1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 /* 28 * The objective of this program is to provide a DMU/ZAP/SPA stress test 29 * that runs entirely in userland, is easy to use, and easy to extend. 30 * 31 * The overall design of the ztest program is as follows: 32 * 33 * (1) For each major functional area (e.g. adding vdevs to a pool, 34 * creating and destroying datasets, reading and writing objects, etc) 35 * we have a simple routine to test that functionality. These 36 * individual routines do not have to do anything "stressful". 37 * 38 * (2) We turn these simple functionality tests into a stress test by 39 * running them all in parallel, with as many threads as desired, 40 * and spread across as many datasets, objects, and vdevs as desired. 41 * 42 * (3) While all this is happening, we inject faults into the pool to 43 * verify that self-healing data really works. 44 * 45 * (4) Every time we open a dataset, we change its checksum and compression 46 * functions. Thus even individual objects vary from block to block 47 * in which checksum they use and whether they're compressed. 48 * 49 * (5) To verify that we never lose on-disk consistency after a crash, 50 * we run the entire test in a child of the main process. 51 * At random times, the child self-immolates with a SIGKILL. 52 * This is the software equivalent of pulling the power cord. 53 * The parent then runs the test again, using the existing 54 * storage pool, as many times as desired. If backwards compatability 55 * testing is enabled ztest will sometimes run the "older" version 56 * of ztest after a SIGKILL. 57 * 58 * (6) To verify that we don't have future leaks or temporal incursions, 59 * many of the functional tests record the transaction group number 60 * as part of their data. When reading old data, they verify that 61 * the transaction group number is less than the current, open txg. 62 * If you add a new test, please do this if applicable. 63 * 64 * When run with no arguments, ztest runs for about five minutes and 65 * produces no output if successful. To get a little bit of information, 66 * specify -V. To get more information, specify -VV, and so on. 67 * 68 * To turn this into an overnight stress test, use -T to specify run time. 69 * 70 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 71 * to increase the pool capacity, fanout, and overall stress level. 72 * 73 * Use the -k option to set the desired frequency of kills. 74 * 75 * When ztest invokes itself it passes all relevant information through a 76 * temporary file which is mmap-ed in the child process. This allows shared 77 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 78 * stored at offset 0 of this file and contains information on the size and 79 * number of shared structures in the file. The information stored in this file 80 * must remain backwards compatible with older versions of ztest so that 81 * ztest can invoke them during backwards compatibility testing (-B). 82 */ 83 84 #include <sys/zfs_context.h> 85 #include <sys/spa.h> 86 #include <sys/dmu.h> 87 #include <sys/txg.h> 88 #include <sys/dbuf.h> 89 #include <sys/zap.h> 90 #include <sys/dmu_objset.h> 91 #include <sys/poll.h> 92 #include <sys/stat.h> 93 #include <sys/time.h> 94 #include <sys/wait.h> 95 #include <sys/mman.h> 96 #include <sys/resource.h> 97 #include <sys/zio.h> 98 #include <sys/zil.h> 99 #include <sys/zil_impl.h> 100 #include <sys/vdev_impl.h> 101 #include <sys/vdev_file.h> 102 #include <sys/spa_impl.h> 103 #include <sys/metaslab_impl.h> 104 #include <sys/dsl_prop.h> 105 #include <sys/dsl_dataset.h> 106 #include <sys/dsl_destroy.h> 107 #include <sys/dsl_scan.h> 108 #include <sys/zio_checksum.h> 109 #include <sys/refcount.h> 110 #include <sys/zfeature.h> 111 #include <sys/dsl_userhold.h> 112 #include <stdio.h> 113 #include <stdio_ext.h> 114 #include <stdlib.h> 115 #include <unistd.h> 116 #include <signal.h> 117 #include <umem.h> 118 #include <dlfcn.h> 119 #include <ctype.h> 120 #include <math.h> 121 #include <sys/fs/zfs.h> 122 #include <libnvpair.h> 123 124 static int ztest_fd_data = -1; 125 static int ztest_fd_rand = -1; 126 127 typedef struct ztest_shared_hdr { 128 uint64_t zh_hdr_size; 129 uint64_t zh_opts_size; 130 uint64_t zh_size; 131 uint64_t zh_stats_size; 132 uint64_t zh_stats_count; 133 uint64_t zh_ds_size; 134 uint64_t zh_ds_count; 135 } ztest_shared_hdr_t; 136 137 static ztest_shared_hdr_t *ztest_shared_hdr; 138 139 typedef struct ztest_shared_opts { 140 char zo_pool[MAXNAMELEN]; 141 char zo_dir[MAXNAMELEN]; 142 char zo_alt_ztest[MAXNAMELEN]; 143 char zo_alt_libpath[MAXNAMELEN]; 144 uint64_t zo_vdevs; 145 uint64_t zo_vdevtime; 146 size_t zo_vdev_size; 147 int zo_ashift; 148 int zo_mirrors; 149 int zo_raidz; 150 int zo_raidz_parity; 151 int zo_datasets; 152 int zo_threads; 153 uint64_t zo_passtime; 154 uint64_t zo_killrate; 155 int zo_verbose; 156 int zo_init; 157 uint64_t zo_time; 158 uint64_t zo_maxloops; 159 uint64_t zo_metaslab_gang_bang; 160 } ztest_shared_opts_t; 161 162 static const ztest_shared_opts_t ztest_opts_defaults = { 163 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, 164 .zo_dir = { '/', 't', 'm', 'p', '\0' }, 165 .zo_alt_ztest = { '\0' }, 166 .zo_alt_libpath = { '\0' }, 167 .zo_vdevs = 5, 168 .zo_ashift = SPA_MINBLOCKSHIFT, 169 .zo_mirrors = 2, 170 .zo_raidz = 4, 171 .zo_raidz_parity = 1, 172 .zo_vdev_size = SPA_MINDEVSIZE, 173 .zo_datasets = 7, 174 .zo_threads = 23, 175 .zo_passtime = 60, /* 60 seconds */ 176 .zo_killrate = 70, /* 70% kill rate */ 177 .zo_verbose = 0, 178 .zo_init = 1, 179 .zo_time = 300, /* 5 minutes */ 180 .zo_maxloops = 50, /* max loops during spa_freeze() */ 181 .zo_metaslab_gang_bang = 32 << 10 182 }; 183 184 extern uint64_t metaslab_gang_bang; 185 extern uint64_t metaslab_df_alloc_threshold; 186 187 static ztest_shared_opts_t *ztest_shared_opts; 188 static ztest_shared_opts_t ztest_opts; 189 190 typedef struct ztest_shared_ds { 191 uint64_t zd_seq; 192 } ztest_shared_ds_t; 193 194 static ztest_shared_ds_t *ztest_shared_ds; 195 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 196 197 #define BT_MAGIC 0x123456789abcdefULL 198 #define MAXFAULTS() \ 199 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) 200 201 enum ztest_io_type { 202 ZTEST_IO_WRITE_TAG, 203 ZTEST_IO_WRITE_PATTERN, 204 ZTEST_IO_WRITE_ZEROES, 205 ZTEST_IO_TRUNCATE, 206 ZTEST_IO_SETATTR, 207 ZTEST_IO_REWRITE, 208 ZTEST_IO_TYPES 209 }; 210 211 typedef struct ztest_block_tag { 212 uint64_t bt_magic; 213 uint64_t bt_objset; 214 uint64_t bt_object; 215 uint64_t bt_offset; 216 uint64_t bt_gen; 217 uint64_t bt_txg; 218 uint64_t bt_crtxg; 219 } ztest_block_tag_t; 220 221 typedef struct bufwad { 222 uint64_t bw_index; 223 uint64_t bw_txg; 224 uint64_t bw_data; 225 } bufwad_t; 226 227 /* 228 * XXX -- fix zfs range locks to be generic so we can use them here. 229 */ 230 typedef enum { 231 RL_READER, 232 RL_WRITER, 233 RL_APPEND 234 } rl_type_t; 235 236 typedef struct rll { 237 void *rll_writer; 238 int rll_readers; 239 mutex_t rll_lock; 240 cond_t rll_cv; 241 } rll_t; 242 243 typedef struct rl { 244 uint64_t rl_object; 245 uint64_t rl_offset; 246 uint64_t rl_size; 247 rll_t *rl_lock; 248 } rl_t; 249 250 #define ZTEST_RANGE_LOCKS 64 251 #define ZTEST_OBJECT_LOCKS 64 252 253 /* 254 * Object descriptor. Used as a template for object lookup/create/remove. 255 */ 256 typedef struct ztest_od { 257 uint64_t od_dir; 258 uint64_t od_object; 259 dmu_object_type_t od_type; 260 dmu_object_type_t od_crtype; 261 uint64_t od_blocksize; 262 uint64_t od_crblocksize; 263 uint64_t od_gen; 264 uint64_t od_crgen; 265 char od_name[MAXNAMELEN]; 266 } ztest_od_t; 267 268 /* 269 * Per-dataset state. 270 */ 271 typedef struct ztest_ds { 272 ztest_shared_ds_t *zd_shared; 273 objset_t *zd_os; 274 rwlock_t zd_zilog_lock; 275 zilog_t *zd_zilog; 276 ztest_od_t *zd_od; /* debugging aid */ 277 char zd_name[MAXNAMELEN]; 278 mutex_t zd_dirobj_lock; 279 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 280 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 281 } ztest_ds_t; 282 283 /* 284 * Per-iteration state. 285 */ 286 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 287 288 typedef struct ztest_info { 289 ztest_func_t *zi_func; /* test function */ 290 uint64_t zi_iters; /* iterations per execution */ 291 uint64_t *zi_interval; /* execute every <interval> seconds */ 292 } ztest_info_t; 293 294 typedef struct ztest_shared_callstate { 295 uint64_t zc_count; /* per-pass count */ 296 uint64_t zc_time; /* per-pass time */ 297 uint64_t zc_next; /* next time to call this function */ 298 } ztest_shared_callstate_t; 299 300 static ztest_shared_callstate_t *ztest_shared_callstate; 301 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 302 303 /* 304 * Note: these aren't static because we want dladdr() to work. 305 */ 306 ztest_func_t ztest_dmu_read_write; 307 ztest_func_t ztest_dmu_write_parallel; 308 ztest_func_t ztest_dmu_object_alloc_free; 309 ztest_func_t ztest_dmu_commit_callbacks; 310 ztest_func_t ztest_zap; 311 ztest_func_t ztest_zap_parallel; 312 ztest_func_t ztest_zil_commit; 313 ztest_func_t ztest_zil_remount; 314 ztest_func_t ztest_dmu_read_write_zcopy; 315 ztest_func_t ztest_dmu_objset_create_destroy; 316 ztest_func_t ztest_dmu_prealloc; 317 ztest_func_t ztest_fzap; 318 ztest_func_t ztest_dmu_snapshot_create_destroy; 319 ztest_func_t ztest_dsl_prop_get_set; 320 ztest_func_t ztest_spa_prop_get_set; 321 ztest_func_t ztest_spa_create_destroy; 322 ztest_func_t ztest_fault_inject; 323 ztest_func_t ztest_ddt_repair; 324 ztest_func_t ztest_dmu_snapshot_hold; 325 ztest_func_t ztest_spa_rename; 326 ztest_func_t ztest_scrub; 327 ztest_func_t ztest_dsl_dataset_promote_busy; 328 ztest_func_t ztest_vdev_attach_detach; 329 ztest_func_t ztest_vdev_LUN_growth; 330 ztest_func_t ztest_vdev_add_remove; 331 ztest_func_t ztest_vdev_aux_add_remove; 332 ztest_func_t ztest_split_pool; 333 ztest_func_t ztest_reguid; 334 ztest_func_t ztest_spa_upgrade; 335 336 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 337 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 338 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 339 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 340 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 341 342 ztest_info_t ztest_info[] = { 343 { ztest_dmu_read_write, 1, &zopt_always }, 344 { ztest_dmu_write_parallel, 10, &zopt_always }, 345 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 346 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 347 { ztest_zap, 30, &zopt_always }, 348 { ztest_zap_parallel, 100, &zopt_always }, 349 { ztest_split_pool, 1, &zopt_always }, 350 { ztest_zil_commit, 1, &zopt_incessant }, 351 { ztest_zil_remount, 1, &zopt_sometimes }, 352 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 353 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 354 { ztest_dsl_prop_get_set, 1, &zopt_often }, 355 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 356 #if 0 357 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 358 #endif 359 { ztest_fzap, 1, &zopt_sometimes }, 360 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 361 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 362 { ztest_fault_inject, 1, &zopt_sometimes }, 363 { ztest_ddt_repair, 1, &zopt_sometimes }, 364 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 365 { ztest_reguid, 1, &zopt_sometimes }, 366 { ztest_spa_rename, 1, &zopt_rarely }, 367 { ztest_scrub, 1, &zopt_rarely }, 368 { ztest_spa_upgrade, 1, &zopt_rarely }, 369 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 370 { ztest_vdev_attach_detach, 1, &zopt_sometimes }, 371 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 372 { ztest_vdev_add_remove, 1, 373 &ztest_opts.zo_vdevtime }, 374 { ztest_vdev_aux_add_remove, 1, 375 &ztest_opts.zo_vdevtime }, 376 }; 377 378 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 379 380 /* 381 * The following struct is used to hold a list of uncalled commit callbacks. 382 * The callbacks are ordered by txg number. 383 */ 384 typedef struct ztest_cb_list { 385 mutex_t zcl_callbacks_lock; 386 list_t zcl_callbacks; 387 } ztest_cb_list_t; 388 389 /* 390 * Stuff we need to share writably between parent and child. 391 */ 392 typedef struct ztest_shared { 393 boolean_t zs_do_init; 394 hrtime_t zs_proc_start; 395 hrtime_t zs_proc_stop; 396 hrtime_t zs_thread_start; 397 hrtime_t zs_thread_stop; 398 hrtime_t zs_thread_kill; 399 uint64_t zs_enospc_count; 400 uint64_t zs_vdev_next_leaf; 401 uint64_t zs_vdev_aux; 402 uint64_t zs_alloc; 403 uint64_t zs_space; 404 uint64_t zs_splits; 405 uint64_t zs_mirrors; 406 uint64_t zs_metaslab_sz; 407 uint64_t zs_metaslab_df_alloc_threshold; 408 uint64_t zs_guid; 409 } ztest_shared_t; 410 411 #define ID_PARALLEL -1ULL 412 413 static char ztest_dev_template[] = "%s/%s.%llua"; 414 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 415 ztest_shared_t *ztest_shared; 416 417 static spa_t *ztest_spa = NULL; 418 static ztest_ds_t *ztest_ds; 419 420 static mutex_t ztest_vdev_lock; 421 422 /* 423 * The ztest_name_lock protects the pool and dataset namespace used by 424 * the individual tests. To modify the namespace, consumers must grab 425 * this lock as writer. Grabbing the lock as reader will ensure that the 426 * namespace does not change while the lock is held. 427 */ 428 static rwlock_t ztest_name_lock; 429 430 static boolean_t ztest_dump_core = B_TRUE; 431 static boolean_t ztest_exiting; 432 433 /* Global commit callback list */ 434 static ztest_cb_list_t zcl; 435 436 enum ztest_object { 437 ZTEST_META_DNODE = 0, 438 ZTEST_DIROBJ, 439 ZTEST_OBJECTS 440 }; 441 442 static void usage(boolean_t) __NORETURN; 443 444 /* 445 * These libumem hooks provide a reasonable set of defaults for the allocator's 446 * debugging facilities. 447 */ 448 const char * 449 _umem_debug_init() 450 { 451 return ("default,verbose"); /* $UMEM_DEBUG setting */ 452 } 453 454 const char * 455 _umem_logging_init(void) 456 { 457 return ("fail,contents"); /* $UMEM_LOGGING setting */ 458 } 459 460 #define FATAL_MSG_SZ 1024 461 462 char *fatal_msg; 463 464 static void 465 fatal(int do_perror, char *message, ...) 466 { 467 va_list args; 468 int save_errno = errno; 469 char buf[FATAL_MSG_SZ]; 470 471 (void) fflush(stdout); 472 473 va_start(args, message); 474 (void) sprintf(buf, "ztest: "); 475 /* LINTED */ 476 (void) vsprintf(buf + strlen(buf), message, args); 477 va_end(args); 478 if (do_perror) { 479 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 480 ": %s", strerror(save_errno)); 481 } 482 (void) fprintf(stderr, "%s\n", buf); 483 fatal_msg = buf; /* to ease debugging */ 484 fflush(NULL); 485 if (ztest_dump_core) 486 abort(); 487 exit(3); 488 } 489 490 static int 491 str2shift(const char *buf) 492 { 493 const char *ends = "BKMGTPEZ"; 494 int i; 495 496 if (buf[0] == '\0') 497 return (0); 498 for (i = 0; i < strlen(ends); i++) { 499 if (toupper(buf[0]) == ends[i]) 500 break; 501 } 502 if (i == strlen(ends)) { 503 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 504 buf); 505 usage(B_FALSE); 506 } 507 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 508 return (10*i); 509 } 510 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 511 usage(B_FALSE); 512 /* NOTREACHED */ 513 } 514 515 static uint64_t 516 nicenumtoull(const char *buf) 517 { 518 char *end; 519 uint64_t val; 520 521 val = strtoull(buf, &end, 0); 522 if (end == buf) { 523 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 524 usage(B_FALSE); 525 } else if (end[0] == '.') { 526 double fval = strtod(buf, &end); 527 fval *= pow(2, str2shift(end)); 528 if (fval > UINT64_MAX) { 529 (void) fprintf(stderr, "ztest: value too large: %s\n", 530 buf); 531 usage(B_FALSE); 532 } 533 val = (uint64_t)fval; 534 } else { 535 int shift = str2shift(end); 536 if (shift >= 64 || (val << shift) >> shift != val) { 537 (void) fprintf(stderr, "ztest: value too large: %s\n", 538 buf); 539 usage(B_FALSE); 540 } 541 val <<= shift; 542 } 543 return (val); 544 } 545 546 static void 547 usage(boolean_t requested) 548 { 549 const ztest_shared_opts_t *zo = &ztest_opts_defaults; 550 551 char nice_vdev_size[10]; 552 char nice_gang_bang[10]; 553 FILE *fp = requested ? stdout : stderr; 554 555 nicenum(zo->zo_vdev_size, nice_vdev_size); 556 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang); 557 558 (void) fprintf(fp, "Usage: %s\n" 559 "\t[-v vdevs (default: %llu)]\n" 560 "\t[-s size_of_each_vdev (default: %s)]\n" 561 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 562 "\t[-m mirror_copies (default: %d)]\n" 563 "\t[-r raidz_disks (default: %d)]\n" 564 "\t[-R raidz_parity (default: %d)]\n" 565 "\t[-d datasets (default: %d)]\n" 566 "\t[-t threads (default: %d)]\n" 567 "\t[-g gang_block_threshold (default: %s)]\n" 568 "\t[-i init_count (default: %d)] initialize pool i times\n" 569 "\t[-k kill_percentage (default: %llu%%)]\n" 570 "\t[-p pool_name (default: %s)]\n" 571 "\t[-f dir (default: %s)] file directory for vdev files\n" 572 "\t[-V] verbose (use multiple times for ever more blather)\n" 573 "\t[-E] use existing pool instead of creating new one\n" 574 "\t[-T time (default: %llu sec)] total run time\n" 575 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 576 "\t[-P passtime (default: %llu sec)] time per pass\n" 577 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n" 578 "\t[-h] (print help)\n" 579 "", 580 zo->zo_pool, 581 (u_longlong_t)zo->zo_vdevs, /* -v */ 582 nice_vdev_size, /* -s */ 583 zo->zo_ashift, /* -a */ 584 zo->zo_mirrors, /* -m */ 585 zo->zo_raidz, /* -r */ 586 zo->zo_raidz_parity, /* -R */ 587 zo->zo_datasets, /* -d */ 588 zo->zo_threads, /* -t */ 589 nice_gang_bang, /* -g */ 590 zo->zo_init, /* -i */ 591 (u_longlong_t)zo->zo_killrate, /* -k */ 592 zo->zo_pool, /* -p */ 593 zo->zo_dir, /* -f */ 594 (u_longlong_t)zo->zo_time, /* -T */ 595 (u_longlong_t)zo->zo_maxloops, /* -F */ 596 (u_longlong_t)zo->zo_passtime); 597 exit(requested ? 0 : 1); 598 } 599 600 static void 601 process_options(int argc, char **argv) 602 { 603 char *path; 604 ztest_shared_opts_t *zo = &ztest_opts; 605 606 int opt; 607 uint64_t value; 608 char altdir[MAXNAMELEN] = { 0 }; 609 610 bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); 611 612 while ((opt = getopt(argc, argv, 613 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) { 614 value = 0; 615 switch (opt) { 616 case 'v': 617 case 's': 618 case 'a': 619 case 'm': 620 case 'r': 621 case 'R': 622 case 'd': 623 case 't': 624 case 'g': 625 case 'i': 626 case 'k': 627 case 'T': 628 case 'P': 629 case 'F': 630 value = nicenumtoull(optarg); 631 } 632 switch (opt) { 633 case 'v': 634 zo->zo_vdevs = value; 635 break; 636 case 's': 637 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 638 break; 639 case 'a': 640 zo->zo_ashift = value; 641 break; 642 case 'm': 643 zo->zo_mirrors = value; 644 break; 645 case 'r': 646 zo->zo_raidz = MAX(1, value); 647 break; 648 case 'R': 649 zo->zo_raidz_parity = MIN(MAX(value, 1), 3); 650 break; 651 case 'd': 652 zo->zo_datasets = MAX(1, value); 653 break; 654 case 't': 655 zo->zo_threads = MAX(1, value); 656 break; 657 case 'g': 658 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, 659 value); 660 break; 661 case 'i': 662 zo->zo_init = value; 663 break; 664 case 'k': 665 zo->zo_killrate = value; 666 break; 667 case 'p': 668 (void) strlcpy(zo->zo_pool, optarg, 669 sizeof (zo->zo_pool)); 670 break; 671 case 'f': 672 path = realpath(optarg, NULL); 673 if (path == NULL) { 674 (void) fprintf(stderr, "error: %s: %s\n", 675 optarg, strerror(errno)); 676 usage(B_FALSE); 677 } else { 678 (void) strlcpy(zo->zo_dir, path, 679 sizeof (zo->zo_dir)); 680 } 681 break; 682 case 'V': 683 zo->zo_verbose++; 684 break; 685 case 'E': 686 zo->zo_init = 0; 687 break; 688 case 'T': 689 zo->zo_time = value; 690 break; 691 case 'P': 692 zo->zo_passtime = MAX(1, value); 693 break; 694 case 'F': 695 zo->zo_maxloops = MAX(1, value); 696 break; 697 case 'B': 698 (void) strlcpy(altdir, optarg, sizeof (altdir)); 699 break; 700 case 'h': 701 usage(B_TRUE); 702 break; 703 case '?': 704 default: 705 usage(B_FALSE); 706 break; 707 } 708 } 709 710 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); 711 712 zo->zo_vdevtime = 713 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 714 UINT64_MAX >> 2); 715 716 if (strlen(altdir) > 0) { 717 char *cmd; 718 char *realaltdir; 719 char *bin; 720 char *ztest; 721 char *isa; 722 int isalen; 723 724 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 725 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 726 727 VERIFY(NULL != realpath(getexecname(), cmd)); 728 if (0 != access(altdir, F_OK)) { 729 ztest_dump_core = B_FALSE; 730 fatal(B_TRUE, "invalid alternate ztest path: %s", 731 altdir); 732 } 733 VERIFY(NULL != realpath(altdir, realaltdir)); 734 735 /* 736 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest". 737 * We want to extract <isa> to determine if we should use 738 * 32 or 64 bit binaries. 739 */ 740 bin = strstr(cmd, "/usr/bin/"); 741 ztest = strstr(bin, "/ztest"); 742 isa = bin + 9; 743 isalen = ztest - isa; 744 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), 745 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); 746 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), 747 "%s/usr/lib/%.