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__unchanged_portion_omtted_

4418 | *

4419 * If a nunber of txgs equal to this threshold have been created after a commit
4420 * call back has been registered but not called, then we assume there is an
4421 * inplenentation bug.

4422 */

4423 #define ZTEST_COW T_CALLBACK_THRESH

4425 | *

( TXG_CONCURRENT_STATES + 2)

4426 * Commit cal |l back test.

4427 */
4428 void

4429 ztest_drmu_conm t_cal | backs(ztest_ds_t *zd, uint64_t id)
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obj set _t *os = zd->zd_os;

ztest _od_t od[1];

dmu_t x_t *tx;

ztest _ch datat *cb_data[ 3], *tnp_cb;
uint64_t ol d_txg, txg;

int i, error;

ztest_od_init(&d[0], id, FTAG 0, DMJ_OT_UINT64_OTHER 0, 0)

if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
return;

tx = dnu_tx_create(os);

cb_data[0] = ztest_create_cb_data(os, 0);
dmu_t x_cal | back_register(tx, ztest_conmt_callback, cb_data[0]);

dmu_t x_hold_wite(tx, od[O0].od_object, 0, sizeof (uint64_t));

/* Every once in a while, abort the transaction on purpose */
if (ztest_random(100) == 0)
error = -1;

if (lerror)
error = dmu_tx_assign(tx, TXG NOWAIT);

txg = error ? 0 : dnu_tx_get_txg(tx);

cb_data[ 0] ->zcd_txg =
cb_data[1l] = ztest create cb data(os, txg);
drmu_t x_cal | back_regi ster(tx, ztest_conmt cal | back, cb_data[1]);

if (erro;) {

* It's not a strict requirenent to call the registered
* cal I backs frominside dmu_tx_abort(), but that’s what
* it’'s supposed to happen in the current inplenentation
* so we wll check for that.

/

for (i =0; i <2; i++) {
cb_data[i]->zcd_expected_err = ECANCELED;
VERI FY(! cb_dat a[i]->zcd_cal | ed)
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dmu_t x_abort (tx);

for (i =0; i <2; i++) {
VERI FY(cb_data[i]->zcd_cal |l ed);
umem free(cb_data[i], sizeof (ztest _cb_data_t));

}

return;

}

cb_data[2] = ztest_create_cb_data(os, txg);
drmu_t x_cal | back_regi ster(tx, ztest_commit_callback, cb_data[2]);

/*
* Read existing data to nmake sure there isn’t a future |eak.
*
/
VERI FY(O0 == dnu_read(os, od[0].od_object, 0, sizeof (uint64_t),
&ol d_t xg, DMU_READ PREFETCH))

if (old_txg > txg)
fatal (O, "future leak: got % PRI u64 ", open txg is % PRI u64,
ol d_txg, txg);
dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), & xg, tx);

(void) nutex_| ock(&zcl.zcl_call backs_| ock);

/*

* Since commit call backs don’t have any ordering requirenent and since
* it is theoretically possible for a conmt callback to be called

* after an arbitrary anpunt of time has el apsed since its txg has been
* synced, it is difficult to reliably determ ne whether a commt

* cal | back hasn’t been called due to high load or due to a flawed

* inpl ementation.

*

* In practice, we will assume that if after a certain nunber of txgs a
* commit call back hasn’t been called, then nost likely there's an

* inpl ementation bug. .

*

/
tnp_cb = list_head(&zcl.zcl _call backs);
if (tmp_cb !'= NULL &&
(txg - ZTEST_COWM T_CALLBACK THRESH) > tnp_ch->zcd_txg) {
t mp_cb->zcd txg > txg - ZTEST_COW T_CALLBACK_THRESH)
fatal (0, "Conmmit callback threshol d exceeded, ol dest txg: %
PRI u64 ", open txg: % PRIu64 "\n", tr'rp_cb- >zcd_t xg, txg);

}
/*
* Let’s find the place to insert our call backs.
*
* Even though the list is ordered by txg, it is possible for the
* insertion point to not be the end because our txg may already be
* quiescing at this point and other callbacks in the open txg
* (from other objsets) may have sneaked in.
*/
rrp b = list_tail (&cl.zcl _call backs);
whiTe (tmp_cb !'= NULL && tnp_ch- >zcdtxg>txg)
tmp_cb = list_prev(&zcl.zcl _call backs, tnp_cb);

/* Add the 3 callbacks to the list */
for (i =0; i <3; i++4)
if (trrp_cb == NULL)
l'ist_insert_head(&zcl.zcl_callbacks, cb_data[i]);
el se
list_insert_after(&zcl.zcl_callbacks, tnp_cb,
cb_datali]);
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cb_data[i]->zcd_added = B_TRUE;
VERI FY(!cb_data[i]->zcd_call ed);

tmp_cb = cb_datalil];
}

(voi d) nutex_unl ock(&zcl.zcl _cal | backs_l ock);

drmu_t x_commi t (tx);

}
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388 /*

389 * Dispatch the commit call backs registered on this txg to worker threads.
390 */

391 static void

392 txg_dispatch_cal | backs(dsl _pool _t *dp, uint64_t txg)

393 {

394 int c;

395 tx_state_t *tx = &p->dp_tx;

396 list_t *cb_list;

398 for (c = 0; c < max_ncpus; c++)

399 tx_cpu_t *tc = & x->tx_cpu[c];

400 /* No need to lock tx_cpu_t at this point */

402 int g=txg & TXG MASK;

404 if (list_is_empty(& c->tc_callbacks[g]))

405 cont i nue;

407 if (tx->tx_commt_cb_taskg == NULL) {

408 1*

409 * Commit call back taskq hasn't been created yet.
410 */

411 tx->tx_commt_cb_taskq = taskg_create("tx_conmt_ch",
412 max_ncpus, m ncl syspri, max_ncpus, max_ncpus * 2,
413 TASKQ PREPOPULATE) ;

414 }

416 cb_list = kmem al | OC(SI zeof (list_t), KM SLEEP);

417 list_create(cb_|ist, sizeof (dmu_tx cal | back _t),

418 of fset of (d rm tx _cal | back_t, dcb_node));

420 list_nove_tail (c b ist, &c->tc_callbacks[g])

420 list_nove_tail (& c->tc_call backs[g], cb_Ili st);

422 (void) taskqg_dispatch(tx->tx_commt_cb_taskq, (task_func_t *)
423 txg_do_cal | backs, cb_list, TQ SLEEP);

424 }

425 }
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