1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 /*
28 * The objective of this program is to provide a DMU/ZAP/SPA stress test
29 * that runs entirely in userland, is easy to use, and easy to extend.
30 *
31 * The overall design of the ztest program is as follows:
32 *
33 * (1) For each major functional area (e.g. adding vdevs to a pool,
34 * creating and destroying datasets, reading and writing objects, etc)
35 * we have a simple routine to test that functionality. These
36 * individual routines do not have to do anything "stressful".
37 *
38 * (2) We turn these simple functionality tests into a stress test by
39 * running them all in parallel, with as many threads as desired,
40 * and spread across as many datasets, objects, and vdevs as desired.
41 *
42 * (3) While all this is happening, we inject faults into the pool to
43 * verify that self-healing data really works.
44 *
45 * (4) Every time we open a dataset, we change its checksum and compression
46 * functions. Thus even individual objects vary from block to block
47 * in which checksum they use and whether they're compressed.
48 *
49 * (5) To verify that we never lose on-disk consistency after a crash,
50 * we run the entire test in a child of the main process.
51 * At random times, the child self-immolates with a SIGKILL.
52 * This is the software equivalent of pulling the power cord.
53 * The parent then runs the test again, using the existing
54 * storage pool, as many times as desired. If backwards compatability
55 * testing is enabled ztest will sometimes run the "older" version
56 * of ztest after a SIGKILL.
57 *
58 * (6) To verify that we don't have future leaks or temporal incursions,
59 * many of the functional tests record the transaction group number
60 * as part of their data. When reading old data, they verify that
61 * the transaction group number is less than the current, open txg.
62 * If you add a new test, please do this if applicable.
63 *
64 * When run with no arguments, ztest runs for about five minutes and
65 * produces no output if successful. To get a little bit of information,
66 * specify -V. To get more information, specify -VV, and so on.
67 *
68 * To turn this into an overnight stress test, use -T to specify run time.
69 *
70 * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
71 * to increase the pool capacity, fanout, and overall stress level.
72 *
73 * Use the -k option to set the desired frequency of kills.
74 *
75 * When ztest invokes itself it passes all relevant information through a
76 * temporary file which is mmap-ed in the child process. This allows shared
77 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
78 * stored at offset 0 of this file and contains information on the size and
79 * number of shared structures in the file. The information stored in this file
80 * must remain backwards compatible with older versions of ztest so that
81 * ztest can invoke them during backwards compatibility testing (-B).
82 */
83
84 #include <sys/zfs_context.h>
85 #include <sys/spa.h>
86 #include <sys/dmu.h>
87 #include <sys/txg.h>
88 #include <sys/dbuf.h>
89 #include <sys/zap.h>
90 #include <sys/dmu_objset.h>
91 #include <sys/poll.h>
92 #include <sys/stat.h>
93 #include <sys/time.h>
94 #include <sys/wait.h>
95 #include <sys/mman.h>
96 #include <sys/resource.h>
97 #include <sys/zio.h>
98 #include <sys/zil.h>
99 #include <sys/zil_impl.h>
100 #include <sys/vdev_impl.h>
101 #include <sys/vdev_file.h>
102 #include <sys/spa_impl.h>
103 #include <sys/metaslab_impl.h>
104 #include <sys/dsl_prop.h>
105 #include <sys/dsl_dataset.h>
106 #include <sys/dsl_destroy.h>
107 #include <sys/dsl_scan.h>
108 #include <sys/zio_checksum.h>
109 #include <sys/refcount.h>
110 #include <sys/zfeature.h>
111 #include <sys/dsl_userhold.h>
112 #include <stdio.h>
113 #include <stdio_ext.h>
114 #include <stdlib.h>
115 #include <unistd.h>
116 #include <signal.h>
117 #include <umem.h>
118 #include <dlfcn.h>
119 #include <ctype.h>
120 #include <math.h>
121 #include <sys/fs/zfs.h>
122 #include <libnvpair.h>
123
124 static int ztest_fd_data = -1;
125 static int ztest_fd_rand = -1;
126
127 typedef struct ztest_shared_hdr {
128 uint64_t zh_hdr_size;
129 uint64_t zh_opts_size;
130 uint64_t zh_size;
131 uint64_t zh_stats_size;
132 uint64_t zh_stats_count;
133 uint64_t zh_ds_size;
134 uint64_t zh_ds_count;
135 } ztest_shared_hdr_t;
136
137 static ztest_shared_hdr_t *ztest_shared_hdr;
138
139 typedef struct ztest_shared_opts {
140 char zo_pool[MAXNAMELEN];
141 char zo_dir[MAXNAMELEN];
142 char zo_alt_ztest[MAXNAMELEN];
143 char zo_alt_libpath[MAXNAMELEN];
144 uint64_t zo_vdevs;
145 uint64_t zo_vdevtime;
146 size_t zo_vdev_size;
147 int zo_ashift;
148 int zo_mirrors;
149 int zo_raidz;
150 int zo_raidz_parity;
151 int zo_datasets;
152 int zo_threads;
153 uint64_t zo_passtime;
154 uint64_t zo_killrate;
155 int zo_verbose;
156 int zo_init;
157 uint64_t zo_time;
158 uint64_t zo_maxloops;
159 uint64_t zo_metaslab_gang_bang;
160 } ztest_shared_opts_t;
161
162 static const ztest_shared_opts_t ztest_opts_defaults = {
163 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' },
164 .zo_dir = { '/', 't', 'm', 'p', '\0' },
165 .zo_alt_ztest = { '\0' },
166 .zo_alt_libpath = { '\0' },
167 .zo_vdevs = 5,
168 .zo_ashift = SPA_MINBLOCKSHIFT,
169 .zo_mirrors = 2,
170 .zo_raidz = 4,
171 .zo_raidz_parity = 1,
172 .zo_vdev_size = SPA_MINDEVSIZE,
173 .zo_datasets = 7,
174 .zo_threads = 23,
175 .zo_passtime = 60, /* 60 seconds */
176 .zo_killrate = 70, /* 70% kill rate */
177 .zo_verbose = 0,
178 .zo_init = 1,
179 .zo_time = 300, /* 5 minutes */
180 .zo_maxloops = 50, /* max loops during spa_freeze() */
181 .zo_metaslab_gang_bang = 32 << 10
182 };
183
184 extern uint64_t metaslab_gang_bang;
185 extern uint64_t metaslab_df_alloc_threshold;
186
187 static ztest_shared_opts_t *ztest_shared_opts;
188 static ztest_shared_opts_t ztest_opts;
189
190 typedef struct ztest_shared_ds {
191 uint64_t zd_seq;
192 } ztest_shared_ds_t;
193
194 static ztest_shared_ds_t *ztest_shared_ds;
195 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
196
197 #define BT_MAGIC 0x123456789abcdefULL
198 #define MAXFAULTS() \
199 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
200
201 enum ztest_io_type {
202 ZTEST_IO_WRITE_TAG,
203 ZTEST_IO_WRITE_PATTERN,
204 ZTEST_IO_WRITE_ZEROES,
205 ZTEST_IO_TRUNCATE,
206 ZTEST_IO_SETATTR,
207 ZTEST_IO_REWRITE,
208 ZTEST_IO_TYPES
209 };
210
211 typedef struct ztest_block_tag {
212 uint64_t bt_magic;
213 uint64_t bt_objset;
214 uint64_t bt_object;
215 uint64_t bt_offset;
216 uint64_t bt_gen;
217 uint64_t bt_txg;
218 uint64_t bt_crtxg;
219 } ztest_block_tag_t;
220
221 typedef struct bufwad {
222 uint64_t bw_index;
223 uint64_t bw_txg;
224 uint64_t bw_data;
225 } bufwad_t;
226
227 /*
228 * XXX -- fix zfs range locks to be generic so we can use them here.
229 */
230 typedef enum {
231 RL_READER,
232 RL_WRITER,
233 RL_APPEND
234 } rl_type_t;
235
236 typedef struct rll {
237 void *rll_writer;
238 int rll_readers;
239 mutex_t rll_lock;
240 cond_t rll_cv;
241 } rll_t;
242
243 typedef struct rl {
244 uint64_t rl_object;
245 uint64_t rl_offset;
246 uint64_t rl_size;
247 rll_t *rl_lock;
248 } rl_t;
249
250 #define ZTEST_RANGE_LOCKS 64
251 #define ZTEST_OBJECT_LOCKS 64
252
253 /*
254 * Object descriptor. Used as a template for object lookup/create/remove.
255 */
256 typedef struct ztest_od {
257 uint64_t od_dir;
258 uint64_t od_object;
259 dmu_object_type_t od_type;
260 dmu_object_type_t od_crtype;
261 uint64_t od_blocksize;
262 uint64_t od_crblocksize;
263 uint64_t od_gen;
264 uint64_t od_crgen;
265 char od_name[MAXNAMELEN];
266 } ztest_od_t;
267
268 /*
269 * Per-dataset state.
270 */
271 typedef struct ztest_ds {
272 ztest_shared_ds_t *zd_shared;
273 objset_t *zd_os;
274 rwlock_t zd_zilog_lock;
275 zilog_t *zd_zilog;
276 ztest_od_t *zd_od; /* debugging aid */
277 char zd_name[MAXNAMELEN];
278 mutex_t zd_dirobj_lock;
279 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
280 rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
281 } ztest_ds_t;
282
283 /*
284 * Per-iteration state.
285 */
286 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
287
288 typedef struct ztest_info {
289 ztest_func_t *zi_func; /* test function */
290 uint64_t zi_iters; /* iterations per execution */
291 uint64_t *zi_interval; /* execute every <interval> seconds */
292 } ztest_info_t;
293
294 typedef struct ztest_shared_callstate {
295 uint64_t zc_count; /* per-pass count */
296 uint64_t zc_time; /* per-pass time */
297 uint64_t zc_next; /* next time to call this function */
298 } ztest_shared_callstate_t;
299
300 static ztest_shared_callstate_t *ztest_shared_callstate;
301 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
302
303 /*
304 * Note: these aren't static because we want dladdr() to work.
305 */
306 ztest_func_t ztest_dmu_read_write;
307 ztest_func_t ztest_dmu_write_parallel;
308 ztest_func_t ztest_dmu_object_alloc_free;
309 ztest_func_t ztest_dmu_commit_callbacks;
310 ztest_func_t ztest_zap;
311 ztest_func_t ztest_zap_parallel;
312 ztest_func_t ztest_zil_commit;
313 ztest_func_t ztest_zil_remount;
314 ztest_func_t ztest_dmu_read_write_zcopy;
315 ztest_func_t ztest_dmu_objset_create_destroy;
316 ztest_func_t ztest_dmu_prealloc;
317 ztest_func_t ztest_fzap;
318 ztest_func_t ztest_dmu_snapshot_create_destroy;
319 ztest_func_t ztest_dsl_prop_get_set;
320 ztest_func_t ztest_spa_prop_get_set;
321 ztest_func_t ztest_spa_create_destroy;
322 ztest_func_t ztest_fault_inject;
323 ztest_func_t ztest_ddt_repair;
324 ztest_func_t ztest_dmu_snapshot_hold;
325 ztest_func_t ztest_spa_rename;
326 ztest_func_t ztest_scrub;
327 ztest_func_t ztest_dsl_dataset_promote_busy;
328 ztest_func_t ztest_vdev_attach_detach;
329 ztest_func_t ztest_vdev_LUN_growth;
330 ztest_func_t ztest_vdev_add_remove;
331 ztest_func_t ztest_vdev_aux_add_remove;
332 ztest_func_t ztest_split_pool;
333 ztest_func_t ztest_reguid;
334 ztest_func_t ztest_spa_upgrade;
335
336 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
337 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
338 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
339 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
340 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
341
342 ztest_info_t ztest_info[] = {
343 { ztest_dmu_read_write, 1, &zopt_always },
344 { ztest_dmu_write_parallel, 10, &zopt_always },
345 { ztest_dmu_object_alloc_free, 1, &zopt_always },
346 { ztest_dmu_commit_callbacks, 1, &zopt_always },
347 { ztest_zap, 30, &zopt_always },
348 { ztest_zap_parallel, 100, &zopt_always },
349 { ztest_split_pool, 1, &zopt_always },
350 { ztest_zil_commit, 1, &zopt_incessant },
351 { ztest_zil_remount, 1, &zopt_sometimes },
352 { ztest_dmu_read_write_zcopy, 1, &zopt_often },
353 { ztest_dmu_objset_create_destroy, 1, &zopt_often },
354 { ztest_dsl_prop_get_set, 1, &zopt_often },
355 { ztest_spa_prop_get_set, 1, &zopt_sometimes },
356 #if 0
357 { ztest_dmu_prealloc, 1, &zopt_sometimes },
358 #endif
359 { ztest_fzap, 1, &zopt_sometimes },
360 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes },
361 { ztest_spa_create_destroy, 1, &zopt_sometimes },
362 { ztest_fault_inject, 1, &zopt_sometimes },
363 { ztest_ddt_repair, 1, &zopt_sometimes },
364 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes },
365 { ztest_reguid, 1, &zopt_sometimes },
366 { ztest_spa_rename, 1, &zopt_rarely },
367 { ztest_scrub, 1, &zopt_rarely },
368 { ztest_spa_upgrade, 1, &zopt_rarely },
369 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely },
370 { ztest_vdev_attach_detach, 1, &zopt_sometimes },
371 { ztest_vdev_LUN_growth, 1, &zopt_rarely },
372 { ztest_vdev_add_remove, 1,
373 &ztest_opts.zo_vdevtime },
374 { ztest_vdev_aux_add_remove, 1,
375 &ztest_opts.zo_vdevtime },
376 };
377
378 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
379
380 /*
381 * The following struct is used to hold a list of uncalled commit callbacks.
382 * The callbacks are ordered by txg number.
383 */
384 typedef struct ztest_cb_list {
385 mutex_t zcl_callbacks_lock;
386 list_t zcl_callbacks;
387 } ztest_cb_list_t;
388
389 /*
390 * Stuff we need to share writably between parent and child.
391 */
392 typedef struct ztest_shared {
393 boolean_t zs_do_init;
394 hrtime_t zs_proc_start;
395 hrtime_t zs_proc_stop;
396 hrtime_t zs_thread_start;
397 hrtime_t zs_thread_stop;
398 hrtime_t zs_thread_kill;
399 uint64_t zs_enospc_count;
400 uint64_t zs_vdev_next_leaf;
401 uint64_t zs_vdev_aux;
402 uint64_t zs_alloc;
403 uint64_t zs_space;
404 uint64_t zs_splits;
405 uint64_t zs_mirrors;
406 uint64_t zs_metaslab_sz;
407 uint64_t zs_metaslab_df_alloc_threshold;
408 uint64_t zs_guid;
409 } ztest_shared_t;
410
411 #define ID_PARALLEL -1ULL
412
413 static char ztest_dev_template[] = "%s/%s.%llua";
414 static char ztest_aux_template[] = "%s/%s.%s.%llu";
415 ztest_shared_t *ztest_shared;
416
417 static spa_t *ztest_spa = NULL;
418 static ztest_ds_t *ztest_ds;
419
420 static mutex_t ztest_vdev_lock;
421
422 /*
423 * The ztest_name_lock protects the pool and dataset namespace used by
424 * the individual tests. To modify the namespace, consumers must grab
425 * this lock as writer. Grabbing the lock as reader will ensure that the
426 * namespace does not change while the lock is held.
427 */
428 static rwlock_t ztest_name_lock;
429
430 static boolean_t ztest_dump_core = B_TRUE;
431 static boolean_t ztest_exiting;
432
433 /* Global commit callback list */
434 static ztest_cb_list_t zcl;
435
436 enum ztest_object {
437 ZTEST_META_DNODE = 0,
438 ZTEST_DIROBJ,
439 ZTEST_OBJECTS
440 };
441
442 static void usage(boolean_t) __NORETURN;
443
444 /*
445 * These libumem hooks provide a reasonable set of defaults for the allocator's
446 * debugging facilities.
447 */
448 const char *
449 _umem_debug_init()
450 {
451 return ("default,verbose"); /* $UMEM_DEBUG setting */
452 }
453
454 const char *
455 _umem_logging_init(void)
456 {
457 return ("fail,contents"); /* $UMEM_LOGGING setting */
458 }
459
460 #define FATAL_MSG_SZ 1024
461
462 char *fatal_msg;
463
464 static void
465 fatal(int do_perror, char *message, ...)
466 {
467 va_list args;
468 int save_errno = errno;
469 char buf[FATAL_MSG_SZ];
470
471 (void) fflush(stdout);
472
473 va_start(args, message);
474 (void) sprintf(buf, "ztest: ");
475 /* LINTED */
476 (void) vsprintf(buf + strlen(buf), message, args);
477 va_end(args);
478 if (do_perror) {
479 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
480 ": %s", strerror(save_errno));
481 }
482 (void) fprintf(stderr, "%s\n", buf);
483 fatal_msg = buf; /* to ease debugging */
484 fflush(NULL);
485 if (ztest_dump_core)
486 abort();
487 exit(3);
488 }
489
490 static int
491 str2shift(const char *buf)
492 {
493 const char *ends = "BKMGTPEZ";
494 int i;
495
496 if (buf[0] == '\0')
497 return (0);
498 for (i = 0; i < strlen(ends); i++) {
499 if (toupper(buf[0]) == ends[i])
500 break;
501 }
502 if (i == strlen(ends)) {
503 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
504 buf);
505 usage(B_FALSE);
506 }
507 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
508 return (10*i);
509 }
510 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
511 usage(B_FALSE);
512 /* NOTREACHED */
513 }
514
515 static uint64_t
516 nicenumtoull(const char *buf)
517 {
518 char *end;
519 uint64_t val;
520
521 val = strtoull(buf, &end, 0);
522 if (end == buf) {
523 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
524 usage(B_FALSE);
525 } else if (end[0] == '.') {
526 double fval = strtod(buf, &end);
527 fval *= pow(2, str2shift(end));
528 if (fval > UINT64_MAX) {
529 (void) fprintf(stderr, "ztest: value too large: %s\n",
530 buf);
531 usage(B_FALSE);
532 }
533 val = (uint64_t)fval;
534 } else {
535 int shift = str2shift(end);
536 if (shift >= 64 || (val << shift) >> shift != val) {
537 (void) fprintf(stderr, "ztest: value too large: %s\n",
538 buf);
539 usage(B_FALSE);
540 }
541 val <<= shift;
542 }
543 return (val);
544 }
545
546 static void
547 usage(boolean_t requested)
548 {
549 const ztest_shared_opts_t *zo = &ztest_opts_defaults;
550
551 char nice_vdev_size[10];
552 char nice_gang_bang[10];
553 FILE *fp = requested ? stdout : stderr;
554
555 nicenum(zo->zo_vdev_size, nice_vdev_size);
556 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang);
557
558 (void) fprintf(fp, "Usage: %s\n"
559 "\t[-v vdevs (default: %llu)]\n"
560 "\t[-s size_of_each_vdev (default: %s)]\n"
561 "\t[-a alignment_shift (default: %d)] use 0 for random\n"
562 "\t[-m mirror_copies (default: %d)]\n"
563 "\t[-r raidz_disks (default: %d)]\n"
564 "\t[-R raidz_parity (default: %d)]\n"
565 "\t[-d datasets (default: %d)]\n"
566 "\t[-t threads (default: %d)]\n"
567 "\t[-g gang_block_threshold (default: %s)]\n"
568 "\t[-i init_count (default: %d)] initialize pool i times\n"
569 "\t[-k kill_percentage (default: %llu%%)]\n"
570 "\t[-p pool_name (default: %s)]\n"
571 "\t[-f dir (default: %s)] file directory for vdev files\n"
572 "\t[-V] verbose (use multiple times for ever more blather)\n"
573 "\t[-E] use existing pool instead of creating new one\n"
574 "\t[-T time (default: %llu sec)] total run time\n"
575 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
576 "\t[-P passtime (default: %llu sec)] time per pass\n"
577 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
578 "\t[-h] (print help)\n"
579 "",
580 zo->zo_pool,
581 (u_longlong_t)zo->zo_vdevs, /* -v */
582 nice_vdev_size, /* -s */
583 zo->zo_ashift, /* -a */
584 zo->zo_mirrors, /* -m */
585 zo->zo_raidz, /* -r */
586 zo->zo_raidz_parity, /* -R */
587 zo->zo_datasets, /* -d */
588 zo->zo_threads, /* -t */
589 nice_gang_bang, /* -g */
590 zo->zo_init, /* -i */
591 (u_longlong_t)zo->zo_killrate, /* -k */
592 zo->zo_pool, /* -p */
593 zo->zo_dir, /* -f */
594 (u_longlong_t)zo->zo_time, /* -T */
595 (u_longlong_t)zo->zo_maxloops, /* -F */
596 (u_longlong_t)zo->zo_passtime);
597 exit(requested ? 0 : 1);
598 }
599
600 static void
601 process_options(int argc, char **argv)
602 {
603 char *path;
604 ztest_shared_opts_t *zo = &ztest_opts;
605
606 int opt;
607 uint64_t value;
608 char altdir[MAXNAMELEN] = { 0 };
609
610 bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
611
612 while ((opt = getopt(argc, argv,
613 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) {
614 value = 0;
615 switch (opt) {
616 case 'v':
617 case 's':
618 case 'a':
619 case 'm':
620 case 'r':
621 case 'R':
622 case 'd':
623 case 't':
624 case 'g':
625 case 'i':
626 case 'k':
627 case 'T':
628 case 'P':
629 case 'F':
630 value = nicenumtoull(optarg);
631 }
632 switch (opt) {
633 case 'v':
634 zo->zo_vdevs = value;
635 break;
636 case 's':
637 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
638 break;
639 case 'a':
640 zo->zo_ashift = value;
641 break;
642 case 'm':
643 zo->zo_mirrors = value;
644 break;
645 case 'r':
646 zo->zo_raidz = MAX(1, value);
647 break;
648 case 'R':
649 zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
650 break;
651 case 'd':
652 zo->zo_datasets = MAX(1, value);
653 break;
654 case 't':
655 zo->zo_threads = MAX(1, value);
656 break;
657 case 'g':
658 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1,
659 value);
660 break;
661 case 'i':
662 zo->zo_init = value;
663 break;
664 case 'k':
665 zo->zo_killrate = value;
666 break;
667 case 'p':
668 (void) strlcpy(zo->zo_pool, optarg,
669 sizeof (zo->zo_pool));
670 break;
671 case 'f':
672 path = realpath(optarg, NULL);
673 if (path == NULL) {
674 (void) fprintf(stderr, "error: %s: %s\n",
675 optarg, strerror(errno));
676 usage(B_FALSE);
677 } else {
678 (void) strlcpy(zo->zo_dir, path,
679 sizeof (zo->zo_dir));
680 }
681 break;
682 case 'V':
683 zo->zo_verbose++;
684 break;
685 case 'E':
686 zo->zo_init = 0;
687 break;
688 case 'T':
689 zo->zo_time = value;
690 break;
691 case 'P':
692 zo->zo_passtime = MAX(1, value);
693 break;
694 case 'F':
695 zo->zo_maxloops = MAX(1, value);
696 break;
697 case 'B':
698 (void) strlcpy(altdir, optarg, sizeof (altdir));
699 break;
700 case 'h':
701 usage(B_TRUE);
702 break;
703 case '?':
704 default:
705 usage(B_FALSE);
706 break;
707 }
708 }
709
710 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
711
712 zo->zo_vdevtime =
713 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
714 UINT64_MAX >> 2);
715
716 if (strlen(altdir) > 0) {
717 char *cmd;
718 char *realaltdir;
719 char *bin;
720 char *ztest;
721 char *isa;
722 int isalen;
723
724 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
725 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
726
727 VERIFY(NULL != realpath(getexecname(), cmd));
728 if (0 != access(altdir, F_OK)) {
729 ztest_dump_core = B_FALSE;
730 fatal(B_TRUE, "invalid alternate ztest path: %s",
731 altdir);
732 }
733 VERIFY(NULL != realpath(altdir, realaltdir));
734
735 /*
736 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
737 * We want to extract <isa> to determine if we should use
738 * 32 or 64 bit binaries.
