1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 /* Portions Copyright 2010 Robert Milkowski */ 28 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/time.h> 32 #include <sys/systm.h> 33 #include <sys/sysmacros.h> 34 #include <sys/resource.h> 35 #include <sys/vfs.h> 36 #include <sys/vfs_opreg.h> 37 #include <sys/vnode.h> 38 #include <sys/file.h> 39 #include <sys/stat.h> 40 #include <sys/kmem.h> 41 #include <sys/taskq.h> 42 #include <sys/uio.h> 43 #include <sys/vmsystm.h> 44 #include <sys/atomic.h> 45 #include <sys/vm.h> 46 #include <vm/seg_vn.h> 47 #include <vm/pvn.h> 48 #include <vm/as.h> 49 #include <vm/kpm.h> 50 #include <vm/seg_kpm.h> 51 #include <sys/mman.h> 52 #include <sys/pathname.h> 53 #include <sys/cmn_err.h> 54 #include <sys/errno.h> 55 #include <sys/unistd.h> 56 #include <sys/zfs_dir.h> 57 #include <sys/zfs_acl.h> 58 #include <sys/zfs_ioctl.h> 59 #include <sys/fs/zfs.h> 60 #include <sys/dmu.h> 61 #include <sys/dmu_objset.h> 62 #include <sys/spa.h> 63 #include <sys/txg.h> 64 #include <sys/dbuf.h> 65 #include <sys/zap.h> 66 #include <sys/sa.h> 67 #include <sys/dirent.h> 68 #include <sys/policy.h> 69 #include <sys/sunddi.h> 70 #include <sys/filio.h> 71 #include <sys/sid.h> 72 #include "fs/fs_subr.h" 73 #include <sys/zfs_ctldir.h> 74 #include <sys/zfs_fuid.h> 75 #include <sys/zfs_sa.h> 76 #include <sys/dnlc.h> 77 #include <sys/zfs_rlock.h> 78 #include <sys/extdirent.h> 79 #include <sys/kidmap.h> 80 #include <sys/cred.h> 81 #include <sys/attr.h> 82 83 /* 84 * Programming rules. 85 * 86 * Each vnode op performs some logical unit of work. To do this, the ZPL must 87 * properly lock its in-core state, create a DMU transaction, do the work, 88 * record this work in the intent log (ZIL), commit the DMU transaction, 89 * and wait for the intent log to commit if it is a synchronous operation. 90 * Moreover, the vnode ops must work in both normal and log replay context. 91 * The ordering of events is important to avoid deadlocks and references 92 * to freed memory. The example below illustrates the following Big Rules: 93 * 94 * (1) A check must be made in each zfs thread for a mounted file system. 95 * This is done avoiding races using ZFS_ENTER(zfsvfs). 96 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 97 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 98 * can return EIO from the calling function. 99 * 100 * (2) VN_RELE() should always be the last thing except for zil_commit() 101 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 102 * First, if it's the last reference, the vnode/znode 103 * can be freed, so the zp may point to freed memory. Second, the last 104 * reference will call zfs_zinactive(), which may induce a lot of work -- 105 * pushing cached pages (which acquires range locks) and syncing out 106 * cached atime changes. Third, zfs_zinactive() may require a new tx, 107 * which could deadlock the system if you were already holding one. 108 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 109 * 110 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 111 * as they can span dmu_tx_assign() calls. 112 * 113 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign(). 114 * This is critical because we don't want to block while holding locks. 115 * Note, in particular, that if a lock is sometimes acquired before 116 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 117 * use a non-blocking assign can deadlock the system. The scenario: 118 * 119 * Thread A has grabbed a lock before calling dmu_tx_assign(). 120 * Thread B is in an already-assigned tx, and blocks for this lock. 121 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 122 * forever, because the previous txg can't quiesce until B's tx commits. 123 * 124 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 125 * then drop all locks, call dmu_tx_wait(), and try again. 126 * 127 * (5) If the operation succeeded, generate the intent log entry for it 128 * before dropping locks. This ensures that the ordering of events 129 * in the intent log matches the order in which they actually occurred. 130 * During ZIL replay the zfs_log_* functions will update the sequence 131 * number to indicate the zil transaction has replayed. 132 * 133 * (6) At the end of each vnode op, the DMU tx must always commit, 134 * regardless of whether there were any errors. 135 * 136 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 137 * to ensure that synchronous semantics are provided when necessary. 