new usr/src/cnd/ ztest/ ztest.c

R R R R

158887 Tue Apr 23 15:33:29 2013
new usr/src/cnd/ ztest/ ztest.c
3747 txg commt call backs don't work

Submi tted by:
Revi ewed by:

W1l Andrews <wi || a@pectral ogi c. con>
Mat t hew Ahrens <mahr ens@lel phi x. con»

hhkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkhkkkhhhhkhhkhkkkkkkkkk kK k%

__unchanged_portion_omtted_

4418 | *

4419 * If a nunber of txgs equal to this threshold have been created after a commit
4420 * call back has been registered but not called, then we assume there is an
4421 * inplenentation bug.

4422 */

4423 #define ZTEST_COW T_CALLBACK_THRESH

4425 | *

(TXG_CONCURRENT_STATES + 2)

4426 * Commit cal |l back test.

4427 */
4428 void

4429 ztest_drmu_conm t_cal | backs(ztest_ds_t *zd, uint64_t id)

4430
4431
4432
4433
4434
4435
4436

4438

4440
4441

4443

4445
4446

4448

4450
4451
4452

4454
4455

4457

4459
4460
4461

4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473

obj set _t *os = zd->zd_os;

ztest _od_t od[1];

dmu_t x_t *tx;

ztest _ch datat *cb_data[3], *tnp_cb;
uint64_t ol d_txg, txg;

int i, error;

ztest_od_init(&d[0], id, FTAG 0, DMJ_OT_UINT64_OTHER 0, 0)

if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
return;

tx = dnu_tx_create(os);

cb_data[0] = ztest_create_cb_data(os, 0);
dmu_t x_cal | back_register(tx, ztest_conmt_callback, cb_data[0]);

dmu_t x_hold_wite(tx, od[O0].od_object, 0, sizeof (uint64_t));

/* Every once in a while, abort the transaction on purpose */
if (ztest_random(100) == 0)
error = -1;

if (lerror)
error = dmu_tx_assign(tx, TXG NOWAIT);

txg = error ? 0 : dnu_tx_get_txg(tx);

cb_data[0] ->zcd_txg =
cb_data[1l] = ztest create cb data(os, txg);
drmu_t x_cal | back_regi ster(tx, ztest_conmt cal | back, cb_data[1]);

if (erro;) {

* It's not a strict requirenent to call the registered
* cal I backs frominside dmu_tx_abort(), but that’s what
* it’'s supposed to happen in the current inplenentation
* so we wll check for that.

/

for (i =0; i <2; i++) {
cb_data[i]->zcd_expected_err = ECANCELED;
VERI FY(! cb_dat a[i]->zcd_cal | ed)

new usr/src/cnd/ ztest/ ztest.c

4475

4477
4478
4479
4480

4482
4483

4485
4486

4488
4489
4490
4491
4492

4494
4495
4496

4498
4500

4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4516
4517
4518
4519

4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531

4533
4534
4535
4536
4537
4538
4539

dmu_t x_abort (tx);

for (i =0; i <2; i++) {
VERI FY(cb_data[i]->zcd_cal |l ed);
umem free(cb_data[i], sizeof (ztest _cb_data_t));

}

return;

}

cb_data[2] = ztest_create_cb_data(os, txg);
drmu_t x_cal | back_regi ster(tx, ztest_commit_callback, cb_data[2]);

/*
* Read existing data to nmake sure there isn’t a future |eak.
*
/
VERI FY(O0 == dnu_read(os, od[0].od_object, 0, sizeof (uint64_t),
&ol d_t xg, DMU_READ PREFETCH))

if (old_txg > txg)
fatal (O, "future leak: got % PRI u64 ", open txg is % PRI u64,
ol d_txg, txg);
dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), & xg, tx);

(void) nutex_| ock(&zcl.zcl_call backs_| ock);

/*

* Since commit call backs don’t have any ordering requirenent and since
* it is theoretically possible for a conmt callback to be called

* after an arbitrary anpunt of time has el apsed since its txg has been
* synced, it is difficult to reliably determ ne whether a commt

* cal | back hasn’t been called due to high load or due to a flawed

* inpl ementation.

