new usr/src/uts/comon/ fs/zfs/dsl _userhold.c

R R R R

14226 Tue Apr 23 15:47:36 2013
new usr/src/uts/comon/ fs/zfs/dsl_userhold.c
3744 zfs shouldn't ignore errors unnounting snapshots
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»

hhkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkhkkkhhhhkhhkhkkkkkkkkk kK k%

__unchanged_portion_omtted_

416 /*

417 * Called at spa_load tinme to rel ease a stale tenporary user hold.

418 * Al'so called by the onexit code.

419 */

420 void

421 dsl _dat aset _user _rel ease_t np(dsl _pool _t *dp, uint64_t dsobj, const char *htag)
422 {

423 dsl| _dat aset _user_rel ease_tnp_arg_t ddurta;

424 dsl _dat aset _t *ds;

425 int error;

427 #ifdef _KERNEL

428 /* Make sure it is not nmounted. */

429 dsl _pool _config_enter(dp, FTAG;

430 error = dsl_dataset _hol d_obj (dp, dsobj, FTAG &ds);
431 if (error == 0) {

432 char nanme[MAXNAMELEN] ;

433 dsl| _dat aset _nanme(ds, nane);

434 dsl _dataset_rel e(ds, FTAQ;

435 dsl _pool _config_exit(dp, FTAG;

436 (voi d) zfs_unmount_snap(nane);

436 zf s_unnount _snap(nane) ;

437 } else {

438 dsl _pool _config_exit(dp, FTAG;

439

440 #endi f

442 ddurta. ddurta_dsobj = dsobj;

443 ddurta.ddurta_holds = fnvlist_alloc();

444 fnvlist_add_bool ean(ddurta. ddurta_hol ds, htag);
446 (voi d) dsl_sync_t ask(spa_nanme(dp->dp_spa),

447 dsl| _dat aset _user_rel ease_t np_check,

448 dsl _dat aset _user_rel ease_tnp_sync, &ddurta, 1);
449 fnvlist_free(ddurta.ddurta_hol ds);

450 }

__unchanged_portion_omtted_

new usr/src/uts/comon/fs/zfs/sys/zfs_ioctl.h

R R R R

10076 Tue Apr 23 15:47:36 2013
new usr/src/uts/comon/fs/zfs/sys/zfs_ioctl.h
3744 zfs shouldn't ignore errors unnounting snapshots
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»

hhkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkhkkkhhhhkhhkhkkkkkkkkk kK k%

__unchanged_portion_omtted_
340 extern dev_info_t *zfs_dip;

342 extern int zfs_secpolicy_snapshot _perns(const char *nanme, cred_t *cr);
343 extern int zfs_secpolicy_renanme_perns(const char *from

344 const char *to, cred_t *cr);

345 extern int zfs_secpolicy_destroy_perns(const char *nanme, cred_t *cr);
346 extern int zfs_busy(void);

347 extern int zfs_unnount_snap(const char *);

347 extern void zfs_unnmount _snap(const char *);

348 extern void zfs_destroy_unnount _origi n(const char *);

350 /*

351 * ZFS minor nunbers can refer to either a control device instance or
352 * a zvol. Depending on the value of zss_type, zss_data points to either
353 * a zvol _state_t or a zfs_onexit_t.

354 */

355 enum zfs_soft_state_type {
356 ZSST_ZVOL,

357 ZSST_CTLDEV

358

b
__unchanged_portion_omtted_

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

R R R R

144766 Tue Apr 23 15:47:36 2013
new usr/src/uts/comon/fs/zfs/zfs_ioctl.c
3744 zfs shouldn't ignore errors unnounting snapshots
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»

hhkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkhkkkhhhhkhhkhkkkkkkkkk kK k%

____unchanged_portion_onitted_

3365 /*

3366 * The dp_config_rw ock nust not be held when calling this, because the
3367 * unnount may need to wite out data.

3368 *

3369 * This function is best-effort. Callers nust deal gracefully if it
3370 * renmmins nounted (or is renpunted after this call).

3371 *

3372 * Returns O if the argument is not a snapshot, or it is not currently a

3373 * filesystem or we were able to unmobunt it. Returns error code otherw se.

3374 #endif /* | codereview */

3375 */

3376 int

3371 void

3377 zfs_unnount _snap(const char *snapnane)

3378 {

3379 vis_t *vfsp;

3380 zfsvfs_t *zfsvfs;

3381 int err;

3382 #endif /* | codereview */

3384 if (strchr(snapname, ' @) == NULL)

3385 return (0);

3376 return;

3387 visp = zfs_get _vfs(snapnane);

3388 if (vfsp == NULL)

3389 return (0);

3380 return;

3391 zfsvfs = vfsp->vfs_data;

3392 ASSERT(! ds| _pool _confi g_hel d(dnmu_obj set _pool (zfsvfs->z_o0s)));
3394 err = vn_vfsw ock(vfsp->vfs_vnodecovered);
3385 if (vn_vfsw ock(vfsp->vfs_vnodecovered) != 0) {
3386 VFS_RELE(vfsp);

3387 return;

3388 }

3395 VFS_RELE(vfsp);

3396 if (err 1= 0)

3397 return (err);

3398 #endif /* | codereview */

3400 /*

3401 * Always force the unmount for snapshots.
3402 */

3403 (voi d) dounnount (vfsp, MS_FORCE, kcred);
3404 return (0);