739 */
740 bin = strstr(cmd, "/usr/bin/");
741 ztest = strstr(bin, "/ztest");
742 isa = bin + 9;
743 isalen = ztest - isa;
744 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
745 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
746 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
747 "%s/usr/lib/%.*s", realaltdir, isalen, isa);
748
749 if (0 != access(zo->zo_alt_ztest, X_OK)) {
750 ztest_dump_core = B_FALSE;
751 fatal(B_TRUE, "invalid alternate ztest: %s",
752 zo->zo_alt_ztest);
753 } else if (0 != access(zo->zo_alt_libpath, X_OK)) {
754 ztest_dump_core = B_FALSE;
755 fatal(B_TRUE, "invalid alternate lib directory %s",
756 zo->zo_alt_libpath);
757 }
758
759 umem_free(cmd, MAXPATHLEN);
760 umem_free(realaltdir, MAXPATHLEN);
761 }
762 }
763
764 static void
765 ztest_kill(ztest_shared_t *zs)
766 {
767 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
768 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
769 (void) kill(getpid(), SIGKILL);
770 }
771
772 static uint64_t
773 ztest_random(uint64_t range)
774 {
775 uint64_t r;
776
777 ASSERT3S(ztest_fd_rand, >=, 0);
778
779 if (range == 0)
780 return (0);
781
782 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
783 fatal(1, "short read from /dev/urandom");
784
785 return (r % range);
786 }
787
788 /* ARGSUSED */
789 static void
790 ztest_record_enospc(const char *s)
791 {
792 ztest_shared->zs_enospc_count++;
793 }
794
795 static uint64_t
796 ztest_get_ashift(void)
797 {
798 if (ztest_opts.zo_ashift == 0)
799 return (SPA_MINBLOCKSHIFT + ztest_random(3));
800 return (ztest_opts.zo_ashift);
801 }
802
803 static nvlist_t *
804 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
805 {
806 char pathbuf[MAXPATHLEN];
807 uint64_t vdev;
808 nvlist_t *file;
809
810 if (ashift == 0)
811 ashift = ztest_get_ashift();
812
813 if (path == NULL) {
814 path = pathbuf;
815
816 if (aux != NULL) {
817 vdev = ztest_shared->zs_vdev_aux;
818 (void) snprintf(path, sizeof (pathbuf),
819 ztest_aux_template, ztest_opts.zo_dir,
820 pool == NULL ? ztest_opts.zo_pool : pool,
821 aux, vdev);
822 } else {
823 vdev = ztest_shared->zs_vdev_next_leaf++;
824 (void) snprintf(path, sizeof (pathbuf),
825 ztest_dev_template, ztest_opts.zo_dir,
826 pool == NULL ? ztest_opts.zo_pool : pool, vdev);
827 }
828 }
829
830 if (size != 0) {
831 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
832 if (fd == -1)
833 fatal(1, "can't open %s", path);
834 if (ftruncate(fd, size) != 0)
835 fatal(1, "can't ftruncate %s", path);
836 (void) close(fd);
837 }
838
839 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
840 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
841 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
842 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
843
844 return (file);
845 }
846
847 static nvlist_t *
848 make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
849 uint64_t ashift, int r)
850 {
851 nvlist_t *raidz, **child;
852 int c;
853
854 if (r < 2)
855 return (make_vdev_file(path, aux, pool, size, ashift));
856 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
857
858 for (c = 0; c < r; c++)
859 child[c] = make_vdev_file(path, aux, pool, size, ashift);
860
861 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
862 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
863 VDEV_TYPE_RAIDZ) == 0);
864 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
865 ztest_opts.zo_raidz_parity) == 0);
866 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
867 child, r) == 0);
868
869 for (c = 0; c < r; c++)
870 nvlist_free(child[c]);
871
872 umem_free(child, r * sizeof (nvlist_t *));
873
874 return (raidz);
875 }
876
877 static nvlist_t *
878 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
879 uint64_t ashift, int r, int m)
880 {
881 nvlist_t *mirror, **child;
882 int c;
883
884 if (m < 1)
885 return (make_vdev_raidz(path, aux, pool, size, ashift, r));
886
887 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
888
889 for (c = 0; c < m; c++)
890 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
891
892 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
893 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
894 VDEV_TYPE_MIRROR) == 0);
895 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
896 child, m) == 0);
897
898 for (c = 0; c < m; c++)
899 nvlist_free(child[c]);
900
901 umem_free(child, m * sizeof (nvlist_t *));
902
903 return (mirror);
904 }
905
906 static nvlist_t *
907 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
908 int log, int r, int m, int t)
909 {
910 nvlist_t *root, **child;
911 int c;
912
913 ASSERT(t > 0);
914
915 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
916
917 for (c = 0; c < t; c++) {
918 child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
919 r, m);
920 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
921 log) == 0);
922 }
923
924 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
925 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
926 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
927 child, t) == 0);
928
929 for (c = 0; c < t; c++)
930 nvlist_free(child[c]);
931
932 umem_free(child, t * sizeof (nvlist_t *));
933
934 return (root);
935 }
936
937 /*
938 * Find a random spa version. Returns back a random spa version in the
939 * range [initial_version, SPA_VERSION_FEATURES].
940 */
941 static uint64_t
942 ztest_random_spa_version(uint64_t initial_version)
943 {
944 uint64_t version = initial_version;
945
946 if (version <= SPA_VERSION_BEFORE_FEATURES) {
947 version = version +
948 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
949 }
950
951 if (version > SPA_VERSION_BEFORE_FEATURES)
952 version = SPA_VERSION_FEATURES;
953
954 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
955 return (version);
956 }
957
958 static int
959 ztest_random_blocksize(void)
960 {
961 return (1 << (SPA_MINBLOCKSHIFT +
962 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1)));
963 }
964
965 static int
966 ztest_random_ibshift(void)
967 {
968 return (DN_MIN_INDBLKSHIFT +
969 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
970 }
971
972 static uint64_t
973 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
974 {
975 uint64_t top;
976 vdev_t *rvd = spa->spa_root_vdev;
977 vdev_t *tvd;
978
979 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
980
981 do {
982 top = ztest_random(rvd->vdev_children);
983 tvd = rvd->vdev_child[top];
984 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) ||
985 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
986
987 return (top);
988 }
989
990 static uint64_t
991 ztest_random_dsl_prop(zfs_prop_t prop)
992 {
993 uint64_t value;
994
995 do {
996 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
997 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
998
999 return (value);
1000 }
1001
1002 static int
1003 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1004 boolean_t inherit)
1005 {
1006 const char *propname = zfs_prop_to_name(prop);
1007 const char *valname;
1008 char setpoint[MAXPATHLEN];
1009 uint64_t curval;
1010 int error;
1011
1012 error = dsl_prop_set_int(osname, propname,
1013 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1014
1015 if (error == ENOSPC) {
1016 ztest_record_enospc(FTAG);
1017 return (error);
1018 }
1019 ASSERT0(error);
1020
1021 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1022
1023 if (ztest_opts.zo_verbose >= 6) {
1024 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0);
1025 (void) printf("%s %s = %s at '%s'\n",
1026 osname, propname, valname, setpoint);
1027 }
1028
1029 return (error);
1030 }
1031
1032 static int
1033 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1034 {
1035 spa_t *spa = ztest_spa;
1036 nvlist_t *props = NULL;
1037 int error;
1038
1039 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
1040 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
1041
1042 error = spa_prop_set(spa, props);
1043
1044 nvlist_free(props);
1045
1046 if (error == ENOSPC) {
1047 ztest_record_enospc(FTAG);
1048 return (error);
1049 }
1050 ASSERT0(error);
1051
1052 return (error);
1053 }
1054
1055 static void
1056 ztest_rll_init(rll_t *rll)
1057 {
1058 rll->rll_writer = NULL;
1059 rll->rll_readers = 0;
1060 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0);
1061 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0);
1062 }
1063
1064 static void
1065 ztest_rll_destroy(rll_t *rll)
1066 {
1067 ASSERT(rll->rll_writer == NULL);
1068 ASSERT(rll->rll_readers == 0);
1069 VERIFY(_mutex_destroy(&rll->rll_lock) == 0);
1070 VERIFY(cond_destroy(&rll->rll_cv) == 0);
1071 }
1072
1073 static void
1074 ztest_rll_lock(rll_t *rll, rl_type_t type)
1075 {
1076 VERIFY(mutex_lock(&rll->rll_lock) == 0);
1077
1078 if (type == RL_READER) {
1079 while (rll->rll_writer != NULL)
1080 (void) cond_wait(&rll->rll_cv, &rll->rll_lock);
1081 rll->rll_readers++;
1082 } else {
1083 while (rll->rll_writer != NULL || rll->rll_readers)
1084 (void) cond_wait(&rll->rll_cv, &rll->rll_lock);
1085 rll->rll_writer = curthread;
1086 }
1087
1088 VERIFY(mutex_unlock(&rll->rll_lock) == 0);
1089 }
1090
1091 static void
1092 ztest_rll_unlock(rll_t *rll)
1093 {
1094 VERIFY(mutex_lock(&rll->rll_lock) == 0);
1095
1096 if (rll->rll_writer) {
1097 ASSERT(rll->rll_readers == 0);
1098 rll->rll_writer = NULL;
1099 } else {
1100 ASSERT(rll->rll_readers != 0);
1101 ASSERT(rll->rll_writer == NULL);
1102 rll->rll_readers--;
1103 }
1104
1105 if (rll->rll_writer == NULL && rll->rll_readers == 0)
1106 VERIFY(cond_broadcast(&rll->rll_cv) == 0);
1107
1108 VERIFY(mutex_unlock(&rll->rll_lock) == 0);
1109 }
1110
1111 static void
1112 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1113 {
1114 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1115
1116 ztest_rll_lock(rll, type);
1117 }
1118
1119 static void
1120 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1121 {
1122 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1123
1124 ztest_rll_unlock(rll);
1125 }
1126
1127 static rl_t *
1128 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1129 uint64_t size, rl_type_t type)
1130 {
1131 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1132 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1133 rl_t *rl;
1134
1135 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1136 rl->rl_object = object;
1137 rl->rl_offset = offset;
1138 rl->rl_size = size;
1139 rl->rl_lock = rll;
1140
1141 ztest_rll_lock(rll, type);
1142
1143 return (rl);
1144 }
1145
1146 static void
1147 ztest_range_unlock(rl_t *rl)
1148 {
1149 rll_t *rll = rl->rl_lock;
1150
1151 ztest_rll_unlock(rll);
1152
1153 umem_free(rl, sizeof (*rl));
1154 }
1155
1156 static void
1157 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1158 {
1159 zd->zd_os = os;
1160 zd->zd_zilog = dmu_objset_zil(os);
1161 zd->zd_shared = szd;
1162 dmu_objset_name(os, zd->zd_name);
1163
1164 if (zd->zd_shared != NULL)
1165 zd->zd_shared->zd_seq = 0;
1166
1167 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0);
1168 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0);
1169
1170 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1171 ztest_rll_init(&zd->zd_object_lock[l]);
1172
1173 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1174 ztest_rll_init(&zd->zd_range_lock[l]);
1175 }
1176
1177 static void
1178 ztest_zd_fini(ztest_ds_t *zd)
1179 {
1180 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0);
1181
1182 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1183 ztest_rll_destroy(&zd->zd_object_lock[l]);
1184
1185 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1186 ztest_rll_destroy(&zd->zd_range_lock[l]);
1187 }
1188
1189 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1190
1191 static uint64_t
1192 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1193 {
1194 uint64_t txg;
1195 int error;
1196
1197 /*
1198 * Attempt to assign tx to some transaction group.
1199 */
1200 error = dmu_tx_assign(tx, txg_how);
1201 if (error) {
1202 if (error == ERESTART) {
1203 ASSERT(txg_how == TXG_NOWAIT);
1204 dmu_tx_wait(tx);
1205 } else {
1206 ASSERT3U(error, ==, ENOSPC);
1207 ztest_record_enospc(tag);
1208 }
1209 dmu_tx_abort(tx);
1210 return (0);
1211 }
1212 txg = dmu_tx_get_txg(tx);
1213 ASSERT(txg != 0);
1214 return (txg);
1215 }
1216
1217 static void
1218 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1219 {
1220 uint64_t *ip = buf;
1221 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1222
1223 while (ip < ip_end)
1224 *ip++ = value;
1225 }
1226
1227 static boolean_t
1228 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1229 {
1230 uint64_t *ip = buf;
1231 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1232 uint64_t diff = 0;
1233
1234 while (ip < ip_end)
1235 diff |= (value - *ip++);
1236
1237 return (diff == 0);
1238 }
1239
1240 static void
1241 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1242 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1243 {
1244 bt->bt_magic = BT_MAGIC;
1245 bt->bt_objset = dmu_objset_id(os);
1246 bt->bt_object = object;
1247 bt->bt_offset = offset;
1248 bt->bt_gen = gen;
1249 bt->bt_txg = txg;
1250 bt->bt_crtxg = crtxg;
1251 }
1252
1253 static void
1254 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1255 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1256 {
1257 ASSERT(bt->bt_magic == BT_MAGIC);
1258 ASSERT(bt->bt_objset == dmu_objset_id(os));
1259 ASSERT(bt->bt_object == object);
1260 ASSERT(bt->bt_offset == offset);
1261 ASSERT(bt->bt_gen <= gen);
1262 ASSERT(bt->bt_txg <= txg);
1263 ASSERT(bt->bt_crtxg == crtxg);
1264 }
1265
1266 static ztest_block_tag_t *
1267 ztest_bt_bonus(dmu_buf_t *db)
1268 {
1269 dmu_object_info_t doi;
1270 ztest_block_tag_t *bt;
1271
1272 dmu_object_info_from_db(db, &doi);
1273 ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1274 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1275 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1276
1277 return (bt);
1278 }
1279
1280 /*
1281 * ZIL logging ops
1282 */
1283
1284 #define lrz_type lr_mode
1285 #define lrz_blocksize lr_uid
1286 #define lrz_ibshift lr_gid
1287 #define lrz_bonustype lr_rdev
1288 #define lrz_bonuslen lr_crtime[1]
1289
1290 static void
1291 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1292 {
1293 char *name = (void *)(lr + 1); /* name follows lr */
1294 size_t namesize = strlen(name) + 1;
1295 itx_t *itx;
1296
1297 if (zil_replaying(zd->zd_zilog, tx))
1298 return;
1299
1300 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1301 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1302 sizeof (*lr) + namesize - sizeof (lr_t));
1303
1304 zil_itx_assign(zd->zd_zilog, itx, tx);
1305 }
1306
1307 static void
1308 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1309 {
1310 char *name = (void *)(lr + 1); /* name follows lr */
1311 size_t namesize = strlen(name) + 1;
1312 itx_t *itx;
1313
1314 if (zil_replaying(zd->zd_zilog, tx))
1315 return;
1316
1317 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1318 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1319 sizeof (*lr) + namesize - sizeof (lr_t));
1320
1321 itx->itx_oid = object;
1322 zil_itx_assign(zd->zd_zilog, itx, tx);
1323 }
1324
1325 static void
1326 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1327 {
1328 itx_t *itx;
1329 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1330
1331 if (zil_replaying(zd->zd_zilog, tx))
1332 return;
1333
1334 if (lr->lr_length > ZIL_MAX_LOG_DATA)
1335 write_state = WR_INDIRECT;
1336
1337 itx = zil_itx_create(TX_WRITE,
1338 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1339
1340 if (write_state == WR_COPIED &&
1341 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1342 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1343 zil_itx_destroy(itx);
1344 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1345 write_state = WR_NEED_COPY;
1346 }
1347 itx->itx_private = zd;
1348 itx->itx_wr_state = write_state;
1349 itx->itx_sync = (ztest_random(8) == 0);
1350 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0);
1351
1352 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1353 sizeof (*lr) - sizeof (lr_t));
1354
1355 zil_itx_assign(zd->zd_zilog, itx, tx);
1356 }
1357
1358 static void
1359 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1360 {
1361 itx_t *itx;
1362
1363 if (zil_replaying(zd->zd_zilog, tx))
1364 return;
1365
1366 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1367 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1368 sizeof (*lr) - sizeof (lr_t));
1369
1370 itx->itx_sync = B_FALSE;
1371 zil_itx_assign(zd->zd_zilog, itx, tx);
1372 }
1373
1374 static void
1375 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1376 {
1377 itx_t *itx;
1378
1379 if (zil_replaying(zd->zd_zilog, tx))
1380 return;
1381
1382 itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1383 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1384 sizeof (*lr) - sizeof (lr_t));
1385
1386 itx->itx_sync = B_FALSE;
1387 zil_itx_assign(zd->zd_zilog, itx, tx);
1388 }
1389
1390 /*
1391 * ZIL replay ops
1392 */
1393 static int
1394 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap)
1395 {
1396 char *name = (void *)(lr + 1); /* name follows lr */
1397 objset_t *os = zd->zd_os;
1398 ztest_block_tag_t *bbt;
1399 dmu_buf_t *db;
1400 dmu_tx_t *tx;
1401 uint64_t txg;
1402 int error = 0;
1403
1404 if (byteswap)
1405 byteswap_uint64_array(lr, sizeof (*lr));
1406
1407 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1408 ASSERT(name[0] != '\0');
1409
1410 tx = dmu_tx_create(os);
1411
1412 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1413
1414 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1415 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1416 } else {
1417 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1418 }
1419
1420 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1421 if (txg == 0)
1422 return (ENOSPC);
1423
1424 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1425
1426 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1427 if (lr->lr_foid == 0) {
1428 lr->lr_foid = zap_create(os,
1429 lr->lrz_type, lr->lrz_bonustype,
1430 lr->lrz_bonuslen, tx);
1431 } else {
1432 error = zap_create_claim(os, lr->lr_foid,
1433 lr->lrz_type, lr->lrz_bonustype,
1434 lr->lrz_bonuslen, tx);
1435 }
1436 } else {
1437 if (lr->lr_foid == 0) {
1438 lr->lr_foid = dmu_object_alloc(os,
1439 lr->lrz_type, 0, lr->lrz_bonustype,
1440 lr->lrz_bonuslen, tx);
1441 } else {
1442 error = dmu_object_claim(os, lr->lr_foid,
1443 lr->lrz_type, 0, lr->lrz_bonustype,
1444 lr->lrz_bonuslen, tx);
1445 }
1446 }
1447
1448 if (error) {
1449 ASSERT3U(error, ==, EEXIST);
1450 ASSERT(zd->zd_zilog->zl_replay);
1451 dmu_tx_commit(tx);
1452 return (error);
1453 }
1454
1455 ASSERT(lr->lr_foid != 0);
1456
1457 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1458 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1459 lr->lrz_blocksize, lr->lrz_ibshift, tx));
1460
1461 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1462 bbt = ztest_bt_bonus(db);
1463 dmu_buf_will_dirty(db, tx);
1464 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg);
1465 dmu_buf_rele(db, FTAG);
1466
1467 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1468 &lr->lr_foid, tx));
1469
1470 (void) ztest_log_create(zd, tx, lr);
1471
1472 dmu_tx_commit(tx);
1473
1474 return (0);
1475 }
1476
1477 static int
1478 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap)
1479 {
1480 char *name = (void *)(lr + 1); /* name follows lr */
1481 objset_t *os = zd->zd_os;
1482 dmu_object_info_t doi;
1483 dmu_tx_t *tx;
1484 uint64_t object, txg;
1485
1486 if (byteswap)
1487 byteswap_uint64_array(lr, sizeof (*lr));
1488
1489 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1490 ASSERT(name[0] != '\0');
1491
1492 VERIFY3U(0, ==,
1493 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1494 ASSERT(object != 0);
1495
1496 ztest_object_lock(zd, object, RL_WRITER);
1497
1498 VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1499
1500 tx = dmu_tx_create(os);
1501
1502 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1503 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1504
1505 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1506 if (txg == 0) {
1507 ztest_object_unlock(zd, object);
1508 return (ENOSPC);
1509 }
1510
1511 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1512 VERIFY3U(0, ==, zap_destroy(os, object, tx));
1513 } else {
1514 VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1515 }
1516
1517 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1518
1519 (void) ztest_log_remove(zd, tx, lr, object);
1520
1521 dmu_tx_commit(tx);
1522
1523 ztest_object_unlock(zd, object);
1524
1525 return (0);
1526 }
1527
1528 static int
1529 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap)
1530 {
1531 objset_t *os = zd->zd_os;
1532 void *data = lr + 1; /* data follows lr */
1533 uint64_t offset, length;
1534 ztest_block_tag_t *bt = data;
1535 ztest_block_tag_t *bbt;
1536 uint64_t gen, txg, lrtxg, crtxg;
1537 dmu_object_info_t doi;
1538 dmu_tx_t *tx;
1539 dmu_buf_t *db;
1540 arc_buf_t *abuf = NULL;
1541 rl_t *rl;
1542
1543 if (byteswap)
1544 byteswap_uint64_array(lr, sizeof (*lr));
1545
1546 offset = lr->lr_offset;
1547 length = lr->lr_length;
1548
1549 /* If it's a dmu_sync() block, write the whole block */
1550 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1551 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1552 if (length < blocksize) {
1553 offset -= offset % blocksize;
1554 length = blocksize;
1555 }
1556 }
1557
1558 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1559 byteswap_uint64_array(bt, sizeof (*bt));
1560
1561 if (bt->bt_magic != BT_MAGIC)
1562 bt = NULL;
1563
1564 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1565 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1566
1567 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1568
1569 dmu_object_info_from_db(db, &doi);
1570
1571 bbt = ztest_bt_bonus(db);
1572 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1573 gen = bbt->bt_gen;
1574 crtxg = bbt->bt_crtxg;
1575 lrtxg = lr->lr_common.lrc_txg;
1576
1577 tx = dmu_tx_create(os);
1578
1579 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1580
1581 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1582 P2PHASE(offset, length) == 0)
1583 abuf = dmu_request_arcbuf(db, length);
1584
1585 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1586 if (txg == 0) {
1587 if (abuf != NULL)
1588 dmu_return_arcbuf(abuf);
1589 dmu_buf_rele(db, FTAG);
1590 ztest_range_unlock(rl);
1591 ztest_object_unlock(zd, lr->lr_foid);
1592 return (ENOSPC);
1593 }
1594
1595 if (bt != NULL) {
1596 /*
1597 * Usually, verify the old data before writing new data --
1598 * but not always, because we also want to verify correct
1599 * behavior when the data was not recently read into cache.