*

* In practice, we will assume that if after a certain nunber of txgs a
* commit call back hasn’t been called, then nost likely there's an

* inpl ementation bug. .

*

/
tnp_cb = list_head(&zcl.zcl _call backs);
if (tmp_cb !'= NULL &&
(txg - ZTEST_COWM T_CALLBACK THRESH) > tnp_ch->zcd_txg) {
t mp_cb->zcd txg > txg - ZTEST_COW T_CALLBACK_THRESH)
fatal (0, "Conmmit callback threshol d exceeded, ol dest txg: %
PRI u64 ", open txg: % PRIu64 "\n", tr'rp_cb- >zcd_t xg, txg);

}
/*
* Let’s find the place to insert our call backs.
*
* Even though the list is ordered by txg, it is possible for the
* insertion point to not be the end because our txg may already be
* quiescing at this point and other callbacks in the open txg
* (from other objsets) may have sneaked in.
*/
rrp b = list_tail (&cl.zcl _call backs);
whiTe (tmp_cb !'= NULL && tnp_ch- >zcdtxg>txg)
tmp_cb = list_prev(&zcl.zcl _call backs, tnp_cb);

/* Add the 3 callbacks to the list */
for (i =0; i <3; i++4)
if (trrp_cb == NULL)
l'ist_insert_head(&zcl.zcl_callbacks, cb_data[i]);
el se
list_insert_after(&zcl.zcl_callbacks, tnp_cb,
cb_datali]);

new
4541
4542

4544
4545

4547

4549
4550

usr/src/cnd/ ztest/ ztest. c
cb_data[i]->zcd_added = B_TRUE;
VERI FY(!cb_data[i]->zcd_call ed);

tmp_cb = cb_datalil];
}

(voi d) nutex_unl ock(&zcl.zcl _cal | backs_l ock);

drmu_t x_commi t (tx);

}

___unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/txg.c

R R R R

21488 Tue Apr 23 15:33:30 2013
new usr/src/uts/comon/fs/zfs/txg.c
3747 txg commt call backs don't work
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»

hhkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkhkkkhhhhkhhkhkkkkkkkkk kK k%

__unchanged_portion_omtted_

388 /*

389 * Dispatch the commit call backs registered on this txg to worker threads.
390 */

391 static void

392 txg_dispatch_cal | backs(dsl _pool _t *dp, uint64_t txg)

393 {

394 int c;

395 tx_state_t *tx = &p->dp_tx;

396 list_t *cb_list;

398 for (c = 0; c < max_ncpus; c++)

399 tx_cpu_t *tc = & x->tx_cpu[c];

400 /* No need to lock tx_cpu_t at this point */

402 int g=txg & TXG MASK;

404 if (list_is_empty(& c->tc_callbacks[g]))

405 cont i nue;

407 if (tx->tx_commt_cb_taskg == NULL) {

408 1*

409 * Commit call back taskq hasn't been created yet.
410 */

411 tx->tx_commt_cb_taskq = taskg_create("tx_conmt_ch",
412 max_ncpus, m ncl syspri, max_ncpus, max_ncpus * 2,
413 TASKQ PREPOPULATE) ;

414 }

416 cb_list = kmem al | OC(SI zeof (list_t), KM SLEEP);

417 list_create(cb_|ist, sizeof (dmu_tx cal | back _t),

418 of fset of (d rm tx _cal | back_t, dcb_node));

420 list_nove_tail (c b ist, &c->tc_callbacks[g])

420 list_nove_tail (& c->tc_call backs[g], cb_Ili st);

422 (void) taskqg_dispatch(tx->tx_commt_cb_taskq, (task_func_t *)
423 txg_do_cal | backs, cb_list, TQ SLEEP);

424 }

425 }

__unchanged_portion_onitted_