*s", realaltdir, isalen, isa); 748 749 if (0 != access(zo->zo_alt_ztest, X_OK)) { 750 ztest_dump_core = B_FALSE; 751 fatal(B_TRUE, "invalid alternate ztest: %s", 752 zo->zo_alt_ztest); 753 } else if (0 != access(zo->zo_alt_libpath, X_OK)) { 754 ztest_dump_core = B_FALSE; 755 fatal(B_TRUE, "invalid alternate lib directory %s", 756 zo->zo_alt_libpath); 757 } 758 759 umem_free(cmd, MAXPATHLEN); 760 umem_free(realaltdir, MAXPATHLEN); 761 } 762 } 763 764 static void 765 ztest_kill(ztest_shared_t *zs) 766 { 767 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 768 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 769 (void) kill(getpid(), SIGKILL); 770 } 771 772 static uint64_t 773 ztest_random(uint64_t range) 774 { 775 uint64_t r; 776 777 ASSERT3S(ztest_fd_rand, >=, 0); 778 779 if (range == 0) 780 return (0); 781 782 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) 783 fatal(1, "short read from /dev/urandom"); 784 785 return (r % range); 786 } 787 788 /* ARGSUSED */ 789 static void 790 ztest_record_enospc(const char *s) 791 { 792 ztest_shared->zs_enospc_count++; 793 } 794 795 static uint64_t 796 ztest_get_ashift(void) 797 { 798 if (ztest_opts.zo_ashift == 0) 799 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 800 return (ztest_opts.zo_ashift); 801 } 802 803 static nvlist_t * 804 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift) 805 { 806 char pathbuf[MAXPATHLEN]; 807 uint64_t vdev; 808 nvlist_t *file; 809 810 if (ashift == 0) 811 ashift = ztest_get_ashift(); 812 813 if (path == NULL) { 814 path = pathbuf; 815 816 if (aux != NULL) { 817 vdev = ztest_shared->zs_vdev_aux; 818 (void) snprintf(path, sizeof (pathbuf), 819 ztest_aux_template, ztest_opts.zo_dir, 820 pool == NULL ? ztest_opts.zo_pool : pool, 821 aux, vdev); 822 } else { 823 vdev = ztest_shared->zs_vdev_next_leaf++; 824 (void) snprintf(path, sizeof (pathbuf), 825 ztest_dev_template, ztest_opts.zo_dir, 826 pool == NULL ? ztest_opts.zo_pool : pool, vdev); 827 } 828 } 829 830 if (size != 0) { 831 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 832 if (fd == -1) 833 fatal(1, "can't open %s", path); 834 if (ftruncate(fd, size) != 0) 835 fatal(1, "can't ftruncate %s", path); 836 (void) close(fd); 837 } 838 839 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 840 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 841 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 842 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 843 844 return (file); 845 } 846 847 static nvlist_t * 848 make_vdev_raidz(char *path, char *aux, char *pool, size_t size, 849 uint64_t ashift, int r) 850 { 851 nvlist_t *raidz, **child; 852 int c; 853 854 if (r < 2) 855 return (make_vdev_file(path, aux, pool, size, ashift)); 856 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 857 858 for (c = 0; c < r; c++) 859 child[c] = make_vdev_file(path, aux, pool, size, ashift); 860 861 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 862 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 863 VDEV_TYPE_RAIDZ) == 0); 864 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 865 ztest_opts.zo_raidz_parity) == 0); 866 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 867 child, r) == 0); 868 869 for (c = 0; c < r; c++) 870 nvlist_free(child[c]); 871 872 umem_free(child, r * sizeof (nvlist_t *)); 873 874 return (raidz); 875 } 876 877 static nvlist_t * 878 make_vdev_mirror(char *path, char *aux, char *pool, size_t size, 879 uint64_t ashift, int r, int m) 880 { 881 nvlist_t *mirror, **child; 882 int c; 883 884 if (m < 1) 885 return (make_vdev_raidz(path, aux, pool, size, ashift, r)); 886 887 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 888 889 for (c = 0; c < m; c++) 890 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r); 891 892 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 893 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 894 VDEV_TYPE_MIRROR) == 0); 895 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 896 child, m) == 0); 897 898 for (c = 0; c < m; c++) 899 nvlist_free(child[c]); 900 901 umem_free(child, m * sizeof (nvlist_t *)); 902 903 return (mirror); 904 } 905 906 static nvlist_t * 907 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift, 908 int log, int r, int m, int t) 909 { 910 nvlist_t *root, **child; 911 int c; 912 913 ASSERT(t > 0); 914 915 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 916 917 for (c = 0; c < t; c++) { 918 child[c] = make_vdev_mirror(path, aux, pool, size, ashift, 919 r, m); 920 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 921 log) == 0); 922 } 923 924 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 925 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 926 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 927 child, t) == 0); 928 929 for (c = 0; c < t; c++) 930 nvlist_free(child[c]); 931 932 umem_free(child, t * sizeof (nvlist_t *)); 933 934 return (root); 935 } 936 937 /* 938 * Find a random spa version. Returns back a random spa version in the 939 * range [initial_version, SPA_VERSION_FEATURES]. 940 */ 941 static uint64_t 942 ztest_random_spa_version(uint64_t initial_version) 943 { 944 uint64_t version = initial_version; 945 946 if (version <= SPA_VERSION_BEFORE_FEATURES) { 947 version = version + 948 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); 949 } 950 951 if (version > SPA_VERSION_BEFORE_FEATURES) 952 version = SPA_VERSION_FEATURES; 953 954 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 955 return (version); 956 } 957 958 static int 959 ztest_random_blocksize(void) 960 { 961 return (1 << (SPA_MINBLOCKSHIFT + 962 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1))); 963 } 964 965 static int 966 ztest_random_ibshift(void) 967 { 968 return (DN_MIN_INDBLKSHIFT + 969 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 970 } 971 972 static uint64_t 973 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 974 { 975 uint64_t top; 976 vdev_t *rvd = spa->spa_root_vdev; 977 vdev_t *tvd; 978 979 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 980 981 do { 982 top = ztest_random(rvd->vdev_children); 983 tvd = rvd->vdev_child[top]; 984 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 985 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 986 987 return (top); 988 } 989 990 static uint64_t 991 ztest_random_dsl_prop(zfs_prop_t prop) 992 { 993 uint64_t value; 994 995 do { 996 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 997 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 998 999 return (value); 1000 } 1001 1002 static int 1003 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 1004 boolean_t inherit) 1005 { 1006 const char *propname = zfs_prop_to_name(prop); 1007 const char *valname; 1008 char setpoint[MAXPATHLEN]; 1009 uint64_t curval; 1010 int error; 1011 1012 error = dsl_prop_set_int(osname, propname, 1013 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); 1014 1015 if (error == ENOSPC) { 1016 ztest_record_enospc(FTAG); 1017 return (error); 1018 } 1019 ASSERT0(error); 1020 1021 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); 1022 1023 if (ztest_opts.zo_verbose >= 6) { 1024 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 1025 (void) printf("%s %s = %s at '%s'\n", 1026 osname, propname, valname, setpoint); 1027 } 1028 1029 return (error); 1030 } 1031 1032 static int 1033 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 1034 { 1035 spa_t *spa = ztest_spa; 1036 nvlist_t *props = NULL; 1037 int error; 1038 1039 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 1040 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 1041 1042 error = spa_prop_set(spa, props); 1043 1044 nvlist_free(props); 1045 1046 if (error == ENOSPC) { 1047 ztest_record_enospc(FTAG); 1048 return (error); 1049 } 1050 ASSERT0(error); 1051 1052 return (error); 1053 } 1054 1055 static void 1056 ztest_rll_init(rll_t *rll) 1057 { 1058 rll->rll_writer = NULL; 1059 rll->rll_readers = 0; 1060 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); 1061 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); 1062 } 1063 1064 static void 1065 ztest_rll_destroy(rll_t *rll) 1066 { 1067 ASSERT(rll->rll_writer == NULL); 1068 ASSERT(rll->rll_readers == 0); 1069 VERIFY(_mutex_destroy(&rll->rll_lock) == 0); 1070 VERIFY(cond_destroy(&rll->rll_cv) == 0); 1071 } 1072 1073 static void 1074 ztest_rll_lock(rll_t *rll, rl_type_t type) 1075 { 1076 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1077 1078 if (type == RL_READER) { 1079 while (rll->rll_writer != NULL) 1080 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1081 rll->rll_readers++; 1082 } else { 1083 while (rll->rll_writer != NULL || rll->rll_readers) 1084 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1085 rll->rll_writer = curthread; 1086 } 1087 1088 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1089 } 1090 1091 static void 1092 ztest_rll_unlock(rll_t *rll) 1093 { 1094 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1095 1096 if (rll->rll_writer) { 1097 ASSERT(rll->rll_readers == 0); 1098 rll->rll_writer = NULL; 1099 } else { 1100 ASSERT(rll->rll_readers != 0); 1101 ASSERT(rll->rll_writer == NULL); 1102 rll->rll_readers--; 1103 } 1104 1105 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1106 VERIFY(cond_broadcast(&rll->rll_cv) == 0); 1107 1108 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1109 } 1110 1111 static void 1112 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1113 { 1114 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1115 1116 ztest_rll_lock(rll, type); 1117 } 1118 1119 static void 1120 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1121 { 1122 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1123 1124 ztest_rll_unlock(rll); 1125 } 1126 1127 static rl_t * 1128 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1129 uint64_t size, rl_type_t type) 1130 { 1131 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1132 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1133 rl_t *rl; 1134 1135 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1136 rl->rl_object = object; 1137 rl->rl_offset = offset; 1138 rl->rl_size = size; 1139 rl->rl_lock = rll; 1140 1141 ztest_rll_lock(rll, type); 1142 1143 return (rl); 1144 } 1145 1146 static void 1147 ztest_range_unlock(rl_t *rl) 1148 { 1149 rll_t *rll = rl->rl_lock; 1150 1151 ztest_rll_unlock(rll); 1152 1153 umem_free(rl, sizeof (*rl)); 1154 } 1155 1156 static void 1157 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1158 { 1159 zd->zd_os = os; 1160 zd->zd_zilog = dmu_objset_zil(os); 1161 zd->zd_shared = szd; 1162 dmu_objset_name(os, zd->zd_name); 1163 1164 if (zd->zd_shared != NULL) 1165 zd->zd_shared->zd_seq = 0; 1166 1167 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0); 1168 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); 1169 1170 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1171 ztest_rll_init(&zd->zd_object_lock[l]); 1172 1173 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1174 ztest_rll_init(&zd->zd_range_lock[l]); 1175 } 1176 1177 static void 1178 ztest_zd_fini(ztest_ds_t *zd) 1179 { 1180 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); 1181 1182 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1183 ztest_rll_destroy(&zd->zd_object_lock[l]); 1184 1185 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1186 ztest_rll_destroy(&zd->zd_range_lock[l]); 1187 } 1188 1189 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1190 1191 static uint64_t 1192 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1193 { 1194 uint64_t txg; 1195 int error; 1196 1197 /* 1198 * Attempt to assign tx to some transaction group. 1199 */ 1200 error = dmu_tx_assign(tx, txg_how); 1201 if (error) { 1202 if (error == ERESTART) { 1203 ASSERT(txg_how == TXG_NOWAIT); 1204 dmu_tx_wait(tx); 1205 } else { 1206 ASSERT3U(error, ==, ENOSPC); 1207 ztest_record_enospc(tag); 1208 } 1209 dmu_tx_abort(tx); 1210 return (0); 1211 } 1212 txg = dmu_tx_get_txg(tx); 1213 ASSERT(txg != 0); 1214 return (txg); 1215 } 1216 1217 static void 1218 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1219 { 1220 uint64_t *ip = buf; 1221 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1222 1223 while (ip < ip_end) 1224 *ip++ = value; 1225 } 1226 1227 static boolean_t 1228 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1229 { 1230 uint64_t *ip = buf; 1231 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1232 uint64_t diff = 0; 1233 1234 while (ip < ip_end) 1235 diff |= (value - *ip++); 1236 1237 return (diff == 0); 1238 } 1239 1240 static void 1241 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1242 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1243 { 1244 bt->bt_magic = BT_MAGIC; 1245 bt->bt_objset = dmu_objset_id(os); 1246 bt->bt_object = object; 1247 bt->bt_offset = offset; 1248 bt->bt_gen = gen; 1249 bt->bt_txg = txg; 1250 bt->bt_crtxg = crtxg; 1251 } 1252 1253 static void 1254 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1255 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1256 { 1257 ASSERT(bt->bt_magic == BT_MAGIC); 1258 ASSERT(bt->bt_objset == dmu_objset_id(os)); 1259 ASSERT(bt->bt_object == object); 1260 ASSERT(bt->bt_offset == offset); 1261 ASSERT(bt->bt_gen <= gen); 1262 ASSERT(bt->bt_txg <= txg); 1263 ASSERT(bt->bt_crtxg == crtxg); 1264 } 1265 1266 static ztest_block_tag_t * 1267 ztest_bt_bonus(dmu_buf_t *db) 1268 { 1269 dmu_object_info_t doi; 1270 ztest_block_tag_t *bt; 1271 1272 dmu_object_info_from_db(db, &doi); 1273 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1274 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1275 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1276 1277 return (bt); 1278 } 1279 1280 /* 1281 * ZIL logging ops 1282 */ 1283 1284 #define lrz_type lr_mode 1285 #define lrz_blocksize lr_uid 1286 #define lrz_ibshift lr_gid 1287 #define lrz_bonustype lr_rdev 1288 #define lrz_bonuslen lr_crtime[1] 1289 1290 static void 1291 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1292 { 1293 char *name = (void *)(lr + 1); /* name follows lr */ 1294 size_t namesize = strlen(name) + 1; 1295 itx_t *itx; 1296 1297 if (zil_replaying(zd->zd_zilog, tx)) 1298 return; 1299 1300 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1301 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1302 sizeof (*lr) + namesize - sizeof (lr_t)); 1303 1304 zil_itx_assign(zd->zd_zilog, itx, tx); 1305 } 1306 1307 static void 1308 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1309 { 1310 char *name = (void *)(lr + 1); /* name follows lr */ 1311 size_t namesize = strlen(name) + 1; 1312 itx_t *itx; 1313 1314 if (zil_replaying(zd->zd_zilog, tx)) 1315 return; 1316 1317 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1318 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1319 sizeof (*lr) + namesize - sizeof (lr_t)); 1320 1321 itx->itx_oid = object; 1322 zil_itx_assign(zd->zd_zilog, itx, tx); 1323 } 1324 1325 static void 1326 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1327 { 1328 itx_t *itx; 1329 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1330 1331 if (zil_replaying(zd->zd_zilog, tx)) 1332 return; 1333 1334 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1335 write_state = WR_INDIRECT; 1336 1337 itx = zil_itx_create(TX_WRITE, 1338 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1339 1340 if (write_state == WR_COPIED && 1341 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1342 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1343 zil_itx_destroy(itx); 1344 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1345 write_state = WR_NEED_COPY; 1346 } 1347 itx->itx_private = zd; 1348 itx->itx_wr_state = write_state; 1349 itx->itx_sync = (ztest_random(8) == 0); 1350 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0); 1351 1352 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1353 sizeof (*lr) - sizeof (lr_t)); 1354 1355 zil_itx_assign(zd->zd_zilog, itx, tx); 1356 } 1357 1358 static void 1359 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1360 { 1361 itx_t *itx; 1362 1363 if (zil_replaying(zd->zd_zilog, tx)) 1364 return; 1365 1366 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1367 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1368 sizeof (*lr) - sizeof (lr_t)); 1369 1370 itx->itx_sync = B_FALSE; 1371 zil_itx_assign(zd->zd_zilog, itx, tx); 1372 } 1373 1374 static void 1375 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1376 { 1377 itx_t *itx; 1378 1379 if (zil_replaying(zd->zd_zilog, tx)) 1380 return; 1381 1382 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1383 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1384 sizeof (*lr) - sizeof (lr_t)); 1385 1386 itx->itx_sync = B_FALSE; 1387 zil_itx_assign(zd->zd_zilog, itx, tx); 1388 } 1389 1390 /* 1391 * ZIL replay ops 1392 */ 1393 static int 1394 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) 1395 { 1396 char *name = (void *)(lr + 1); /* name follows lr */ 1397 objset_t *os = zd->zd_os; 1398 ztest_block_tag_t *bbt; 1399 dmu_buf_t *db; 1400 dmu_tx_t *tx; 1401 uint64_t txg; 1402 int error = 0; 1403 1404 if (byteswap) 1405 byteswap_uint64_array(lr, sizeof (*lr)); 1406 1407 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1408 ASSERT(name[0] != '\0'); 1409 1410 tx = dmu_tx_create(os); 1411 1412 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1413 1414 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1415 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1416 } else { 1417 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1418 } 1419 1420 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1421 if (txg == 0) 1422 return (ENOSPC); 1423 1424 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1425 1426 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1427 if (lr->lr_foid == 0) { 1428 lr->lr_foid = zap_create(os, 1429 lr->lrz_type, lr->lrz_bonustype, 1430 lr->lrz_bonuslen, tx); 1431 } else { 1432 error = zap_create_claim(os, lr->lr_foid, 1433 lr->lrz_type, lr->lrz_bonustype, 1434 lr->lrz_bonuslen, tx); 1435 } 1436 } else { 1437 if (lr->lr_foid == 0) { 1438 lr->lr_foid = dmu_object_alloc(os, 1439 lr->lrz_type, 0, lr->lrz_bonustype, 1440 lr->lrz_bonuslen, tx); 1441 } else { 1442 error = dmu_object_claim(os, lr->lr_foid, 1443 lr->lrz_type, 0, lr->lrz_bonustype, 1444 lr->lrz_bonuslen, tx); 1445 } 1446 } 1447 1448 if (error) { 1449 ASSERT3U(error, ==, EEXIST); 1450 ASSERT(zd->zd_zilog->zl_replay); 1451 dmu_tx_commit(tx); 1452 return (error); 1453 } 1454 1455 ASSERT(lr->lr_foid != 0); 1456 1457 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1458 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1459 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1460 1461 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1462 bbt = ztest_bt_bonus(db); 1463 dmu_buf_will_dirty(db, tx); 1464 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1465 dmu_buf_rele(db, FTAG); 1466 1467 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1468 &lr->lr_foid, tx)); 1469 1470 (void) ztest_log_create(zd, tx, lr); 1471 1472 dmu_tx_commit(tx); 1473 1474 return (0); 1475 } 1476 1477 static int 1478 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) 1479 { 1480 char *name = (void *)(lr + 1); /* name follows lr */ 1481 objset_t *os = zd->zd_os; 1482 dmu_object_info_t doi; 1483 dmu_tx_t *tx; 1484 uint64_t object, txg; 1485 1486 if (byteswap) 1487 byteswap_uint64_array(lr, sizeof (*lr)); 1488 1489 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1490 ASSERT(name[0] != '\0'); 1491 1492 VERIFY3U(0, ==, 1493 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1494 ASSERT(object != 0); 1495 1496 ztest_object_lock(zd, object, RL_WRITER); 1497 1498 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1499 1500 tx = dmu_tx_create(os); 1501 1502 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1503 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1504 1505 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1506 if (txg == 0) { 1507 ztest_object_unlock(zd, object); 1508 return (ENOSPC); 1509 } 1510 1511 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1512 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1513 } else { 1514 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1515 } 1516 1517 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1518 1519 (void) ztest_log_remove(zd, tx, lr, object); 1520 1521 dmu_tx_commit(tx); 1522 1523 ztest_object_unlock(zd, object); 1524 1525 return (0); 1526 } 1527 1528 static int 1529 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) 1530 { 1531 objset_t *os = zd->zd_os; 1532 void *data = lr + 1; /* data follows lr */ 1533 uint64_t offset, length; 1534 ztest_block_tag_t *bt = data; 1535 ztest_block_tag_t *bbt; 1536 uint64_t gen, txg, lrtxg, crtxg; 1537 dmu_object_info_t doi; 1538 dmu_tx_t *tx; 1539 dmu_buf_t *db; 1540 arc_buf_t *abuf = NULL; 1541 rl_t *rl; 1542 1543 if (byteswap) 1544 byteswap_uint64_array(lr, sizeof (*lr)); 1545 1546 offset = lr->lr_offset; 1547 length = lr->lr_length; 1548 1549 /* If it's a dmu_sync() block, write the whole block */ 1550 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1551 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1552 if (length < blocksize) { 1553 offset -= offset % blocksize; 1554 length = blocksize; 1555 } 1556 } 1557 1558 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1559 byteswap_uint64_array(bt, sizeof (*bt)); 1560 1561 if (bt->bt_magic != BT_MAGIC) 1562 bt = NULL; 1563 1564 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1565 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1566 1567 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1568 1569 dmu_object_info_from_db(db, &doi); 1570 1571 bbt = ztest_bt_bonus(db); 1572 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1573 gen = bbt->bt_gen; 1574 crtxg = bbt->bt_crtxg; 1575 lrtxg = lr->lr_common.lrc_txg; 1576 1577 tx = dmu_tx_create(os); 1578 1579 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1580 1581 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1582 P2PHASE(offset, length) == 0) 1583 abuf = dmu_request_arcbuf(db, length); 1584 1585 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1586 if (txg == 0) { 1587 if (abuf != NULL) 1588 dmu_return_arcbuf(abuf); 1589 dmu_buf_rele(db, FTAG); 1590 ztest_range_unlock(rl); 1591 ztest_object_unlock(zd, lr->lr_foid); 1592 return (ENOSPC); 1593 } 1594 1595 if (bt != NULL) { 1596 /* 1597 * Usually, verify the old data before writing new data -- 1598 * but not always, because we also want to verify correct 1599 * behavior when the data was not recently read into cache. 1600 */ 1601 ASSERT(offset % doi.doi_data_block_size == 0); 1602 if (ztest_random(4) != 0) { 1603 int prefetch = ztest_random(2) ? 