138 * 139 * In general, this is how things should be ordered in each vnode op: 140 * 141 * ZFS_ENTER(zfsvfs); // exit if unmounted 142 * top: 143 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 144 * rw_enter(...); // grab any other locks you need 145 * tx = dmu_tx_create(...); // get DMU tx 146 * dmu_tx_hold_*(); // hold each object you might modify 147 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign 148 * if (error) { 149 * rw_exit(...); // drop locks 150 * zfs_dirent_unlock(dl); // unlock directory entry 151 * VN_RELE(...); // release held vnodes 152 * if (error == ERESTART) { 153 * dmu_tx_wait(tx); 154 * dmu_tx_abort(tx); 155 * goto top; 156 * } 157 * dmu_tx_abort(tx); // abort DMU tx 158 * ZFS_EXIT(zfsvfs); // finished in zfs 159 * return (error); // really out of space 160 * } 161 * error = do_real_work(); // do whatever this VOP does 162 * if (error == 0) 163 * zfs_log_*(...); // on success, make ZIL entry 164 * dmu_tx_commit(tx); // commit DMU tx -- error or not 165 * rw_exit(...); // drop locks 166 * zfs_dirent_unlock(dl); // unlock directory entry 167 * VN_RELE(...); // release held vnodes 168 * zil_commit(zilog, foid); // synchronous when necessary 169 * ZFS_EXIT(zfsvfs); // finished in zfs 170 * return (error); // done, report error 171 */ 172 173 /* ARGSUSED */ 174 static int 175 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 176 { 177 znode_t *zp = VTOZ(*vpp); 178 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 179 180 ZFS_ENTER(zfsvfs); 181 ZFS_VERIFY_ZP(zp); 182 183 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 184 ((flag & FAPPEND) == 0)) { 185 ZFS_EXIT(zfsvfs); 186 return (SET_ERROR(EPERM)); 187 } 188 189 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 190 ZTOV(zp)->v_type == VREG && 191 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 192 if (fs_vscan(*vpp, cr, 0) != 0) { 193 ZFS_EXIT(zfsvfs); 194 return (SET_ERROR(EACCES)); 195 } 196 } 197 198 /* Keep a count of the synchronous opens in the znode */ 199 if (flag & (FSYNC | FDSYNC)) 200 atomic_inc_32(&zp->z_sync_cnt); 201 202 ZFS_EXIT(zfsvfs); 203 return (0); 204 } 205 206 /* ARGSUSED */ 207 static int 208 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 209 caller_context_t *ct) 210 { 211 znode_t *zp = VTOZ(vp); 212 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 213 214 /* 215 * Clean up any locks held by this process on the vp. 216 */ 217 cleanlocks(vp, ddi_get_pid(), 0); 218 cleanshares(vp, ddi_get_pid()); 219 220 ZFS_ENTER(zfsvfs); 221 ZFS_VERIFY_ZP(zp); 222 223 /* Decrement the synchronous opens in the znode */ 224 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 225 atomic_dec_32(&zp->z_sync_cnt); 226 227 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 228 ZTOV(zp)->v_type == VREG && 229 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 230 VERIFY(fs_vscan(vp, cr, 1) == 0); 231 232 ZFS_EXIT(zfsvfs); 233 return (0); 234 } 235 236 /* 237 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 238 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 239 */ 240 static int 241 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 242 { 243 znode_t *zp = VTOZ(vp); 244 uint64_t noff = (uint64_t)*off; /* new offset */ 245 uint64_t file_sz; 246 int error; 247 boolean_t hole; 248 249 file_sz = zp->z_size; 250 if (noff >= file_sz) { 251 return (SET_ERROR(ENXIO)); 252 } 253 254 if (cmd == _FIO_SEEK_HOLE) 255 hole = B_TRUE; 256 else 257 hole = B_FALSE; 258 259 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 260 261 /* end of file? */ 262 if ((error == ESRCH) || (noff > file_sz)) { 263 /* 264 * Handle the virtual hole at the end of file. 265 */ 266 if (hole) { 267 *off = file_sz; 268 return (0); 269 } 270 return (SET_ERROR(ENXIO)); 271 } 272 273 if (noff < *off) 274 return (error); 275 *off = noff; 276 return (error); 277 } 278 279 /* ARGSUSED */ 280 static int 281 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 282 int *rvalp, caller_context_t *ct) 283 { 284 offset_t off; 285 int error; 286 zfsvfs_t *zfsvfs; 287 znode_t *zp; 288 289 switch (com) { 290 case _FIOFFS: 291 return (zfs_sync(vp->v_vfsp, 0, cred)); 292 293 /* 294 * The following two ioctls are used by bfu. Faking out, 295 * necessary to avoid bfu errors. 296 */ 297 case _FIOGDIO: 298 case _FIOSDIO: 299 return (0); 300 301 case _FIO_SEEK_DATA: 302 case _FIO_SEEK_HOLE: 303 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 304 return (SET_ERROR(EFAULT)); 305 306 zp = VTOZ(vp); 307 zfsvfs = zp->z_zfsvfs; 308 ZFS_ENTER(zfsvfs); 309 ZFS_VERIFY_ZP(zp); 310 311 /* offset parameter is in/out */ 312 error = zfs_holey(vp, com, &off); 313 ZFS_EXIT(zfsvfs); 314 if (error) 315 return (error); 316 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 317 return (SET_ERROR(EFAULT)); 318 return (0); 319 } 320 return (SET_ERROR(ENOTTY)); 321 } 322 323 /* 324 * Utility functions to map and unmap a single physical page. These 325 * are used to manage the mappable copies of ZFS file data, and therefore 326 * do not update ref/mod bits. 327 */ 328 caddr_t 329 zfs_map_page(page_t *pp, enum seg_rw rw) 330 { 331 if (kpm_enable) 332 return (hat_kpm_mapin(pp, 0)); 333 ASSERT(rw == S_READ || rw == S_WRITE); 334 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 335 (caddr_t)-1)); 336 } 337 338 void 339 zfs_unmap_page(page_t *pp, caddr_t addr) 340 { 341 if (kpm_enable) { 342 hat_kpm_mapout(pp, 0, addr); 343 } else { 344 ppmapout(addr); 345 } 346 } 347 348 /* 349 * When a file is memory mapped, we must keep the IO data synchronized 350 * between the DMU cache and the memory mapped pages. What this means: 351 * 352 * On Write: If we find a memory mapped page, we write to *both* 353 * the page and the dmu buffer. 