop_source_t source, uint64_t value, dmu_tx_t *tx);
268 int dsl_dataset_rollback(const char *fsname);

270 #ifdef ZFS_DEBUG
271 #define dprintf_ds(ds, fmt, ...) do { \
272 if (zfs_flags & ZFS_DEBUG_DPRINTF) { \
273 char *__ds_name = kmem_alloc(MAXNAMELEN, KM_SLEEP); \
274 dsl_dataset_name(ds, __ds_name); \
275 dprintf("ds=%s " fmt, __ds_name, __VA_ARGS__); \
276 kmem_free(__ds_name, MAXNAMELEN); \
277 } \
278 _NOTE(CONSTCOND) } while (0)
279 #else
280 #define dprintf_ds(dd, fmt, ...)
281 #endif

283 #ifdef __cplusplus
284 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/sys/spa.h 1

**
 25602 Tue Apr 30 17:10:59 2013
new/usr/src/uts/common/fs/zfs/sys/spa.h
3748 zfs headers should be C++ compatible
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Will Andrews <willa@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
**
______unchanged_portion_omitted_

559 extern spa_log_state_t spa_get_log_state(spa_t *spa);
560 extern void spa_set_log_state(spa_t *spa, spa_log_state_t state);
561 extern int spa_offline_log(spa_t *spa);

563 /* Log claim callback */
564 extern void spa_claim_notify(zio_t *zio);

566 /* Accessor functions */
567 extern boolean_t spa_shutting_down(spa_t *spa);
568 extern struct dsl_pool *spa_get_dsl(spa_t *spa);
569 extern boolean_t spa_is_initializing(spa_t *spa);
570 extern blkptr_t *spa_get_rootblkptr(spa_t *spa);
571 extern void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp);
572 extern void spa_altroot(spa_t *, char *, size_t);
573 extern int spa_sync_pass(spa_t *spa);
574 extern char *spa_name(spa_t *spa);
575 extern uint64_t spa_guid(spa_t *spa);
576 extern uint64_t spa_load_guid(spa_t *spa);
577 extern uint64_t spa_last_synced_txg(spa_t *spa);
578 extern uint64_t spa_first_txg(spa_t *spa);
579 extern uint64_t spa_syncing_txg(spa_t *spa);
580 extern uint64_t spa_version(spa_t *spa);
581 extern pool_state_t spa_state(spa_t *spa);
582 extern spa_load_state_t spa_load_state(spa_t *spa);
583 extern uint64_t spa_freeze_txg(spa_t *spa);
584 extern uint64_t spa_get_asize(spa_t *spa, uint64_t lsize);
585 extern uint64_t spa_get_dspace(spa_t *spa);
586 extern void spa_update_dspace(spa_t *spa);
587 extern uint64_t spa_version(spa_t *spa);
588 extern boolean_t spa_deflate(spa_t *spa);
589 extern metaslab_class_t *spa_normal_class(spa_t *spa);
590 extern metaslab_class_t *spa_log_class(spa_t *spa);
591 extern int spa_max_replication(spa_t *spa);
592 extern int spa_prev_software_version(spa_t *spa);
593 extern int spa_busy(void);
594 extern uint8_t spa_get_failmode(spa_t *spa);
595 extern boolean_t spa_suspended(spa_t *spa);
596 extern uint64_t spa_bootfs(spa_t *spa);
597 extern uint64_t spa_delegation(spa_t *spa);
598 extern objset_t *spa_meta_objset(spa_t *spa);
599 extern uint64_t spa_deadman_synctime(spa_t *spa);

601 /* Miscellaneous support routines */
602 extern void spa_activate_mos_feature(spa_t *spa, const char *feature);
603 extern void spa_deactivate_mos_feature(spa_t *spa, const char *feature);
604 extern int spa_rename(const char *oldname, const char *newname);
605 extern spa_t *spa_by_guid(uint64_t pool_guid, uint64_t device_guid);
606 extern boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid);
607 extern char *spa_strdup(const char *);
608 extern void spa_strfree(char *);
609 extern uint64_t spa_get_random(uint64_t range);
610 extern uint64_t spa_generate_guid(spa_t *spa);
611 extern void sprintf_blkptr(char *buf, const blkptr_t *bp);
612 extern void spa_freeze(spa_t *spa);
613 extern int spa_change_guid(spa_t *spa);
614 extern void spa_upgrade(spa_t *spa, uint64_t version);

new/usr/src/uts/common/fs/zfs/sys/spa.h 2

615 extern void spa_evict_all(void);
616 extern vdev_t *spa_lookup_by_guid(spa_t *spa, uint64_t guid,
617 boolean_t l2cache);
618 extern boolean_t spa_has_spare(spa_t *, uint64_t guid);
619 extern uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva);
620 extern uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp);
621 extern uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp);
622 extern boolean_t spa_has_slogs(spa_t *spa);
623 extern boolean_t spa_is_root(spa_t *spa);
624 extern boolean_t spa_writeable(spa_t *spa);

