1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Portions Copyright 2011 Martin Matuska 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/txg_impl.h> 29 #include <sys/dmu_impl.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/dsl_pool.h> 32 #include <sys/dsl_scan.h> 33 #include <sys/callb.h> 34 35 /* 36 * ZFS Transaction Groups 37 * ---------------------- 38 * 39 * ZFS transaction groups are, as the name implies, groups of transactions 40 * that act on persistent state. ZFS asserts consistency at the granularity of 41 * these transaction groups. Each successive transaction group (txg) is 42 * assigned a 64-bit consecutive identifier. There are three active 43 * transaction group states: open, quiescing, or syncing. At any given time, 44 * there may be an active txg associated with each state; each active txg may 45 * either be processing, or blocked waiting to enter the next state. There may 46 * be up to three active txgs, and there is always a txg in the open state 47 * (though it may be blocked waiting to enter the quiescing state). In broad 48 * strokes, transactions — operations that change in-memory structures — are 49 * accepted into the txg in the open state, and are completed while the txg is 50 * in the open or quiescing states. The accumulated changes are written to 51 * disk in the syncing state. 52 * 53 * Open 54 * 55 * When a new txg becomes active, it first enters the open state. New 56 * transactions — updates to in-memory structures — are assigned to the 57 * currently open txg. There is always a txg in the open state so that ZFS can 58 * accept new changes (though the txg may refuse new changes if it has hit 59 * some limit). ZFS advances the open txg to the next state for a variety of 60 * reasons such as it hitting a time or size threshold, or the execution of an 61 * administrative action that must be completed in the syncing state. 62 * 63 * Quiescing 64 * 65 * After a txg exits the open state, it enters the quiescing state. The 66 * quiescing state is intended to provide a buffer between accepting new 67 * transactions in the open state and writing them out to stable storage in 68 * the syncing state. While quiescing, transactions can continue their 69 * operation without delaying either of the other states. Typically, a txg is 70 * in the quiescing state very briefly since the operations are bounded by 71 * software latencies rather than, say, slower I/O latencies. After all 72 * transactions complete, the txg is ready to enter the next state. 73 * 74 * Syncing 75 * 76 * In the syncing state, the in-memory state built up during the open and (to 77 * a lesser degree) the quiescing states is written to stable storage. The 78 * process of writing out modified data can, in turn modify more data. For 79 * example when we write new blocks, we need to allocate space for them; those 80 * allocations modify metadata (space maps)... which themselves must be 81 * written to stable storage. During the sync state, ZFS iterates, writing out 82 * data until it converges and all in-memory changes have been written out. 83 * The first such pass is the largest as it encompasses all the modified user 84 * data (as opposed to filesystem metadata). Subsequent passes typically have 85 * far less data to write as they consist exclusively of filesystem metadata. 86 * 87 * To ensure convergence, after a certain number of passes ZFS begins 88 * overwriting locations on stable storage that had been allocated earlier in 89 * the syncing state (and subsequently freed). ZFS usually allocates new 90 * blocks to optimize for large, continuous, writes. For the syncing state to 91 * converge however it must complete a pass where no new blocks are allocated 92 * since each allocation requires a modification of persistent metadata. 