new usr/src/cnd/ zf s/ Makefil e

R R R R

2842 Tue Apr 30 17:10:57 2013
new usr/src/cnd/ zf s/ Makefile
3748 zfs headers should be C++ conpatible
Submi tted by: Justin G bbs <justing@pectral ogic.con>
Submi tted by: WIIl Andrews <willa@pectral ogic.conp

Revi ened by: Mat t hew Ahrens <mahr ens@lel phi x. conm»
IR R R R R R R RS R R RS SRR SRR R R RS R R ERE R REREREREEEEEES
1#
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terns of the
5 # Common Devel oprent and Distribution License (the "License")
6 # You may not use this file except in conpliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww.opensol aris.org/os/licensing.
10 # See the License for the specific |anguage governing perm ssions
11 # and limtations under the License.
12 #
13 # Wen distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 # If applicable, add the followi ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [nane of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2010 Sun Mcrosystems, Inc. Al rights reserved.
22 # Use is subject to |license terns.
23 #
24 # Copyright 2010 Nexenta Systens, Inc. Al rights reserved.
25 # Copyright (c) 2012 by Delphix. Al rights reserved.
26 #
28 PROG= zfs
29 OBJS= zfs_main.o zfs_iter.o
30 OUTPUTS= $(O0BJIS) zfs_hdrck.cpp zfs_hdrck.o
31 #endif /* | codereview */
32 SRCS= $(OBIS: % 0=% c)
33 PCFI LES= zfs_main.po zfs_iter.po
34 POFI LE= zfs. po

36 include ../ Mkefile.cnd
37 include ../ Makefile.ctf

39 FSTYPE= zfs

40 LI NKPROGS= nount unount

41 ROOTETCFSTYPE= $(ROOTETC)/fs/ $(FSTYPE)
42 USRLI BFSTYPE= $(ROOTLI B)/f s/ $(FSTYPE)

44 LDLIBS += -lzfs_core -lzfs -luutil -lumem-lnvpair -lsec -lidmap
46 INCS += -I1../../comon/ zfs
48 C99MODE= -xc99=%al |
49 C99LMODE= - Xc99=%al |

51 CPPFLAGS += -D_LARGEFI LE64_SOURCE=1 - D_REENTRANT $(| NCS)
52 $(NOT_RELEASE_BUI LD) CPPFLAGS += - DDEBUG

54 # lint conplains about unused _unmem * functions
55 LI NTFLAGS += - xerrof f =E_NAME_DEF_NOT_USED2
56 LI NTFLAGS64 += - xerrof f =E_NAVE_DEF_NOT_USED2

58 CERRWARN += - _gcc=-Wio-switch

new usr/src/cnd/ zf s/ Makefil e

101

CERRWARN += - _gcc=-Who-type-limts

CERRWARN += - _gcc=- Who- par ent heses

CERRWARN += - _gcc=-Who-uninitialized
CERRWARN += - _gcc=- Who-ol d-styl e-decl arati on

ROOTUSRSBI NLI NKS = $(PROG: %=$(ROOTUSRSBI N) / %)

USRLI BFSTYPELI NKS = $(LI NKPROGS: %=$(USRLI BFSTYPE) / %
ROOTETCFSTYPELI NKS = $(LI NKPROGS: %$(ROOTETCFSTYPE) / %
. KEEP_STATE:

. PARALLEL:

all: $(PROG

$(PROG : $(QUTPUTS)

$(PROG) : $(0BIS)

$(LINK. c) -0 $@$(0BIS) $(LDLIBS)
$(POST_PROCESS)

install: all $(ROOTSBI NPROG) $(ROOTUSRSBI NLI NKS) $(USRLI BFSTYPELI NKS) \

$(ROOTETCFSTYPELI NKS)

zfs_hdrck. o: zfs_hdrck. cpp
$(COWPI LE. cc) -0 $@$"

zf s_hdr ck. cpp:

find . -name '*.[ch]’ | xargs grep -h ’'“#include <

#endif /* ! codereview */
$(POFI LEgB: $(Pg:| LES)

(RM s$@
cat $(POFILES) > $@

cl ean:
$(RM $(PROG) $(OQUTPUTS)
$(RVM $(0BIS)

lint: i nt _SRCS

Links from/usr/sbhin to /sbin

$(ROOTUSRSBI NLI NKS) :
-$(RM) $@ $(SYMLINK) ../../sbin/$(PROG $@

Links from/usr/lib/fs/zfs to /sbin
$(USRLI BFSTYPELI NKS) :

-$(RM $@ $(SYMLINK) ../../..[/../sbin/$(PROG $@
Links from/etc/fs/zfs to /shin
$(ROOTETCFSTYPELI NKS) :

-$(RM $@ $(SYMLINK) ../../../sbin/$(PROG $@
FRC:

include ../ Makefile.targ

> $@

new usr/src/ cnd/ zpool / Makefil e

R R R R

2406 Tue Apr 30 17:10:57 2013
new usr/src/ cnd/ zpool / Makefil e
3748 zfs headers should be C++ conpatible
Submi tted by: Justin G bbs <justing@pectral ogic.con>
Submi tted by: WIIl Andrews <willa@pectral ogic.conp

Revi ened by: Mat t hew Ahrens <mahr ens@lel phi x. conm»
IR R R R R R R RS R R RS SRR SRR R R RS R R ERE R REREREREEEEEES
1#
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terns of the
5 # Common Devel oprent and Distribution License (the "License").
6 # You may not use this file except in conpliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww.opensol aris.org/os/licensing.
10 # See the License for the specific |anguage governing perm ssions
11 # and limtations under the License.
12 #
13 # Wen distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 # If applicable, add the followi ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [nane of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 2005, 2010, Oacle and/or its affiliates. Al rights reserved.
23 #

25 PROG= zpool

26 OBJS= zpool _mai n.o zpool _vdev.o zpool _iter.o zpool _util.o
27 SRCS= $(OBJS: % 0=% c)

28 POFI LES=$(OBJS: % 0=% po)

29 POFI LE= zpool . po

31 include ../ Mkefile.cnd
32 include ../ Makefile.ctf

34 STATCOWONDI R = $(SRC)/ cnd/ st at/ comron

36 STAT_COWMMON OBJS = tinestanp. o

37 STAT_COMMON_SRCS = $(STAT_COMMON_OBJS: % 0=$(STATCOMVONDI R) / % c)
38 SRCS += $(STAT_COWON_SRCS)

40 QUTPUTS=$(0BJS) $(STAT_COMVON_OBJS) zpool _hdrck.cpp zpool _hdrck. o

42 #endif /* | codereview */
43 LDLIBS += -lzfs -lnvpair -ldevid -lefi -Idiskmgt -luutil -lunmem

45 INCS += -1../../comon/zfs -1 $(STATCOMONDI R)

47 CPPFLAGS += - D LARGEFI LE64_SOURCE=1 - D_REENTRANT $(| NCS)
48 $(NOT_RELEASE_BUI LD) CPPFLAGS += - DDEBUG

50 # lint conplains about unused _unmem* functions
51 LI NTFLAGS += - xerrof f =E_NAME_DEF_NOT_USED2
52 LI NTFLAGS64 += -xerrof f =E_NAVE_DEF_NOT_USED2

54 CERRWARN += - _gcc=- Who- unused- functi on
55 CERRWARN += - _gcc=-Wio-uninitialized
56 CERRWARN += -_gcc=- Who- par ent heses

58 ROOTUSRSBI NLI NKS = $(PROG %$(ROOTUSRSBI N) / %

new usr/src/ cnd/ zpool / Makefil e

$(LINK.) -0 $@$(O0BIS) $(STAT_COMMON_OBJS) $(LDLIBS)

. KEEP_STATE:

all: $(PROG

%E E@) %E (&Jng)UTg% STAT_COMMON_OBJS)
$(POST_PROCESS)

zpool _hdrck. o: zpool _hdrck. cpp

$(COWI LE. cc) -0 $@$"

zpool _hdr ck. cpp:

find . -nane "*.[ch]’ |

#endif /* | codereview */

% o:

install:

cl ean:

lint:

Links

$(STATCOVMONDI R) / % ¢
$(COVPI LE. ¢) $<
$(POST_PROCESS_O)

xargs grep -h ’A#include <

al | $(ROOTSBI NPROG) $(ROOTUSRSBI NLI NKS)
$(POFI LE): $(POFI LES)
$(RM $

$(CAT) $(POFILES) > 3@

$(RM) $(PROG $(QUTPUTS)

$(RM $(0BIS) $(STAT_COWMON_OBJS)

l'i nt _SRCS

from/usr/sbhbin to /sbhin

$(ROOTUSRSBI NLI NKS) :

i ncl ude

-$(RVM $@ $(SYM.INK)
../ Makefile.targ

... /sbin/$(@) $@

> $@

new usr/src/lib/libzpool/Mkefile.com

R R R R

2929 Tue Apr 30 17:10:57 2013
new usr/src/lib/libzpool/Mkefile.com
3748 zfs headers should be C++ conpatible
Submi tted by: Justin G bbs <justing@pectral ogic.con>
Submi tted by: WIIl Andrews <willa@pectral ogic.conp

Revi ened by: Mat t hew Ahrens <mahr ens@lel phi x. conm»
IR R R R R R R RS R R RS SRR SRR R R RS R R ERE R REREREREEEEEES
1#
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terns of the
5 # Common Devel oprent and Distribution License (the "License").
6 # You may not use this file except in conpliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww.opensol aris.org/os/licensing.
10 # See the License for the specific |anguage governing perm ssions
11 # and limtations under the License.
12 #
13 # Wen distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 # If applicable, add the followi ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [nane of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.
23 # Copyright (c) 2013 by Del phix. Al rights reserved.
24 #

26 LI BRARY= |ibzpool.a
27 VERS= .1

29 # include the list of ZFS sources

30 include ../../../uts/common/ Makefile.files
31 KERNEL_OBJS = kernel.o taskq.o util.o

32 DTRACE_OBJS = zfs.o

34 OBJECTS=$(ZFS_COMVON_OBJS) $(ZFS_SHARED_OBJS) $(KERNEL_OBJS)

36 # include library definitions
37 include ../../Makefile.lib

39 ZFS_COVMON_SRCS=
40 ZFS_SHARED SRCS=
41 KERNEL SRCS=

$(ZFS_SHARED OBJS: % 0=../../../common/zfs/ % c)
$(KERNEL_OBJS: % o=. ./ commpn/ % c)

43 SRCS=%$(ZFS_COMMON_SRCS) $(ZFS_SHARED_SRCS) $(KERNEL_SRCS)
44 SRCDI R= ../ comon

46 # There should be a napfile here

47 NMAPFI LES =

49 LIBS += $(LI NTLI B)

51 INCS += -1I../conmmon

52 INCS += -I|../../../uts/comon/fs/zfs
53 INCS += -I1../../../comon/zfs

54 INCS += -I1../../../common

56 CLEANFILES += ../comon/zfs.h
58 $(LINTLIB) := SRCS= $(SRCDI R) / $(LI NTSRC)

$(ZFS_COWON_OBJS: % 0=../../../uts/common/ fs/zfs/%c)

new usr/src/lib/libzpool/Mkefile.com

59

$(LINTLIB): ../comon/zfs.h

CO9MODE= -xc99=%al |

C99LMDE= - Xc99=%al |

CFLAGS += -g $(CCVERBOSE) $(CNOGLOBAL)
CFLAGS64 += -g $(CCVERBOSE) $(CNOGLOBAL)
LDLI BS += -lcndutils -lunem-lavl -lInvpair -1z -lc -Isysevent -Ind
CPPFLAGS += $(1 NCS) - DDEBUG

CERRWARN += - _gcc=-Wo- par ent heses
CERRWARN += -_gcc=-Wo-switch

CERRWARN += -_gcc=-Wio-type-limts
CERRWARN += -_gcc=-Who-unused-vari abl e
CERRWARN += -_gcc=-Who-uninitialized
CERRWARN += - _gcc=- Who- enpt y- body
CERRWARN += - _gcc=- Who- unused- f uncti on
CERRWARN += -_gcc=- Who- unused- | abel

. KEEP_STATE:

all: $(LIBS)

$(LIBS): |ibzpool _hdrck.o

#endif /* ! codereview */
lint: $(LINTLIB)

include ../../Makefile.targ
EXTPI CS= $(DTRACE_OBJS: %pi cs/ %

|'i bzpool _hdrck. o: |ibzpool _hdrck. cpp
$(COWPI LE. cc) -DB_FALSE=_B_FALSE -DB_TRUE=_B TRUE -0 $@ $"

|'i bzpool _hdr ck. cpp:
find .. -name "*.[ch]’ | xargs grep -h '~#include < > $@

#endif /* | codereview */

pics/%o: ../../../uts/comon/fs/zfs/%c ../comon/zfs.h
$(COWILE. c) -0 $@ $<
$(POST_PROCESS_O)

pics/%o: ../../../common/zfs/%c ../comon/zfs.h
$(COWPILE.c) -0 $@ $<
$(POST_PROCESS_O)

pics/%o: ../comon/%d $(PICS)
$(COWPILE.d) -C -s $< -0 $@ $(PI CS)
$(POST_PROCESS_O)

../common/ % h: ../common/ %d
$(DTRACE) -xnolibs -h -s $< -0 $@

new usr/src/uts/comon/fs/zfs/arc.c

R R R R

134667 Tue Apr 30 17:10:57 2013
new usr/src/uts/comon/fs/zfs/arc.c
3748 zfs headers should be C++ conpatible

Submi tted by:

Justin G bbs <justing@pectral ogic.con>

Submi tted by: WIIl Andrews <willa@pectral ogic.conp

*done,

Revi ened by: Mat t hew Ahrens <mahr ens@lel phi x. conm»

IR R R R R R R RS R R RS SRR SRR R R RS R R ERE R REREREREEEEEES
__unchanged_portion_omtted_

2769 /*

2770 * "Read" the block at the specified DVA (in bp) via the

2771 * cache. If the block is found in the cache, invoke the provided

2772 * callback imedi ately and return. Note that the ‘zio paraneter

2773 * in the callback will be NULL in this case, since no | O was

2774 * required. If the block is not in the cache pass the read request

2775 * on to the spa with a substitute callback function, so that the

2776 * requested block will be added to the cache.