1604 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1605 ztest_block_tag_t rbt; 1606 1607 VERIFY(dmu_read(os, lr->lr_foid, offset, 1608 sizeof (rbt), &rbt, prefetch) == 0); 1609 if (rbt.bt_magic == BT_MAGIC) { 1610 ztest_bt_verify(&rbt, os, lr->lr_foid, 1611 offset, gen, txg, crtxg); 1612 } 1613 } 1614 1615 /* 1616 * Writes can appear to be newer than the bonus buffer because 1617 * the ztest_get_data() callback does a dmu_read() of the 1618 * open-context data, which may be different than the data 1619 * as it was when the write was generated. 1620 */ 1621 if (zd->zd_zilog->zl_replay) { 1622 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1623 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1624 bt->bt_crtxg); 1625 } 1626 1627 /* 1628 * Set the bt's gen/txg to the bonus buffer's gen/txg 1629 * so that all of the usual ASSERTs will work. 1630 */ 1631 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1632 } 1633 1634 if (abuf == NULL) { 1635 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1636 } else { 1637 bcopy(data, abuf->b_data, length); 1638 dmu_assign_arcbuf(db, offset, abuf, tx); 1639 } 1640 1641 (void) ztest_log_write(zd, tx, lr); 1642 1643 dmu_buf_rele(db, FTAG); 1644 1645 dmu_tx_commit(tx); 1646 1647 ztest_range_unlock(rl); 1648 ztest_object_unlock(zd, lr->lr_foid); 1649 1650 return (0); 1651 } 1652 1653 static int 1654 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) 1655 { 1656 objset_t *os = zd->zd_os; 1657 dmu_tx_t *tx; 1658 uint64_t txg; 1659 rl_t *rl; 1660 1661 if (byteswap) 1662 byteswap_uint64_array(lr, sizeof (*lr)); 1663 1664 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1665 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1666 RL_WRITER); 1667 1668 tx = dmu_tx_create(os); 1669 1670 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1671 1672 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1673 if (txg == 0) { 1674 ztest_range_unlock(rl); 1675 ztest_object_unlock(zd, lr->lr_foid); 1676 return (ENOSPC); 1677 } 1678 1679 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1680 lr->lr_length, tx) == 0); 1681 1682 (void) ztest_log_truncate(zd, tx, lr); 1683 1684 dmu_tx_commit(tx); 1685 1686 ztest_range_unlock(rl); 1687 ztest_object_unlock(zd, lr->lr_foid); 1688 1689 return (0); 1690 } 1691 1692 static int 1693 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) 1694 { 1695 objset_t *os = zd->zd_os; 1696 dmu_tx_t *tx; 1697 dmu_buf_t *db; 1698 ztest_block_tag_t *bbt; 1699 uint64_t txg, lrtxg, crtxg; 1700 1701 if (byteswap) 1702 byteswap_uint64_array(lr, sizeof (*lr)); 1703 1704 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1705 1706 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1707 1708 tx = dmu_tx_create(os); 1709 dmu_tx_hold_bonus(tx, lr->lr_foid); 1710 1711 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1712 if (txg == 0) { 1713 dmu_buf_rele(db, FTAG); 1714 ztest_object_unlock(zd, lr->lr_foid); 1715 return (ENOSPC); 1716 } 1717 1718 bbt = ztest_bt_bonus(db); 1719 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1720 crtxg = bbt->bt_crtxg; 1721 lrtxg = lr->lr_common.lrc_txg; 1722 1723 if (zd->zd_zilog->zl_replay) { 1724 ASSERT(lr->lr_size != 0); 1725 ASSERT(lr->lr_mode != 0); 1726 ASSERT(lrtxg != 0); 1727 } else { 1728 /* 1729 * Randomly change the size and increment the generation. 1730 */ 1731 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1732 sizeof (*bbt); 1733 lr->lr_mode = bbt->bt_gen + 1; 1734 ASSERT(lrtxg == 0); 1735 } 1736 1737 /* 1738 * Verify that the current bonus buffer is not newer than our txg. 1739 */ 1740 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1741 MAX(txg, lrtxg), crtxg); 1742 1743 dmu_buf_will_dirty(db, tx); 1744 1745 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1746 ASSERT3U(lr->lr_size, <=, db->db_size); 1747 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 1748 bbt = ztest_bt_bonus(db); 1749 1750 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1751 1752 dmu_buf_rele(db, FTAG); 1753 1754 (void) ztest_log_setattr(zd, tx, lr); 1755 1756 dmu_tx_commit(tx); 1757 1758 ztest_object_unlock(zd, lr->lr_foid); 1759 1760 return (0); 1761 } 1762 1763 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1764 NULL, /* 0 no such transaction type */ 1765 ztest_replay_create, /* TX_CREATE */ 1766 NULL, /* TX_MKDIR */ 1767 NULL, /* TX_MKXATTR */ 1768 NULL, /* TX_SYMLINK */ 1769 ztest_replay_remove, /* TX_REMOVE */ 1770 NULL, /* TX_RMDIR */ 1771 NULL, /* TX_LINK */ 1772 NULL, /* TX_RENAME */ 1773 ztest_replay_write, /* TX_WRITE */ 1774 ztest_replay_truncate, /* TX_TRUNCATE */ 1775 ztest_replay_setattr, /* TX_SETATTR */ 1776 NULL, /* TX_ACL */ 1777 NULL, /* TX_CREATE_ACL */ 1778 NULL, /* TX_CREATE_ATTR */ 1779 NULL, /* TX_CREATE_ACL_ATTR */ 1780 NULL, /* TX_MKDIR_ACL */ 1781 NULL, /* TX_MKDIR_ATTR */ 1782 NULL, /* TX_MKDIR_ACL_ATTR */ 1783 NULL, /* TX_WRITE2 */ 1784 }; 1785 1786 /* 1787 * ZIL get_data callbacks 1788 */ 1789 1790 static void 1791 ztest_get_done(zgd_t *zgd, int error) 1792 { 1793 ztest_ds_t *zd = zgd->zgd_private; 1794 uint64_t object = zgd->zgd_rl->rl_object; 1795 1796 if (zgd->zgd_db) 1797 dmu_buf_rele(zgd->zgd_db, zgd); 1798 1799 ztest_range_unlock(zgd->zgd_rl); 1800 ztest_object_unlock(zd, object); 1801 1802 if (error == 0 && zgd->zgd_bp) 1803 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1804 1805 umem_free(zgd, sizeof (*zgd)); 1806 } 1807 1808 static int 1809 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1810 { 1811 ztest_ds_t *zd = arg; 1812 objset_t *os = zd->zd_os; 1813 uint64_t object = lr->lr_foid; 1814 uint64_t offset = lr->lr_offset; 1815 uint64_t size = lr->lr_length; 1816 blkptr_t *bp = &lr->lr_blkptr; 1817 uint64_t txg = lr->lr_common.lrc_txg; 1818 uint64_t crtxg; 1819 dmu_object_info_t doi; 1820 dmu_buf_t *db; 1821 zgd_t *zgd; 1822 int error; 1823 1824 ztest_object_lock(zd, object, RL_READER); 1825 error = dmu_bonus_hold(os, object, FTAG, &db); 1826 if (error) { 1827 ztest_object_unlock(zd, object); 1828 return (error); 1829 } 1830 1831 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1832 1833 if (crtxg == 0 || crtxg > txg) { 1834 dmu_buf_rele(db, FTAG); 1835 ztest_object_unlock(zd, object); 1836 return (ENOENT); 1837 } 1838 1839 dmu_object_info_from_db(db, &doi); 1840 dmu_buf_rele(db, FTAG); 1841 db = NULL; 1842 1843 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1844 zgd->zgd_zilog = zd->zd_zilog; 1845 zgd->zgd_private = zd; 1846 1847 if (buf != NULL) { /* immediate write */ 1848 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1849 RL_READER); 1850 1851 error = dmu_read(os, object, offset, size, buf, 1852 DMU_READ_NO_PREFETCH); 1853 ASSERT(error == 0); 1854 } else { 1855 size = doi.doi_data_block_size; 1856 if (ISP2(size)) { 1857 offset = P2ALIGN(offset, size); 1858 } else { 1859 ASSERT(offset < size); 1860 offset = 0; 1861 } 1862 1863 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1864 RL_READER); 1865 1866 error = dmu_buf_hold(os, object, offset, zgd, &db, 1867 DMU_READ_NO_PREFETCH); 1868 1869 if (error == 0) { 1870 blkptr_t *obp = dmu_buf_get_blkptr(db); 1871 if (obp) { 1872 ASSERT(BP_IS_HOLE(bp)); 1873 *bp = *obp; 1874 } 1875 1876 zgd->zgd_db = db; 1877 zgd->zgd_bp = bp; 1878 1879 ASSERT(db->db_offset == offset); 1880 ASSERT(db->db_size == size); 1881 1882 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1883 ztest_get_done, zgd); 1884 1885 if (error == 0) 1886 return (0); 1887 } 1888 } 1889 1890 ztest_get_done(zgd, error); 1891 1892 return (error); 1893 } 1894 1895 static void * 1896 ztest_lr_alloc(size_t lrsize, char *name) 1897 { 1898 char *lr; 1899 size_t namesize = name ? strlen(name) + 1 : 0; 1900 1901 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1902 1903 if (name) 1904 bcopy(name, lr + lrsize, namesize); 1905 1906 return (lr); 1907 } 1908 1909 void 1910 ztest_lr_free(void *lr, size_t lrsize, char *name) 1911 { 1912 size_t namesize = name ? strlen(name) + 1 : 0; 1913 1914 umem_free(lr, lrsize + namesize); 1915 } 1916 1917 /* 1918 * Lookup a bunch of objects. Returns the number of objects not found. 1919 */ 1920 static int 1921 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1922 { 1923 int missing = 0; 1924 int error; 1925 1926 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1927 1928 for (int i = 0; i < count; i++, od++) { 1929 od->od_object = 0; 1930 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1931 sizeof (uint64_t), 1, &od->od_object); 1932 if (error) { 1933 ASSERT(error == ENOENT); 1934 ASSERT(od->od_object == 0); 1935 missing++; 1936 } else { 1937 dmu_buf_t *db; 1938 ztest_block_tag_t *bbt; 1939 dmu_object_info_t doi; 1940 1941 ASSERT(od->od_object != 0); 1942 ASSERT(missing == 0); /* there should be no gaps */ 1943 1944 ztest_object_lock(zd, od->od_object, RL_READER); 1945 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1946 od->od_object, FTAG, &db)); 1947 dmu_object_info_from_db(db, &doi); 1948 bbt = ztest_bt_bonus(db); 1949 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1950 od->od_type = doi.doi_type; 1951 od->od_blocksize = doi.doi_data_block_size; 1952 od->od_gen = bbt->bt_gen; 1953 dmu_buf_rele(db, FTAG); 1954 ztest_object_unlock(zd, od->od_object); 1955 } 1956 } 1957 1958 return (missing); 1959 } 1960 1961 static int 1962 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 1963 { 1964 int missing = 0; 1965 1966 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1967 1968 for (int i = 0; i < count; i++, od++) { 1969 if (missing) { 1970 od->od_object = 0; 1971 missing++; 1972 continue; 1973 } 1974 1975 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1976 1977 lr->lr_doid = od->od_dir; 1978 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 1979 lr->lrz_type = od->od_crtype; 1980 lr->lrz_blocksize = od->od_crblocksize; 1981 lr->lrz_ibshift = ztest_random_ibshift(); 1982 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 1983 lr->lrz_bonuslen = dmu_bonus_max(); 1984 lr->lr_gen = od->od_crgen; 1985 lr->lr_crtime[0] = time(NULL); 1986 1987 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 1988 ASSERT(missing == 0); 1989 od->od_object = 0; 1990 missing++; 1991 } else { 1992 od->od_object = lr->lr_foid; 1993 od->od_type = od->od_crtype; 1994 od->od_blocksize = od->od_crblocksize; 1995 od->od_gen = od->od_crgen; 1996 ASSERT(od->od_object != 0); 1997 } 1998 1999 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2000 } 2001 2002 return (missing); 2003 } 2004 2005 static int 2006 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 2007 { 2008 int missing = 0; 2009 int error; 2010 2011 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 2012 2013 od += count - 1; 2014 2015 for (int i = count - 1; i >= 0; i--, od--) { 2016 if (missing) { 2017 missing++; 2018 continue; 2019 } 2020 2021 /* 2022 * No object was found. 2023 */ 2024 if (od->od_object == 0) 2025 continue; 2026 2027 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2028 2029 lr->lr_doid = od->od_dir; 2030 2031 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 2032 ASSERT3U(error, ==, ENOSPC); 2033 missing++; 2034 } else { 2035 od->od_object = 0; 2036 } 2037 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2038 } 2039 2040 return (missing); 2041 } 2042 2043 static int 2044 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2045 void *data) 2046 { 2047 lr_write_t *lr; 2048 int error; 2049 2050 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2051 2052 lr->lr_foid = object; 2053 lr->lr_offset = offset; 2054 lr->lr_length = size; 2055 lr->lr_blkoff = 0; 2056 BP_ZERO(&lr->lr_blkptr); 2057 2058 bcopy(data, lr + 1, size); 2059 2060 error = ztest_replay_write(zd, lr, B_FALSE); 2061 2062 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2063 2064 return (error); 2065 } 2066 2067 static int 2068 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2069 { 2070 lr_truncate_t *lr; 2071 int error; 2072 2073 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2074 2075 lr->lr_foid = object; 2076 lr->lr_offset = offset; 2077 lr->lr_length = size; 2078 2079 error = ztest_replay_truncate(zd, lr, B_FALSE); 2080 2081 ztest_lr_free(lr, sizeof (*lr), NULL); 2082 2083 return (error); 2084 } 2085 2086 static int 2087 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2088 { 2089 lr_setattr_t *lr; 2090 int error; 2091 2092 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2093 2094 lr->lr_foid = object; 2095 lr->lr_size = 0; 2096 lr->lr_mode = 0; 2097 2098 error = ztest_replay_setattr(zd, lr, B_FALSE); 2099 2100 ztest_lr_free(lr, sizeof (*lr), NULL); 2101 2102 return (error); 2103 } 2104 2105 static void 2106 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2107 { 2108 objset_t *os = zd->zd_os; 2109 dmu_tx_t *tx; 2110 uint64_t txg; 2111 rl_t *rl; 2112 2113 txg_wait_synced(dmu_objset_pool(os), 0); 2114 2115 ztest_object_lock(zd, object, RL_READER); 2116 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2117 2118 tx = dmu_tx_create(os); 2119 2120 dmu_tx_hold_write(tx, object, offset, size); 2121 2122 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2123 2124 if (txg != 0) { 2125 dmu_prealloc(os, object, offset, size, tx); 2126 dmu_tx_commit(tx); 2127 txg_wait_synced(dmu_objset_pool(os), txg); 2128 } else { 2129 (void) dmu_free_long_range(os, object, offset, size); 2130 } 2131 2132 ztest_range_unlock(rl); 2133 ztest_object_unlock(zd, object); 2134 } 2135 2136 static void 2137 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2138 { 2139 int err; 2140 ztest_block_tag_t wbt; 2141 dmu_object_info_t doi; 2142 enum ztest_io_type io_type; 2143 uint64_t blocksize; 2144 void *data; 2145 2146 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 2147 blocksize = doi.doi_data_block_size; 2148 data = umem_alloc(blocksize, UMEM_NOFAIL); 2149 2150 /* 2151 * Pick an i/o type at random, biased toward writing block tags. 2152 */ 2153 io_type = ztest_random(ZTEST_IO_TYPES); 2154 if (ztest_random(2) == 0) 2155 io_type = ZTEST_IO_WRITE_TAG; 2156 2157 (void) rw_rdlock(&zd->zd_zilog_lock); 2158 2159 switch (io_type) { 2160 2161 case ZTEST_IO_WRITE_TAG: 2162 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 2163 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2164 break; 2165 2166 case ZTEST_IO_WRITE_PATTERN: 2167 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2168 if (ztest_random(2) == 0) { 2169 /* 2170 * Induce fletcher2 collisions to ensure that 2171 * zio_ddt_collision() detects and resolves them 2172 * when using fletcher2-verify for deduplication. 2173 */ 2174 ((uint64_t *)data)[0] ^= 1ULL << 63; 2175 ((uint64_t *)data)[4] ^= 1ULL << 63; 2176 } 2177 (void) ztest_write(zd, object, offset, blocksize, data); 2178 break; 2179 2180 case ZTEST_IO_WRITE_ZEROES: 2181 bzero(data, blocksize); 2182 (void) ztest_write(zd, object, offset, blocksize, data); 2183 break; 2184 2185 case ZTEST_IO_TRUNCATE: 2186 (void) ztest_truncate(zd, object, offset, blocksize); 2187 break; 2188 2189 case ZTEST_IO_SETATTR: 2190 (void) ztest_setattr(zd, object); 2191 break; 2192 2193 case ZTEST_IO_REWRITE: 2194 (void) rw_rdlock(&ztest_name_lock); 2195 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2196 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), 2197 B_FALSE); 2198 VERIFY(err == 0 || err == ENOSPC); 2199 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2200 ZFS_PROP_COMPRESSION, 2201 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), 2202 B_FALSE); 2203 VERIFY(err == 0 || err == ENOSPC); 2204 (void) rw_unlock(&ztest_name_lock); 2205 2206 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, 2207 DMU_READ_NO_PREFETCH)); 2208 2209 (void) ztest_write(zd, object, offset, blocksize, data); 2210 break; 2211 } 2212 2213 (void) rw_unlock(&zd->zd_zilog_lock); 2214 2215 umem_free(data, blocksize); 2216 } 2217 2218 /* 2219 * Initialize an object description template. 2220 */ 2221 static void 2222 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2223 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 2224 { 2225 od->od_dir = ZTEST_DIROBJ; 2226 od->od_object = 0; 2227 2228 od->od_crtype = type; 2229 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2230 od->od_crgen = gen; 2231 2232 od->od_type = DMU_OT_NONE; 2233 od->od_blocksize = 0; 2234 od->od_gen = 0; 2235 2236 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2237 tag, (int64_t)id, index); 2238 } 2239 2240 /* 2241 * Lookup or create the objects for a test using the od template. 2242 * If the objects do not all exist, or if 'remove' is specified, 2243 * remove any existing objects and create new ones. Otherwise, 2244 * use the existing objects. 2245 */ 2246 static int 2247 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2248 { 2249 int count = size / sizeof (*od); 2250 int rv = 0; 2251 2252 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2253 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2254 (ztest_remove(zd, od, count) != 0 || 2255 ztest_create(zd, od, count) != 0)) 2256 rv = -1; 2257 zd->zd_od = od; 2258 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2259 2260 return (rv); 2261 } 2262 2263 /* ARGSUSED */ 2264 void 2265 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2266 { 2267 zilog_t *zilog = zd->zd_zilog; 2268 2269 (void) rw_rdlock(&zd->zd_zilog_lock); 2270 2271 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2272 2273 /* 2274 * Remember the committed values in zd, which is in parent/child 2275 * shared memory. If we die, the next iteration of ztest_run() 2276 * will verify that the log really does contain this record. 2277 */ 2278 mutex_enter(&zilog->zl_lock); 2279 ASSERT(zd->zd_shared != NULL); 2280 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2281 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2282 mutex_exit(&zilog->zl_lock); 2283 2284 (void) rw_unlock(&zd->zd_zilog_lock); 2285 } 2286 2287 /* 2288 * This function is designed to simulate the operations that occur during a 2289 * mount/unmount operation. We hold the dataset across these operations in an 2290 * attempt to expose any implicit assumptions about ZIL management. 2291 */ 2292 /* ARGSUSED */ 2293 void 2294 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2295 { 2296 objset_t *os = zd->zd_os; 2297 2298 /* 2299 * We grab the zd_dirobj_lock to ensure that no other thread is 2300 * updating the zil (i.e. adding in-memory log records) and the 2301 * zd_zilog_lock to block any I/O. 2302 */ 2303 VERIFY0(mutex_lock(&zd->zd_dirobj_lock)); 2304 (void) rw_wrlock(&zd->zd_zilog_lock); 2305 2306 /* zfsvfs_teardown() */ 2307 zil_close(zd->zd_zilog); 2308 2309 /* zfsvfs_setup() */ 2310 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); 2311 zil_replay(os, zd, ztest_replay_vector); 2312 2313 (void) rw_unlock(&zd->zd_zilog_lock); 2314 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2315 } 2316 2317 /* 2318 * Verify that we can't destroy an active pool, create an existing pool, 2319 * or create a pool with a bad vdev spec. 2320 */ 2321 /* ARGSUSED */ 2322 void 2323 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2324 { 2325 ztest_shared_opts_t *zo = &ztest_opts; 2326 spa_t *spa; 2327 nvlist_t *nvroot; 2328 2329 /* 2330 * Attempt to create using a bad file. 2331 */ 2332 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2333 VERIFY3U(ENOENT, ==, 2334 spa_create("ztest_bad_file", nvroot, NULL, NULL)); 2335 nvlist_free(nvroot); 2336 2337 /* 2338 * Attempt to create using a bad mirror. 2339 */ 2340 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1); 2341 VERIFY3U(ENOENT, ==, 2342 spa_create("ztest_bad_mirror", nvroot, NULL, NULL)); 2343 nvlist_free(nvroot); 2344 2345 /* 2346 * Attempt to create an existing pool. It shouldn't matter 2347 * what's in the nvroot; we should fail with EEXIST. 2348 */ 2349 (void) rw_rdlock(&ztest_name_lock); 2350 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2351 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL)); 2352 nvlist_free(nvroot); 2353 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); 2354 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); 2355 spa_close(spa, FTAG); 2356 2357 (void) rw_unlock(&ztest_name_lock); 2358 } 2359 2360 /* ARGSUSED */ 2361 void 2362 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) 2363 { 2364 spa_t *spa; 2365 uint64_t initial_version = SPA_VERSION_INITIAL; 2366 uint64_t version, newversion; 2367 nvlist_t *nvroot, *props; 2368 char *name; 2369 2370 VERIFY0(mutex_lock(&ztest_vdev_lock)); 2371 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); 2372 2373 /* 2374 * Clean up from previous runs. 2375 */ 2376 (void) spa_destroy(name); 2377 2378 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 2379 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1); 2380 2381 /* 2382 * If we're configuring a RAIDZ device then make sure that the 2383 * the initial version is capable of supporting that feature. 2384 */ 2385 switch (ztest_opts.zo_raidz_parity) { 2386 case 0: 2387 case 1: 2388 initial_version = SPA_VERSION_INITIAL; 2389 break; 2390 case 2: 2391 initial_version = SPA_VERSION_RAIDZ2; 2392 break; 2393 case 3: 2394 initial_version = SPA_VERSION_RAIDZ3; 2395 break; 2396 } 2397 2398 /* 2399 * Create a pool with a spa version that can be upgraded. Pick 2400 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. 2401 */ 2402 do { 2403 version = ztest_random_spa_version(initial_version); 2404 } while (version > SPA_VERSION_BEFORE_FEATURES); 2405 2406 props = fnvlist_alloc(); 2407 fnvlist_add_uint64(props, 2408 zpool_prop_to_name(ZPOOL_PROP_VERSION), version); 2409 VERIFY0(spa_create(name, nvroot, props, NULL)); 2410 fnvlist_free(nvroot); 2411 fnvlist_free(props); 2412 2413 VERIFY0(spa_open(name, &spa, FTAG)); 2414 VERIFY3U(spa_version(spa), ==, version); 2415 newversion = ztest_random_spa_version(version + 1); 2416 2417 if (ztest_opts.zo_verbose >= 4) { 2418 (void) printf("upgrading spa version from %llu to %llu\n", 2419 (u_longlong_t)version, (u_longlong_t)newversion); 2420 } 2421 2422 spa_upgrade(spa, newversion); 2423 VERIFY3U(spa_version(spa), >, version); 2424 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, 2425 zpool_prop_to_name(ZPOOL_PROP_VERSION))); 2426 spa_close(spa, FTAG); 2427 2428 strfree(name); 2429 VERIFY0(mutex_unlock(&ztest_vdev_lock)); 2430 } 2431 2432 static vdev_t * 2433 vdev_lookup_by_path(vdev_t *vd, const char *path) 2434 { 2435 vdev_t *mvd; 2436 2437 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2438 return (vd); 2439 2440 for (int c = 0; c < vd->vdev_children; c++) 2441 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2442 NULL) 2443 return (mvd); 2444 2445 return (NULL); 2446 } 2447 2448 /* 2449 * Find the first available hole which can be used as a top-level. 