354 */ 355 static void 356 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 357 { 358 int64_t off; 359 360 off = start & PAGEOFFSET; 361 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 362 page_t *pp; 363 uint64_t nbytes = MIN(PAGESIZE - off, len); 364 365 if (pp = page_lookup(vp, start, SE_SHARED)) { 366 caddr_t va; 367 368 va = zfs_map_page(pp, S_WRITE); 369 (void) dmu_read(os, oid, start+off, nbytes, va+off, 370 DMU_READ_PREFETCH); 371 zfs_unmap_page(pp, va); 372 page_unlock(pp); 373 } 374 len -= nbytes; 375 off = 0; 376 } 377 } 378 379 /* 380 * When a file is memory mapped, we must keep the IO data synchronized 381 * between the DMU cache and the memory mapped pages. What this means: 382 * 383 * On Read: We "read" preferentially from memory mapped pages, 384 * else we default from the dmu buffer. 385 * 386 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 387 * the file is memory mapped. 388 */ 389 static int 390 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 391 { 392 znode_t *zp = VTOZ(vp); 393 objset_t *os = zp->z_zfsvfs->z_os; 394 int64_t start, off; 395 int len = nbytes; 396 int error = 0; 397 398 start = uio->uio_loffset; 399 off = start & PAGEOFFSET; 400 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 401 page_t *pp; 402 uint64_t bytes = MIN(PAGESIZE - off, len); 403 404 if (pp = page_lookup(vp, start, SE_SHARED)) { 405 caddr_t va; 406 407 va = zfs_map_page(pp, S_READ); 408 error = uiomove(va + off, bytes, UIO_READ, uio); 409 zfs_unmap_page(pp, va); 410 page_unlock(pp); 411 } else { 412 error = dmu_read_uio(os, zp->z_id, uio, bytes); 413 } 414 len -= bytes; 415 off = 0; 416 if (error) 417 break; 418 } 419 return (error); 420 } 421 422 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 423 424 /* 425 * Read bytes from specified file into supplied buffer. 426 * 427 * IN: vp - vnode of file to be read from. 428 * uio - structure supplying read location, range info, 429 * and return buffer. 430 * ioflag - SYNC flags; used to provide FRSYNC semantics. 431 * cr - credentials of caller. 432 * ct - caller context 433 * 434 * OUT: uio - updated offset and range, buffer filled. 435 * 436 * RETURN: 0 on success, error code on failure. 437 * 438 * Side Effects: 439 * vp - atime updated if byte count > 0 440 */ 441 /* ARGSUSED */ 442 static int 443 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 444 { 445 znode_t *zp = VTOZ(vp); 446 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 447 objset_t *os; 448 ssize_t n, nbytes; 449 int error = 0; 450 rl_t *rl; 451 xuio_t *xuio = NULL; 452 453 ZFS_ENTER(zfsvfs); 454 ZFS_VERIFY_ZP(zp); 455 os = zfsvfs->z_os; 456 457 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 458 ZFS_EXIT(zfsvfs); 459 return (SET_ERROR(EACCES)); 460 } 461 462 /* 463 * Validate file offset 464 */ 465 if (uio->uio_loffset < (offset_t)0) { 466 ZFS_EXIT(zfsvfs); 467 return (SET_ERROR(EINVAL)); 468 } 469 470 /* 471 * Fasttrack empty reads 472 */ 473 if (uio->uio_resid == 0) { 474 ZFS_EXIT(zfsvfs); 475 return (0); 476 } 477 478 /* 479 * Check for mandatory locks 480 */ 481 if (MANDMODE(zp->z_mode)) { 482 if (error = chklock(vp, FREAD, 483 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 484 ZFS_EXIT(zfsvfs); 485 return (error); 486 } 487 } 488 489 /* 490 * If we're in FRSYNC mode, sync out this znode before reading it. 491 */ 492 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 493 zil_commit(zfsvfs->z_log, zp->z_id); 494 495 /* 496 * Lock the range against changes. 497 */ 498 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 499 500 /* 501 * If we are reading past end-of-file we can skip 502 * to the end; but we might still need to set atime. 503 */ 504 if (uio->uio_loffset >= zp->z_size) { 505 error = 0; 506 goto out; 507 } 508 509 ASSERT(uio->uio_loffset < zp->z_size); 510 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 511 512 if ((uio->uio_extflg == UIO_XUIO) && 513 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 514 int nblk; 515 int blksz = zp->z_blksz; 516 uint64_t offset = uio->uio_loffset; 517 518 xuio = (xuio_t *)uio; 519 if ((ISP2(blksz))) { 520 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 521 blksz)) / blksz; 522 } else { 523 ASSERT(offset + n <= blksz); 524 nblk = 1; 525 } 526 (void) dmu_xuio_init(xuio, nblk); 527 528 if (vn_has_cached_data(vp)) { 529 /* 530 * For simplicity, we always allocate a full buffer 531 * even if we only expect to read a portion of a block. 