93 * Further, to hasten convergence, after a prescribed number of passes, ZFS 94 * also defers frees, and stops compressing. 95 * 96 * In addition to writing out user data, we must also execute synctasks during 97 * the syncing context. A synctask is the mechanism by which some 98 * administrative activities work such as creating and destroying snapshots or 99 * datasets. Note that when a synctask is initiated it enters the open txg, 100 * and ZFS then pushes that txg as quickly as possible to completion of the 101 * syncing state in order to reduce the latency of the administrative 102 * activity. To complete the syncing state, ZFS writes out a new uberblock, 103 * the root of the tree of blocks that comprise all state stored on the ZFS 104 * pool. Finally, if there is a quiesced txg waiting, we signal that it can 105 * now transition to the syncing state. 106 */ 107 108 static void txg_sync_thread(dsl_pool_t *dp); 109 static void txg_quiesce_thread(dsl_pool_t *dp); 110 111 int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */ 112 113 /* 114 * Prepare the txg subsystem. 115 */ 116 void 117 txg_init(dsl_pool_t *dp, uint64_t txg) 118 { 119 tx_state_t *tx = &dp->dp_tx; 120 int c; 121 bzero(tx, sizeof (tx_state_t)); 122 123 tx->tx_cpu = kmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP); 124 125 for (c = 0; c < max_ncpus; c++) { 126 int i; 127 128 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL); 129 for (i = 0; i < TXG_SIZE; i++) { 130 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT, 131 NULL); 132 list_create(&tx->tx_cpu[c].tc_callbacks[i], 133 sizeof (dmu_tx_callback_t), 134 offsetof(dmu_tx_callback_t, dcb_node)); 135 } 136 } 137 138 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL); 139 140 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL); 141 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL); 142 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL); 143 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL); 144 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL); 145 146 tx->tx_open_txg = txg; 147 } 148 149 /* 150 * Close down the txg subsystem. 151 */ 152 void 153 txg_fini(dsl_pool_t *dp) 154 { 155 tx_state_t *tx = &dp->dp_tx; 156 int c; 157 158 ASSERT(tx->tx_threads == 0); 159 160 mutex_destroy(&tx->tx_sync_lock); 161 162 cv_destroy(&tx->tx_sync_more_cv); 163 cv_destroy(&tx->tx_sync_done_cv); 164 cv_destroy(&tx->tx_quiesce_more_cv); 165 cv_destroy(&tx->tx_quiesce_done_cv); 166 cv_destroy(&tx->tx_exit_cv); 167 168 for (c = 0; c < max_ncpus; c++) { 169 int i; 170 171 mutex_destroy(&tx->tx_cpu[c].tc_lock); 172 for (i = 0; i < TXG_SIZE; i++) { 173 cv_destroy(&tx->tx_cpu[c].tc_cv[i]); 174 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]); 175 } 176 } 177 178 if (tx->tx_commit_cb_taskq != NULL) 179 taskq_destroy(tx->tx_commit_cb_taskq); 180 181 kmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t)); 182 183 bzero(tx, sizeof (tx_state_t)); 184 } 185 186 /* 187 * Start syncing transaction groups. 188 */ 189 void 190 txg_sync_start(dsl_pool_t *dp) 191 { 192 tx_state_t *tx = &dp->dp_tx; 193 194 mutex_enter(&tx->tx_sync_lock); 195 196 dprintf("pool %p\n", dp); 197 198 ASSERT(tx->tx_threads == 0); 199 200 tx->tx_threads = 2; 201 202 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread, 203 dp, 0, &p0, TS_RUN, minclsyspri); 204 205 /* 206 * The sync thread can need a larger-than-default stack size on 207 * 32-bit x86. This is due in part to nested pools and 208 * scrub_visitbp() recursion. 