
new/usr/src/uts/common/fs/zfs/dsl_userhold.c 1

**
 14226 Tue Apr 23 15:47:36 2013
new/usr/src/uts/common/fs/zfs/dsl_userhold.c
3744 zfs shouldn’t ignore errors unmounting snapshots
Submitted by: Will Andrews <willa@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
**
______unchanged_portion_omitted_

416 /*
417 * Called at spa_load time to release a stale temporary user hold.
418 * Also called by the onexit code.
419 */
420 void
421 dsl_dataset_user_release_tmp(dsl_pool_t *dp, uint64_t dsobj, const char *htag)
422 {
423 dsl_dataset_user_release_tmp_arg_t ddurta;
424 dsl_dataset_t *ds;
425 int error;

427 #ifdef _KERNEL
428 /* Make sure it is not mounted. */
429 dsl_pool_config_enter(dp, FTAG);
430 error = dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds);
431 if (error == 0) {
432 char name[MAXNAMELEN];
433 dsl_dataset_name(ds, name);
434 dsl_dataset_rele(ds, FTAG);
435 dsl_pool_config_exit(dp, FTAG);
436 (void) zfs_unmount_snap(name);
436 zfs_unmount_snap(name);
437 } else {
438 dsl_pool_config_exit(dp, FTAG);
439 }
440 #endif

442 ddurta.ddurta_dsobj = dsobj;
443 ddurta.ddurta_holds = fnvlist_alloc();
444 fnvlist_add_boolean(ddurta.ddurta_holds, htag);

446 (void) dsl_sync_task(spa_name(dp->dp_spa),
447 dsl_dataset_user_release_tmp_check,
448 dsl_dataset_user_release_tmp_sync, &ddurta, 1);
449 fnvlist_free(ddurta.ddurta_holds);
450 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/sys/zfs_ioctl.h 1

**
 10076 Tue Apr 23 15:47:36 2013
new/usr/src/uts/common/fs/zfs/sys/zfs_ioctl.h
3744 zfs shouldn’t ignore errors unmounting snapshots
Submitted by: Will Andrews <willa@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
**
______unchanged_portion_omitted_

340 extern dev_info_t *zfs_dip;

342 extern int zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr);
343 extern int zfs_secpolicy_rename_perms(const char *from,
344 const char *to, cred_t *cr);
345 extern int zfs_secpolicy_destroy_perms(const char *name, cred_t *cr);
346 extern int zfs_busy(void);
347 extern int zfs_unmount_snap(const char *);
347 extern void zfs_unmount_snap(const char *);
348 extern void zfs_destroy_unmount_origin(const char *);

350 /*
351 * ZFS minor numbers can refer to either a control device instance or
352 * a zvol. Depending on the value of zss_type, zss_data points to either
353 * a zvol_state_t or a zfs_onexit_t.
354 */
355 enum zfs_soft_state_type {
356 ZSST_ZVOL,
357 ZSST_CTLDEV
358 };

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 1

**
 144766 Tue Apr 23 15:47:36 2013
new/usr/src/uts/common/fs/zfs/zfs_ioctl.c
3744 zfs shouldn’t ignore errors unmounting snapshots
Submitted by: Will Andrews <willa@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
**
______unchanged_portion_omitted_

3365 /*
3366 * The dp_config_rwlock must not be held when calling this, because the
3367 * unmount may need to write out data.
3368 *
3369 * This function is best-effort. Callers must deal gracefully if it
3370 * remains mounted (or is remounted after this call).
3371 *
3372 * Returns 0 if the argument is not a snapshot, or it is not currently a
3373 * filesystem, or we were able to unmount it. Returns error code otherwise.
3374 #endif /* ! codereview */
3375 */
3376 int
3371 void
3377 zfs_unmount_snap(const char *snapname)
3378 {
3379 vfs_t *vfsp;
3380 zfsvfs_t *zfsvfs;
3381 int err;
3382 #endif /* ! codereview */

3384 if (strchr(snapname, ’@’) == NULL)
3385 return (0);
3376 return;

3387 vfsp = zfs_get_vfs(snapname);
3388 if (vfsp == NULL)
3389 return (0);
3380 return;

3391 zfsvfs = vfsp->vfs_data;
3392 ASSERT(!dsl_pool_config_held(dmu_objset_pool(zfsvfs->z_os)));

3394 err = vn_vfswlock(vfsp->vfs_vnodecovered);
3385 if (vn_vfswlock(vfsp->vfs_vnodecovered) != 0) {
3386 VFS_RELE(vfsp);
3387 return;
3388 }
3395 VFS_RELE(vfsp);
3396 if (err != 0)
3397 return (err);
3398 #endif /* ! codereview */

3400 /*
3401 * Always force the unmount for snapshots.
3402 */
3403 (void) dounmount(vfsp, MS_FORCE, kcred);
3404 return (0);
3405 #endif /* ! codereview */
3406 }

3408 /* ARGSUSED */
3409 static int
3410 zfs_unmount_snap_cb(const char *snapname, void *arg)
3411 {
3412 return (zfs_unmount_snap(snapname));
3390 zfs_unmount_snap(snapname);
3391 return (0);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 2