532 */ 533 while (--nblk >= 0) { 534 (void) dmu_xuio_add(xuio, 535 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 536 blksz), 0, blksz); 537 } 538 } 539 } 540 541 while (n > 0) { 542 nbytes = MIN(n, zfs_read_chunk_size - 543 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 544 545 if (vn_has_cached_data(vp)) 546 error = mappedread(vp, nbytes, uio); 547 else 548 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 549 if (error) { 550 /* convert checksum errors into IO errors */ 551 if (error == ECKSUM) 552 error = SET_ERROR(EIO); 553 break; 554 } 555 556 n -= nbytes; 557 } 558 out: 559 zfs_range_unlock(rl); 560 561 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 562 ZFS_EXIT(zfsvfs); 563 return (error); 564 } 565 566 /* 567 * Write the bytes to a file. 568 * 569 * IN: vp - vnode of file to be written to. 570 * uio - structure supplying write location, range info, 571 * and data buffer. 572 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is 573 * set if in append mode. 574 * cr - credentials of caller. 575 * ct - caller context (NFS/CIFS fem monitor only) 576 * 577 * OUT: uio - updated offset and range. 578 * 579 * RETURN: 0 on success, error code on failure. 580 * 581 * Timestamps: 582 * vp - ctime|mtime updated if byte count > 0 583 */ 584 585 /* ARGSUSED */ 586 static int 587 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 588 { 589 znode_t *zp = VTOZ(vp); 590 rlim64_t limit = uio->uio_llimit; 591 ssize_t start_resid = uio->uio_resid; 592 ssize_t tx_bytes; 593 uint64_t end_size; 594 dmu_tx_t *tx; 595 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 596 zilog_t *zilog; 597 offset_t woff; 598 ssize_t n, nbytes; 599 rl_t *rl; 600 int max_blksz = zfsvfs->z_max_blksz; 601 int error = 0; 602 arc_buf_t *abuf; 603 iovec_t *aiov = NULL; 604 xuio_t *xuio = NULL; 605 int i_iov = 0; 606 int iovcnt = uio->uio_iovcnt; 607 iovec_t *iovp = uio->uio_iov; 608 int write_eof; 609 int count = 0; 610 sa_bulk_attr_t bulk[4]; 611 uint64_t mtime[2], ctime[2]; 612 613 /* 614 * Fasttrack empty write 615 */ 616 n = start_resid; 617 if (n == 0) 618 return (0); 619 620 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 621 limit = MAXOFFSET_T; 622 623 ZFS_ENTER(zfsvfs); 624 ZFS_VERIFY_ZP(zp); 625 626 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 627 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 628 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 629 &zp->z_size, 8); 630 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 631 &zp->z_pflags, 8); 632 633 /* 634 * If immutable or not appending then return EPERM 635 */ 636 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 637 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 638 (uio->uio_loffset < zp->z_size))) { 639 ZFS_EXIT(zfsvfs); 640 return (SET_ERROR(EPERM)); 641 } 642 643 zilog = zfsvfs->z_log; 644 645 /* 646 * Validate file offset 647 */ 648 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 649 if (woff < 0) { 650 ZFS_EXIT(zfsvfs); 651 return (SET_ERROR(EINVAL)); 652 } 653 654 /* 655 * Check for mandatory locks before calling zfs_range_lock() 656 * in order to prevent a deadlock with locks set via fcntl(). 657 */ 658 if (MANDMODE((mode_t)zp->z_mode) && 659 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 660 ZFS_EXIT(zfsvfs); 661 return (error); 662 } 663 664 /* 665 * Pre-fault the pages to ensure slow (eg NFS) pages 666 * don't hold up txg. 667 * Skip this if uio contains loaned arc_buf. 668 */ 669 if ((uio->uio_extflg == UIO_XUIO) && 670 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 671 xuio = (xuio_t *)uio; 672 else 673 uio_prefaultpages(MIN(n, max_blksz), uio); 674 675 /* 676 * If in append mode, set the io offset pointer to eof. 677 */ 678 if (ioflag & FAPPEND) { 679 /* 680 * Obtain an appending range lock to guarantee file append 681 * semantics. We reset the write offset once we have the lock. 682 */ 683 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 684 woff = rl->r_off; 685 if (rl->r_len == UINT64_MAX) { 686 /* 687 * We overlocked the file because this write will cause 688 * the file block size to increase. 689 * Note that zp_size cannot change with this lock held. 690 */ 691 woff = zp->z_size; 692 } 693 uio->uio_loffset = woff; 694 } else { 695 /* 696 * Note that if the file block size will change as a result of 697 * this write, then this range lock will lock the entire file 698 * so that we can re-write the block safely. 