209 */ 210 tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread, 211 dp, 0, &p0, TS_RUN, minclsyspri); 212 213 mutex_exit(&tx->tx_sync_lock); 214 } 215 216 static void 217 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr) 218 { 219 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG); 220 mutex_enter(&tx->tx_sync_lock); 221 } 222 223 static void 224 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp) 225 { 226 ASSERT(*tpp != NULL); 227 *tpp = NULL; 228 tx->tx_threads--; 229 cv_broadcast(&tx->tx_exit_cv); 230 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */ 231 thread_exit(); 232 } 233 234 static void 235 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time) 236 { 237 CALLB_CPR_SAFE_BEGIN(cpr); 238 239 if (time) 240 (void) cv_timedwait(cv, &tx->tx_sync_lock, 241 ddi_get_lbolt() + time); 242 else 243 cv_wait(cv, &tx->tx_sync_lock); 244 245 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock); 246 } 247 248 /* 249 * Stop syncing transaction groups. 250 */ 251 void 252 txg_sync_stop(dsl_pool_t *dp) 253 { 254 tx_state_t *tx = &dp->dp_tx; 255 256 dprintf("pool %p\n", dp); 257 /* 258 * Finish off any work in progress. 259 */ 260 ASSERT(tx->tx_threads == 2); 261 262 /* 263 * We need to ensure that we've vacated the deferred space_maps. 264 */ 265 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE); 266 267 /* 268 * Wake all sync threads and wait for them to die. 269 */ 270 mutex_enter(&tx->tx_sync_lock); 271 272 ASSERT(tx->tx_threads == 2); 273 274 tx->tx_exiting = 1; 275 276 cv_broadcast(&tx->tx_quiesce_more_cv); 277 cv_broadcast(&tx->tx_quiesce_done_cv); 278 cv_broadcast(&tx->tx_sync_more_cv); 279 280 while (tx->tx_threads != 0) 281 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock); 282 283 tx->tx_exiting = 0; 284 285 mutex_exit(&tx->tx_sync_lock); 286 } 287 288 uint64_t 289 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th) 290 { 291 tx_state_t *tx = &dp->dp_tx; 292 tx_cpu_t *tc = &tx->tx_cpu[CPU_SEQID]; 293 uint64_t txg; 294 295 mutex_enter(&tc->tc_lock); 296 297 txg = tx->tx_open_txg; 298 tc->tc_count[txg & TXG_MASK]++; 299 300 th->th_cpu = tc; 301 th->th_txg = txg; 302 303 return (txg); 304 } 305 306 void 307 txg_rele_to_quiesce(txg_handle_t *th) 308 { 309 tx_cpu_t *tc = th->th_cpu; 310 311 mutex_exit(&tc->tc_lock); 312 } 313 314 void 315 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks) 316 { 317 tx_cpu_t *tc = th->th_cpu; 318 int g = th->th_txg & TXG_MASK; 319 320 mutex_enter(&tc->tc_lock); 321 list_move_tail(&tc->tc_callbacks[g], tx_callbacks); 322 mutex_exit(&tc->tc_lock); 323 } 324 325 void 326 txg_rele_to_sync(txg_handle_t *th) 327 { 328 tx_cpu_t *tc = th->th_cpu; 329 int g = th->th_txg & TXG_MASK; 330 331 mutex_enter(&tc->tc_lock); 332 ASSERT(tc->tc_count[g] != 0); 333 if (--tc->tc_count[g] == 0) 334 cv_broadcast(&tc->tc_cv[g]); 335 mutex_exit(&tc->tc_lock); 336 337 th->th_cpu = NULL; /* defensive */ 338 } 339 340 static void 341 txg_quiesce(dsl_pool_t *dp, uint64_t txg) 342 { 343 tx_state_t *tx = &dp->dp_tx; 344 int g = txg & TXG_MASK; 345 int c; 346 347 /* 348 * Grab all tx_cpu locks so nobody else can get into this txg. 349 */ 350 for (c = 0; c < max_ncpus; c++) 351 mutex_enter(&tx->tx_cpu[c].tc_lock); 352 353 ASSERT(txg == tx->tx_open_txg); 354 tx->tx_open_txg++; 355 356 DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg); 357 DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg); 358 359 /* 360 * Now that we've incremented tx_open_txg, we can let threads 361 * enter the next transaction group. 362 */ 363 for (c = 0; c < max_ncpus; c++) 364 mutex_exit(&tx->tx_cpu[c].tc_lock); 365 366 /* 367 * Quiesce the transaction group by waiting for everyone to txg_exit(). 368 */ 369 for (c = 0; c < max_ncpus; c++) { 370 tx_cpu_t *tc = &tx->tx_cpu[c]; 371 mutex_enter(&tc->tc_lock); 372 while (tc->tc_count[g] != 0) 373 cv_wait(&tc->tc_cv[g], &tc->tc_lock); 374 mutex_exit(&tc->tc_lock); 375 } 376 } 377 378 static void 379 txg_do_callbacks(list_t *cb_list) 380 { 381 dmu_tx_do_callbacks(cb_list, 0); 382 383 list_destroy(cb_list); 384 385 kmem_free(cb_list, sizeof (list_t)); 386 } 387 388 /* 389 * Dispatch the commit callbacks registered on this txg to worker threads. 