1600 */
1601 ASSERT(offset % doi.doi_data_block_size == 0);
1602 if (ztest_random(4) != 0) {
1603 int prefetch = ztest_random(2) ?
1604 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1605 ztest_block_tag_t rbt;
1606
1607 VERIFY(dmu_read(os, lr->lr_foid, offset,
1608 sizeof (rbt), &rbt, prefetch) == 0);
1609 if (rbt.bt_magic == BT_MAGIC) {
1610 ztest_bt_verify(&rbt, os, lr->lr_foid,
1611 offset, gen, txg, crtxg);
1612 }
1613 }
1614
1615 /*
1616 * Writes can appear to be newer than the bonus buffer because
1617 * the ztest_get_data() callback does a dmu_read() of the
1618 * open-context data, which may be different than the data
1619 * as it was when the write was generated.
1620 */
1621 if (zd->zd_zilog->zl_replay) {
1622 ztest_bt_verify(bt, os, lr->lr_foid, offset,
1623 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1624 bt->bt_crtxg);
1625 }
1626
1627 /*
1628 * Set the bt's gen/txg to the bonus buffer's gen/txg
1629 * so that all of the usual ASSERTs will work.
1630 */
1631 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg);
1632 }
1633
1634 if (abuf == NULL) {
1635 dmu_write(os, lr->lr_foid, offset, length, data, tx);
1636 } else {
1637 bcopy(data, abuf->b_data, length);
1638 dmu_assign_arcbuf(db, offset, abuf, tx);
1639 }
1640
1641 (void) ztest_log_write(zd, tx, lr);
1642
1643 dmu_buf_rele(db, FTAG);
1644
1645 dmu_tx_commit(tx);
1646
1647 ztest_range_unlock(rl);
1648 ztest_object_unlock(zd, lr->lr_foid);
1649
1650 return (0);
1651 }
1652
1653 static int
1654 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap)
1655 {
1656 objset_t *os = zd->zd_os;
1657 dmu_tx_t *tx;
1658 uint64_t txg;
1659 rl_t *rl;
1660
1661 if (byteswap)
1662 byteswap_uint64_array(lr, sizeof (*lr));
1663
1664 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1665 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
1666 RL_WRITER);
1667
1668 tx = dmu_tx_create(os);
1669
1670 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
1671
1672 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1673 if (txg == 0) {
1674 ztest_range_unlock(rl);
1675 ztest_object_unlock(zd, lr->lr_foid);
1676 return (ENOSPC);
1677 }
1678
1679 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
1680 lr->lr_length, tx) == 0);
1681
1682 (void) ztest_log_truncate(zd, tx, lr);
1683
1684 dmu_tx_commit(tx);
1685
1686 ztest_range_unlock(rl);
1687 ztest_object_unlock(zd, lr->lr_foid);
1688
1689 return (0);
1690 }
1691
1692 static int
1693 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap)
1694 {
1695 objset_t *os = zd->zd_os;
1696 dmu_tx_t *tx;
1697 dmu_buf_t *db;
1698 ztest_block_tag_t *bbt;
1699 uint64_t txg, lrtxg, crtxg;
1700
1701 if (byteswap)
1702 byteswap_uint64_array(lr, sizeof (*lr));
1703
1704 ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
1705
1706 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1707
1708 tx = dmu_tx_create(os);
1709 dmu_tx_hold_bonus(tx, lr->lr_foid);
1710
1711 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1712 if (txg == 0) {
1713 dmu_buf_rele(db, FTAG);
1714 ztest_object_unlock(zd, lr->lr_foid);
1715 return (ENOSPC);
1716 }
1717
1718 bbt = ztest_bt_bonus(db);
1719 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1720 crtxg = bbt->bt_crtxg;
1721 lrtxg = lr->lr_common.lrc_txg;
1722
1723 if (zd->zd_zilog->zl_replay) {
1724 ASSERT(lr->lr_size != 0);
1725 ASSERT(lr->lr_mode != 0);
1726 ASSERT(lrtxg != 0);
1727 } else {
1728 /*
1729 * Randomly change the size and increment the generation.
1730 */
1731 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
1732 sizeof (*bbt);
1733 lr->lr_mode = bbt->bt_gen + 1;
1734 ASSERT(lrtxg == 0);
1735 }
1736
1737 /*
1738 * Verify that the current bonus buffer is not newer than our txg.
1739 */
1740 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode,
1741 MAX(txg, lrtxg), crtxg);
1742
1743 dmu_buf_will_dirty(db, tx);
1744
1745 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
1746 ASSERT3U(lr->lr_size, <=, db->db_size);
1747 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
1748 bbt = ztest_bt_bonus(db);
1749
1750 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg);
1751
1752 dmu_buf_rele(db, FTAG);
1753
1754 (void) ztest_log_setattr(zd, tx, lr);
1755
1756 dmu_tx_commit(tx);
1757
1758 ztest_object_unlock(zd, lr->lr_foid);
1759
1760 return (0);
1761 }
1762
1763 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
1764 NULL, /* 0 no such transaction type */
1765 ztest_replay_create, /* TX_CREATE */
1766 NULL, /* TX_MKDIR */
1767 NULL, /* TX_MKXATTR */
1768 NULL, /* TX_SYMLINK */
1769 ztest_replay_remove, /* TX_REMOVE */
1770 NULL, /* TX_RMDIR */
1771 NULL, /* TX_LINK */
1772 NULL, /* TX_RENAME */
1773 ztest_replay_write, /* TX_WRITE */
1774 ztest_replay_truncate, /* TX_TRUNCATE */
1775 ztest_replay_setattr, /* TX_SETATTR */
1776 NULL, /* TX_ACL */
1777 NULL, /* TX_CREATE_ACL */
1778 NULL, /* TX_CREATE_ATTR */
1779 NULL, /* TX_CREATE_ACL_ATTR */
1780 NULL, /* TX_MKDIR_ACL */
1781 NULL, /* TX_MKDIR_ATTR */
1782 NULL, /* TX_MKDIR_ACL_ATTR */
1783 NULL, /* TX_WRITE2 */
1784 };
1785
1786 /*
1787 * ZIL get_data callbacks
1788 */
1789
1790 static void
1791 ztest_get_done(zgd_t *zgd, int error)
1792 {
1793 ztest_ds_t *zd = zgd->zgd_private;
1794 uint64_t object = zgd->zgd_rl->rl_object;
1795
1796 if (zgd->zgd_db)
1797 dmu_buf_rele(zgd->zgd_db, zgd);
1798
1799 ztest_range_unlock(zgd->zgd_rl);
1800 ztest_object_unlock(zd, object);
1801
1802 if (error == 0 && zgd->zgd_bp)
1803 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1804
1805 umem_free(zgd, sizeof (*zgd));
1806 }
1807
1808 static int
1809 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1810 {
1811 ztest_ds_t *zd = arg;
1812 objset_t *os = zd->zd_os;
1813 uint64_t object = lr->lr_foid;
1814 uint64_t offset = lr->lr_offset;
1815 uint64_t size = lr->lr_length;
1816 blkptr_t *bp = &lr->lr_blkptr;
1817 uint64_t txg = lr->lr_common.lrc_txg;
1818 uint64_t crtxg;
1819 dmu_object_info_t doi;
1820 dmu_buf_t *db;
1821 zgd_t *zgd;
1822 int error;
1823
1824 ztest_object_lock(zd, object, RL_READER);
1825 error = dmu_bonus_hold(os, object, FTAG, &db);
1826 if (error) {
1827 ztest_object_unlock(zd, object);
1828 return (error);
1829 }
1830
1831 crtxg = ztest_bt_bonus(db)->bt_crtxg;
1832
1833 if (crtxg == 0 || crtxg > txg) {
1834 dmu_buf_rele(db, FTAG);
1835 ztest_object_unlock(zd, object);
1836 return (ENOENT);
1837 }
1838
1839 dmu_object_info_from_db(db, &doi);
1840 dmu_buf_rele(db, FTAG);
1841 db = NULL;
1842
1843 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
1844 zgd->zgd_zilog = zd->zd_zilog;
1845 zgd->zgd_private = zd;
1846
1847 if (buf != NULL) { /* immediate write */
1848 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1849 RL_READER);
1850
1851 error = dmu_read(os, object, offset, size, buf,
1852 DMU_READ_NO_PREFETCH);
1853 ASSERT(error == 0);
1854 } else {
1855 size = doi.doi_data_block_size;
1856 if (ISP2(size)) {
1857 offset = P2ALIGN(offset, size);
1858 } else {
1859 ASSERT(offset < size);
1860 offset = 0;
1861 }
1862
1863 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1864 RL_READER);
1865
1866 error = dmu_buf_hold(os, object, offset, zgd, &db,
1867 DMU_READ_NO_PREFETCH);
1868
1869 if (error == 0) {
1870 blkptr_t *obp = dmu_buf_get_blkptr(db);
1871 if (obp) {
1872 ASSERT(BP_IS_HOLE(bp));
1873 *bp = *obp;
1874 }
1875
1876 zgd->zgd_db = db;
1877 zgd->zgd_bp = bp;
1878
1879 ASSERT(db->db_offset == offset);
1880 ASSERT(db->db_size == size);
1881
1882 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1883 ztest_get_done, zgd);
1884
1885 if (error == 0)
1886 return (0);
1887 }
1888 }
1889
1890 ztest_get_done(zgd, error);
1891
1892 return (error);
1893 }
1894
1895 static void *
1896 ztest_lr_alloc(size_t lrsize, char *name)
1897 {
1898 char *lr;
1899 size_t namesize = name ? strlen(name) + 1 : 0;
1900
1901 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
1902
1903 if (name)
1904 bcopy(name, lr + lrsize, namesize);
1905
1906 return (lr);
1907 }
1908
1909 void
1910 ztest_lr_free(void *lr, size_t lrsize, char *name)
1911 {
1912 size_t namesize = name ? strlen(name) + 1 : 0;
1913
1914 umem_free(lr, lrsize + namesize);
1915 }
1916
1917 /*
1918 * Lookup a bunch of objects. Returns the number of objects not found.
1919 */
1920 static int
1921 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
1922 {
1923 int missing = 0;
1924 int error;
1925
1926 ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1927
1928 for (int i = 0; i < count; i++, od++) {
1929 od->od_object = 0;
1930 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
1931 sizeof (uint64_t), 1, &od->od_object);
1932 if (error) {
1933 ASSERT(error == ENOENT);
1934 ASSERT(od->od_object == 0);
1935 missing++;
1936 } else {
1937 dmu_buf_t *db;
1938 ztest_block_tag_t *bbt;
1939 dmu_object_info_t doi;
1940
1941 ASSERT(od->od_object != 0);
1942 ASSERT(missing == 0); /* there should be no gaps */
1943
1944 ztest_object_lock(zd, od->od_object, RL_READER);
1945 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
1946 od->od_object, FTAG, &db));
1947 dmu_object_info_from_db(db, &doi);
1948 bbt = ztest_bt_bonus(db);
1949 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1950 od->od_type = doi.doi_type;
1951 od->od_blocksize = doi.doi_data_block_size;
1952 od->od_gen = bbt->bt_gen;
1953 dmu_buf_rele(db, FTAG);
1954 ztest_object_unlock(zd, od->od_object);
1955 }
1956 }
1957
1958 return (missing);
1959 }
1960
1961 static int
1962 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
1963 {
1964 int missing = 0;
1965
1966 ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1967
1968 for (int i = 0; i < count; i++, od++) {
1969 if (missing) {
1970 od->od_object = 0;
1971 missing++;
1972 continue;
1973 }
1974
1975 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
1976
1977 lr->lr_doid = od->od_dir;
1978 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
1979 lr->lrz_type = od->od_crtype;
1980 lr->lrz_blocksize = od->od_crblocksize;
1981 lr->lrz_ibshift = ztest_random_ibshift();
1982 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
1983 lr->lrz_bonuslen = dmu_bonus_max();
1984 lr->lr_gen = od->od_crgen;
1985 lr->lr_crtime[0] = time(NULL);
1986
1987 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
1988 ASSERT(missing == 0);
1989 od->od_object = 0;
1990 missing++;
1991 } else {
1992 od->od_object = lr->lr_foid;
1993 od->od_type = od->od_crtype;
1994 od->od_blocksize = od->od_crblocksize;
1995 od->od_gen = od->od_crgen;
1996 ASSERT(od->od_object != 0);
1997 }
1998
1999 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2000 }
2001
2002 return (missing);
2003 }
2004
2005 static int
2006 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2007 {
2008 int missing = 0;
2009 int error;
2010
2011 ASSERT(_mutex_held(&zd->zd_dirobj_lock));
2012
2013 od += count - 1;
2014
2015 for (int i = count - 1; i >= 0; i--, od--) {
2016 if (missing) {
2017 missing++;
2018 continue;
2019 }
2020
2021 /*
2022 * No object was found.
2023 */
2024 if (od->od_object == 0)
2025 continue;
2026
2027 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2028
2029 lr->lr_doid = od->od_dir;
2030
2031 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2032 ASSERT3U(error, ==, ENOSPC);
2033 missing++;
2034 } else {
2035 od->od_object = 0;
2036 }
2037 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2038 }
2039
2040 return (missing);
2041 }
2042
2043 static int
2044 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2045 void *data)
2046 {
2047 lr_write_t *lr;
2048 int error;
2049
2050 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2051
2052 lr->lr_foid = object;
2053 lr->lr_offset = offset;
2054 lr->lr_length = size;
2055 lr->lr_blkoff = 0;
2056 BP_ZERO(&lr->lr_blkptr);
2057
2058 bcopy(data, lr + 1, size);
2059
2060 error = ztest_replay_write(zd, lr, B_FALSE);
2061
2062 ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2063
2064 return (error);
2065 }
2066
2067 static int
2068 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2069 {
2070 lr_truncate_t *lr;
2071 int error;
2072
2073 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2074
2075 lr->lr_foid = object;
2076 lr->lr_offset = offset;
2077 lr->lr_length = size;
2078
2079 error = ztest_replay_truncate(zd, lr, B_FALSE);
2080
2081 ztest_lr_free(lr, sizeof (*lr), NULL);
2082
2083 return (error);
2084 }
2085
2086 static int
2087 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2088 {
2089 lr_setattr_t *lr;
2090 int error;
2091
2092 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2093
2094 lr->lr_foid = object;
2095 lr->lr_size = 0;
2096 lr->lr_mode = 0;
2097
2098 error = ztest_replay_setattr(zd, lr, B_FALSE);
2099
2100 ztest_lr_free(lr, sizeof (*lr), NULL);
2101
2102 return (error);
2103 }
2104
2105 static void
2106 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2107 {
2108 objset_t *os = zd->zd_os;
2109 dmu_tx_t *tx;
2110 uint64_t txg;
2111 rl_t *rl;
2112
2113 txg_wait_synced(dmu_objset_pool(os), 0);
2114
2115 ztest_object_lock(zd, object, RL_READER);
2116 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2117
2118 tx = dmu_tx_create(os);
2119
2120 dmu_tx_hold_write(tx, object, offset, size);
2121
2122 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2123
2124 if (txg != 0) {
2125 dmu_prealloc(os, object, offset, size, tx);
2126 dmu_tx_commit(tx);
2127 txg_wait_synced(dmu_objset_pool(os), txg);
2128 } else {
2129 (void) dmu_free_long_range(os, object, offset, size);
2130 }
2131
2132 ztest_range_unlock(rl);
2133 ztest_object_unlock(zd, object);
2134 }
2135
2136 static void
2137 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2138 {
2139 int err;
2140 ztest_block_tag_t wbt;
2141 dmu_object_info_t doi;
2142 enum ztest_io_type io_type;
2143 uint64_t blocksize;
2144 void *data;
2145
2146 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2147 blocksize = doi.doi_data_block_size;
2148 data = umem_alloc(blocksize, UMEM_NOFAIL);
2149
2150 /*
2151 * Pick an i/o type at random, biased toward writing block tags.
2152 */
2153 io_type = ztest_random(ZTEST_IO_TYPES);
2154 if (ztest_random(2) == 0)
2155 io_type = ZTEST_IO_WRITE_TAG;
2156
2157 (void) rw_rdlock(&zd->zd_zilog_lock);
2158
2159 switch (io_type) {
2160
2161 case ZTEST_IO_WRITE_TAG:
2162 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0);
2163 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2164 break;
2165
2166 case ZTEST_IO_WRITE_PATTERN:
2167 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
2168 if (ztest_random(2) == 0) {
2169 /*
2170 * Induce fletcher2 collisions to ensure that
2171 * zio_ddt_collision() detects and resolves them
2172 * when using fletcher2-verify for deduplication.
2173 */
2174 ((uint64_t *)data)[0] ^= 1ULL << 63;
2175 ((uint64_t *)data)[4] ^= 1ULL << 63;
2176 }
2177 (void) ztest_write(zd, object, offset, blocksize, data);
2178 break;
2179
2180 case ZTEST_IO_WRITE_ZEROES:
2181 bzero(data, blocksize);
2182 (void) ztest_write(zd, object, offset, blocksize, data);
2183 break;
2184
2185 case ZTEST_IO_TRUNCATE:
2186 (void) ztest_truncate(zd, object, offset, blocksize);
2187 break;
2188
2189 case ZTEST_IO_SETATTR:
2190 (void) ztest_setattr(zd, object);
2191 break;
2192
2193 case ZTEST_IO_REWRITE:
2194 (void) rw_rdlock(&ztest_name_lock);
2195 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2196 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2197 B_FALSE);
2198 VERIFY(err == 0 || err == ENOSPC);
2199 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2200 ZFS_PROP_COMPRESSION,
2201 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2202 B_FALSE);
2203 VERIFY(err == 0 || err == ENOSPC);
2204 (void) rw_unlock(&ztest_name_lock);
2205
2206 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2207 DMU_READ_NO_PREFETCH));
2208
2209 (void) ztest_write(zd, object, offset, blocksize, data);
2210 break;
2211 }
2212
2213 (void) rw_unlock(&zd->zd_zilog_lock);
2214
2215 umem_free(data, blocksize);
2216 }
2217
2218 /*
2219 * Initialize an object description template.
2220 */
2221 static void
2222 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2223 dmu_object_type_t type, uint64_t blocksize, uint64_t gen)
2224 {
2225 od->od_dir = ZTEST_DIROBJ;
2226 od->od_object = 0;
2227
2228 od->od_crtype = type;
2229 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2230 od->od_crgen = gen;
2231
2232 od->od_type = DMU_OT_NONE;
2233 od->od_blocksize = 0;
2234 od->od_gen = 0;
2235
2236 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2237 tag, (int64_t)id, index);
2238 }
2239
2240 /*
2241 * Lookup or create the objects for a test using the od template.
2242 * If the objects do not all exist, or if 'remove' is specified,
2243 * remove any existing objects and create new ones. Otherwise,
2244 * use the existing objects.
2245 */
2246 static int
2247 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2248 {
2249 int count = size / sizeof (*od);
2250 int rv = 0;
2251
2252 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0);
2253 if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2254 (ztest_remove(zd, od, count) != 0 ||
2255 ztest_create(zd, od, count) != 0))
2256 rv = -1;
2257 zd->zd_od = od;
2258 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0);
2259
2260 return (rv);
2261 }
2262
2263 /* ARGSUSED */
2264 void
2265 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2266 {
2267 zilog_t *zilog = zd->zd_zilog;
2268
2269 (void) rw_rdlock(&zd->zd_zilog_lock);
2270
2271 zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2272
2273 /*
2274 * Remember the committed values in zd, which is in parent/child
2275 * shared memory. If we die, the next iteration of ztest_run()
2276 * will verify that the log really does contain this record.
2277 */
2278 mutex_enter(&zilog->zl_lock);
2279 ASSERT(zd->zd_shared != NULL);
2280 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2281 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2282 mutex_exit(&zilog->zl_lock);
2283
2284 (void) rw_unlock(&zd->zd_zilog_lock);
2285 }
2286
2287 /*
2288 * This function is designed to simulate the operations that occur during a
2289 * mount/unmount operation. We hold the dataset across these operations in an
2290 * attempt to expose any implicit assumptions about ZIL management.
2291 */
2292 /* ARGSUSED */
2293 void
2294 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2295 {
2296 objset_t *os = zd->zd_os;
2297
2298 /*
2299 * We grab the zd_dirobj_lock to ensure that no other thread is
2300 * updating the zil (i.e. adding in-memory log records) and the
2301 * zd_zilog_lock to block any I/O.
2302 */
2303 VERIFY0(mutex_lock(&zd->zd_dirobj_lock));
2304 (void) rw_wrlock(&zd->zd_zilog_lock);
2305
2306 /* zfsvfs_teardown() */
2307 zil_close(zd->zd_zilog);
2308
2309 /* zfsvfs_setup() */
2310 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2311 zil_replay(os, zd, ztest_replay_vector);
2312
2313 (void) rw_unlock(&zd->zd_zilog_lock);
2314 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0);
2315 }
2316
2317 /*
2318 * Verify that we can't destroy an active pool, create an existing pool,
2319 * or create a pool with a bad vdev spec.
2320 */
2321 /* ARGSUSED */
2322 void
2323 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2324 {
2325 ztest_shared_opts_t *zo = &ztest_opts;
2326 spa_t *spa;
2327 nvlist_t *nvroot;
2328
2329 /*
2330 * Attempt to create using a bad file.
2331 */
2332 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2333 VERIFY3U(ENOENT, ==,
2334 spa_create("ztest_bad_file", nvroot, NULL, NULL));
2335 nvlist_free(nvroot);
2336
2337 /*
2338 * Attempt to create using a bad mirror.
2339 */
2340 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1);
2341 VERIFY3U(ENOENT, ==,
2342 spa_create("ztest_bad_mirror", nvroot, NULL, NULL));
2343 nvlist_free(nvroot);
2344
2345 /*
2346 * Attempt to create an existing pool. It shouldn't matter
2347 * what's in the nvroot; we should fail with EEXIST.
2348 */
2349 (void) rw_rdlock(&ztest_name_lock);
2350 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2351 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL));
2352 nvlist_free(nvroot);
2353 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2354 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2355 spa_close(spa, FTAG);
2356
2357 (void) rw_unlock(&ztest_name_lock);
2358 }
2359
2360 /* ARGSUSED */
2361 void
2362 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
2363 {
2364 spa_t *spa;
2365 uint64_t initial_version = SPA_VERSION_INITIAL;
2366 uint64_t version, newversion;
2367 nvlist_t *nvroot, *props;
2368 char *name;
2369
2370 VERIFY0(mutex_lock(&ztest_vdev_lock));
2371 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
2372
2373 /*
2374 * Clean up from previous runs.
2375 */
2376 (void) spa_destroy(name);
2377
2378 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
2379 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
2380
2381 /*
2382 * If we're configuring a RAIDZ device then make sure that the
2383 * the initial version is capable of supporting that feature.
