1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2013 by Delphix. All rights reserved.
  24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
  25  */
  26 
  27 #include <sys/zfs_context.h>
  28 #include <sys/fm/fs/zfs.h>
  29 #include <sys/spa.h>
  30 #include <sys/txg.h>
  31 #include <sys/spa_impl.h>
  32 #include <sys/vdev_impl.h>
  33 #include <sys/zio_impl.h>
  34 #include <sys/zio_compress.h>
  35 #include <sys/zio_checksum.h>
  36 #include <sys/dmu_objset.h>
  37 #include <sys/arc.h>
  38 #include <sys/ddt.h>
  39 
  40 /*
  41  * ==========================================================================
  42  * I/O priority table
  43  * ==========================================================================
  44  */
  45 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
  46         0,      /* ZIO_PRIORITY_NOW             */
  47         0,      /* ZIO_PRIORITY_SYNC_READ       */
  48         0,      /* ZIO_PRIORITY_SYNC_WRITE      */
  49         0,      /* ZIO_PRIORITY_LOG_WRITE       */
  50         1,      /* ZIO_PRIORITY_CACHE_FILL      */
  51         1,      /* ZIO_PRIORITY_AGG             */
  52         4,      /* ZIO_PRIORITY_FREE            */
  53         4,      /* ZIO_PRIORITY_ASYNC_WRITE     */
  54         6,      /* ZIO_PRIORITY_ASYNC_READ      */
  55         10,     /* ZIO_PRIORITY_RESILVER        */
  56         20,     /* ZIO_PRIORITY_SCRUB           */
  57         2,      /* ZIO_PRIORITY_DDT_PREFETCH    */
  58 };
  59 
  60 /*
  61  * ==========================================================================
  62  * I/O type descriptions
  63  * ==========================================================================
  64  */
  65 char *zio_type_name[ZIO_TYPES] = {
  66         "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
  67         "zio_ioctl"
  68 };
  69 
  70 /*
  71  * ==========================================================================
  72  * I/O kmem caches
  73  * ==========================================================================
  74  */
  75 kmem_cache_t *zio_cache;
  76 kmem_cache_t *zio_link_cache;
  77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
  78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
  79 
  80 #ifdef _KERNEL
  81 extern vmem_t *zio_alloc_arena;
  82 #endif
  83 extern int zfs_mg_alloc_failures;
  84 
  85 /*
  86  * The following actions directly effect the spa's sync-to-convergence logic.
  87  * The values below define the sync pass when we start performing the action.
  88  * Care should be taken when changing these values as they directly impact
  89  * spa_sync() performance. Tuning these values may introduce subtle performance
  90  * pathologies and should only be done in the context of performance analysis.
  91  * These tunables will eventually be removed and replaced with #defines once
  92  * enough analysis has been done to determine optimal values.
  93  *
  94  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
  95  * regular blocks are not deferred.
  96  */
  97 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
  98 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
  99 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
 100 
 101 /*
 102  * An allocating zio is one that either currently has the DVA allocate
 103  * stage set or will have it later in its lifetime.
 104  */
 105 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
 106 
 107 boolean_t       zio_requeue_io_start_cut_in_line = B_TRUE;
 108 
 109 #ifdef ZFS_DEBUG
 110 int zio_buf_debug_limit = 16384;
 111 #else
 112 int zio_buf_debug_limit = 0;
 113 #endif
 114 
 115 void
 116 zio_init(void)
 117 {
 118         size_t c;
 119         vmem_t *data_alloc_arena = NULL;
 120 
 121 #ifdef _KERNEL
 122         data_alloc_arena = zio_alloc_arena;
 123 #endif
 124         zio_cache = kmem_cache_create("zio_cache",
 125             sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 126         zio_link_cache = kmem_cache_create("zio_link_cache",
 127             sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 128 
 129         /*
 130          * For small buffers, we want a cache for each multiple of
 131          * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
 132          * for each quarter-power of 2.  For large buffers, we want
 133          * a cache for each multiple of PAGESIZE.
 134          */
 135         for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
 136                 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
 137                 size_t p2 = size;
 138                 size_t align = 0;
 139                 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
 140 
 141                 while (p2 & (p2 - 1))
 142                         p2 &= p2 - 1;
 143 
 144 #ifndef _KERNEL
 145                 /*
 146                  * If we are using watchpoints, put each buffer on its own page,
 147                  * to eliminate the performance overhead of trapping to the
 148                  * kernel when modifying a non-watched buffer that shares the
 149                  * page with a watched buffer.
 150                  */
 151                 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
 152                         continue;
 153 #endif
 154                 if (size <= 4 * SPA_MINBLOCKSIZE) {
 155                         align = SPA_MINBLOCKSIZE;
 156                 } else if (IS_P2ALIGNED(size, PAGESIZE)) {
 157                         align = PAGESIZE;
 158                 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
 159                         align = p2 >> 2;
 160                 }
 161 
 162                 if (align != 0) {
 163                         char name[36];
 164                         (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
 165                         zio_buf_cache[c] = kmem_cache_create(name, size,
 166                             align, NULL, NULL, NULL, NULL, NULL, cflags);
 167 
 168                         /*
 169                          * Since zio_data bufs do not appear in crash dumps, we
 170                          * pass KMC_NOTOUCH so that no allocator metadata is
 171                          * stored with the buffers.
 172                          */
 173                         (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
 174                         zio_data_buf_cache[c] = kmem_cache_create(name, size,
 175                             align, NULL, NULL, NULL, NULL, data_alloc_arena,
 176                             cflags | KMC_NOTOUCH);
 177                 }
 178         }
 179 
 180         while (--c != 0) {
 181                 ASSERT(zio_buf_cache[c] != NULL);
 182                 if (zio_buf_cache[c - 1] == NULL)
 183                         zio_buf_cache[c - 1] = zio_buf_cache[c];
 184 
 185                 ASSERT(zio_data_buf_cache[c] != NULL);
 186                 if (zio_data_buf_cache[c - 1] == NULL)
 187                         zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
 188         }
 189 
 190         /*
 191          * The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs
 192          * to fail 3 times per txg or 8 failures, whichever is greater.
 193          */
 194         zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8);
 195 
 196         zio_inject_init();
 197 }
 198 
 199 void
 200 zio_fini(void)
 201 {
 202         size_t c;
 203         kmem_cache_t *last_cache = NULL;
 204         kmem_cache_t *last_data_cache = NULL;
 205 
 206         for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
 207                 if (zio_buf_cache[c] != last_cache) {
 208                         last_cache = zio_buf_cache[c];
 209                         kmem_cache_destroy(zio_buf_cache[c]);
 210                 }
 211                 zio_buf_cache[c] = NULL;
 212 
 213                 if (zio_data_buf_cache[c] != last_data_cache) {
 214                         last_data_cache = zio_data_buf_cache[c];
 215                         kmem_cache_destroy(zio_data_buf_cache[c]);
 216                 }
 217                 zio_data_buf_cache[c] = NULL;
 218         }
 219 
 220         kmem_cache_destroy(zio_link_cache);
 221         kmem_cache_destroy(zio_cache);
 222 
 223         zio_inject_fini();
 224 }
 225 
 226 /*
 227  * ==========================================================================
 228  * Allocate and free I/O buffers
 229  * ==========================================================================
 230  */
 231 
 232 /*
 233  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
 234  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
 235  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
 236  * excess / transient data in-core during a crashdump.
 237  */
 238 void *
 239 zio_buf_alloc(size_t size)
 240 {
 241         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 242 
 243         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 244 
 245         return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
 246 }
 247 
 248 /*
 249  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
 250  * crashdump if the kernel panics.  This exists so that we will limit the amount
 251  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
 252  * of kernel heap dumped to disk when the kernel panics)
 253  */
 254 void *
 255 zio_data_buf_alloc(size_t size)
 256 {
 257         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 258 
 259         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 260 
 261         return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
 262 }
 263 
 264 void
 265 zio_buf_free(void *buf, size_t size)
 266 {
 267         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 268 
 269         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 270 
 271         kmem_cache_free(zio_buf_cache[c], buf);
 272 }
 273 
 274 void
 275 zio_data_buf_free(void *buf, size_t size)
 276 {
 277         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 278 
 279         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 280 
 281         kmem_cache_free(zio_data_buf_cache[c], buf);
 282 }
 283 
 284 /*
 285  * ==========================================================================
 286  * Push and pop I/O transform buffers
 287  * ==========================================================================
 288  */
 289 static void
 290 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
 291         zio_transform_func_t *transform)
 292 {
 293         zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
 294 
 295         zt->zt_orig_data = zio->io_data;
 296         zt->zt_orig_size = zio->io_size;
 297         zt->zt_bufsize = bufsize;
 298         zt->zt_transform = transform;
 299 
 300         zt->zt_next = zio->io_transform_stack;
 301         zio->io_transform_stack = zt;
 302 
 303         zio->io_data = data;
 304         zio->io_size = size;
 305 }
 306 
 307 static void
 308 zio_pop_transforms(zio_t *zio)
 309 {
 310         zio_transform_t *zt;
 311 
 312         while ((zt = zio->io_transform_stack) != NULL) {
 313                 if (zt->zt_transform != NULL)
 314                         zt->zt_transform(zio,
 315                             zt->zt_orig_data, zt->zt_orig_size);
 316 
 317                 if (zt->zt_bufsize != 0)
 318                         zio_buf_free(zio->io_data, zt->zt_bufsize);
 319 
 320                 zio->io_data = zt->zt_orig_data;
 321                 zio->io_size = zt->zt_orig_size;
 322                 zio->io_transform_stack = zt->zt_next;
 323 
 324                 kmem_free(zt, sizeof (zio_transform_t));
 325         }
 326 }
 327 
 328 /*
 329  * ==========================================================================
 330  * I/O transform callbacks for subblocks and decompression
 331  * ==========================================================================
 332  */
 333 static void
 334 zio_subblock(zio_t *zio, void *data, uint64_t size)
 335 {
 336         ASSERT(zio->io_size > size);
 337 
 338         if (zio->io_type == ZIO_TYPE_READ)
 339                 bcopy(zio->io_data, data, size);
 340 }
 341 
 342 static void
 343 zio_decompress(zio_t *zio, void *data, uint64_t size)
 344 {
 345         if (zio->io_error == 0 &&
 346             zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
 347             zio->io_data, data, zio->io_size, size) != 0)
 348                 zio->io_error = SET_ERROR(EIO);
 349 }
 350 
 351 /*
 352  * ==========================================================================
 353  * I/O parent/child relationships and pipeline interlocks
 354  * ==========================================================================
 355  */
 356 /*
 357  * NOTE - Callers to zio_walk_parents() and zio_walk_children must
 358  *        continue calling these functions until they return NULL.
 359  *        Otherwise, the next caller will pick up the list walk in
 360  *        some indeterminate state.  (Otherwise every caller would
 361  *        have to pass in a cookie to keep the state represented by
 362  *        io_walk_link, which gets annoying.)
 363  */
 364 zio_t *
 365 zio_walk_parents(zio_t *cio)
 366 {
 367         zio_link_t *zl = cio->io_walk_link;
 368         list_t *pl = &cio->io_parent_list;
 369 
 370         zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
 371         cio->io_walk_link = zl;
 372 
 373         if (zl == NULL)
 374                 return (NULL);
 375 
 376         ASSERT(zl->zl_child == cio);
 377         return (zl->zl_parent);
 378 }
 379 
 380 zio_t *
 381 zio_walk_children(zio_t *pio)
 382 {
 383         zio_link_t *zl = pio->io_walk_link;
 384         list_t *cl = &pio->io_child_list;
 385 
 386         zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
 387         pio->io_walk_link = zl;
 388 
 389         if (zl == NULL)
 390                 return (NULL);
 391 
 392         ASSERT(zl->zl_parent == pio);
 393         return (zl->zl_child);
 394 }
 395 
 396 zio_t *
 397 zio_unique_parent(zio_t *cio)
 398 {
 399         zio_t *pio = zio_walk_parents(cio);
 400 
 401         VERIFY(zio_walk_parents(cio) == NULL);
 402         return (pio);
 403 }
 404 
 405 void
 406 zio_add_child(zio_t *pio, zio_t *cio)
 407 {
 408         zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
 409 
 410         /*
 411          * Logical I/Os can have logical, gang, or vdev children.