390 */ 391 static void 392 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg) 393 { 394 int c; 395 tx_state_t *tx = &dp->dp_tx; 396 list_t *cb_list; 397 398 for (c = 0; c < max_ncpus; c++) { 399 tx_cpu_t *tc = &tx->tx_cpu[c]; 400 /* No need to lock tx_cpu_t at this point */ 401 402 int g = txg & TXG_MASK; 403 404 if (list_is_empty(&tc->tc_callbacks[g])) 405 continue; 406 407 if (tx->tx_commit_cb_taskq == NULL) { 408 /* 409 * Commit callback taskq hasn't been created yet. 410 */ 411 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb", 412 max_ncpus, minclsyspri, max_ncpus, max_ncpus * 2, 413 TASKQ_PREPOPULATE); 414 } 415 416 cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 417 list_create(cb_list, sizeof (dmu_tx_callback_t), 418 offsetof(dmu_tx_callback_t, dcb_node)); 419 420 list_move_tail(cb_list, &tc->tc_callbacks[g]); 421 422 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *) 423 txg_do_callbacks, cb_list, TQ_SLEEP); 424 } 425 } 426 427 static void 428 txg_sync_thread(dsl_pool_t *dp) 429 { 430 spa_t *spa = dp->dp_spa; 431 tx_state_t *tx = &dp->dp_tx; 432 callb_cpr_t cpr; 433 uint64_t start, delta; 434 435 txg_thread_enter(tx, &cpr); 436 437 start = delta = 0; 438 for (;;) { 439 uint64_t timer, timeout = zfs_txg_timeout * hz; 440 uint64_t txg; 441 442 /* 443 * We sync when we're scanning, there's someone waiting 444 * on us, or the quiesce thread has handed off a txg to 445 * us, or we have reached our timeout. 446 */ 447 timer = (delta >= timeout ? 0 : timeout - delta); 448 while (!dsl_scan_active(dp->dp_scan) && 449 !tx->tx_exiting && timer > 0 && 450 tx->tx_synced_txg >= tx->tx_sync_txg_waiting && 451 tx->tx_quiesced_txg == 0) { 452 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n", 453 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 454 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer); 455 delta = ddi_get_lbolt() - start; 456 timer = (delta > timeout ? 0 : timeout - delta); 457 } 458 459 /* 460 * Wait until the quiesce thread hands off a txg to us, 461 * prompting it to do so if necessary. 462 */ 463 while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) { 464 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1) 465 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1; 466 cv_broadcast(&tx->tx_quiesce_more_cv); 467 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0); 468 } 469 470 if (tx->tx_exiting) 471 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread); 472 473 /* 474 * Consume the quiesced txg which has been handed off to 475 * us. This may cause the quiescing thread to now be 476 * able to quiesce another txg, so we must signal it. 477 */ 478 txg = tx->tx_quiesced_txg; 479 tx->tx_quiesced_txg = 0; 480 tx->tx_syncing_txg = txg; 481 DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg); 482 cv_broadcast(&tx->tx_quiesce_more_cv); 483 484 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 485 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 486 mutex_exit(&tx->tx_sync_lock); 487 488 start = ddi_get_lbolt(); 489 spa_sync(spa, txg); 490 delta = ddi_get_lbolt() - start; 491 492 mutex_enter(&tx->tx_sync_lock); 493 tx->tx_synced_txg = txg; 494 tx->tx_syncing_txg = 0; 495 DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg); 496 cv_broadcast(&tx->tx_sync_done_cv); 497 498 /* 499 * Dispatch commit callbacks to worker threads. 