3413 }

3415 /*
3416 * When a clone is destroyed, its origin may also need to be destroyed,
3417 * in which case it must be unmounted. This routine will do that unmount
3418 * if necessary.
3419 */
3420 void
3421 zfs_destroy_unmount_origin(const char *fsname)
3422 {
3423 int error;
3424 objset_t *os;
3425 dsl_dataset_t *ds;

3427 error = dmu_objset_hold(fsname, FTAG, &os);
3428 if (error != 0)
3429 return;
3430 ds = dmu_objset_ds(os);
3431 if (dsl_dir_is_clone(ds->ds_dir) && DS_IS_DEFER_DESTROY(ds->ds_prev)) {
3432 char originname[MAXNAMELEN];
3433 dsl_dataset_name(ds->ds_prev, originname);
3434 dmu_objset_rele(os, FTAG);
3435 (void) zfs_unmount_snap(originname);
3414 zfs_unmount_snap(originname);
3436 } else {
3437 dmu_objset_rele(os, FTAG);
3438 }
3439 }

3441 /*
3442 * innvl: {
3443 * "snaps" -> { snapshot1, snapshot2 }
3444 * (optional boolean) "defer"
3445 * }
3446 *
3447 * outnvl: snapshot -> error code (int32)
3448 *
3449 */
3450 static int
3451 zfs_ioc_destroy_snaps(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl)
3452 {
3453 int error, poollen;
3432 int poollen;
3454 nvlist_t *snaps;
3455 nvpair_t *pair;
3456 boolean_t defer;

3458 if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0)
3459 return (SET_ERROR(EINVAL));
3460 defer = nvlist_exists(innvl, "defer");

3462 poollen = strlen(poolname);
3463 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
3464 pair = nvlist_next_nvpair(snaps, pair)) {
3465 const char *name = nvpair_name(pair);

3467 /*
3468 * The snap must be in the specified pool.
3469 */
3470 if (strncmp(name, poolname, poollen) != 0 ||
3471 (name[poollen] != ’/’ && name[poollen] != ’@’))
3472 return (SET_ERROR(EXDEV));

3474 error = zfs_unmount_snap(name);
3475 if (error)
3476 return (SET_ERROR(error));

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 3

3453 zfs_unmount_snap(name);
3477 }

3479 return (dsl_destroy_snapshots_nvl(snaps, defer, outnvl));
3480 }

3482 /*
3483 * inputs:
3484 * zc_name name of dataset to destroy
3485 * zc_objset_type type of objset
3486 * zc_defer_destroy mark for deferred destroy
3487 *
3488 * outputs: none
3489 */
3490 static int
3491 zfs_ioc_destroy(zfs_cmd_t *zc)
3492 {
3493 int err;

3495 if (zc->zc_objset_type == DMU_OST_ZFS) {
3496 err = zfs_unmount_snap(zc->zc_name);
3497 if (err)
3498 return (err);
3499 }
3471 if (strchr(zc->zc_name, ’@’) && zc->zc_objset_type == DMU_OST_ZFS)
3472 zfs_unmount_snap(zc->zc_name);

3501 if (strchr(zc->zc_name, ’@’))
3502 err = dsl_destroy_snapshot(zc->zc_name, zc->zc_defer_destroy);
3503 else
3504 err = dsl_destroy_head(zc->zc_name);
3505 if (zc->zc_objset_type == DMU_OST_ZVOL && err == 0)
3506 (void) zvol_remove_minor(zc->zc_name);
3507 return (err);
3508 }
______unchanged_portion_omitted_

3538 static int
3539 recursive_unmount(const char *fsname, void *arg)
3540 {
3541 const char *snapname = arg;
3542 char fullname[MAXNAMELEN];

3544 (void) snprintf(fullname, sizeof (fullname), "%s@%s", fsname, snapname);
3545 return (zfs_unmount_snap(fullname));
3518 zfs_unmount_snap(fullname);
3519 return (0);
3546 }
______unchanged_portion_omitted_

4988 /*
4989 * innvl: {
4990 * snapname -> { holdname, ... }
4991 * ...
4992 * }
4993 *
4994 * outnvl: {
4995 * snapname -> error value (int32)
4996 * ...
4997 * }
4998 */
4999 /* ARGSUSED */
5000 static int
5001 zfs_ioc_release(const char *pool, nvlist_t *holds, nvlist_t *errlist)
5002 {
5003 nvpair_t *pair;

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 4

5004 int err;
5005 #endif /* ! codereview */

5007 /*
5008 * The release may cause the snapshot to be destroyed; make sure it
5009 * is not mounted.
5010 */
5011 for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL;
5012 pair = nvlist_next_nvpair(holds, pair)) {
5013 err = zfs_unmount_snap(nvpair_name(pair));
5014 if (err)
5015 return (err);
5016 }
4978 pair = nvlist_next_nvpair(holds, pair))
4979 zfs_unmount_snap(nvpair_name(pair));

5018 return (dsl_dataset_user_release(holds, errlist));
5019 }
______unchanged_portion_omitted_