626 extern int spa_mode(spa_t *spa);
627 extern uint64_t strtonum(const char *str, char **nptr);

629 extern char *spa_his_ievent_table[];

631 extern void spa_history_create_obj(spa_t *spa, dmu_tx_t *tx);
632 extern int spa_history_get(spa_t *spa, uint64_t *offset, uint64_t *len_read,
633 char *his_buf);
634 extern int spa_history_log(spa_t *spa, const char *his_buf);
635 extern int spa_history_log_nvl(spa_t *spa, nvlist_t *nvl);
636 extern void spa_history_log_version(spa_t *spa, const char *operation);
637 extern void spa_history_log_internal(spa_t *spa, const char *operation,
638 dmu_tx_t *tx, const char *fmt, ...);
639 extern void spa_history_log_internal_ds(struct dsl_dataset *ds, const char *op,
640 dmu_tx_t *tx, const char *fmt, ...);
641 extern void spa_history_log_internal_dd(dsl_dir_t *dd, const char *operation,
642 dmu_tx_t *tx, const char *fmt, ...);

644 /* error handling */
645 struct zbookmark;
646 extern void spa_log_error(spa_t *spa, zio_t *zio);
647 extern void zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd,
647 extern void zfs_ereport_post(const char *class, spa_t *spa, vdev_t *vd,
648 zio_t *zio, uint64_t stateoroffset, uint64_t length);
649 extern void zfs_post_remove(spa_t *spa, vdev_t *vd);
650 extern void zfs_post_state_change(spa_t *spa, vdev_t *vd);
651 extern void zfs_post_autoreplace(spa_t *spa, vdev_t *vd);
652 extern uint64_t spa_get_errlog_size(spa_t *spa);
653 extern int spa_get_errlog(spa_t *spa, void *uaddr, size_t *count);
654 extern void spa_errlog_rotate(spa_t *spa);
655 extern void spa_errlog_drain(spa_t *spa);
656 extern void spa_errlog_sync(spa_t *spa, uint64_t txg);
657 extern void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub);

659 /* vdev cache */
660 extern void vdev_cache_stat_init(void);
661 extern void vdev_cache_stat_fini(void);

663 /* Initialization and termination */
664 extern void spa_init(int flags);
665 extern void spa_fini(void);
666 extern void spa_boot_init();

668 /* properties */
669 extern int spa_prop_set(spa_t *spa, nvlist_t *nvp);
670 extern int spa_prop_get(spa_t *spa, nvlist_t **nvp);
671 extern void spa_prop_clear_bootfs(spa_t *spa, uint64_t obj, dmu_tx_t *tx);
672 extern void spa_configfile_set(spa_t *, nvlist_t *, boolean_t);

674 /* asynchronous event notification */
675 extern void spa_event_notify(spa_t *spa, vdev_t *vdev, const char *name);

677 #ifdef ZFS_DEBUG
678 #define dprintf_bp(bp, fmt, ...) do { \
679 if (zfs_flags & ZFS_DEBUG_DPRINTF) { \

new/usr/src/uts/common/fs/zfs/sys/spa.h 3

680 char *__blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_SLEEP); \
681 sprintf_blkptr(__blkbuf, (bp)); \
682 dprintf(fmt " %s\n", __VA_ARGS__, __blkbuf); \
683 kmem_free(__blkbuf, BP_SPRINTF_LEN); \
684 } \
685 _NOTE(CONSTCOND) } while (0)
686 #else
687 #define dprintf_bp(bp, fmt, ...)
688 #endif

690 extern boolean_t spa_debug_enabled(spa_t *spa);
691 #define spa_dbgmsg(spa, ...) \
692 { \
693 if (spa_debug_enabled(spa)) \
694 zfs_dbgmsg(__VA_ARGS__); \
695 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/sys/zfs_ioctl.h 1