500 */ 501 txg_dispatch_callbacks(dp, txg); 502 } 503 } 504 505 static void 506 txg_quiesce_thread(dsl_pool_t *dp) 507 { 508 tx_state_t *tx = &dp->dp_tx; 509 callb_cpr_t cpr; 510 511 txg_thread_enter(tx, &cpr); 512 513 for (;;) { 514 uint64_t txg; 515 516 /* 517 * We quiesce when there's someone waiting on us. 518 * However, we can only have one txg in "quiescing" or 519 * "quiesced, waiting to sync" state. So we wait until 520 * the "quiesced, waiting to sync" txg has been consumed 521 * by the sync thread. 522 */ 523 while (!tx->tx_exiting && 524 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting || 525 tx->tx_quiesced_txg != 0)) 526 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0); 527 528 if (tx->tx_exiting) 529 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread); 530 531 txg = tx->tx_open_txg; 532 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 533 txg, tx->tx_quiesce_txg_waiting, 534 tx->tx_sync_txg_waiting); 535 mutex_exit(&tx->tx_sync_lock); 536 txg_quiesce(dp, txg); 537 mutex_enter(&tx->tx_sync_lock); 538 539 /* 540 * Hand this txg off to the sync thread. 541 */ 542 dprintf("quiesce done, handing off txg %llu\n", txg); 543 tx->tx_quiesced_txg = txg; 544 DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg); 545 cv_broadcast(&tx->tx_sync_more_cv); 546 cv_broadcast(&tx->tx_quiesce_done_cv); 547 } 548 } 549 550 /* 551 * Delay this thread by delay nanoseconds if we are still in the open 552 * transaction group and there is already a waiting txg quiesing or quiesced. 553 * Abort the delay if this txg stalls or enters the quiesing state. 554 */ 555 void 556 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution) 557 { 558 tx_state_t *tx = &dp->dp_tx; 559 hrtime_t start = gethrtime(); 560 561 /* don't delay if this txg could transition to quiesing immediately */ 562 if (tx->tx_open_txg > txg || 563 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1) 564 return; 565 566 mutex_enter(&tx->tx_sync_lock); 567 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) { 568 mutex_exit(&tx->tx_sync_lock); 569 return; 570 } 571 572 while (gethrtime() - start < delay && 573 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) { 574 (void) cv_timedwait_hires(&tx->tx_quiesce_more_cv, 575 &tx->tx_sync_lock, delay, resolution, 0); 576 } 577 578 mutex_exit(&tx->tx_sync_lock); 579 } 580 581 void 582 txg_wait_synced(dsl_pool_t *dp, uint64_t txg) 583 { 584 tx_state_t *tx = &dp->dp_tx; 585 586 ASSERT(!dsl_pool_config_held(dp)); 587 588 mutex_enter(&tx->tx_sync_lock); 589 ASSERT(tx->tx_threads == 2); 590 if (txg == 0) 591 txg = tx->tx_open_txg + TXG_DEFER_SIZE; 592 if (tx->tx_sync_txg_waiting < txg) 593 tx->tx_sync_txg_waiting = txg; 594 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 595 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 596 while (tx->tx_synced_txg < txg) { 597 dprintf("broadcasting sync more " 598 "tx_synced=%llu waiting=%llu dp=%p\n", 599 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 600 cv_broadcast(&tx->tx_sync_more_cv); 601 cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock); 602 } 603 mutex_exit(&tx->tx_sync_lock); 604 } 605 606 void 607 txg_wait_open(dsl_pool_t *dp, uint64_t txg) 608 { 609 tx_state_t *tx = &dp->dp_tx; 610 611 ASSERT(!dsl_pool_config_held(dp)); 612 613 mutex_enter(&tx->tx_sync_lock); 614 ASSERT(tx->tx_threads == 2); 615 if (txg == 0) 616 txg = tx->tx_open_txg + 1; 617 if (tx->tx_quiesce_txg_waiting < txg) 618 tx->tx_quiesce_txg_waiting = txg; 619 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 620 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 621 while (tx->tx_open_txg < txg) { 622 cv_broadcast(&tx->tx_quiesce_more_cv); 623 cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock); 624 } 625 mutex_exit(&tx->tx_sync_lock); 626 } 627 628 boolean_t 629 txg_stalled(dsl_pool_t *dp) 630 { 631 tx_state_t *tx = &dp->dp_tx; 632 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg); 633 } 634 635 boolean_t 636 txg_sync_waiting(dsl_pool_t *dp) 637 { 638 tx_state_t *tx = &dp->dp_tx; 639 640 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting || 641 tx->tx_quiesced_txg != 0); 642 } 643 644 /* 645 * Per-txg object lists. 