2777 %

2778 * If a read request arrives for a block that has a read in-progress,

2779 * either wait for the in-progress read to conplete (and return the

2780 * results); or, if thisis a read with a "done" func, add a record

2781 * to the read to invoke the "done" func when the read conpl et es,

2782 * and return; or just return.

2783 *

2784 * arc_read_done() will invoke all the requested "done" functions

2785 * for readers of this block.

2786 */

2787 int

2788 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t

2789 void *cb_private, int priority, int zio_flags, uint32_t *arc_flags,

2789 void *private, int priority, int zio_flags, uint32_t *arc_flags,

2790 const zbookrrark_t *zb)

2791 {

2792 arc_buf _hdr _t *hdr;

2793 arc_buf _t *buf = NULL;

2794 kmut ex_t *hash_| ock;

2795 zio_t *rzio;

2796 uint64_t guid = spa_| oad_gui d(spa);

2798 top:

2799 hdr = buf _hash_find(guid, BP_IDENTITY(bp), BP_PHYSI CAL_BI RTH(bp),

2800 &hash_I ock);

2801 if (hdr & hdr->b_datacnt > 0) {

2803 *arc_flags | = ARC_CACHED,

2805 if (HDR IO I N PROGRESS(hdr)) {

2807 if (*arc_flags & ARC WAIT) {

2808 cv_wai t (&dr->b_cv, hash_| ock);

2809 mut ex_exi t (hash_l ock);

2810 goto top;

2811 }

2812 ASSERT(*arc_flags & ARC_NOMAIT);

2814 if (done) {

2815 arc_cal | back_t *acb = NULL;

2817 acb = knmem zal | oc(sizeof (arc_callback_t),

2818 KM SLEEP) ;

2819 acb->acb_done = done;

2820 ach->acb_private = cb_private;

2820 acb->acb_private = private;

2821 if (pio T= NULL)

2822 acbh->acb_zi o_dumy = zio_nul | (pio,

new usr/src/uts/comon/fs/zfs/arc.c

2823

2825
2826
2827
2828
2828
2829
2830
2831
2832
2833
2834

2836

2838
2839
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853

2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867

2869
2870
2870
2871
2872
2873
2874
2875
2876

2878
2879
2880
2881
2882
2882
2883
2884

spa, NULL, NULL, NULL, zio_flags);

ASSERT(ach->acb_done != NULL);
acbh->acb_next = hdr->b_ach;

hdr->b_acb = acb;

add_ref erence(hdr, hash_l ock, cb_private);
add_reference(hdr, hash_l ock, private);
mut ex_exi t (hash_I ock);

return (0);
mut ex_exi t (hash_l ock) ;
return (0);
}
ASSERT(hdr->b_state == arc_nru || hdr->b_state == arc_nfu);
if (done)
add_ref erence(hdr, hash_l ock, cb_private);
add reference(hdr, hash_l ock, private);
* |f this block is already in use, create a new
* copy of the data so that we will be guaranteed
* that arc_release() will always succeed.
*
/
buf = hdr->b_buf;
ASSERT(buf) ;
ASSERT(buf - >b_dat a);
i f (HDR_BUF_AVAI LABLE(hdr))
ASSERT(buf - >b_ef unc == NULL);
hdr->b_fl ags & ~ARC_BUF_. AVAI LABLE;
} else {
buf = arc_buf_cl one(buf);
}
} else if (*arc_flags & ARC_PREFETCH &&
ref count _count (&dr->b_refcnt) == 0) {

hdr->b_flags | = ARC_PREFETCH,

}
DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
arc_access(hdr, hash_l ock);
if (*arc_flags & ARC_L2CACHE)
hdr->b_flags | = ARC_L2CACHE;
mut ex_exi t (hash_l ock) ;
ARCSTAT_BUMP(ar cst at hlts)
ARCSTAT_CONDSTAT(! (hdr - >b_| fl ags & ARC_PREFETCH),
denmand, prefetch, hdr->b_type != ARC BUFC_ NETADATA
data, netadata, hi ts);

if (done)
done(NULL, buf, cb_private);
done(NULL, buf, private);

uint64_t size = BP_GET_LSI ZE(bp);
arc_cal | back_t *ach;

vdev_t *vd = NULL;

uint64_t addr = O;

bool ean_t devw = B_FALSE;

if (hdr == NULL)
/* this block is not in the cache */
ar c_buf _hdr _t *exi sts;
arc_buf _contents_t type = BP_GET_BUFC TYPE(bp);
buf arc_buf _all oc(spa, size, cb_private, type);
buf arc_buf _al | oc(spa, size, private, type);
hdr = buf->b_hdr;
hdr->b_dva = *BP_I DENTI TY(bp) ;

new usr/src/uts/comon/fs/zfs/arc.c

2885
2886
2887
2888
2889
2890
2891
2892
2892
2893
2894
2895
2896
2897
2898
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910

2912
2913
2914
2915
2916
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930

2932

2934
2935
2936
2936

2938
2939
2940

2942
2943
2944
2945
2946

hdr->b_birth = BP_PHYSI CAL_BI RTH(bp) ;
hdr - >b_cksunD = bp->bl k_cksum zc_wor d[0] ;
exi sts = buf _hash_insert(hdr, &hash_| ock);
if (exists) {
/* sonebody beat us to the hash insert */
mut ex_exi t (hash_| ock);
buf _discard_i denti ty(hdr)
(void) arc_buf_renove ref(buf cb_private);
(void) arc_buf renove_ref(buf, private);
goto top; 7* restart the IOrequest */
}
/* if this is a prefetch, we don't have a reference */
if (*arc_flags & ARC PREFETCH)
(voi d) ren'ove_reference(hdr, hash_| ock,
cb_private);
private);
hdr->b_flags | = ARC_PREFETCH,

}

if (*arc_flags & ARC L2CACHE)
hdr->b_flags | = ARC_L2CACHE;

if (BP_CGET_LEVEL(bp) > 0)
hdr->b_flags | = ARC_I NDI RECT;

} else {

/* this block is in the ghost cache */

ASSERT(GHOST_STATE(hdr - >b_state));

ASSERT(! HDR TO_I N_PROGRESS(hdr));

ASSERTO(r ef count count(&hdr >b refcnt))

ASSERT(hdr - >b_buf == NULL);

/* if this is a prefetch, we don't have a reference */
if (*arc_flags & ARC_PREFETCH)
hdr->b_flags | = ARC_PREFETCH;
el se
add_r ef erence(hdr, hash_l ock, cb_private);
add_ref erence(hdr, hash_l ock, private);
if (*arc_flags & ARC L2CACHE)
hdr->b_flags | = ARC_L2CACHE;
buf = krmem cache_al | oc(buf _cache, KM I PUSHPAGCE) ;
buf - >b hdr = hdr;
buf->b_data = NULL;
buf->b_efunc = NULL;
buf->b_private = NULL;
buf - >b_next = NULL;
hdr - >b_buf = buf;
ASSERT(hdr - >b datacnt == 0);
hdr->b_dat acnt = 1;
arc_get _data_buf (buf);
arc_access(hdr, hash_Il ock);

}
ASSERT(! GHOST_STATE(hdr->b_state));

acb = kmem zal | oc(si zeof (arc_callback_t), KM SLEEP);
ach- >acb_done = done;

acb->ach_private = cb_private;

ach->achb_private = private;

ASSERT(hdr->b_acb == NULL);
hdr->b_acb = acb;
hdr->b_flags | = ARC_I O_I N_PROGRESS;

if (HDR_L2CACHE(hdr) && hdr->b_| 2hdr != NULL &&

(vd = hdr->b_| 2hdr->b_dev- >l 2ad_vdev) != NULL) {
devw = hdr->b_| 2hdr->b_dev->l 2ad_wri ting;
addr = hdr->b_| 2hdr->b_daddr;

/*

new usr/src/uts/comon/fs/zfs/arc.c

2947
2948
2949
2950
2951
2952

2954

2956
2957
2958
2959
2960
2961
2962

2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977

2979
2980

2982
2983
2984
2985
2986
2987
2988

2990
2991
2992

2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006

3008
3009
3010
3011

* Lock out device renoval.
*/

if (vdev_is_dead(vd) |
I'spa_config_tryenter(spa, SCL_L2ARC, vd, RW READER))
vd = NULL;

}
nmut ex_exi t (hash_I ock);

ASSERT3U(hdr - >b_si ze, ==, size);

DTRACE_PROBE4(arc__mi ss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
uint64_t, size, zbookmark_t *, zb);

ARCSTAT. BUNP(arcstat_m sses);

ARCSTAT_CONDSTAT(! (hdr->b_flags & ARC_PREFETCH),
demand, prefetch, hdr->b_type != ARC BUFC I\/EFADATA
dat a, et adat a, msses)

if (vd !'= NULL && | 2arc_ndev != 0 && ! (| 2arc_norw && devw)) {
/*

Read fromthe L2ARC if the followi ng are true:

The L2ARC vdev was previously cached.

This buffer still has L2ARC netadat a.

This buffer isn't currently witing to the L2ARC.
The L2ARC entry wasn’t evicted, which may

al so have invalidated the vdev.

5. This isn't prefetch and | 2arc_noprefetch is set.

* ok b % Ok
el ol g

*
/
if (hdr->b_l2hdr != NULL &&
I HDR_L2_WRI TI NG hdr) && ! HDR L2_EVI CTED(hdr) &&
I (1 2arc_noprefetch & HDR_PREFETCH(hdr))) {
| 2arc_read_cal | back_t *cb;

DTRACE_PROBE1(| 2arc__hit, arc_buf_hdr_t *, hdr);
ARCSTAT_BUMP(arcstat _| 2_hits);

cb = knmem zal | oc(si zeof (I2arc_read_callback_t),

KM _SLEEP) ;
cb->l 2rch_buf = buf;
ch->l 2rch_spa = spa;
cb->l 2rcb_bp = *bp;
cb->l 2rcb_zb = *zb;

cb->l 2rcb_flags = zio_flags;

ASSERT(addr >= VDEV_LABEL_START S| ZE &&
addr + size < vd->vdev_psize -
VDEV_LABEL_END_SI ZE) ;

/*

* | 2arc read. The SCL_L2ARC lock will be

*/ rel eased by |2arc_read_done().