 412          * Gang I/Os can have gang or vdev children.
 413          * Vdev I/Os can only have vdev children.
 414          * The following ASSERT captures all of these constraints.
 415          */
 416         ASSERT(cio->io_child_type <= pio->io_child_type);
 417 
 418         zl->zl_parent = pio;
 419         zl->zl_child = cio;
 420 
 421         mutex_enter(&cio->io_lock);
 422         mutex_enter(&pio->io_lock);
 423 
 424         ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
 425 
 426         for (int w = 0; w < ZIO_WAIT_TYPES; w++)
 427                 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
 428 
 429         list_insert_head(&pio->io_child_list, zl);
 430         list_insert_head(&cio->io_parent_list, zl);
 431 
 432         pio->io_child_count++;
 433         cio->io_parent_count++;
 434 
 435         mutex_exit(&pio->io_lock);
 436         mutex_exit(&cio->io_lock);
 437 }
 438 
 439 static void
 440 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
 441 {
 442         ASSERT(zl->zl_parent == pio);
 443         ASSERT(zl->zl_child == cio);
 444 
 445         mutex_enter(&cio->io_lock);
 446         mutex_enter(&pio->io_lock);
 447 
 448         list_remove(&pio->io_child_list, zl);
 449         list_remove(&cio->io_parent_list, zl);
 450 
 451         pio->io_child_count--;
 452         cio->io_parent_count--;
 453 
 454         mutex_exit(&pio->io_lock);
 455         mutex_exit(&cio->io_lock);
 456 
 457         kmem_cache_free(zio_link_cache, zl);
 458 }
 459 
 460 static boolean_t
 461 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
 462 {
 463         uint64_t *countp = &zio->io_children[child][wait];
 464         boolean_t waiting = B_FALSE;
 465 
 466         mutex_enter(&zio->io_lock);
 467         ASSERT(zio->io_stall == NULL);
 468         if (*countp != 0) {
 469                 zio->io_stage >>= 1;
 470                 zio->io_stall = countp;
 471                 waiting = B_TRUE;
 472         }
 473         mutex_exit(&zio->io_lock);
 474 
 475         return (waiting);
 476 }
 477 
 478 static void
 479 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
 480 {
 481         uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
 482         int *errorp = &pio->io_child_error[zio->io_child_type];
 483 
 484         mutex_enter(&pio->io_lock);
 485         if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
 486                 *errorp = zio_worst_error(*errorp, zio->io_error);
 487         pio->io_reexecute |= zio->io_reexecute;
 488         ASSERT3U(*countp, >, 0);
 489         if (--*countp == 0 && pio->io_stall == countp) {
 490                 pio->io_stall = NULL;
 491                 mutex_exit(&pio->io_lock);
 492                 zio_execute(pio);
 493         } else {
 494                 mutex_exit(&pio->io_lock);
 495         }
 496 }
 497 
 498 static void
 499 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
 500 {
 501         if (zio->io_child_error[c] != 0 && zio->io_error == 0)
 502                 zio->io_error = zio->io_child_error[c];
 503 }
 504 
 505 /*
 506  * ==========================================================================
 507  * Create the various types of I/O (read, write, free, etc)
 508  * ==========================================================================
 509  */
 510 static zio_t *
 511 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
 512     void *data, uint64_t size, zio_done_func_t *done, void *private,
 513     zio_type_t type, int priority, enum zio_flag flags,
 514     vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
 515     enum zio_stage stage, enum zio_stage pipeline)
 516 {
 517         zio_t *zio;
 518 
 519         ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
 520         ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
 521         ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
 522 
 523         ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
 524         ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
 525         ASSERT(vd || stage == ZIO_STAGE_OPEN);
 526 
 527         zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
 528         bzero(zio, sizeof (zio_t));
 529 
 530         mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
 531         cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
 532 
 533         list_create(&zio->io_parent_list, sizeof (zio_link_t),
 534             offsetof(zio_link_t, zl_parent_node));
 535         list_create(&zio->io_child_list, sizeof (zio_link_t),
 536             offsetof(zio_link_t, zl_child_node));
 537 
 538         if (vd != NULL)
 539                 zio->io_child_type = ZIO_CHILD_VDEV;
 540         else if (flags & ZIO_FLAG_GANG_CHILD)
 541                 zio->io_child_type = ZIO_CHILD_GANG;
 542         else if (flags & ZIO_FLAG_DDT_CHILD)
 543                 zio->io_child_type = ZIO_CHILD_DDT;
 544         else
 545                 zio->io_child_type = ZIO_CHILD_LOGICAL;
 546 
 547         if (bp != NULL) {
 548                 zio->io_bp = (blkptr_t *)bp;
 549                 zio->io_bp_copy = *bp;
 550                 zio->io_bp_orig = *bp;
 551                 if (type != ZIO_TYPE_WRITE ||
 552                     zio->io_child_type == ZIO_CHILD_DDT)
 553                         zio->io_bp = &zio->io_bp_copy;        /* so caller can free */
 554                 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
 555                         zio->io_logical = zio;
 556                 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
 557                         pipeline |= ZIO_GANG_STAGES;
 558         }
 559 
 560         zio->io_spa = spa;
 561         zio->io_txg = txg;
 562         zio->io_done = done;
 563         zio->io_private = private;
 564         zio->io_type = type;
 565         zio->io_priority = priority;
 566         zio->io_vd = vd;
 567         zio->io_offset = offset;
 568         zio->io_orig_data = zio->io_data = data;
 569         zio->io_orig_size = zio->io_size = size;
 570         zio->io_orig_flags = zio->io_flags = flags;
 571         zio->io_orig_stage = zio->io_stage = stage;
 572         zio->io_orig_pipeline = zio->io_pipeline = pipeline;
 573 
 574         zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
 575         zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
 576 
 577         if (zb != NULL)
 578                 zio->io_bookmark = *zb;
 579 
 580         if (pio != NULL) {
 581                 if (zio->io_logical == NULL)
 582                         zio->io_logical = pio->io_logical;
 583                 if (zio->io_child_type == ZIO_CHILD_GANG)
 584                         zio->io_gang_leader = pio->io_gang_leader;
 585                 zio_add_child(pio, zio);
 586         }
 587 
 588         return (zio);
 589 }
 590 
 591 static void
 592 zio_destroy(zio_t *zio)
 593 {
 594         list_destroy(&zio->io_parent_list);
 595         list_destroy(&zio->io_child_list);
 596         mutex_destroy(&zio->io_lock);
 597         cv_destroy(&zio->io_cv);
 598         kmem_cache_free(zio_cache, zio);
 599 }
 600 
 601 zio_t *
 602 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
 603     void *private, enum zio_flag flags)
 604 {
 605         zio_t *zio;
 606 
 607         zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
 608             ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
 609             ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
 610 
 611         return (zio);
 612 }
 613 
 614 zio_t *
 615 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
 616 {
 617         return (zio_null(NULL, spa, NULL, done, private, flags));
 618 }
 619 
 620 zio_t *
 621 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
 622     void *data, uint64_t size, zio_done_func_t *done, void *private,
 623     int priority, enum zio_flag flags, const zbookmark_t *zb)
 624 {
 625         zio_t *zio;
 626 
 627         zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
 628             data, size, done, private,
 629             ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
 630             ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
 631             ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
 632 
 633         return (zio);
 634 }
 635 
 636 zio_t *
 637 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
 638     void *data, uint64_t size, const zio_prop_t *zp,
 639     zio_done_func_t *ready, zio_done_func_t *done, void *private,
 640     int priority, enum zio_flag flags, const zbookmark_t *zb)
 641 {
 642         zio_t *zio;
 643 
 644         ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
 645             zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
 646             zp->zp_compress >= ZIO_COMPRESS_OFF &&
 647             zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
 648             DMU_OT_IS_VALID(zp->zp_type) &&
 649             zp->zp_level < 32 &&
 650             zp->zp_copies > 0 &&
 651             zp->zp_copies <= spa_max_replication(spa));
 652 
 653         zio = zio_create(pio, spa, txg, bp, data, size, done, private,
 654             ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
 655             ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
 656             ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
 657 
 658         zio->io_ready = ready;
 659         zio->io_prop = *zp;
 660 
 661         return (zio);
 662 }
 663 
 664 zio_t *
 665 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
 666     uint64_t size, zio_done_func_t *done, void *private, int priority,
 667     enum zio_flag flags, zbookmark_t *zb)
 668 {
 669         zio_t *zio;
 670 
 671         zio = zio_create(pio, spa, txg, bp, data, size, done, private,
 672             ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
 673             ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
 674 
 675         return (zio);
 676 }
 677 
 678 void
 679 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
 680 {
 681         ASSERT(zio->io_type == ZIO_TYPE_WRITE);
 682         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
 683         ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
 684         ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
 685 
 686         /*
 687          * We must reset the io_prop to match the values that existed
 688          * when the bp was first written by dmu_sync() keeping in mind
 689          * that nopwrite and dedup are mutually exclusive.
 690          */
 691         zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
 692         zio->io_prop.zp_nopwrite = nopwrite;
 693         zio->io_prop.zp_copies = copies;
 694         zio->io_bp_override = bp;
 695 }
 696 
 697 void
 698 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
 699 {
 700         metaslab_check_free(spa, bp);
 701         bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
 702 }
 703 
 704 zio_t *
 705 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
 706     enum zio_flag flags)
 707 {
 708         zio_t *zio;
 709 
 710         dprintf_bp(bp, "freeing in txg %llu, pass %u",
 711             (longlong_t)txg, spa->spa_sync_pass);
 712 
 713         ASSERT(!BP_IS_HOLE(bp));
 714         ASSERT(spa_syncing_txg(spa) == txg);
 715         ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
 716 
 717         metaslab_check_free(spa, bp);
 718 
 719         zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
 720             NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
 721             NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE);
 722 
 723         return (zio);
 724 }
 725 
 726 zio_t *
 727 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
 728     zio_done_func_t *done, void *private, enum zio_flag flags)
 729 {
 730         zio_t *zio;
 731 
 732         /*
 733          * A claim is an allocation of a specific block.  Claims are needed
 734          * to support immediate writes in the intent log.  The issue is that
 735          * immediate writes contain committed data, but in a txg that was
 736          * *not* committed.  Upon opening the pool after an unclean shutdown,
 737          * the intent log claims all blocks that contain immediate write data
 738          * so that the SPA knows they're in use.
 739          *
 740          * All claims *must* be resolved in the first txg -- before the SPA
 741          * starts allocating blocks -- so that nothing is allocated twice.
 742          * If txg == 0 we just verify that the block is claimable.
 743          */
 744         ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
 745         ASSERT(txg == spa_first_txg(spa) || txg == 0);
 746         ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));       /* zdb(1M) */
 747 
 748         zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
 749             done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
 750             NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
 751 
 752         return (zio);
 753 }
 754 
 755 zio_t *
 756 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
 757     zio_done_func_t *done, void *private, int priority, enum zio_flag flags)
 758 {
 759         zio_t *zio;
 760         int c;
 761 
 762         if (vd->vdev_children == 0) {
 763                 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
 764                     ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL,
 765                     ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
 766 
 767                 zio->io_cmd = cmd;
 768         } else {
 769                 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
 770 
 771                 for (c = 0; c < vd->vdev_children; c++)
 772                         zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
 773                             done, private, priority, flags));
 774         }
 775 
 776         return (zio);
 777 }
 778 
 779 zio_t *
 780 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
 781     void *data, int checksum, zio_done_func_t *done, void *private,
 782     int priority, enum zio_flag flags, boolean_t labels)
 783 {
 784         zio_t *zio;
 785 
 786         ASSERT(vd->vdev_children == 0);
 787         ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
 788             offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
 789         ASSERT3U(offset + size, <=, vd->vdev_psize);
 790 
 791         zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
 792             ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
 793             ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
 794 
 795         zio->io_prop.zp_checksum = checksum;
 796 
 797         return (zio);
 798 }
 799 
 800 zio_t *
 801 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
 802     void *data, int checksum, zio_done_func_t *done, void *private,
 803     int priority, enum zio_flag flags, boolean_t labels)
 804 {
 805         zio_t *zio;
 806 
 807         ASSERT(vd->vdev_children == 0);
 808         ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
 809             offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
 810         ASSERT3U(offset + size, <=, vd->vdev_psize);
 811 
 812         zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
 813             ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
 814             ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
 815 
 816         zio->io_prop.zp_checksum = checksum;
 817 
 818         if (zio_checksum_table[checksum].ci_eck) {
 819                 /*
 820                  * zec checksums are necessarily destructive -- they modify
 821                  * the end of the write buffer to hold the verifier/checksum.