2384 */
2385 switch (ztest_opts.zo_raidz_parity) {
2386 case 0:
2387 case 1:
2388 initial_version = SPA_VERSION_INITIAL;
2389 break;
2390 case 2:
2391 initial_version = SPA_VERSION_RAIDZ2;
2392 break;
2393 case 3:
2394 initial_version = SPA_VERSION_RAIDZ3;
2395 break;
2396 }
2397
2398 /*
2399 * Create a pool with a spa version that can be upgraded. Pick
2400 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2401 */
2402 do {
2403 version = ztest_random_spa_version(initial_version);
2404 } while (version > SPA_VERSION_BEFORE_FEATURES);
2405
2406 props = fnvlist_alloc();
2407 fnvlist_add_uint64(props,
2408 zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
2409 VERIFY0(spa_create(name, nvroot, props, NULL));
2410 fnvlist_free(nvroot);
2411 fnvlist_free(props);
2412
2413 VERIFY0(spa_open(name, &spa, FTAG));
2414 VERIFY3U(spa_version(spa), ==, version);
2415 newversion = ztest_random_spa_version(version + 1);
2416
2417 if (ztest_opts.zo_verbose >= 4) {
2418 (void) printf("upgrading spa version from %llu to %llu\n",
2419 (u_longlong_t)version, (u_longlong_t)newversion);
2420 }
2421
2422 spa_upgrade(spa, newversion);
2423 VERIFY3U(spa_version(spa), >, version);
2424 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
2425 zpool_prop_to_name(ZPOOL_PROP_VERSION)));
2426 spa_close(spa, FTAG);
2427
2428 strfree(name);
2429 VERIFY0(mutex_unlock(&ztest_vdev_lock));
2430 }
2431
2432 static vdev_t *
2433 vdev_lookup_by_path(vdev_t *vd, const char *path)
2434 {
2435 vdev_t *mvd;
2436
2437 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2438 return (vd);
2439
2440 for (int c = 0; c < vd->vdev_children; c++)
2441 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2442 NULL)
2443 return (mvd);
2444
2445 return (NULL);
2446 }
2447
2448 /*
2449 * Find the first available hole which can be used as a top-level.
2450 */
2451 int
2452 find_vdev_hole(spa_t *spa)
2453 {
2454 vdev_t *rvd = spa->spa_root_vdev;
2455 int c;
2456
2457 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2458
2459 for (c = 0; c < rvd->vdev_children; c++) {
2460 vdev_t *cvd = rvd->vdev_child[c];
2461
2462 if (cvd->vdev_ishole)
2463 break;
2464 }
2465 return (c);
2466 }
2467
2468 /*
2469 * Verify that vdev_add() works as expected.
2470 */
2471 /* ARGSUSED */
2472 void
2473 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2474 {
2475 ztest_shared_t *zs = ztest_shared;
2476 spa_t *spa = ztest_spa;
2477 uint64_t leaves;
2478 uint64_t guid;
2479 nvlist_t *nvroot;
2480 int error;
2481
2482 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2483 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2484
2485 /*
2486 * SCL_VDEV doesn't protect against spa_passivate_log(), which
2487 * only asserts SCL_ALLOC, and can remove the metaslab class out
2488 * from under this function.
2489 */
2490 spa_config_enter(spa, SCL_VDEV|SCL_ALLOC, FTAG, RW_READER);
2491
2492 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2493
2494 /*
2495 * If we have slogs then remove them 1/4 of the time.
2496 */
2497 if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2498 /*
2499 * Grab the guid from the head of the log class rotor.
2500 */
2501 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid;
2502
2503 spa_config_exit(spa, SCL_VDEV|SCL_ALLOC, FTAG);
2504
2505 /*
2506 * We have to grab the zs_name_lock as writer to
2507 * prevent a race between removing a slog (dmu_objset_find)
2508 * and destroying a dataset. Removing the slog will
2509 * grab a reference on the dataset which may cause
2510 * dmu_objset_destroy() to fail with EBUSY thus
2511 * leaving the dataset in an inconsistent state.
2512 */
2513 VERIFY(rw_wrlock(&ztest_name_lock) == 0);
2514 error = spa_vdev_remove(spa, guid, B_FALSE);
2515 VERIFY(rw_unlock(&ztest_name_lock) == 0);
2516
2517 if (error && error != EEXIST)
2518 fatal(0, "spa_vdev_remove() = %d", error);
2519 } else {
2520 spa_config_exit(spa, SCL_VDEV|SCL_ALLOC, FTAG);
2521
2522 /*
2523 * Make 1/4 of the devices be log devices.
2524 */
2525 nvroot = make_vdev_root(NULL, NULL, NULL,
2526 ztest_opts.zo_vdev_size, 0,
2527 ztest_random(4) == 0, ztest_opts.zo_raidz,
2528 zs->zs_mirrors, 1);
2529
2530 error = spa_vdev_add(spa, nvroot);
2531 nvlist_free(nvroot);
2532
2533 if (error == ENOSPC)
2534 ztest_record_enospc("spa_vdev_add");
2535 else if (error != 0)
2536 fatal(0, "spa_vdev_add() = %d", error);
2537 }
2538
2539 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2540 }
2541
2542 /*
2543 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2544 */
2545 /* ARGSUSED */
2546 void
2547 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
2548 {
2549 ztest_shared_t *zs = ztest_shared;
2550 spa_t *spa = ztest_spa;
2551 vdev_t *rvd = spa->spa_root_vdev;
2552 spa_aux_vdev_t *sav;
2553 char *aux;
2554 uint64_t guid = 0;
2555 int error;
2556
2557 if (ztest_random(2) == 0) {
2558 sav = &spa->spa_spares;
2559 aux = ZPOOL_CONFIG_SPARES;
2560 } else {
2561 sav = &spa->spa_l2cache;
2562 aux = ZPOOL_CONFIG_L2CACHE;
2563 }
2564
2565 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2566
2567 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2568
2569 if (sav->sav_count != 0 && ztest_random(4) == 0) {
2570 /*
2571 * Pick a random device to remove.
2572 */
2573 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
2574 } else {
2575 /*
2576 * Find an unused device we can add.
2577 */
2578 zs->zs_vdev_aux = 0;
2579 for (;;) {
2580 char path[MAXPATHLEN];
2581 int c;
2582 (void) snprintf(path, sizeof (path), ztest_aux_template,
2583 ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
2584 zs->zs_vdev_aux);
2585 for (c = 0; c < sav->sav_count; c++)
2586 if (strcmp(sav->sav_vdevs[c]->vdev_path,
2587 path) == 0)
2588 break;
2589 if (c == sav->sav_count &&
2590 vdev_lookup_by_path(rvd, path) == NULL)
2591 break;
2592 zs->zs_vdev_aux++;
2593 }
2594 }
2595
2596 spa_config_exit(spa, SCL_VDEV, FTAG);
2597
2598 if (guid == 0) {
2599 /*
2600 * Add a new device.
2601 */
2602 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
2603 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
2604 error = spa_vdev_add(spa, nvroot);
2605 if (error != 0)
2606 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
2607 nvlist_free(nvroot);
2608 } else {
2609 /*
2610 * Remove an existing device. Sometimes, dirty its
2611 * vdev state first to make sure we handle removal
2612 * of devices that have pending state changes.
2613 */
2614 if (ztest_random(2) == 0)
2615 (void) vdev_online(spa, guid, 0, NULL);
2616
2617 error = spa_vdev_remove(spa, guid, B_FALSE);
2618 if (error != 0 && error != EBUSY)
2619 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
2620 }
2621
2622 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2623 }
2624
2625 /*
2626 * split a pool if it has mirror tlvdevs
2627 */
2628 /* ARGSUSED */
2629 void
2630 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
2631 {
2632 ztest_shared_t *zs = ztest_shared;
2633 spa_t *spa = ztest_spa;
2634 vdev_t *rvd = spa->spa_root_vdev;
2635 nvlist_t *tree, **child, *config, *split, **schild;
2636 uint_t c, children, schildren = 0, lastlogid = 0;
2637 int error = 0;
2638
2639 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2640
2641 /* ensure we have a useable config; mirrors of raidz aren't supported */
2642 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
2643 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2644 return;
2645 }
2646
2647 /* clean up the old pool, if any */
2648 (void) spa_destroy("splitp");
2649
2650 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2651
2652 /* generate a config from the existing config */
2653 mutex_enter(&spa->spa_props_lock);
2654 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
2655 &tree) == 0);
2656 mutex_exit(&spa->spa_props_lock);
2657
2658 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
2659 &children) == 0);
2660
2661 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
2662 for (c = 0; c < children; c++) {
2663 vdev_t *tvd = rvd->vdev_child[c];
2664 nvlist_t **mchild;
2665 uint_t mchildren;
2666
2667 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
2668 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
2669 0) == 0);
2670 VERIFY(nvlist_add_string(schild[schildren],
2671 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
2672 VERIFY(nvlist_add_uint64(schild[schildren],
2673 ZPOOL_CONFIG_IS_HOLE, 1) == 0);
2674 if (lastlogid == 0)
2675 lastlogid = schildren;
2676 ++schildren;
2677 continue;
2678 }
2679 lastlogid = 0;
2680 VERIFY(nvlist_lookup_nvlist_array(child[c],
2681 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
2682 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
2683 }
2684
2685 /* OK, create a config that can be used to split */
2686 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
2687 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
2688 VDEV_TYPE_ROOT) == 0);
2689 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
2690 lastlogid != 0 ? lastlogid : schildren) == 0);
2691
2692 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
2693 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
2694
2695 for (c = 0; c < schildren; c++)
2696 nvlist_free(schild[c]);
2697 free(schild);
2698 nvlist_free(split);
2699
2700 spa_config_exit(spa, SCL_VDEV, FTAG);
2701
2702 (void) rw_wrlock(&ztest_name_lock);
2703 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
2704 (void) rw_unlock(&ztest_name_lock);
2705
2706 nvlist_free(config);
2707
2708 if (error == 0) {
2709 (void) printf("successful split - results:\n");
2710 mutex_enter(&spa_namespace_lock);
2711 show_pool_stats(spa);
2712 show_pool_stats(spa_lookup("splitp"));
2713 mutex_exit(&spa_namespace_lock);
2714 ++zs->zs_splits;
2715 --zs->zs_mirrors;
2716 }
2717 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2718
2719 }
2720
2721 /*
2722 * Verify that we can attach and detach devices.
2723 */
2724 /* ARGSUSED */
2725 void
2726 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
2727 {
2728 ztest_shared_t *zs = ztest_shared;
2729 spa_t *spa = ztest_spa;
2730 spa_aux_vdev_t *sav = &spa->spa_spares;
2731 vdev_t *rvd = spa->spa_root_vdev;
2732 vdev_t *oldvd, *newvd, *pvd;
2733 nvlist_t *root;
2734 uint64_t leaves;
2735 uint64_t leaf, top;
2736 uint64_t ashift = ztest_get_ashift();
2737 uint64_t oldguid, pguid;
2738 size_t oldsize, newsize;
2739 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
2740 int replacing;
2741 int oldvd_has_siblings = B_FALSE;
2742 int newvd_is_spare = B_FALSE;
2743 int oldvd_is_log;
2744 int error, expected_error;
2745
2746 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2747 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
2748
2749 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2750
2751 /*
2752 * Decide whether to do an attach or a replace.
2753 */
2754 replacing = ztest_random(2);
2755
2756 /*
2757 * Pick a random top-level vdev.
2758 */
2759 top = ztest_random_vdev_top(spa, B_TRUE);
2760
2761 /*
2762 * Pick a random leaf within it.
2763 */
2764 leaf = ztest_random(leaves);
2765
2766 /*
2767 * Locate this vdev.
2768 */
2769 oldvd = rvd->vdev_child[top];
2770 if (zs->zs_mirrors >= 1) {
2771 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
2772 ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
2773 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
2774 }
2775 if (ztest_opts.zo_raidz > 1) {
2776 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
2777 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
2778 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
2779 }
2780
2781 /*
2782 * If we're already doing an attach or replace, oldvd may be a
2783 * mirror vdev -- in which case, pick a random child.
2784 */
2785 while (oldvd->vdev_children != 0) {
2786 oldvd_has_siblings = B_TRUE;
2787 ASSERT(oldvd->vdev_children >= 2);
2788 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
2789 }
2790
2791 oldguid = oldvd->vdev_guid;
2792 oldsize = vdev_get_min_asize(oldvd);
2793 oldvd_is_log = oldvd->vdev_top->vdev_islog;
2794 (void) strcpy(oldpath, oldvd->vdev_path);
2795 pvd = oldvd->vdev_parent;
2796 pguid = pvd->vdev_guid;
2797
2798 /*
2799 * If oldvd has siblings, then half of the time, detach it.
2800 */
2801 if (oldvd_has_siblings && ztest_random(2) == 0) {
2802 spa_config_exit(spa, SCL_VDEV, FTAG);
2803 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
2804 if (error != 0 && error != ENODEV && error != EBUSY &&
2805 error != ENOTSUP)
2806 fatal(0, "detach (%s) returned %d", oldpath, error);
2807 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2808 return;
2809 }
2810
2811 /*
2812 * For the new vdev, choose with equal probability between the two
2813 * standard paths (ending in either 'a' or 'b') or a random hot spare.
2814 */
2815 if (sav->sav_count != 0 && ztest_random(3) == 0) {
2816 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
2817 newvd_is_spare = B_TRUE;
2818 (void) strcpy(newpath, newvd->vdev_path);
2819 } else {
2820 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
2821 ztest_opts.zo_dir, ztest_opts.zo_pool,
2822 top * leaves + leaf);
2823 if (ztest_random(2) == 0)
2824 newpath[strlen(newpath) - 1] = 'b';
2825 newvd = vdev_lookup_by_path(rvd, newpath);
2826 }
2827
2828 if (newvd) {
2829 newsize = vdev_get_min_asize(newvd);
2830 } else {
2831 /*
2832 * Make newsize a little bigger or smaller than oldsize.
2833 * If it's smaller, the attach should fail.
2834 * If it's larger, and we're doing a replace,
2835 * we should get dynamic LUN growth when we're done.
2836 */
2837 newsize = 10 * oldsize / (9 + ztest_random(3));
2838 }
2839
2840 /*
2841 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
2842 * unless it's a replace; in that case any non-replacing parent is OK.
2843 *
2844 * If newvd is already part of the pool, it should fail with EBUSY.
2845 *
2846 * If newvd is too small, it should fail with EOVERFLOW.
2847 */
2848 if (pvd->vdev_ops != &vdev_mirror_ops &&
2849 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
2850 pvd->vdev_ops == &vdev_replacing_ops ||
2851 pvd->vdev_ops == &vdev_spare_ops))
2852 expected_error = ENOTSUP;
2853 else if (newvd_is_spare && (!replacing || oldvd_is_log))
2854 expected_error = ENOTSUP;
2855 else if (newvd == oldvd)
2856 expected_error = replacing ? 0 : EBUSY;
2857 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
2858 expected_error = EBUSY;
2859 else if (newsize < oldsize)
2860 expected_error = EOVERFLOW;
2861 else if (ashift > oldvd->vdev_top->vdev_ashift)
2862 expected_error = EDOM;
2863 else
2864 expected_error = 0;
2865
2866 spa_config_exit(spa, SCL_VDEV, FTAG);
2867
2868 /*
2869 * Build the nvlist describing newpath.
2870 */
2871 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
2872 ashift, 0, 0, 0, 1);
2873
2874 error = spa_vdev_attach(spa, oldguid, root, replacing);
2875
2876 nvlist_free(root);
2877
2878 /*
2879 * If our parent was the replacing vdev, but the replace completed,
2880 * then instead of failing with ENOTSUP we may either succeed,
2881 * fail with ENODEV, or fail with EOVERFLOW.
2882 */
2883 if (expected_error == ENOTSUP &&
2884 (error == 0 || error == ENODEV || error == EOVERFLOW))
2885 expected_error = error;
2886
2887 /*
2888 * If someone grew the LUN, the replacement may be too small.
2889 */
2890 if (error == EOVERFLOW || error == EBUSY)
2891 expected_error = error;
2892
2893 /* XXX workaround 6690467 */
2894 if (error != expected_error && expected_error != EBUSY) {
2895 fatal(0, "attach (%s %llu, %s %llu, %d) "
2896 "returned %d, expected %d",
2897 oldpath, (longlong_t)oldsize, newpath,
2898 (longlong_t)newsize, replacing, error, expected_error);
2899 }
2900
2901 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2902 }
2903
2904 /*
2905 * Callback function which expands the physical size of the vdev.
2906 */
2907 vdev_t *
2908 grow_vdev(vdev_t *vd, void *arg)
2909 {
2910 spa_t *spa = vd->vdev_spa;
2911 size_t *newsize = arg;
2912 size_t fsize;
2913 int fd;
2914
2915 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2916 ASSERT(vd->vdev_ops->vdev_op_leaf);
2917
2918 if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
2919 return (vd);
2920
2921 fsize = lseek(fd, 0, SEEK_END);
2922 (void) ftruncate(fd, *newsize);
2923
2924 if (ztest_opts.zo_verbose >= 6) {
2925 (void) printf("%s grew from %lu to %lu bytes\n",
2926 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
2927 }
2928 (void) close(fd);
2929 return (NULL);
2930 }
2931
2932 /*
2933 * Callback function which expands a given vdev by calling vdev_online().
2934 */
2935 /* ARGSUSED */
2936 vdev_t *
2937 online_vdev(vdev_t *vd, void *arg)
2938 {
2939 spa_t *spa = vd->vdev_spa;
2940 vdev_t *tvd = vd->vdev_top;
2941 uint64_t guid = vd->vdev_guid;
2942 uint64_t generation = spa->spa_config_generation + 1;
2943 vdev_state_t newstate = VDEV_STATE_UNKNOWN;
2944 int error;
2945
2946 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2947 ASSERT(vd->vdev_ops->vdev_op_leaf);
2948
2949 /* Calling vdev_online will initialize the new metaslabs */
2950 spa_config_exit(spa, SCL_STATE, spa);
2951 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
2952 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
2953
2954 /*
2955 * If vdev_online returned an error or the underlying vdev_open
2956 * failed then we abort the expand. The only way to know that
2957 * vdev_open fails is by checking the returned newstate.
2958 */
2959 if (error || newstate != VDEV_STATE_HEALTHY) {
2960 if (ztest_opts.zo_verbose >= 5) {
2961 (void) printf("Unable to expand vdev, state %llu, "
2962 "error %d\n", (u_longlong_t)newstate, error);
2963 }
2964 return (vd);
2965 }
2966 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
2967
2968 /*
2969 * Since we dropped the lock we need to ensure that we're
2970 * still talking to the original vdev. It's possible this
2971 * vdev may have been detached/replaced while we were
2972 * trying to online it.
2973 */
2974 if (generation != spa->spa_config_generation) {
2975 if (ztest_opts.zo_verbose >= 5) {
2976 (void) printf("vdev configuration has changed, "
2977 "guid %llu, state %llu, expected gen %llu, "
2978 "got gen %llu\n",
2979 (u_longlong_t)guid,
2980 (u_longlong_t)tvd->vdev_state,
2981 (u_longlong_t)generation,
2982 (u_longlong_t)spa->spa_config_generation);
2983 }
2984 return (vd);
2985 }
2986 return (NULL);
2987 }
2988
2989 /*
2990 * Traverse the vdev tree calling the supplied function.
2991 * We continue to walk the tree until we either have walked all
2992 * children or we receive a non-NULL return from the callback.
2993 * If a NULL callback is passed, then we just return back the first
2994 * leaf vdev we encounter.
2995 */
2996 vdev_t *
2997 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
2998 {
2999 if (vd->vdev_ops->vdev_op_leaf) {
3000 if (func == NULL)
3001 return (vd);
3002 else
3003 return (func(vd, arg));
3004 }
3005
3006 for (uint_t c = 0; c < vd->vdev_children; c++) {
3007 vdev_t *cvd = vd->vdev_child[c];
3008 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3009 return (cvd);
3010 }
3011 return (NULL);
3012 }
3013
3014 /*
3015 * Verify that dynamic LUN growth works as expected.
3016 */
3017 /* ARGSUSED */
3018 void
3019 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3020 {
3021 spa_t *spa = ztest_spa;
3022 vdev_t *vd, *tvd;
3023 metaslab_class_t *mc;
3024 metaslab_group_t *mg;
3025 size_t psize, newsize;
3026 uint64_t top;
3027 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
3028
3029 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
3030 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3031
3032 top = ztest_random_vdev_top(spa, B_TRUE);
3033
3034 tvd = spa->spa_root_vdev->vdev_child[top];
3035 mg = tvd->vdev_mg;
3036 mc = mg->mg_class;
3037 old_ms_count = tvd->vdev_ms_count;
3038 old_class_space = metaslab_class_get_space(mc);
3039
3040 /*
3041 * Determine the size of the first leaf vdev associated with
3042 * our top-level device.
3043 */
3044 vd = vdev_walk_tree(tvd, NULL, NULL);
3045 ASSERT3P(vd, !=, NULL);
3046 ASSERT(vd->vdev_ops->vdev_op_leaf);
3047
3048 psize = vd->vdev_psize;
3049
3050 /*
3051 * We only try to expand the vdev if it's healthy, less than 4x its
3052 * original size, and it has a valid psize.
3053 */
3054 if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
3055 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
3056 spa_config_exit(spa, SCL_STATE, spa);
3057 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3058 return;
3059 }
3060 ASSERT(psize > 0);
3061 newsize = psize + psize / 8;
3062 ASSERT3U(newsize, >, psize);
3063
3064 if (ztest_opts.zo_verbose >= 6) {
3065 (void) printf("Expanding LUN %s from %lu to %lu\n",
3066 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
3067 }
3068
3069 /*
3070 * Growing the vdev is a two step process:
3071 * 1). expand the physical size (i.e. relabel)
3072 * 2). online the vdev to create the new metaslabs
3073 */
3074 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
3075 vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
3076 tvd->vdev_state != VDEV_STATE_HEALTHY) {
3077 if (ztest_opts.zo_verbose >= 5) {
3078 (void) printf("Could not expand LUN because "
3079 "the vdev configuration changed.\n");
3080 }
3081 spa_config_exit(spa, SCL_STATE, spa);
3082 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3083 return;
3084 }
3085
3086 spa_config_exit(spa, SCL_STATE, spa);
3087
3088 /*
3089 * Expanding the LUN will update the config asynchronously,
3090 * thus we must wait for the async thread to complete any
3091 * pending tasks before proceeding.
3092 */
3093 for (;;) {
3094 boolean_t done;
3095 mutex_enter(&spa->spa_async_lock);
3096 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
3097 mutex_exit(&spa->spa_async_lock);
3098 if (done)
3099 break;
3100 txg_wait_synced(spa_get_dsl(spa), 0);
3101 (void) poll(NULL, 0, 100);
3102 }
3103
3104 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3105
3106 tvd = spa->spa_root_vdev->vdev_child[top];
3107 new_ms_count = tvd->vdev_ms_count;
3108 new_class_space = metaslab_class_get_space(mc);
3109
3110 if (tvd->vdev_mg != mg || mg->mg_class != mc) {
3111 if (ztest_opts.zo_verbose >= 5) {
3112 (void) printf("Could not verify LUN expansion due to "
3113 "intervening vdev offline or remove.\n");
3114 }
3115 spa_config_exit(spa, SCL_STATE, spa);
3116 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3117 return;
3118 }
3119
3120 /*
3121 * Make sure we were able to grow the vdev.
3122 */
3123 if (new_ms_count <= old_ms_count)
3124 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n",
3125 old_ms_count, new_ms_count);
3126
3127 /*
3128 * Make sure we were able to grow the pool.