*

rzio = zio_read_phys(pio, vd, addr, size,
buf - >b_dat a, ZI O CHECKSUM OFF,
| 2arc_read_done, ch, priority, zio flags |
ZI O_FLAG DONT_CACHE | ZI O FLAG CANFAI L
ZI O_FLAG_DONT_PROPAGATE |
ZI O_FLAG DONT_RETRY, B _FALSE);

DTRACE_PROBE2(| 2arc__read, vdev_t *, vd,
zio_t *, rzio);

ARCSTAT_ INCR(arcstat _12_read_bytes, size);

if (*rarc_flags & ARC NOMAIT) {
zi o_nowai t (rzio);
return (0);

new usr/src/uts/comon/fs/zfs/arc.c

3013
3014
3015

3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034

3036
3037

3039
3040

3042
3043
3044
3045
3046 }

3048 void
3049 arc_set
3049 arc_set
3050 {

3051

3052

3053

3054

3055

3057
3058
3058
3059 }

ASSERT(*arc_flags & ARC WAIT);
if (zio_wait(rzio) == 0)
return (0);

/* 12arc read error; goto zio_read()
} else {
DTRACE_PROBE1(| 2arc__mi ss,
arc_buf _hdr_t * hdr);
ARCSTAT_BUMP(arcstat _| 2_m sses);
if (HDR_L2_WRI TING hdr))
ARCSTAT_BUMP(arcstat _| 2_rw_cl ash);
spa_config_exit(spa, SCL_L2ARC, vd);

} else {
if (vd !'= NULL)
spa_config_exit(spa, SCL_L2ARC, vd);
if (I2arc ndev != 0
DTRACE_PROBE1(| 2arc__mi ss,
arc_buf _hdr_t *, hdr);
ARCSTAT_BUMP(ar cstat _| 2_m sses);

}

rzio = zio_read(pio, spa, bp, buf->b_data, size,
arc_read_done, buf, priority, zio_flags, zb);

if (*arc_flags & ARC_WAIT)
return (zio_wait(rzio));

ASSERT(*arc_fl a gs & ARC_NOWMAIT) ;
zio_nowait(rzio

}
return (0);

cal | back(arc_buf _t *buf, arc_evict_func_t *func, void *cb_private)

“cal | back(arc_buf _t *buf, arc_evict_func_t *func, void *private)

ASSERT(buf->b_hdr 1= NULL);

ASSERT(buf ->b_hdr->b_state != arc_anon);

ASSERT(! ref count _i s_zero(&buf->b_hdr->b_refcnt) || func == NULL);
ASSERT(buf - >b_ef unc == NULL);

ASSERT(| HDR_BUF_AVAI LABLE(buf - >b_hdr));

buf - >b_efunc = func;
buf->b_private = cb_private;
buf->b_private = private;

__unchanged_portion_omtted_

3414 zio_t *

3415 arc_wite(zio_t *pio, spa_t *spa, uint64_t txg,

3416 bl kptr_t *bp, arc_buf_t *buf, boolean_t |2arc, const zio_prop_t *zp,
3417 arc_done_func_t *ready, arc_done_func_t *done, void *cb_private,
3417 arc_done_func_t *ready, arc_done_func_t *done, void *private,
3418 int priority, int zio_flags, const zbookmark_t *zb)

3419 {

3420 arc_buf _hdr _t *hdr = buf->b_hdr;

3421 arc_write_call back t *cal | back;

3422 zio_t *zio;

3424 ASSERT(ready != NULL):

3425 ASSERT(done ! = NULL) ;

3426 ASSERT(! HDR_| O_ERRCR(hdr)) ;

3427 ASSERT((hdr->b_flags & ARC 1 O_I N_PROGRESS) == 0);

new usr/src/uts/comon/fs/zfs/arc.c

3428
3429
3430
3431
3432
3433
3434
3434
3435

3437
3438

3440
3441 }

ASSERT(hdr ->b_ach == NULL);
if (l2arc)
hdr->b_flags | = ARC_L2CACHE,;
cal | back = kmem zal | oc(sizeof (arc_write_callback_t), KM SLEEP);
cal | back->awcb_r eady = ready;
cal | back- >awcb_done = done;
cal | back->awch_private = cb_private;
cal | back->awcb_private = private;
cal | back- >awcb_buf = buf;

zio = zio_wite(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,

arc_wite_ready, arc_wite_done, callback, priority, zio_flags,

return (zio);

__unchanged_portion_onitted_

zb);

new usr/src/uts/comon/fs/zfs/ddt.c 1

R R R R

27528 Tue Apr 30 17:10:58 2013
new usr/src/uts/comon/fs/zfs/ddt.c
3748 zfs headers should be C++ conpatible
Submi tted by: Justin G bbs <justing@pectral ogic.con>
Submi tted by: WIIl Andrews <willa@pectral ogic.conp
Revi ened by: Mat t hew Ahrens <mahr ens@lel phi x. conm»

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkkkhkkkkkkkkkkkkkkkkkkkkkk ok k ok k k&

__unchanged_portion_omtted_

180 int
181 ddt_obj ect _update(ddt_t *ddt, enum ddt_type type, enum ddt_cl ass ddt_cl ass,
181 ddt_obj ect _update(ddt_t *ddt, enum ddt_type type, enum ddt_class cl ass,

182 ddt _entry_t *dde, dnu_tx_t *tx)

183 {

184 ASSERT(ddt _obj ect _exi sts(ddt, type, ddt_class));
184 ASSERT(ddt _obj ect _exi sts(ddt, type, class));

186 return (ddt_ops[type]->ddt_op_updat e(ddt - >ddt _os,
187 ddt - >ddt _obj ect[type] [ddt _cl ass], dde, tx));
187 ddt - >ddt _obj ect[type][cl ass], dde, tx));

188 }

__unchanged_portion_onitted_

200 int
201 ddt_obj ect_wal k(ddt _t *ddt, enum ddt_type type, enum ddt_cl ass ddt_cl ass,
201 ddt_obj ect _wal k(ddt _t *ddt, enum ddt_type type, enum ddt_cl ass cl ass,

202 uint64_t *wal k, ddt_entry_t *dde)

203 {

204 ASSERT(ddt _obj ect _exi sts(ddt, type, ddt_class));
204 ASSERT(ddt _obj ect _exi sts(ddt, type, class));

206 return (ddt_ops[type]->ddt_op_wal k(ddt - >ddt _os,
207 ddt - >ddt _obj ect[type] [ddt _cl ass], dde, wal k));
207 ddt - >ddt _obj ect[type] [cl ass], dde, walk));

208 }

210 uint64_t

211 ddt_obj ect _count(ddt_t *ddt, enum ddt_type type, enum ddt_cl ass ddt_cl ass)
211 ddt_obj ect _count (ddt _t *ddt, enum ddt_type type, enum ddt_cl ass cl ass)
212 {

213 ASSERT(ddt _obj ect _exi sts(ddt, type, ddt_class));
213 ASSERT(ddt _obj ect _exi sts(ddt, type, class));

215 return (ddt_ops[type]->ddt_op_count (ddt->ddt _os,
216 ddt - >ddt _obj ect[type] [ddt _cl ass]));

216 ddt - >ddt _obj ect[type][cl ass]));

217 }

219 int

220 ddt_object_info(ddt_t *ddt, enum ddt_type type, enum ddt_class ddt_cl ass,
220 ddt_obj ect _i nfo(ddt _t *ddt, enum ddt_type type, enum ddt_class class,
221 dmu_obj ect _i nfo_t *d0|)

222 {

223 if (!ddt_object_exists(ddt, type, ddt_class))

223 if (!ddt_object_exists(ddt, type, class))

224 return (SET_ERROR(ENCENT));

226 return (dmu_object_info(ddt->ddt_os, ddt->ddt_object[type][ddt_class],
226 return (dmu_obj ect_i nfo(ddt->ddt _os, ddt->ddt_obj ect[type][class],

227 doi));

228 }

230 bool ean_t
231 ddt_obj ect _exi sts(ddt_t *ddt, enum ddt_type type, enum ddt_cl ass ddt_cl ass)
231 ddt_obj ect _exi sts(ddt_t *ddt, enum ddt_type type, enum ddt_cl ass cl ass)

new usr/src/uts/comon/fs/zfs/ddt.c

232 {

233 return (!!ddt->ddt_object[type][ddt_class]);
233 return (!!ddt->ddt_object[type][class]);

234 }

236 void

237 ddt_obj ect _nanme(ddt _t *ddt, enum ddt_type type, enum ddt_cl ass ddt_cl ass,
237 ddt_obj ect _nanme(ddt _t *ddt, enum ddt_type type, enum ddt_cl ass cl ass,

238 char *nane)

239 {

240 (void) sprintf(name, DMJ_POOL_DDT,

241 zi o_checksum t abl e[ddt - >ddt checksun1 ci _na

242 ddt _ops[t ype] - >ddt _op_nane, ddt _cl ass_nanme[ddt class]);
242 ddt —ops[type] - >ddt _op_nane, ddt_cl ass_name[cl ass]);
243 }

__unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/dsl _dataset.c

R R R R

80615 Tue Apr 30 17:10:58 2013
new usr/src/uts/comon/ fs/zfs/dsl _dataset.c
3748 zfs headers should be C++ conpatible
Submi tted by: Justin G bbs <justing@pectral ogic.con>
Submi tted by: WIIl Andrews <willa@pectral ogic.conp
Revi ened by: Mat t hew Ahrens <mahr ens@lel phi x. conm»

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkkkhkkkkkkkkkkkkkkkkkkkkkk ok k ok k k&

__unchanged_portion_omtted_

2740 | *
2741 * Return (in *usedp) the ampunt of space witten in new that is not

2742 present in oldsnap. New may be a snapshot or the head. dd nust be
2743 a snapshot before new, in news filesystem (or its origin). |If not then
2744 fail and return ElINVAL.

2745

*
*
*
*
2746 * The witten space is calculated by considering two conponents: First, we
2747 * ignore any freed space, and calculate the witten as new s used space
2748 * mnus old s used space. Next, we add in the ampunt of space that was freed
2749 *
*
*
*
*
*
*

2750 Specifically, this is the space that was born before ol d->ds_creation_txg,
2751 and freed before new (ie. on new s deadlist or a previous deadlist).

2752

2753 space freed R R E T E T pp——— 1

2754 snapshot s Y o R (o N [O---n-

2755 ol dsnap new

2756 */

2757 int

2758 dsl _dataset_space_written(dsl_dataset_t *ol dsnap, dsl_dataset_t *newds,
2758 dsl _dat aset _space_written(dsl_dataset_t *ol dsnap, dsl_dataset_t *new,

2759 uint64_t *usedp, uint64_t *conpp, uint64_t *unconpp)
2760 {

2761 int err = 0;

2762 ui nt64_t snapobj ;

2763 dsl _pool _t *dp = newds->ds_di r->dd_pool ;

2763 dsl _pool _t *dp = new >ds_di r->dd_pool ;

2765 ASSERT(dsl _pool _config_hel d(dp));

2767 *usedp = O;

2768 *usedp += newds->ds_phys->ds_ref er enced_byt es;
2768 *usedp += new >ds_phys->ds_ref erenced_byt es;
2769 *usedp -= ol dsnap->ds_phys->ds_referenced_bytes;
2771 *compp = O;

2772 *conpp += newds- >ds_phys->ds_conpr essed_byt es;
2772 *conpp += new >ds_phys- >ds_conpr essed_byt es;
2773 *conpp -= ol dsnap->ds_phys->ds_conpressed_bytes;
2775 *unconmpp = O;

2776 *unconpp += newds->ds_phys- >ds_unconpr essed_byt es;
2776 *unconpp += new >ds_phys->ds_unconpr essed_byt es;
2777 *unconpp -= ol dsnap->ds_phys->ds_unconpr essed_byt es;
2779 snapobj = newds->ds_obj ect;

2779 snapob] = new >ds_obj ect;

2780 whi | e (snapobj != ol dsnap->ds_object) {

2781 dsl _dataset _t *snap;

2782 uint64_t used, conp, unconp;

2784 if (snapobj == newds->ds_object) {

2785 snap = newds;

2784 if (snapobj == new >ds_object) {

2785 snap = new,

2786 } else {

2787 err = dsl _dataset_hol d_obj (dp, snapobj, FTAG &snap);

bet ween the two snapshots, thus reducing new s used space relative to old’s.

new usr/src/uts/comon/fs/zfs/dsl _dataset.c

2788 if (err 1=0)

2789 break;

2790 }

2792 if (snap->ds_phys->ds_prev_snap_txg ==

2793 ol dsnap- >ds_phys->ds_creation_txg) {

2794 /*

2795 * The bl ocks in the deadlist can not be born after
2796 * ds_prev_snap_txg, so get the whol e deadlist space,
2797 * which is nore efficient (especially for old-formt
2798 * deadlists). Unfortunately the deadlist code
2799 * doesn’t have enough information to make this
2800 * optimzation itself.