 822                  * Therefore, we must make a local copy in case the data is
 823                  * being written to multiple places in parallel.
 824                  */
 825                 void *wbuf = zio_buf_alloc(size);
 826                 bcopy(data, wbuf, size);
 827                 zio_push_transform(zio, wbuf, size, size, NULL);
 828         }
 829 
 830         return (zio);
 831 }
 832 
 833 /*
 834  * Create a child I/O to do some work for us.
 835  */
 836 zio_t *
 837 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
 838         void *data, uint64_t size, int type, int priority, enum zio_flag flags,
 839         zio_done_func_t *done, void *private)
 840 {
 841         enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
 842         zio_t *zio;
 843 
 844         ASSERT(vd->vdev_parent ==
 845             (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
 846 
 847         if (type == ZIO_TYPE_READ && bp != NULL) {
 848                 /*
 849                  * If we have the bp, then the child should perform the
 850                  * checksum and the parent need not.  This pushes error
 851                  * detection as close to the leaves as possible and
 852                  * eliminates redundant checksums in the interior nodes.
 853                  */
 854                 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
 855                 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
 856         }
 857 
 858         if (vd->vdev_children == 0)
 859                 offset += VDEV_LABEL_START_SIZE;
 860 
 861         flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
 862 
 863         /*
 864          * If we've decided to do a repair, the write is not speculative --
 865          * even if the original read was.
 866          */
 867         if (flags & ZIO_FLAG_IO_REPAIR)
 868                 flags &= ~ZIO_FLAG_SPECULATIVE;
 869 
 870         zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
 871             done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
 872             ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
 873 
 874         return (zio);
 875 }
 876 
 877 zio_t *
 878 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
 879         int type, int priority, enum zio_flag flags,
 880         zio_done_func_t *done, void *private)
 881 {
 882         zio_t *zio;
 883 
 884         ASSERT(vd->vdev_ops->vdev_op_leaf);
 885 
 886         zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
 887             data, size, done, private, type, priority,
 888             flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
 889             vd, offset, NULL,
 890             ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
 891 
 892         return (zio);
 893 }
 894 
 895 void
 896 zio_flush(zio_t *zio, vdev_t *vd)
 897 {
 898         zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
 899             NULL, NULL, ZIO_PRIORITY_NOW,
 900             ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
 901 }
 902 
 903 void
 904 zio_shrink(zio_t *zio, uint64_t size)
 905 {
 906         ASSERT(zio->io_executor == NULL);
 907         ASSERT(zio->io_orig_size == zio->io_size);
 908         ASSERT(size <= zio->io_size);
 909 
 910         /*
 911          * We don't shrink for raidz because of problems with the
 912          * reconstruction when reading back less than the block size.
 913          * Note, BP_IS_RAIDZ() assumes no compression.
 914          */
 915         ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
 916         if (!BP_IS_RAIDZ(zio->io_bp))
 917                 zio->io_orig_size = zio->io_size = size;
 918 }
 919 
 920 /*
 921  * ==========================================================================
 922  * Prepare to read and write logical blocks
 923  * ==========================================================================
 924  */
 925 
 926 static int
 927 zio_read_bp_init(zio_t *zio)
 928 {
 929         blkptr_t *bp = zio->io_bp;
 930 
 931         if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
 932             zio->io_child_type == ZIO_CHILD_LOGICAL &&
 933             !(zio->io_flags & ZIO_FLAG_RAW)) {
 934                 uint64_t psize = BP_GET_PSIZE(bp);
 935                 void *cbuf = zio_buf_alloc(psize);
 936 
 937                 zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
 938         }
 939 
 940         if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
 941                 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
 942 
 943         if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
 944                 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
 945 
 946         if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
 947                 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
 948 
 949         return (ZIO_PIPELINE_CONTINUE);
 950 }
 951 
 952 static int
 953 zio_write_bp_init(zio_t *zio)
 954 {
 955         spa_t *spa = zio->io_spa;
 956         zio_prop_t *zp = &zio->io_prop;
 957         enum zio_compress compress = zp->zp_compress;
 958         blkptr_t *bp = zio->io_bp;
 959         uint64_t lsize = zio->io_size;
 960         uint64_t psize = lsize;
 961         int pass = 1;
 962 
 963         /*
 964          * If our children haven't all reached the ready stage,
 965          * wait for them and then repeat this pipeline stage.
 966          */
 967         if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
 968             zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
 969                 return (ZIO_PIPELINE_STOP);
 970 
 971         if (!IO_IS_ALLOCATING(zio))
 972                 return (ZIO_PIPELINE_CONTINUE);
 973 
 974         ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
 975 
 976         if (zio->io_bp_override) {
 977                 ASSERT(bp->blk_birth != zio->io_txg);
 978                 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
 979 
 980                 *bp = *zio->io_bp_override;
 981                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
 982 
 983                 /*
 984                  * If we've been overridden and nopwrite is set then
 985                  * set the flag accordingly to indicate that a nopwrite
 986                  * has already occurred.
 987                  */
 988                 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
 989                         ASSERT(!zp->zp_dedup);
 990                         zio->io_flags |= ZIO_FLAG_NOPWRITE;
 991                         return (ZIO_PIPELINE_CONTINUE);
 992                 }
 993 
 994                 ASSERT(!zp->zp_nopwrite);
 995 
 996                 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
 997                         return (ZIO_PIPELINE_CONTINUE);
 998 
 999                 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1000                     zp->zp_dedup_verify);
1001 
1002                 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1003                         BP_SET_DEDUP(bp, 1);
1004                         zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1005                         return (ZIO_PIPELINE_CONTINUE);
1006                 }
1007                 zio->io_bp_override = NULL;
1008                 BP_ZERO(bp);
1009         }
1010 
1011         if (bp->blk_birth == zio->io_txg) {
1012                 /*
1013                  * We're rewriting an existing block, which means we're
1014                  * working on behalf of spa_sync().  For spa_sync() to
1015                  * converge, it must eventually be the case that we don't
1016                  * have to allocate new blocks.  But compression changes
1017                  * the blocksize, which forces a reallocate, and makes
1018                  * convergence take longer.  Therefore, after the first
1019                  * few passes, stop compressing to ensure convergence.
1020                  */
1021                 pass = spa_sync_pass(spa);
1022 
1023                 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1024                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1025                 ASSERT(!BP_GET_DEDUP(bp));
1026 
1027                 if (pass >= zfs_sync_pass_dont_compress)
1028                         compress = ZIO_COMPRESS_OFF;
1029 
1030                 /* Make sure someone doesn't change their mind on overwrites */
1031                 ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
1032                     spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1033         }
1034 
1035         if (compress != ZIO_COMPRESS_OFF) {
1036                 void *cbuf = zio_buf_alloc(lsize);
1037                 psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1038                 if (psize == 0 || psize == lsize) {
1039                         compress = ZIO_COMPRESS_OFF;
1040                         zio_buf_free(cbuf, lsize);
1041                 } else {
1042                         ASSERT(psize < lsize);
1043                         zio_push_transform(zio, cbuf, psize, lsize, NULL);
1044                 }
1045         }
1046 
1047         /*
1048          * The final pass of spa_sync() must be all rewrites, but the first
1049          * few passes offer a trade-off: allocating blocks defers convergence,
1050          * but newly allocated blocks are sequential, so they can be written
1051          * to disk faster.  Therefore, we allow the first few passes of
1052          * spa_sync() to allocate new blocks, but force rewrites after that.
1053          * There should only be a handful of blocks after pass 1 in any case.
1054          */
1055         if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
1056             pass >= zfs_sync_pass_rewrite) {
1057                 ASSERT(psize != 0);
1058                 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1059                 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1060                 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1061         } else {
1062                 BP_ZERO(bp);
1063                 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1064         }
1065 
1066         if (psize == 0) {
1067                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1068         } else {
1069                 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1070                 BP_SET_LSIZE(bp, lsize);
1071                 BP_SET_PSIZE(bp, psize);
1072                 BP_SET_COMPRESS(bp, compress);
1073                 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1074                 BP_SET_TYPE(bp, zp->zp_type);
1075                 BP_SET_LEVEL(bp, zp->zp_level);
1076                 BP_SET_DEDUP(bp, zp->zp_dedup);
1077                 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1078                 if (zp->zp_dedup) {
1079                         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1080                         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1081                         zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1082                 }
1083                 if (zp->zp_nopwrite) {
1084                         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1085                         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1086                         zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1087                 }
1088         }
1089 
1090         return (ZIO_PIPELINE_CONTINUE);
1091 }
1092 
1093 static int
1094 zio_free_bp_init(zio_t *zio)
1095 {
1096         blkptr_t *bp = zio->io_bp;
1097 
1098         if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1099                 if (BP_GET_DEDUP(bp))
1100                         zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1101         }
1102 
1103         return (ZIO_PIPELINE_CONTINUE);
1104 }
1105 
1106 /*
1107  * ==========================================================================
1108  * Execute the I/O pipeline
1109  * ==========================================================================
1110  */
1111 
1112 static void
1113 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1114 {
1115         spa_t *spa = zio->io_spa;
1116         zio_type_t t = zio->io_type;
1117         int flags = (cutinline ? TQ_FRONT : 0);
1118 
1119         /*
1120          * If we're a config writer or a probe, the normal issue and
1121          * interrupt threads may all be blocked waiting for the config lock.
1122          * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1123          */
1124         if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1125                 t = ZIO_TYPE_NULL;
1126 
1127         /*
1128          * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1129          */
1130         if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1131                 t = ZIO_TYPE_NULL;
1132 
1133         /*
1134          * If this is a high priority I/O, then use the high priority taskq if
1135          * available.
1136          */
1137         if (zio->io_priority == ZIO_PRIORITY_NOW &&
1138             spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1139                 q++;
1140 
1141         ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1142 
1143         /*
1144          * NB: We are assuming that the zio can only be dispatched
1145          * to a single taskq at a time.  It would be a grievous error
1146          * to dispatch the zio to another taskq at the same time.
1147          */
1148         ASSERT(zio->io_tqent.tqent_next == NULL);
1149         spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1150             flags, &zio->io_tqent);
1151 }
1152 
1153 static boolean_t
1154 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1155 {
1156         kthread_t *executor = zio->io_executor;
1157         spa_t *spa = zio->io_spa;
1158 
1159         for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1160                 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1161                 uint_t i;
1162                 for (i = 0; i < tqs->stqs_count; i++) {
1163                         if (taskq_member(tqs->stqs_taskq[i], executor))
1164                                 return (B_TRUE);
1165                 }
1166         }
1167 
1168         return (B_FALSE);
1169 }
1170 
1171 static int
1172 zio_issue_async(zio_t *zio)
1173 {
1174         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1175 
1176         return (ZIO_PIPELINE_STOP);
1177 }
1178 
1179 void
1180 zio_interrupt(zio_t *zio)
1181 {
1182         zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1183 }
1184 
1185 /*
1186  * Execute the I/O pipeline until one of the following occurs:
1187  * (1) the I/O completes; (2) the pipeline stalls waiting for
1188  * dependent child I/Os; (3) the I/O issues, so we're waiting
1189  * for an I/O completion interrupt; (4) the I/O is delegated by
1190  * vdev-level caching or aggregation; (5) the I/O is deferred
1191  * due to vdev-level queueing; (6) the I/O is handed off to
1192  * another thread.  In all cases, the pipeline stops whenever
1193  * there's no CPU work; it never burns a thread in cv_wait().
1194  *
1195  * There's no locking on io_stage because there's no legitimate way
1196  * for multiple threads to be attempting to process the same I/O.