3405 #endif /* | codereview */

3406 }

3408 /* ARGSUSED */
3409 static int
3410 zfs_unnount _snap_cb(const char *snapnane, void *arg)

3411 {
3412 return (zfs_unnmount_snap(snapnane));
3390 zf s_unnmount _snap(snapnane) ;

3391 return (0);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c
3413 }
3415 /*

3416 * \Wen a clone is destroyed, its origin may also need to be destroyed,
3417 * in which case it nust be unnobunted. This routine will do that unnmount
*

3418 if necessary

3419 */

3420 void

3421 zfs_destroy_unnmount _origi n(const char *fsnane)
3422 {

3423 int error

3424 obj set _t *os

3425 dsl _dataset _t *ds

3427 error = dnu_obj set _hol d(fsnane, FTAG &os)
3428 if (error 1= 0)

3429 return

3430 ds = dnu_obj set _ds(0s)

3431 if (dsl_dir_is_clone(ds->ds_dir) &% DS_| S DEFER DESTROY(ds->ds_prev)) {
3432 char ori gi nname[MAXNAMVELEN] ;

3433 ds| _dat aset _nane(ds->ds_prev, origi nnanme)
3434 dnu_obj set _rel e(os, FTAQ;

3435 (voi d) zfs_unmount _snap(ori gi nnane)
3414 zf s_unnmount _snap(ori gi nnane)

3436 } else {

3437 dnu_obj set _rel e(os, FTAQ;

3438 }

3439 }

3441 | *

3442 * innvl: {

3443 * "snaps" -> { snapshotl, snapshot2 }

3444 * (optional boolean) "defer"

3445 *

3446 *

3447 * outnvl: snapshot -> error code (int32)

3448 *

3449 */

3450 static int

3451 zfs_ioc_destroy_snaps(const char *pool name, nvlist_t *innvl, nvlist_t *outnvl)

3452 {

3453 int error, poollen;

3432 int poollen;

3454 nvlist_t *snaps;

3455 nvpair_t *pair;

3456 bool ean_t defer;

3458 if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0)
3459 return (SET_ERROR(EINVAL));

3460 defer = nvlist_exists(innvl, "defer");

3462 pool l en = strlen(pool nane);

3463 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
3464 pair = nvlist_next_nvpair(snaps, pair))

3465 const char *nane = nvpair_nane(pair);

3467 /*

3468 * The snap nust be in the specified pool.
3469 */

3470 if (strncnp(nanme, pool nane, poollen) !'=0 ||
3471 (name[poollen] !'="/" && nane[poollen] '="'@))
3472 return (SET_ERROR(EXDEV));

3474 error = zfs_unnmount _snap(nane);

3475 if (error)

3476 return (SET_ERROR(error));

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3453
3477

3479
3480 }

3482 /
3483
3484
3485
3486
3487
3488
3489

zf s_unnmount _snap(nane) ;

return (dsl_destroy_snapshots_nvl (snaps, defer, outnvl));

*

* inputs:

* zc_nane

* zc_objset _type
* zc_defer_destroy
*

* outputs:

*/

3490 static int
3491 zfs_ioc_destroy(zfs_cnd_t *zc)

3492 {
3493

3495
3496
3497
3498
3499
3471
3472

3501
3502
3503
3504
3505
3506
3507
3508 }

int err;

name of dataset to destroy
type of objset
mark for deferred destroy

none

if (zc->zc_objset_type == DMJ_OST_ZFS)
err = zfs_unnmount _snap(zc->zc_nane);

if (err)

return (err);

}
if (strchr(zc->zc_nane, ' @) && zc->zc_objset_type == DMJ_OST_ZFS)
zf s_unnmount _snap(zc- >zc_nane);

if (strchr(zc->zc_nane, '@))
err = dsl _destroy_snapshot (zc->zc_nane, zc->zc_defer_destroy);

el se

err = dsl _destroy_head(zc->zc_nane);
if (zc->zc_objset_type == DMJ_OST_ZVOL && err == 0)
(void) zvol _renove_nm nor(zc->zc_nane);

return (err);

____unchanged_portion_onitted_

3538 static int
3539 recursive_unnount (const char *fsnane, void *arQg)

3540 {
3541
3542

3544
3545
3518
3519
3546 }

4988 /
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998

const char *snapname = arg;
char ful | name[MAXNAMVELEN ;
(void) snprintf(fullname, sizeof (fullnane), "% @s", fsnane, snapnane);
return (zfs_unnmount_snap(full nane));
zfs_unmount _snap(ful | nane);
return (0);
____unchanged_portion_onitted_

*

* innvl: {

* snapnanme -> { hol dnanme, ... }

*

*

©}

* outnvl: {

* snapnanme -> error value (int32)

*

*

*/}

* ARGSUSED */

4999 /

5000 static int
5001 zfs_ioc_rel ease(const char *pool, nvlist_t *holds, nvlist_t *errlist)

5002 {
5003

nvpair_t *pair;

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

5004

int err;

5005 #endif /* | codereview */

5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
4978
4979

5018
5019 }

*

* The rel ease may cause the snapshot to be destroyed; make sure it
* is not mounted.
*/
for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL;
pair = nvlist_next_nvpair(holds, pair))
err = zfs_unnmount _snap(nvpair_nane(pair));
if (err)
return (err);

pair = nvlist_next_nvpair(holds, pair))
zf s_unnmount _snap(nvpair_nane(pair));

return (dsl_dataset_user_rel ease(holds, errlist));

____unchanged_portion_ontted_