646 */ 647 void 648 txg_list_create(txg_list_t *tl, size_t offset) 649 { 650 int t; 651 652 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL); 653 654 tl->tl_offset = offset; 655 656 for (t = 0; t < TXG_SIZE; t++) 657 tl->tl_head[t] = NULL; 658 } 659 660 void 661 txg_list_destroy(txg_list_t *tl) 662 { 663 int t; 664 665 for (t = 0; t < TXG_SIZE; t++) 666 ASSERT(txg_list_empty(tl, t)); 667 668 mutex_destroy(&tl->tl_lock); 669 } 670 671 boolean_t 672 txg_list_empty(txg_list_t *tl, uint64_t txg) 673 { 674 return (tl->tl_head[txg & TXG_MASK] == NULL); 675 } 676 677 /* 678 * Add an entry to the list (unless it's already on the list). 679 * Returns B_TRUE if it was actually added. 680 */ 681 boolean_t 682 txg_list_add(txg_list_t *tl, void *p, uint64_t txg) 683 { 684 int t = txg & TXG_MASK; 685 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 686 boolean_t add; 687 688 mutex_enter(&tl->tl_lock); 689 add = (tn->tn_member[t] == 0); 690 if (add) { 691 tn->tn_member[t] = 1; 692 tn->tn_next[t] = tl->tl_head[t]; 693 tl->tl_head[t] = tn; 694 } 695 mutex_exit(&tl->tl_lock); 696 697 return (add); 698 } 699 700 /* 701 * Add an entry to the end of the list, unless it's already on the list. 702 * (walks list to find end) 703 * Returns B_TRUE if it was actually added. 704 */ 705 boolean_t 706 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg) 707 { 708 int t = txg & TXG_MASK; 709 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 710 boolean_t add; 711 712 mutex_enter(&tl->tl_lock); 713 add = (tn->tn_member[t] == 0); 714 if (add) { 715 txg_node_t **tp; 716 717 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t]) 718 continue; 719 720 tn->tn_member[t] = 1; 721 tn->tn_next[t] = NULL; 722 *tp = tn; 723 } 724 mutex_exit(&tl->tl_lock); 725 726 return (add); 727 } 728 729 /* 730 * Remove the head of the list and return it. 731 */ 732 void * 733 txg_list_remove(txg_list_t *tl, uint64_t txg) 734 { 735 int t = txg & TXG_MASK; 736 txg_node_t *tn; 737 void *p = NULL; 738 739 mutex_enter(&tl->tl_lock); 740 if ((tn = tl->tl_head[t]) != NULL) { 741 p = (char *)tn - tl->tl_offset; 742 tl->tl_head[t] = tn->tn_next[t]; 743 tn->tn_next[t] = NULL; 744 tn->tn_member[t] = 0; 745 } 746 mutex_exit(&tl->tl_lock); 747 748 return (p); 749 } 750 751 /* 752 * Remove a specific item from the list and return it. 753 */ 754 void * 755 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg) 756 { 757 int t = txg & TXG_MASK; 758 txg_node_t *tn, **tp; 759 760 mutex_enter(&tl->tl_lock); 761 762 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) { 763 if ((char *)tn - tl->tl_offset == p) { 764 *tp = tn->tn_next[t]; 765 tn->tn_next[t] = NULL; 766 tn->tn_member[t] = 0; 767 mutex_exit(&tl->tl_lock); 768 return (p); 769 } 770 } 771 772 mutex_exit(&tl->tl_lock); 773 774 return (NULL); 775 } 776 777 boolean_t 778 txg_list_member(txg_list_t *tl, void *p, uint64_t txg) 779 { 780 int t = txg & TXG_MASK; 781 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 782 783 return (tn->tn_member[t] != 0); 784 } 785 786 /* 787 * Walk a txg list -- only safe if you know it's not changing. 788 */ 789 void * 790 txg_list_head(txg_list_t *tl, uint64_t txg) 791 { 792 int t = txg & TXG_MASK; 793 txg_node_t *tn = tl->tl_head[t]; 794 795 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 796 } 797 798 void * 799 txg_list_next(txg_list_t *tl, void *p, uint64_t txg) 800 { 801 int t = txg & TXG_MASK; 802 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 803 804 tn = tn->tn_next[t]; 805 806 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 807 }