699 */ 700 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 701 } 702 703 if (woff >= limit) { 704 zfs_range_unlock(rl); 705 ZFS_EXIT(zfsvfs); 706 return (SET_ERROR(EFBIG)); 707 } 708 709 if ((woff + n) > limit || woff > (limit - n)) 710 n = limit - woff; 711 712 /* Will this write extend the file length? */ 713 write_eof = (woff + n > zp->z_size); 714 715 end_size = MAX(zp->z_size, woff + n); 716 717 /* 718 * Write the file in reasonable size chunks. Each chunk is written 719 * in a separate transaction; this keeps the intent log records small 720 * and allows us to do more fine-grained space accounting. 721 */ 722 while (n > 0) { 723 abuf = NULL; 724 woff = uio->uio_loffset; 725 again: 726 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 727 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 728 if (abuf != NULL) 729 dmu_return_arcbuf(abuf); 730 error = SET_ERROR(EDQUOT); 731 break; 732 } 733 734 if (xuio && abuf == NULL) { 735 ASSERT(i_iov < iovcnt); 736 aiov = &iovp[i_iov]; 737 abuf = dmu_xuio_arcbuf(xuio, i_iov); 738 dmu_xuio_clear(xuio, i_iov); 739 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 740 iovec_t *, aiov, arc_buf_t *, abuf); 741 ASSERT((aiov->iov_base == abuf->b_data) || 742 ((char *)aiov->iov_base - (char *)abuf->b_data + 743 aiov->iov_len == arc_buf_size(abuf))); 744 i_iov++; 745 } else if (abuf == NULL && n >= max_blksz && 746 woff >= zp->z_size && 747 P2PHASE(woff, max_blksz) == 0 && 748 zp->z_blksz == max_blksz) { 749 /* 750 * This write covers a full block. "Borrow" a buffer 751 * from the dmu so that we can fill it before we enter 752 * a transaction. This avoids the possibility of 753 * holding up the transaction if the data copy hangs 754 * up on a pagefault (e.g., from an NFS server mapping). 755 */ 756 size_t cbytes; 757 758 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 759 max_blksz); 760 ASSERT(abuf != NULL); 761 ASSERT(arc_buf_size(abuf) == max_blksz); 762 if (error = uiocopy(abuf->b_data, max_blksz, 763 UIO_WRITE, uio, &cbytes)) { 764 dmu_return_arcbuf(abuf); 765 break; 766 } 767 ASSERT(cbytes == max_blksz); 768 } 769 770 /* 771 * Start a transaction. 772 */ 773 tx = dmu_tx_create(zfsvfs->z_os); 774 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 775 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 776 zfs_sa_upgrade_txholds(tx, zp); 777 error = dmu_tx_assign(tx, TXG_NOWAIT); 778 if (error) { 779 if (error == ERESTART) { 780 dmu_tx_wait(tx); 781 dmu_tx_abort(tx); 782 goto again; 783 } 784 dmu_tx_abort(tx); 785 if (abuf != NULL) 786 dmu_return_arcbuf(abuf); 787 break; 788 } 789 790 /* 791 * If zfs_range_lock() over-locked we grow the blocksize 792 * and then reduce the lock range. This will only happen 793 * on the first iteration since zfs_range_reduce() will 794 * shrink down r_len to the appropriate size. 795 */ 796 if (rl->r_len == UINT64_MAX) { 797 uint64_t new_blksz; 798 799 if (zp->z_blksz > max_blksz) { 800 ASSERT(!ISP2(zp->z_blksz)); 801 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 802 } else { 803 new_blksz = MIN(end_size, max_blksz); 804 } 805 zfs_grow_blocksize(zp, new_blksz, tx); 806 zfs_range_reduce(rl, woff, n); 807 } 808 809 /* 810 * XXX - should we really limit each write to z_max_blksz? 811 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 812 */ 813 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 814 815 if (abuf == NULL) { 816 tx_bytes = uio->uio_resid; 817 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 818 uio, nbytes, tx); 819 tx_bytes -= uio->uio_resid; 820 } else { 821 tx_bytes = nbytes; 822 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 823 /* 824 * If this is not a full block write, but we are 825 * extending the file past EOF and this data starts 826 * block-aligned, use assign_arcbuf(). Otherwise, 827 * write via dmu_write(). 828 */ 829 if (tx_bytes < max_blksz && (!write_eof || 830 aiov->iov_base != abuf->b_data)) { 831 ASSERT(xuio); 832 dmu_write(zfsvfs->z_os, zp->z_id, woff, 833 aiov->iov_len, aiov->iov_base, tx); 834 dmu_return_arcbuf(abuf); 835 xuio_stat_wbuf_copied(); 836 } else { 837 ASSERT(xuio || tx_bytes == max_blksz); 838 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), 839 woff, abuf, tx); 840 } 841 ASSERT(tx_bytes <= uio->uio_resid); 842 uioskip(uio, tx_bytes); 843 } 844 if (tx_bytes && vn_has_cached_data(vp)) { 845 update_pages(vp, woff, 846 tx_bytes, zfsvfs->z_os, zp->z_id); 847 } 848 849 /* 850 * If we made no progress, we're done. If we made even 851 * partial progress, update the znode and ZIL accordingly. 852 */ 853 if (tx_bytes == 0) { 854 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 855 (void *)&zp->z_size, sizeof (uint64_t), tx); 856 dmu_tx_commit(tx); 857 ASSERT(error != 0); 858 break; 859 } 860 861 /* 862 * Clear Set-UID/Set-GID bits on successful write if not 863 * privileged and at least one of the excute bits is set. 864 * 865 * It would be nice to to this after all writes have 866 * been done, but that would still expose the ISUID/ISGID 867 * to another app after the partial write is committed. 