1197  */
1198 static zio_pipe_stage_t *zio_pipeline[];
1199 
1200 void
1201 zio_execute(zio_t *zio)
1202 {
1203         zio->io_executor = curthread;
1204 
1205         while (zio->io_stage < ZIO_STAGE_DONE) {
1206                 enum zio_stage pipeline = zio->io_pipeline;
1207                 enum zio_stage stage = zio->io_stage;
1208                 int rv;
1209 
1210                 ASSERT(!MUTEX_HELD(&zio->io_lock));
1211                 ASSERT(ISP2(stage));
1212                 ASSERT(zio->io_stall == NULL);
1213 
1214                 do {
1215                         stage <<= 1;
1216                 } while ((stage & pipeline) == 0);
1217 
1218                 ASSERT(stage <= ZIO_STAGE_DONE);
1219 
1220                 /*
1221                  * If we are in interrupt context and this pipeline stage
1222                  * will grab a config lock that is held across I/O,
1223                  * or may wait for an I/O that needs an interrupt thread
1224                  * to complete, issue async to avoid deadlock.
1225                  *
1226                  * For VDEV_IO_START, we cut in line so that the io will
1227                  * be sent to disk promptly.
1228                  */
1229                 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1230                     zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1231                         boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1232                             zio_requeue_io_start_cut_in_line : B_FALSE;
1233                         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1234                         return;
1235                 }
1236 
1237                 zio->io_stage = stage;
1238                 rv = zio_pipeline[highbit(stage) - 1](zio);
1239 
1240                 if (rv == ZIO_PIPELINE_STOP)
1241                         return;
1242 
1243                 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1244         }
1245 }
1246 
1247 /*
1248  * ==========================================================================
1249  * Initiate I/O, either sync or async
1250  * ==========================================================================
1251  */
1252 int
1253 zio_wait(zio_t *zio)
1254 {
1255         int error;
1256 
1257         ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1258         ASSERT(zio->io_executor == NULL);
1259 
1260         zio->io_waiter = curthread;
1261 
1262         zio_execute(zio);
1263 
1264         mutex_enter(&zio->io_lock);
1265         while (zio->io_executor != NULL)
1266                 cv_wait(&zio->io_cv, &zio->io_lock);
1267         mutex_exit(&zio->io_lock);
1268 
1269         error = zio->io_error;
1270         zio_destroy(zio);
1271 
1272         return (error);
1273 }
1274 
1275 void
1276 zio_nowait(zio_t *zio)
1277 {
1278         ASSERT(zio->io_executor == NULL);
1279 
1280         if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1281             zio_unique_parent(zio) == NULL) {
1282                 /*
1283                  * This is a logical async I/O with no parent to wait for it.
1284                  * We add it to the spa_async_root_zio "Godfather" I/O which
1285                  * will ensure they complete prior to unloading the pool.
1286                  */
1287                 spa_t *spa = zio->io_spa;
1288 
1289                 zio_add_child(spa->spa_async_zio_root, zio);
1290         }
1291 
1292         zio_execute(zio);
1293 }
1294 
1295 /*
1296  * ==========================================================================
1297  * Reexecute or suspend/resume failed I/O
1298  * ==========================================================================
1299  */
1300 
1301 static void
1302 zio_reexecute(zio_t *pio)
1303 {
1304         zio_t *cio, *cio_next;
1305 
1306         ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1307         ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1308         ASSERT(pio->io_gang_leader == NULL);
1309         ASSERT(pio->io_gang_tree == NULL);
1310 
1311         pio->io_flags = pio->io_orig_flags;
1312         pio->io_stage = pio->io_orig_stage;
1313         pio->io_pipeline = pio->io_orig_pipeline;
1314         pio->io_reexecute = 0;
1315         pio->io_flags |= ZIO_FLAG_REEXECUTED;
1316         pio->io_error = 0;
1317         for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1318                 pio->io_state[w] = 0;
1319         for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1320                 pio->io_child_error[c] = 0;
1321 
1322         if (IO_IS_ALLOCATING(pio))
1323                 BP_ZERO(pio->io_bp);
1324 
1325         /*
1326          * As we reexecute pio's children, new children could be created.
1327          * New children go to the head of pio's io_child_list, however,
1328          * so we will (correctly) not reexecute them.  The key is that
1329          * the remainder of pio's io_child_list, from 'cio_next' onward,
1330          * cannot be affected by any side effects of reexecuting 'cio'.
1331          */
1332         for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1333                 cio_next = zio_walk_children(pio);
1334                 mutex_enter(&pio->io_lock);
1335                 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1336                         pio->io_children[cio->io_child_type][w]++;
1337                 mutex_exit(&pio->io_lock);
1338                 zio_reexecute(cio);
1339         }
1340 
1341         /*
1342          * Now that all children have been reexecuted, execute the parent.
1343          * We don't reexecute "The Godfather" I/O here as it's the
1344          * responsibility of the caller to wait on him.
1345          */
1346         if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1347                 zio_execute(pio);
1348 }
1349 
1350 void
1351 zio_suspend(spa_t *spa, zio_t *zio)
1352 {
1353         if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1354                 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1355                     "failure and the failure mode property for this pool "
1356                     "is set to panic.", spa_name(spa));
1357 
1358         zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1359 
1360         mutex_enter(&spa->spa_suspend_lock);
1361 
1362         if (spa->spa_suspend_zio_root == NULL)
1363                 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1364                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1365                     ZIO_FLAG_GODFATHER);
1366 
1367         spa->spa_suspended = B_TRUE;
1368 
1369         if (zio != NULL) {
1370                 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1371                 ASSERT(zio != spa->spa_suspend_zio_root);
1372                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1373                 ASSERT(zio_unique_parent(zio) == NULL);
1374                 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1375                 zio_add_child(spa->spa_suspend_zio_root, zio);
1376         }
1377 
1378         mutex_exit(&spa->spa_suspend_lock);
1379 }
1380 
1381 int
1382 zio_resume(spa_t *spa)
1383 {
1384         zio_t *pio;
1385 
1386         /*
1387          * Reexecute all previously suspended i/o.
1388          */
1389         mutex_enter(&spa->spa_suspend_lock);
1390         spa->spa_suspended = B_FALSE;
1391         cv_broadcast(&spa->spa_suspend_cv);
1392         pio = spa->spa_suspend_zio_root;
1393         spa->spa_suspend_zio_root = NULL;
1394         mutex_exit(&spa->spa_suspend_lock);
1395 
1396         if (pio == NULL)
1397                 return (0);
1398 
1399         zio_reexecute(pio);
1400         return (zio_wait(pio));
1401 }
1402 
1403 void
1404 zio_resume_wait(spa_t *spa)
1405 {
1406         mutex_enter(&spa->spa_suspend_lock);
1407         while (spa_suspended(spa))
1408                 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1409         mutex_exit(&spa->spa_suspend_lock);
1410 }
1411 
1412 /*
1413  * ==========================================================================
1414  * Gang blocks.
1415  *
1416  * A gang block is a collection of small blocks that looks to the DMU
1417  * like one large block.  When zio_dva_allocate() cannot find a block
1418  * of the requested size, due to either severe fragmentation or the pool
1419  * being nearly full, it calls zio_write_gang_block() to construct the
1420  * block from smaller fragments.
1421  *
1422  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1423  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1424  * an indirect block: it's an array of block pointers.  It consumes
1425  * only one sector and hence is allocatable regardless of fragmentation.
1426  * The gang header's bps point to its gang members, which hold the data.
1427  *
1428  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1429  * as the verifier to ensure uniqueness of the SHA256 checksum.
1430  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1431  * not the gang header.  This ensures that data block signatures (needed for
1432  * deduplication) are independent of how the block is physically stored.
1433  *
1434  * Gang blocks can be nested: a gang member may itself be a gang block.
1435  * Thus every gang block is a tree in which root and all interior nodes are
1436  * gang headers, and the leaves are normal blocks that contain user data.
1437  * The root of the gang tree is called the gang leader.
1438  *
1439  * To perform any operation (read, rewrite, free, claim) on a gang block,
1440  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1441  * in the io_gang_tree field of the original logical i/o by recursively
1442  * reading the gang leader and all gang headers below it.  This yields
1443  * an in-core tree containing the contents of every gang header and the
1444  * bps for every constituent of the gang block.
1445  *
1446  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1447  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1448  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1449  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1450  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1451  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1452  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1453  * of the gang header plus zio_checksum_compute() of the data to update the
1454  * gang header's blk_cksum as described above.
1455  *
1456  * The two-phase assemble/issue model solves the problem of partial failure --
1457  * what if you'd freed part of a gang block but then couldn't read the
1458  * gang header for another part?  Assembling the entire gang tree first
1459  * ensures that all the necessary gang header I/O has succeeded before
1460  * starting the actual work of free, claim, or write.  Once the gang tree
1461  * is assembled, free and claim are in-memory operations that cannot fail.
1462  *
1463  * In the event that a gang write fails, zio_dva_unallocate() walks the
1464  * gang tree to immediately free (i.e. insert back into the space map)
1465  * everything we've allocated.  This ensures that we don't get ENOSPC
1466  * errors during repeated suspend/resume cycles due to a flaky device.
1467  *
1468  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1469  * the gang tree, we won't modify the block, so we can safely defer the free
1470  * (knowing that the block is still intact).  If we *can* assemble the gang
1471  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1472  * each constituent bp and we can allocate a new block on the next sync pass.
1473  *
1474  * In all cases, the gang tree allows complete recovery from partial failure.
1475  * ==========================================================================
1476  */
1477 
1478 static zio_t *
1479 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1480 {
1481         if (gn != NULL)
1482                 return (pio);
1483 
1484         return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1485             NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1486             &pio->io_bookmark));
1487 }
1488 
1489 zio_t *
1490 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1491 {
1492         zio_t *zio;
1493 
1494         if (gn != NULL) {
1495                 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1496                     gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1497                     ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1498                 /*
1499                  * As we rewrite each gang header, the pipeline will compute
1500                  * a new gang block header checksum for it; but no one will
1501                  * compute a new data checksum, so we do that here.  The one
1502                  * exception is the gang leader: the pipeline already computed
1503                  * its data checksum because that stage precedes gang assembly.
1504                  * (Presently, nothing actually uses interior data checksums;
1505                  * this is just good hygiene.)
1506                  */
1507                 if (gn != pio->io_gang_leader->io_gang_tree) {
1508                         zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1509                             data, BP_GET_PSIZE(bp));
1510                 }
1511                 /*
1512                  * If we are here to damage data for testing purposes,
1513                  * leave the GBH alone so that we can detect the damage.
1514                  */
1515                 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1516                         zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1517         } else {
1518                 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1519                     data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1520                     ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1521         }
1522 
1523         return (zio);
1524 }
1525 
1526 /* ARGSUSED */
1527 zio_t *
1528 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1529 {
1530         return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1531             ZIO_GANG_CHILD_FLAGS(pio)));
1532 }
1533 
1534 /* ARGSUSED */
1535 zio_t *
1536 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1537 {
1538         return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1539             NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1540 }
1541 
1542 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1543         NULL,
1544         zio_read_gang,
1545         zio_rewrite_gang,
1546         zio_free_gang,
1547         zio_claim_gang,
1548         NULL
1549 };
1550 
1551 static void zio_gang_tree_assemble_done(zio_t *zio);
1552 
1553 static zio_gang_node_t *
1554 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1555 {
1556         zio_gang_node_t *gn;
1557 
1558         ASSERT(*gnpp == NULL);
1559 
1560         gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1561         gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1562         *gnpp = gn;
1563 
1564         return (gn);
1565 }
1566 
1567 static void
1568 zio_gang_node_free(zio_gang_node_t **gnpp)
1569 {
1570         zio_gang_node_t *gn = *gnpp;
1571 
1572         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1573                 ASSERT(gn->gn_child[g] == NULL);
1574 
1575         zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1576         kmem_free(gn, sizeof (*gn));
1577         *gnpp = NULL;
1578 }
1579 
1580 static void
1581 zio_gang_tree_free(zio_gang_node_t **gnpp)
1582 {
1583         zio_gang_node_t *gn = *gnpp;
1584 
1585         if (gn == NULL)
1586                 return;
1587 
1588         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1589                 zio_gang_tree_free(&gn->gn_child[g]);
1590 
1591         zio_gang_node_free(gnpp);
1592 }
1593 
1594 static void
1595 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1596 {
1597         zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1598 
1599         ASSERT(gio->io_gang_leader == gio);
1600         ASSERT(BP_IS_GANG(bp));
1601 
1602         zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1603             SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1604             gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1605 }
1606 
1607 static void
1608 zio_gang_tree_assemble_done(zio_t *zio)
1609 {
1610         zio_t *gio = zio->io_gang_leader;
1611         zio_gang_node_t *gn = zio->io_private;
1612         blkptr_t *bp = zio->io_bp;
1613 
1614         ASSERT(gio == zio_unique_parent(zio));
1615         ASSERT(zio->io_child_count == 0);
1616 
1617         if (zio->io_error)
1618                 return;
1619 
1620         if (BP_SHOULD_BYTESWAP(bp))
1621                 byteswap_uint64_array(zio->io_data, zio->io_size);
1622 
1623         ASSERT(zio->io_data == gn->gn_gbh);
1624         ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1625         ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1626 
1627         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1628                 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1629                 if (!BP_IS_GANG(gbp))
1630                         continue;
1631                 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1632         }
1633 }
1634 
1635 static void
1636 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1637 {
1638         zio_t *gio = pio->io_gang_leader;
1639         zio_t *zio;
1640 
1641         ASSERT(BP_IS_GANG(bp) == !!gn);
1642         ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1643         ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1644 
1645         /*
1646          * If you're a gang header, your data is in gn->gn_gbh.