**
 10168 Tue Apr 30 17:10:59 2013
new/usr/src/uts/common/fs/zfs/sys/zfs_ioctl.h
3748 zfs headers should be C++ compatible
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Will Andrews <willa@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
**
______unchanged_portion_omitted_

72 #define DMU_GET_STREAM_HDRTYPE(vi) BF64_GET((vi), 0, 2)
73 #define DMU_SET_STREAM_HDRTYPE(vi, x) BF64_SET((vi), 0, 2, x)

75 #define DMU_GET_FEATUREFLAGS(vi) BF64_GET((vi), 2, 30)
76 #define DMU_SET_FEATUREFLAGS(vi, x) BF64_SET((vi), 2, 30, x)

78 /*
79 * Feature flags for zfs send streams (flags in drr_versioninfo)
80 */

82 #define DMU_BACKUP_FEATURE_DEDUP (0x1)
83 #define DMU_BACKUP_FEATURE_DEDUPPROPS (0x2)
84 #define DMU_BACKUP_FEATURE_SA_SPILL (0x4)

86 /*
87 * Mask of all supported backup features
88 */
89 #define DMU_BACKUP_FEATURE_MASK (DMU_BACKUP_FEATURE_DEDUP | \
90 DMU_BACKUP_FEATURE_DEDUPPROPS | DMU_BACKUP_FEATURE_SA_SPILL)

92 /* Are all features in the given flag word currently supported? */
93 #define DMU_STREAM_SUPPORTED(x) (!((x) & ~DMU_BACKUP_FEATURE_MASK))

95 /*
96 * The drr_versioninfo field of the dmu_replay_record has the
97 * following layout:
98 *
99 * 64 56 48 40 32 24 16 8 0
100 * +-------+-------+-------+-------+-------+-------+-------+-------+
101 * | reserved | feature-flags |C|S|
102 * +-------+-------+-------+-------+-------+-------+-------+-------+
103 *
104 * The low order two bits indicate the header type: SUBSTREAM (0x1)
105 * or COMPOUNDSTREAM (0x2). Using two bits for this is historical:
106 * this field used to be a version number, where the two version types
107 * were 1 and 2. Using two bits for this allows earlier versions of
108 * the code to be able to recognize send streams that don’t use any
109 * of the features indicated by feature flags.
110 */

95 #define DMU_BACKUP_MAGIC 0x2F5bacbacULL

97 #define DRR_FLAG_CLONE (1<<0)
98 #define DRR_FLAG_CI_DATA (1<<1)

100 /*
101 * flags in the drr_checksumflags field in the DRR_WRITE and
102 * DRR_WRITE_BYREF blocks
103 */
104 #define DRR_CHECKSUM_DEDUP (1<<0)

106 #define DRR_IS_DEDUP_CAPABLE(flags) ((flags) & DRR_CHECKSUM_DEDUP)

108 /*
109 * zfs ioctl command structure
110 */

new/usr/src/uts/common/fs/zfs/sys/zfs_ioctl.h 2

111 enum drr_type {
128 typedef struct dmu_replay_record {
129 enum {
112 DRR_BEGIN, DRR_OBJECT, DRR_FREEOBJECTS,
113 DRR_WRITE, DRR_FREE, DRR_END, DRR_WRITE_BYREF,
114 DRR_SPILL, DRR_NUMTYPES
115 };

117 struct drr_begin {
133 } drr_type;
134 uint32_t drr_payloadlen;
135 union {
136 struct drr_begin {
118 uint64_t drr_magic;
119 /*
120 * Formerly named drr_version, this field has the following layout:
121 *
122 * 64 56 48 40 32 24 16 8 0
123 * +-------+-------+-------+-------+-------+-------+-------+-------+
124 * | reserved | feature-flags |C|S|
125 * +-------+-------+-------+-------+-------+-------+-------+-------+
126 *
127 * The low order two bits indicate the header type: SUBSTREAM (0x1)
128 * or COMPOUNDSTREAM (0x2). Using two bits for this is historical:
129 * this field used to be a version number, where the two version types
130 * were 1 and 2. Using two bits for this allows earlier versions of
131 * the code to be able to recognize send streams that don’t use any
132 * of the features indicated by feature flags.
133 */
134 uint64_t drr_versioninfo;
138 uint64_t drr_versioninfo; /* was drr_version */
135 uint64_t drr_creation_time;
136 dmu_objset_type_t drr_type;
137 uint32_t drr_flags;
138 uint64_t drr_toguid;
139 uint64_t drr_fromguid;
140 char drr_toname[MAXNAMELEN];
141 };