3129 */
3130 if (new_class_space <= old_class_space)
3131 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n",
3132 old_class_space, new_class_space);
3133
3134 if (ztest_opts.zo_verbose >= 5) {
3135 char oldnumbuf[6], newnumbuf[6];
3136
3137 nicenum(old_class_space, oldnumbuf);
3138 nicenum(new_class_space, newnumbuf);
3139 (void) printf("%s grew from %s to %s\n",
3140 spa->spa_name, oldnumbuf, newnumbuf);
3141 }
3142
3143 spa_config_exit(spa, SCL_STATE, spa);
3144 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3145 }
3146
3147 /*
3148 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3149 */
3150 /* ARGSUSED */
3151 static void
3152 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
3153 {
3154 /*
3155 * Create the objects common to all ztest datasets.
3156 */
3157 VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
3158 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
3159 }
3160
3161 static int
3162 ztest_dataset_create(char *dsname)
3163 {
3164 uint64_t zilset = ztest_random(100);
3165 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0,
3166 ztest_objset_create_cb, NULL);
3167
3168 if (err || zilset < 80)
3169 return (err);
3170
3171 if (ztest_opts.zo_verbose >= 6)
3172 (void) printf("Setting dataset %s to sync always\n", dsname);
3173 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
3174 ZFS_SYNC_ALWAYS, B_FALSE));
3175 }
3176
3177 /* ARGSUSED */
3178 static int
3179 ztest_objset_destroy_cb(const char *name, void *arg)
3180 {
3181 objset_t *os;
3182 dmu_object_info_t doi;
3183 int error;
3184
3185 /*
3186 * Verify that the dataset contains a directory object.
3187 */
3188 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os));
3189 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
3190 if (error != ENOENT) {
3191 /* We could have crashed in the middle of destroying it */
3192 ASSERT0(error);
3193 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
3194 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
3195 }
3196 dmu_objset_disown(os, FTAG);
3197
3198 /*
3199 * Destroy the dataset.
3200 */
3201 if (strchr(name, '@') != NULL) {
3202 VERIFY0(dsl_destroy_snapshot(name, B_FALSE));
3203 } else {
3204 VERIFY0(dsl_destroy_head(name));
3205 }
3206 return (0);
3207 }
3208
3209 static boolean_t
3210 ztest_snapshot_create(char *osname, uint64_t id)
3211 {
3212 char snapname[MAXNAMELEN];
3213 int error;
3214
3215 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
3216
3217 error = dmu_objset_snapshot_one(osname, snapname);
3218 if (error == ENOSPC) {
3219 ztest_record_enospc(FTAG);
3220 return (B_FALSE);
3221 }
3222 if (error != 0 && error != EEXIST) {
3223 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
3224 snapname, error);
3225 }
3226 return (B_TRUE);
3227 }
3228
3229 static boolean_t
3230 ztest_snapshot_destroy(char *osname, uint64_t id)
3231 {
3232 char snapname[MAXNAMELEN];
3233 int error;
3234
3235 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname,
3236 (u_longlong_t)id);
3237
3238 error = dsl_destroy_snapshot(snapname, B_FALSE);
3239 if (error != 0 && error != ENOENT)
3240 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
3241 return (B_TRUE);
3242 }
3243
3244 /* ARGSUSED */
3245 void
3246 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
3247 {
3248 ztest_ds_t zdtmp;
3249 int iters;
3250 int error;
3251 objset_t *os, *os2;
3252 char name[MAXNAMELEN];
3253 zilog_t *zilog;
3254
3255 (void) rd_wrlock(&ztest_name_lock);
3256
3257 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu",
3258 ztest_opts.zo_pool, (u_longlong_t)id);
3259
3260 /*
3261 * If this dataset exists from a previous run, process its replay log
3262 * half of the time. If we don't replay it, then dmu_objset_destroy()
3263 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3264 */
3265 if (ztest_random(2) == 0 &&
3266 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
3267 ztest_zd_init(&zdtmp, NULL, os);
3268 zil_replay(os, &zdtmp, ztest_replay_vector);
3269 ztest_zd_fini(&zdtmp);
3270 dmu_objset_disown(os, FTAG);
3271 }
3272
3273 /*
3274 * There may be an old instance of the dataset we're about to
3275 * create lying around from a previous run. If so, destroy it
3276 * and all of its snapshots.
3277 */
3278 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
3279 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
3280
3281 /*
3282 * Verify that the destroyed dataset is no longer in the namespace.
3283 */
3284 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
3285 FTAG, &os));
3286
3287 /*
3288 * Verify that we can create a new dataset.
3289 */
3290 error = ztest_dataset_create(name);
3291 if (error) {
3292 if (error == ENOSPC) {
3293 ztest_record_enospc(FTAG);
3294 (void) rw_unlock(&ztest_name_lock);
3295 return;
3296 }
3297 fatal(0, "dmu_objset_create(%s) = %d", name, error);
3298 }
3299
3300 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
3301
3302 ztest_zd_init(&zdtmp, NULL, os);
3303
3304 /*
3305 * Open the intent log for it.
3306 */
3307 zilog = zil_open(os, ztest_get_data);
3308
3309 /*
3310 * Put some objects in there, do a little I/O to them,
3311 * and randomly take a couple of snapshots along the way.
3312 */
3313 iters = ztest_random(5);
3314 for (int i = 0; i < iters; i++) {
3315 ztest_dmu_object_alloc_free(&zdtmp, id);
3316 if (ztest_random(iters) == 0)
3317 (void) ztest_snapshot_create(name, i);
3318 }
3319
3320 /*
3321 * Verify that we cannot create an existing dataset.
3322 */
3323 VERIFY3U(EEXIST, ==,
3324 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));
3325
3326 /*
3327 * Verify that we can hold an objset that is also owned.
3328 */
3329 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
3330 dmu_objset_rele(os2, FTAG);
3331
3332 /*
3333 * Verify that we cannot own an objset that is already owned.
3334 */
3335 VERIFY3U(EBUSY, ==,
3336 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));
3337
3338 zil_close(zilog);
3339 dmu_objset_disown(os, FTAG);
3340 ztest_zd_fini(&zdtmp);
3341
3342 (void) rw_unlock(&ztest_name_lock);
3343 }
3344
3345 /*
3346 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3347 */
3348 void
3349 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3350 {
3351 (void) rw_rdlock(&ztest_name_lock);
3352 (void) ztest_snapshot_destroy(zd->zd_name, id);
3353 (void) ztest_snapshot_create(zd->zd_name, id);
3354 (void) rw_unlock(&ztest_name_lock);
3355 }
3356
3357 /*
3358 * Cleanup non-standard snapshots and clones.
3359 */
3360 void
3361 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
3362 {
3363 char snap1name[MAXNAMELEN];
3364 char clone1name[MAXNAMELEN];
3365 char snap2name[MAXNAMELEN];
3366 char clone2name[MAXNAMELEN];
3367 char snap3name[MAXNAMELEN];
3368 int error;
3369
3370 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id);
3371 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id);
3372 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id);
3373 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id);
3374 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id);
3375
3376 error = dsl_destroy_head(clone2name);
3377 if (error && error != ENOENT)
3378 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
3379 error = dsl_destroy_snapshot(snap3name, B_FALSE);
3380 if (error && error != ENOENT)
3381 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
3382 error = dsl_destroy_snapshot(snap2name, B_FALSE);
3383 if (error && error != ENOENT)
3384 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
3385 error = dsl_destroy_head(clone1name);
3386 if (error && error != ENOENT)
3387 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
3388 error = dsl_destroy_snapshot(snap1name, B_FALSE);
3389 if (error && error != ENOENT)
3390 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
3391 }
3392
3393 /*
3394 * Verify dsl_dataset_promote handles EBUSY
3395 */
3396 void
3397 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
3398 {
3399 objset_t *os;
3400 char snap1name[MAXNAMELEN];
3401 char clone1name[MAXNAMELEN];
3402 char snap2name[MAXNAMELEN];
3403 char clone2name[MAXNAMELEN];
3404 char snap3name[MAXNAMELEN];
3405 char *osname = zd->zd_name;
3406 int error;
3407
3408 (void) rw_rdlock(&ztest_name_lock);
3409
3410 ztest_dsl_dataset_cleanup(osname, id);
3411
3412 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id);
3413 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id);
3414 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id);
3415 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id);
3416 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id);
3417
3418 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
3419 if (error && error != EEXIST) {
3420 if (error == ENOSPC) {
3421 ztest_record_enospc(FTAG);
3422 goto out;
3423 }
3424 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
3425 }
3426
3427 error = dmu_objset_clone(clone1name, snap1name);
3428 if (error) {
3429 if (error == ENOSPC) {
3430 ztest_record_enospc(FTAG);
3431 goto out;
3432 }
3433 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
3434 }
3435
3436 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
3437 if (error && error != EEXIST) {
3438 if (error == ENOSPC) {
3439 ztest_record_enospc(FTAG);
3440 goto out;
3441 }
3442 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
3443 }
3444
3445 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
3446 if (error && error != EEXIST) {
3447 if (error == ENOSPC) {
3448 ztest_record_enospc(FTAG);
3449 goto out;
3450 }
3451 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3452 }
3453
3454 error = dmu_objset_clone(clone2name, snap3name);
3455 if (error) {
3456 if (error == ENOSPC) {
3457 ztest_record_enospc(FTAG);
3458 goto out;
3459 }
3460 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
3461 }
3462
3463 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os);
3464 if (error)
3465 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
3466 error = dsl_dataset_promote(clone2name, NULL);
3467 if (error != EBUSY)
3468 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
3469 error);
3470 dmu_objset_disown(os, FTAG);
3471
3472 out:
3473 ztest_dsl_dataset_cleanup(osname, id);
3474
3475 (void) rw_unlock(&ztest_name_lock);
3476 }
3477
3478 /*
3479 * Verify that dmu_object_{alloc,free} work as expected.
3480 */
3481 void
3482 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
3483 {
3484 ztest_od_t od[4];
3485 int batchsize = sizeof (od) / sizeof (od[0]);
3486
3487 for (int b = 0; b < batchsize; b++)
3488 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0);
3489
3490 /*
3491 * Destroy the previous batch of objects, create a new batch,
3492 * and do some I/O on the new objects.
3493 */
3494 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0)
3495 return;
3496
3497 while (ztest_random(4 * batchsize) != 0)
3498 ztest_io(zd, od[ztest_random(batchsize)].od_object,
3499 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3500 }
3501
3502 /*
3503 * Verify that dmu_{read,write} work as expected.
3504 */
3505 void
3506 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
3507 {
3508 objset_t *os = zd->zd_os;
3509 ztest_od_t od[2];
3510 dmu_tx_t *tx;
3511 int i, freeit, error;
3512 uint64_t n, s, txg;
3513 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
3514 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3515 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
3516 uint64_t regions = 997;
3517 uint64_t stride = 123456789ULL;
3518 uint64_t width = 40;
3519 int free_percent = 5;
3520
3521 /*
3522 * This test uses two objects, packobj and bigobj, that are always
3523 * updated together (i.e. in the same tx) so that their contents are
3524 * in sync and can be compared. Their contents relate to each other
3525 * in a simple way: packobj is a dense array of 'bufwad' structures,
3526 * while bigobj is a sparse array of the same bufwads. Specifically,
3527 * for any index n, there are three bufwads that should be identical:
3528 *
3529 * packobj, at offset n * sizeof (bufwad_t)
3530 * bigobj, at the head of the nth chunk
3531 * bigobj, at the tail of the nth chunk
3532 *
3533 * The chunk size is arbitrary. It doesn't have to be a power of two,
3534 * and it doesn't have any relation to the object blocksize.
3535 * The only requirement is that it can hold at least two bufwads.
3536 *
3537 * Normally, we write the bufwad to each of these locations.
3538 * However, free_percent of the time we instead write zeroes to
3539 * packobj and perform a dmu_free_range() on bigobj. By comparing
3540 * bigobj to packobj, we can verify that the DMU is correctly
3541 * tracking which parts of an object are allocated and free,
3542 * and that the contents of the allocated blocks are correct.
3543 */
3544
3545 /*
3546 * Read the directory info. If it's the first time, set things up.
3547 */
3548 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize);
3549 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3550
3551 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3552 return;
3553
3554 bigobj = od[0].od_object;
3555 packobj = od[1].od_object;
3556 chunksize = od[0].od_gen;
3557 ASSERT(chunksize == od[1].od_gen);
3558
3559 /*
3560 * Prefetch a random chunk of the big object.
3561 * Our aim here is to get some async reads in flight
3562 * for blocks that we may free below; the DMU should
3563 * handle this race correctly.
3564 */
3565 n = ztest_random(regions) * stride + ztest_random(width);
3566 s = 1 + ztest_random(2 * width - 1);
3567 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize);
3568
3569 /*
3570 * Pick a random index and compute the offsets into packobj and bigobj.
3571 */
3572 n = ztest_random(regions) * stride + ztest_random(width);
3573 s = 1 + ztest_random(width - 1);
3574
3575 packoff = n * sizeof (bufwad_t);
3576 packsize = s * sizeof (bufwad_t);
3577
3578 bigoff = n * chunksize;
3579 bigsize = s * chunksize;
3580
3581 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
3582 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
3583
3584 /*
3585 * free_percent of the time, free a range of bigobj rather than
3586 * overwriting it.
3587 */
3588 freeit = (ztest_random(100) < free_percent);
3589
3590 /*
3591 * Read the current contents of our objects.
3592 */
3593 error = dmu_read(os, packobj, packoff, packsize, packbuf,
3594 DMU_READ_PREFETCH);
3595 ASSERT0(error);
3596 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
3597 DMU_READ_PREFETCH);
3598 ASSERT0(error);
3599
3600 /*
3601 * Get a tx for the mods to both packobj and bigobj.
3602 */
3603 tx = dmu_tx_create(os);
3604
3605 dmu_tx_hold_write(tx, packobj, packoff, packsize);
3606
3607 if (freeit)
3608 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
3609 else
3610 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3611
3612 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3613 if (txg == 0) {
3614 umem_free(packbuf, packsize);
3615 umem_free(bigbuf, bigsize);
3616 return;
3617 }
3618
3619 dmu_object_set_checksum(os, bigobj,
3620 (enum zio_checksum)ztest_random_dsl_prop(ZFS_PROP_CHECKSUM), tx);
3621
3622 dmu_object_set_compress(os, bigobj,
3623 (enum zio_compress)ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), tx);
3624
3625 /*
3626 * For each index from n to n + s, verify that the existing bufwad
3627 * in packobj matches the bufwads at the head and tail of the
3628 * corresponding chunk in bigobj. Then update all three bufwads
3629 * with the new values we want to write out.
3630 */
3631 for (i = 0; i < s; i++) {
3632 /* LINTED */
3633 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3634 /* LINTED */
3635 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3636 /* LINTED */
3637 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3638
3639 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3640 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3641
3642 if (pack->bw_txg > txg)
3643 fatal(0, "future leak: got %llx, open txg is %llx",
3644 pack->bw_txg, txg);
3645
3646 if (pack->bw_data != 0 && pack->bw_index != n + i)
3647 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3648 pack->bw_index, n, i);
3649
3650 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3651 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3652
3653 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3654 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3655
3656 if (freeit) {
3657 bzero(pack, sizeof (bufwad_t));
3658 } else {
3659 pack->bw_index = n + i;
3660 pack->bw_txg = txg;
3661 pack->bw_data = 1 + ztest_random(-2ULL);
3662 }
3663 *bigH = *pack;
3664 *bigT = *pack;
3665 }
3666
3667 /*
3668 * We've verified all the old bufwads, and made new ones.
3669 * Now write them out.
3670 */
3671 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3672
3673 if (freeit) {
3674 if (ztest_opts.zo_verbose >= 7) {
3675 (void) printf("freeing offset %llx size %llx"
3676 " txg %llx\n",
3677 (u_longlong_t)bigoff,
3678 (u_longlong_t)bigsize,
3679 (u_longlong_t)txg);
3680 }
3681 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
3682 } else {
3683 if (ztest_opts.zo_verbose >= 7) {
3684 (void) printf("writing offset %llx size %llx"
3685 " txg %llx\n",
3686 (u_longlong_t)bigoff,
3687 (u_longlong_t)bigsize,
3688 (u_longlong_t)txg);
3689 }
3690 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
3691 }
3692
3693 dmu_tx_commit(tx);
3694
3695 /*
3696 * Sanity check the stuff we just wrote.
3697 */
3698 {
3699 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3700 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3701
3702 VERIFY(0 == dmu_read(os, packobj, packoff,
3703 packsize, packcheck, DMU_READ_PREFETCH));
3704 VERIFY(0 == dmu_read(os, bigobj, bigoff,
3705 bigsize, bigcheck, DMU_READ_PREFETCH));
3706
3707 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3708 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3709
3710 umem_free(packcheck, packsize);
3711 umem_free(bigcheck, bigsize);
3712 }
3713
3714 umem_free(packbuf, packsize);
3715 umem_free(bigbuf, bigsize);
3716 }
3717
3718 void
3719 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
3720 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
3721 {
3722 uint64_t i;
3723 bufwad_t *pack;
3724 bufwad_t *bigH;
3725 bufwad_t *bigT;
3726
3727 /*
3728 * For each index from n to n + s, verify that the existing bufwad
3729 * in packobj matches the bufwads at the head and tail of the
3730 * corresponding chunk in bigobj. Then update all three bufwads
3731 * with the new values we want to write out.
3732 */
3733 for (i = 0; i < s; i++) {
3734 /* LINTED */
3735 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3736 /* LINTED */
3737 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3738 /* LINTED */
3739 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3740
3741 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3742 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3743
3744 if (pack->bw_txg > txg)
3745 fatal(0, "future leak: got %llx, open txg is %llx",
3746 pack->bw_txg, txg);
3747
3748 if (pack->bw_data != 0 && pack->bw_index != n + i)
3749 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3750 pack->bw_index, n, i);
3751
3752 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3753 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3754
3755 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3756 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3757
3758 pack->bw_index = n + i;
3759 pack->bw_txg = txg;
3760 pack->bw_data = 1 + ztest_random(-2ULL);
3761
3762 *bigH = *pack;
3763 *bigT = *pack;
3764 }
3765 }
3766
3767 void
3768 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
3769 {
3770 objset_t *os = zd->zd_os;
3771 ztest_od_t od[2];
3772 dmu_tx_t *tx;
3773 uint64_t i;
3774 int error;
3775 uint64_t n, s, txg;
3776 bufwad_t *packbuf, *bigbuf;
3777 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3778 uint64_t blocksize = ztest_random_blocksize();
3779 uint64_t chunksize = blocksize;
3780 uint64_t regions = 997;
3781 uint64_t stride = 123456789ULL;
3782 uint64_t width = 9;
3783 dmu_buf_t *bonus_db;
3784 arc_buf_t **bigbuf_arcbufs;
3785 dmu_object_info_t doi;
3786
3787 /*
3788 * This test uses two objects, packobj and bigobj, that are always
3789 * updated together (i.e. in the same tx) so that their contents are
3790 * in sync and can be compared. Their contents relate to each other
3791 * in a simple way: packobj is a dense array of 'bufwad' structures,
3792 * while bigobj is a sparse array of the same bufwads. Specifically,
3793 * for any index n, there are three bufwads that should be identical:
3794 *
3795 * packobj, at offset n * sizeof (bufwad_t)
3796 * bigobj, at the head of the nth chunk
3797 * bigobj, at the tail of the nth chunk
3798 *
3799 * The chunk size is set equal to bigobj block size so that
3800 * dmu_assign_arcbuf() can be tested for object updates.
3801 */
3802
3803 /*
3804 * Read the directory info. If it's the first time, set things up.
3805 */
3806 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
3807 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3808
3809 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3810 return;
3811
3812 bigobj = od[0].od_object;
3813 packobj = od[1].od_object;
3814 blocksize = od[0].od_blocksize;
3815 chunksize = blocksize;
3816 ASSERT(chunksize == od[1].od_gen);
3817
3818 VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
3819 VERIFY(ISP2(doi.doi_data_block_size));
3820 VERIFY(chunksize == doi.doi_data_block_size);
3821 VERIFY(chunksize >= 2 * sizeof (bufwad_t));
3822
3823 /*
3824 * Pick a random index and compute the offsets into packobj and bigobj.
3825 */
3826 n = ztest_random(regions) * stride + ztest_random(width);
3827 s = 1 + ztest_random(width - 1);
3828
3829 packoff = n * sizeof (bufwad_t);
3830 packsize = s * sizeof (bufwad_t);
3831
3832 bigoff = n * chunksize;
3833 bigsize = s * chunksize;
3834
3835 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
3836 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
3837
3838 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
3839
3840 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
3841
3842 /*
3843 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
3844 * Iteration 1 test zcopy to already referenced dbufs.
3845 * Iteration 2 test zcopy to dirty dbuf in the same txg.
3846 * Iteration 3 test zcopy to dbuf dirty in previous txg.
3847 * Iteration 4 test zcopy when dbuf is no longer dirty.
3848 * Iteration 5 test zcopy when it can't be done.
3849 * Iteration 6 one more zcopy write.
3850 */
3851 for (i = 0; i < 7; i++) {
3852 uint64_t j;
3853 uint64_t off;
3854
3855 /*
3856 * In iteration 5 (i == 5) use arcbufs
3857 * that don't match bigobj blksz to test
3858 * dmu_assign_arcbuf() when it can't directly
3859 * assign an arcbuf to a dbuf.
3860 */
3861 for (j = 0; j < s; j++) {
3862 if (i != 5) {
3863 bigbuf_arcbufs[j] =
3864 dmu_request_arcbuf(bonus_db, chunksize);
3865 } else {
3866 bigbuf_arcbufs[2 * j] =
3867 dmu_request_arcbuf(bonus_db, chunksize / 2);
3868 bigbuf_arcbufs[2 * j + 1] =
3869 dmu_request_arcbuf(bonus_db, chunksize / 2);
3870 }
3871 }
3872
3873 /*
3874 * Get a tx for the mods to both packobj and bigobj.
3875 */
3876 tx = dmu_tx_create(os);
3877
3878 dmu_tx_hold_write(tx, packobj, packoff, packsize);
3879 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3880
3881 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3882 if (txg == 0) {
3883 umem_free(packbuf, packsize);
3884 umem_free(bigbuf, bigsize);
3885 for (j = 0; j < s; j++) {
3886 if (i != 5) {
3887 dmu_return_arcbuf(bigbuf_arcbufs[j]);
3888 } else {
3889 dmu_return_arcbuf(
3890 bigbuf_arcbufs[2 * j]);
3891 dmu_return_arcbuf(
3892 bigbuf_arcbufs[2 * j + 1]);
3893 }
3894 }
3895 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
3896 dmu_buf_rele(bonus_db, FTAG);
3897 return;
3898 }
3899
3900 /*
3901 * 50% of the time don't read objects in the 1st iteration to
3902 * test dmu_assign_arcbuf() for the case when there're no
3903 * existing dbufs for the specified offsets.