1647          * If you're a gang member, your data is in 'data' and gn == NULL.
1648          */
1649         zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1650 
1651         if (gn != NULL) {
1652                 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1653 
1654                 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1655                         blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1656                         if (BP_IS_HOLE(gbp))
1657                                 continue;
1658                         zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1659                         data = (char *)data + BP_GET_PSIZE(gbp);
1660                 }
1661         }
1662 
1663         if (gn == gio->io_gang_tree)
1664                 ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1665 
1666         if (zio != pio)
1667                 zio_nowait(zio);
1668 }
1669 
1670 static int
1671 zio_gang_assemble(zio_t *zio)
1672 {
1673         blkptr_t *bp = zio->io_bp;
1674 
1675         ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1676         ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1677 
1678         zio->io_gang_leader = zio;
1679 
1680         zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1681 
1682         return (ZIO_PIPELINE_CONTINUE);
1683 }
1684 
1685 static int
1686 zio_gang_issue(zio_t *zio)
1687 {
1688         blkptr_t *bp = zio->io_bp;
1689 
1690         if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1691                 return (ZIO_PIPELINE_STOP);
1692 
1693         ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1694         ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1695 
1696         if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1697                 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1698         else
1699                 zio_gang_tree_free(&zio->io_gang_tree);
1700 
1701         zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1702 
1703         return (ZIO_PIPELINE_CONTINUE);
1704 }
1705 
1706 static void
1707 zio_write_gang_member_ready(zio_t *zio)
1708 {
1709         zio_t *pio = zio_unique_parent(zio);
1710         zio_t *gio = zio->io_gang_leader;
1711         dva_t *cdva = zio->io_bp->blk_dva;
1712         dva_t *pdva = pio->io_bp->blk_dva;
1713         uint64_t asize;
1714 
1715         if (BP_IS_HOLE(zio->io_bp))
1716                 return;
1717 
1718         ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1719 
1720         ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1721         ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1722         ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1723         ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1724         ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1725 
1726         mutex_enter(&pio->io_lock);
1727         for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1728                 ASSERT(DVA_GET_GANG(&pdva[d]));
1729                 asize = DVA_GET_ASIZE(&pdva[d]);
1730                 asize += DVA_GET_ASIZE(&cdva[d]);
1731                 DVA_SET_ASIZE(&pdva[d], asize);
1732         }
1733         mutex_exit(&pio->io_lock);
1734 }
1735 
1736 static int
1737 zio_write_gang_block(zio_t *pio)
1738 {
1739         spa_t *spa = pio->io_spa;
1740         blkptr_t *bp = pio->io_bp;
1741         zio_t *gio = pio->io_gang_leader;
1742         zio_t *zio;
1743         zio_gang_node_t *gn, **gnpp;
1744         zio_gbh_phys_t *gbh;
1745         uint64_t txg = pio->io_txg;
1746         uint64_t resid = pio->io_size;
1747         uint64_t lsize;
1748         int copies = gio->io_prop.zp_copies;
1749         int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1750         zio_prop_t zp;
1751         int error;
1752 
1753         error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1754             bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1755             METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1756         if (error) {
1757                 pio->io_error = error;
1758                 return (ZIO_PIPELINE_CONTINUE);
1759         }
1760 
1761         if (pio == gio) {
1762                 gnpp = &gio->io_gang_tree;
1763         } else {
1764                 gnpp = pio->io_private;
1765                 ASSERT(pio->io_ready == zio_write_gang_member_ready);
1766         }
1767 
1768         gn = zio_gang_node_alloc(gnpp);
1769         gbh = gn->gn_gbh;
1770         bzero(gbh, SPA_GANGBLOCKSIZE);
1771 
1772         /*
1773          * Create the gang header.
1774          */
1775         zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1776             pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1777 
1778         /*
1779          * Create and nowait the gang children.
1780          */
1781         for (int g = 0; resid != 0; resid -= lsize, g++) {
1782                 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1783                     SPA_MINBLOCKSIZE);
1784                 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1785 
1786                 zp.zp_checksum = gio->io_prop.zp_checksum;
1787                 zp.zp_compress = ZIO_COMPRESS_OFF;
1788                 zp.zp_type = DMU_OT_NONE;
1789                 zp.zp_level = 0;
1790                 zp.zp_copies = gio->io_prop.zp_copies;
1791                 zp.zp_dedup = B_FALSE;
1792                 zp.zp_dedup_verify = B_FALSE;
1793                 zp.zp_nopwrite = B_FALSE;
1794 
1795                 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1796                     (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1797                     zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1798                     pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1799                     &pio->io_bookmark));
1800         }
1801 
1802         /*
1803          * Set pio's pipeline to just wait for zio to finish.
1804          */
1805         pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1806 
1807         zio_nowait(zio);
1808 
1809         return (ZIO_PIPELINE_CONTINUE);
1810 }
1811 
1812 /*
1813  * The zio_nop_write stage in the pipeline determines if allocating
1814  * a new bp is necessary.  By leveraging a cryptographically secure checksum,
1815  * such as SHA256, we can compare the checksums of the new data and the old
1816  * to determine if allocating a new block is required.  The nopwrite
1817  * feature can handle writes in either syncing or open context (i.e. zil
1818  * writes) and as a result is mutually exclusive with dedup.
1819  */
1820 static int
1821 zio_nop_write(zio_t *zio)
1822 {
1823         blkptr_t *bp = zio->io_bp;
1824         blkptr_t *bp_orig = &zio->io_bp_orig;
1825         zio_prop_t *zp = &zio->io_prop;
1826 
1827         ASSERT(BP_GET_LEVEL(bp) == 0);
1828         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1829         ASSERT(zp->zp_nopwrite);
1830         ASSERT(!zp->zp_dedup);
1831         ASSERT(zio->io_bp_override == NULL);
1832         ASSERT(IO_IS_ALLOCATING(zio));
1833 
1834         /*
1835          * Check to see if the original bp and the new bp have matching
1836          * characteristics (i.e. same checksum, compression algorithms, etc).
1837          * If they don't then just continue with the pipeline which will
1838          * allocate a new bp.
1839          */
1840         if (BP_IS_HOLE(bp_orig) ||
1841             !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
1842             BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
1843             BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
1844             BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
1845             zp->zp_copies != BP_GET_NDVAS(bp_orig))
1846                 return (ZIO_PIPELINE_CONTINUE);
1847 
1848         /*
1849          * If the checksums match then reset the pipeline so that we
1850          * avoid allocating a new bp and issuing any I/O.
1851          */
1852         if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
1853                 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
1854                 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
1855                 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
1856                 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
1857                 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
1858                     sizeof (uint64_t)) == 0);
1859 
1860                 *bp = *bp_orig;
1861                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1862                 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1863         }
1864 
1865         return (ZIO_PIPELINE_CONTINUE);
1866 }
1867 
1868 /*
1869  * ==========================================================================
1870  * Dedup
1871  * ==========================================================================
1872  */
1873 static void
1874 zio_ddt_child_read_done(zio_t *zio)
1875 {
1876         blkptr_t *bp = zio->io_bp;
1877         ddt_entry_t *dde = zio->io_private;
1878         ddt_phys_t *ddp;
1879         zio_t *pio = zio_unique_parent(zio);
1880 
1881         mutex_enter(&pio->io_lock);
1882         ddp = ddt_phys_select(dde, bp);
1883         if (zio->io_error == 0)
1884                 ddt_phys_clear(ddp);    /* this ddp doesn't need repair */
1885         if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1886                 dde->dde_repair_data = zio->io_data;
1887         else
1888                 zio_buf_free(zio->io_data, zio->io_size);
1889         mutex_exit(&pio->io_lock);
1890 }
1891 
1892 static int
1893 zio_ddt_read_start(zio_t *zio)
1894 {
1895         blkptr_t *bp = zio->io_bp;
1896 
1897         ASSERT(BP_GET_DEDUP(bp));
1898         ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1899         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1900 
1901         if (zio->io_child_error[ZIO_CHILD_DDT]) {
1902                 ddt_t *ddt = ddt_select(zio->io_spa, bp);
1903                 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
1904                 ddt_phys_t *ddp = dde->dde_phys;
1905                 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
1906                 blkptr_t blk;
1907 
1908                 ASSERT(zio->io_vsd == NULL);
1909                 zio->io_vsd = dde;
1910 
1911                 if (ddp_self == NULL)
1912                         return (ZIO_PIPELINE_CONTINUE);
1913 
1914                 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1915                         if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
1916                                 continue;
1917                         ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
1918                             &blk);
1919                         zio_nowait(zio_read(zio, zio->io_spa, &blk,
1920                             zio_buf_alloc(zio->io_size), zio->io_size,
1921                             zio_ddt_child_read_done, dde, zio->io_priority,
1922                             ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
1923                             &zio->io_bookmark));
1924                 }
1925                 return (ZIO_PIPELINE_CONTINUE);
1926         }
1927 
1928         zio_nowait(zio_read(zio, zio->io_spa, bp,
1929             zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
1930             ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
1931 
1932         return (ZIO_PIPELINE_CONTINUE);
1933 }
1934 
1935 static int
1936 zio_ddt_read_done(zio_t *zio)
1937 {
1938         blkptr_t *bp = zio->io_bp;
1939 
1940         if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
1941                 return (ZIO_PIPELINE_STOP);
1942 
1943         ASSERT(BP_GET_DEDUP(bp));
1944         ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1945         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1946 
1947         if (zio->io_child_error[ZIO_CHILD_DDT]) {
1948                 ddt_t *ddt = ddt_select(zio->io_spa, bp);
1949                 ddt_entry_t *dde = zio->io_vsd;
1950                 if (ddt == NULL) {
1951                         ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
1952                         return (ZIO_PIPELINE_CONTINUE);
1953                 }
1954                 if (dde == NULL) {
1955                         zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
1956                         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1957                         return (ZIO_PIPELINE_STOP);
1958                 }
1959                 if (dde->dde_repair_data != NULL) {
1960                         bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
1961                         zio->io_child_error[ZIO_CHILD_DDT] = 0;
1962                 }
1963                 ddt_repair_done(ddt, dde);
1964                 zio->io_vsd = NULL;
1965         }
1966 
1967         ASSERT(zio->io_vsd == NULL);
1968 
1969         return (ZIO_PIPELINE_CONTINUE);
1970 }
1971 
1972 static boolean_t
1973 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
1974 {
1975         spa_t *spa = zio->io_spa;
1976 
1977         /*
1978          * Note: we compare the original data, not the transformed data,
1979          * because when zio->io_bp is an override bp, we will not have
1980          * pushed the I/O transforms.  That's an important optimization
1981          * because otherwise we'd compress/encrypt all dmu_sync() data twice.