2450 */ 2451 int 2452 find_vdev_hole(spa_t *spa) 2453 { 2454 vdev_t *rvd = spa->spa_root_vdev; 2455 int c; 2456 2457 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2458 2459 for (c = 0; c < rvd->vdev_children; c++) { 2460 vdev_t *cvd = rvd->vdev_child[c]; 2461 2462 if (cvd->vdev_ishole) 2463 break; 2464 } 2465 return (c); 2466 } 2467 2468 /* 2469 * Verify that vdev_add() works as expected. 2470 */ 2471 /* ARGSUSED */ 2472 void 2473 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2474 { 2475 ztest_shared_t *zs = ztest_shared; 2476 spa_t *spa = ztest_spa; 2477 uint64_t leaves; 2478 uint64_t guid; 2479 nvlist_t *nvroot; 2480 int error; 2481 2482 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2483 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2484 2485 /* 2486 * SCL_VDEV doesn't protect against spa_passivate_log(), which 2487 * only asserts SCL_ALLOC, and can remove the metaslab class out 2488 * from under this function. 2489 */ 2490 spa_config_enter(spa, SCL_VDEV|SCL_ALLOC, FTAG, RW_READER); 2491 2492 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2493 2494 /* 2495 * If we have slogs then remove them 1/4 of the time. 2496 */ 2497 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2498 /* 2499 * Grab the guid from the head of the log class rotor. 2500 */ 2501 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2502 2503 spa_config_exit(spa, SCL_VDEV|SCL_ALLOC, FTAG); 2504 2505 /* 2506 * We have to grab the zs_name_lock as writer to 2507 * prevent a race between removing a slog (dmu_objset_find) 2508 * and destroying a dataset. Removing the slog will 2509 * grab a reference on the dataset which may cause 2510 * dmu_objset_destroy() to fail with EBUSY thus 2511 * leaving the dataset in an inconsistent state. 2512 */ 2513 VERIFY(rw_wrlock(&ztest_name_lock) == 0); 2514 error = spa_vdev_remove(spa, guid, B_FALSE); 2515 VERIFY(rw_unlock(&ztest_name_lock) == 0); 2516 2517 if (error && error != EEXIST) 2518 fatal(0, "spa_vdev_remove() = %d", error); 2519 } else { 2520 spa_config_exit(spa, SCL_VDEV|SCL_ALLOC, FTAG); 2521 2522 /* 2523 * Make 1/4 of the devices be log devices. 2524 */ 2525 nvroot = make_vdev_root(NULL, NULL, NULL, 2526 ztest_opts.zo_vdev_size, 0, 2527 ztest_random(4) == 0, ztest_opts.zo_raidz, 2528 zs->zs_mirrors, 1); 2529 2530 error = spa_vdev_add(spa, nvroot); 2531 nvlist_free(nvroot); 2532 2533 if (error == ENOSPC) 2534 ztest_record_enospc("spa_vdev_add"); 2535 else if (error != 0) 2536 fatal(0, "spa_vdev_add() = %d", error); 2537 } 2538 2539 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2540 } 2541 2542 /* 2543 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2544 */ 2545 /* ARGSUSED */ 2546 void 2547 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2548 { 2549 ztest_shared_t *zs = ztest_shared; 2550 spa_t *spa = ztest_spa; 2551 vdev_t *rvd = spa->spa_root_vdev; 2552 spa_aux_vdev_t *sav; 2553 char *aux; 2554 uint64_t guid = 0; 2555 int error; 2556 2557 if (ztest_random(2) == 0) { 2558 sav = &spa->spa_spares; 2559 aux = ZPOOL_CONFIG_SPARES; 2560 } else { 2561 sav = &spa->spa_l2cache; 2562 aux = ZPOOL_CONFIG_L2CACHE; 2563 } 2564 2565 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2566 2567 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2568 2569 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2570 /* 2571 * Pick a random device to remove. 2572 */ 2573 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2574 } else { 2575 /* 2576 * Find an unused device we can add. 2577 */ 2578 zs->zs_vdev_aux = 0; 2579 for (;;) { 2580 char path[MAXPATHLEN]; 2581 int c; 2582 (void) snprintf(path, sizeof (path), ztest_aux_template, 2583 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 2584 zs->zs_vdev_aux); 2585 for (c = 0; c < sav->sav_count; c++) 2586 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2587 path) == 0) 2588 break; 2589 if (c == sav->sav_count && 2590 vdev_lookup_by_path(rvd, path) == NULL) 2591 break; 2592 zs->zs_vdev_aux++; 2593 } 2594 } 2595 2596 spa_config_exit(spa, SCL_VDEV, FTAG); 2597 2598 if (guid == 0) { 2599 /* 2600 * Add a new device. 2601 */ 2602 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, 2603 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2604 error = spa_vdev_add(spa, nvroot); 2605 if (error != 0) 2606 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2607 nvlist_free(nvroot); 2608 } else { 2609 /* 2610 * Remove an existing device. Sometimes, dirty its 2611 * vdev state first to make sure we handle removal 2612 * of devices that have pending state changes. 2613 */ 2614 if (ztest_random(2) == 0) 2615 (void) vdev_online(spa, guid, 0, NULL); 2616 2617 error = spa_vdev_remove(spa, guid, B_FALSE); 2618 if (error != 0 && error != EBUSY) 2619 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2620 } 2621 2622 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2623 } 2624 2625 /* 2626 * split a pool if it has mirror tlvdevs 2627 */ 2628 /* ARGSUSED */ 2629 void 2630 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2631 { 2632 ztest_shared_t *zs = ztest_shared; 2633 spa_t *spa = ztest_spa; 2634 vdev_t *rvd = spa->spa_root_vdev; 2635 nvlist_t *tree, **child, *config, *split, **schild; 2636 uint_t c, children, schildren = 0, lastlogid = 0; 2637 int error = 0; 2638 2639 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2640 2641 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2642 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { 2643 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2644 return; 2645 } 2646 2647 /* clean up the old pool, if any */ 2648 (void) spa_destroy("splitp"); 2649 2650 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2651 2652 /* generate a config from the existing config */ 2653 mutex_enter(&spa->spa_props_lock); 2654 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2655 &tree) == 0); 2656 mutex_exit(&spa->spa_props_lock); 2657 2658 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2659 &children) == 0); 2660 2661 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2662 for (c = 0; c < children; c++) { 2663 vdev_t *tvd = rvd->vdev_child[c]; 2664 nvlist_t **mchild; 2665 uint_t mchildren; 2666 2667 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2668 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2669 0) == 0); 2670 VERIFY(nvlist_add_string(schild[schildren], 2671 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2672 VERIFY(nvlist_add_uint64(schild[schildren], 2673 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2674 if (lastlogid == 0) 2675 lastlogid = schildren; 2676 ++schildren; 2677 continue; 2678 } 2679 lastlogid = 0; 2680 VERIFY(nvlist_lookup_nvlist_array(child[c], 2681 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2682 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2683 } 2684 2685 /* OK, create a config that can be used to split */ 2686 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2687 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2688 VDEV_TYPE_ROOT) == 0); 2689 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2690 lastlogid != 0 ? lastlogid : schildren) == 0); 2691 2692 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2693 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2694 2695 for (c = 0; c < schildren; c++) 2696 nvlist_free(schild[c]); 2697 free(schild); 2698 nvlist_free(split); 2699 2700 spa_config_exit(spa, SCL_VDEV, FTAG); 2701 2702 (void) rw_wrlock(&ztest_name_lock); 2703 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2704 (void) rw_unlock(&ztest_name_lock); 2705 2706 nvlist_free(config); 2707 2708 if (error == 0) { 2709 (void) printf("successful split - results:\n"); 2710 mutex_enter(&spa_namespace_lock); 2711 show_pool_stats(spa); 2712 show_pool_stats(spa_lookup("splitp")); 2713 mutex_exit(&spa_namespace_lock); 2714 ++zs->zs_splits; 2715 --zs->zs_mirrors; 2716 } 2717 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2718 2719 } 2720 2721 /* 2722 * Verify that we can attach and detach devices. 2723 */ 2724 /* ARGSUSED */ 2725 void 2726 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2727 { 2728 ztest_shared_t *zs = ztest_shared; 2729 spa_t *spa = ztest_spa; 2730 spa_aux_vdev_t *sav = &spa->spa_spares; 2731 vdev_t *rvd = spa->spa_root_vdev; 2732 vdev_t *oldvd, *newvd, *pvd; 2733 nvlist_t *root; 2734 uint64_t leaves; 2735 uint64_t leaf, top; 2736 uint64_t ashift = ztest_get_ashift(); 2737 uint64_t oldguid, pguid; 2738 size_t oldsize, newsize; 2739 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2740 int replacing; 2741 int oldvd_has_siblings = B_FALSE; 2742 int newvd_is_spare = B_FALSE; 2743 int oldvd_is_log; 2744 int error, expected_error; 2745 2746 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2747 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 2748 2749 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2750 2751 /* 2752 * Decide whether to do an attach or a replace. 2753 */ 2754 replacing = ztest_random(2); 2755 2756 /* 2757 * Pick a random top-level vdev. 2758 */ 2759 top = ztest_random_vdev_top(spa, B_TRUE); 2760 2761 /* 2762 * Pick a random leaf within it. 2763 */ 2764 leaf = ztest_random(leaves); 2765 2766 /* 2767 * Locate this vdev. 2768 */ 2769 oldvd = rvd->vdev_child[top]; 2770 if (zs->zs_mirrors >= 1) { 2771 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2772 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2773 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; 2774 } 2775 if (ztest_opts.zo_raidz > 1) { 2776 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2777 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); 2778 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; 2779 } 2780 2781 /* 2782 * If we're already doing an attach or replace, oldvd may be a 2783 * mirror vdev -- in which case, pick a random child. 2784 */ 2785 while (oldvd->vdev_children != 0) { 2786 oldvd_has_siblings = B_TRUE; 2787 ASSERT(oldvd->vdev_children >= 2); 2788 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2789 } 2790 2791 oldguid = oldvd->vdev_guid; 2792 oldsize = vdev_get_min_asize(oldvd); 2793 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2794 (void) strcpy(oldpath, oldvd->vdev_path); 2795 pvd = oldvd->vdev_parent; 2796 pguid = pvd->vdev_guid; 2797 2798 /* 2799 * If oldvd has siblings, then half of the time, detach it. 2800 */ 2801 if (oldvd_has_siblings && ztest_random(2) == 0) { 2802 spa_config_exit(spa, SCL_VDEV, FTAG); 2803 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2804 if (error != 0 && error != ENODEV && error != EBUSY && 2805 error != ENOTSUP) 2806 fatal(0, "detach (%s) returned %d", oldpath, error); 2807 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2808 return; 2809 } 2810 2811 /* 2812 * For the new vdev, choose with equal probability between the two 2813 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2814 */ 2815 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2816 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2817 newvd_is_spare = B_TRUE; 2818 (void) strcpy(newpath, newvd->vdev_path); 2819 } else { 2820 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2821 ztest_opts.zo_dir, ztest_opts.zo_pool, 2822 top * leaves + leaf); 2823 if (ztest_random(2) == 0) 2824 newpath[strlen(newpath) - 1] = 'b'; 2825 newvd = vdev_lookup_by_path(rvd, newpath); 2826 } 2827 2828 if (newvd) { 2829 newsize = vdev_get_min_asize(newvd); 2830 } else { 2831 /* 2832 * Make newsize a little bigger or smaller than oldsize. 2833 * If it's smaller, the attach should fail. 2834 * If it's larger, and we're doing a replace, 2835 * we should get dynamic LUN growth when we're done. 2836 */ 2837 newsize = 10 * oldsize / (9 + ztest_random(3)); 2838 } 2839 2840 /* 2841 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2842 * unless it's a replace; in that case any non-replacing parent is OK. 2843 * 2844 * If newvd is already part of the pool, it should fail with EBUSY. 2845 * 2846 * If newvd is too small, it should fail with EOVERFLOW. 2847 */ 2848 if (pvd->vdev_ops != &vdev_mirror_ops && 2849 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2850 pvd->vdev_ops == &vdev_replacing_ops || 2851 pvd->vdev_ops == &vdev_spare_ops)) 2852 expected_error = ENOTSUP; 2853 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2854 expected_error = ENOTSUP; 2855 else if (newvd == oldvd) 2856 expected_error = replacing ? 0 : EBUSY; 2857 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2858 expected_error = EBUSY; 2859 else if (newsize < oldsize) 2860 expected_error = EOVERFLOW; 2861 else if (ashift > oldvd->vdev_top->vdev_ashift) 2862 expected_error = EDOM; 2863 else 2864 expected_error = 0; 2865 2866 spa_config_exit(spa, SCL_VDEV, FTAG); 2867 2868 /* 2869 * Build the nvlist describing newpath. 2870 */ 2871 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, 2872 ashift, 0, 0, 0, 1); 2873 2874 error = spa_vdev_attach(spa, oldguid, root, replacing); 2875 2876 nvlist_free(root); 2877 2878 /* 2879 * If our parent was the replacing vdev, but the replace completed, 2880 * then instead of failing with ENOTSUP we may either succeed, 2881 * fail with ENODEV, or fail with EOVERFLOW. 2882 */ 2883 if (expected_error == ENOTSUP && 2884 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2885 expected_error = error; 2886 2887 /* 2888 * If someone grew the LUN, the replacement may be too small. 2889 */ 2890 if (error == EOVERFLOW || error == EBUSY) 2891 expected_error = error; 2892 2893 /* XXX workaround 6690467 */ 2894 if (error != expected_error && expected_error != EBUSY) { 2895 fatal(0, "attach (%s %llu, %s %llu, %d) " 2896 "returned %d, expected %d", 2897 oldpath, (longlong_t)oldsize, newpath, 2898 (longlong_t)newsize, replacing, error, expected_error); 2899 } 2900 2901 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2902 } 2903 2904 /* 2905 * Callback function which expands the physical size of the vdev. 2906 */ 2907 vdev_t * 2908 grow_vdev(vdev_t *vd, void *arg) 2909 { 2910 spa_t *spa = vd->vdev_spa; 2911 size_t *newsize = arg; 2912 size_t fsize; 2913 int fd; 2914 2915 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2916 ASSERT(vd->vdev_ops->vdev_op_leaf); 2917 2918 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2919 return (vd); 2920 2921 fsize = lseek(fd, 0, SEEK_END); 2922 (void) ftruncate(fd, *newsize); 2923 2924 if (ztest_opts.zo_verbose >= 6) { 2925 (void) printf("%s grew from %lu to %lu bytes\n", 2926 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2927 } 2928 (void) close(fd); 2929 return (NULL); 2930 } 2931 2932 /* 2933 * Callback function which expands a given vdev by calling vdev_online(). 2934 */ 2935 /* ARGSUSED */ 2936 vdev_t * 2937 online_vdev(vdev_t *vd, void *arg) 2938 { 2939 spa_t *spa = vd->vdev_spa; 2940 vdev_t *tvd = vd->vdev_top; 2941 uint64_t guid = vd->vdev_guid; 2942 uint64_t generation = spa->spa_config_generation + 1; 2943 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2944 int error; 2945 2946 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2947 ASSERT(vd->vdev_ops->vdev_op_leaf); 2948 2949 /* Calling vdev_online will initialize the new metaslabs */ 2950 spa_config_exit(spa, SCL_STATE, spa); 2951 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2952 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2953 2954 /* 2955 * If vdev_online returned an error or the underlying vdev_open 2956 * failed then we abort the expand. The only way to know that 2957 * vdev_open fails is by checking the returned newstate. 2958 */ 2959 if (error || newstate != VDEV_STATE_HEALTHY) { 2960 if (ztest_opts.zo_verbose >= 5) { 2961 (void) printf("Unable to expand vdev, state %llu, " 2962 "error %d\n", (u_longlong_t)newstate, error); 2963 } 2964 return (vd); 2965 } 2966 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 2967 2968 /* 2969 * Since we dropped the lock we need to ensure that we're 2970 * still talking to the original vdev. It's possible this 2971 * vdev may have been detached/replaced while we were 2972 * trying to online it. 2973 */ 2974 if (generation != spa->spa_config_generation) { 2975 if (ztest_opts.zo_verbose >= 5) { 2976 (void) printf("vdev configuration has changed, " 2977 "guid %llu, state %llu, expected gen %llu, " 2978 "got gen %llu\n", 2979 (u_longlong_t)guid, 2980 (u_longlong_t)tvd->vdev_state, 2981 (u_longlong_t)generation, 2982 (u_longlong_t)spa->spa_config_generation); 2983 } 2984 return (vd); 2985 } 2986 return (NULL); 2987 } 2988 2989 /* 2990 * Traverse the vdev tree calling the supplied function. 2991 * We continue to walk the tree until we either have walked all 2992 * children or we receive a non-NULL return from the callback. 2993 * If a NULL callback is passed, then we just return back the first 2994 * leaf vdev we encounter. 2995 */ 2996 vdev_t * 2997 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 2998 { 2999 if (vd->vdev_ops->vdev_op_leaf) { 3000 if (func == NULL) 3001 return (vd); 3002 else 3003 return (func(vd, arg)); 3004 } 3005 3006 for (uint_t c = 0; c < vd->vdev_children; c++) { 3007 vdev_t *cvd = vd->vdev_child[c]; 3008 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 3009 return (cvd); 3010 } 3011 return (NULL); 3012 } 3013 3014 /* 3015 * Verify that dynamic LUN growth works as expected. 3016 */ 3017 /* ARGSUSED */ 3018 void 3019 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 3020 { 3021 spa_t *spa = ztest_spa; 3022 vdev_t *vd, *tvd; 3023 metaslab_class_t *mc; 3024 metaslab_group_t *mg; 3025 size_t psize, newsize; 3026 uint64_t top; 3027 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 3028 3029 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 3030 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3031 3032 top = ztest_random_vdev_top(spa, B_TRUE); 3033 3034 tvd = spa->spa_root_vdev->vdev_child[top]; 3035 mg = tvd->vdev_mg; 3036 mc = mg->mg_class; 3037 old_ms_count = tvd->vdev_ms_count; 3038 old_class_space = metaslab_class_get_space(mc); 3039 3040 /* 3041 * Determine the size of the first leaf vdev associated with 3042 * our top-level device. 3043 */ 3044 vd = vdev_walk_tree(tvd, NULL, NULL); 3045 ASSERT3P(vd, !=, NULL); 3046 ASSERT(vd->vdev_ops->vdev_op_leaf); 3047 3048 psize = vd->vdev_psize; 3049 3050 /* 3051 * We only try to expand the vdev if it's healthy, less than 4x its 3052 * original size, and it has a valid psize. 3053 */ 3054 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 3055 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 3056 spa_config_exit(spa, SCL_STATE, spa); 3057 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3058 return; 3059 } 3060 ASSERT(psize > 0); 3061 newsize = psize + psize / 8; 3062 ASSERT3U(newsize, >, psize); 3063 3064 if (ztest_opts.zo_verbose >= 6) { 3065 (void) printf("Expanding LUN %s from %lu to %lu\n", 3066 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 3067 } 3068 3069 /* 3070 * Growing the vdev is a two step process: 3071 * 1). expand the physical size (i.e. relabel) 3072 * 2). online the vdev to create the new metaslabs 3073 */ 3074 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 3075 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 3076 tvd->vdev_state != VDEV_STATE_HEALTHY) { 3077 if (ztest_opts.zo_verbose >= 5) { 3078 (void) printf("Could not expand LUN because " 3079 "the vdev configuration changed.\n"); 3080 } 3081 spa_config_exit(spa, SCL_STATE, spa); 3082 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3083 return; 3084 } 3085 3086 spa_config_exit(spa, SCL_STATE, spa); 3087 3088 /* 3089 * Expanding the LUN will update the config asynchronously, 3090 * thus we must wait for the async thread to complete any 3091 * pending tasks before proceeding. 3092 */ 3093 for (;;) { 3094 boolean_t done; 3095 mutex_enter(&spa->spa_async_lock); 3096 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 3097 mutex_exit(&spa->spa_async_lock); 3098 if (done) 3099 break; 3100 txg_wait_synced(spa_get_dsl(spa), 0); 3101 (void) poll(NULL, 0, 100); 3102 } 3103 3104 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3105 3106 tvd = spa->spa_root_vdev->vdev_child[top]; 3107 new_ms_count = tvd->vdev_ms_count; 3108 new_class_space = metaslab_class_get_space(mc); 3109 3110 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 3111 if (ztest_opts.zo_verbose >= 5) { 3112 (void) printf("Could not verify LUN expansion due to " 3113 "intervening vdev offline or remove.\n"); 3114 } 3115 spa_config_exit(spa, SCL_STATE, spa); 3116 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3117 return; 3118 } 3119 3120 /* 3121 * Make sure we were able to grow the vdev. 3122 */ 3123 if (new_ms_count <= old_ms_count) 3124 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 3125 old_ms_count, new_ms_count); 3126 3127 /* 3128 * Make sure we were able to grow the pool. 3129 */ 3130 if (new_class_space <= old_class_space) 3131 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 3132 old_class_space, new_class_space); 3133 3134 if (ztest_opts.zo_verbose >= 5) { 3135 char oldnumbuf[6], newnumbuf[6]; 3136 3137 nicenum(old_class_space, oldnumbuf); 3138 nicenum(new_class_space, newnumbuf); 3139 (void) printf("%s grew from %s to %s\n", 3140 spa->spa_name, oldnumbuf, newnumbuf); 3141 } 3142 3143 spa_config_exit(spa, SCL_STATE, spa); 3144 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3145 } 3146 3147 /* 3148 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 3149 */ 3150 /* ARGSUSED */ 3151 static void 3152 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3153 { 3154 /* 3155 * Create the objects common to all ztest datasets. 