868 * 869 * Note: we don't call zfs_fuid_map_id() here because 870 * user 0 is not an ephemeral uid. 871 */ 872 mutex_enter(&zp->z_acl_lock); 873 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 874 (S_IXUSR >> 6))) != 0 && 875 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 876 secpolicy_vnode_setid_retain(cr, 877 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 878 uint64_t newmode; 879 zp->z_mode &= ~(S_ISUID | S_ISGID); 880 newmode = zp->z_mode; 881 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 882 (void *)&newmode, sizeof (uint64_t), tx); 883 } 884 mutex_exit(&zp->z_acl_lock); 885 886 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 887 B_TRUE); 888 889 /* 890 * Update the file size (zp_size) if it has changed; 891 * account for possible concurrent updates. 892 */ 893 while ((end_size = zp->z_size) < uio->uio_loffset) { 894 (void) atomic_cas_64(&zp->z_size, end_size, 895 uio->uio_loffset); 896 ASSERT(error == 0); 897 } 898 /* 899 * If we are replaying and eof is non zero then force 900 * the file size to the specified eof. Note, there's no 901 * concurrency during replay. 902 */ 903 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 904 zp->z_size = zfsvfs->z_replay_eof; 905 906 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 907 908 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 909 dmu_tx_commit(tx); 910 911 if (error != 0) 912 break; 913 ASSERT(tx_bytes == nbytes); 914 n -= nbytes; 915 916 if (!xuio && n > 0) 917 uio_prefaultpages(MIN(n, max_blksz), uio); 918 } 919 920 zfs_range_unlock(rl); 921 922 /* 923 * If we're in replay mode, or we made no progress, return error. 924 * Otherwise, it's at least a partial write, so it's successful. 925 */ 926 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 927 ZFS_EXIT(zfsvfs); 928 return (error); 929 } 930 931 if (ioflag & (FSYNC | FDSYNC) || 932 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 933 zil_commit(zilog, zp->z_id); 934 935 ZFS_EXIT(zfsvfs); 936 return (0); 937 } 938 939 void 940 zfs_get_done(zgd_t *zgd, int error) 941 { 942 znode_t *zp = zgd->zgd_private; 943 objset_t *os = zp->z_zfsvfs->z_os; 944 945 if (zgd->zgd_db) 946 dmu_buf_rele(zgd->zgd_db, zgd); 947 948 zfs_range_unlock(zgd->zgd_rl); 949 950 /* 951 * Release the vnode asynchronously as we currently have the 952 * txg stopped from syncing. 953 */ 954 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 955 956 if (error == 0 && zgd->zgd_bp) 957 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 958 959 kmem_free(zgd, sizeof (zgd_t)); 960 } 961 962 #ifdef DEBUG 963 static int zil_fault_io = 0; 964 #endif 965 966 /* 967 * Get data to generate a TX_WRITE intent log record. 968 */ 969 int 970 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 971 { 972 zfsvfs_t *zfsvfs = arg; 973 objset_t *os = zfsvfs->z_os; 974 znode_t *zp; 975 uint64_t object = lr->lr_foid; 976 uint64_t offset = lr->lr_offset; 977 uint64_t size = lr->lr_length; 978 blkptr_t *bp = &lr->lr_blkptr; 979 dmu_buf_t *db; 980 zgd_t *zgd; 981 int error = 0; 982 983 ASSERT(zio != NULL); 984 ASSERT(size != 0); 985 986 /* 987 * Nothing to do if the file has been removed 988 */ 989 if (zfs_zget(zfsvfs, object, &zp) != 0) 990 return (SET_ERROR(ENOENT)); 991 if (zp->z_unlinked) { 992 /* 993 * Release the vnode asynchronously as we currently have the 994 * txg stopped from syncing. 995 */ 996 VN_RELE_ASYNC(ZTOV(zp), 997 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 998 return (SET_ERROR(ENOENT)); 999 } 1000 1001 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1002 zgd->zgd_zilog = zfsvfs->z_log; 1003 zgd->zgd_private = zp; 1004 1005 /* 1006 * Write records come in two flavors: immediate and indirect. 1007 * For small writes it's cheaper to store the data with the 1008 * log record (immediate); for large writes it's cheaper to 1009 * sync the data and get a pointer to it (indirect) so that 1010 * we don't have to write the data twice. 1011 */ 1012 if (buf != NULL) { /* immediate write */ 1013 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 1014 /* test for truncation needs to be done while range locked */ 1015 if (offset >= zp->z_size) { 1016 error = SET_ERROR(ENOENT); 1017 } else { 1018 error = dmu_read(os, object, offset, size, buf, 1019 DMU_READ_NO_PREFETCH); 1020 } 1021 ASSERT(error == 0 || error == ENOENT); 1022 } else { /* indirect write */ 1023 /* 1024 * Have to lock the whole block to ensure when it's 1025 * written out and it's checksum is being calculated 1026 * that no one can change the data. We need to re-check 1027 * blocksize after we get the lock in case it's changed! 