1982          */
1983         for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1984                 zio_t *lio = dde->dde_lead_zio[p];
1985 
1986                 if (lio != NULL) {
1987                         return (lio->io_orig_size != zio->io_orig_size ||
1988                             bcmp(zio->io_orig_data, lio->io_orig_data,
1989                             zio->io_orig_size) != 0);
1990                 }
1991         }
1992 
1993         for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1994                 ddt_phys_t *ddp = &dde->dde_phys[p];
1995 
1996                 if (ddp->ddp_phys_birth != 0) {
1997                         arc_buf_t *abuf = NULL;
1998                         uint32_t aflags = ARC_WAIT;
1999                         blkptr_t blk = *zio->io_bp;
2000                         int error;
2001 
2002                         ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2003 
2004                         ddt_exit(ddt);
2005 
2006                         error = arc_read(NULL, spa, &blk,
2007                             arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2008                             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2009                             &aflags, &zio->io_bookmark);
2010 
2011                         if (error == 0) {
2012                                 if (arc_buf_size(abuf) != zio->io_orig_size ||
2013                                     bcmp(abuf->b_data, zio->io_orig_data,
2014                                     zio->io_orig_size) != 0)
2015                                         error = SET_ERROR(EEXIST);
2016                                 VERIFY(arc_buf_remove_ref(abuf, &abuf));
2017                         }
2018 
2019                         ddt_enter(ddt);
2020                         return (error != 0);
2021                 }
2022         }
2023 
2024         return (B_FALSE);
2025 }
2026 
2027 static void
2028 zio_ddt_child_write_ready(zio_t *zio)
2029 {
2030         int p = zio->io_prop.zp_copies;
2031         ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2032         ddt_entry_t *dde = zio->io_private;
2033         ddt_phys_t *ddp = &dde->dde_phys[p];
2034         zio_t *pio;
2035 
2036         if (zio->io_error)
2037                 return;
2038 
2039         ddt_enter(ddt);
2040 
2041         ASSERT(dde->dde_lead_zio[p] == zio);
2042 
2043         ddt_phys_fill(ddp, zio->io_bp);
2044 
2045         while ((pio = zio_walk_parents(zio)) != NULL)
2046                 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2047 
2048         ddt_exit(ddt);
2049 }
2050 
2051 static void
2052 zio_ddt_child_write_done(zio_t *zio)
2053 {
2054         int p = zio->io_prop.zp_copies;
2055         ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2056         ddt_entry_t *dde = zio->io_private;
2057         ddt_phys_t *ddp = &dde->dde_phys[p];
2058 
2059         ddt_enter(ddt);
2060 
2061         ASSERT(ddp->ddp_refcnt == 0);
2062         ASSERT(dde->dde_lead_zio[p] == zio);
2063         dde->dde_lead_zio[p] = NULL;
2064 
2065         if (zio->io_error == 0) {
2066                 while (zio_walk_parents(zio) != NULL)
2067                         ddt_phys_addref(ddp);
2068         } else {
2069                 ddt_phys_clear(ddp);
2070         }
2071 
2072         ddt_exit(ddt);
2073 }
2074 
2075 static void
2076 zio_ddt_ditto_write_done(zio_t *zio)
2077 {
2078         int p = DDT_PHYS_DITTO;
2079         zio_prop_t *zp = &zio->io_prop;
2080         blkptr_t *bp = zio->io_bp;
2081         ddt_t *ddt = ddt_select(zio->io_spa, bp);
2082         ddt_entry_t *dde = zio->io_private;
2083         ddt_phys_t *ddp = &dde->dde_phys[p];
2084         ddt_key_t *ddk = &dde->dde_key;
2085 
2086         ddt_enter(ddt);
2087 
2088         ASSERT(ddp->ddp_refcnt == 0);
2089         ASSERT(dde->dde_lead_zio[p] == zio);
2090         dde->dde_lead_zio[p] = NULL;
2091 
2092         if (zio->io_error == 0) {
2093                 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2094                 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2095                 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2096                 if (ddp->ddp_phys_birth != 0)
2097                         ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2098                 ddt_phys_fill(ddp, bp);
2099         }
2100 
2101         ddt_exit(ddt);
2102 }
2103 
2104 static int
2105 zio_ddt_write(zio_t *zio)
2106 {
2107         spa_t *spa = zio->io_spa;
2108         blkptr_t *bp = zio->io_bp;
2109         uint64_t txg = zio->io_txg;
2110         zio_prop_t *zp = &zio->io_prop;
2111         int p = zp->zp_copies;
2112         int ditto_copies;
2113         zio_t *cio = NULL;
2114         zio_t *dio = NULL;
2115         ddt_t *ddt = ddt_select(spa, bp);
2116         ddt_entry_t *dde;
2117         ddt_phys_t *ddp;
2118 
2119         ASSERT(BP_GET_DEDUP(bp));
2120         ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2121         ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2122 
2123         ddt_enter(ddt);
2124         dde = ddt_lookup(ddt, bp, B_TRUE);
2125         ddp = &dde->dde_phys[p];
2126 
2127         if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2128                 /*
2129                  * If we're using a weak checksum, upgrade to a strong checksum
2130                  * and try again.  If we're already using a strong checksum,
2131                  * we can't resolve it, so just convert to an ordinary write.
2132                  * (And automatically e-mail a paper to Nature?)
2133                  */
2134                 if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2135                         zp->zp_checksum = spa_dedup_checksum(spa);
2136                         zio_pop_transforms(zio);
2137                         zio->io_stage = ZIO_STAGE_OPEN;
2138                         BP_ZERO(bp);
2139                 } else {
2140                         zp->zp_dedup = B_FALSE;
2141                 }
2142                 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2143                 ddt_exit(ddt);
2144                 return (ZIO_PIPELINE_CONTINUE);
2145         }
2146 
2147         ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2148         ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2149 
2150         if (ditto_copies > ddt_ditto_copies_present(dde) &&
2151             dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2152                 zio_prop_t czp = *zp;
2153 
2154                 czp.zp_copies = ditto_copies;
2155 
2156                 /*
2157                  * If we arrived here with an override bp, we won't have run
2158                  * the transform stack, so we won't have the data we need to
2159                  * generate a child i/o.  So, toss the override bp and restart.
2160                  * This is safe, because using the override bp is just an
2161                  * optimization; and it's rare, so the cost doesn't matter.
2162                  */
2163                 if (zio->io_bp_override) {
2164                         zio_pop_transforms(zio);
2165                         zio->io_stage = ZIO_STAGE_OPEN;
2166                         zio->io_pipeline = ZIO_WRITE_PIPELINE;
2167                         zio->io_bp_override = NULL;
2168                         BP_ZERO(bp);
2169                         ddt_exit(ddt);
2170                         return (ZIO_PIPELINE_CONTINUE);
2171                 }
2172 
2173                 dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2174                     zio->io_orig_size, &czp, NULL,
2175                     zio_ddt_ditto_write_done, dde, zio->io_priority,
2176                     ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2177 
2178                 zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2179                 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2180         }
2181 
2182         if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2183                 if (ddp->ddp_phys_birth != 0)
2184                         ddt_bp_fill(ddp, bp, txg);
2185                 if (dde->dde_lead_zio[p] != NULL)
2186                         zio_add_child(zio, dde->dde_lead_zio[p]);
2187                 else
2188                         ddt_phys_addref(ddp);
2189         } else if (zio->io_bp_override) {
2190                 ASSERT(bp->blk_birth == txg);
2191                 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2192                 ddt_phys_fill(ddp, bp);
2193                 ddt_phys_addref(ddp);
2194         } else {
2195                 cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2196                     zio->io_orig_size, zp, zio_ddt_child_write_ready,
2197                     zio_ddt_child_write_done, dde, zio->io_priority,
2198                     ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2199 
2200                 zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2201                 dde->dde_lead_zio[p] = cio;
2202         }
2203 
2204         ddt_exit(ddt);
2205 
2206         if (cio)
2207                 zio_nowait(cio);
2208         if (dio)
2209                 zio_nowait(dio);
2210 
2211         return (ZIO_PIPELINE_CONTINUE);
2212 }
2213 
2214 ddt_entry_t *freedde; /* for debugging */
2215 
2216 static int
2217 zio_ddt_free(zio_t *zio)
2218 {
2219         spa_t *spa = zio->io_spa;
2220         blkptr_t *bp = zio->io_bp;
2221         ddt_t *ddt = ddt_select(spa, bp);
2222         ddt_entry_t *dde;
2223         ddt_phys_t *ddp;
2224 
2225         ASSERT(BP_GET_DEDUP(bp));
2226         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2227 
2228         ddt_enter(ddt);
2229         freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2230         ddp = ddt_phys_select(dde, bp);
2231         ddt_phys_decref(ddp);
2232         ddt_exit(ddt);
2233 
2234         return (ZIO_PIPELINE_CONTINUE);
2235 }
2236 
2237 /*
2238  * ==========================================================================
2239  * Allocate and free blocks
2240  * ==========================================================================
2241  */
2242 static int
2243 zio_dva_allocate(zio_t *zio)
2244 {
2245         spa_t *spa = zio->io_spa;
2246         metaslab_class_t *mc = spa_normal_class(spa);
2247         blkptr_t *bp = zio->io_bp;
2248         int error;
2249         int flags = 0;
2250 
2251         if (zio->io_gang_leader == NULL) {
2252                 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2253                 zio->io_gang_leader = zio;
2254         }
2255 
2256         ASSERT(BP_IS_HOLE(bp));
2257         ASSERT0(BP_GET_NDVAS(bp));
2258         ASSERT3U(zio->io_prop.zp_copies, >, 0);
2259         ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2260         ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2261 
2262         /*
2263          * The dump device does not support gang blocks so allocation on
2264          * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2265          * the "fast" gang feature.
2266          */
2267         flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2268         flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2269             METASLAB_GANG_CHILD : 0;
2270         error = metaslab_alloc(spa, mc, zio->io_size, bp,
2271             zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2272 
2273         if (error) {
2274                 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2275                     "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2276                     error);
2277                 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2278                         return (zio_write_gang_block(zio));
2279                 zio->io_error = error;
2280         }
2281 
2282         return (ZIO_PIPELINE_CONTINUE);
2283 }
2284 
2285 static int
2286 zio_dva_free(zio_t *zio)
2287 {
2288         metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2289 
2290         return (ZIO_PIPELINE_CONTINUE);
2291 }
2292 
2293 static int
2294 zio_dva_claim(zio_t *zio)
2295 {
2296         int error;
2297 
2298         error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2299         if (error)
2300                 zio->io_error = error;
2301 
2302         return (ZIO_PIPELINE_CONTINUE);
2303 }
2304 
2305 /*
2306  * Undo an allocation.  This is used by zio_done() when an I/O fails
2307  * and we want to give back the block we just allocated.
2308  * This handles both normal blocks and gang blocks.
2309  */
2310 static void
2311 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2312 {
2313         ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2314         ASSERT(zio->io_bp_override == NULL);
2315 
2316         if (!BP_IS_HOLE(bp))
2317                 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2318 
2319         if (gn != NULL) {
2320                 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2321                         zio_dva_unallocate(zio, gn->gn_child[g],
2322                             &gn->gn_gbh->zg_blkptr[g]);
2323                 }
2324         }
2325 }
2326 
2327 /*
2328  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2329  */
2330 int
2331 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2332     uint64_t size, boolean_t use_slog)
2333 {
2334         int error = 1;
2335 
2336         ASSERT(txg > spa_syncing_txg(spa));
2337 
2338         /*
2339          * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2340          * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2341          * when allocating them.
2342          */
2343         if (use_slog) {
2344                 error = metaslab_alloc(spa, spa_log_class(spa), size,
2345                     new_bp, 1, txg, old_bp,
2346                     METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2347         }
2348 
2349         if (error) {
2350                 error = metaslab_alloc(spa, spa_normal_class(spa), size,
2351                     new_bp, 1, txg, old_bp,
2352                     METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2353         }
2354 
2355         if (error == 0) {
2356                 BP_SET_LSIZE(new_bp, size);
2357                 BP_SET_PSIZE(new_bp, size);
2358                 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2359                 BP_SET_CHECKSUM(new_bp,
2360                     spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2361                     ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2362                 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2363                 BP_SET_LEVEL(new_bp, 0);
2364                 BP_SET_DEDUP(new_bp, 0);
2365                 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2366         }
2367 
2368         return (error);
2369 }
2370 
2371 /*
2372  * Free an intent log block.
2373  */
2374 void
2375 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2376 {
2377         ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2378         ASSERT(!BP_IS_GANG(bp));
2379 
2380         zio_free(spa, txg, bp);
2381 }
2382 
2383 /*
2384  * ==========================================================================
2385  * Read and write to physical devices
2386  * ==========================================================================
2387  */
2388 static int
2389 zio_vdev_io_start(zio_t *zio)
2390 {
2391         vdev_t *vd = zio->io_vd;
2392         uint64_t align;
2393         spa_t *spa = zio->io_spa;
2394 
2395         ASSERT(zio->io_error == 0);
2396         ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2397 
2398         if (vd == NULL) {
2399                 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2400                         spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2401 
2402                 /*
2403                  * The mirror_ops handle multiple DVAs in a single BP.