3904 */
3905 if (i != 0 || ztest_random(2) != 0) {
3906 error = dmu_read(os, packobj, packoff,
3907 packsize, packbuf, DMU_READ_PREFETCH);
3908 ASSERT0(error);
3909 error = dmu_read(os, bigobj, bigoff, bigsize,
3910 bigbuf, DMU_READ_PREFETCH);
3911 ASSERT0(error);
3912 }
3913 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
3914 n, chunksize, txg);
3915
3916 /*
3917 * We've verified all the old bufwads, and made new ones.
3918 * Now write them out.
3919 */
3920 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3921 if (ztest_opts.zo_verbose >= 7) {
3922 (void) printf("writing offset %llx size %llx"
3923 " txg %llx\n",
3924 (u_longlong_t)bigoff,
3925 (u_longlong_t)bigsize,
3926 (u_longlong_t)txg);
3927 }
3928 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
3929 dmu_buf_t *dbt;
3930 if (i != 5) {
3931 bcopy((caddr_t)bigbuf + (off - bigoff),
3932 bigbuf_arcbufs[j]->b_data, chunksize);
3933 } else {
3934 bcopy((caddr_t)bigbuf + (off - bigoff),
3935 bigbuf_arcbufs[2 * j]->b_data,
3936 chunksize / 2);
3937 bcopy((caddr_t)bigbuf + (off - bigoff) +
3938 chunksize / 2,
3939 bigbuf_arcbufs[2 * j + 1]->b_data,
3940 chunksize / 2);
3941 }
3942
3943 if (i == 1) {
3944 VERIFY(dmu_buf_hold(os, bigobj, off,
3945 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
3946 }
3947 if (i != 5) {
3948 dmu_assign_arcbuf(bonus_db, off,
3949 bigbuf_arcbufs[j], tx);
3950 } else {
3951 dmu_assign_arcbuf(bonus_db, off,
3952 bigbuf_arcbufs[2 * j], tx);
3953 dmu_assign_arcbuf(bonus_db,
3954 off + chunksize / 2,
3955 bigbuf_arcbufs[2 * j + 1], tx);
3956 }
3957 if (i == 1) {
3958 dmu_buf_rele(dbt, FTAG);
3959 }
3960 }
3961 dmu_tx_commit(tx);
3962
3963 /*
3964 * Sanity check the stuff we just wrote.
3965 */
3966 {
3967 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3968 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3969
3970 VERIFY(0 == dmu_read(os, packobj, packoff,
3971 packsize, packcheck, DMU_READ_PREFETCH));
3972 VERIFY(0 == dmu_read(os, bigobj, bigoff,
3973 bigsize, bigcheck, DMU_READ_PREFETCH));
3974
3975 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3976 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3977
3978 umem_free(packcheck, packsize);
3979 umem_free(bigcheck, bigsize);
3980 }
3981 if (i == 2) {
3982 txg_wait_open(dmu_objset_pool(os), 0);
3983 } else if (i == 3) {
3984 txg_wait_synced(dmu_objset_pool(os), 0);
3985 }
3986 }
3987
3988 dmu_buf_rele(bonus_db, FTAG);
3989 umem_free(packbuf, packsize);
3990 umem_free(bigbuf, bigsize);
3991 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
3992 }
3993
3994 /* ARGSUSED */
3995 void
3996 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
3997 {
3998 ztest_od_t od[1];
3999 uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
4000 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4001
4002 /*
4003 * Have multiple threads write to large offsets in an object
4004 * to verify that parallel writes to an object -- even to the
4005 * same blocks within the object -- doesn't cause any trouble.
4006 */
4007 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4008
4009 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4010 return;
4011
4012 while (ztest_random(10) != 0)
4013 ztest_io(zd, od[0].od_object, offset);
4014 }
4015
4016 void
4017 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
4018 {
4019 ztest_od_t od[1];
4020 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
4021 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4022 uint64_t count = ztest_random(20) + 1;
4023 uint64_t blocksize = ztest_random_blocksize();
4024 void *data;
4025
4026 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
4027
4028 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4029 return;
4030
4031 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0)
4032 return;
4033
4034 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize);
4035
4036 data = umem_zalloc(blocksize, UMEM_NOFAIL);
4037
4038 while (ztest_random(count) != 0) {
4039 uint64_t randoff = offset + (ztest_random(count) * blocksize);
4040 if (ztest_write(zd, od[0].od_object, randoff, blocksize,
4041 data) != 0)
4042 break;
4043 while (ztest_random(4) != 0)
4044 ztest_io(zd, od[0].od_object, randoff);
4045 }
4046
4047 umem_free(data, blocksize);
4048 }
4049
4050 /*
4051 * Verify that zap_{create,destroy,add,remove,update} work as expected.
4052 */
4053 #define ZTEST_ZAP_MIN_INTS 1
4054 #define ZTEST_ZAP_MAX_INTS 4
4055 #define ZTEST_ZAP_MAX_PROPS 1000
4056
4057 void
4058 ztest_zap(ztest_ds_t *zd, uint64_t id)
4059 {
4060 objset_t *os = zd->zd_os;
4061 ztest_od_t od[1];
4062 uint64_t object;
4063 uint64_t txg, last_txg;
4064 uint64_t value[ZTEST_ZAP_MAX_INTS];
4065 uint64_t zl_ints, zl_intsize, prop;
4066 int i, ints;
4067 dmu_tx_t *tx;
4068 char propname[100], txgname[100];
4069 int error;
4070 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
4071
4072 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4073
4074 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4075 return;
4076
4077 object = od[0].od_object;
4078
4079 /*
4080 * Generate a known hash collision, and verify that
4081 * we can lookup and remove both entries.
4082 */
4083 tx = dmu_tx_create(os);
4084 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4085 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4086 if (txg == 0)
4087 return;
4088 for (i = 0; i < 2; i++) {
4089 value[i] = i;
4090 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
4091 1, &value[i], tx));
4092 }
4093 for (i = 0; i < 2; i++) {
4094 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
4095 sizeof (uint64_t), 1, &value[i], tx));
4096 VERIFY3U(0, ==,
4097 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
4098 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4099 ASSERT3U(zl_ints, ==, 1);
4100 }
4101 for (i = 0; i < 2; i++) {
4102 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
4103 }
4104 dmu_tx_commit(tx);
4105
4106 /*
4107 * Generate a buch of random entries.
4108 */
4109 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
4110
4111 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4112 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4113 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4114 bzero(value, sizeof (value));
4115 last_txg = 0;
4116
4117 /*
4118 * If these zap entries already exist, validate their contents.
4119 */
4120 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4121 if (error == 0) {
4122 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4123 ASSERT3U(zl_ints, ==, 1);
4124
4125 VERIFY(zap_lookup(os, object, txgname, zl_intsize,
4126 zl_ints, &last_txg) == 0);
4127
4128 VERIFY(zap_length(os, object, propname, &zl_intsize,
4129 &zl_ints) == 0);
4130
4131 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4132 ASSERT3U(zl_ints, ==, ints);
4133
4134 VERIFY(zap_lookup(os, object, propname, zl_intsize,
4135 zl_ints, value) == 0);
4136
4137 for (i = 0; i < ints; i++) {
4138 ASSERT3U(value[i], ==, last_txg + object + i);
4139 }
4140 } else {
4141 ASSERT3U(error, ==, ENOENT);
4142 }
4143
4144 /*
4145 * Atomically update two entries in our zap object.
4146 * The first is named txg_%llu, and contains the txg
4147 * in which the property was last updated. The second
4148 * is named prop_%llu, and the nth element of its value
4149 * should be txg + object + n.
4150 */
4151 tx = dmu_tx_create(os);
4152 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4153 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4154 if (txg == 0)
4155 return;
4156
4157 if (last_txg > txg)
4158 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
4159
4160 for (i = 0; i < ints; i++)
4161 value[i] = txg + object + i;
4162
4163 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
4164 1, &txg, tx));
4165 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
4166 ints, value, tx));
4167
4168 dmu_tx_commit(tx);
4169
4170 /*
4171 * Remove a random pair of entries.
4172 */
4173 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4174 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4175 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4176
4177 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4178
4179 if (error == ENOENT)
4180 return;
4181
4182 ASSERT0(error);
4183
4184 tx = dmu_tx_create(os);
4185 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4186 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4187 if (txg == 0)
4188 return;
4189 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
4190 VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
4191 dmu_tx_commit(tx);
4192 }
4193
4194 /*
4195 * Testcase to test the upgrading of a microzap to fatzap.
4196 */
4197 void
4198 ztest_fzap(ztest_ds_t *zd, uint64_t id)
4199 {
4200 objset_t *os = zd->zd_os;
4201 ztest_od_t od[1];
4202 uint64_t object, txg;
4203
4204 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4205
4206 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4207 return;
4208
4209 object = od[0].od_object;
4210
4211 /*
4212 * Add entries to this ZAP and make sure it spills over
4213 * and gets upgraded to a fatzap. Also, since we are adding
4214 * 2050 entries we should see ptrtbl growth and leaf-block split.
4215 */
4216 for (int i = 0; i < 2050; i++) {
4217 char name[MAXNAMELEN];
4218 uint64_t value = i;
4219 dmu_tx_t *tx;
4220 int error;
4221
4222 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
4223 id, value);
4224
4225 tx = dmu_tx_create(os);
4226 dmu_tx_hold_zap(tx, object, B_TRUE, name);
4227 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4228 if (txg == 0)
4229 return;
4230 error = zap_add(os, object, name, sizeof (uint64_t), 1,
4231 &value, tx);
4232 ASSERT(error == 0 || error == EEXIST);
4233 dmu_tx_commit(tx);
4234 }
4235 }
4236
4237 /* ARGSUSED */
4238 void
4239 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
4240 {
4241 objset_t *os = zd->zd_os;
4242 ztest_od_t od[1];
4243 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
4244 dmu_tx_t *tx;
4245 int i, namelen, error;
4246 int micro = ztest_random(2);
4247 char name[20], string_value[20];
4248 void *data;
4249
4250 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0);
4251
4252 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4253 return;
4254
4255 object = od[0].od_object;
4256
4257 /*
4258 * Generate a random name of the form 'xxx.....' where each
4259 * x is a random printable character and the dots are dots.
4260 * There are 94 such characters, and the name length goes from
4261 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4262 */
4263 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
4264
4265 for (i = 0; i < 3; i++)
4266 name[i] = '!' + ztest_random('~' - '!' + 1);
4267 for (; i < namelen - 1; i++)
4268 name[i] = '.';
4269 name[i] = '\0';
4270
4271 if ((namelen & 1) || micro) {
4272 wsize = sizeof (txg);
4273 wc = 1;
4274 data = &txg;
4275 } else {
4276 wsize = 1;
4277 wc = namelen;
4278 data = string_value;
4279 }
4280
4281 count = -1ULL;
4282 VERIFY0(zap_count(os, object, &count));
4283 ASSERT(count != -1ULL);
4284
4285 /*
4286 * Select an operation: length, lookup, add, update, remove.
4287 */
4288 i = ztest_random(5);
4289
4290 if (i >= 2) {
4291 tx = dmu_tx_create(os);
4292 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4293 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4294 if (txg == 0)
4295 return;
4296 bcopy(name, string_value, namelen);
4297 } else {
4298 tx = NULL;
4299 txg = 0;
4300 bzero(string_value, namelen);
4301 }
4302
4303 switch (i) {
4304
4305 case 0:
4306 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
4307 if (error == 0) {
4308 ASSERT3U(wsize, ==, zl_wsize);
4309 ASSERT3U(wc, ==, zl_wc);
4310 } else {
4311 ASSERT3U(error, ==, ENOENT);
4312 }
4313 break;
4314
4315 case 1:
4316 error = zap_lookup(os, object, name, wsize, wc, data);
4317 if (error == 0) {
4318 if (data == string_value &&
4319 bcmp(name, data, namelen) != 0)
4320 fatal(0, "name '%s' != val '%s' len %d",
4321 name, data, namelen);
4322 } else {
4323 ASSERT3U(error, ==, ENOENT);
4324 }
4325 break;
4326
4327 case 2:
4328 error = zap_add(os, object, name, wsize, wc, data, tx);
4329 ASSERT(error == 0 || error == EEXIST);
4330 break;
4331
4332 case 3:
4333 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
4334 break;
4335
4336 case 4:
4337 error = zap_remove(os, object, name, tx);
4338 ASSERT(error == 0 || error == ENOENT);
4339 break;
4340 }
4341
4342 if (tx != NULL)
4343 dmu_tx_commit(tx);
4344 }
4345
4346 /*
4347 * Commit callback data.
4348 */
4349 typedef struct ztest_cb_data {
4350 list_node_t zcd_node;
4351 uint64_t zcd_txg;
4352 int zcd_expected_err;
4353 boolean_t zcd_added;
4354 boolean_t zcd_called;
4355 spa_t *zcd_spa;
4356 } ztest_cb_data_t;
4357
4358 /* This is the actual commit callback function */
4359 static void
4360 ztest_commit_callback(void *arg, int error)
4361 {
4362 ztest_cb_data_t *data = arg;
4363 uint64_t synced_txg;
4364
4365 VERIFY(data != NULL);
4366 VERIFY3S(data->zcd_expected_err, ==, error);
4367 VERIFY(!data->zcd_called);
4368
4369 synced_txg = spa_last_synced_txg(data->zcd_spa);
4370 if (data->zcd_txg > synced_txg)
4371 fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4372 ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4373 synced_txg);
4374
4375 data->zcd_called = B_TRUE;
4376
4377 if (error == ECANCELED) {
4378 ASSERT0(data->zcd_txg);
4379 ASSERT(!data->zcd_added);
4380
4381 /*
4382 * The private callback data should be destroyed here, but
4383 * since we are going to check the zcd_called field after
4384 * dmu_tx_abort(), we will destroy it there.
4385 */
4386 return;
4387 }
4388
4389 /* Was this callback added to the global callback list? */
4390 if (!data->zcd_added)
4391 goto out;
4392
4393 ASSERT3U(data->zcd_txg, !=, 0);
4394
4395 /* Remove our callback from the list */
4396 (void) mutex_lock(&zcl.zcl_callbacks_lock);
4397 list_remove(&zcl.zcl_callbacks, data);
4398 (void) mutex_unlock(&zcl.zcl_callbacks_lock);
4399
4400 out:
4401 umem_free(data, sizeof (ztest_cb_data_t));
4402 }
4403
4404 /* Allocate and initialize callback data structure */
4405 static ztest_cb_data_t *
4406 ztest_create_cb_data(objset_t *os, uint64_t txg)
4407 {
4408 ztest_cb_data_t *cb_data;
4409
4410 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
4411
4412 cb_data->zcd_txg = txg;
4413 cb_data->zcd_spa = dmu_objset_spa(os);
4414
4415 return (cb_data);
4416 }
4417
4418 /*
4419 * If a number of txgs equal to this threshold have been created after a commit
4420 * callback has been registered but not called, then we assume there is an
4421 * implementation bug.
4422 */
4423 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2)
4424
4425 /*
4426 * Commit callback test.
4427 */
4428 void
4429 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
4430 {
4431 objset_t *os = zd->zd_os;
4432 ztest_od_t od[1];
4433 dmu_tx_t *tx;
4434 ztest_cb_data_t *cb_data[3], *tmp_cb;
4435 uint64_t old_txg, txg;
4436 int i, error;
4437
4438 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4439
4440 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4441 return;
4442
4443 tx = dmu_tx_create(os);
4444
4445 cb_data[0] = ztest_create_cb_data(os, 0);
4446 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
4447
4448 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t));
4449
4450 /* Every once in a while, abort the transaction on purpose */
4451 if (ztest_random(100) == 0)
4452 error = -1;
4453
4454 if (!error)
4455 error = dmu_tx_assign(tx, TXG_NOWAIT);
4456
4457 txg = error ? 0 : dmu_tx_get_txg(tx);
4458
4459 cb_data[0]->zcd_txg = txg;
4460 cb_data[1] = ztest_create_cb_data(os, txg);
4461 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
4462
4463 if (error) {
4464 /*
4465 * It's not a strict requirement to call the registered
4466 * callbacks from inside dmu_tx_abort(), but that's what
4467 * it's supposed to happen in the current implementation
4468 * so we will check for that.
4469 */
4470 for (i = 0; i < 2; i++) {
4471 cb_data[i]->zcd_expected_err = ECANCELED;
4472 VERIFY(!cb_data[i]->zcd_called);
4473 }
4474
4475 dmu_tx_abort(tx);
4476
4477 for (i = 0; i < 2; i++) {
4478 VERIFY(cb_data[i]->zcd_called);
4479 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
4480 }
4481
4482 return;
4483 }
4484
4485 cb_data[2] = ztest_create_cb_data(os, txg);
4486 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
4487
4488 /*
4489 * Read existing data to make sure there isn't a future leak.
4490 */
4491 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t),
4492 &old_txg, DMU_READ_PREFETCH));
4493
4494 if (old_txg > txg)
4495 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
4496 old_txg, txg);
4497
4498 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx);
4499
4500 (void) mutex_lock(&zcl.zcl_callbacks_lock);
4501
4502 /*
4503 * Since commit callbacks don't have any ordering requirement and since
4504 * it is theoretically possible for a commit callback to be called
4505 * after an arbitrary amount of time has elapsed since its txg has been
4506 * synced, it is difficult to reliably determine whether a commit
4507 * callback hasn't been called due to high load or due to a flawed
4508 * implementation.
4509 *
4510 * In practice, we will assume that if after a certain number of txgs a
4511 * commit callback hasn't been called, then most likely there's an
4512 * implementation bug..
4513 */
4514 tmp_cb = list_head(&zcl.zcl_callbacks);
4515 if (tmp_cb != NULL &&
4516 tmp_cb->zcd_txg > txg - ZTEST_COMMIT_CALLBACK_THRESH) {
4517 fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4518 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
4519 }
4520
4521 /*
4522 * Let's find the place to insert our callbacks.
4523 *
4524 * Even though the list is ordered by txg, it is possible for the
4525 * insertion point to not be the end because our txg may already be
4526 * quiescing at this point and other callbacks in the open txg
4527 * (from other objsets) may have sneaked in.
4528 */
4529 tmp_cb = list_tail(&zcl.zcl_callbacks);
4530 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
4531 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
4532
4533 /* Add the 3 callbacks to the list */
4534 for (i = 0; i < 3; i++) {
4535 if (tmp_cb == NULL)
4536 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
4537 else
4538 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
4539 cb_data[i]);
4540
4541 cb_data[i]->zcd_added = B_TRUE;
4542 VERIFY(!cb_data[i]->zcd_called);
4543
4544 tmp_cb = cb_data[i];
4545 }
4546
4547 (void) mutex_unlock(&zcl.zcl_callbacks_lock);
4548
4549 dmu_tx_commit(tx);
4550 }
4551
4552 /* ARGSUSED */
4553 void
4554 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
4555 {
4556 zfs_prop_t proplist[] = {
4557 ZFS_PROP_CHECKSUM,
4558 ZFS_PROP_COMPRESSION,
4559 ZFS_PROP_COPIES,
4560 ZFS_PROP_DEDUP
4561 };
4562
4563 (void) rw_rdlock(&ztest_name_lock);
4564
4565 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
4566 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
4567 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
4568
4569 (void) rw_unlock(&ztest_name_lock);
4570 }
4571
4572 /* ARGSUSED */
4573 void
4574 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
4575 {
4576 nvlist_t *props = NULL;
4577
4578 (void) rw_rdlock(&ztest_name_lock);
4579
4580 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
4581 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
4582
4583 VERIFY0(spa_prop_get(ztest_spa, &props));
4584
4585 if (ztest_opts.zo_verbose >= 6)
4586 dump_nvlist(props, 4);
4587
4588 nvlist_free(props);
4589
4590 (void) rw_unlock(&ztest_name_lock);
4591 }
4592
4593 static int
4594 user_release_one(const char *snapname, const char *holdname)
4595 {
4596 nvlist_t *snaps, *holds;
4597 int error;
4598
4599 snaps = fnvlist_alloc();
4600 holds = fnvlist_alloc();
4601 fnvlist_add_boolean(holds, holdname);
4602 fnvlist_add_nvlist(snaps, snapname, holds);
4603 fnvlist_free(holds);
4604 error = dsl_dataset_user_release(snaps, NULL);
4605 fnvlist_free(snaps);
4606 return (error);
4607 }
4608
4609 /*
4610 * Test snapshot hold/release and deferred destroy.
4611 */
4612 void
4613 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
4614 {
4615 int error;
4616 objset_t *os = zd->zd_os;
4617 objset_t *origin;
4618 char snapname[100];
4619 char fullname[100];
4620 char clonename[100];
4621 char tag[100];
4622 char osname[MAXNAMELEN];
4623 nvlist_t *holds;
4624
4625 (void) rw_rdlock(&ztest_name_lock);
4626
4627 dmu_objset_name(os, osname);
4628
4629 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id);
4630 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
4631 (void) snprintf(clonename, sizeof (clonename),
4632 "%s/ch1_%llu", osname, id);
4633 (void) snprintf(tag, sizeof (tag), "tag_%llu", id);
4634
4635 /*
4636 * Clean up from any previous run.
4637 */
4638 error = dsl_destroy_head(clonename);
4639 if (error != ENOENT)
4640 ASSERT0(error);
4641 error = user_release_one(fullname, tag);
4642 if (error != ESRCH && error != ENOENT)
4643 ASSERT0(error);
4644 error = dsl_destroy_snapshot(fullname, B_FALSE);
4645 if (error != ENOENT)
4646 ASSERT0(error);
4647
4648 /*
4649 * Create snapshot, clone it, mark snap for deferred destroy,
4650 * destroy clone, verify snap was also destroyed.
4651 */
4652 error = dmu_objset_snapshot_one(osname, snapname);
4653 if (error) {
4654 if (error == ENOSPC) {
4655 ztest_record_enospc("dmu_objset_snapshot");
4656 goto out;
4657 }
4658 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4659 }
4660
4661 error = dmu_objset_clone(clonename, fullname);
4662 if (error) {
4663 if (error == ENOSPC) {
4664 ztest_record_enospc("dmu_objset_clone");
4665 goto out;
4666 }
4667 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
4668 }
4669
4670 error = dsl_destroy_snapshot(fullname, B_TRUE);
4671 if (error) {
4672 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4673 fullname, error);
4674 }
4675
4676 error = dsl_destroy_head(clonename);
4677 if (error)
4678 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
4679
4680 error = dmu_objset_hold(fullname, FTAG, &origin);
4681 if (error != ENOENT)
4682 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
4683
4684 /*
4685 * Create snapshot, add temporary hold, verify that we can't
4686 * destroy a held snapshot, mark for deferred destroy,
4687 * release hold, verify snapshot was destroyed.
4688 */
4689 error = dmu_objset_snapshot_one(osname, snapname);
4690 if (error) {
4691 if (error == ENOSPC) {
4692 ztest_record_enospc("dmu_objset_snapshot");
4693 goto out;
4694 }
4695 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4696 }
4697
4698 holds = fnvlist_alloc();
4699 fnvlist_add_string(holds, fullname, tag);
4700 error = dsl_dataset_user_hold(holds, 0, NULL);
4701 fnvlist_free(holds);
4702
4703 if (error)
4704 fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag);
4705
4706 error = dsl_destroy_snapshot(fullname, B_FALSE);
4707 if (error != EBUSY) {
4708 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
4709 fullname, error);
4710 }
4711
4712 error = dsl_destroy_snapshot(fullname, B_TRUE);
4713 if (error) {
4714 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4715 fullname, error);
4716 }
4717
4718 error = user_release_one(fullname, tag);
4719 if (error)
4720 fatal(0, "user_release_one(%s)", fullname, tag);
4721
4722 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
4723
4724 out:
4725 (void) rw_unlock(&ztest_name_lock);
4726 }
4727
4728 /*
4729 * Inject random faults into the on-disk data.