143 struct drr_end {
145 } drr_begin;
146 struct drr_end {
144 zio_cksum_t drr_checksum;
145 uint64_t drr_toguid;
146 };

148 struct drr_object {
149 } drr_end;
150 struct drr_object {
149 uint64_t drr_object;
150 dmu_object_type_t drr_type;
151 dmu_object_type_t drr_bonustype;
152 uint32_t drr_blksz;
153 uint32_t drr_bonuslen;
154 uint8_t drr_checksumtype;
155 uint8_t drr_compress;
156 uint8_t drr_pad[6];
157 uint64_t drr_toguid;
158 /* bonus content follows */
159 };

161 struct drr_freeobjects {
161 } drr_object;
162 struct drr_freeobjects {
162 uint64_t drr_firstobj;
163 uint64_t drr_numobjs;

new/usr/src/uts/common/fs/zfs/sys/zfs_ioctl.h 3

164 uint64_t drr_toguid;
165 };

167 struct drr_write {
166 } drr_freeobjects;
167 struct drr_write {
168 uint64_t drr_object;
169 dmu_object_type_t drr_type;
170 uint32_t drr_pad;
171 uint64_t drr_offset;
172 uint64_t drr_length;
173 uint64_t drr_toguid;
174 uint8_t drr_checksumtype;
175 uint8_t drr_checksumflags;
176 uint8_t drr_pad2[6];
177 ddt_key_t drr_key; /* deduplication key */
178 /* content follows */
179 };

181 struct drr_free {
179 } drr_write;
180 struct drr_free {
182 uint64_t drr_object;
183 uint64_t drr_offset;
184 uint64_t drr_length;
185 uint64_t drr_toguid;
186 };

188 struct drr_write_byref {
189 uint64_t drr_object; /* where to put the data */
185 } drr_free;
186 struct drr_write_byref {
187 /* where to put the data */
188 uint64_t drr_object;
190 uint64_t drr_offset;
191 uint64_t drr_length;
192 uint64_t drr_toguid; /* where to find the prior copy of the data */
191 uint64_t drr_toguid;
192 /* where to find the prior copy of the data */
193 uint64_t drr_refguid;
194 uint64_t drr_refobject;
195 uint64_t drr_refoffset; /* properties of the data */
195 uint64_t drr_refoffset;
196 /* properties of the data */
196 uint8_t drr_checksumtype;
197 uint8_t drr_checksumflags;
198 uint8_t drr_pad2[6];
199 ddt_key_t drr_key; /* deduplication key */
200 };

202 struct drr_spill {
201 } drr_write_byref;
202 struct drr_spill {
203 uint64_t drr_object;
204 uint64_t drr_length;
205 uint64_t drr_toguid;
206 uint64_t drr_pad[4]; /* needed for crypto */
207 /* spill data follows */
208 };

210 typedef struct dmu_replay_record {
211 enum drr_type drr_type;
212 uint32_t drr_payloadlen;
213 union {
214 struct drr_begin drr_begin;
215 struct drr_end drr_end;

new/usr/src/uts/common/fs/zfs/sys/zfs_ioctl.h 4

216 struct drr_object drr_object;
217 struct drr_freeobjects drr_freeobjects;
218 struct drr_write drr_write;
219 struct drr_free drr_free;
220 struct drr_write_byref drr_write_byref;
221 struct drr_spill drr_spill;
208 } drr_spill;
222 } drr_u;
223 } dmu_replay_record_t;

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/sys/zio.h 1

**
 18003 Tue Apr 30 17:11:00 2013
new/usr/src/uts/common/fs/zfs/sys/zio.h
3748 zfs headers should be C++ compatible
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Will Andrews <willa@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
**
______unchanged_portion_omitted_

444 extern zio_t *zio_null(zio_t *pio, spa_t *spa, vdev_t *vd,
445 zio_done_func_t *done, void *io_private, enum zio_flag flags);
445 zio_done_func_t *done, void *private, enum zio_flag flags);

447 extern zio_t *zio_root(spa_t *spa,
448 zio_done_func_t *done, void *io_private, enum zio_flag flags);
448 zio_done_func_t *done, void *private, enum zio_flag flags);