2404                  */
2405                 return (vdev_mirror_ops.vdev_op_io_start(zio));
2406         }
2407 
2408         /*
2409          * We keep track of time-sensitive I/Os so that the scan thread
2410          * can quickly react to certain workloads.  In particular, we care
2411          * about non-scrubbing, top-level reads and writes with the following
2412          * characteristics:
2413          *      - synchronous writes of user data to non-slog devices
2414          *      - any reads of user data
2415          * When these conditions are met, adjust the timestamp of spa_last_io
2416          * which allows the scan thread to adjust its workload accordingly.
2417          */
2418         if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2419             vd == vd->vdev_top && !vd->vdev_islog &&
2420             zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2421             zio->io_txg != spa_syncing_txg(spa)) {
2422                 uint64_t old = spa->spa_last_io;
2423                 uint64_t new = ddi_get_lbolt64();
2424                 if (old != new)
2425                         (void) atomic_cas_64(&spa->spa_last_io, old, new);
2426         }
2427 
2428         align = 1ULL << vd->vdev_top->vdev_ashift;
2429 
2430         if (P2PHASE(zio->io_size, align) != 0) {
2431                 uint64_t asize = P2ROUNDUP(zio->io_size, align);
2432                 char *abuf = zio_buf_alloc(asize);
2433                 ASSERT(vd == vd->vdev_top);
2434                 if (zio->io_type == ZIO_TYPE_WRITE) {
2435                         bcopy(zio->io_data, abuf, zio->io_size);
2436                         bzero(abuf + zio->io_size, asize - zio->io_size);
2437                 }
2438                 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2439         }
2440 
2441         ASSERT(P2PHASE(zio->io_offset, align) == 0);
2442         ASSERT(P2PHASE(zio->io_size, align) == 0);
2443         VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2444 
2445         /*
2446          * If this is a repair I/O, and there's no self-healing involved --
2447          * that is, we're just resilvering what we expect to resilver --
2448          * then don't do the I/O unless zio's txg is actually in vd's DTL.
2449          * This prevents spurious resilvering with nested replication.
2450          * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2451          * A is out of date, we'll read from C+D, then use the data to
2452          * resilver A+B -- but we don't actually want to resilver B, just A.
2453          * The top-level mirror has no way to know this, so instead we just
2454          * discard unnecessary repairs as we work our way down the vdev tree.
2455          * The same logic applies to any form of nested replication:
2456          * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2457          */
2458         if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2459             !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2460             zio->io_txg != 0 &&      /* not a delegated i/o */
2461             !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2462                 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2463                 zio_vdev_io_bypass(zio);
2464                 return (ZIO_PIPELINE_CONTINUE);
2465         }
2466 
2467         if (vd->vdev_ops->vdev_op_leaf &&
2468             (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2469 
2470                 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2471                         return (ZIO_PIPELINE_CONTINUE);
2472 
2473                 if ((zio = vdev_queue_io(zio)) == NULL)
2474                         return (ZIO_PIPELINE_STOP);
2475 
2476                 if (!vdev_accessible(vd, zio)) {
2477                         zio->io_error = SET_ERROR(ENXIO);
2478                         zio_interrupt(zio);
2479                         return (ZIO_PIPELINE_STOP);
2480                 }
2481         }
2482 
2483         return (vd->vdev_ops->vdev_op_io_start(zio));
2484 }
2485 
2486 static int
2487 zio_vdev_io_done(zio_t *zio)
2488 {
2489         vdev_t *vd = zio->io_vd;
2490         vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2491         boolean_t unexpected_error = B_FALSE;
2492 
2493         if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2494                 return (ZIO_PIPELINE_STOP);
2495 
2496         ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2497 
2498         if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2499 
2500                 vdev_queue_io_done(zio);
2501 
2502                 if (zio->io_type == ZIO_TYPE_WRITE)
2503                         vdev_cache_write(zio);
2504 
2505                 if (zio_injection_enabled && zio->io_error == 0)
2506                         zio->io_error = zio_handle_device_injection(vd,
2507                             zio, EIO);
2508 
2509                 if (zio_injection_enabled && zio->io_error == 0)
2510                         zio->io_error = zio_handle_label_injection(zio, EIO);
2511 
2512                 if (zio->io_error) {
2513                         if (!vdev_accessible(vd, zio)) {
2514                                 zio->io_error = SET_ERROR(ENXIO);
2515                         } else {
2516                                 unexpected_error = B_TRUE;
2517                         }
2518                 }
2519         }
2520 
2521         ops->vdev_op_io_done(zio);
2522 
2523         if (unexpected_error)
2524                 VERIFY(vdev_probe(vd, zio) == NULL);
2525 
2526         return (ZIO_PIPELINE_CONTINUE);
2527 }
2528 
2529 /*
2530  * For non-raidz ZIOs, we can just copy aside the bad data read from the
2531  * disk, and use that to finish the checksum ereport later.
2532  */
2533 static void
2534 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2535     const void *good_buf)
2536 {
2537         /* no processing needed */
2538         zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2539 }
2540 
2541 /*ARGSUSED*/
2542 void
2543 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2544 {
2545         void *buf = zio_buf_alloc(zio->io_size);
2546 
2547         bcopy(zio->io_data, buf, zio->io_size);
2548 
2549         zcr->zcr_cbinfo = zio->io_size;
2550         zcr->zcr_cbdata = buf;
2551         zcr->zcr_finish = zio_vsd_default_cksum_finish;
2552         zcr->zcr_free = zio_buf_free;
2553 }
2554 
2555 static int
2556 zio_vdev_io_assess(zio_t *zio)
2557 {
2558         vdev_t *vd = zio->io_vd;
2559 
2560         if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2561                 return (ZIO_PIPELINE_STOP);
2562 
2563         if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2564                 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2565 
2566         if (zio->io_vsd != NULL) {
2567                 zio->io_vsd_ops->vsd_free(zio);
2568                 zio->io_vsd = NULL;
2569         }
2570 
2571         if (zio_injection_enabled && zio->io_error == 0)
2572                 zio->io_error = zio_handle_fault_injection(zio, EIO);
2573 
2574         /*
2575          * If the I/O failed, determine whether we should attempt to retry it.
2576          *
2577          * On retry, we cut in line in the issue queue, since we don't want
2578          * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2579          */
2580         if (zio->io_error && vd == NULL &&
2581             !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2582                 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));  /* not a leaf */
2583                 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));   /* not a leaf */
2584                 zio->io_error = 0;
2585                 zio->io_flags |= ZIO_FLAG_IO_RETRY |
2586                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2587                 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2588                 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2589                     zio_requeue_io_start_cut_in_line);
2590                 return (ZIO_PIPELINE_STOP);
2591         }
2592 
2593         /*
2594          * If we got an error on a leaf device, convert it to ENXIO
2595          * if the device is not accessible at all.
2596          */
2597         if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2598             !vdev_accessible(vd, zio))
2599                 zio->io_error = SET_ERROR(ENXIO);
2600 
2601         /*
2602          * If we can't write to an interior vdev (mirror or RAID-Z),
2603          * set vdev_cant_write so that we stop trying to allocate from it.
2604          */
2605         if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2606             vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2607                 vd->vdev_cant_write = B_TRUE;
2608         }
2609 
2610         if (zio->io_error)
2611                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2612 
2613         return (ZIO_PIPELINE_CONTINUE);
2614 }
2615 
2616 void
2617 zio_vdev_io_reissue(zio_t *zio)
2618 {
2619         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2620         ASSERT(zio->io_error == 0);
2621 
2622         zio->io_stage >>= 1;
2623 }
2624 
2625 void
2626 zio_vdev_io_redone(zio_t *zio)
2627 {
2628         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2629 
2630         zio->io_stage >>= 1;
2631 }
2632 
2633 void
2634 zio_vdev_io_bypass(zio_t *zio)
2635 {
2636         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2637         ASSERT(zio->io_error == 0);
2638 
2639         zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2640         zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2641 }
2642 
2643 /*
2644  * ==========================================================================
2645  * Generate and verify checksums
2646  * ==========================================================================
2647  */
2648 static int
2649 zio_checksum_generate(zio_t *zio)
2650 {
2651         blkptr_t *bp = zio->io_bp;
2652         enum zio_checksum checksum;
2653 
2654         if (bp == NULL) {
2655                 /*
2656                  * This is zio_write_phys().
2657                  * We're either generating a label checksum, or none at all.
2658                  */
2659                 checksum = zio->io_prop.zp_checksum;
2660 
2661                 if (checksum == ZIO_CHECKSUM_OFF)
2662                         return (ZIO_PIPELINE_CONTINUE);
2663 
2664                 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2665         } else {
2666                 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2667                         ASSERT(!IO_IS_ALLOCATING(zio));
2668                         checksum = ZIO_CHECKSUM_GANG_HEADER;
2669                 } else {
2670                         checksum = BP_GET_CHECKSUM(bp);
2671                 }
2672         }
2673 
2674         zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2675 
2676         return (ZIO_PIPELINE_CONTINUE);
2677 }
2678 
2679 static int
2680 zio_checksum_verify(zio_t *zio)
2681 {
2682         zio_bad_cksum_t info;
2683         blkptr_t *bp = zio->io_bp;
2684         int error;
2685 
2686         ASSERT(zio->io_vd != NULL);
2687 
2688         if (bp == NULL) {
2689                 /*
2690                  * This is zio_read_phys().
2691                  * We're either verifying a label checksum, or nothing at all.
2692                  */
2693                 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2694                         return (ZIO_PIPELINE_CONTINUE);
2695 
2696                 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2697         }
2698 
2699         if ((error = zio_checksum_error(zio, &info)) != 0) {
2700                 zio->io_error = error;
2701                 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2702                         zfs_ereport_start_checksum(zio->io_spa,
2703                             zio->io_vd, zio, zio->io_offset,
2704                             zio->io_size, NULL, &info);
2705                 }
2706         }
2707 
2708         return (ZIO_PIPELINE_CONTINUE);
2709 }
2710 
2711 /*
2712  * Called by RAID-Z to ensure we don't compute the checksum twice.
2713  */
2714 void
2715 zio_checksum_verified(zio_t *zio)
2716 {
2717         zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2718 }
2719 
2720 /*
2721  * ==========================================================================
2722  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2723  * An error of 0 indictes success.  ENXIO indicates whole-device failure,
2724  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2725  * indicate errors that are specific to one I/O, and most likely permanent.
2726  * Any other error is presumed to be worse because we weren't expecting it.
2727  * ==========================================================================
2728  */
2729 int
2730 zio_worst_error(int e1, int e2)
2731 {
2732         static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2733         int r1, r2;
2734 
2735         for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2736                 if (e1 == zio_error_rank[r1])
2737                         break;
2738 
2739         for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2740                 if (e2 == zio_error_rank[r2])
2741                         break;
2742 
2743         return (r1 > r2 ? e1 : e2);
2744 }
2745 
2746 /*
2747  * ==========================================================================
2748  * I/O completion
2749  * ==========================================================================
2750  */
2751 static int
2752 zio_ready(zio_t *zio)
2753 {
2754         blkptr_t *bp = zio->io_bp;
2755         zio_t *pio, *pio_next;
2756 
2757         if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2758             zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2759                 return (ZIO_PIPELINE_STOP);
2760 
2761         if (zio->io_ready) {
2762                 ASSERT(IO_IS_ALLOCATING(zio));
2763                 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
2764                     (zio->io_flags & ZIO_FLAG_NOPWRITE));
2765                 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2766 
2767                 zio->io_ready(zio);
2768         }
2769 
2770         if (bp != NULL && bp != &zio->io_bp_copy)
2771                 zio->io_bp_copy = *bp;
2772 
2773         if (zio->io_error)
2774                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2775 
2776         mutex_enter(&zio->io_lock);
2777         zio->io_state[ZIO_WAIT_READY] = 1;
2778         pio = zio_walk_parents(zio);
2779         mutex_exit(&zio->io_lock);
2780 
2781         /*
2782          * As we notify zio's parents, new parents could be added.