4730 */
4731 /* ARGSUSED */
4732 void
4733 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
4734 {
4735 ztest_shared_t *zs = ztest_shared;
4736 spa_t *spa = ztest_spa;
4737 int fd;
4738 uint64_t offset;
4739 uint64_t leaves;
4740 uint64_t bad = 0x1990c0ffeedecade;
4741 uint64_t top, leaf;
4742 char path0[MAXPATHLEN];
4743 char pathrand[MAXPATHLEN];
4744 size_t fsize;
4745 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */
4746 int iters = 1000;
4747 int maxfaults;
4748 int mirror_save;
4749 vdev_t *vd0 = NULL;
4750 uint64_t guid0 = 0;
4751 boolean_t islog = B_FALSE;
4752
4753 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
4754 maxfaults = MAXFAULTS();
4755 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
4756 mirror_save = zs->zs_mirrors;
4757 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4758
4759 ASSERT(leaves >= 1);
4760
4761 /*
4762 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
4763 */
4764 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4765
4766 if (ztest_random(2) == 0) {
4767 /*
4768 * Inject errors on a normal data device or slog device.
4769 */
4770 top = ztest_random_vdev_top(spa, B_TRUE);
4771 leaf = ztest_random(leaves) + zs->zs_splits;
4772
4773 /*
4774 * Generate paths to the first leaf in this top-level vdev,
4775 * and to the random leaf we selected. We'll induce transient
4776 * write failures and random online/offline activity on leaf 0,
4777 * and we'll write random garbage to the randomly chosen leaf.
4778 */
4779 (void) snprintf(path0, sizeof (path0), ztest_dev_template,
4780 ztest_opts.zo_dir, ztest_opts.zo_pool,
4781 top * leaves + zs->zs_splits);
4782 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
4783 ztest_opts.zo_dir, ztest_opts.zo_pool,
4784 top * leaves + leaf);
4785
4786 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
4787 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
4788 islog = B_TRUE;
4789
4790 if (vd0 != NULL && maxfaults != 1) {
4791 /*
4792 * Make vd0 explicitly claim to be unreadable,
4793 * or unwriteable, or reach behind its back
4794 * and close the underlying fd. We can do this if
4795 * maxfaults == 0 because we'll fail and reexecute,
4796 * and we can do it if maxfaults >= 2 because we'll
4797 * have enough redundancy. If maxfaults == 1, the
4798 * combination of this with injection of random data
4799 * corruption below exceeds the pool's fault tolerance.
4800 */
4801 vdev_file_t *vf = vd0->vdev_tsd;
4802
4803 if (vf != NULL && ztest_random(3) == 0) {
4804 (void) close(vf->vf_vnode->v_fd);
4805 vf->vf_vnode->v_fd = -1;
4806 } else if (ztest_random(2) == 0) {
4807 vd0->vdev_cant_read = B_TRUE;
4808 } else {
4809 vd0->vdev_cant_write = B_TRUE;
4810 }
4811 guid0 = vd0->vdev_guid;
4812 }
4813 } else {
4814 /*
4815 * Inject errors on an l2cache device.
4816 */
4817 spa_aux_vdev_t *sav = &spa->spa_l2cache;
4818
4819 if (sav->sav_count == 0) {
4820 spa_config_exit(spa, SCL_STATE, FTAG);
4821 return;
4822 }
4823 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
4824 guid0 = vd0->vdev_guid;
4825 (void) strcpy(path0, vd0->vdev_path);
4826 (void) strcpy(pathrand, vd0->vdev_path);
4827
4828 leaf = 0;
4829 leaves = 1;
4830 maxfaults = INT_MAX; /* no limit on cache devices */
4831 }
4832
4833 spa_config_exit(spa, SCL_STATE, FTAG);
4834
4835 /*
4836 * If we can tolerate two or more faults, or we're dealing
4837 * with a slog, randomly online/offline vd0.
4838 */
4839 if ((maxfaults >= 2 || islog) && guid0 != 0) {
4840 if (ztest_random(10) < 6) {
4841 int flags = (ztest_random(2) == 0 ?
4842 ZFS_OFFLINE_TEMPORARY : 0);
4843
4844 /*
4845 * We have to grab the zs_name_lock as writer to
4846 * prevent a race between offlining a slog and
4847 * destroying a dataset. Offlining the slog will
4848 * grab a reference on the dataset which may cause
4849 * dmu_objset_destroy() to fail with EBUSY thus
4850 * leaving the dataset in an inconsistent state.
4851 */
4852 if (islog)
4853 (void) rw_wrlock(&ztest_name_lock);
4854
4855 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
4856
4857 if (islog)
4858 (void) rw_unlock(&ztest_name_lock);
4859 } else {
4860 /*
4861 * Ideally we would like to be able to randomly
4862 * call vdev_[on|off]line without holding locks
4863 * to force unpredictable failures but the side
4864 * effects of vdev_[on|off]line prevent us from
4865 * doing so. We grab the ztest_vdev_lock here to
4866 * prevent a race between injection testing and
4867 * aux_vdev removal.
4868 */
4869 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
4870 (void) vdev_online(spa, guid0, 0, NULL);
4871 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4872 }
4873 }
4874
4875 if (maxfaults == 0)
4876 return;
4877
4878 /*
4879 * We have at least single-fault tolerance, so inject data corruption.
4880 */
4881 fd = open(pathrand, O_RDWR);
4882
4883 if (fd == -1) /* we hit a gap in the device namespace */
4884 return;
4885
4886 fsize = lseek(fd, 0, SEEK_END);
4887
4888 while (--iters != 0) {
4889 offset = ztest_random(fsize / (leaves << bshift)) *
4890 (leaves << bshift) + (leaf << bshift) +
4891 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
4892
4893 if (offset >= fsize)
4894 continue;
4895
4896 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
4897 if (mirror_save != zs->zs_mirrors) {
4898 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4899 (void) close(fd);
4900 return;
4901 }
4902
4903 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
4904 fatal(1, "can't inject bad word at 0x%llx in %s",
4905 offset, pathrand);
4906
4907 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4908
4909 if (ztest_opts.zo_verbose >= 7)
4910 (void) printf("injected bad word into %s,"
4911 " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
4912 }
4913
4914 (void) close(fd);
4915 }
4916
4917 /*
4918 * Verify that DDT repair works as expected.
4919 */
4920 void
4921 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
4922 {
4923 ztest_shared_t *zs = ztest_shared;
4924 spa_t *spa = ztest_spa;
4925 objset_t *os = zd->zd_os;
4926 ztest_od_t od[1];
4927 uint64_t object, blocksize, txg, pattern, psize;
4928 enum zio_checksum checksum = spa_dedup_checksum(spa);
4929 dmu_buf_t *db;
4930 dmu_tx_t *tx;
4931 void *buf;
4932 blkptr_t blk;
4933 int copies = 2 * ZIO_DEDUPDITTO_MIN;
4934
4935 blocksize = ztest_random_blocksize();
4936 blocksize = MIN(blocksize, 2048); /* because we write so many */
4937
4938 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
4939
4940 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4941 return;
4942
4943 /*
4944 * Take the name lock as writer to prevent anyone else from changing
4945 * the pool and dataset properies we need to maintain during this test.
4946 */
4947 (void) rw_wrlock(&ztest_name_lock);
4948
4949 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
4950 B_FALSE) != 0 ||
4951 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
4952 B_FALSE) != 0) {
4953 (void) rw_unlock(&ztest_name_lock);
4954 return;
4955 }
4956
4957 object = od[0].od_object;
4958 blocksize = od[0].od_blocksize;
4959 pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os);
4960
4961 ASSERT(object != 0);
4962
4963 tx = dmu_tx_create(os);
4964 dmu_tx_hold_write(tx, object, 0, copies * blocksize);
4965 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
4966 if (txg == 0) {
4967 (void) rw_unlock(&ztest_name_lock);
4968 return;
4969 }
4970
4971 /*
4972 * Write all the copies of our block.
4973 */
4974 for (int i = 0; i < copies; i++) {
4975 uint64_t offset = i * blocksize;
4976 int error = dmu_buf_hold(os, object, offset, FTAG, &db,
4977 DMU_READ_NO_PREFETCH);
4978 if (error != 0) {
4979 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u",
4980 os, (long long)object, (long long) offset, error);
4981 }
4982 ASSERT(db->db_offset == offset);
4983 ASSERT(db->db_size == blocksize);
4984 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
4985 ztest_pattern_match(db->db_data, db->db_size, 0ULL));
4986 dmu_buf_will_fill(db, tx);
4987 ztest_pattern_set(db->db_data, db->db_size, pattern);
4988 dmu_buf_rele(db, FTAG);
4989 }
4990
4991 dmu_tx_commit(tx);
4992 txg_wait_synced(spa_get_dsl(spa), txg);
4993
4994 /*
4995 * Find out what block we got.
4996 */
4997 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db,
4998 DMU_READ_NO_PREFETCH));
4999 blk = *((dmu_buf_impl_t *)db)->db_blkptr;
5000 dmu_buf_rele(db, FTAG);
5001
5002 /*
5003 * Damage the block. Dedup-ditto will save us when we read it later.
5004 */
5005 psize = BP_GET_PSIZE(&blk);
5006 buf = zio_buf_alloc(psize);
5007 ztest_pattern_set(buf, psize, ~pattern);
5008
5009 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
5010 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
5011 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
5012
5013 zio_buf_free(buf, psize);
5014
5015 (void) rw_unlock(&ztest_name_lock);
5016 }
5017
5018 /*
5019 * Scrub the pool.
5020 */
5021 /* ARGSUSED */
5022 void
5023 ztest_scrub(ztest_ds_t *zd, uint64_t id)
5024 {
5025 spa_t *spa = ztest_spa;
5026
5027 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5028 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
5029 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5030 }
5031
5032 /*
5033 * Change the guid for the pool.
5034 */
5035 /* ARGSUSED */
5036 void
5037 ztest_reguid(ztest_ds_t *zd, uint64_t id)
5038 {
5039 spa_t *spa = ztest_spa;
5040 uint64_t orig, load;
5041 int error;
5042
5043 orig = spa_guid(spa);
5044 load = spa_load_guid(spa);
5045
5046 (void) rw_wrlock(&ztest_name_lock);
5047 error = spa_change_guid(spa);
5048 (void) rw_unlock(&ztest_name_lock);
5049
5050 if (error != 0)
5051 return;
5052
5053 if (ztest_opts.zo_verbose >= 4) {
5054 (void) printf("Changed guid old %llu -> %llu\n",
5055 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
5056 }
5057
5058 VERIFY3U(orig, !=, spa_guid(spa));
5059 VERIFY3U(load, ==, spa_load_guid(spa));
5060 }
5061
5062 /*
5063 * Rename the pool to a different name and then rename it back.
5064 */
5065 /* ARGSUSED */
5066 void
5067 ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
5068 {
5069 char *oldname, *newname;
5070 spa_t *spa;
5071
5072 (void) rw_wrlock(&ztest_name_lock);
5073
5074 oldname = ztest_opts.zo_pool;
5075 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
5076 (void) strcpy(newname, oldname);
5077 (void) strcat(newname, "_tmp");
5078
5079 /*
5080 * Do the rename
5081 */
5082 VERIFY3U(0, ==, spa_rename(oldname, newname));
5083
5084 /*
5085 * Try to open it under the old name, which shouldn't exist
5086 */
5087 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5088
5089 /*
5090 * Open it under the new name and make sure it's still the same spa_t.
5091 */
5092 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5093
5094 ASSERT(spa == ztest_spa);
5095 spa_close(spa, FTAG);
5096
5097 /*
5098 * Rename it back to the original
5099 */
5100 VERIFY3U(0, ==, spa_rename(newname, oldname));
5101
5102 /*
5103 * Make sure it can still be opened
5104 */
5105 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5106
5107 ASSERT(spa == ztest_spa);
5108 spa_close(spa, FTAG);
5109
5110 umem_free(newname, strlen(newname) + 1);
5111
5112 (void) rw_unlock(&ztest_name_lock);
5113 }
5114
5115 /*
5116 * Verify pool integrity by running zdb.
5117 */
5118 static void
5119 ztest_run_zdb(char *pool)
5120 {
5121 int status;
5122 char zdb[MAXPATHLEN + MAXNAMELEN + 20];
5123 char zbuf[1024];
5124 FILE *fp;
5125
5126 /* LINTED */
5127 (void) sprintf(zdb,
5128 "zdb -bcc%s%s -U %s %s",
5129 ztest_opts.zo_verbose >= 3 ? "s" : "",
5130 ztest_opts.zo_verbose >= 4 ? "v" : "",
5131 spa_config_path,
5132 pool);
5133
5134 if (ztest_opts.zo_verbose >= 5)
5135 (void) printf("Executing %s\n", strstr(zdb, "zdb "));
5136
5137 fp = popen(zdb, "r");
5138
5139 while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
5140 if (ztest_opts.zo_verbose >= 3)
5141 (void) printf("%s", zbuf);
5142
5143 status = pclose(fp);
5144
5145 if (status == 0)
5146 return;
5147
5148 ztest_dump_core = 0;
5149 if (WIFEXITED(status))
5150 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
5151 else
5152 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
5153 }
5154
5155 static void
5156 ztest_walk_pool_directory(char *header)
5157 {
5158 spa_t *spa = NULL;
5159
5160 if (ztest_opts.zo_verbose >= 6)
5161 (void) printf("%s\n", header);
5162
5163 mutex_enter(&spa_namespace_lock);
5164 while ((spa = spa_next(spa)) != NULL)
5165 if (ztest_opts.zo_verbose >= 6)
5166 (void) printf("\t%s\n", spa_name(spa));
5167 mutex_exit(&spa_namespace_lock);
5168 }
5169
5170 static void
5171 ztest_spa_import_export(char *oldname, char *newname)
5172 {
5173 nvlist_t *config, *newconfig;
5174 uint64_t pool_guid;
5175 spa_t *spa;
5176 int error;
5177
5178 if (ztest_opts.zo_verbose >= 4) {
5179 (void) printf("import/export: old = %s, new = %s\n",
5180 oldname, newname);
5181 }
5182
5183 /*
5184 * Clean up from previous runs.
5185 */
5186 (void) spa_destroy(newname);
5187
5188 /*
5189 * Get the pool's configuration and guid.
5190 */
5191 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5192
5193 /*
5194 * Kick off a scrub to tickle scrub/export races.
5195 */
5196 if (ztest_random(2) == 0)
5197 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5198
5199 pool_guid = spa_guid(spa);
5200 spa_close(spa, FTAG);
5201
5202 ztest_walk_pool_directory("pools before export");
5203
5204 /*
5205 * Export it.
5206 */
5207 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
5208
5209 ztest_walk_pool_directory("pools after export");
5210
5211 /*
5212 * Try to import it.
5213 */
5214 newconfig = spa_tryimport(config);
5215 ASSERT(newconfig != NULL);
5216 nvlist_free(newconfig);
5217
5218 /*
5219 * Import it under the new name.
5220 */
5221 error = spa_import(newname, config, NULL, 0);
5222 if (error != 0) {
5223 dump_nvlist(config, 0);
5224 fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
5225 oldname, newname, error);
5226 }
5227
5228 ztest_walk_pool_directory("pools after import");
5229
5230 /*
5231 * Try to import it again -- should fail with EEXIST.
5232 */
5233 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
5234
5235 /*
5236 * Try to import it under a different name -- should fail with EEXIST.
5237 */
5238 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
5239
5240 /*
5241 * Verify that the pool is no longer visible under the old name.
5242 */
5243 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5244
5245 /*
5246 * Verify that we can open and close the pool using the new name.
5247 */
5248 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5249 ASSERT(pool_guid == spa_guid(spa));
5250 spa_close(spa, FTAG);
5251
5252 nvlist_free(config);
5253 }
5254
5255 static void
5256 ztest_resume(spa_t *spa)
5257 {
5258 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
5259 (void) printf("resuming from suspended state\n");
5260 spa_vdev_state_enter(spa, SCL_NONE);
5261 vdev_clear(spa, NULL);
5262 (void) spa_vdev_state_exit(spa, NULL, 0);
5263 (void) zio_resume(spa);
5264 }
5265
5266 static void *
5267 ztest_resume_thread(void *arg)
5268 {
5269 spa_t *spa = arg;
5270
5271 while (!ztest_exiting) {
5272 if (spa_suspended(spa))
5273 ztest_resume(spa);
5274 (void) poll(NULL, 0, 100);
5275 }
5276 return (NULL);
5277 }
5278
5279 static void *
5280 ztest_deadman_thread(void *arg)
5281 {
5282 ztest_shared_t *zs = arg;
5283 int grace = 300;
5284 hrtime_t delta;
5285
5286 delta = (zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + grace;
5287
5288 (void) poll(NULL, 0, (int)(1000 * delta));
5289
5290 fatal(0, "failed to complete within %d seconds of deadline", grace);
5291
5292 return (NULL);
5293 }
5294
5295 static void
5296 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
5297 {
5298 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
5299 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
5300 hrtime_t functime = gethrtime();
5301
5302 for (int i = 0; i < zi->zi_iters; i++)
5303 zi->zi_func(zd, id);
5304
5305 functime = gethrtime() - functime;
5306
5307 atomic_add_64(&zc->zc_count, 1);
5308 atomic_add_64(&zc->zc_time, functime);
5309
5310 if (ztest_opts.zo_verbose >= 4) {
5311 Dl_info dli;
5312 (void) dladdr((void *)zi->zi_func, &dli);
5313 (void) printf("%6.2f sec in %s\n",
5314 (double)functime / NANOSEC, dli.dli_sname);
5315 }
5316 }
5317
5318 static void *
5319 ztest_thread(void *arg)
5320 {
5321 int rand;
5322 uint64_t id = (uintptr_t)arg;
5323 ztest_shared_t *zs = ztest_shared;
5324 uint64_t call_next;
5325 hrtime_t now;
5326 ztest_info_t *zi;
5327 ztest_shared_callstate_t *zc;
5328
5329 while ((now = gethrtime()) < zs->zs_thread_stop) {
5330 /*
5331 * See if it's time to force a crash.
5332 */
5333 if (now > zs->zs_thread_kill)
5334 ztest_kill(zs);
5335
5336 /*
5337 * If we're getting ENOSPC with some regularity, stop.
5338 */
5339 if (zs->zs_enospc_count > 10)
5340 break;
5341
5342 /*
5343 * Pick a random function to execute.
5344 */
5345 rand = ztest_random(ZTEST_FUNCS);
5346 zi = &ztest_info[rand];
5347 zc = ZTEST_GET_SHARED_CALLSTATE(rand);
5348 call_next = zc->zc_next;
5349
5350 if (now >= call_next &&
5351 atomic_cas_64(&zc->zc_next, call_next, call_next +
5352 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
5353 ztest_execute(rand, zi, id);
5354 }
5355 }
5356
5357 return (NULL);
5358 }
5359
5360 static void
5361 ztest_dataset_name(char *dsname, char *pool, int d)
5362 {
5363 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d);
5364 }
5365
5366 static void
5367 ztest_dataset_destroy(int d)
5368 {
5369 char name[MAXNAMELEN];
5370
5371 ztest_dataset_name(name, ztest_opts.zo_pool, d);
5372
5373 if (ztest_opts.zo_verbose >= 3)
5374 (void) printf("Destroying %s to free up space\n", name);
5375
5376 /*
5377 * Cleanup any non-standard clones and snapshots. In general,
5378 * ztest thread t operates on dataset (t % zopt_datasets),
5379 * so there may be more than one thing to clean up.
5380 */
5381 for (int t = d; t < ztest_opts.zo_threads;
5382 t += ztest_opts.zo_datasets) {
5383 ztest_dsl_dataset_cleanup(name, t);
5384 }
5385
5386 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
5387 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
5388 }
5389
5390 static void
5391 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
5392 {
5393 uint64_t usedobjs, dirobjs, scratch;
5394
5395 /*
5396 * ZTEST_DIROBJ is the object directory for the entire dataset.
5397 * Therefore, the number of objects in use should equal the
5398 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
5399 * If not, we have an object leak.
5400 *
5401 * Note that we can only check this in ztest_dataset_open(),
5402 * when the open-context and syncing-context values agree.
5403 * That's because zap_count() returns the open-context value,
5404 * while dmu_objset_space() returns the rootbp fill count.
5405 */
5406 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
5407 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
5408 ASSERT3U(dirobjs + 1, ==, usedobjs);
5409 }
5410
5411 static int
5412 ztest_dataset_open(int d)
5413 {
5414 ztest_ds_t *zd = &ztest_ds[d];
5415 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
5416 objset_t *os;
5417 zilog_t *zilog;
5418 char name[MAXNAMELEN];
5419 int error;
5420
5421 ztest_dataset_name(name, ztest_opts.zo_pool, d);
5422
5423 (void) rw_wrlock(&ztest_name_lock);
5424
5425 error = ztest_dataset_create(name);
5426 if (error == ENOSPC) {
5427 (void) rw_unlock(&ztest_name_lock);
5428 ztest_record_enospc(FTAG);
5429 return (error);
5430 }
5431 ASSERT(error == 0 || error == EEXIST);
5432
5433 VERIFY0(dmu_objset_hold(name, zd, &os));
5434 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
5435 (void) rw_unlock(&ztest_name_lock);
5436
5437 zilog = zd->zd_zilog;
5438
5439 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
5440 zilog->zl_header->zh_claim_lr_seq < committed_seq)
5441 fatal(0, "missing log records: claimed %llu < committed %llu",
5442 zilog->zl_header->zh_claim_lr_seq, committed_seq);
5443
5444 ztest_dataset_dirobj_verify(zd);
5445
5446 zil_replay(os, zd, ztest_replay_vector);
5447
5448 ztest_dataset_dirobj_verify(zd);
5449
5450 if (ztest_opts.zo_verbose >= 6)
5451 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
5452 zd->zd_name,
5453 (u_longlong_t)zilog->zl_parse_blk_count,
5454 (u_longlong_t)zilog->zl_parse_lr_count,
5455 (u_longlong_t)zilog->zl_replaying_seq);
5456
5457 zilog = zil_open(os, ztest_get_data);
5458
5459 if (zilog->zl_replaying_seq != 0 &&
5460 zilog->zl_replaying_seq < committed_seq)
5461 fatal(0, "missing log records: replayed %llu < committed %llu",
5462 zilog->zl_replaying_seq, committed_seq);
5463
5464 return (0);
5465 }
5466
5467 static void
5468 ztest_dataset_close(int d)
5469 {
5470 ztest_ds_t *zd = &ztest_ds[d];
5471
5472 zil_close(zd->zd_zilog);
5473 dmu_objset_disown(zd->zd_os, zd);
5474
5475 ztest_zd_fini(zd);
5476 }
5477
5478 /*
5479 * Kick off threads to run tests on all datasets in parallel.