1028 */ 1029 for (;;) { 1030 uint64_t blkoff; 1031 size = zp->z_blksz; 1032 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1033 offset -= blkoff; 1034 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1035 RL_READER); 1036 if (zp->z_blksz == size) 1037 break; 1038 offset += blkoff; 1039 zfs_range_unlock(zgd->zgd_rl); 1040 } 1041 /* test for truncation needs to be done while range locked */ 1042 if (lr->lr_offset >= zp->z_size) 1043 error = SET_ERROR(ENOENT); 1044 #ifdef DEBUG 1045 if (zil_fault_io) { 1046 error = SET_ERROR(EIO); 1047 zil_fault_io = 0; 1048 } 1049 #endif 1050 if (error == 0) 1051 error = dmu_buf_hold(os, object, offset, zgd, &db, 1052 DMU_READ_NO_PREFETCH); 1053 1054 if (error == 0) { 1055 blkptr_t *obp = dmu_buf_get_blkptr(db); 1056 if (obp) { 1057 ASSERT(BP_IS_HOLE(bp)); 1058 *bp = *obp; 1059 } 1060 1061 zgd->zgd_db = db; 1062 zgd->zgd_bp = bp; 1063 1064 ASSERT(db->db_offset == offset); 1065 ASSERT(db->db_size == size); 1066 1067 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1068 zfs_get_done, zgd); 1069 ASSERT(error || lr->lr_length <= zp->z_blksz); 1070 1071 /* 1072 * On success, we need to wait for the write I/O 1073 * initiated by dmu_sync() to complete before we can 1074 * release this dbuf. We will finish everything up 1075 * in the zfs_get_done() callback. 1076 */ 1077 if (error == 0) 1078 return (0); 1079 1080 if (error == EALREADY) { 1081 lr->lr_common.lrc_txtype = TX_WRITE2; 1082 error = 0; 1083 } 1084 } 1085 } 1086 1087 zfs_get_done(zgd, error); 1088 1089 return (error); 1090 } 1091 1092 /*ARGSUSED*/ 1093 static int 1094 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1095 caller_context_t *ct) 1096 { 1097 znode_t *zp = VTOZ(vp); 1098 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1099 int error; 1100 1101 ZFS_ENTER(zfsvfs); 1102 ZFS_VERIFY_ZP(zp); 1103 1104 if (flag & V_ACE_MASK) 1105 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1106 else 1107 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1108 1109 ZFS_EXIT(zfsvfs); 1110 return (error); 1111 } 1112 1113 /* 1114 * If vnode is for a device return a specfs vnode instead. 1115 */ 1116 static int 1117 specvp_check(vnode_t **vpp, cred_t *cr) 1118 { 1119 int error = 0; 1120 1121 if (IS_DEVVP(*vpp)) { 1122 struct vnode *svp; 1123 1124 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1125 VN_RELE(*vpp); 1126 if (svp == NULL) 1127 error = SET_ERROR(ENOSYS); 1128 *vpp = svp; 1129 } 1130 return (error); 1131 } 1132 1133 1134 /* 1135 * Lookup an entry in a directory, or an extended attribute directory. 1136 * If it exists, return a held vnode reference for it. 1137 * 1138 * IN: dvp - vnode of directory to search. 1139 * nm - name of entry to lookup. 1140 * pnp - full pathname to lookup [UNUSED]. 1141 * flags - LOOKUP_XATTR set if looking for an attribute. 1142 * rdir - root directory vnode [UNUSED]. 1143 * cr - credentials of caller. 1144 * ct - caller context 1145 * direntflags - directory lookup flags 1146 * realpnp - returned pathname. 1147 * 1148 * OUT: vpp - vnode of located entry, NULL if not found. 1149 * 1150 * RETURN: 0 on success, error code on failure. 1151 * 1152 * Timestamps: 1153 * NA 1154 */ 1155 /* ARGSUSED */ 1156 static int 1157 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1158 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1159 int *direntflags, pathname_t *realpnp) 1160 { 1161 znode_t *zdp = VTOZ(dvp); 1162 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1163 int error = 0; 1164 1165 /* fast path */ 1166 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1167 1168 if (dvp->v_type != VDIR) { 1169 return (SET_ERROR(ENOTDIR)); 1170 } else if (zdp->z_sa_hdl == NULL) { 1171 return (SET_ERROR(EIO)); 1172 } 1173 1174 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1175 error = zfs_fastaccesschk_execute(zdp, cr); 1176 if (!error) { 1177 *vpp = dvp; 1178 VN_HOLD(*vpp); 1179 return (0); 1180 } 1181 return (error); 1182 } else { 1183 vnode_t *tvp = dnlc_lookup(dvp, nm); 1184 1185 if (tvp) { 1186 error = zfs_fastaccesschk_execute(zdp, cr); 1187 if (error) { 1188 VN_RELE(tvp); 1189 return (error); 1190 } 1191 if (tvp == DNLC_NO_VNODE) { 1192 VN_RELE(tvp); 1193 return (SET_ERROR(ENOENT)); 1194 } else { 1195 *vpp = tvp; 1196 return (specvp_check(vpp, cr)); 1197 } 1198 } 1199 } 1200 } 1201 1202 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1203 1204 ZFS_ENTER(zfsvfs); 1205 ZFS_VERIFY_ZP(zdp); 1206 1207 *vpp = NULL; 1208 1209 if (flags & LOOKUP_XATTR) { 1210 /* 1211 * If the xattr property is off, refuse the lookup request. 1212 */ 1213 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1214 ZFS_EXIT(zfsvfs); 1215 return (SET_ERROR(EINVAL)); 1216 } 1217 1218 /* 1219 * We don't allow recursive attributes.. 