2801 */

2802 dsl _deadl i st _space(&nap->ds_deadl i st,

2803 &used, &conp, &unconp);

2804 } else {

2805 dsl _deadl i st _space_r ange(&nap->ds_deadl i st,
2806 0, ol dsnap->ds_phys->ds_creation_txg,

2807 &used, &conp, &unconp);

2808

2809 *usedp += used;

2810 *conpp += conp;

2811 *unconpp += unconp;

2813 I*

2814 * If we get to the beginning of the chain of snapshots
2815 * (ds_prev_snap_obj == 0) before ol dsnap, then ol dsnap
2816 * was not a snapshot of/before newds.

2816 * was not a snapshot of/before new.

2817 */

2818 snapobj = snap->ds_phys->ds_prev_snap_obj ;

2819 if (snap != newds)

2819 if (snap != new)

2820 dsl _dat aset _rel e(snap, FTAQ;

2821 if (snapobj == 0) {

2822 err = SET_ERROR(El NVAL)

2823 br eak;

2824 }

2826 }

2827 return (err);

2828 }

__unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/sys/arc.h

R R R R

4325 Tue Apr 30 17:10:58 2013

new usr/src/uts/comon/fs/zfs/sys/arc.h

3748 zfs headers should be C++ conpatible

Submi tted by: Justin G bbs <justing@pectral ogic.con>

Submi tted by: WIIl Andrews <willa@pectral ogic.conp

Revi ened by: Mat t hew Ahrens <mahr ens@lel phi x. conm»

IR R R R R R R RS R R RS SRR SRR R R RS R R ERE R REREREREEEEEES
1/*

* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww:.opensolaris.org/os/licensing.

See the License for the specific | anguage governi ng perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END
/

NRERRRERRRER R
COONOUITARWNROOO~NOUTDSWN

-~
B I NN

22 * Copyright (c) 2005, 2010, O acle and/or its affiliates. Al rights reserved.

23 * Copyright (c) 2012 by Del phix. Al rights reserved.
*
/

26 #ifndef _SYS ARC H
27 #define _SYS_ARC H

29 #include <sys/zfs_context.h>

31 #ifdef __cplusplus
32 extern "C' {
33 #endi f

35 #include <sys/zio.h>
36 #include <sys/dnu. h>
37 #include <sys/spa. h>

39 typedef struct arc_buf_hdr arc_buf_hdr_t;

40 typedef struct arc_buf arc_buf_t;

41 typedef void arc_done_func t(Z|o t *zio, arc_buf_t *buf, void *cb_private);
42 typedef int arc_evict_func_t(void *cb_private);

41 typedef void arc_done func_t(zio_t *zio, arc_| buf _t *buf, void *private);
42 typedef int arc_evict_func_t(void *prlvate)

44 |* generic arc_done_func_t’'s which you can use */
45 arc_done_func_t arc_bcopy_func;
46 arc_done_func_t arc_get buf _func;

48 struct arc_buf {

49 arc_buf _hdr _t *b_hdr;

50 arc_buf _t *b_next;

51 kmut ex_t b_evi ct _| ock;
52 voi d *b_dat a;

53 arc_evict_func_t *b_efunc;

54 voi d *b_private;
55

_hnchanged_port ion_omtted_

new usr/src/uts/comon/fs/zfs/sys/arc.h

110

112
113
112
114

116
117
118

120
121

123
124
125

127
128
129
130
131
132
133

135
136
137
138

140
141

voi d arc_space_consune(ui nt64_t space, arc_space_type_t type);

void arc_space_return(uint64_t space, arc_space_type_t type);

void *arc_data_buf_all oc(uint64_t space);

void arc_data_buf_free(void *buf, uint64_t space);

arc_buf _t *arc_buf_alloc(spa_t *spa, int size, void *tag,
arc_buf _contents_t type);

arc_buf_t *arc_| oan_buf (spa_t *spa, int size);

void arc_return_buf(arc_| buf _t *buf, void *tag)

voi d arc_l oan_i nuse_buf (arc_buf _t *buf voi d *tag)

voi d arc_buf_add_ref(arc_buf_t *buf, voi d *tag);

bool ean_t arc_buf_renove ref(arc buf _t *buf, void *tag);

int arc_buf_size(arc_buf_t *buf

void arc_rel ease(arc_buf_t *buf, "voi d *tag);

int arc_rel eased(arc_buf_t *buf)

int arc_has_cal | back(arc_buf _t *buf);

void arc_buf_freeze(arc_buf _t *buf);

voi d arc_buf _thaw(arc_buf _t “*puf) ;

bool ean_t arc_buf _eviction needed(arc buf _t *buf);

#i f def ZFS_DEBUG

int arc_referenced(arc_buf_t *buf);

#endi f

int arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
arc_done_func_t *done, void *cb _private, int priority, int flags,
arc_done_func_t *done, void *private, int priority, int flags,
uint32_t *arc flags const zbookmark_t *zb);

zio_t *arc_wite(zio_t *pio, spa_t *spa, uint64_t txg,

bl kptr_t *bp, arc_buf_t *buf, boolean_t |2arc, const zio_prop_t *zp,
arc_done_func_t *ready, arc done_func _t *done, void *cb_private,
arc_done_func_t *ready, arc “done_func_t *done, void *private,

int priority, int zio_flags, const zbookmark_t *zb);

void arc_set_cal | back(arc_buf_t *buf, arc_evict_func_t *func,
void *cb_private);

void arc_set callback(arc buf t *buf, arc_evict_func_t *func, void *private);

int arc_buf_evict(arc_buf_t *buf);

void arc_flush(spa_t *spa);
void arc_tenpreserve_clear(uint64_t reserve);
int arc_tenpreserve_space(uint64_t reserve, uint64_t txg);

void arc_init(void);
void arc_fini(void);

/*

* Level 2 ARC

*/

voi d | 2arc_add_vdev(spa_t *spa, vdev_t *vd);

void | 2arc_renpve_vdev(vdev_t *vd);

bool ean_t T2arc_vdev present(vdev t *vd);
void | 2arc_i ni t(v0|

void | 2arc_fini(voi d)

void | 2arc_start (voi d);

void | 2arc_stop(void);

#i f ndef _KERNEL

extern bool ean_t arc_watch;
extern int arc_procfd;
#endi f

#ifdef __cplusplus

__unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/sys/ddt.h

R R R R

7742 Tue Apr 30 17:10:59 2013
new usr/src/uts/comon/fs/zfs/sys/ddt.h
3748 zfs headers should be C++ conpatible
Submi tted by: Justin G bbs <justing@pectral ogic.con>
Submi tted by: WIIl Andrews <willa@pectral ogic.conp
Revi ened by: Mat t hew Ahrens <mahr ens@lel phi x. conm»

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkkkhkkkkkkkkkkkkkkkkkkkkkk ok k ok k k&

__unchanged_portion_omtted_

169 #defi ne DDT_NAMELEN 80

171 extern void ddt_object_nanme(ddt_t *ddt, enum ddt_type type,

172 enum ddt _cl ass ddt _cl ass, char *nane);

172 enum ddt _cl ass cl ass, char *nane);

173 extern int ddt_object wal k(ddt_t *ddt, enum ddt_type type

174 enum ddt _class ddt_cl ass, uint64 t *wal k, ddt_entry_t *dde);
174 enum ddt _cl ass class, uint64_t *walk, ddt_entry_t *dde) ;

175 extern uint64_t ddt_obj ect _count (ddt _t *ddt, enum ddt _type type,
176 enum ddt _cl ass ddt_cl ass);

176 enum ddt _cl ass cl ass);

177 extern int ddt_object |nfo(ddt t *ddt, enum ddt_type type,

178 enum ddt _cTass ddt_cl ass, dnu_obj ect_info_t *);

178 enum ddt _cl ass cl ass, dnu _object_info_t *);

179 extern bool ean_t ddt_obj ect_exi sts(ddt t *ddt, enum ddt_type type,
180 enum ddt _class ddt_cl ass);

180 enum ddt _cl ass cl ass);

182 extern void ddt_bp_fill(const ddt_phys_t *ddp, blkptr_t *bp,

183 uint64_t txg);

184 extern void ddt_bp_create(enum zi o_checksum checksum const ddt_key_t *ddk,
185 const ddt_phys_t *ddp, blkptr_t *bp);

187 extern void ddt_key_fill(ddt_key_t *ddk, const blkptr_t *bp);

189 extern void ddt_phys_fill (ddt_phys_t *ddp, const blkptr_t *bp);

190 extern void ddt_phys_cl ear (ddt _phys_t *ddp);

191 extern void ddt_phys_addref (ddt _phys_t *ddp);

192 extern void ddt_phys_decref (ddt_phys_t *ddp);

193 extern void ddt_phys_free(ddt_t *ddt, ddt keyt *ddk, ddt_phys_t *ddp,
194 uint64_t txg);

195 extern ddt_phys_t *ddt_phys_sel ect (const ddt_entry_t *dde, const bl kptr_t *bp);

196 extern uint64_t ddt_phys_total _refcnt(const ddt_entry_t *dde);

198 extern void ddt_stat_add(ddt_stat_t *dst, const ddt_stat_t *src, uint64_t neg);

200 extern void ddt_hi stogram add(ddt _hi stogramt *dst, const ddt_histogramt *src);
201 extern voi d ddt_hi stogram stat (ddt_stat _t *dds, const ddt _hi stogramt *ddh);

202 extern bool ean_t ddt _hi st ogram enpt y(const ddt_hi stogramt *ddh);

203 extern void ddt_get _dedup_object_stats(spa_t *spa, ddt_object_t *ddo);
204 extern void ddt_get _dedup_hi stogram spa_t *spa, ddt_histogramt *ddh);
205 extern void ddt_get _dedup_stats(spa_t *spa, ddt_stat_t *dds_total);

207 extern uint64_t ddt_get_dedup_dspace(spa_t *spa);
208 extern uint64_t ddt_get_pool _dedup_ratio(spa_t *spa);

210 extern int ddt_ditto_copi es_needed(ddt_t *ddt, ddt_entry_t *dde,
211 ddt _phys_t *ddp_wi | I ref);
212 extern int ddt_ditto_copi esfpresent(ddtientryft *dde) ;

214 extern size_t ddt_conpress(void *src, uchar_t *dst, size_t s_le -
215 extern voi d ddt_deconpress(uchar _t *src void *dst, sizet s_le i
217 extern ddt_t *ddt_sel ect(spa_t *spa, const blkptr_t *bp);

218 extern void ddt_enter(ddt_t *ddt);

219 extern void ddt_exit(ddt_t *ddt);

new usr/src/uts/comron/fs/zfs/sys/ddt.h

220 extern ddt_entry_t *ddt_| ookup(ddt_t *ddt, const blkptr_t *bp, bool ean_t
221 extern void ddt_prefetch(spa_t *spa, const blkptr_t *bp);
222 extern void ddt_renove(ddt_t *ddt, ddt_entry_t *dde);

224 extern bool ean_t ddt_cl ass_contains(spa_t *spa, enum ddt_class nmax_cl ass,

225 const bl kptr_t *bp);

227 extern ddt_entry_t *ddt_repair_start(ddt_t *ddt, const blkptr_t *bp);
228 extern void ddt_repair_done(ddt_t *ddt, ddt entry t *dde);

230 extern int ddt_entry_conpare(const void *x1, const void *x2);

232 extern void ddt_create(spa_t *spa);

233 extern int ddt_load(spa_t *spa);

234 extern void ddt_unl oad(spa_t *spa);

235 extern void ddt_sync(spa_t *spa, uint64_t txg);

236 extern int ddt_wal k(spa_t *spa, ddt_bookmark_t *ddb, ddt_entry_t *dde);
237 extern int ddt_object_update(ddt_t *ddt, enum ddt_type type,

238 enum ddt _cl ass ddt_cl ass, ddt_entry_t *dde, dmu_tx_t *tx);

238 enum ddt _cl ass class, ddt_entry_t *dde, dmu_tx_t *tx);

240 extern const ddt_ops_t ddt_zap_ops;
242 #if def

243
__unchanged_portion_omtted_

__cplusplus

add) ;

new

* ok kK

1
new/
3748

Submi tted by:

usr/src/uts/ common/ fs/zfs/sys/dsl _dataset.h

B R

0244 Tue Apr 30 17:10:59 2013
usr/src/uts/ common/ fs/zfs/sys/dsl _dataset.h
zfs headers should be C++ conpatible
Justin G bbs <justing@pectral ogic.con>