3156 */ 3157 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 3158 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 3159 } 3160 3161 static int 3162 ztest_dataset_create(char *dsname) 3163 { 3164 uint64_t zilset = ztest_random(100); 3165 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, 3166 ztest_objset_create_cb, NULL); 3167 3168 if (err || zilset < 80) 3169 return (err); 3170 3171 if (ztest_opts.zo_verbose >= 6) 3172 (void) printf("Setting dataset %s to sync always\n", dsname); 3173 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 3174 ZFS_SYNC_ALWAYS, B_FALSE)); 3175 } 3176 3177 /* ARGSUSED */ 3178 static int 3179 ztest_objset_destroy_cb(const char *name, void *arg) 3180 { 3181 objset_t *os; 3182 dmu_object_info_t doi; 3183 int error; 3184 3185 /* 3186 * Verify that the dataset contains a directory object. 3187 */ 3188 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os)); 3189 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 3190 if (error != ENOENT) { 3191 /* We could have crashed in the middle of destroying it */ 3192 ASSERT0(error); 3193 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 3194 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 3195 } 3196 dmu_objset_disown(os, FTAG); 3197 3198 /* 3199 * Destroy the dataset. 3200 */ 3201 if (strchr(name, '@') != NULL) { 3202 VERIFY0(dsl_destroy_snapshot(name, B_FALSE)); 3203 } else { 3204 VERIFY0(dsl_destroy_head(name)); 3205 } 3206 return (0); 3207 } 3208 3209 static boolean_t 3210 ztest_snapshot_create(char *osname, uint64_t id) 3211 { 3212 char snapname[MAXNAMELEN]; 3213 int error; 3214 3215 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id); 3216 3217 error = dmu_objset_snapshot_one(osname, snapname); 3218 if (error == ENOSPC) { 3219 ztest_record_enospc(FTAG); 3220 return (B_FALSE); 3221 } 3222 if (error != 0 && error != EEXIST) { 3223 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname, 3224 snapname, error); 3225 } 3226 return (B_TRUE); 3227 } 3228 3229 static boolean_t 3230 ztest_snapshot_destroy(char *osname, uint64_t id) 3231 { 3232 char snapname[MAXNAMELEN]; 3233 int error; 3234 3235 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 3236 (u_longlong_t)id); 3237 3238 error = dsl_destroy_snapshot(snapname, B_FALSE); 3239 if (error != 0 && error != ENOENT) 3240 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 3241 return (B_TRUE); 3242 } 3243 3244 /* ARGSUSED */ 3245 void 3246 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 3247 { 3248 ztest_ds_t zdtmp; 3249 int iters; 3250 int error; 3251 objset_t *os, *os2; 3252 char name[MAXNAMELEN]; 3253 zilog_t *zilog; 3254 3255 (void) rd_wrlock(&ztest_name_lock); 3256 3257 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu", 3258 ztest_opts.zo_pool, (u_longlong_t)id); 3259 3260 /* 3261 * If this dataset exists from a previous run, process its replay log 3262 * half of the time. If we don't replay it, then dmu_objset_destroy() 3263 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 3264 */ 3265 if (ztest_random(2) == 0 && 3266 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 3267 ztest_zd_init(&zdtmp, NULL, os); 3268 zil_replay(os, &zdtmp, ztest_replay_vector); 3269 ztest_zd_fini(&zdtmp); 3270 dmu_objset_disown(os, FTAG); 3271 } 3272 3273 /* 3274 * There may be an old instance of the dataset we're about to 3275 * create lying around from a previous run. If so, destroy it 3276 * and all of its snapshots. 3277 */ 3278 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 3279 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 3280 3281 /* 3282 * Verify that the destroyed dataset is no longer in the namespace. 3283 */ 3284 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 3285 FTAG, &os)); 3286 3287 /* 3288 * Verify that we can create a new dataset. 3289 */ 3290 error = ztest_dataset_create(name); 3291 if (error) { 3292 if (error == ENOSPC) { 3293 ztest_record_enospc(FTAG); 3294 (void) rw_unlock(&ztest_name_lock); 3295 return; 3296 } 3297 fatal(0, "dmu_objset_create(%s) = %d", name, error); 3298 } 3299 3300 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 3301 3302 ztest_zd_init(&zdtmp, NULL, os); 3303 3304 /* 3305 * Open the intent log for it. 3306 */ 3307 zilog = zil_open(os, ztest_get_data); 3308 3309 /* 3310 * Put some objects in there, do a little I/O to them, 3311 * and randomly take a couple of snapshots along the way. 3312 */ 3313 iters = ztest_random(5); 3314 for (int i = 0; i < iters; i++) { 3315 ztest_dmu_object_alloc_free(&zdtmp, id); 3316 if (ztest_random(iters) == 0) 3317 (void) ztest_snapshot_create(name, i); 3318 } 3319 3320 /* 3321 * Verify that we cannot create an existing dataset. 3322 */ 3323 VERIFY3U(EEXIST, ==, 3324 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 3325 3326 /* 3327 * Verify that we can hold an objset that is also owned. 3328 */ 3329 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 3330 dmu_objset_rele(os2, FTAG); 3331 3332 /* 3333 * Verify that we cannot own an objset that is already owned. 3334 */ 3335 VERIFY3U(EBUSY, ==, 3336 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 3337 3338 zil_close(zilog); 3339 dmu_objset_disown(os, FTAG); 3340 ztest_zd_fini(&zdtmp); 3341 3342 (void) rw_unlock(&ztest_name_lock); 3343 } 3344 3345 /* 3346 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 3347 */ 3348 void 3349 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 3350 { 3351 (void) rw_rdlock(&ztest_name_lock); 3352 (void) ztest_snapshot_destroy(zd->zd_name, id); 3353 (void) ztest_snapshot_create(zd->zd_name, id); 3354 (void) rw_unlock(&ztest_name_lock); 3355 } 3356 3357 /* 3358 * Cleanup non-standard snapshots and clones. 3359 */ 3360 void 3361 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3362 { 3363 char snap1name[MAXNAMELEN]; 3364 char clone1name[MAXNAMELEN]; 3365 char snap2name[MAXNAMELEN]; 3366 char clone2name[MAXNAMELEN]; 3367 char snap3name[MAXNAMELEN]; 3368 int error; 3369 3370 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3371 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3372 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3373 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3374 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3375 3376 error = dsl_destroy_head(clone2name); 3377 if (error && error != ENOENT) 3378 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error); 3379 error = dsl_destroy_snapshot(snap3name, B_FALSE); 3380 if (error && error != ENOENT) 3381 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error); 3382 error = dsl_destroy_snapshot(snap2name, B_FALSE); 3383 if (error && error != ENOENT) 3384 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error); 3385 error = dsl_destroy_head(clone1name); 3386 if (error && error != ENOENT) 3387 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error); 3388 error = dsl_destroy_snapshot(snap1name, B_FALSE); 3389 if (error && error != ENOENT) 3390 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error); 3391 } 3392 3393 /* 3394 * Verify dsl_dataset_promote handles EBUSY 3395 */ 3396 void 3397 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3398 { 3399 objset_t *os; 3400 char snap1name[MAXNAMELEN]; 3401 char clone1name[MAXNAMELEN]; 3402 char snap2name[MAXNAMELEN]; 3403 char clone2name[MAXNAMELEN]; 3404 char snap3name[MAXNAMELEN]; 3405 char *osname = zd->zd_name; 3406 int error; 3407 3408 (void) rw_rdlock(&ztest_name_lock); 3409 3410 ztest_dsl_dataset_cleanup(osname, id); 3411 3412 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3413 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3414 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3415 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3416 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3417 3418 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 3419 if (error && error != EEXIST) { 3420 if (error == ENOSPC) { 3421 ztest_record_enospc(FTAG); 3422 goto out; 3423 } 3424 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3425 } 3426 3427 error = dmu_objset_clone(clone1name, snap1name); 3428 if (error) { 3429 if (error == ENOSPC) { 3430 ztest_record_enospc(FTAG); 3431 goto out; 3432 } 3433 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3434 } 3435 3436 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 3437 if (error && error != EEXIST) { 3438 if (error == ENOSPC) { 3439 ztest_record_enospc(FTAG); 3440 goto out; 3441 } 3442 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3443 } 3444 3445 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 3446 if (error && error != EEXIST) { 3447 if (error == ENOSPC) { 3448 ztest_record_enospc(FTAG); 3449 goto out; 3450 } 3451 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3452 } 3453 3454 error = dmu_objset_clone(clone2name, snap3name); 3455 if (error) { 3456 if (error == ENOSPC) { 3457 ztest_record_enospc(FTAG); 3458 goto out; 3459 } 3460 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3461 } 3462 3463 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os); 3464 if (error) 3465 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error); 3466 error = dsl_dataset_promote(clone2name, NULL); 3467 if (error != EBUSY) 3468 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3469 error); 3470 dmu_objset_disown(os, FTAG); 3471 3472 out: 3473 ztest_dsl_dataset_cleanup(osname, id); 3474 3475 (void) rw_unlock(&ztest_name_lock); 3476 } 3477 3478 /* 3479 * Verify that dmu_object_{alloc,free} work as expected. 3480 */ 3481 void 3482 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3483 { 3484 ztest_od_t od[4]; 3485 int batchsize = sizeof (od) / sizeof (od[0]); 3486 3487 for (int b = 0; b < batchsize; b++) 3488 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3489 3490 /* 3491 * Destroy the previous batch of objects, create a new batch, 3492 * and do some I/O on the new objects. 3493 */ 3494 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3495 return; 3496 3497 while (ztest_random(4 * batchsize) != 0) 3498 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3499 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3500 } 3501 3502 /* 3503 * Verify that dmu_{read,write} work as expected. 3504 */ 3505 void 3506 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3507 { 3508 objset_t *os = zd->zd_os; 3509 ztest_od_t od[2]; 3510 dmu_tx_t *tx; 3511 int i, freeit, error; 3512 uint64_t n, s, txg; 3513 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3514 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3515 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3516 uint64_t regions = 997; 3517 uint64_t stride = 123456789ULL; 3518 uint64_t width = 40; 3519 int free_percent = 5; 3520 3521 /* 3522 * This test uses two objects, packobj and bigobj, that are always 3523 * updated together (i.e. in the same tx) so that their contents are 3524 * in sync and can be compared. Their contents relate to each other 3525 * in a simple way: packobj is a dense array of 'bufwad' structures, 3526 * while bigobj is a sparse array of the same bufwads. Specifically, 3527 * for any index n, there are three bufwads that should be identical: 3528 * 3529 * packobj, at offset n * sizeof (bufwad_t) 3530 * bigobj, at the head of the nth chunk 3531 * bigobj, at the tail of the nth chunk 3532 * 3533 * The chunk size is arbitrary. It doesn't have to be a power of two, 3534 * and it doesn't have any relation to the object blocksize. 3535 * The only requirement is that it can hold at least two bufwads. 3536 * 3537 * Normally, we write the bufwad to each of these locations. 3538 * However, free_percent of the time we instead write zeroes to 3539 * packobj and perform a dmu_free_range() on bigobj. By comparing 3540 * bigobj to packobj, we can verify that the DMU is correctly 3541 * tracking which parts of an object are allocated and free, 3542 * and that the contents of the allocated blocks are correct. 3543 */ 3544 3545 /* 3546 * Read the directory info. If it's the first time, set things up. 3547 */ 3548 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3549 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3550 3551 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3552 return; 3553 3554 bigobj = od[0].od_object; 3555 packobj = od[1].od_object; 3556 chunksize = od[0].od_gen; 3557 ASSERT(chunksize == od[1].od_gen); 3558 3559 /* 3560 * Prefetch a random chunk of the big object. 3561 * Our aim here is to get some async reads in flight 3562 * for blocks that we may free below; the DMU should 3563 * handle this race correctly. 3564 */ 3565 n = ztest_random(regions) * stride + ztest_random(width); 3566 s = 1 + ztest_random(2 * width - 1); 3567 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize); 3568 3569 /* 3570 * Pick a random index and compute the offsets into packobj and bigobj. 3571 */ 3572 n = ztest_random(regions) * stride + ztest_random(width); 3573 s = 1 + ztest_random(width - 1); 3574 3575 packoff = n * sizeof (bufwad_t); 3576 packsize = s * sizeof (bufwad_t); 3577 3578 bigoff = n * chunksize; 3579 bigsize = s * chunksize; 3580 3581 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3582 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3583 3584 /* 3585 * free_percent of the time, free a range of bigobj rather than 3586 * overwriting it. 3587 */ 3588 freeit = (ztest_random(100) < free_percent); 3589 3590 /* 3591 * Read the current contents of our objects. 3592 */ 3593 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3594 DMU_READ_PREFETCH); 3595 ASSERT0(error); 3596 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3597 DMU_READ_PREFETCH); 3598 ASSERT0(error); 3599 3600 /* 3601 * Get a tx for the mods to both packobj and bigobj. 3602 */ 3603 tx = dmu_tx_create(os); 3604 3605 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3606 3607 if (freeit) 3608 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3609 else 3610 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3611 3612 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3613 if (txg == 0) { 3614 umem_free(packbuf, packsize); 3615 umem_free(bigbuf, bigsize); 3616 return; 3617 } 3618 3619 dmu_object_set_checksum(os, bigobj, 3620 (enum zio_checksum)ztest_random_dsl_prop(ZFS_PROP_CHECKSUM), tx); 3621 3622 dmu_object_set_compress(os, bigobj, 3623 (enum zio_compress)ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), tx); 3624 3625 /* 3626 * For each index from n to n + s, verify that the existing bufwad 3627 * in packobj matches the bufwads at the head and tail of the 3628 * corresponding chunk in bigobj. Then update all three bufwads 3629 * with the new values we want to write out. 3630 */ 3631 for (i = 0; i < s; i++) { 3632 /* LINTED */ 3633 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3634 /* LINTED */ 3635 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3636 /* LINTED */ 3637 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3638 3639 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3640 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3641 3642 if (pack->bw_txg > txg) 3643 fatal(0, "future leak: got %llx, open txg is %llx", 3644 pack->bw_txg, txg); 3645 3646 if (pack->bw_data != 0 && pack->bw_index != n + i) 3647 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3648 pack->bw_index, n, i); 3649 3650 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3651 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3652 3653 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3654 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3655 3656 if (freeit) { 3657 bzero(pack, sizeof (bufwad_t)); 3658 } else { 3659 pack->bw_index = n + i; 3660 pack->bw_txg = txg; 3661 pack->bw_data = 1 + ztest_random(-2ULL); 3662 } 3663 *bigH = *pack; 3664 *bigT = *pack; 3665 } 3666 3667 /* 3668 * We've verified all the old bufwads, and made new ones. 3669 * Now write them out. 3670 */ 3671 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3672 3673 if (freeit) { 3674 if (ztest_opts.zo_verbose >= 7) { 3675 (void) printf("freeing offset %llx size %llx" 3676 " txg %llx\n", 3677 (u_longlong_t)bigoff, 3678 (u_longlong_t)bigsize, 3679 (u_longlong_t)txg); 3680 } 3681 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3682 } else { 3683 if (ztest_opts.zo_verbose >= 7) { 3684 (void) printf("writing offset %llx size %llx" 3685 " txg %llx\n", 3686 (u_longlong_t)bigoff, 3687 (u_longlong_t)bigsize, 3688 (u_longlong_t)txg); 3689 } 3690 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3691 } 3692 3693 dmu_tx_commit(tx); 3694 3695 /* 3696 * Sanity check the stuff we just wrote. 3697 */ 3698 { 3699 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3700 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3701 3702 VERIFY(0 == dmu_read(os, packobj, packoff, 3703 packsize, packcheck, DMU_READ_PREFETCH)); 3704 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3705 bigsize, bigcheck, DMU_READ_PREFETCH)); 3706 3707 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3708 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3709 3710 umem_free(packcheck, packsize); 3711 umem_free(bigcheck, bigsize); 3712 } 3713 3714 umem_free(packbuf, packsize); 3715 umem_free(bigbuf, bigsize); 3716 } 3717 3718 void 3719 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3720 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3721 { 3722 uint64_t i; 3723 bufwad_t *pack; 3724 bufwad_t *bigH; 3725 bufwad_t *bigT; 3726 3727 /* 3728 * For each index from n to n + s, verify that the existing bufwad 3729 * in packobj matches the bufwads at the head and tail of the 3730 * corresponding chunk in bigobj. Then update all three bufwads 3731 * with the new values we want to write out. 3732 */ 3733 for (i = 0; i < s; i++) { 3734 /* LINTED */ 3735 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3736 /* LINTED */ 3737 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3738 /* LINTED */ 3739 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3740 3741 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3742 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3743 3744 if (pack->bw_txg > txg) 3745 fatal(0, "future leak: got %llx, open txg is %llx", 3746 pack->bw_txg, txg); 3747 3748 if (pack->bw_data != 0 && pack->bw_index != n + i) 3749 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3750 pack->bw_index, n, i); 3751 3752 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3753 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3754 3755 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3756 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3757 3758 pack->bw_index = n + i; 3759 pack->bw_txg = txg; 3760 pack->bw_data = 1 + ztest_random(-2ULL); 3761 3762 *bigH = *pack; 3763 *bigT = *pack; 3764 } 3765 } 3766 3767 void 3768 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3769 { 3770 objset_t *os = zd->zd_os; 3771 ztest_od_t od[2]; 3772 dmu_tx_t *tx; 3773 uint64_t i; 3774 int error; 3775 uint64_t n, s, txg; 3776 bufwad_t *packbuf, *bigbuf; 3777 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3778 uint64_t blocksize = ztest_random_blocksize(); 3779 uint64_t chunksize = blocksize; 3780 uint64_t regions = 997; 3781 uint64_t stride = 123456789ULL; 3782 uint64_t width = 9; 3783 dmu_buf_t *bonus_db; 3784 arc_buf_t **bigbuf_arcbufs; 3785 dmu_object_info_t doi; 3786 3787 /* 3788 * This test uses two objects, packobj and bigobj, that are always 3789 * updated together (i.e. in the same tx) so that their contents are 3790 * in sync and can be compared. Their contents relate to each other 3791 * in a simple way: packobj is a dense array of 'bufwad' structures, 3792 * while bigobj is a sparse array of the same bufwads. Specifically, 3793 * for any index n, there are three bufwads that should be identical: 3794 * 3795 * packobj, at offset n * sizeof (bufwad_t) 3796 * bigobj, at the head of the nth chunk 3797 * bigobj, at the tail of the nth chunk 3798 * 3799 * The chunk size is set equal to bigobj block size so that 3800 * dmu_assign_arcbuf() can be tested for object updates. 3801 */ 3802 3803 /* 3804 * Read the directory info. If it's the first time, set things up. 3805 */ 3806 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3807 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3808 3809 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3810 return; 3811 3812 bigobj = od[0].od_object; 3813 packobj = od[1].od_object; 3814 blocksize = od[0].od_blocksize; 3815 chunksize = blocksize; 3816 ASSERT(chunksize == od[1].od_gen); 3817 3818 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3819 VERIFY(ISP2(doi.doi_data_block_size)); 3820 VERIFY(chunksize == doi.doi_data_block_size); 3821 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3822 3823 /* 3824 * Pick a random index and compute the offsets into packobj and bigobj. 3825 */ 3826 n = ztest_random(regions) * stride + ztest_random(width); 3827 s = 1 + ztest_random(width - 1); 3828 3829 packoff = n * sizeof (bufwad_t); 3830 packsize = s * sizeof (bufwad_t); 3831 3832 bigoff = n * chunksize; 3833 bigsize = s * chunksize; 3834 3835 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3836 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3837 3838 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3839 3840 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3841 3842 /* 3843 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3844 * Iteration 1 test zcopy to already referenced dbufs. 3845 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3846 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3847 * Iteration 4 test zcopy when dbuf is no longer dirty. 3848 * Iteration 5 test zcopy when it can't be done. 3849 * Iteration 6 one more zcopy write. 3850 */ 3851 for (i = 0; i < 7; i++) { 3852 uint64_t j; 3853 uint64_t off; 3854 3855 /* 3856 * In iteration 5 (i == 5) use arcbufs 3857 * that don't match bigobj blksz to test 3858 * dmu_assign_arcbuf() when it can't directly 3859 * assign an arcbuf to a dbuf. 3860 */ 3861 for (j = 0; j < s; j++) { 3862 if (i != 5) { 3863 bigbuf_arcbufs[j] = 3864 dmu_request_arcbuf(bonus_db, chunksize); 3865 } else { 3866 bigbuf_arcbufs[2 * j] = 3867 dmu_request_arcbuf(bonus_db, chunksize / 2); 3868 bigbuf_arcbufs[2 * j + 1] = 3869 dmu_request_arcbuf(bonus_db, chunksize / 2); 3870 } 3871 } 3872 3873 /* 3874 * Get a tx for the mods to both packobj and bigobj. 