1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* 26 * A Zero Reference Lock (ZRL) is a reference count that can lock out new 27 * references only when the count is zero and only without waiting if the count 28 * is not already zero. It is similar to a read-write lock in that it allows 29 * multiple readers and only a single writer, but it does not allow a writer to 30 * block while waiting for readers to exit, and therefore the question of 31 * reader/writer priority is moot (no WRWANT bit). Since the equivalent of 32 * rw_enter(&lock, RW_WRITER) is disallowed and only tryenter() is allowed, it 33 * is perfectly safe for the same reader to acquire the same lock multiple 34 * times. The fact that a ZRL is reentrant for readers (through multiple calls 35 * to zrl_add()) makes it convenient for determining whether something is 36 * actively referenced without the fuss of flagging lock ownership across 37 * function calls. 38 */ 39 #include <sys/zrlock.h> 40 41 /* 42 * A ZRL can be locked only while there are zero references, so ZRL_LOCKED is 43 * treated as zero references. 44 */ 45 #define ZRL_LOCKED ((uint32_t)-1) 46 #define ZRL_DESTROYED -2 47 48 void 49 zrl_init(zrlock_t *zrl) 50 { 51 mutex_init(&zrl->zr_mtx, NULL, MUTEX_DEFAULT, NULL); 52 zrl->zr_refcount = 0; 53 cv_init(&zrl->zr_cv, NULL, CV_DEFAULT, NULL); 54 #ifdef ZFS_DEBUG 55 zrl->zr_owner = NULL; 56 zrl->zr_caller = NULL; 57 #endif 58 } 59 60 void 61 zrl_destroy(zrlock_t *zrl) 62 { 63 ASSERT(zrl->zr_refcount == 0); 64 65 mutex_destroy(&zrl->zr_mtx); 66 zrl->zr_refcount = ZRL_DESTROYED; 67 cv_destroy(&zrl->zr_cv); 68 } 69 70 void 71 #ifdef ZFS_DEBUG 72 zrl_add_debug(zrlock_t *zrl, const char *zc) 73 #else 74 zrl_add(zrlock_t *zrl) 75 #endif 76 { 77 uint32_t n = (uint32_t)zrl->zr_refcount; 78 79 while (1) { 80 while (n != ZRL_LOCKED) { 81 uint32_t cas = atomic_cas_32( 82 (uint32_t *)&zrl->zr_refcount, n, n + 1); 83 if (cas == n) { 84 ASSERT((int32_t)n >= 0); 85 #ifdef ZFS_DEBUG 86 if (zrl->zr_owner == curthread) { 87 DTRACE_PROBE2(zrlock__reentry, 88 zrlock_t *, zrl, uint32_t, n); 89 } 90 zrl->zr_owner = curthread; 91 zrl->zr_caller = zc; 92 #endif 93 return; 94 } 95 n = cas; 96 } 97 mutex_enter(&zrl->zr_mtx); 98 while (zrl->zr_refcount == ZRL_LOCKED) { 99 cv_wait(&zrl->zr_cv, &zrl->zr_mtx); 100 } 101 mutex_exit(&zrl->zr_mtx); 102 } 103 } 104 105 void 106 zrl_remove(zrlock_t *zrl) 107 { 108 uint32_t n; 109 110 n = atomic_dec_32_nv((uint32_t *)&zrl->zr_refcount); 111 ASSERT((int32_t)n >= 0); 112 #ifdef ZFS_DEBUG 113 if (zrl->zr_owner == curthread) { 114 zrl->zr_owner = NULL; 115 zrl->zr_caller = NULL; 116 } 117 #endif 118 } 119 120 int 121 zrl_tryenter(zrlock_t *zrl) 122 { 123 uint32_t n = (uint32_t)zrl->zr_refcount; 124 125 if (n == 0) { 126 uint32_t cas = atomic_cas_32( 127 (uint32_t *)&zrl->zr_refcount, 0, ZRL_LOCKED); 128 if (cas == 0) { 129 #ifdef ZFS_DEBUG 130 ASSERT(zrl->zr_owner == NULL); 131 zrl->zr_owner = curthread; 132 #endif 133 return (1); 134 } 135 } 136 137 ASSERT((int32_t)n > ZRL_DESTROYED); 138 139 return (0); 140 } 141 142 void 143 zrl_exit(zrlock_t *zrl) 144 { 145 ASSERT(zrl->zr_refcount == ZRL_LOCKED); 146 147 mutex_enter(&zrl->zr_mtx); 148 #ifdef ZFS_DEBUG 149 ASSERT(zrl->zr_owner == curthread); 150 zrl->zr_owner = NULL; 151 membar_producer(); /* make sure the owner store happens first */ 152 #endif 153 zrl->zr_refcount = 0; 154 cv_broadcast(&zrl->zr_cv); 155 mutex_exit(&zrl->zr_mtx); 156 } 157 158 int 159 zrl_refcount(zrlock_t *zrl) 160 { 161 ASSERT(zrl->zr_refcount > ZRL_DESTROYED); 162 163 int n = (int)zrl->zr_refcount; 164 return (n <= 0 ? 0 : n); 165 } 166 167 int 168 zrl_is_zero(zrlock_t *zrl) 169 { 170 ASSERT(zrl->zr_refcount > ZRL_DESTROYED); 171 172 return (zrl->zr_refcount <= 0); 173 } 174 175 int 176 zrl_is_locked(zrlock_t *zrl) 177 { 178 ASSERT(zrl->zr_refcount > ZRL_DESTROYED); 179 180 return (zrl->zr_refcount == ZRL_LOCKED); 181 } 182 183 #ifdef ZFS_DEBUG 184 kthread_t * 185 zrl_owner(zrlock_t *zrl) 186 { 187 return (zrl->zr_owner); 188 } 189 #endif