450 extern zio_t *zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, void *data,
451 uint64_t size, zio_done_func_t *done, void *io_private,
451 uint64_t size, zio_done_func_t *done, void *private,
452 int priority, enum zio_flag flags, const zbookmark_t *zb);

454 extern zio_t *zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
455 void *data, uint64_t size, const zio_prop_t *zp,
456 zio_done_func_t *ready, zio_done_func_t *done, void *io_private,
456 zio_done_func_t *ready, zio_done_func_t *done, void *private,
457 int priority, enum zio_flag flags, const zbookmark_t *zb);

459 extern zio_t *zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
460 void *data, uint64_t size, zio_done_func_t *done, void *io_private,
460 void *data, uint64_t size, zio_done_func_t *done, void *private,
461 int priority, enum zio_flag flags, zbookmark_t *zb);

463 extern void zio_write_override(zio_t *zio, blkptr_t *bp, int copies,
464 boolean_t nopwrite);

466 extern void zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp);

468 extern zio_t *zio_claim(zio_t *pio, spa_t *spa, uint64_t txg,
469 const blkptr_t *bp,
470 zio_done_func_t *done, void *io_private, enum zio_flag flags);
470 zio_done_func_t *done, void *private, enum zio_flag flags);

472 extern zio_t *zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
473 zio_done_func_t *done, void *io_private, int priority,
474 enum zio_flag flags);
473 zio_done_func_t *done, void *private, int priority, enum zio_flag flags);

476 extern zio_t *zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset,
477 uint64_t size, void *data, int checksum,
478 zio_done_func_t *done, void *io_private, int priority, enum zio_flag flags,
477 zio_done_func_t *done, void *private, int priority, enum zio_flag flags,
479 boolean_t labels);

481 extern zio_t *zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset,
482 uint64_t size, void *data, int checksum,
483 zio_done_func_t *done, void *io_private, int priority, enum zio_flag flags,
482 zio_done_func_t *done, void *private, int priority, enum zio_flag flags,
484 boolean_t labels);

486 extern zio_t *zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg,
487 const blkptr_t *bp, enum zio_flag flags);

489 extern int zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp,
490 blkptr_t *old_bp, uint64_t size, boolean_t use_slog);

new/usr/src/uts/common/fs/zfs/sys/zio.h 2

491 extern void zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp);
492 extern void zio_flush(zio_t *zio, vdev_t *vd);
493 extern void zio_shrink(zio_t *zio, uint64_t size);

495 extern int zio_wait(zio_t *zio);
496 extern void zio_nowait(zio_t *zio);
497 extern void zio_execute(zio_t *zio);
498 extern void zio_interrupt(zio_t *zio);

500 extern zio_t *zio_walk_parents(zio_t *cio);
501 extern zio_t *zio_walk_children(zio_t *pio);
502 extern zio_t *zio_unique_parent(zio_t *cio);
503 extern void zio_add_child(zio_t *pio, zio_t *cio);

505 extern void *zio_buf_alloc(size_t size);
506 extern void zio_buf_free(void *buf, size_t size);
507 extern void *zio_data_buf_alloc(size_t size);
508 extern void zio_data_buf_free(void *buf, size_t size);

510 extern void zio_resubmit_stage_async(void *);

512 extern zio_t *zio_vdev_child_io(zio_t *zio, blkptr_t *bp, vdev_t *vd,
513 uint64_t offset, void *data, uint64_t size, int type, int priority,
514 enum zio_flag flags, zio_done_func_t *done, void *io_private);
513 enum zio_flag flags, zio_done_func_t *done, void *private);

516 extern zio_t *zio_vdev_delegated_io(vdev_t *vd, uint64_t offset,
517 void *data, uint64_t size, int type, int priority,
518 enum zio_flag flags, zio_done_func_t *done, void *io_private);
517 enum zio_flag flags, zio_done_func_t *done, void *private);

520 extern void zio_vdev_io_bypass(zio_t *zio);
521 extern void zio_vdev_io_reissue(zio_t *zio);
522 extern void zio_vdev_io_redone(zio_t *zio);

524 extern void zio_checksum_verified(zio_t *zio);
525 extern int zio_worst_error(int e1, int e2);

527 extern enum zio_checksum zio_checksum_select(enum zio_checksum child,
528 enum zio_checksum parent);
529 extern enum zio_checksum zio_checksum_dedup_select(spa_t *spa,
530 enum zio_checksum child, enum zio_checksum parent);
531 extern enum zio_compress zio_compress_select(enum zio_compress child,
532 enum zio_compress parent);