3875 */ 3876 tx = dmu_tx_create(os); 3877 3878 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3879 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3880 3881 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3882 if (txg == 0) { 3883 umem_free(packbuf, packsize); 3884 umem_free(bigbuf, bigsize); 3885 for (j = 0; j < s; j++) { 3886 if (i != 5) { 3887 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3888 } else { 3889 dmu_return_arcbuf( 3890 bigbuf_arcbufs[2 * j]); 3891 dmu_return_arcbuf( 3892 bigbuf_arcbufs[2 * j + 1]); 3893 } 3894 } 3895 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3896 dmu_buf_rele(bonus_db, FTAG); 3897 return; 3898 } 3899 3900 /* 3901 * 50% of the time don't read objects in the 1st iteration to 3902 * test dmu_assign_arcbuf() for the case when there're no 3903 * existing dbufs for the specified offsets. 3904 */ 3905 if (i != 0 || ztest_random(2) != 0) { 3906 error = dmu_read(os, packobj, packoff, 3907 packsize, packbuf, DMU_READ_PREFETCH); 3908 ASSERT0(error); 3909 error = dmu_read(os, bigobj, bigoff, bigsize, 3910 bigbuf, DMU_READ_PREFETCH); 3911 ASSERT0(error); 3912 } 3913 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3914 n, chunksize, txg); 3915 3916 /* 3917 * We've verified all the old bufwads, and made new ones. 3918 * Now write them out. 3919 */ 3920 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3921 if (ztest_opts.zo_verbose >= 7) { 3922 (void) printf("writing offset %llx size %llx" 3923 " txg %llx\n", 3924 (u_longlong_t)bigoff, 3925 (u_longlong_t)bigsize, 3926 (u_longlong_t)txg); 3927 } 3928 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3929 dmu_buf_t *dbt; 3930 if (i != 5) { 3931 bcopy((caddr_t)bigbuf + (off - bigoff), 3932 bigbuf_arcbufs[j]->b_data, chunksize); 3933 } else { 3934 bcopy((caddr_t)bigbuf + (off - bigoff), 3935 bigbuf_arcbufs[2 * j]->b_data, 3936 chunksize / 2); 3937 bcopy((caddr_t)bigbuf + (off - bigoff) + 3938 chunksize / 2, 3939 bigbuf_arcbufs[2 * j + 1]->b_data, 3940 chunksize / 2); 3941 } 3942 3943 if (i == 1) { 3944 VERIFY(dmu_buf_hold(os, bigobj, off, 3945 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 3946 } 3947 if (i != 5) { 3948 dmu_assign_arcbuf(bonus_db, off, 3949 bigbuf_arcbufs[j], tx); 3950 } else { 3951 dmu_assign_arcbuf(bonus_db, off, 3952 bigbuf_arcbufs[2 * j], tx); 3953 dmu_assign_arcbuf(bonus_db, 3954 off + chunksize / 2, 3955 bigbuf_arcbufs[2 * j + 1], tx); 3956 } 3957 if (i == 1) { 3958 dmu_buf_rele(dbt, FTAG); 3959 } 3960 } 3961 dmu_tx_commit(tx); 3962 3963 /* 3964 * Sanity check the stuff we just wrote. 3965 */ 3966 { 3967 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3968 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3969 3970 VERIFY(0 == dmu_read(os, packobj, packoff, 3971 packsize, packcheck, DMU_READ_PREFETCH)); 3972 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3973 bigsize, bigcheck, DMU_READ_PREFETCH)); 3974 3975 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3976 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3977 3978 umem_free(packcheck, packsize); 3979 umem_free(bigcheck, bigsize); 3980 } 3981 if (i == 2) { 3982 txg_wait_open(dmu_objset_pool(os), 0); 3983 } else if (i == 3) { 3984 txg_wait_synced(dmu_objset_pool(os), 0); 3985 } 3986 } 3987 3988 dmu_buf_rele(bonus_db, FTAG); 3989 umem_free(packbuf, packsize); 3990 umem_free(bigbuf, bigsize); 3991 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3992 } 3993 3994 /* ARGSUSED */ 3995 void 3996 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 3997 { 3998 ztest_od_t od[1]; 3999 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 4000 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4001 4002 /* 4003 * Have multiple threads write to large offsets in an object 4004 * to verify that parallel writes to an object -- even to the 4005 * same blocks within the object -- doesn't cause any trouble. 4006 */ 4007 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4008 4009 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4010 return; 4011 4012 while (ztest_random(10) != 0) 4013 ztest_io(zd, od[0].od_object, offset); 4014 } 4015 4016 void 4017 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 4018 { 4019 ztest_od_t od[1]; 4020 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 4021 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4022 uint64_t count = ztest_random(20) + 1; 4023 uint64_t blocksize = ztest_random_blocksize(); 4024 void *data; 4025 4026 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4027 4028 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4029 return; 4030 4031 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 4032 return; 4033 4034 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 4035 4036 data = umem_zalloc(blocksize, UMEM_NOFAIL); 4037 4038 while (ztest_random(count) != 0) { 4039 uint64_t randoff = offset + (ztest_random(count) * blocksize); 4040 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 4041 data) != 0) 4042 break; 4043 while (ztest_random(4) != 0) 4044 ztest_io(zd, od[0].od_object, randoff); 4045 } 4046 4047 umem_free(data, blocksize); 4048 } 4049 4050 /* 4051 * Verify that zap_{create,destroy,add,remove,update} work as expected. 4052 */ 4053 #define ZTEST_ZAP_MIN_INTS 1 4054 #define ZTEST_ZAP_MAX_INTS 4 4055 #define ZTEST_ZAP_MAX_PROPS 1000 4056 4057 void 4058 ztest_zap(ztest_ds_t *zd, uint64_t id) 4059 { 4060 objset_t *os = zd->zd_os; 4061 ztest_od_t od[1]; 4062 uint64_t object; 4063 uint64_t txg, last_txg; 4064 uint64_t value[ZTEST_ZAP_MAX_INTS]; 4065 uint64_t zl_ints, zl_intsize, prop; 4066 int i, ints; 4067 dmu_tx_t *tx; 4068 char propname[100], txgname[100]; 4069 int error; 4070 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 4071 4072 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4073 4074 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4075 return; 4076 4077 object = od[0].od_object; 4078 4079 /* 4080 * Generate a known hash collision, and verify that 4081 * we can lookup and remove both entries. 4082 */ 4083 tx = dmu_tx_create(os); 4084 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4085 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4086 if (txg == 0) 4087 return; 4088 for (i = 0; i < 2; i++) { 4089 value[i] = i; 4090 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 4091 1, &value[i], tx)); 4092 } 4093 for (i = 0; i < 2; i++) { 4094 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 4095 sizeof (uint64_t), 1, &value[i], tx)); 4096 VERIFY3U(0, ==, 4097 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 4098 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4099 ASSERT3U(zl_ints, ==, 1); 4100 } 4101 for (i = 0; i < 2; i++) { 4102 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 4103 } 4104 dmu_tx_commit(tx); 4105 4106 /* 4107 * Generate a buch of random entries. 4108 */ 4109 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 4110 4111 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4112 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4113 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4114 bzero(value, sizeof (value)); 4115 last_txg = 0; 4116 4117 /* 4118 * If these zap entries already exist, validate their contents. 4119 */ 4120 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4121 if (error == 0) { 4122 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4123 ASSERT3U(zl_ints, ==, 1); 4124 4125 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 4126 zl_ints, &last_txg) == 0); 4127 4128 VERIFY(zap_length(os, object, propname, &zl_intsize, 4129 &zl_ints) == 0); 4130 4131 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4132 ASSERT3U(zl_ints, ==, ints); 4133 4134 VERIFY(zap_lookup(os, object, propname, zl_intsize, 4135 zl_ints, value) == 0); 4136 4137 for (i = 0; i < ints; i++) { 4138 ASSERT3U(value[i], ==, last_txg + object + i); 4139 } 4140 } else { 4141 ASSERT3U(error, ==, ENOENT); 4142 } 4143 4144 /* 4145 * Atomically update two entries in our zap object. 4146 * The first is named txg_%llu, and contains the txg 4147 * in which the property was last updated. The second 4148 * is named prop_%llu, and the nth element of its value 4149 * should be txg + object + n. 4150 */ 4151 tx = dmu_tx_create(os); 4152 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4153 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4154 if (txg == 0) 4155 return; 4156 4157 if (last_txg > txg) 4158 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 4159 4160 for (i = 0; i < ints; i++) 4161 value[i] = txg + object + i; 4162 4163 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 4164 1, &txg, tx)); 4165 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 4166 ints, value, tx)); 4167 4168 dmu_tx_commit(tx); 4169 4170 /* 4171 * Remove a random pair of entries. 4172 */ 4173 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4174 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4175 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4176 4177 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4178 4179 if (error == ENOENT) 4180 return; 4181 4182 ASSERT0(error); 4183 4184 tx = dmu_tx_create(os); 4185 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4186 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4187 if (txg == 0) 4188 return; 4189 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 4190 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 4191 dmu_tx_commit(tx); 4192 } 4193 4194 /* 4195 * Testcase to test the upgrading of a microzap to fatzap. 4196 */ 4197 void 4198 ztest_fzap(ztest_ds_t *zd, uint64_t id) 4199 { 4200 objset_t *os = zd->zd_os; 4201 ztest_od_t od[1]; 4202 uint64_t object, txg; 4203 4204 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4205 4206 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4207 return; 4208 4209 object = od[0].od_object; 4210 4211 /* 4212 * Add entries to this ZAP and make sure it spills over 4213 * and gets upgraded to a fatzap. Also, since we are adding 4214 * 2050 entries we should see ptrtbl growth and leaf-block split. 4215 */ 4216 for (int i = 0; i < 2050; i++) { 4217 char name[MAXNAMELEN]; 4218 uint64_t value = i; 4219 dmu_tx_t *tx; 4220 int error; 4221 4222 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 4223 id, value); 4224 4225 tx = dmu_tx_create(os); 4226 dmu_tx_hold_zap(tx, object, B_TRUE, name); 4227 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4228 if (txg == 0) 4229 return; 4230 error = zap_add(os, object, name, sizeof (uint64_t), 1, 4231 &value, tx); 4232 ASSERT(error == 0 || error == EEXIST); 4233 dmu_tx_commit(tx); 4234 } 4235 } 4236 4237 /* ARGSUSED */ 4238 void 4239 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 4240 { 4241 objset_t *os = zd->zd_os; 4242 ztest_od_t od[1]; 4243 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 4244 dmu_tx_t *tx; 4245 int i, namelen, error; 4246 int micro = ztest_random(2); 4247 char name[20], string_value[20]; 4248 void *data; 4249 4250 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 4251 4252 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4253 return; 4254 4255 object = od[0].od_object; 4256 4257 /* 4258 * Generate a random name of the form 'xxx.....' where each 4259 * x is a random printable character and the dots are dots. 4260 * There are 94 such characters, and the name length goes from 4261 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 4262 */ 4263 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 4264 4265 for (i = 0; i < 3; i++) 4266 name[i] = '!' + ztest_random('~' - '!' + 1); 4267 for (; i < namelen - 1; i++) 4268 name[i] = '.'; 4269 name[i] = '\0'; 4270 4271 if ((namelen & 1) || micro) { 4272 wsize = sizeof (txg); 4273 wc = 1; 4274 data = &txg; 4275 } else { 4276 wsize = 1; 4277 wc = namelen; 4278 data = string_value; 4279 } 4280 4281 count = -1ULL; 4282 VERIFY0(zap_count(os, object, &count)); 4283 ASSERT(count != -1ULL); 4284 4285 /* 4286 * Select an operation: length, lookup, add, update, remove. 4287 */ 4288 i = ztest_random(5); 4289 4290 if (i >= 2) { 4291 tx = dmu_tx_create(os); 4292 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4293 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4294 if (txg == 0) 4295 return; 4296 bcopy(name, string_value, namelen); 4297 } else { 4298 tx = NULL; 4299 txg = 0; 4300 bzero(string_value, namelen); 4301 } 4302 4303 switch (i) { 4304 4305 case 0: 4306 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 4307 if (error == 0) { 4308 ASSERT3U(wsize, ==, zl_wsize); 4309 ASSERT3U(wc, ==, zl_wc); 4310 } else { 4311 ASSERT3U(error, ==, ENOENT); 4312 } 4313 break; 4314 4315 case 1: 4316 error = zap_lookup(os, object, name, wsize, wc, data); 4317 if (error == 0) { 4318 if (data == string_value && 4319 bcmp(name, data, namelen) != 0) 4320 fatal(0, "name '%s' != val '%s' len %d", 4321 name, data, namelen); 4322 } else { 4323 ASSERT3U(error, ==, ENOENT); 4324 } 4325 break; 4326 4327 case 2: 4328 error = zap_add(os, object, name, wsize, wc, data, tx); 4329 ASSERT(error == 0 || error == EEXIST); 4330 break; 4331 4332 case 3: 4333 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 4334 break; 4335 4336 case 4: 4337 error = zap_remove(os, object, name, tx); 4338 ASSERT(error == 0 || error == ENOENT); 4339 break; 4340 } 4341 4342 if (tx != NULL) 4343 dmu_tx_commit(tx); 4344 } 4345 4346 /* 4347 * Commit callback data. 4348 */ 4349 typedef struct ztest_cb_data { 4350 list_node_t zcd_node; 4351 uint64_t zcd_txg; 4352 int zcd_expected_err; 4353 boolean_t zcd_added; 4354 boolean_t zcd_called; 4355 spa_t *zcd_spa; 4356 } ztest_cb_data_t; 4357 4358 /* This is the actual commit callback function */ 4359 static void 4360 ztest_commit_callback(void *arg, int error) 4361 { 4362 ztest_cb_data_t *data = arg; 4363 uint64_t synced_txg; 4364 4365 VERIFY(data != NULL); 4366 VERIFY3S(data->zcd_expected_err, ==, error); 4367 VERIFY(!data->zcd_called); 4368 4369 synced_txg = spa_last_synced_txg(data->zcd_spa); 4370 if (data->zcd_txg > synced_txg) 4371 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4372 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4373 synced_txg); 4374 4375 data->zcd_called = B_TRUE; 4376 4377 if (error == ECANCELED) { 4378 ASSERT0(data->zcd_txg); 4379 ASSERT(!data->zcd_added); 4380 4381 /* 4382 * The private callback data should be destroyed here, but 4383 * since we are going to check the zcd_called field after 4384 * dmu_tx_abort(), we will destroy it there. 4385 */ 4386 return; 4387 } 4388 4389 /* Was this callback added to the global callback list? */ 4390 if (!data->zcd_added) 4391 goto out; 4392 4393 ASSERT3U(data->zcd_txg, !=, 0); 4394 4395 /* Remove our callback from the list */ 4396 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4397 list_remove(&zcl.zcl_callbacks, data); 4398 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4399 4400 out: 4401 umem_free(data, sizeof (ztest_cb_data_t)); 4402 } 4403 4404 /* Allocate and initialize callback data structure */ 4405 static ztest_cb_data_t * 4406 ztest_create_cb_data(objset_t *os, uint64_t txg) 4407 { 4408 ztest_cb_data_t *cb_data; 4409 4410 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4411 4412 cb_data->zcd_txg = txg; 4413 cb_data->zcd_spa = dmu_objset_spa(os); 4414 4415 return (cb_data); 4416 } 4417 4418 /* 4419 * If a number of txgs equal to this threshold have been created after a commit 4420 * callback has been registered but not called, then we assume there is an 4421 * implementation bug. 4422 */ 4423 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4424 4425 /* 4426 * Commit callback test. 4427 */ 4428 void 4429 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4430 { 4431 objset_t *os = zd->zd_os; 4432 ztest_od_t od[1]; 4433 dmu_tx_t *tx; 4434 ztest_cb_data_t *cb_data[3], *tmp_cb; 4435 uint64_t old_txg, txg; 4436 int i, error; 4437 4438 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4439 4440 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4441 return; 4442 4443 tx = dmu_tx_create(os); 4444 4445 cb_data[0] = ztest_create_cb_data(os, 0); 4446 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4447 4448 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4449 4450 /* Every once in a while, abort the transaction on purpose */ 4451 if (ztest_random(100) == 0) 4452 error = -1; 4453 4454 if (!error) 4455 error = dmu_tx_assign(tx, TXG_NOWAIT); 4456 4457 txg = error ? 0 : dmu_tx_get_txg(tx); 4458 4459 cb_data[0]->zcd_txg = txg; 4460 cb_data[1] = ztest_create_cb_data(os, txg); 4461 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4462 4463 if (error) { 4464 /* 4465 * It's not a strict requirement to call the registered 4466 * callbacks from inside dmu_tx_abort(), but that's what 4467 * it's supposed to happen in the current implementation 4468 * so we will check for that. 4469 */ 4470 for (i = 0; i < 2; i++) { 4471 cb_data[i]->zcd_expected_err = ECANCELED; 4472 VERIFY(!cb_data[i]->zcd_called); 4473 } 4474 4475 dmu_tx_abort(tx); 4476 4477 for (i = 0; i < 2; i++) { 4478 VERIFY(cb_data[i]->zcd_called); 4479 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4480 } 4481 4482 return; 4483 } 4484 4485 cb_data[2] = ztest_create_cb_data(os, txg); 4486 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4487 4488 /* 4489 * Read existing data to make sure there isn't a future leak. 4490 */ 4491 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4492 &old_txg, DMU_READ_PREFETCH)); 4493 4494 if (old_txg > txg) 4495 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4496 old_txg, txg); 4497 4498 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4499 4500 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4501 4502 /* 4503 * Since commit callbacks don't have any ordering requirement and since 4504 * it is theoretically possible for a commit callback to be called 4505 * after an arbitrary amount of time has elapsed since its txg has been 4506 * synced, it is difficult to reliably determine whether a commit 4507 * callback hasn't been called due to high load or due to a flawed 4508 * implementation. 4509 * 4510 * In practice, we will assume that if after a certain number of txgs a 4511 * commit callback hasn't been called, then most likely there's an 4512 * implementation bug.. 4513 */ 4514 tmp_cb = list_head(&zcl.zcl_callbacks); 4515 if (tmp_cb != NULL && 4516 tmp_cb->zcd_txg > txg - ZTEST_COMMIT_CALLBACK_THRESH) { 4517 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4518 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4519 } 4520 4521 /* 4522 * Let's find the place to insert our callbacks. 4523 * 4524 * Even though the list is ordered by txg, it is possible for the 4525 * insertion point to not be the end because our txg may already be 4526 * quiescing at this point and other callbacks in the open txg 4527 * (from other objsets) may have sneaked in. 4528 */ 4529 tmp_cb = list_tail(&zcl.zcl_callbacks); 4530 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4531 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4532 4533 /* Add the 3 callbacks to the list */ 4534 for (i = 0; i < 3; i++) { 4535 if (tmp_cb == NULL) 4536 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4537 else 4538 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4539 cb_data[i]); 4540 4541 cb_data[i]->zcd_added = B_TRUE; 4542 VERIFY(!cb_data[i]->zcd_called); 4543 4544 tmp_cb = cb_data[i]; 4545 } 4546 4547 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4548 4549 dmu_tx_commit(tx); 4550 } 4551 4552 /* ARGSUSED */ 4553 void 4554 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4555 { 4556 zfs_prop_t proplist[] = { 4557 ZFS_PROP_CHECKSUM, 4558 ZFS_PROP_COMPRESSION, 4559 ZFS_PROP_COPIES, 4560 ZFS_PROP_DEDUP 4561 }; 4562 4563 (void) rw_rdlock(&ztest_name_lock); 4564 4565 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4566 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4567 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4568 4569 (void) rw_unlock(&ztest_name_lock); 4570 } 4571 4572 /* ARGSUSED */ 4573 void 4574 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4575 { 4576 nvlist_t *props = NULL; 4577 4578 (void) rw_rdlock(&ztest_name_lock); 4579 4580 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, 4581 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4582 4583 VERIFY0(spa_prop_get(ztest_spa, &props)); 4584 4585 if (ztest_opts.zo_verbose >= 6) 4586 dump_nvlist(props, 4); 4587 4588 nvlist_free(props); 4589 4590 (void) rw_unlock(&ztest_name_lock); 4591 } 4592 4593 static int 4594 user_release_one(const char *snapname, const char *holdname) 4595 { 4596 nvlist_t *snaps, *holds; 4597 int error; 4598 4599 snaps = fnvlist_alloc(); 4600 holds = fnvlist_alloc(); 4601 fnvlist_add_boolean(holds, holdname); 4602 fnvlist_add_nvlist(snaps, snapname, holds); 4603 fnvlist_free(holds); 4604 error = dsl_dataset_user_release(snaps, NULL); 4605 fnvlist_free(snaps); 4606 return (error); 4607 } 4608 4609 /* 4610 * Test snapshot hold/release and deferred destroy. 4611 */ 4612 void 4613 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4614 { 4615 int error; 4616 objset_t *os = zd->zd_os; 4617 objset_t *origin; 4618 char snapname[100]; 4619 char fullname[100]; 4620 char clonename[100]; 4621 char tag[100]; 4622 char osname[MAXNAMELEN]; 4623 nvlist_t *holds; 4624 4625 (void) rw_rdlock(&ztest_name_lock); 4626 4627 dmu_objset_name(os, osname); 4628 4629 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id); 4630 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); 4631 (void) snprintf(clonename, sizeof (clonename), 4632 "%s/ch1_%llu", osname, id); 4633 (void) snprintf(tag, sizeof (tag), "tag_%llu", id); 4634 4635 /* 4636 * Clean up from any previous run. 4637 */ 4638 error = dsl_destroy_head(clonename); 4639 if (error != ENOENT) 4640 ASSERT0(error); 4641 error = user_release_one(fullname, tag); 4642 if (error != ESRCH && error != ENOENT) 4643 ASSERT0(error); 4644 error = dsl_destroy_snapshot(fullname, B_FALSE); 4645 if (error != ENOENT) 4646 ASSERT0(error); 4647 4648 /* 4649 * Create snapshot, clone it, mark snap for deferred destroy, 4650 * destroy clone, verify snap was also destroyed. 