2783          * New parents go to the head of zio's io_parent_list, however,
2784          * so we will (correctly) not notify them.  The remainder of zio's
2785          * io_parent_list, from 'pio_next' onward, cannot change because
2786          * all parents must wait for us to be done before they can be done.
2787          */
2788         for (; pio != NULL; pio = pio_next) {
2789                 pio_next = zio_walk_parents(zio);
2790                 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2791         }
2792 
2793         if (zio->io_flags & ZIO_FLAG_NODATA) {
2794                 if (BP_IS_GANG(bp)) {
2795                         zio->io_flags &= ~ZIO_FLAG_NODATA;
2796                 } else {
2797                         ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2798                         zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2799                 }
2800         }
2801 
2802         if (zio_injection_enabled &&
2803             zio->io_spa->spa_syncing_txg == zio->io_txg)
2804                 zio_handle_ignored_writes(zio);
2805 
2806         return (ZIO_PIPELINE_CONTINUE);
2807 }
2808 
2809 static int
2810 zio_done(zio_t *zio)
2811 {
2812         spa_t *spa = zio->io_spa;
2813         zio_t *lio = zio->io_logical;
2814         blkptr_t *bp = zio->io_bp;
2815         vdev_t *vd = zio->io_vd;
2816         uint64_t psize = zio->io_size;
2817         zio_t *pio, *pio_next;
2818 
2819         /*
2820          * If our children haven't all completed,
2821          * wait for them and then repeat this pipeline stage.
2822          */
2823         if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2824             zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2825             zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2826             zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2827                 return (ZIO_PIPELINE_STOP);
2828 
2829         for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2830                 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2831                         ASSERT(zio->io_children[c][w] == 0);
2832 
2833         if (bp != NULL) {
2834                 ASSERT(bp->blk_pad[0] == 0);
2835                 ASSERT(bp->blk_pad[1] == 0);
2836                 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2837                     (bp == zio_unique_parent(zio)->io_bp));
2838                 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2839                     zio->io_bp_override == NULL &&
2840                     !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2841                         ASSERT(!BP_SHOULD_BYTESWAP(bp));
2842                         ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2843                         ASSERT(BP_COUNT_GANG(bp) == 0 ||
2844                             (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2845                 }
2846                 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
2847                         VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
2848         }
2849 
2850         /*
2851          * If there were child vdev/gang/ddt errors, they apply to us now.
2852          */
2853         zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2854         zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2855         zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2856 
2857         /*
2858          * If the I/O on the transformed data was successful, generate any
2859          * checksum reports now while we still have the transformed data.
2860          */
2861         if (zio->io_error == 0) {
2862                 while (zio->io_cksum_report != NULL) {
2863                         zio_cksum_report_t *zcr = zio->io_cksum_report;
2864                         uint64_t align = zcr->zcr_align;
2865                         uint64_t asize = P2ROUNDUP(psize, align);
2866                         char *abuf = zio->io_data;
2867 
2868                         if (asize != psize) {
2869                                 abuf = zio_buf_alloc(asize);
2870                                 bcopy(zio->io_data, abuf, psize);
2871                                 bzero(abuf + psize, asize - psize);
2872                         }
2873 
2874                         zio->io_cksum_report = zcr->zcr_next;
2875                         zcr->zcr_next = NULL;
2876                         zcr->zcr_finish(zcr, abuf);
2877                         zfs_ereport_free_checksum(zcr);
2878 
2879                         if (asize != psize)
2880                                 zio_buf_free(abuf, asize);
2881                 }
2882         }
2883 
2884         zio_pop_transforms(zio);        /* note: may set zio->io_error */
2885 
2886         vdev_stat_update(zio, psize);
2887 
2888         if (zio->io_error) {
2889                 /*
2890                  * If this I/O is attached to a particular vdev,
2891                  * generate an error message describing the I/O failure
2892                  * at the block level.  We ignore these errors if the
2893                  * device is currently unavailable.
2894                  */
2895                 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
2896                         zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
2897 
2898                 if ((zio->io_error == EIO || !(zio->io_flags &
2899                     (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
2900                     zio == lio) {
2901                         /*
2902                          * For logical I/O requests, tell the SPA to log the
2903                          * error and generate a logical data ereport.
2904                          */
2905                         spa_log_error(spa, zio);
2906                         zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
2907                             0, 0);
2908                 }
2909         }
2910 
2911         if (zio->io_error && zio == lio) {
2912                 /*
2913                  * Determine whether zio should be reexecuted.  This will
2914                  * propagate all the way to the root via zio_notify_parent().
2915                  */
2916                 ASSERT(vd == NULL && bp != NULL);
2917                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2918 
2919                 if (IO_IS_ALLOCATING(zio) &&
2920                     !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
2921                         if (zio->io_error != ENOSPC)
2922                                 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
2923                         else
2924                                 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2925                 }
2926 
2927                 if ((zio->io_type == ZIO_TYPE_READ ||
2928                     zio->io_type == ZIO_TYPE_FREE) &&
2929                     !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
2930                     zio->io_error == ENXIO &&
2931                     spa_load_state(spa) == SPA_LOAD_NONE &&
2932                     spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
2933                         zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2934 
2935                 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
2936                         zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2937 
2938                 /*
2939                  * Here is a possibly good place to attempt to do
2940                  * either combinatorial reconstruction or error correction
2941                  * based on checksums.  It also might be a good place
2942                  * to send out preliminary ereports before we suspend
2943                  * processing.
2944                  */
2945         }
2946 
2947         /*
2948          * If there were logical child errors, they apply to us now.
2949          * We defer this until now to avoid conflating logical child
2950          * errors with errors that happened to the zio itself when
2951          * updating vdev stats and reporting FMA events above.
2952          */
2953         zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
2954 
2955         if ((zio->io_error || zio->io_reexecute) &&
2956             IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
2957             !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
2958                 zio_dva_unallocate(zio, zio->io_gang_tree, bp);
2959 
2960         zio_gang_tree_free(&zio->io_gang_tree);
2961 
2962         /*
2963          * Godfather I/Os should never suspend.
2964          */
2965         if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
2966             (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
2967                 zio->io_reexecute = 0;
2968 
2969         if (zio->io_reexecute) {
2970                 /*
2971                  * This is a logical I/O that wants to reexecute.
2972                  *
2973                  * Reexecute is top-down.  When an i/o fails, if it's not
2974                  * the root, it simply notifies its parent and sticks around.
2975                  * The parent, seeing that it still has children in zio_done(),
2976                  * does the same.  This percolates all the way up to the root.
2977                  * The root i/o will reexecute or suspend the entire tree.
2978                  *
2979                  * This approach ensures that zio_reexecute() honors
2980                  * all the original i/o dependency relationships, e.g.
2981                  * parents not executing until children are ready.
2982                  */
2983                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2984 
2985                 zio->io_gang_leader = NULL;
2986 
2987                 mutex_enter(&zio->io_lock);
2988                 zio->io_state[ZIO_WAIT_DONE] = 1;
2989                 mutex_exit(&zio->io_lock);
2990 
2991                 /*
2992                  * "The Godfather" I/O monitors its children but is
2993                  * not a true parent to them. It will track them through
2994                  * the pipeline but severs its ties whenever they get into
2995                  * trouble (e.g. suspended). This allows "The Godfather"
2996                  * I/O to return status without blocking.
2997                  */
2998                 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
2999                         zio_link_t *zl = zio->io_walk_link;
3000                         pio_next = zio_walk_parents(zio);
3001 
3002                         if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3003                             (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3004                                 zio_remove_child(pio, zio, zl);
3005                                 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3006                         }
3007                 }
3008 
3009                 if ((pio = zio_unique_parent(zio)) != NULL) {
3010                         /*
3011                          * We're not a root i/o, so there's nothing to do
3012                          * but notify our parent.  Don't propagate errors
3013                          * upward since we haven't permanently failed yet.
3014                          */
3015                         ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3016                         zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3017                         zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3018                 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3019                         /*
3020                          * We'd fail again if we reexecuted now, so suspend
3021                          * until conditions improve (e.g. device comes online).
3022                          */
3023                         zio_suspend(spa, zio);
3024                 } else {
3025                         /*
3026                          * Reexecution is potentially a huge amount of work.
3027                          * Hand it off to the otherwise-unused claim taskq.
3028                          */
3029                         ASSERT(zio->io_tqent.tqent_next == NULL);
3030                         spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3031                             ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3032                             0, &zio->io_tqent);
3033                 }
3034                 return (ZIO_PIPELINE_STOP);
3035         }
3036 
3037         ASSERT(zio->io_child_count == 0);
3038         ASSERT(zio->io_reexecute == 0);
3039         ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3040 
3041         /*
3042          * Report any checksum errors, since the I/O is complete.
3043          */
3044         while (zio->io_cksum_report != NULL) {
3045                 zio_cksum_report_t *zcr = zio->io_cksum_report;
3046                 zio->io_cksum_report = zcr->zcr_next;
3047                 zcr->zcr_next = NULL;
3048                 zcr->zcr_finish(zcr, NULL);
3049                 zfs_ereport_free_checksum(zcr);
3050         }
3051 
3052         /*
3053          * It is the responsibility of the done callback to ensure that this
3054          * particular zio is no longer discoverable for adoption, and as
3055          * such, cannot acquire any new parents.
3056          */
3057         if (zio->io_done)
3058                 zio->io_done(zio);
3059 
3060         mutex_enter(&zio->io_lock);
3061         zio->io_state[ZIO_WAIT_DONE] = 1;
3062         mutex_exit(&zio->io_lock);
3063 
3064         for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3065                 zio_link_t *zl = zio->io_walk_link;
3066                 pio_next = zio_walk_parents(zio);
3067                 zio_remove_child(pio, zio, zl);
3068                 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3069         }
3070 
3071         if (zio->io_waiter != NULL) {
3072                 mutex_enter(&zio->io_lock);
3073                 zio->io_executor = NULL;
3074                 cv_broadcast(&zio->io_cv);
3075                 mutex_exit(&zio->io_lock);
3076         } else {
3077                 zio_destroy(zio);
3078         }
3079 
3080         return (ZIO_PIPELINE_STOP);
3081 }
3082 
3083 /*
3084  * ==========================================================================
3085  * I/O pipeline definition
3086  * ==========================================================================
3087  */
3088 static zio_pipe_stage_t *zio_pipeline[] = {
3089         NULL,
3090         zio_read_bp_init,
3091         zio_free_bp_init,
3092         zio_issue_async,
3093         zio_write_bp_init,
3094         zio_checksum_generate,
3095         zio_nop_write,
3096         zio_ddt_read_start,
3097         zio_ddt_read_done,
3098         zio_ddt_write,
3099         zio_ddt_free,
3100         zio_gang_assemble,
3101         zio_gang_issue,
3102         zio_dva_allocate,
3103         zio_dva_free,
3104         zio_dva_claim,
3105         zio_ready,
3106         zio_vdev_io_start,
3107         zio_vdev_io_done,
3108         zio_vdev_io_assess,
3109         zio_checksum_verify,
3110         zio_done
3111 };
3112 
3113 /* dnp is the dnode for zb1->zb_object */
3114 boolean_t
3115 zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1,
3116     const zbookmark_t *zb2)
3117 {
3118         uint64_t zb1nextL0, zb2thisobj;
3119 
3120         ASSERT(zb1->zb_objset == zb2->zb_objset);
3121         ASSERT(zb2->zb_level == 0);
3122 
3123         /*
3124          * A bookmark in the deadlist is considered to be after
3125          * everything else.
3126          */
3127         if (zb2->zb_object == DMU_DEADLIST_OBJECT)
3128                 return (B_TRUE);
3129 
3130         /* The objset_phys_t isn't before anything. */
3131         if (dnp == NULL)
3132                 return (B_FALSE);
3133 
3134         zb1nextL0 = (zb1->zb_blkid + 1) <<
3135             ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3136 
3137         zb2thisobj = zb2->zb_object ? zb2->zb_object :
3138             zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3139 
3140         if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3141                 uint64_t nextobj = zb1nextL0 *
3142                     (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3143                 return (nextobj <= zb2thisobj);
3144         }
3145 
3146         if (zb1->zb_object < zb2thisobj)
3147                 return (B_TRUE);
3148         if (zb1->zb_object > zb2thisobj)
3149                 return (B_FALSE);
3150         if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3151                 return (B_FALSE);
3152         return (zb1nextL0 <= zb2->zb_blkid);
3153 }