534 extern void zio_suspend(spa_t *spa, zio_t *zio);
535 extern int zio_resume(spa_t *spa);
536 extern void zio_resume_wait(spa_t *spa);

538 /*
539 * Initial setup and teardown.
540 */
541 extern void zio_init(void);
542 extern void zio_fini(void);

544 /*
545 * Fault injection
546 */
547 struct zinject_record;
548 extern uint32_t zio_injection_enabled;
549 extern int zio_inject_fault(char *name, int flags, int *id,
550 struct zinject_record *record);
551 extern int zio_inject_list_next(int *id, char *name, size_t buflen,
552 struct zinject_record *record);
553 extern int zio_clear_fault(int id);
554 extern void zio_handle_panic_injection(spa_t *spa, char *tag, uint64_t type);

new/usr/src/uts/common/fs/zfs/sys/zio.h 3

555 extern int zio_handle_fault_injection(zio_t *zio, int error);
556 extern int zio_handle_device_injection(vdev_t *vd, zio_t *zio, int error);
557 extern int zio_handle_label_injection(zio_t *zio, int error);
558 extern void zio_handle_ignored_writes(zio_t *zio);
559 extern uint64_t zio_handle_io_delay(zio_t *zio);

561 /*
562 * Checksum ereport functions
563 */
564 extern void zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, struct zio *zio,
565 uint64_t offset, uint64_t length, void *arg, struct zio_bad_cksum *info);
566 extern void zfs_ereport_finish_checksum(zio_cksum_report_t *report,
567 const void *good_data, const void *bad_data, boolean_t drop_if_identical);

569 extern void zfs_ereport_send_interim_checksum(zio_cksum_report_t *report);
570 extern void zfs_ereport_free_checksum(zio_cksum_report_t *report);

572 /* If we have the good data in hand, this function can be used */
573 extern void zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd,
574 struct zio *zio, uint64_t offset, uint64_t length,
575 const void *good_data, const void *bad_data, struct zio_bad_cksum *info);

577 /* Called from spa_sync(), but primarily an injection handler */
578 extern void spa_handle_ignored_writes(spa_t *spa);

580 /* zbookmark functions */
581 boolean_t zbookmark_is_before(const struct dnode_phys *dnp,
582 const zbookmark_t *zb1, const zbookmark_t *zb2);

584 #ifdef __cplusplus
585 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/zio.c 1

**
 89700 Tue Apr 30 17:11:00 2013
new/usr/src/uts/common/fs/zfs/zio.c
3748 zfs headers should be C++ compatible
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Will Andrews <willa@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
**
______unchanged_portion_omitted_

505 /*
506 * ==
507 * Create the various types of I/O (read, write, free, etc)
508 * ==
509 */
510 static zio_t *
511 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
512 void *data, uint64_t size, zio_done_func_t *done, void *io_private,
512 void *data, uint64_t size, zio_done_func_t *done, void *private,
513 zio_type_t type, int priority, enum zio_flag flags,
514 vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
515 enum zio_stage stage, enum zio_stage pipeline)
516 {
517 zio_t *zio;

519 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
520 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
521 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);

523 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
524 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
525 ASSERT(vd || stage == ZIO_STAGE_OPEN);

527 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
528 bzero(zio, sizeof (zio_t));

530 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
531 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);

533 list_create(&zio->io_parent_list, sizeof (zio_link_t),
534 offsetof(zio_link_t, zl_parent_node));
535 list_create(&zio->io_child_list, sizeof (zio_link_t),
536 offsetof(zio_link_t, zl_child_node));

538 if (vd != NULL)
539 zio->io_child_type = ZIO_CHILD_VDEV;
540 else if (flags & ZIO_FLAG_GANG_CHILD)
541 zio->io_child_type = ZIO_CHILD_GANG;
542 else if (flags & ZIO_FLAG_DDT_CHILD)
543 zio->io_child_type = ZIO_CHILD_DDT;
544 else
545 zio->io_child_type = ZIO_CHILD_LOGICAL;