4651 */ 4652 error = dmu_objset_snapshot_one(osname, snapname); 4653 if (error) { 4654 if (error == ENOSPC) { 4655 ztest_record_enospc("dmu_objset_snapshot"); 4656 goto out; 4657 } 4658 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4659 } 4660 4661 error = dmu_objset_clone(clonename, fullname); 4662 if (error) { 4663 if (error == ENOSPC) { 4664 ztest_record_enospc("dmu_objset_clone"); 4665 goto out; 4666 } 4667 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4668 } 4669 4670 error = dsl_destroy_snapshot(fullname, B_TRUE); 4671 if (error) { 4672 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4673 fullname, error); 4674 } 4675 4676 error = dsl_destroy_head(clonename); 4677 if (error) 4678 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error); 4679 4680 error = dmu_objset_hold(fullname, FTAG, &origin); 4681 if (error != ENOENT) 4682 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4683 4684 /* 4685 * Create snapshot, add temporary hold, verify that we can't 4686 * destroy a held snapshot, mark for deferred destroy, 4687 * release hold, verify snapshot was destroyed. 4688 */ 4689 error = dmu_objset_snapshot_one(osname, snapname); 4690 if (error) { 4691 if (error == ENOSPC) { 4692 ztest_record_enospc("dmu_objset_snapshot"); 4693 goto out; 4694 } 4695 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4696 } 4697 4698 holds = fnvlist_alloc(); 4699 fnvlist_add_string(holds, fullname, tag); 4700 error = dsl_dataset_user_hold(holds, 0, NULL); 4701 fnvlist_free(holds); 4702 4703 if (error) 4704 fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag); 4705 4706 error = dsl_destroy_snapshot(fullname, B_FALSE); 4707 if (error != EBUSY) { 4708 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d", 4709 fullname, error); 4710 } 4711 4712 error = dsl_destroy_snapshot(fullname, B_TRUE); 4713 if (error) { 4714 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4715 fullname, error); 4716 } 4717 4718 error = user_release_one(fullname, tag); 4719 if (error) 4720 fatal(0, "user_release_one(%s)", fullname, tag); 4721 4722 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); 4723 4724 out: 4725 (void) rw_unlock(&ztest_name_lock); 4726 } 4727 4728 /* 4729 * Inject random faults into the on-disk data. 4730 */ 4731 /* ARGSUSED */ 4732 void 4733 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4734 { 4735 ztest_shared_t *zs = ztest_shared; 4736 spa_t *spa = ztest_spa; 4737 int fd; 4738 uint64_t offset; 4739 uint64_t leaves; 4740 uint64_t bad = 0x1990c0ffeedecade; 4741 uint64_t top, leaf; 4742 char path0[MAXPATHLEN]; 4743 char pathrand[MAXPATHLEN]; 4744 size_t fsize; 4745 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 4746 int iters = 1000; 4747 int maxfaults; 4748 int mirror_save; 4749 vdev_t *vd0 = NULL; 4750 uint64_t guid0 = 0; 4751 boolean_t islog = B_FALSE; 4752 4753 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4754 maxfaults = MAXFAULTS(); 4755 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 4756 mirror_save = zs->zs_mirrors; 4757 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4758 4759 ASSERT(leaves >= 1); 4760 4761 /* 4762 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4763 */ 4764 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4765 4766 if (ztest_random(2) == 0) { 4767 /* 4768 * Inject errors on a normal data device or slog device. 4769 */ 4770 top = ztest_random_vdev_top(spa, B_TRUE); 4771 leaf = ztest_random(leaves) + zs->zs_splits; 4772 4773 /* 4774 * Generate paths to the first leaf in this top-level vdev, 4775 * and to the random leaf we selected. We'll induce transient 4776 * write failures and random online/offline activity on leaf 0, 4777 * and we'll write random garbage to the randomly chosen leaf. 4778 */ 4779 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4780 ztest_opts.zo_dir, ztest_opts.zo_pool, 4781 top * leaves + zs->zs_splits); 4782 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4783 ztest_opts.zo_dir, ztest_opts.zo_pool, 4784 top * leaves + leaf); 4785 4786 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4787 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4788 islog = B_TRUE; 4789 4790 if (vd0 != NULL && maxfaults != 1) { 4791 /* 4792 * Make vd0 explicitly claim to be unreadable, 4793 * or unwriteable, or reach behind its back 4794 * and close the underlying fd. We can do this if 4795 * maxfaults == 0 because we'll fail and reexecute, 4796 * and we can do it if maxfaults >= 2 because we'll 4797 * have enough redundancy. If maxfaults == 1, the 4798 * combination of this with injection of random data 4799 * corruption below exceeds the pool's fault tolerance. 4800 */ 4801 vdev_file_t *vf = vd0->vdev_tsd; 4802 4803 if (vf != NULL && ztest_random(3) == 0) { 4804 (void) close(vf->vf_vnode->v_fd); 4805 vf->vf_vnode->v_fd = -1; 4806 } else if (ztest_random(2) == 0) { 4807 vd0->vdev_cant_read = B_TRUE; 4808 } else { 4809 vd0->vdev_cant_write = B_TRUE; 4810 } 4811 guid0 = vd0->vdev_guid; 4812 } 4813 } else { 4814 /* 4815 * Inject errors on an l2cache device. 4816 */ 4817 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4818 4819 if (sav->sav_count == 0) { 4820 spa_config_exit(spa, SCL_STATE, FTAG); 4821 return; 4822 } 4823 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4824 guid0 = vd0->vdev_guid; 4825 (void) strcpy(path0, vd0->vdev_path); 4826 (void) strcpy(pathrand, vd0->vdev_path); 4827 4828 leaf = 0; 4829 leaves = 1; 4830 maxfaults = INT_MAX; /* no limit on cache devices */ 4831 } 4832 4833 spa_config_exit(spa, SCL_STATE, FTAG); 4834 4835 /* 4836 * If we can tolerate two or more faults, or we're dealing 4837 * with a slog, randomly online/offline vd0. 4838 */ 4839 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4840 if (ztest_random(10) < 6) { 4841 int flags = (ztest_random(2) == 0 ? 4842 ZFS_OFFLINE_TEMPORARY : 0); 4843 4844 /* 4845 * We have to grab the zs_name_lock as writer to 4846 * prevent a race between offlining a slog and 4847 * destroying a dataset. Offlining the slog will 4848 * grab a reference on the dataset which may cause 4849 * dmu_objset_destroy() to fail with EBUSY thus 4850 * leaving the dataset in an inconsistent state. 4851 */ 4852 if (islog) 4853 (void) rw_wrlock(&ztest_name_lock); 4854 4855 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4856 4857 if (islog) 4858 (void) rw_unlock(&ztest_name_lock); 4859 } else { 4860 /* 4861 * Ideally we would like to be able to randomly 4862 * call vdev_[on|off]line without holding locks 4863 * to force unpredictable failures but the side 4864 * effects of vdev_[on|off]line prevent us from 4865 * doing so. We grab the ztest_vdev_lock here to 4866 * prevent a race between injection testing and 4867 * aux_vdev removal. 4868 */ 4869 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4870 (void) vdev_online(spa, guid0, 0, NULL); 4871 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4872 } 4873 } 4874 4875 if (maxfaults == 0) 4876 return; 4877 4878 /* 4879 * We have at least single-fault tolerance, so inject data corruption. 4880 */ 4881 fd = open(pathrand, O_RDWR); 4882 4883 if (fd == -1) /* we hit a gap in the device namespace */ 4884 return; 4885 4886 fsize = lseek(fd, 0, SEEK_END); 4887 4888 while (--iters != 0) { 4889 offset = ztest_random(fsize / (leaves << bshift)) * 4890 (leaves << bshift) + (leaf << bshift) + 4891 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 4892 4893 if (offset >= fsize) 4894 continue; 4895 4896 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4897 if (mirror_save != zs->zs_mirrors) { 4898 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4899 (void) close(fd); 4900 return; 4901 } 4902 4903 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 4904 fatal(1, "can't inject bad word at 0x%llx in %s", 4905 offset, pathrand); 4906 4907 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4908 4909 if (ztest_opts.zo_verbose >= 7) 4910 (void) printf("injected bad word into %s," 4911 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 4912 } 4913 4914 (void) close(fd); 4915 } 4916 4917 /* 4918 * Verify that DDT repair works as expected. 4919 */ 4920 void 4921 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 4922 { 4923 ztest_shared_t *zs = ztest_shared; 4924 spa_t *spa = ztest_spa; 4925 objset_t *os = zd->zd_os; 4926 ztest_od_t od[1]; 4927 uint64_t object, blocksize, txg, pattern, psize; 4928 enum zio_checksum checksum = spa_dedup_checksum(spa); 4929 dmu_buf_t *db; 4930 dmu_tx_t *tx; 4931 void *buf; 4932 blkptr_t blk; 4933 int copies = 2 * ZIO_DEDUPDITTO_MIN; 4934 4935 blocksize = ztest_random_blocksize(); 4936 blocksize = MIN(blocksize, 2048); /* because we write so many */ 4937 4938 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4939 4940 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4941 return; 4942 4943 /* 4944 * Take the name lock as writer to prevent anyone else from changing 4945 * the pool and dataset properies we need to maintain during this test. 4946 */ 4947 (void) rw_wrlock(&ztest_name_lock); 4948 4949 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 4950 B_FALSE) != 0 || 4951 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 4952 B_FALSE) != 0) { 4953 (void) rw_unlock(&ztest_name_lock); 4954 return; 4955 } 4956 4957 object = od[0].od_object; 4958 blocksize = od[0].od_blocksize; 4959 pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os); 4960 4961 ASSERT(object != 0); 4962 4963 tx = dmu_tx_create(os); 4964 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 4965 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 4966 if (txg == 0) { 4967 (void) rw_unlock(&ztest_name_lock); 4968 return; 4969 } 4970 4971 /* 4972 * Write all the copies of our block. 4973 */ 4974 for (int i = 0; i < copies; i++) { 4975 uint64_t offset = i * blocksize; 4976 int error = dmu_buf_hold(os, object, offset, FTAG, &db, 4977 DMU_READ_NO_PREFETCH); 4978 if (error != 0) { 4979 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u", 4980 os, (long long)object, (long long) offset, error); 4981 } 4982 ASSERT(db->db_offset == offset); 4983 ASSERT(db->db_size == blocksize); 4984 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 4985 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 4986 dmu_buf_will_fill(db, tx); 4987 ztest_pattern_set(db->db_data, db->db_size, pattern); 4988 dmu_buf_rele(db, FTAG); 4989 } 4990 4991 dmu_tx_commit(tx); 4992 txg_wait_synced(spa_get_dsl(spa), txg); 4993 4994 /* 4995 * Find out what block we got. 4996 */ 4997 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db, 4998 DMU_READ_NO_PREFETCH)); 4999 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 5000 dmu_buf_rele(db, FTAG); 5001 5002 /* 5003 * Damage the block. Dedup-ditto will save us when we read it later. 5004 */ 5005 psize = BP_GET_PSIZE(&blk); 5006 buf = zio_buf_alloc(psize); 5007 ztest_pattern_set(buf, psize, ~pattern); 5008 5009 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 5010 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 5011 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 5012 5013 zio_buf_free(buf, psize); 5014 5015 (void) rw_unlock(&ztest_name_lock); 5016 } 5017 5018 /* 5019 * Scrub the pool. 5020 */ 5021 /* ARGSUSED */ 5022 void 5023 ztest_scrub(ztest_ds_t *zd, uint64_t id) 5024 { 5025 spa_t *spa = ztest_spa; 5026 5027 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5028 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 5029 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5030 } 5031 5032 /* 5033 * Change the guid for the pool. 5034 */ 5035 /* ARGSUSED */ 5036 void 5037 ztest_reguid(ztest_ds_t *zd, uint64_t id) 5038 { 5039 spa_t *spa = ztest_spa; 5040 uint64_t orig, load; 5041 int error; 5042 5043 orig = spa_guid(spa); 5044 load = spa_load_guid(spa); 5045 5046 (void) rw_wrlock(&ztest_name_lock); 5047 error = spa_change_guid(spa); 5048 (void) rw_unlock(&ztest_name_lock); 5049 5050 if (error != 0) 5051 return; 5052 5053 if (ztest_opts.zo_verbose >= 4) { 5054 (void) printf("Changed guid old %llu -> %llu\n", 5055 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); 5056 } 5057 5058 VERIFY3U(orig, !=, spa_guid(spa)); 5059 VERIFY3U(load, ==, spa_load_guid(spa)); 5060 } 5061 5062 /* 5063 * Rename the pool to a different name and then rename it back. 5064 */ 5065 /* ARGSUSED */ 5066 void 5067 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 5068 { 5069 char *oldname, *newname; 5070 spa_t *spa; 5071 5072 (void) rw_wrlock(&ztest_name_lock); 5073 5074 oldname = ztest_opts.zo_pool; 5075 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 5076 (void) strcpy(newname, oldname); 5077 (void) strcat(newname, "_tmp"); 5078 5079 /* 5080 * Do the rename 5081 */ 5082 VERIFY3U(0, ==, spa_rename(oldname, newname)); 5083 5084 /* 5085 * Try to open it under the old name, which shouldn't exist 5086 */ 5087 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5088 5089 /* 5090 * Open it under the new name and make sure it's still the same spa_t. 5091 */ 5092 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5093 5094 ASSERT(spa == ztest_spa); 5095 spa_close(spa, FTAG); 5096 5097 /* 5098 * Rename it back to the original 5099 */ 5100 VERIFY3U(0, ==, spa_rename(newname, oldname)); 5101 5102 /* 5103 * Make sure it can still be opened 5104 */ 5105 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5106 5107 ASSERT(spa == ztest_spa); 5108 spa_close(spa, FTAG); 5109 5110 umem_free(newname, strlen(newname) + 1); 5111 5112 (void) rw_unlock(&ztest_name_lock); 5113 } 5114 5115 /* 5116 * Verify pool integrity by running zdb. 5117 */ 5118 static void 5119 ztest_run_zdb(char *pool) 5120 { 5121 int status; 5122 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 5123 char zbuf[1024]; 5124 FILE *fp; 5125 5126 /* LINTED */ 5127 (void) sprintf(zdb, 5128 "zdb -bcc%s%s -U %s %s", 5129 ztest_opts.zo_verbose >= 3 ? "s" : "", 5130 ztest_opts.zo_verbose >= 4 ? "v" : "", 5131 spa_config_path, 5132 pool); 5133 5134 if (ztest_opts.zo_verbose >= 5) 5135 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 5136 5137 fp = popen(zdb, "r"); 5138 5139 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 5140 if (ztest_opts.zo_verbose >= 3) 5141 (void) printf("%s", zbuf); 5142 5143 status = pclose(fp); 5144 5145 if (status == 0) 5146 return; 5147 5148 ztest_dump_core = 0; 5149 if (WIFEXITED(status)) 5150 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 5151 else 5152 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 5153 } 5154 5155 static void 5156 ztest_walk_pool_directory(char *header) 5157 { 5158 spa_t *spa = NULL; 5159 5160 if (ztest_opts.zo_verbose >= 6) 5161 (void) printf("%s\n", header); 5162 5163 mutex_enter(&spa_namespace_lock); 5164 while ((spa = spa_next(spa)) != NULL) 5165 if (ztest_opts.zo_verbose >= 6) 5166 (void) printf("\t%s\n", spa_name(spa)); 5167 mutex_exit(&spa_namespace_lock); 5168 } 5169 5170 static void 5171 ztest_spa_import_export(char *oldname, char *newname) 5172 { 5173 nvlist_t *config, *newconfig; 5174 uint64_t pool_guid; 5175 spa_t *spa; 5176 int error; 5177 5178 if (ztest_opts.zo_verbose >= 4) { 5179 (void) printf("import/export: old = %s, new = %s\n", 5180 oldname, newname); 5181 } 5182 5183 /* 5184 * Clean up from previous runs. 5185 */ 5186 (void) spa_destroy(newname); 5187 5188 /* 5189 * Get the pool's configuration and guid. 5190 */ 5191 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5192 5193 /* 5194 * Kick off a scrub to tickle scrub/export races. 5195 */ 5196 if (ztest_random(2) == 0) 5197 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5198 5199 pool_guid = spa_guid(spa); 5200 spa_close(spa, FTAG); 5201 5202 ztest_walk_pool_directory("pools before export"); 5203 5204 /* 5205 * Export it. 5206 */ 5207 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 5208 5209 ztest_walk_pool_directory("pools after export"); 5210 5211 /* 5212 * Try to import it. 5213 */ 5214 newconfig = spa_tryimport(config); 5215 ASSERT(newconfig != NULL); 5216 nvlist_free(newconfig); 5217 5218 /* 5219 * Import it under the new name. 5220 */ 5221 error = spa_import(newname, config, NULL, 0); 5222 if (error != 0) { 5223 dump_nvlist(config, 0); 5224 fatal(B_FALSE, "couldn't import pool %s as %s: error %u", 5225 oldname, newname, error); 5226 } 5227 5228 ztest_walk_pool_directory("pools after import"); 5229 5230 /* 5231 * Try to import it again -- should fail with EEXIST. 5232 */ 5233 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 5234 5235 /* 5236 * Try to import it under a different name -- should fail with EEXIST. 5237 */ 5238 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 5239 5240 /* 5241 * Verify that the pool is no longer visible under the old name. 5242 */ 5243 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5244 5245 /* 5246 * Verify that we can open and close the pool using the new name. 5247 */ 5248 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5249 ASSERT(pool_guid == spa_guid(spa)); 5250 spa_close(spa, FTAG); 5251 5252 nvlist_free(config); 5253 } 5254 5255 static void 5256 ztest_resume(spa_t *spa) 5257 { 5258 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 5259 (void) printf("resuming from suspended state\n"); 5260 spa_vdev_state_enter(spa, SCL_NONE); 5261 vdev_clear(spa, NULL); 5262 (void) spa_vdev_state_exit(spa, NULL, 0); 5263 (void) zio_resume(spa); 5264 } 5265 5266 static void * 5267 ztest_resume_thread(void *arg) 5268 { 5269 spa_t *spa = arg; 5270 5271 while (!ztest_exiting) { 5272 if (spa_suspended(spa)) 5273 ztest_resume(spa); 5274 (void) poll(NULL, 0, 100); 5275 } 5276 return (NULL); 5277 } 5278 5279 static void * 5280 ztest_deadman_thread(void *arg) 5281 { 5282 ztest_shared_t *zs = arg; 5283 int grace = 300; 5284 hrtime_t delta; 5285 5286 delta = (zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + grace; 5287 5288 (void) poll(NULL, 0, (int)(1000 * delta)); 5289 5290 fatal(0, "failed to complete within %d seconds of deadline", grace); 5291 5292 return (NULL); 5293 } 5294 5295 static void 5296 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 5297 { 5298 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 5299 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 5300 hrtime_t functime = gethrtime(); 5301 5302 for (int i = 0; i < zi->zi_iters; i++) 5303 zi->zi_func(zd, id); 5304 5305 functime = gethrtime() - functime; 5306 5307 atomic_add_64(&zc->zc_count, 1); 5308 atomic_add_64(&zc->zc_time, functime); 5309 5310 if (ztest_opts.zo_verbose >= 4) { 5311 Dl_info dli; 5312 (void) dladdr((void *)zi->zi_func, &dli); 5313 (void) printf("%6.2f sec in %s\n", 5314 (double)functime / NANOSEC, dli.dli_sname); 5315 } 5316 } 5317 5318 static void * 5319 ztest_thread(void *arg) 5320 { 5321 int rand; 5322 uint64_t id = (uintptr_t)arg; 5323 ztest_shared_t *zs = ztest_shared; 5324 uint64_t call_next; 5325 hrtime_t now; 5326 ztest_info_t *zi; 5327 ztest_shared_callstate_t *zc; 5328 5329 while ((now = gethrtime()) < zs->zs_thread_stop) { 5330 /* 5331 * See if it's time to force a crash. 5332 */ 5333 if (now > zs->zs_thread_kill) 5334 ztest_kill(zs); 5335 5336 /* 5337 * If we're getting ENOSPC with some regularity, stop. 5338 */ 5339 if (zs->zs_enospc_count > 10) 5340 break; 5341 5342 /* 5343 * Pick a random function to execute. 5344 */ 5345 rand = ztest_random(ZTEST_FUNCS); 5346 zi = &ztest_info[rand]; 5347 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 5348 call_next = zc->zc_next; 5349 5350 if (now >= call_next && 5351 atomic_cas_64(&zc->zc_next, call_next, call_next + 5352 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 5353 ztest_execute(rand, zi, id); 5354 } 5355 } 5356 5357 return (NULL); 5358 } 5359 5360 static void 5361 ztest_dataset_name(char *dsname, char *pool, int d) 5362 { 5363 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d); 5364 } 5365 5366 static void 5367 ztest_dataset_destroy(int d) 5368 { 5369 char name[MAXNAMELEN]; 5370 5371 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5372 5373 if (ztest_opts.zo_verbose >= 3) 5374 (void) printf("Destroying %s to free up space\n", name); 5375 5376 /* 5377 * Cleanup any non-standard clones and snapshots. In general, 5378 * ztest thread t operates on dataset (t % zopt_datasets), 5379 * so there may be more than one thing to clean up. 5380 */ 5381 for (int t = d; t < ztest_opts.zo_threads; 5382 t += ztest_opts.zo_datasets) { 5383 ztest_dsl_dataset_cleanup(name, t); 5384 } 5385 5386 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 5387 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 5388 } 5389 5390 static void 5391 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 5392 { 5393 uint64_t usedobjs, dirobjs, scratch; 5394 5395 /* 5396 * ZTEST_DIROBJ is the object directory for the entire dataset. 5397 * Therefore, the number of objects in use should equal the 5398 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 5399 * If not, we have an object leak. 5400 * 5401 * Note that we can only check this in ztest_dataset_open(), 5402 * when the open-context and syncing-context values agree. 5403 * That's because zap_count() returns the open-context value, 5404 * while dmu_objset_space() returns the rootbp fill count. 