Submi tted by: WIIl Andrews <willa@pectral ogic.conp

Revi

* ok ok k

ewed by: Mat t hew Ahrens <mahr ens@lel phi x. conm»

kkkkkkkkkkkkkkkhkkhkkhkhkhkkkkkkkkkkkkkkkkkkkkkkkk ok kk k k%

__unchanged_portion_omtted_

166
167
168
169
170

172
173

175
176

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

197 i

198
199
200
201
202
203

205
206

208
210
212

214
215
216
217
218
219
220

/*
* The max length of a tenporary tag prefix is the nunber of hex digits
* required to express U NT64_MAX plus one for the hyphen.
*
/

#def i ne MAX_TAG PREFI X_LEN 17

#def i ne dsl _dataset i s_snapshot (ds) \
(ds) ->ds_phys->ds_num children != 0)

#define DS_UNI QUE_| S_ACCURATE(ds) \
(((ds)->ds_phys->ds_flags & DS_FLAG UNl QUE_ACCURATE) != 0)

int dsl_dataset_hol d(struct dsl_pool *dp, const char *nane, void *tag,
dsl _dataset _t **dsp);
int dsl_dataset_hol d_obj (struct dsl_pool *dp, uint64_t dsobj, void *tag,
dsl _dataset _t **);
voi d dsl _dataset_rel e(dsl _dataset_t *ds, void *tag);
int dsl_dataset_own(struct dsl_pool *dp, const char *nane,
void *tag, dsl_dataset_t **dsp);
i nt dsl_dataset_own_obj (struct dsl_pool *dp, uint64_t dsobj,
void *tag, dsl_dataset_t **dsp);
voi d dsl _dataset _di sown(dsl _dataset_t *ds, void *tag);
voi d dsl _dat aset_nane(dsl _dataset_t *ds, char *nane);
bool ean_t dsl _dataset _tryown(dsl_dataset_t *ds, void *tag);
voi d dsl _regi ster_onexit_hol d_cl eanup(dsl _dataset_t *ds, const char *htag,
mnor_t mnor);
uint64_t dsl_dataset_create_sync(dsl _dir_t *pds, const char *|astnane,
dsl _dataset _t *origin, uint64_t flags, cred_t *, dnu_tx_t *);
uint64_t dsl_dataset_create_sync_dd(dsl _dir_t *dd, dsl_dataset_t *origin,
uint64_t flags, dmu_tx_t *tx);
int dsl_dataset_snapshot(nvlist_t *snaps, nvlist_t *props, nvlist_t *errors);
int dsl_dataset_pronote(const char *name, char *conflsnap);
int dsl_dataset_cl one_swap(dsl _dataset_t *clone, dsl_dataset_t *origin_head,
bool ean_t force);
int dsl_dataset_renane_snapshot (const char *fsnaneg,
const char *ol dsnapnane, const char *newsnapnanme, bool ean_t recursive);
int dsl_dataset_snapshot_tnp(const char *fsnane, const char *snapnane,
m nor _t cl eanup_m nor, const char *htag);

bl kptr_t *dsl _dataset _get_bl kptr(dsl _dataset_t *ds);
voi d dsl _dataset_set_bl kptr(dsl _dataset _t *ds, blkptr_t *bp, dmu_tx_t *tx);

spa_t *dsl _dataset _get _spa(dsl _dataset_t *ds);
bool ean_t dsl _dataset _nodified_since_| ast snap(dsl _dataset_t *ds);
voi d dsl _dataset_sync(dsl _dataset_t *os, zio_t *zio, dmu_tx_t *tx);

voi d dsl _dat aset_bl ock_born(dsl _dataset _t *ds, const bl kptr_t *bp,
dmu_tx_t *tx);

int dsl_dataset_bl ock_kill (dsl_dataset_t *ds, const blkptr_t *bp,
dmu_tx_t *tx, boolean_t async);

bool ean_t dsl _dataset bl ock_freeabl e(dsl _dataset _t *ds, const bl kptr_t *bp,
uint64_t blk_birth);

uint64_t dsl_dataset_prev_snap_txg(dsl _dataset_t *ds);

new usr/src/uts/comon/fs/zfs/sys/dsl _dataset.h

222
223
224
225
226
227
228
229
229
230
231
232
233

235

237
238
239
240
241
242
243

245
246
247
248

250
251
252
253
254
255
256
257

259
260
261
262
263
264
265
266
267
268

270
271
272
273
274
275
276
277
278
279
280
281

283
284

voi d dsl _dataset_dirty(dsl_dataset_t *ds, dmu_tx_t *tx);
voi d dsl _dataset_stats(dsl_dataset_t *os, nvlist_t *nv);
voi d dsl _dataset_fast_stat(dsl _dataset_t *ds, dmu_objset_stats_t *stat);
voi d dsl _dat aset_space(dsl _dataset _t *ds,
uint64_t *refdbytesp, uint64_t *avail bytesp,
uint64_t *usedobjsp, uint64_t *avail objsp);
uint64_t dsl_dataset_fsid_guid(dsl_dataset_t *ds);
int dsl_dataset_space_witten(dsl_dataset_t *ol dsnap, dsl_dataset_t *newds,
int dsl_dataset_space_witten(dsl _dataset_t *ol dsnap, dsl_dataset_t *new,
uint64_t *usedp, uint64_t *conpp, uint64_t *unconpp);
int dsl_dataset_space_woul df ree(dsl _dataset _t *firstsnap, dsl_dataset_t *|ast,
uint64_t *usedp, uint64_t *conpp, uint64_t *unconpp);
bool ean_t dsl _dataset _is_dirty(dsl_dataset_t *ds);

int dsl_dsobj_to_dsnane(char *pnanme, uint64_t obj, char *buf);

int dsl_dataset_check_quota(dsl _dataset_t *ds, bool ean_t check_quota,
uint64_t asize, uint64_t inflight, uint64_t *used,
uint64_t *ref_rsrv);

int dsl_dataset_set_refquota(const char *dsnane, zprop_source_t source,
uint64_t quota);

int dsl_dataset_set_refreservati on(const char *dsnane, zprop_source_t source,
uint64_t reservation);

bool ean_t dsl _dataset _is_before(dsl_dataset_t *later, dsl_dataset_t *earlier);
voi d dsl _dataset_| ong_hol d(dsl| _dataset_t *ds, void *tag);

void dsl _dataset_|long_rel e(dsl _dataset_t *ds, void *tag);

bool ean_t dsl _dat aset_| ong_hel d(dsl _dataset _t *ds);

int dsl_dataset_cl one_swap_check_i npl (dsl _dataset _t *cl one,
dsl _dataset _t *origin_head, boolean_t force);

voi d dsl _dataset _cl one_swap_sync_i npl (dsl _dataset_t *cl one,
dsl _dataset _t *origin_head, dnu_tx_t *tx);

i nt dsl_dataset_snapshot_check_i npl (dsl _dataset _t *ds, const char *snapnane,
dmu_tx_t *tx);

voi d dsl _dat aset _snapshot _sync_i npl (dsl _dataset _t *ds, const char *snapnane,
dmu_tx_t *tx);

voi d dsl _dataset _renove_from next_cl ones(dsl _dataset_t *ds, uint64_t obj,
dmu_tx_t *tx);
voi d dsl _dataset _recal c_head_uni q(dsl _dataset_t *ds);
i nt dsl _dataset _get_snapnane(dsl _dataset_t *ds);
int dsl_dataset_snap_| ookup(dsl _dataset_t *ds, const char *nane,
uint64_t *val ue);
int dsl_dataset_snap_renove(dsl _dataset_t *ds, const char *nane, dnu_tx_t *tx);
voi d dsl _dataset_set_refreservation_sync_i npl (dsl _dataset_t *ds,
zprop_source_t source, uint64_t value, dnu_tx_t *tx);
int dsl_dataset_rollback(const char *fsnane);

#i f def ZFS_DEBUG
#define dprintf_ds(ds, fnt, ...) do { \
if (zfs_flags & ZFS_DEBUG DPRINTF) { \

char *__ds_name = krmem al | oc(MAXNAMELEN, KM SLEEP); \
dsl _dat aset _name(ds, __ds_nane); \
dprintf("ds=% " fnt, __ds_nane, _ VA ARGS); \
kmem free(__ds_name, MAXNAMELEN); \
\
_NOTE(CONSTCOND) } while (0)
#el se
#define dprintf_ds(dd, fnt, ...)
#endi f
#ifdef __cplusplus

unchanged_portion_om tted_

new usr/src/uts/comon/ fs/zfs/sys/spa.h

R R R R

25602 Tue Apr 30 17:10:59 2013
new usr/src/uts/comon/fs/zfs/sys/spa.h
3748 zfs headers should be C++ conpatible
Submi tted by: Justin G bbs <justing@pectral ogic.con>
Submi tted by: WIIl Andrews <willa@pectral ogic.conp
Revi ened by: Mat t hew Ahrens <mahr ens@lel phi x. conm»

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkkkhkkkkkkkkkkkkkkkkkkkkkk ok k ok k k&

__unchanged_portion_omtted_

559 extern spa_log_state_t spa_get_|og_ stat e(spa_t *spa);
560 extern voi d spa_set_[og_stat e(spa t *spa, spa_log_state_t state);
561 extern int spa_offline_log(spa_t *spa);

563 /* Log claimcall back */
564 extern void spa_claimnotify(zio_t *zio);

566 /* Accessor functions */

567 extern bool ean_t spa_shutting_down(spa_t *spa);
568 extern struct dsl_pool *spa_get_dsl (spa_t *spa);
569 extern boolean_t spa_is_initializing(spa_t *spa);
570 extern bl kptr_t *spa_get _rootbl kptr(spa_t *spa);
571 extern void spa_set_rootbl kptr(spa_t *spa, const blkptr_t *bp);
572 extern void spa_altroot(spa_t *, char *, size_t);
573 extern int spa_sync_pass(spa_t *spa);

574 extern char *spa_nane(spa_t *spa);

575 extern uint64_t spa_guid(spa_t *spa);

576 extern uint64_t spa_l oad_gui d(spa_t *spa);

577 extern uint64_t spa_l ast_synced_txg(spa_t *spa);
578 extern uint64_t spa_first_txg(spa_t *spa);

579 extern uint64_t spa_syncing_txg(spa_t *spa);

580 extern uint64_t spa_version(spa_t *spa);

581 extern pool _state_t spa_state(spa_t *spa)

582 extern spa_ Toad_state_t spa_l oad_st at e(spa t *spa);
583 extern uint64_t spa_freeze txg(spa_t *spa);

584 extern uint64_t spa_get_asize(spa_t *spa, ui nt 64_t |size);
585 extern uint64_t spa_get_dspace(spa_t *spa);

586 extern void spa_update_dspace(spa_t *spa);

587 extern uint64_t spa_version(spa_t *spa);

588 extern bool ean_t spa_defl ate(spa_t *spa);

589 extern metaslab_class_t *spa_nornal _class(spa_t *spa);
590 extern netaslab_class_t *spa_l og_cl ass(spa_t *spa);
591 extern int spa_max_replication(spa_t *spa);

592 extern int spa_prev_software_version(spa_t *spa);
593 extern int spa_busy(void);

594 extern uint8_t spa_get_failnode(spa_t *spa);

595 extern bool ean_t spa_suspended(spa_t *spa);

596 extern uint64_t spa_bootfs(spa_t *spa);

597 extern uint64_t spa_del egation(spa_t *spa);

598 extern objset_t *spa_neta_objset(spa_t *spa);

599 extern uint64_t spa_deadnman_synctinme(spa_t *spa);

601 /* M scel | aneous support routines */

602 extern void spa_activate_nos_feature(spa_t *spa, const char *feature);
603 extern void spa_deactivate_nps_feature(spa_t *spa, const char *feature);
604 extern int spa_renane(const char *ol dnane, const char *newnane);

605 extern spa_t *spa_by_gui d(uint64_t pool _guid, uint64_t device_guid);

606 extern boolean_t spa_gui d_exists(uint64_t pool _guid, uint64_t device_guid);

607 extern char *spa_strdup(const char *);

608 extern void spa_strfree(char *);

609 extern uint64_t spa_get_randon{uint64_t range);

610 extern uint64_t spa_generate_gui d(spa_t *spa);

611 extern void sprintf_blkptr(char *buf, const blkptr_t *bp);
612 extern void spa_freeze(spa_t *spa);

613 extern int spa_change_guid(spa_t *spa);