5480 */
5481 static void
5482 ztest_run(ztest_shared_t *zs)
5483 {
5484 thread_t *tid;
5485 spa_t *spa;
5486 objset_t *os;
5487 thread_t resume_tid;
5488 int error;
5489
5490 ztest_exiting = B_FALSE;
5491
5492 /*
5493 * Initialize parent/child shared state.
5494 */
5495 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0);
5496 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
5497
5498 zs->zs_thread_start = gethrtime();
5499 zs->zs_thread_stop =
5500 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
5501 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
5502 zs->zs_thread_kill = zs->zs_thread_stop;
5503 if (ztest_random(100) < ztest_opts.zo_killrate) {
5504 zs->zs_thread_kill -=
5505 ztest_random(ztest_opts.zo_passtime * NANOSEC);
5506 }
5507
5508 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL);
5509
5510 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
5511 offsetof(ztest_cb_data_t, zcd_node));
5512
5513 /*
5514 * Open our pool.
5515 */
5516 kernel_init(FREAD | FWRITE);
5517 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
5518 spa->spa_debug = B_TRUE;
5519 ztest_spa = spa;
5520
5521 VERIFY0(dmu_objset_own(ztest_opts.zo_pool,
5522 DMU_OST_ANY, B_TRUE, FTAG, &os));
5523 zs->zs_guid = dmu_objset_fsid_guid(os);
5524 dmu_objset_disown(os, FTAG);
5525
5526 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
5527
5528 /*
5529 * We don't expect the pool to suspend unless maxfaults == 0,
5530 * in which case ztest_fault_inject() temporarily takes away
5531 * the only valid replica.
5532 */
5533 if (MAXFAULTS() == 0)
5534 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
5535 else
5536 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
5537
5538 /*
5539 * Create a thread to periodically resume suspended I/O.
5540 */
5541 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND,
5542 &resume_tid) == 0);
5543
5544 /*
5545 * Create a deadman thread to abort() if we hang.
5546 */
5547 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND,
5548 NULL) == 0);
5549
5550 /*
5551 * Verify that we can safely inquire about about any object,
5552 * whether it's allocated or not. To make it interesting,
5553 * we probe a 5-wide window around each power of two.
5554 * This hits all edge cases, including zero and the max.
5555 */
5556 for (int t = 0; t < 64; t++) {
5557 for (int d = -5; d <= 5; d++) {
5558 error = dmu_object_info(spa->spa_meta_objset,
5559 (1ULL << t) + d, NULL);
5560 ASSERT(error == 0 || error == ENOENT ||
5561 error == EINVAL);
5562 }
5563 }
5564
5565 /*
5566 * If we got any ENOSPC errors on the previous run, destroy something.
5567 */
5568 if (zs->zs_enospc_count != 0) {
5569 int d = ztest_random(ztest_opts.zo_datasets);
5570 ztest_dataset_destroy(d);
5571 }
5572 zs->zs_enospc_count = 0;
5573
5574 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t),
5575 UMEM_NOFAIL);
5576
5577 if (ztest_opts.zo_verbose >= 4)
5578 (void) printf("starting main threads...\n");
5579
5580 /*
5581 * Kick off all the tests that run in parallel.
5582 */
5583 for (int t = 0; t < ztest_opts.zo_threads; t++) {
5584 if (t < ztest_opts.zo_datasets &&
5585 ztest_dataset_open(t) != 0)
5586 return;
5587 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t,
5588 THR_BOUND, &tid[t]) == 0);
5589 }
5590
5591 /*
5592 * Wait for all of the tests to complete. We go in reverse order
5593 * so we don't close datasets while threads are still using them.
5594 */
5595 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) {
5596 VERIFY(thr_join(tid[t], NULL, NULL) == 0);
5597 if (t < ztest_opts.zo_datasets)
5598 ztest_dataset_close(t);
5599 }
5600
5601 txg_wait_synced(spa_get_dsl(spa), 0);
5602
5603 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
5604 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
5605
5606 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t));
5607
5608 /* Kill the resume thread */
5609 ztest_exiting = B_TRUE;
5610 VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
5611 ztest_resume(spa);
5612
5613 /*
5614 * Right before closing the pool, kick off a bunch of async I/O;
5615 * spa_close() should wait for it to complete.
5616 */
5617 for (uint64_t object = 1; object < 50; object++)
5618 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20);
5619
5620 spa_close(spa, FTAG);
5621
5622 /*
5623 * Verify that we can loop over all pools.
5624 */
5625 mutex_enter(&spa_namespace_lock);
5626 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
5627 if (ztest_opts.zo_verbose > 3)
5628 (void) printf("spa_next: found %s\n", spa_name(spa));
5629 mutex_exit(&spa_namespace_lock);
5630
5631 /*
5632 * Verify that we can export the pool and reimport it under a
5633 * different name.
5634 */
5635 if (ztest_random(2) == 0) {
5636 char name[MAXNAMELEN];
5637 (void) snprintf(name, MAXNAMELEN, "%s_import",
5638 ztest_opts.zo_pool);
5639 ztest_spa_import_export(ztest_opts.zo_pool, name);
5640 ztest_spa_import_export(name, ztest_opts.zo_pool);
5641 }
5642
5643 kernel_fini();
5644
5645 list_destroy(&zcl.zcl_callbacks);
5646
5647 (void) _mutex_destroy(&zcl.zcl_callbacks_lock);
5648
5649 (void) rwlock_destroy(&ztest_name_lock);
5650 (void) _mutex_destroy(&ztest_vdev_lock);
5651 }
5652
5653 static void
5654 ztest_freeze(void)
5655 {
5656 ztest_ds_t *zd = &ztest_ds[0];
5657 spa_t *spa;
5658 int numloops = 0;
5659
5660 if (ztest_opts.zo_verbose >= 3)
5661 (void) printf("testing spa_freeze()...\n");
5662
5663 kernel_init(FREAD | FWRITE);
5664 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5665 VERIFY3U(0, ==, ztest_dataset_open(0));
5666 spa->spa_debug = B_TRUE;
5667 ztest_spa = spa;
5668
5669 /*
5670 * Force the first log block to be transactionally allocated.
5671 * We have to do this before we freeze the pool -- otherwise
5672 * the log chain won't be anchored.
5673 */
5674 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
5675 ztest_dmu_object_alloc_free(zd, 0);
5676 zil_commit(zd->zd_zilog, 0);
5677 }
5678
5679 txg_wait_synced(spa_get_dsl(spa), 0);
5680
5681 /*
5682 * Freeze the pool. This stops spa_sync() from doing anything,
5683 * so that the only way to record changes from now on is the ZIL.
5684 */
5685 spa_freeze(spa);
5686
5687 /*
5688 * Run tests that generate log records but don't alter the pool config
5689 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
5690 * We do a txg_wait_synced() after each iteration to force the txg
5691 * to increase well beyond the last synced value in the uberblock.
5692 * The ZIL should be OK with that.
5693 */
5694 while (ztest_random(10) != 0 &&
5695 numloops++ < ztest_opts.zo_maxloops) {
5696 ztest_dmu_write_parallel(zd, 0);
5697 ztest_dmu_object_alloc_free(zd, 0);
5698 txg_wait_synced(spa_get_dsl(spa), 0);
5699 }
5700
5701 /*
5702 * Commit all of the changes we just generated.
5703 */
5704 zil_commit(zd->zd_zilog, 0);
5705 txg_wait_synced(spa_get_dsl(spa), 0);
5706
5707 /*
5708 * Close our dataset and close the pool.
5709 */
5710 ztest_dataset_close(0);
5711 spa_close(spa, FTAG);
5712 kernel_fini();
5713
5714 /*
5715 * Open and close the pool and dataset to induce log replay.
5716 */
5717 kernel_init(FREAD | FWRITE);
5718 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5719 ASSERT(spa_freeze_txg(spa) == UINT64_MAX);
5720 VERIFY3U(0, ==, ztest_dataset_open(0));
5721 ztest_dataset_close(0);
5722
5723 spa->spa_debug = B_TRUE;
5724 ztest_spa = spa;
5725 txg_wait_synced(spa_get_dsl(spa), 0);
5726 ztest_reguid(NULL, 0);
5727
5728 spa_close(spa, FTAG);
5729 kernel_fini();
5730 }
5731
5732 void
5733 print_time(hrtime_t t, char *timebuf)
5734 {
5735 hrtime_t s = t / NANOSEC;
5736 hrtime_t m = s / 60;
5737 hrtime_t h = m / 60;
5738 hrtime_t d = h / 24;
5739
5740 s -= m * 60;
5741 m -= h * 60;
5742 h -= d * 24;
5743
5744 timebuf[0] = '\0';
5745
5746 if (d)
5747 (void) sprintf(timebuf,
5748 "%llud%02lluh%02llum%02llus", d, h, m, s);
5749 else if (h)
5750 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
5751 else if (m)
5752 (void) sprintf(timebuf, "%llum%02llus", m, s);
5753 else
5754 (void) sprintf(timebuf, "%llus", s);
5755 }
5756
5757 static nvlist_t *
5758 make_random_props()
5759 {
5760 nvlist_t *props;
5761
5762 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
5763 if (ztest_random(2) == 0)
5764 return (props);
5765 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
5766
5767 return (props);
5768 }
5769
5770 /*
5771 * Create a storage pool with the given name and initial vdev size.
5772 * Then test spa_freeze() functionality.
5773 */
5774 static void
5775 ztest_init(ztest_shared_t *zs)
5776 {
5777 spa_t *spa;
5778 nvlist_t *nvroot, *props;
5779
5780 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0);
5781 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
5782
5783 kernel_init(FREAD | FWRITE);
5784
5785 /*
5786 * Create the storage pool.
5787 */
5788 (void) spa_destroy(ztest_opts.zo_pool);
5789 ztest_shared->zs_vdev_next_leaf = 0;
5790 zs->zs_splits = 0;
5791 zs->zs_mirrors = ztest_opts.zo_mirrors;
5792 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
5793 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
5794 props = make_random_props();
5795 for (int i = 0; i < SPA_FEATURES; i++) {
5796 char buf[1024];
5797 (void) snprintf(buf, sizeof (buf), "feature@%s",
5798 spa_feature_table[i].fi_uname);
5799 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
5800 }
5801 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL));
5802 nvlist_free(nvroot);
5803
5804 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5805 zs->zs_metaslab_sz =
5806 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
5807
5808 spa_close(spa, FTAG);
5809
5810 kernel_fini();
5811
5812 ztest_run_zdb(ztest_opts.zo_pool);
5813
5814 ztest_freeze();
5815
5816 ztest_run_zdb(ztest_opts.zo_pool);
5817
5818 (void) rwlock_destroy(&ztest_name_lock);
5819 (void) _mutex_destroy(&ztest_vdev_lock);
5820 }
5821
5822 static void
5823 setup_data_fd(void)
5824 {
5825 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
5826
5827 ztest_fd_data = mkstemp(ztest_name_data);
5828 ASSERT3S(ztest_fd_data, >=, 0);
5829 (void) unlink(ztest_name_data);
5830 }
5831
5832
5833 static int
5834 shared_data_size(ztest_shared_hdr_t *hdr)
5835 {
5836 int size;
5837
5838 size = hdr->zh_hdr_size;
5839 size += hdr->zh_opts_size;
5840 size += hdr->zh_size;
5841 size += hdr->zh_stats_size * hdr->zh_stats_count;
5842 size += hdr->zh_ds_size * hdr->zh_ds_count;
5843
5844 return (size);
5845 }
5846
5847 static void
5848 setup_hdr(void)
5849 {
5850 int size;
5851 ztest_shared_hdr_t *hdr;
5852
5853 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
5854 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
5855 ASSERT(hdr != MAP_FAILED);
5856
5857 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
5858
5859 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
5860 hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
5861 hdr->zh_size = sizeof (ztest_shared_t);
5862 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
5863 hdr->zh_stats_count = ZTEST_FUNCS;
5864 hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
5865 hdr->zh_ds_count = ztest_opts.zo_datasets;
5866
5867 size = shared_data_size(hdr);
5868 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
5869
5870 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
5871 }
5872
5873 static void
5874 setup_data(void)
5875 {
5876 int size, offset;
5877 ztest_shared_hdr_t *hdr;
5878 uint8_t *buf;
5879
5880 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
5881 PROT_READ, MAP_SHARED, ztest_fd_data, 0);
5882 ASSERT(hdr != MAP_FAILED);
5883
5884 size = shared_data_size(hdr);
5885
5886 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
5887 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
5888 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
5889 ASSERT(hdr != MAP_FAILED);
5890 buf = (uint8_t *)hdr;
5891
5892 offset = hdr->zh_hdr_size;
5893 ztest_shared_opts = (void *)&buf[offset];
5894 offset += hdr->zh_opts_size;
5895 ztest_shared = (void *)&buf[offset];
5896 offset += hdr->zh_size;
5897 ztest_shared_callstate = (void *)&buf[offset];
5898 offset += hdr->zh_stats_size * hdr->zh_stats_count;
5899 ztest_shared_ds = (void *)&buf[offset];
5900 }
5901
5902 static boolean_t
5903 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
5904 {
5905 pid_t pid;
5906 int status;
5907 char *cmdbuf = NULL;
5908
5909 pid = fork();
5910
5911 if (cmd == NULL) {
5912 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
5913 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
5914 cmd = cmdbuf;
5915 }
5916
5917 if (pid == -1)
5918 fatal(1, "fork failed");
5919
5920 if (pid == 0) { /* child */
5921 char *emptyargv[2] = { cmd, NULL };
5922 char fd_data_str[12];
5923
5924 struct rlimit rl = { 1024, 1024 };
5925 (void) setrlimit(RLIMIT_NOFILE, &rl);
5926
5927 (void) close(ztest_fd_rand);
5928 VERIFY3U(11, >=,
5929 snprintf(fd_data_str, 12, "%d", ztest_fd_data));
5930 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
5931
5932 (void) enable_extended_FILE_stdio(-1, -1);
5933 if (libpath != NULL)
5934 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
5935 (void) execv(cmd, emptyargv);
5936 ztest_dump_core = B_FALSE;
5937 fatal(B_TRUE, "exec failed: %s", cmd);
5938 }
5939
5940 if (cmdbuf != NULL) {
5941 umem_free(cmdbuf, MAXPATHLEN);
5942 cmd = NULL;
5943 }
5944
5945 while (waitpid(pid, &status, 0) != pid)
5946 continue;
5947 if (statusp != NULL)
5948 *statusp = status;
5949
5950 if (WIFEXITED(status)) {
5951 if (WEXITSTATUS(status) != 0) {
5952 (void) fprintf(stderr, "child exited with code %d\n",
5953 WEXITSTATUS(status));
5954 exit(2);
5955 }
5956 return (B_FALSE);
5957 } else if (WIFSIGNALED(status)) {
5958 if (!ignorekill || WTERMSIG(status) != SIGKILL) {
5959 (void) fprintf(stderr, "child died with signal %d\n",
5960 WTERMSIG(status));
5961 exit(3);
5962 }
5963 return (B_TRUE);
5964 } else {
5965 (void) fprintf(stderr, "something strange happened to child\n");
5966 exit(4);
5967 /* NOTREACHED */
5968 }
5969 }
5970
5971 static void
5972 ztest_run_init(void)
5973 {
5974 ztest_shared_t *zs = ztest_shared;
5975
5976 ASSERT(ztest_opts.zo_init != 0);
5977
5978 /*
5979 * Blow away any existing copy of zpool.cache
5980 */
5981 (void) remove(spa_config_path);
5982
5983 /*
5984 * Create and initialize our storage pool.
5985 */
5986 for (int i = 1; i <= ztest_opts.zo_init; i++) {
5987 bzero(zs, sizeof (ztest_shared_t));
5988 if (ztest_opts.zo_verbose >= 3 &&
5989 ztest_opts.zo_init != 1) {
5990 (void) printf("ztest_init(), pass %d\n", i);
5991 }
5992 ztest_init(zs);
5993 }
5994 }
5995
5996 int
5997 main(int argc, char **argv)
5998 {
5999 int kills = 0;
6000 int iters = 0;
6001 int older = 0;
6002 int newer = 0;
6003 ztest_shared_t *zs;
6004 ztest_info_t *zi;
6005 ztest_shared_callstate_t *zc;
6006 char timebuf[100];
6007 char numbuf[6];
6008 spa_t *spa;
6009 char *cmd;
6010 boolean_t hasalt;
6011 char *fd_data_str = getenv("ZTEST_FD_DATA");
6012
6013 (void) setvbuf(stdout, NULL, _IOLBF, 0);
6014
6015 dprintf_setup(&argc, argv);
6016
6017 ztest_fd_rand = open("/dev/urandom", O_RDONLY);
6018 ASSERT3S(ztest_fd_rand, >=, 0);
6019
6020 if (!fd_data_str) {
6021 process_options(argc, argv);
6022
6023 setup_data_fd();
6024 setup_hdr();
6025 setup_data();
6026 bcopy(&ztest_opts, ztest_shared_opts,
6027 sizeof (*ztest_shared_opts));
6028 } else {
6029 ztest_fd_data = atoi(fd_data_str);
6030 setup_data();
6031 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
6032 }
6033 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
6034
6035 /* Override location of zpool.cache */
6036 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache",
6037 ztest_opts.zo_dir), !=, -1);
6038
6039 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
6040 UMEM_NOFAIL);
6041 zs = ztest_shared;
6042
6043 if (fd_data_str) {
6044 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang;
6045 metaslab_df_alloc_threshold =
6046 zs->zs_metaslab_df_alloc_threshold;
6047
6048 if (zs->zs_do_init)
6049 ztest_run_init();
6050 else
6051 ztest_run(zs);
6052 exit(0);
6053 }
6054
6055 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
6056
6057 if (ztest_opts.zo_verbose >= 1) {
6058 (void) printf("%llu vdevs, %d datasets, %d threads,"
6059 " %llu seconds...\n",
6060 (u_longlong_t)ztest_opts.zo_vdevs,
6061 ztest_opts.zo_datasets,
6062 ztest_opts.zo_threads,
6063 (u_longlong_t)ztest_opts.zo_time);
6064 }
6065
6066 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
6067 (void) strlcpy(cmd, getexecname(), MAXNAMELEN);
6068
6069 zs->zs_do_init = B_TRUE;
6070 if (strlen(ztest_opts.zo_alt_ztest) != 0) {
6071 if (ztest_opts.zo_verbose >= 1) {
6072 (void) printf("Executing older ztest for "
6073 "initialization: %s\n", ztest_opts.zo_alt_ztest);
6074 }
6075 VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
6076 ztest_opts.zo_alt_libpath, B_FALSE, NULL));
6077 } else {
6078 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
6079 }
6080 zs->zs_do_init = B_FALSE;
6081
6082 zs->zs_proc_start = gethrtime();
6083 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
6084
6085 for (int f = 0; f < ZTEST_FUNCS; f++) {
6086 zi = &ztest_info[f];
6087 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6088 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
6089 zc->zc_next = UINT64_MAX;
6090 else
6091 zc->zc_next = zs->zs_proc_start +
6092 ztest_random(2 * zi->zi_interval[0] + 1);
6093 }
6094
6095 /*
6096 * Run the tests in a loop. These tests include fault injection
6097 * to verify that self-healing data works, and forced crashes
6098 * to verify that we never lose on-disk consistency.
6099 */
6100 while (gethrtime() < zs->zs_proc_stop) {
6101 int status;
6102 boolean_t killed;
6103
6104 /*
6105 * Initialize the workload counters for each function.
6106 */
6107 for (int f = 0; f < ZTEST_FUNCS; f++) {
6108 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6109 zc->zc_count = 0;
6110 zc->zc_time = 0;
6111 }
6112
6113 /* Set the allocation switch size */
6114 zs->zs_metaslab_df_alloc_threshold =
6115 ztest_random(zs->zs_metaslab_sz / 4) + 1;
6116
6117 if (!hasalt || ztest_random(2) == 0) {
6118 if (hasalt && ztest_opts.zo_verbose >= 1) {
6119 (void) printf("Executing newer ztest: %s\n",
6120 cmd);
6121 }
6122 newer++;
6123 killed = exec_child(cmd, NULL, B_TRUE, &status);
6124 } else {
6125 if (hasalt && ztest_opts.zo_verbose >= 1) {
6126 (void) printf("Executing older ztest: %s\n",
6127 ztest_opts.zo_alt_ztest);
6128 }
6129 older++;
6130 killed = exec_child(ztest_opts.zo_alt_ztest,
6131 ztest_opts.zo_alt_libpath, B_TRUE, &status);
6132 }
6133
6134 if (killed)
6135 kills++;
6136 iters++;
6137
6138 if (ztest_opts.zo_verbose >= 1) {
6139 hrtime_t now = gethrtime();
6140
6141 now = MIN(now, zs->zs_proc_stop);
6142 print_time(zs->zs_proc_stop - now, timebuf);
6143 nicenum(zs->zs_space, numbuf);
6144
6145 (void) printf("Pass %3d, %8s, %3llu ENOSPC, "
6146 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
6147 iters,
6148 WIFEXITED(status) ? "Complete" : "SIGKILL",
6149 (u_longlong_t)zs->zs_enospc_count,
6150 100.0 * zs->zs_alloc / zs->zs_space,
6151 numbuf,
6152 100.0 * (now - zs->zs_proc_start) /
6153 (ztest_opts.zo_time * NANOSEC), timebuf);
6154 }
6155
6156 if (ztest_opts.zo_verbose >= 2) {
6157 (void) printf("\nWorkload summary:\n\n");
6158 (void) printf("%7s %9s %s\n",
6159 "Calls", "Time", "Function");
6160 (void) printf("%7s %9s %s\n",
6161 "-----", "----", "--------");
6162 for (int f = 0; f < ZTEST_FUNCS; f++) {
6163 Dl_info dli;
6164
6165 zi = &ztest_info[f];
6166 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6167 print_time(zc->zc_time, timebuf);
6168 (void) dladdr((void *)zi->zi_func, &dli);
6169 (void) printf("%7llu %9s %s\n",
6170 (u_longlong_t)zc->zc_count, timebuf,
6171 dli.dli_sname);
6172 }
6173 (void) printf("\n");
6174 }
6175
6176 /*
6177 * It's possible that we killed a child during a rename test,
6178 * in which case we'll have a 'ztest_tmp' pool lying around
6179 * instead of 'ztest'. Do a blind rename in case this happened.
6180 */
6181 kernel_init(FREAD);
6182 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) {
6183 spa_close(spa, FTAG);
6184 } else {
6185 char tmpname[MAXNAMELEN];
6186 kernel_fini();
6187 kernel_init(FREAD | FWRITE);
6188 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp",
6189 ztest_opts.zo_pool);
6190 (void) spa_rename(tmpname, ztest_opts.zo_pool);
6191 }
6192 kernel_fini();
6193
6194 ztest_run_zdb(ztest_opts.zo_pool);
6195 }
6196
6197 if (ztest_opts.zo_verbose >= 1) {
6198 if (hasalt) {
6199 (void) printf("%d runs of older ztest: %s\n", older,
6200 ztest_opts.zo_alt_ztest);
6201 (void) printf("%d runs of newer ztest: %s\n", newer,
6202 cmd);
6203 }
6204 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
6205 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
6206 }
6207
6208 umem_free(cmd, MAXNAMELEN);
6209
6210 return (0);
6211 }