5405 */ 5406 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 5407 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 5408 ASSERT3U(dirobjs + 1, ==, usedobjs); 5409 } 5410 5411 static int 5412 ztest_dataset_open(int d) 5413 { 5414 ztest_ds_t *zd = &ztest_ds[d]; 5415 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 5416 objset_t *os; 5417 zilog_t *zilog; 5418 char name[MAXNAMELEN]; 5419 int error; 5420 5421 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5422 5423 (void) rw_wrlock(&ztest_name_lock); 5424 5425 error = ztest_dataset_create(name); 5426 if (error == ENOSPC) { 5427 (void) rw_unlock(&ztest_name_lock); 5428 ztest_record_enospc(FTAG); 5429 return (error); 5430 } 5431 ASSERT(error == 0 || error == EEXIST); 5432 5433 VERIFY0(dmu_objset_hold(name, zd, &os)); 5434 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 5435 (void) rw_unlock(&ztest_name_lock); 5436 5437 zilog = zd->zd_zilog; 5438 5439 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5440 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5441 fatal(0, "missing log records: claimed %llu < committed %llu", 5442 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5443 5444 ztest_dataset_dirobj_verify(zd); 5445 5446 zil_replay(os, zd, ztest_replay_vector); 5447 5448 ztest_dataset_dirobj_verify(zd); 5449 5450 if (ztest_opts.zo_verbose >= 6) 5451 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5452 zd->zd_name, 5453 (u_longlong_t)zilog->zl_parse_blk_count, 5454 (u_longlong_t)zilog->zl_parse_lr_count, 5455 (u_longlong_t)zilog->zl_replaying_seq); 5456 5457 zilog = zil_open(os, ztest_get_data); 5458 5459 if (zilog->zl_replaying_seq != 0 && 5460 zilog->zl_replaying_seq < committed_seq) 5461 fatal(0, "missing log records: replayed %llu < committed %llu", 5462 zilog->zl_replaying_seq, committed_seq); 5463 5464 return (0); 5465 } 5466 5467 static void 5468 ztest_dataset_close(int d) 5469 { 5470 ztest_ds_t *zd = &ztest_ds[d]; 5471 5472 zil_close(zd->zd_zilog); 5473 dmu_objset_disown(zd->zd_os, zd); 5474 5475 ztest_zd_fini(zd); 5476 } 5477 5478 /* 5479 * Kick off threads to run tests on all datasets in parallel. 5480 */ 5481 static void 5482 ztest_run(ztest_shared_t *zs) 5483 { 5484 thread_t *tid; 5485 spa_t *spa; 5486 objset_t *os; 5487 thread_t resume_tid; 5488 int error; 5489 5490 ztest_exiting = B_FALSE; 5491 5492 /* 5493 * Initialize parent/child shared state. 5494 */ 5495 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5496 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5497 5498 zs->zs_thread_start = gethrtime(); 5499 zs->zs_thread_stop = 5500 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 5501 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5502 zs->zs_thread_kill = zs->zs_thread_stop; 5503 if (ztest_random(100) < ztest_opts.zo_killrate) { 5504 zs->zs_thread_kill -= 5505 ztest_random(ztest_opts.zo_passtime * NANOSEC); 5506 } 5507 5508 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); 5509 5510 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5511 offsetof(ztest_cb_data_t, zcd_node)); 5512 5513 /* 5514 * Open our pool. 5515 */ 5516 kernel_init(FREAD | FWRITE); 5517 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5518 spa->spa_debug = B_TRUE; 5519 ztest_spa = spa; 5520 5521 VERIFY0(dmu_objset_own(ztest_opts.zo_pool, 5522 DMU_OST_ANY, B_TRUE, FTAG, &os)); 5523 zs->zs_guid = dmu_objset_fsid_guid(os); 5524 dmu_objset_disown(os, FTAG); 5525 5526 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5527 5528 /* 5529 * We don't expect the pool to suspend unless maxfaults == 0, 5530 * in which case ztest_fault_inject() temporarily takes away 5531 * the only valid replica. 5532 */ 5533 if (MAXFAULTS() == 0) 5534 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5535 else 5536 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5537 5538 /* 5539 * Create a thread to periodically resume suspended I/O. 5540 */ 5541 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5542 &resume_tid) == 0); 5543 5544 /* 5545 * Create a deadman thread to abort() if we hang. 5546 */ 5547 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5548 NULL) == 0); 5549 5550 /* 5551 * Verify that we can safely inquire about about any object, 5552 * whether it's allocated or not. To make it interesting, 5553 * we probe a 5-wide window around each power of two. 5554 * This hits all edge cases, including zero and the max. 5555 */ 5556 for (int t = 0; t < 64; t++) { 5557 for (int d = -5; d <= 5; d++) { 5558 error = dmu_object_info(spa->spa_meta_objset, 5559 (1ULL << t) + d, NULL); 5560 ASSERT(error == 0 || error == ENOENT || 5561 error == EINVAL); 5562 } 5563 } 5564 5565 /* 5566 * If we got any ENOSPC errors on the previous run, destroy something. 5567 */ 5568 if (zs->zs_enospc_count != 0) { 5569 int d = ztest_random(ztest_opts.zo_datasets); 5570 ztest_dataset_destroy(d); 5571 } 5572 zs->zs_enospc_count = 0; 5573 5574 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), 5575 UMEM_NOFAIL); 5576 5577 if (ztest_opts.zo_verbose >= 4) 5578 (void) printf("starting main threads...\n"); 5579 5580 /* 5581 * Kick off all the tests that run in parallel. 5582 */ 5583 for (int t = 0; t < ztest_opts.zo_threads; t++) { 5584 if (t < ztest_opts.zo_datasets && 5585 ztest_dataset_open(t) != 0) 5586 return; 5587 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5588 THR_BOUND, &tid[t]) == 0); 5589 } 5590 5591 /* 5592 * Wait for all of the tests to complete. We go in reverse order 5593 * so we don't close datasets while threads are still using them. 5594 */ 5595 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { 5596 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5597 if (t < ztest_opts.zo_datasets) 5598 ztest_dataset_close(t); 5599 } 5600 5601 txg_wait_synced(spa_get_dsl(spa), 0); 5602 5603 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5604 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5605 5606 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); 5607 5608 /* Kill the resume thread */ 5609 ztest_exiting = B_TRUE; 5610 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5611 ztest_resume(spa); 5612 5613 /* 5614 * Right before closing the pool, kick off a bunch of async I/O; 5615 * spa_close() should wait for it to complete. 5616 */ 5617 for (uint64_t object = 1; object < 50; object++) 5618 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20); 5619 5620 spa_close(spa, FTAG); 5621 5622 /* 5623 * Verify that we can loop over all pools. 5624 */ 5625 mutex_enter(&spa_namespace_lock); 5626 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5627 if (ztest_opts.zo_verbose > 3) 5628 (void) printf("spa_next: found %s\n", spa_name(spa)); 5629 mutex_exit(&spa_namespace_lock); 5630 5631 /* 5632 * Verify that we can export the pool and reimport it under a 5633 * different name. 5634 */ 5635 if (ztest_random(2) == 0) { 5636 char name[MAXNAMELEN]; 5637 (void) snprintf(name, MAXNAMELEN, "%s_import", 5638 ztest_opts.zo_pool); 5639 ztest_spa_import_export(ztest_opts.zo_pool, name); 5640 ztest_spa_import_export(name, ztest_opts.zo_pool); 5641 } 5642 5643 kernel_fini(); 5644 5645 list_destroy(&zcl.zcl_callbacks); 5646 5647 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 5648 5649 (void) rwlock_destroy(&ztest_name_lock); 5650 (void) _mutex_destroy(&ztest_vdev_lock); 5651 } 5652 5653 static void 5654 ztest_freeze(void) 5655 { 5656 ztest_ds_t *zd = &ztest_ds[0]; 5657 spa_t *spa; 5658 int numloops = 0; 5659 5660 if (ztest_opts.zo_verbose >= 3) 5661 (void) printf("testing spa_freeze()...\n"); 5662 5663 kernel_init(FREAD | FWRITE); 5664 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5665 VERIFY3U(0, ==, ztest_dataset_open(0)); 5666 spa->spa_debug = B_TRUE; 5667 ztest_spa = spa; 5668 5669 /* 5670 * Force the first log block to be transactionally allocated. 5671 * We have to do this before we freeze the pool -- otherwise 5672 * the log chain won't be anchored. 5673 */ 5674 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5675 ztest_dmu_object_alloc_free(zd, 0); 5676 zil_commit(zd->zd_zilog, 0); 5677 } 5678 5679 txg_wait_synced(spa_get_dsl(spa), 0); 5680 5681 /* 5682 * Freeze the pool. This stops spa_sync() from doing anything, 5683 * so that the only way to record changes from now on is the ZIL. 5684 */ 5685 spa_freeze(spa); 5686 5687 /* 5688 * Run tests that generate log records but don't alter the pool config 5689 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5690 * We do a txg_wait_synced() after each iteration to force the txg 5691 * to increase well beyond the last synced value in the uberblock. 5692 * The ZIL should be OK with that. 5693 */ 5694 while (ztest_random(10) != 0 && 5695 numloops++ < ztest_opts.zo_maxloops) { 5696 ztest_dmu_write_parallel(zd, 0); 5697 ztest_dmu_object_alloc_free(zd, 0); 5698 txg_wait_synced(spa_get_dsl(spa), 0); 5699 } 5700 5701 /* 5702 * Commit all of the changes we just generated. 5703 */ 5704 zil_commit(zd->zd_zilog, 0); 5705 txg_wait_synced(spa_get_dsl(spa), 0); 5706 5707 /* 5708 * Close our dataset and close the pool. 5709 */ 5710 ztest_dataset_close(0); 5711 spa_close(spa, FTAG); 5712 kernel_fini(); 5713 5714 /* 5715 * Open and close the pool and dataset to induce log replay. 5716 */ 5717 kernel_init(FREAD | FWRITE); 5718 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5719 ASSERT(spa_freeze_txg(spa) == UINT64_MAX); 5720 VERIFY3U(0, ==, ztest_dataset_open(0)); 5721 ztest_dataset_close(0); 5722 5723 spa->spa_debug = B_TRUE; 5724 ztest_spa = spa; 5725 txg_wait_synced(spa_get_dsl(spa), 0); 5726 ztest_reguid(NULL, 0); 5727 5728 spa_close(spa, FTAG); 5729 kernel_fini(); 5730 } 5731 5732 void 5733 print_time(hrtime_t t, char *timebuf) 5734 { 5735 hrtime_t s = t / NANOSEC; 5736 hrtime_t m = s / 60; 5737 hrtime_t h = m / 60; 5738 hrtime_t d = h / 24; 5739 5740 s -= m * 60; 5741 m -= h * 60; 5742 h -= d * 24; 5743 5744 timebuf[0] = '\0'; 5745 5746 if (d) 5747 (void) sprintf(timebuf, 5748 "%llud%02lluh%02llum%02llus", d, h, m, s); 5749 else if (h) 5750 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 5751 else if (m) 5752 (void) sprintf(timebuf, "%llum%02llus", m, s); 5753 else 5754 (void) sprintf(timebuf, "%llus", s); 5755 } 5756 5757 static nvlist_t * 5758 make_random_props() 5759 { 5760 nvlist_t *props; 5761 5762 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 5763 if (ztest_random(2) == 0) 5764 return (props); 5765 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 5766 5767 return (props); 5768 } 5769 5770 /* 5771 * Create a storage pool with the given name and initial vdev size. 5772 * Then test spa_freeze() functionality. 5773 */ 5774 static void 5775 ztest_init(ztest_shared_t *zs) 5776 { 5777 spa_t *spa; 5778 nvlist_t *nvroot, *props; 5779 5780 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5781 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5782 5783 kernel_init(FREAD | FWRITE); 5784 5785 /* 5786 * Create the storage pool. 5787 */ 5788 (void) spa_destroy(ztest_opts.zo_pool); 5789 ztest_shared->zs_vdev_next_leaf = 0; 5790 zs->zs_splits = 0; 5791 zs->zs_mirrors = ztest_opts.zo_mirrors; 5792 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 5793 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 5794 props = make_random_props(); 5795 for (int i = 0; i < SPA_FEATURES; i++) { 5796 char buf[1024]; 5797 (void) snprintf(buf, sizeof (buf), "feature@%s", 5798 spa_feature_table[i].fi_uname); 5799 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); 5800 } 5801 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL)); 5802 nvlist_free(nvroot); 5803 5804 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5805 zs->zs_metaslab_sz = 5806 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 5807 5808 spa_close(spa, FTAG); 5809 5810 kernel_fini(); 5811 5812 ztest_run_zdb(ztest_opts.zo_pool); 5813 5814 ztest_freeze(); 5815 5816 ztest_run_zdb(ztest_opts.zo_pool); 5817 5818 (void) rwlock_destroy(&ztest_name_lock); 5819 (void) _mutex_destroy(&ztest_vdev_lock); 5820 } 5821 5822 static void 5823 setup_data_fd(void) 5824 { 5825 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; 5826 5827 ztest_fd_data = mkstemp(ztest_name_data); 5828 ASSERT3S(ztest_fd_data, >=, 0); 5829 (void) unlink(ztest_name_data); 5830 } 5831 5832 5833 static int 5834 shared_data_size(ztest_shared_hdr_t *hdr) 5835 { 5836 int size; 5837 5838 size = hdr->zh_hdr_size; 5839 size += hdr->zh_opts_size; 5840 size += hdr->zh_size; 5841 size += hdr->zh_stats_size * hdr->zh_stats_count; 5842 size += hdr->zh_ds_size * hdr->zh_ds_count; 5843 5844 return (size); 5845 } 5846 5847 static void 5848 setup_hdr(void) 5849 { 5850 int size; 5851 ztest_shared_hdr_t *hdr; 5852 5853 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5854 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 5855 ASSERT(hdr != MAP_FAILED); 5856 5857 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); 5858 5859 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 5860 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 5861 hdr->zh_size = sizeof (ztest_shared_t); 5862 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 5863 hdr->zh_stats_count = ZTEST_FUNCS; 5864 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 5865 hdr->zh_ds_count = ztest_opts.zo_datasets; 5866 5867 size = shared_data_size(hdr); 5868 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); 5869 5870 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 5871 } 5872 5873 static void 5874 setup_data(void) 5875 { 5876 int size, offset; 5877 ztest_shared_hdr_t *hdr; 5878 uint8_t *buf; 5879 5880 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5881 PROT_READ, MAP_SHARED, ztest_fd_data, 0); 5882 ASSERT(hdr != MAP_FAILED); 5883 5884 size = shared_data_size(hdr); 5885 5886 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 5887 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 5888 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 5889 ASSERT(hdr != MAP_FAILED); 5890 buf = (uint8_t *)hdr; 5891 5892 offset = hdr->zh_hdr_size; 5893 ztest_shared_opts = (void *)&buf[offset]; 5894 offset += hdr->zh_opts_size; 5895 ztest_shared = (void *)&buf[offset]; 5896 offset += hdr->zh_size; 5897 ztest_shared_callstate = (void *)&buf[offset]; 5898 offset += hdr->zh_stats_size * hdr->zh_stats_count; 5899 ztest_shared_ds = (void *)&buf[offset]; 5900 } 5901 5902 static boolean_t 5903 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 5904 { 5905 pid_t pid; 5906 int status; 5907 char *cmdbuf = NULL; 5908 5909 pid = fork(); 5910 5911 if (cmd == NULL) { 5912 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 5913 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); 5914 cmd = cmdbuf; 5915 } 5916 5917 if (pid == -1) 5918 fatal(1, "fork failed"); 5919 5920 if (pid == 0) { /* child */ 5921 char *emptyargv[2] = { cmd, NULL }; 5922 char fd_data_str[12]; 5923 5924 struct rlimit rl = { 1024, 1024 }; 5925 (void) setrlimit(RLIMIT_NOFILE, &rl); 5926 5927 (void) close(ztest_fd_rand); 5928 VERIFY3U(11, >=, 5929 snprintf(fd_data_str, 12, "%d", ztest_fd_data)); 5930 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); 5931 5932 (void) enable_extended_FILE_stdio(-1, -1); 5933 if (libpath != NULL) 5934 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); 5935 (void) execv(cmd, emptyargv); 5936 ztest_dump_core = B_FALSE; 5937 fatal(B_TRUE, "exec failed: %s", cmd); 5938 } 5939 5940 if (cmdbuf != NULL) { 5941 umem_free(cmdbuf, MAXPATHLEN); 5942 cmd = NULL; 5943 } 5944 5945 while (waitpid(pid, &status, 0) != pid) 5946 continue; 5947 if (statusp != NULL) 5948 *statusp = status; 5949 5950 if (WIFEXITED(status)) { 5951 if (WEXITSTATUS(status) != 0) { 5952 (void) fprintf(stderr, "child exited with code %d\n", 5953 WEXITSTATUS(status)); 5954 exit(2); 5955 } 5956 return (B_FALSE); 5957 } else if (WIFSIGNALED(status)) { 5958 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 5959 (void) fprintf(stderr, "child died with signal %d\n", 5960 WTERMSIG(status)); 5961 exit(3); 5962 } 5963 return (B_TRUE); 5964 } else { 5965 (void) fprintf(stderr, "something strange happened to child\n"); 5966 exit(4); 5967 /* NOTREACHED */ 5968 } 5969 } 5970 5971 static void 5972 ztest_run_init(void) 5973 { 5974 ztest_shared_t *zs = ztest_shared; 5975 5976 ASSERT(ztest_opts.zo_init != 0); 5977 5978 /* 5979 * Blow away any existing copy of zpool.cache 5980 */ 5981 (void) remove(spa_config_path); 5982 5983 /* 5984 * Create and initialize our storage pool. 5985 */ 5986 for (int i = 1; i <= ztest_opts.zo_init; i++) { 5987 bzero(zs, sizeof (ztest_shared_t)); 5988 if (ztest_opts.zo_verbose >= 3 && 5989 ztest_opts.zo_init != 1) { 5990 (void) printf("ztest_init(), pass %d\n", i); 5991 } 5992 ztest_init(zs); 5993 } 5994 } 5995 5996 int 5997 main(int argc, char **argv) 5998 { 5999 int kills = 0; 6000 int iters = 0; 6001 int older = 0; 6002 int newer = 0; 6003 ztest_shared_t *zs; 6004 ztest_info_t *zi; 6005 ztest_shared_callstate_t *zc; 6006 char timebuf[100]; 6007 char numbuf[6]; 6008 spa_t *spa; 6009 char *cmd; 6010 boolean_t hasalt; 6011 char *fd_data_str = getenv("ZTEST_FD_DATA"); 6012 6013 (void) setvbuf(stdout, NULL, _IOLBF, 0); 6014 6015 dprintf_setup(&argc, argv); 6016 6017 ztest_fd_rand = open("/dev/urandom", O_RDONLY); 6018 ASSERT3S(ztest_fd_rand, >=, 0); 6019 6020 if (!fd_data_str) { 6021 process_options(argc, argv); 6022 6023 setup_data_fd(); 6024 setup_hdr(); 6025 setup_data(); 6026 bcopy(&ztest_opts, ztest_shared_opts, 6027 sizeof (*ztest_shared_opts)); 6028 } else { 6029 ztest_fd_data = atoi(fd_data_str); 6030 setup_data(); 6031 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); 6032 } 6033 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 6034 6035 /* Override location of zpool.cache */ 6036 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", 6037 ztest_opts.zo_dir), !=, -1); 6038 6039 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 6040 UMEM_NOFAIL); 6041 zs = ztest_shared; 6042 6043 if (fd_data_str) { 6044 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang; 6045 metaslab_df_alloc_threshold = 6046 zs->zs_metaslab_df_alloc_threshold; 6047 6048 if (zs->zs_do_init) 6049 ztest_run_init(); 6050 else 6051 ztest_run(zs); 6052 exit(0); 6053 } 6054 6055 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 6056 6057 if (ztest_opts.zo_verbose >= 1) { 6058 (void) printf("%llu vdevs, %d datasets, %d threads," 6059 " %llu seconds...\n", 6060 (u_longlong_t)ztest_opts.zo_vdevs, 6061 ztest_opts.zo_datasets, 6062 ztest_opts.zo_threads, 6063 (u_longlong_t)ztest_opts.zo_time); 6064 } 6065 6066 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); 6067 (void) strlcpy(cmd, getexecname(), MAXNAMELEN); 6068 6069 zs->zs_do_init = B_TRUE; 6070 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 6071 if (ztest_opts.zo_verbose >= 1) { 6072 (void) printf("Executing older ztest for " 6073 "initialization: %s\n", ztest_opts.zo_alt_ztest); 6074 } 6075 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 6076 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 6077 } else { 6078 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 6079 } 6080 zs->zs_do_init = B_FALSE; 6081 6082 zs->zs_proc_start = gethrtime(); 6083 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 6084 6085 for (int f = 0; f < ZTEST_FUNCS; f++) { 6086 zi = &ztest_info[f]; 6087 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6088 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 6089 zc->zc_next = UINT64_MAX; 6090 else 6091 zc->zc_next = zs->zs_proc_start + 6092 ztest_random(2 * zi->zi_interval[0] + 1); 6093 } 6094 6095 /* 6096 * Run the tests in a loop. These tests include fault injection 6097 * to verify that self-healing data works, and forced crashes 6098 * to verify that we never lose on-disk consistency. 6099 */ 6100 while (gethrtime() < zs->zs_proc_stop) { 6101 int status; 6102 boolean_t killed; 6103 6104 /* 6105 * Initialize the workload counters for each function. 6106 */ 6107 for (int f = 0; f < ZTEST_FUNCS; f++) { 6108 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6109 zc->zc_count = 0; 6110 zc->zc_time = 0; 6111 } 6112 6113 /* Set the allocation switch size */ 6114 zs->zs_metaslab_df_alloc_threshold = 6115 ztest_random(zs->zs_metaslab_sz / 4) + 1; 6116 6117 if (!hasalt || ztest_random(2) == 0) { 6118 if (hasalt && ztest_opts.zo_verbose >= 1) { 6119 (void) printf("Executing newer ztest: %s\n", 6120 cmd); 6121 } 6122 newer++; 6123 killed = exec_child(cmd, NULL, B_TRUE, &status); 6124 } else { 6125 if (hasalt && ztest_opts.zo_verbose >= 1) { 6126 (void) printf("Executing older ztest: %s\n", 6127 ztest_opts.zo_alt_ztest); 6128 } 6129 older++; 6130 killed = exec_child(ztest_opts.zo_alt_ztest, 6131 ztest_opts.zo_alt_libpath, B_TRUE, &status); 6132 } 6133 6134 if (killed) 6135 kills++; 6136 iters++; 6137 6138 if (ztest_opts.zo_verbose >= 1) { 6139 hrtime_t now = gethrtime(); 6140 6141 now = MIN(now, zs->zs_proc_stop); 6142 print_time(zs->zs_proc_stop - now, timebuf); 6143 nicenum(zs->zs_space, numbuf); 6144 6145 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 6146 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 6147 iters, 6148 WIFEXITED(status) ? "Complete" : "SIGKILL", 6149 (u_longlong_t)zs->zs_enospc_count, 6150 100.0 * zs->zs_alloc / zs->zs_space, 6151 numbuf, 6152 100.0 * (now - zs->zs_proc_start) / 6153 (ztest_opts.zo_time * NANOSEC), timebuf); 6154 } 6155 6156 if (ztest_opts.zo_verbose >= 2) { 6157 (void) printf("\nWorkload summary:\n\n"); 6158 (void) printf("%7s %9s %s\n", 6159 "Calls", "Time", "Function"); 6160 (void) printf("%7s %9s %s\n", 6161 "-----", "----", "--------"); 6162 for (int f = 0; f < ZTEST_FUNCS; f++) { 6163 Dl_info dli; 6164 6165 zi = &ztest_info[f]; 6166 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6167 print_time(zc->zc_time, timebuf); 6168 (void) dladdr((void *)zi->zi_func, &dli); 6169 (void) printf("%7llu %9s %s\n", 6170 (u_longlong_t)zc->zc_count, timebuf, 6171 dli.dli_sname); 6172 } 6173 (void) printf("\n"); 6174 } 6175 6176 /* 6177 * It's possible that we killed a child during a rename test, 6178 * in which case we'll have a 'ztest_tmp' pool lying around 6179 * instead of 'ztest'. Do a blind rename in case this happened. 6180 */ 6181 kernel_init(FREAD); 6182 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) { 6183 spa_close(spa, FTAG); 6184 } else { 6185 char tmpname[MAXNAMELEN]; 6186 kernel_fini(); 6187 kernel_init(FREAD | FWRITE); 6188 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 6189 ztest_opts.zo_pool); 6190 (void) spa_rename(tmpname, ztest_opts.zo_pool); 6191 } 6192 kernel_fini(); 6193 6194 ztest_run_zdb(ztest_opts.zo_pool); 6195 } 6196 6197 if (ztest_opts.zo_verbose >= 1) { 6198 if (hasalt) { 6199 (void) printf("%d runs of older ztest: %s\n", older, 6200 ztest_opts.zo_alt_ztest); 6201 (void) printf("%d runs of newer ztest: %s\n", newer, 6202 cmd); 6203 } 6204 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 6205 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 6206 } 6207 6208 umem_free(cmd, MAXNAMELEN); 6209 6210 return (0); 6211 }