614 extern void spa_upgrade(spa_t *spa, uint64_t version);

new usr/src/uts/comon/ fs/zfs/sys/spa.h

615
616
617
618
619
620
621
622
623
624

626
627

629

631
632
633
634
635
636
637
638
639
640
641
642

644
645
646
647
647
648
649
650
651
652
653
654
655
656
657

659
660
661

663
664
665
666

668
669
670
671
672

674
675

677
678
679

extern void spa_evict_all(void);
extern vdev_t *spa_|l ookup_by_gui d(spa_t *spa, uint64_t guid,

bool ean_t | 2cache);
extern bool ean_t spa_has_spare(spa_t *, uint64_t guid);
extern uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva);
extern uint64_t bp_get dsize_sync(spa_t *spa, const blkptr_t *bp);
extern uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp);
extern bool ean_t spa_has_sl ogs(spa_t *spa);
extern bool ean_t spa_is_root(spa_t *spa);
extern bool ean_t spa_writeabl e(spa_t *spa);

extern int spa_node(spa_t *spa);
extern uint64_t strtonun{const char *str, char **nptr);

extern char *spa_his_ievent_table[];

extern void spa_history_create_obj(spa_t *spa, dnu_tx_t *tx

extern int spa_history get(spa_t *spa, uint64_t *offset, ui nt 64 t *len_read,
char *his_buf);

extern int spa_history_log(spa_t *spa, const char *his_buf);

extern int spa_history_log_nvl(spa_t *spa, nvlist_t *nvl);

extern void spa_history_log_version(spa_t *spa, const char *operation);

extern void spa_history_log_internal (spa t *spa, const char *operation,
dmu_tx_t *tx, const char *fnt, L)

extern voi d spa_| hi st ory_log_inter nal ds(struct dsl _dataset *ds, const char *op,
dnu_tx_t *tx, const char *fnt, .

extern void spa_| hi st ory_log_inter nal dd(dsl dir_t *dd, const char *operation,
dmu_tx_t *tx, const char *fnt, ...);

/* error handling */

struct zbooknark;

extern void spa_log_error(spa_t *spa, zio_t *zio);

extern void zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd,

extern void zfs_ereport_post(const char *class, spa_t *spa, vdev_t *vd,
zio_t *zio, uint64_t stateoroffset, uint64_t |ength);

extern void zfs_post_renove(spa_t *spa, vdev_t *vd);

extern void zfs_post_state_change(spa_t *spa, vdev_t *vd);

extern void zfs_post_autorepl ace(spa_t *spa, vdev_t *vd);

extern uint64_t spa_get_errlog_size(spa_t *spa);

extern int spa_get_errlog(spa_t *spa, voi d *uaddr, size_t *count);

extern void spa_errlog_rotate(spa_t *spa);

extern void spa_errlog_drain(spa_t *spa);

extern void spa_errlog_sync(spa_t *spa, uint64_t txg);

extern void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub);

/* vdev cache */

extern void vdev_cache_stat _init(void);
extern void vdev_cache_stat_fini (void);
/* Initialization and termination */
extern void spa_init(int flags);

extern void spa_fini(void);

extern void spa_boot_init();

/* properties */

extern int spa_prop_set(spa_t *spa, nvlist_t *nvp);

extern int spa_prop_get(spa_t *spa, nvlist_t **nvp);

extern void spa_prop_cl ear_bootfs(spa_t *spa, uint64_t obj, dnu_tx_t *tx);
extern void spa_configfile_set(spa_t *, nvlist_t *, boolean_t);

/* asynchronous event notification */
extern void spa_event_notify(spa_t *spa, vdev_t *vdev, const char *nane);

#i f def ZFS_DEBUG
#define dprintf_bp(bp, fmt, ...) do { \
if (zfs_flags & ZFS DEBUG DPRI NTF) { \

new usr/src/uts/comon/ fs/zfs/sys/spa.h

680 char *__bl kbuf = knmem al | oc(BP_SPRI NTF_LEN, KM SLEEP);
681 sprintf_bl kptr(__bl kbuf, (bp));

682 dprintf(fm " 9%\n", _ VA ARGS _, __blkbuf);

683 kn}em_f ree(__bl kbuf, BP_SPRI NTF_LEN);

684

685 _NOTE(CONSTCOND) } while (0)

686 #el se

687 #define dprintf_bp(bp, fnt, ...)

688 #endi f

690 extern bool ean_t spa_debug_enabl ed(spa_t *spa);
691 #define spa_dbgnsg(spa,

\
692 \
693 if (spa_debug_enabl ed(spa)) \
694 zfs_dbgmsg(__VA ARGS_); \
695 }

__unchanged_portion_omtted_

——— —

new usr/src/uts/comon/fs/zfs/sys/zfs_ioctl.h

R R R R

10168 Tue Apr 30 17:10:59 2013
new usr/src/uts/comon/fs/zfs/sys/zfs_ioctl.h
3748 zfs headers should be C++ conpatible
Submi tted by: Justin G bbs <justing@pectral ogic.con>
Submi tted by: WIIl Andrews <willa@pectral ogic.conp
Revi ened by: Mat t hew Ahrens <mahr ens@lel phi x. conm»

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkkkhkkkkkkkkkkkkkkkkkkkkkk ok k ok k k&

____unchanged_portion_onmitted_

72 #define DMJ_GET_STREAM HDRTYPE(vi) BF64_GET((vi), 0, 2)
73 #define DMJ_SET_STREAM HDRTYPE(vi, x) BF64_SET((vi), 0, 2, X)
75 #define DMJ_GET_FEATUREFLAGS(Vi) BF64_GET((vi), 2, 30)
76 #define DMJ_SET_FEATUREFLAGS(Vi, X) BF64_SET((vi), 2, 30, x)

78 [*
79 * Feature flags for zfs send streans (flags in drr_versioninfo)
80 */

82 #defi ne DMJ_BACKUP_FEATURE_DEDUP (0x1)
83 #defi ne DMJ_BACKUP_FEATURE_DEDUPPROPS (0x2)
84 #defi ne DMJ_BACKUP_FEATURE_SA SPI LL (0x4)
86 /*

87 * Mask of all supported backup features

88 */

89 #define DMJ_BACKUP_FEATURE_MASK (DMJ_BACKUP_FEATURE_DEDUP | \

90 DMJ_BACKUP_FEATURE_DEDUPPRCPS | DMJ_BACKUP_FEATURE_SA SPI LL)

92 /* Are all features in the given flag word currently supported? */
93 #define DMJ_STREAM SUPPORTED(x) (! ((x) & ~DMJ_BACKUP_FEATURE_MASK))

95 /*

96 * The drr_versioninfo field of the dmu_replay_record has the

97 * follow ng |ayout:

98 *

99 * 64 56 48 40 32 24 16 8 0
100 * R - - Fomm - R B Fomm o R R +
101 * | reserved | feature-fl ags 1CQ S
102 * teeeeaa- dommen- Fomeman- teeeeaa- Fommman- L e
103 *

104 * The low order two bits indicate the header type: SUBSTREAM (0x1)

105 * or COVPOUNDSTREAM (0x2). Using two bits for this is historical:

106 * this field used to be a version nunber, where the two version types
107 * were 1 and 2. Using two bits for this allows earlier versions of

108 * the code to be able to recogni ze send streans that don't use any

109 * of the features indicated by feature flags.

110 */

95 #define DMJ_BACKUP_MAG C 0x2F5bacbacULL

97 #define DRR_FLAG CLONE (1<<0)
98 #define DRR_FLAG Cl _DATA (1<<1)
100 /

*
101 * flags in the drr_checksunflags field in the DRR_ WRI TE and
102 * DRR_WRI TE_BYREF bl ocks
103 */
104 #defi ne DRR_CHECKSUM DEDUP (1<<0)

106 #define DRR | S_DEDUP_CAPABLE(fI ags)
108 /*

109 * zfs ioctl command structure
110 */

((flags) & DRR_CHECKSUM DEDUP)

new usr/src/uts/comon/fs/zfs/sys/zfs_ioctl.h

111 enumdrr_type {

128 typedef

129
112
113
114
115

117
133
134
135
136
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
138
135
136
137
138
139
140
141

143
145
146
144
145
146

148
149
150
149
150
151
152
153
154
155
156
157
158
159

161
161
162
162
163

bs

struct

}s

struct

b

struct

B

struct dnu_replay_record {

enum {

DRR BEG N, DRR_OBJECT, DRR_FREEOBJECTS,

DRR WRI TE, DRR_FREE, DRR END, DRR V\RI TE_BYREF,
DRR_SPI LL, DRR_NUMIYPES

drr_begin {
drr_type;
uint32_t drr_payl oadl en;
uni on {
struct drr_begin {
uint64_t drr_magic;
/

Formerly named drr_version, this field has the follow ng | ayout:
64 56 48 40 32 24 16 8 0
Fommmma Fommmma Fommmmm - tommmma - Fommmma Fommmme - tommmma - Fommmma +
| reserved | feature-flags 1 S|
O e m Homem - S e e m Homem - domm e e e fmmeao -

i
*
*
*
*
*
*
*
*
* The | ow order two bits indicate the header type: SUBSTREAM (0x1)
* or COVPOUNDSTREAM (0x2). Using two bits for this is historical:
* this field used to be a version nunber, where the two version types
* were 1 and 2. Using two bits for this allows earlier versions of
* the code to be able to recogni ze send streans that don’t use any
* of the features indicated by feature flags.
*
uint64_t drr_versioninfo;

uint64_t drr_versioninfo; /* was drr_version */
uint64_t drr_creation_tine;
dmu_obj set _type_t drr_type;
uint32_t drr_flags;
uint64_t drr_toguid;
uint64_t drr_fronguid;
char drr_t oname[MAXNAVELEN] ;

drr_end {
} drr_begin;
struct drr_end {
zi o_cksumt drr_checksum
uint64_t drr_toguid;

drr_object {
} drr_end;
struct drr_object {
uint64_t drr_object;
dmu_obj ect _type_t drr_type;
drmu_obj ect _type_t drr_bonustype;
uint32_t drr_bl ksz;
uint32_t drr_bonusl en;
uint8_t drr_checksuntype;
uint8_t drr_conpress;
uint8_t drr_pad[6];
uint64_t drr_toguid;
/* bonus content follows */

struct drr_freeobjects {

} drr_object;

struct drr_freeobjects {
uint64_t drr_firstobj;
uint64_t drr_nunobjs;

new usr/src/uts/comon/fs/zfs/sys/zfs_ioctl.h

164
165

167
166
167
168
169
170
171
172
173
174
175
176
177
178
179

181
179
180
182
183
184
185
186

188
189
185
186
187
188
190
191
192
191
192
193
194
195
195
196
196
197
198
199
200

202
201
202
203
204
205
206
207
208

210
211
212
213
214
215

bs

struct

I

struct

bs

struct

s

struct

IE
t ypedef

uint64_t drr_toguid;

drr_wite {
} drr_freeobjects;
struct drr_wite {
uint64_t drr_object;
dmu_obj ect _type_t drr_type;
uint32_t drr_pad;
uint64_t drr_offset;
uint64_t drr_length;
uint64_t drr_toguid;
uint8_t drr_checksuntype;
uint8_t drr_checksunfl ags;
uint8_t drr_pad2[6];
ddt _key_t drr_key;

_ /* deduplication key */
/* content follows */

drr_free {
drr_wite;
struct drr_free {
uint64_t drr_object;
uint64_t drr_offset;
uint64_t drr_length;
uint64_t drr_toguid;

drr_wite_byref {
uint64_t drr_object;
} drr_free;
struct drr_wite_byref
/* where to put the data */
uint64_t drr_object;

/* where to put the data */

uint64_t drr_offset;

uint64_t drr_length;

uint64_t drr_toguid; /* where to find the prior copy of the data */
uint64_t drr_toguid;
/* where to find the prior copy of the data */

uint64_t drr_refguid;

uint64_t drr_refobject;

uint64_t drr_refoffset; /* properties of the data */

uint64_t drr_refoffset;

/* properties of the data */
uint8_t drr_checksuntype;
uint8_t drr_checksunfl ags;
uint8_t drr_pad2[6];

ddt _key_t drr_key; /* deduplication key */

drr_spill {
drr_wite_byref;
struct drr_spill {
uint64_t drr_object;
uint64_t drr_length;
uint64_t drr_toguid;
uint64_t drr_pad[4];
/* spill data follows */

/* needed for crypto */

struct dnu_replay_record {

enum drr_type drr_type;

uint32_t drr_payl oadl en;

uni on {
struct drr_begin drr_begin;
struct drr_end drr_end;

new usr/src/uts/comon/fs/zfs/sys/zfs_ioctl.h

216 struct drr_object drr_object;

217 struct drr_freeobjects drr_freeobjects;
218 struct drr_wite drr_wite;

219 struct drr_free drr_free;