547 if (bp != NULL) {
548 zio->io_bp = (blkptr_t *)bp;
549 zio->io_bp_copy = *bp;
550 zio->io_bp_orig = *bp;
551 if (type != ZIO_TYPE_WRITE ||
552 zio->io_child_type == ZIO_CHILD_DDT)
553 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
554 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
555 zio->io_logical = zio;
556 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
557 pipeline |= ZIO_GANG_STAGES;
558 }

new/usr/src/uts/common/fs/zfs/zio.c 2

560 zio->io_spa = spa;
561 zio->io_txg = txg;
562 zio->io_done = done;
563 zio->io_private = io_private;
563 zio->io_private = private;
564 zio->io_type = type;
565 zio->io_priority = priority;
566 zio->io_vd = vd;
567 zio->io_offset = offset;
568 zio->io_orig_data = zio->io_data = data;
569 zio->io_orig_size = zio->io_size = size;
570 zio->io_orig_flags = zio->io_flags = flags;
571 zio->io_orig_stage = zio->io_stage = stage;
572 zio->io_orig_pipeline = zio->io_pipeline = pipeline;

574 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
575 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);

577 if (zb != NULL)
578 zio->io_bookmark = *zb;

580 if (pio != NULL) {
581 if (zio->io_logical == NULL)
582 zio->io_logical = pio->io_logical;
583 if (zio->io_child_type == ZIO_CHILD_GANG)
584 zio->io_gang_leader = pio->io_gang_leader;
585 zio_add_child(pio, zio);
586 }

588 return (zio);
589 }

______unchanged_portion_omitted_

601 zio_t *
602 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
603 void *io_private, enum zio_flag flags)
603 void *private, enum zio_flag flags)
604 {
605 zio_t *zio;

607 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, io_private,
607 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
608 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
609 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);

611 return (zio);
612 }

614 zio_t *
615 zio_root(spa_t *spa, zio_done_func_t *done, void *io_private,
616 enum zio_flag flags)
615 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
617 {
618 return (zio_null(NULL, spa, NULL, done, io_private, flags));
617 return (zio_null(NULL, spa, NULL, done, private, flags));
619 }

621 zio_t *
622 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
623 void *data, uint64_t size, zio_done_func_t *done, void *io_private,
622 void *data, uint64_t size, zio_done_func_t *done, void *private,
624 int priority, enum zio_flag flags, const zbookmark_t *zb)
625 {
626 zio_t *zio;

628 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,

new/usr/src/uts/common/fs/zfs/zio.c 3

629 data, size, done, io_private,
628 data, size, done, private,
630 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
631 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
632 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);

634 return (zio);
635 }

637 zio_t *
638 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
639 void *data, uint64_t size, const zio_prop_t *zp,
640 zio_done_func_t *ready, zio_done_func_t *done, void *io_private,
639 zio_done_func_t *ready, zio_done_func_t *done, void *private,
641 int priority, enum zio_flag flags, const zbookmark_t *zb)
642 {
643 zio_t *zio;

645 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
646 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
647 zp->zp_compress >= ZIO_COMPRESS_OFF &&
648 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
649 DMU_OT_IS_VALID(zp->zp_type) &&
650 zp->zp_level < 32 &&
651 zp->zp_copies > 0 &&
652 zp->zp_copies <= spa_max_replication(spa));

654 zio = zio_create(pio, spa, txg, bp, data, size, done, io_private,
653 zio = zio_create(pio, spa, txg, bp, data, size, done, private,
655 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
656 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
657 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);

659 zio->io_ready = ready;
660 zio->io_prop = *zp;

662 return (zio);
663 }

665 zio_t *
666 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
667 uint64_t size, zio_done_func_t *done, void *io_private, int priority,
666 uint64_t size, zio_done_func_t *done, void *private, int priority,
668 enum zio_flag flags, zbookmark_t *zb)
669 {
670 zio_t *zio;

672 zio = zio_create(pio, spa, txg, bp, data, size, done, io_private,
671 zio = zio_create(pio, spa, txg, bp, data, size, done, private,
673 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
674 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);

676 return (zio);
677 }

______unchanged_portion_omitted_

727 zio_t *
728 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
729 zio_done_func_t *done, void *io_private, enum zio_flag flags)
728 zio_done_func_t *done, void *private, enum zio_flag flags)
730 {
731 zio_t *zio;

733 /*
734 * A claim is an allocation of a specific block. Claims are needed
735 * to support immediate writes in the intent log. The issue is that

new/usr/src/uts/common/fs/zfs/zio.c 4

736 * immediate writes contain committed data, but in a txg that was
737 * *not* committed. Upon opening the pool after an unclean shutdown,
738 * the intent log claims all blocks that contain immediate write data
739 * so that the SPA knows they’re in use.
740 *
741 * All claims *must* be resolved in the first txg -- before the SPA
742 * starts allocating blocks -- so that nothing is allocated twice.
743 * If txg == 0 we just verify that the block is claimable.
744 */
745 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
746 ASSERT(txg == spa_first_txg(spa) || txg == 0);
747 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */

749 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
750 done, io_private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
749 done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
751 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);

753 return (zio);
754 }

756 zio_t *
757 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
758 zio_done_func_t *done, void *io_private, int priority, enum zio_flag flags)
757 zio_done_func_t *done, void *private, int priority, enum zio_flag flags)
759 {
760 zio_t *zio;
761 int c;

763 if (vd->vdev_children == 0) {
764 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, io_private,
763 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
765 ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL,
766 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);

768 zio->io_cmd = cmd;
769 } else {
770 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);

772 for (c = 0; c < vd->vdev_children; c++)
773 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
774 done, io_private, priority, flags));
773 done, private, priority, flags));
775 }

777 return (zio);
778 }

780 zio_t *
781 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
782 void *data, int checksum, zio_done_func_t *done, void *io_private,
781 void *data, int checksum, zio_done_func_t *done, void *private,
783 int priority, enum zio_flag flags, boolean_t labels)
784 {
785 zio_t *zio;

787 ASSERT(vd->vdev_children == 0);
788 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
789 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
790 ASSERT3U(offset + size, <=, vd->vdev_psize);

792 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done,
793 io_private, ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
791 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
792 ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
794 ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);

new/usr/src/uts/common/fs/zfs/zio.c 5

796 zio->io_prop.zp_checksum = checksum;

798 return (zio);
799 }

801 zio_t *
802 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
803 void *data, int checksum, zio_done_func_t *done, void *io_private,
802 void *data, int checksum, zio_done_func_t *done, void *private,
804 int priority, enum zio_flag flags, boolean_t labels)
805 {
806 zio_t *zio;

808 ASSERT(vd->vdev_children == 0);
809 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
810 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
811 ASSERT3U(offset + size, <=, vd->vdev_psize);

813 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done,
814 io_private, ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
812 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
813 ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
815 ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);

817 zio->io_prop.zp_checksum = checksum;

819 if (zio_checksum_table[checksum].ci_eck) {
820 /*
821 * zec checksums are necessarily destructive -- they modify
822 * the end of the write buffer to hold the verifier/checksum.
823 * Therefore, we must make a local copy in case the data is
824 * being written to multiple places in parallel.
825 */
826 void *wbuf = zio_buf_alloc(size);
827 bcopy(data, wbuf, size);
828 zio_push_transform(zio, wbuf, size, size, NULL);
829 }

831 return (zio);
832 }

834 /*
835 * Create a child I/O to do some work for us.
836 */
837 zio_t *
838 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
839 void *data, uint64_t size, int type, int priority, enum zio_flag flags,
840 zio_done_func_t *done, void *io_private)
839 zio_done_func_t *done, void *private)
841 {
842 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
843 zio_t *zio;

845 ASSERT(vd->vdev_parent ==
846 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));

848 if (type == ZIO_TYPE_READ && bp != NULL) {
849 /*
850 * If we have the bp, then the child should perform the
851 * checksum and the parent need not. This pushes error
852 * detection as close to the leaves as possible and
853 * eliminates redundant checksums in the interior nodes.
854 */
855 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
856 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;

new/usr/src/uts/common/fs/zfs/zio.c 6

857 }

859 if (vd->vdev_children == 0)
860 offset += VDEV_LABEL_START_SIZE;

862 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;

864 /*
865 * If we’ve decided to do a repair, the write is not speculative --
866 * even if the original read was.
867 */
868 if (flags & ZIO_FLAG_IO_REPAIR)
869 flags &= ~ZIO_FLAG_SPECULATIVE;

871 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
872 done, io_private, type, priority, flags, vd, offset,
873 &pio->io_bookmark, ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
871 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
872 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);

875 return (zio);
876 }

878 zio_t *
879 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
880 int type, int priority, enum zio_flag flags,
881 zio_done_func_t *done, void *io_private)
880 zio_done_func_t *done, void *private)
882 {
883 zio_t *zio;

885 ASSERT(vd->vdev_ops->vdev_op_leaf);

887 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
888 data, size, done, io_private, type, priority,
887 data, size, done, private, type, priority,
889 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
890 vd, offset, NULL,
891 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);

893 return (zio);
894 }

______unchanged_portion_omitted_

