
new/usr/src/cmd/ztest/ztest.c 1

**
 158887 Tue Apr 23 15:33:29 2013
new/usr/src/cmd/ztest/ztest.c
3747 txg commit callbacks don’t work
Submitted by: Will Andrews <willa@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
**
______unchanged_portion_omitted_

4418 /*
4419 * If a number of txgs equal to this threshold have been created after a commit
4420 * callback has been registered but not called, then we assume there is an
4421 * implementation bug.
4422 */
4423 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2)

4425 /*
4426 * Commit callback test.
4427 */
4428 void
4429 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
4430 {
4431 objset_t *os = zd->zd_os;
4432 ztest_od_t od[1];
4433 dmu_tx_t *tx;
4434 ztest_cb_data_t *cb_data[3], *tmp_cb;
4435 uint64_t old_txg, txg;
4436 int i, error;

4438 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);

4440 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4441 return;

4443 tx = dmu_tx_create(os);

4445 cb_data[0] = ztest_create_cb_data(os, 0);
4446 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);

4448 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t));

4450 /* Every once in a while, abort the transaction on purpose */
4451 if (ztest_random(100) == 0)
4452 error = -1;

4454 if (!error)
4455 error = dmu_tx_assign(tx, TXG_NOWAIT);

4457 txg = error ? 0 : dmu_tx_get_txg(tx);

4459 cb_data[0]->zcd_txg = txg;
4460 cb_data[1] = ztest_create_cb_data(os, txg);
4461 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);

4463 if (error) {
4464 /*
4465 * It’s not a strict requirement to call the registered
4466 * callbacks from inside dmu_tx_abort(), but that’s what
4467 * it’s supposed to happen in the current implementation
4468 * so we will check for that.
4469 */
4470 for (i = 0; i < 2; i++) {
4471 cb_data[i]->zcd_expected_err = ECANCELED;
4472 VERIFY(!cb_data[i]->zcd_called);
4473 }

new/usr/src/cmd/ztest/ztest.c 2

4475 dmu_tx_abort(tx);

4477 for (i = 0; i < 2; i++) {
4478 VERIFY(cb_data[i]->zcd_called);
4479 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
4480 }

4482 return;
4483 }

4485 cb_data[2] = ztest_create_cb_data(os, txg);
4486 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);

4488 /*
4489 * Read existing data to make sure there isn’t a future leak.
4490 */
4491 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t),
4492 &old_txg, DMU_READ_PREFETCH));

4494 if (old_txg > txg)
4495 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
4496 old_txg, txg);

4498 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx);

4500 (void) mutex_lock(&zcl.zcl_callbacks_lock);

4502 /*
4503 * Since commit callbacks don’t have any ordering requirement and since
4504 * it is theoretically possible for a commit callback to be called
4505 * after an arbitrary amount of time has elapsed since its txg has been
4506 * synced, it is difficult to reliably determine whether a commit
4507 * callback hasn’t been called due to high load or due to a flawed
4508 * implementation.
4509 *
4510 * In practice, we will assume that if after a certain number of txgs a
4511 * commit callback hasn’t been called, then most likely there’s an
4512 * implementation bug..
4513 */
4514 tmp_cb = list_head(&zcl.zcl_callbacks);
4515 if (tmp_cb != NULL &&
4516 (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) {
4516 tmp_cb->zcd_txg > txg - ZTEST_COMMIT_CALLBACK_THRESH) {
4517 fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4518 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
4519 }

4521 /*
4522 * Let’s find the place to insert our callbacks.
4523 *
4524 * Even though the list is ordered by txg, it is possible for the
4525 * insertion point to not be the end because our txg may already be
4526 * quiescing at this point and other callbacks in the open txg
4527 * (from other objsets) may have sneaked in.
4528 */
4529 tmp_cb = list_tail(&zcl.zcl_callbacks);
4530 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
4531 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);

4533 /* Add the 3 callbacks to the list */
4534 for (i = 0; i < 3; i++) {
4535 if (tmp_cb == NULL)
4536 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
4537 else
4538 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
4539 cb_data[i]);

new/usr/src/cmd/ztest/ztest.c 3

4541 cb_data[i]->zcd_added = B_TRUE;
4542 VERIFY(!cb_data[i]->zcd_called);

4544 tmp_cb = cb_data[i];
4545 }

4547 (void) mutex_unlock(&zcl.zcl_callbacks_lock);

4549 dmu_tx_commit(tx);
4550 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/txg.c 1

**
 21488 Tue Apr 23 15:33:30 2013
new/usr/src/uts/common/fs/zfs/txg.c
3747 txg commit callbacks don’t work
Submitted by: Will Andrews <willa@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
**
______unchanged_portion_omitted_

388 /*
389 * Dispatch the commit callbacks registered on this txg to worker threads.
390 */
391 static void
392 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
393 {
394 int c;
395 tx_state_t *tx = &dp->dp_tx;
396 list_t *cb_list;

398 for (c = 0; c < max_ncpus; c++) {
399 tx_cpu_t *tc = &tx->tx_cpu[c];
400 /* No need to lock tx_cpu_t at this point */

402 int g = txg & TXG_MASK;

404 if (list_is_empty(&tc->tc_callbacks[g]))
405 continue;

407 if (tx->tx_commit_cb_taskq == NULL) {
408 /*
409 * Commit callback taskq hasn’t been created yet.
410 */
411 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
412 max_ncpus, minclsyspri, max_ncpus, max_ncpus * 2,
413 TASKQ_PREPOPULATE);
414 }

416 cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
417 list_create(cb_list, sizeof (dmu_tx_callback_t),
418 offsetof(dmu_tx_callback_t, dcb_node));

420 list_move_tail(cb_list, &tc->tc_callbacks[g]);
420 list_move_tail(&tc->tc_callbacks[g], cb_list);

422 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
423 txg_do_callbacks, cb_list, TQ_SLEEP);
424 }
425 }

______unchanged_portion_omitted_