220 struct drr_wite_byref drr_wite_byref;
221 struct drr_spill drr_spill;

208 } drr_spill;

222 dr

} r_u;
223 } dmu_replay_record_t;
____unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/sys/zio.h

R R R R

18003 Tue Apr 30 17:11:00 2013
new usr/src/uts/comon/fs/zfs/sys/zio.h
3748 zfs headers should be C++ conpatible
Submi tted by: Justin G bbs <justing@pectral ogic.con>
Submi tted by: WIIl Andrews <willa@pectral ogic.conp
Revi ened by: Mat t hew Ahrens <mahr ens@lel phi x. conm»

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkkkhkkkkkkkkkkkkkkkkkkkkkk ok k ok k k&

__unchanged_portion_omtted_

444 extern zio_t *zio_null(zio_t *pio, spa_t *spa, vdev_t *vd,

445 zi o_done_func_t *done, void *io _private, enum zio flag flags);

445 zi o_done_func_t *done, void *private, enumzio_flag fiags);

447 extern zio_t *zio_root(spa_t *spa,

448 zi o_done_func_t *done, void *io _private, enumzio_flag flags);

448 zi o_done_func_t *done, void *private, enum zio_flag fiags);

450 extern zio_t *zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, void *data,
451 uint64_t size, zio_done_func_t *done, void *io_private,

451 uint64_t size, zio_done_func_t *done, void *private,

452 int priority, enumzio_flag flags, const zbookmark_t *zb);

454 extern zio_t *zio_wite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
455 void *data, uint64_t size, const zio_prop_t *zp,

456 zi o_done_func_t *ready, zio_done_func_t *done, void *io private,

456 zi 0_done_func_t *ready zi o_done_func_t *done, void *private,

457 int priority, enumzio_flag flags, const zbookmark_t *zb);

459 extern zio_t *zio_rewite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
460 void *data, uint64_t size, zio_done_func_t *done, void *io_private,

460 void *data, uint64_t size, zio_done_func_t *done, void *private,

461 int priority, enumzio_flag flags, zbookmark_t *zb);

463 extern void zio_wite_override(zio_t *zio, blkptr_t *bp, int copies,
464 bool ean_t nopwite);

466 extern void zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp);

468 extern zio_t *zio_clain(zio_t *pio, spa_t *spa, uint64_t txg,
469 const bl kptr_t *bp,

470 zi o_done_func_t *done, void *io_private, enumzio_flag flags);

470 zi o_done_func_t *done, void *private, enum zio_flag flags);

472 extern zio_t *zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cnd,

473 zi o_done_func_t *done, void *io_private, int priority,

474 enum zi o_flag flags);

473 zi o_done_func_t *done, void *private, int priority, enumzio_flag flags);
476 extern zio_t *zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset,

477 uint64_t size, void *data, int checksum

478 zi o_done_func_t *done, void *io_private, int priority, enum zio_fl g flags,
477 zi o_done_func_t *done, void *private, int priority, enumzio_ f ag flags,
479 bool ean_t | abel s);

481 extern zio_t *zio_wite_phys(zio_t *pio, vdev_t *vd, uint64_t offset,

482 uint64_t size, void *data, int checksum

483 zi o_done_func_t *done, void *io_private, int priority, enumzio_flag flags,
482 zi o_done_func_t *done, void *private, int priority, enumzio_flag flags,
484 bool ean_t | abel s);

486 extern zio_t *zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg,
487 const bl kptr_t *bp, enumzio_flag flags);

489 extern int zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp,
490 bl kptr_t *old_bp, uint64_t size, boolean_t use_slog);

new usr/src/uts/comon/fs/zfs/sys/zio.h

491 extern void zio_free_zil (spa_t *spa, uint64_t txg, blkptr_t *bp);
492 extern void zio_flush(zio_t *zio, vdev_t *vd);
493 extern void zio_shrink(zio_t *zio, uint64_t size);

495 extern int zio_wait(zio_t *zio);

496 extern void zio_nowait(zio_t *zio);
497 extern void zio_execute(zio_t *zio);
498 extern void zio_interrupt(zio_t *zio);

500 extern zio_t *zio_wal k_parents(zio_t *cio);
501 extern zio_t *zio_wal k_children(zio_t *pio);
502 extern zio_t *zio_unique_ parent(2|o t *cio);
503 extern void zio_add_child(zio_t *pio, zio_t *cio);

505 extern void *zio_buf_alloc(size_t size);

506 extern void zio_buf_free(void *buf, size_t S|ze)

507 extern void *zio_data_buf aIIoc(5|ze t size

508 extern void zio_data_buf_free(void *buf, si ze_t si ze);

510 extern void zio_resubmt_stage_async(void *);

512 extern zio_t *zio_vdev_child_io(zio_t *zio, blkptr_t *bp, vdev_t *vd,
513 ui nt 64_t offset, void *data, uint64_t size, int type, int priority,
514 enum zi o_fl ag fi ags, zi o_done_f unc_t *done, void *io_private);

513 enum zio_flag flags, zio_done_func_t *done, void *private);

516 extern zio_t *zio_vdev_del egated_i o(vdev_t *vd, uint64_t offset,

517 void *data, uint64_t size, int type, int priority,

518 enum zio_flag flags, zio_done_func_t *done, void *io_private);

517 enum zio_flag flags, zio_done func_t *done, void *private);

520 extern void zio_vdev_io_bypass(zio_t *zio);
521 extern void zio_vdev_io_rei ssue(zio_t *Z|o)
522 extern void zio_vdev_io_redone(zio_t *zio);

524 extern void zio_checksumverified(zio_t *zio);
525 extern int zio_worst_error(int el, int e2);

527 extern enum zi o_checksum zi o_checksum sel ect (enum zi o_checksum chi |l d,

528 enum zi o_checksum parent);
529 extern enum zi o_checksum zi o_checksum dedup_sel ect (spa_t *spa,
530 enum zi o_checksum child, enum zi o_checksum parent);

531 extern enum zi o_conpress zi o_conpress_sel ect (enum zi o_conpress child,
532 enum zi o_conpress parent);

534 extern void zio_suspend(spa_t *spa, zio_t *zio);
535 extern int zio_resune(spa_t *spa);
536 extern void zio_resune_wait(spa_t *spa);

538 /*

539 * |Initial setup and teardown.
540 */

541 extern void zio | it(void);
542 extern void zio_fini(void);

544 | *

545 * Fault injection

546 */

547 struct zinject_record;
548 extern uint32_t zio_injection_enabl ed;
549 extern int zio_inject_fault(char *nane, int flags, int *id,

550 struct zinject_record *record);
551 extern int zio_inject_list_next(int *id, char *name, size_t buflen,
552 struct zinject_record *record);

553 extern int zio_clear fault(int id);

554 extern void zio_handl e_panic_injection(spa_t *spa, char *tag, uint64_t type);

new usr/src/uts/comon/fs/zfs/sys/zio.h

555 extern int zio_handle_fault_injection(zio_t *zio, int error);

556 extern int zio_handl e_device_i nj ecti on(vdev_t *vd zio_t *zio, int error);
557 extern int zio_handl e_| abel _injection(zio_t *zio, int error);

558 extern void zio_handle_ignored_wites(zio_t *zi o)

559 extern uint64_t zio_handle_io_delay(zio_t *zio);

561 /*

562 * Checksum ereport functions

563 */

564 extern void zfs_ereport_start_checksun(spa_t *spa, vdev_t *vd, struct zio *zio,
565 uint64_t offset, uint64_t length, void *arg, struct zio_bad_cksum *info);
566 extern void zfs ereport finish _checksun(zi o_cksum report _t *report

567 const void *good_data, const void *bad_data, bool ean_t drop_ if _identical);

569 extern void zfs_ereport_send_interi mchecksun(zi o_cksumreport_t *report);
570 extern void zfs_ereport_free_checksun{zi o_cksumreport_t *report);

572 /* If we have the good data in hand, this function can be used */

573 extern void zfs_ereport_post _checksun{spa_t *spa, vdev_t *vd,

574 struct zio *zio, uint64_t offset, uint64_t |ength,

575 const void *good_data, const void *bad_data, struct zio_bad_cksum *info);

577 /* Called fromspa_sync(), but primarily an injection handler */
578 extern void spa_handl e_ignored_wites(spa_t *spa);

580 /* zbookmark functions */
581 bool ean_t zbookmark_i s_before(const struct dnode_phys *dnp,
582 const zbookmark_t *zbl, const zbookmark_t *zb2);

584 #ifdef __cplusplus
585 }
__unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/zio.c

R R R R

89700 Tue Apr 30 17:11:00 2013
new usr/src/uts/comon/fs/zfs/zio.c
3748 zfs headers should be C++ conpatible
Submi tted by: Justin G bbs <justing@pectral ogic.con>
Submi tted by: WIIl Andrews <willa@pectral ogic.conp
Revi ened by: Mat t hew Ahrens <mahr ens@lel phi x. conm»

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkkkhkkkkkkkkkkkkkkkkkkkkkk ok k ok k k&

__unchanged_portion_omtted_

505 /*

506 *

507 * Create the various types of 1/O (read, wite, free, etc)

508 *

509 */
510 static zio_t *
511 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,

512 void *data, uint64_t size, zio_done func _t *done, void *io_private,
512 void *data, uint64_t size, zio_done func_t *done, void *private,
513 zio_type_t type, int priority, enum zi o_flag flags,

514 vdev_t *vd, uint64_t offset, const zbookmark_t *zb,

515 enum zi o_stage stage, enum zi o_stage pi peline)

516 {

517 zio_t *zio;

519 ASSERT3U(si ze, <=, SPA_MAXBLOCKSI ZE);

520 ASSERT(P2PHASE(si ze, SPA_M NBLOCKSI ZE) == 0);

521 ASSERT(P2PHASE(of f set, SPA_M NBLOCKSI ZE) == 0);

523 ASSERT(!vd || spa_config_hel d(spa, SCL_STATE ALL, RW READER));
524 ASSERT(!bp || !'(fTags & ZI O FLAG CONFI G WRI TER)) ;

525 ASSERT(vd || stage == ZI O STAGE OPEN);

527 zio = knmem cache_al | oc(zi o_cache, KM SLEEP);

528 bzero(zio, sizeof (zio_t));

530 mut ex_i ni t (&zi o->i o_| ock, NULL, MJUTEX_DEFAULT, NULL);

531 cv_init(&zio->o_cv, NULL, CV_DEFAULT, NULL);

533 list_create(&io->o_parent_list, sizeof (zio_link_t),

534 of fsetof (zio_link_t, zl_parent_node));

535 list_create(&zio->o_child_list, sizeof (zio_link_t),

536 of fsetof (zio_link_t, zl_child_node));

538 if (vd !'= NULL)

539 zi o->i o_child_type = ZI O CH LD _VDEV;

540 else if (flags & ZI O_ LAG_GANG_CHI LD)

541 zio->o_child_type = ZIO CH LD_GANG

542 else if (flags & ZI O FLAG DDT_CHI LD)

543 zi0->io_child_type = ZI O CH LD _DDT;

544 el se

545 zio->o_child_type = ZI O CH LD _LOd CAL;

547 if (bp !'= NULL) {

548 zio->io_bp = (bl kptr_t *)bp;

549 zi 0->i 0_bp_copy = *bp;

550 zio->o0_bp_orig = *bp;

551 if (type 1= ZIO TYPE_WRITE ||

552 zio->io_chiTd_type == ZI O CHI LD _DDT)

553 zio->io bp—&2|o > o_bp_copy; /* so caller can free */
554 if (zio->io chlldtype == ZIOCHILDL(IBI(AL)

555 zi o->i o_|l ogi cal = zio;

556 if (zio->io_child_type > ZI O CH LD_GANG && BP_I S_GANG bp))
557 pi peline | = ZI O_GANG_STACES;

558 1

new usr/src/uts/comon/fs/zfs/zio.c

560 zi 0->i o_spa = spa;
561 zio->io_txg = txg;
562 zi 0->i o_done = done;
563 zio->io_private = io_private;
563 zio->io_private = private;
564 zio->io_type = type;
565 zio->io prlorlty priority;
566 zio->io_vd = d,
567 zio->io_offset = offset;
568 zio->io_orig_data = zio-> o_data = data,
569 zio->io_orig_size = zio->io0_size = size;
570 zio->io_orig_flags = zio->o_flags = flags;
571 zi0->i0_orig_stage = zio->i o_stage = stage;
572 zi 0->i o_orig_pipeline = zio->i o_pipeline = pipeline;
574 zi 0->i 0_state[ZI O WAI T_READY] = (stage >= ZI O STAGE_READY);
575 zio->io_state[ZI O WAI T_DONE] = (stage >= ZI O STAGE_DONE) ;
577 if (zb !'= NULL)
578 zi 0- >i 0_bookmark = *zb;
580 if (pio!= NULL) {
581 if (zio->o_logical == NULL)
582 zi 0->i o_| ogi cal = pio->io_|logical;
583 if (zio->io chlIdtype == ZI O_CHI LD_GANG
584 zi 0->i o_gang_| eader = pi o->i 0o_gang_| eader;
585 zi o_add_chil d(pio, zio);
586 }
588 return (zio);
589 }
__unchanged_portion_onitted_
601 zio_t *
602 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
603 void *io_private, enum zio_flag flags)
603 void *private, enumzio_flag flags)
604 {
605 zio_t *zio;
607 zio = zio_create(pio, spa, 0, NULL, NULL, O, done, io_private,
607 zio = zio_create(pio, spa, 0, NULL, NULL, O, done, private,
608 ZI O TYPE_NULL, ZIO PRIORITY_NOW flags, vd, 0, NULL,
609 ZI O_STACGE O:‘EN ZI'O_| NTERLOCK_PI PELI NE) ;
611 return (zio);
612 }
614 zio_t *
615 zi o_root(spa_t *spa, zio_done_func_t *done, void *io_private,
616 enum zi o_flag flags)

615 zio_root(spa_t *spa, zio_done_func_t *done,
617 {

void *private,

enum zi o_fl ag

618 return (zio_null (NULL, spa, NULL, done, io_private, flags));
617 return (zio_nul Il (NULL, spa, NULL, done, private, flags));

619 }

621 zio_t *

622 zio read(2|o t *pio, spa_t *spa, const blkptr_t *bp,

623 void *data, uint64_t size, zio_done_func_t *done, void *io_private,
622 void *data, uint64_t size, zio_done func_t *done, void *private,
624 int priority, enumzio_flag flags, const zbookmark_t *zb)

625 {

626 zio_t *zio;

628 zio = zio_create(pio, spa, BP_PHYSI CAL_BI RTH(bp),

bp,

fl ags)

new usr/src/uts/comon/fs/zfs/zio.c

629 data, size, done, io_private,
628 data, size, done, private,
630 ZIO TYPE READ, priority, flags, NULL, O, zb,
631 ZI O_STAGE_OPEN, (flags & ZI O FLAG DDT_CHI LD) ?
632 ZI O_DDT_CHI LD _READ_PI PELI NE © ZI O_READ_PI PELI NE) ;
634 return (zio);
635 }
637 zio_t *
638 zio_wite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
639 void *data, uint64_t size, const zio_prop_t *zp,
640 zi o_done_func_t *ready, zio_done_func_t *done, void *io_private,
639 zi o_done_func_t *ready, zio —done_func_t *done, void *private,
641 int priority, enumzio_flag flags, const zbookmark_t *zb)
642 {
643 zio_t *zio;
645 ASSERT(zp- >zp_checksum >= ZI O CHECKSUM OFF &&
646 zp->zp_checksum < ZI O_CHECKSUM FUNCTI ONS &&
647 zp->zp_conpress >= ZI O COMPRESS OFF &&
648 zp->zp_conpress < ZI O COVPRESS_FUNCTI ONS &&
649 DMJU_OT_| S_VALI I(zp- >zp type) &&
650 zp->zp_l evel < 32 &&
651 zp->zp_copies > 0 &&
652 zp->zp_copi es <= spa_max_replication(spa));
654 zio = zio_create(pio, spa, txg, bp, data, size, done, io_private,
653 zio = zio_create(pio, spa, txg, bp, data, size, done, private,
655 ZI O TYPE_WRI TE priority, flags, NULL, O, zb,
656 ZI O_STAGE_OPEN, (flags & ZI O FLAG DDT_CHILD) ?
657 ZI O_DDT_CHI LD WRI TE_PI PELI NE : ZI O WRI TE_PI PELI NE) ;
659 zi 0->i o_ready = ready;
660 zi o->io_prop = *zp;
662 return (zio);
663 }
665 zio t *
666 zio_rewite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
667 uint64_t size, zio_done_func_t *done, void *io_private, int priority,
666 uint64_t size, zio_done_func_t *done, void *private, int priority,
668 enum zio_flag flags, zbooknmark_t *zb)
669 {
670 zio_t *zio;
672 zio = zio_create(pio, spa, txg, bp, data, size, done, io_private,
671 zio = zio_create(pio, spa, txg, bp, data, size, done, private,
673 ZIOTYPE WRITE, priority, flags, NULL, O, zb,
674 ZI O_STAGE_OPEN, ZI O REWRI TE_PI PELI NE) ;
676 return (zio);
677 }
__unchanged_portion_omtted_
727 zio t *
728 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
729 zi o_done_func_t *done, void *io_private, enum zio_flag flags)
728 zi o_done_func_t *done, void *private, enum zio_flag flags)
730 {
731 zio_t *zio;
733 /*
734 * Aclaimis an allocation of a specific block. Cainms are needed
735 * to support immediate wites in the intent log. The issue is that

new usr/src/uts/comon/fs/zfs/zio.c

736
737
738
739
740
741
742
743
744
745
746
747

749
750
749
751

753
754

756
757
758
757
759
760
761

763
764
763
765
766

768
769
770

772
773
774
773
775

777
778

780
781
782
781
783

}

zio

zio_

784 {

785

787
788
789
790

792
793
791
792
794

* immediate wites contain conmtted data, but in a txg that was

* *not* committed. Upon opening the pool after an unclean shutdown,
* the intent log clainms all blocks that contain i mediate wite data
* so that the SPA knows they're in use.

*

* All clains *nust* be resolved in the first txg -- before the SPA
* starts allocating blocks -- so that nothing is allocated tw ce.
*/If txg == 0 we just verify that the block is clainable.

ASSERT3U(spa- >spa_uber bl ock. ub_rootbp. bl k_birth, <, spa_first_txg(spa));
ASSERT(txg == spa_first_txg(spa) || txg == 0);
ASSERT(! BP_GET_DEDUP(bp) || !spa_witeable(spa)); /* zdb(1M */
zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSI ZE(bp),

done, io_private, ZIO T TYPE CLAIM ZI O PRIORI TY_NOW fl ags,

done, private, ZIO TYPE_ CLAIM ZI O PRIORI TY_NON flags,
NULL, 0, NULL, ZI O STAGE OPEN, ZI O CLAI M PIPELINE);

return (zio);

*
ctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cnd,

i o_done_func_t *done, void *io_private, int priority, enumzio_flag flags)
io_done_func_t *done, void *private, int priority, enumzio_flag flags)

zio_t *zio;
int c;

if (vd->vdev_children == 0) {

zio = zio_create(pio, spa, 0, NULL, NULL, O, done,
zio = zio_create(pio, spa, 0, NULL, NULL, O, done,
ZI O TYPE_| OCTL, priori ty, flags, vd, 0, NULL,

s io_private,
P
ZI O_STAGE_OPEN, ZI O | OCTL_PI PELI NE) ;

private,

zio->o_cmd = cnd;
} else {
zio = zio_null (pio, spa, NULL, NULL, NULL, flags);
for (c = 0; c < vd->vdev_children; c++)
zio_nowait(zio_ioctl(zio, spa,
done, io_private, priority,
done, private, priority,

vd->vdev_child[c], cnd,
flags));

flags));

}

return (zio);

t *

read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
void *data, int checksum zio_done_func_t *done, void *io_private,
void *data, int checksum zi 0_done_func_t *done, void *private,
int priority, enumzio_flag flags, bool ean_t | abels)

zio_t *zio;

ASSERT(vd- >vdev_children == 0);

ASSERT(!l abel s [| offset + size <= VDEV_LABEL_START_SI ZE ||
of fset >= vd->vdev_psi ze - VDEV_LABEL_END SI ZE);

ASSERT3U(of f set + size, <=, vd->vdev_psize);

zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done,
io_private, ZIO TYPE READ, priority, flags, vd, offset, NULL,

zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
ZIOTYPE READ, prlorlty flags, vd, offset, NULL,
ZI O_STAGE_OPEN, ZI O READ PHYS PI PELI NE) ;

new usr/src/uts/comon/fs/zfs/zio.c

796

798
799

801
802
803
802
804

}

zio_t

zi 0->i o_prop. zp_checksum = checksum

return (zio);

zi o:wri te_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,

805 {

806

808
809
810
811

813
814
812
813
815

817

819
820
821
822
823
824
825
826
827
828
829

831
832

834
835
836
837
838
839
840
839
841
842
843

845
846

848
849
850
851
852
853
854
855
856

void *data, int checksum zio_done_func_t *done, void *io_private,
void *data, int checksum zio_done_func_t *done, void *private,
int priority, enumzio_flag flags, boolean_t I|abels)

zio_t *zio;

ASSERT(vd- >vdev_children == 0);

ASSERT(!l abel s [| offset + size <= VDEV_LABEL_START_SI ZE ||
of fset >= vd->vdev_psi ze - VDEV_LABEL_END SI ZE);

ASSERT3U(of f set + size, <=, vd->vdev_psize);

zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done,
io_private, ZIO TYPE_WRITE, priority, flags, vd, offset, NULL,

zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
ZIOTYPE_ WRITE, priority, flags, vd offset I\ULL,
ZI O_STAGE_OPEN, ZI O WRI TE_PHYS_PI PELI NE) ;

zi 0->i o_prop. zp_checksum = checksum
if (zio_checksum table[checksuni.ci_eck) {
/*

* zec checksuns are necessarily destructive -- they nodify
* the end of the wite buffer to hold the verifier/checksum
* Therefore, we nust nake a local copy in case the data is
*/bei ng witten to multiple places in parallel.

*

voi d *wbuf = zio_buf_alloc(size);
bcopy(data, wbuf, size);
zi o_push_transform(zio, wbuf, size, size, NULL);

}

return (zio);

Create a child I/Oto do sone work for us.

—vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,

void *data, uint64_t size, int type, int priority, enumzio _flag flags,
zi o_done_func_t *done, void *io_private)
zi o_done_func_t *done, void *private)

enum zi o_stage pipeline = ZI O VDEV_CH LD_PI PELI NE;
zio_t *zio;

ASSERT(vd- >vdev_parent ==

(pio->o_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
if (type == ZIO TYPE_READ && bp != NULL) {

/*

* |f we have the bp, then the child should performthe
* checksum and the parent need not. This pushes error
* detection as close to the | eaves as possible and
* elimnates redundant checksuns in the interior nodes.
*/

pi peline |= ZI O STAGE_CHECKSUM VERI FY;
pi 0- >i o_pi pel i ne & ~ZI O_STAGE_CHECKSUM VER! FY;

new usr/src/uts/comon/fs/zfs/zio.c

857

859
860

862

864
865
866
867
868
869

871
872
873
871
872

875
876

878
879
880
881
880
882
883

885

887
888
887
889
890
891

893

894 }
__unchanged_portion_onitted_

}

if (vd->vdev_children == 0)
of f set += VDEV_LABEL_START_SI ZE;

flags |= ZI O VDEV_CH LD _FLAGS(pi0) | ZI O FLAG DONT_PROPAGATE;

/'k
* |f we've decided to do a repair, the wite is not specul ative --
* even if the original read was.
*/
if (flags & ZI O FLAG | O REPAI R)
flags & ~ZI O_FLAG_SPECULATI VE;

zio = zio_create(pio, pio->io_spa, pio-> o_txg, bp, data, size,
done, io_private, type, priority, flags, vd, offset,
&pi 0->i o_bookmar k, ZI O STAGE VDEV_| O START >> 1, pipeline);
done, private, type, priority, flags, vd, offset, &pio->i o_bookmark,
ZI O_STACGE_VDEV_| O START >> 1, pipeline);

return (zio);

zi o_vdev_del egat ed _io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,

int type, int priority, enum2|oflagflags
zi o_done_func_t *done, void *io_private)
zi 0_done_func_t *done, void *private)

zio_t *zio;

ASSERT(vd- >vdev_ops->vdev_op_| eaf);

zio = zio_create(NULL, vd->vdev_spa, O, NULL,
data, size, done, io_private, type, priority,
data, size, done, private, type, priority,
flags | ZI O FLAG CANFAI L | ZI O_FLAG_DONT_RETRY,

vd, of fset, NULL,
ZI O _STAGE_VDEV_| O_START >> 1, ZI O VDEV_CHI LD_PI PELI NE) ;

return (zio);