1220 * Maybe someday we will. 1221 */ 1222 if (zdp->z_pflags & ZFS_XATTR) { 1223 ZFS_EXIT(zfsvfs); 1224 return (SET_ERROR(EINVAL)); 1225 } 1226 1227 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1228 ZFS_EXIT(zfsvfs); 1229 return (error); 1230 } 1231 1232 /* 1233 * Do we have permission to get into attribute directory? 1234 */ 1235 1236 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1237 B_FALSE, cr)) { 1238 VN_RELE(*vpp); 1239 *vpp = NULL; 1240 } 1241 1242 ZFS_EXIT(zfsvfs); 1243 return (error); 1244 } 1245 1246 if (dvp->v_type != VDIR) { 1247 ZFS_EXIT(zfsvfs); 1248 return (SET_ERROR(ENOTDIR)); 1249 } 1250 1251 /* 1252 * Check accessibility of directory. 1253 */ 1254 1255 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1256 ZFS_EXIT(zfsvfs); 1257 return (error); 1258 } 1259 1260 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1261 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1262 ZFS_EXIT(zfsvfs); 1263 return (SET_ERROR(EILSEQ)); 1264 } 1265 1266 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1267 if (error == 0) 1268 error = specvp_check(vpp, cr); 1269 1270 ZFS_EXIT(zfsvfs); 1271 return (error); 1272 } 1273 1274 /* 1275 * Attempt to create a new entry in a directory. If the entry 1276 * already exists, truncate the file if permissible, else return 1277 * an error. Return the vp of the created or trunc'd file. 1278 * 1279 * IN: dvp - vnode of directory to put new file entry in. 1280 * name - name of new file entry. 1281 * vap - attributes of new file. 1282 * excl - flag indicating exclusive or non-exclusive mode. 1283 * mode - mode to open file with. 1284 * cr - credentials of caller. 1285 * flag - large file flag [UNUSED]. 1286 * ct - caller context 1287 * vsecp - ACL to be set 1288 * 1289 * OUT: vpp - vnode of created or trunc'd entry. 1290 * 1291 * RETURN: 0 on success, error code on failure. 1292 * 1293 * Timestamps: 1294 * dvp - ctime|mtime updated if new entry created 1295 * vp - ctime|mtime always, atime if new 1296 */ 1297 1298 /* ARGSUSED */ 1299 static int 1300 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1301 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1302 vsecattr_t *vsecp) 1303 { 1304 znode_t *zp, *dzp = VTOZ(dvp); 1305 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1306 zilog_t *zilog; 1307 objset_t *os; 1308 zfs_dirlock_t *dl; 1309 dmu_tx_t *tx; 1310 int error; 1311 ksid_t *ksid; 1312 uid_t uid; 1313 gid_t gid = crgetgid(cr); 1314 zfs_acl_ids_t acl_ids; 1315 boolean_t fuid_dirtied; 1316 boolean_t have_acl = B_FALSE; 1317 1318 /* 1319 * If we have an ephemeral id, ACL, or XVATTR then 1320 * make sure file system is at proper version 1321 */ 1322 1323 ksid = crgetsid(cr, KSID_OWNER); 1324 if (ksid) 1325 uid = ksid_getid(ksid); 1326 else 1327 uid = crgetuid(cr); 1328 1329 if (zfsvfs->z_use_fuids == B_FALSE && 1330 (vsecp || (vap->va_mask & AT_XVATTR) || 1331 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1332 return (SET_ERROR(EINVAL)); 1333 1334 ZFS_ENTER(zfsvfs); 1335 ZFS_VERIFY_ZP(dzp); 1336 os = zfsvfs->z_os; 1337 zilog = zfsvfs->z_log; 1338 1339 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1340 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1341 ZFS_EXIT(zfsvfs); 1342 return (SET_ERROR(EILSEQ)); 1343 } 1344 1345 if (vap->va_mask & AT_XVATTR) { 1346 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1347 crgetuid(cr), cr, vap->va_type)) != 0) { 1348 ZFS_EXIT(zfsvfs); 1349 return (error); 1350 } 1351 } 1352 top: 1353 *vpp = NULL; 1354 1355 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1356 vap->va_mode &= ~VSVTX; 1357 1358 if (*name == '\0') { 1359 /* 1360 * Null component name refers to the directory itself. 1361 */ 1362 VN_HOLD(dvp); 1363 zp = dzp; 1364 dl = NULL; 1365 error = 0; 1366 } else { 1367 /* possible VN_HOLD(zp) */ 1368 int zflg = 0; 1369 1370 if (flag & FIGNORECASE) 1371 zflg |= ZCILOOK; 1372 1373 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1374 NULL, NULL); 1375 if (error) { 1376 if (have_acl) 1377 zfs_acl_ids_free(&acl_ids); 1378 if (strcmp(name, "..") == 0) 1379 error = SET_ERROR(EISDIR); 1380 ZFS_EXIT(zfsvfs); 1381 return (error); 1382 } 1383 } 1384 1385 if (zp == NULL) { 1386 uint64_t txtype; 1387 1388 /* 1389 * Create a new file object and update the directory 1390 * to reference it. 1391 */ 1392 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1393 if (have_acl) 1394 zfs_acl_ids_free(&acl_ids); 1395 goto out; 1396 } 1397 1398 /* 1399 * We only support the creation of regular files in 1400 * extended attribute directories. 1401 */ 1402 1403 if ((dzp->z_pflags & ZFS_XATTR) && 1404 (vap->va_type != VREG)) { 1405 if (have_acl) 1406 zfs_acl_ids_free(&acl_ids); 1407 error = SET_ERROR(EINVAL); 1408 goto out; 1409 } 1410 1411 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1412 cr, vsecp, &acl_ids)) != 0) 1413 goto out; 1414 have_acl = B_TRUE; 1415 1416 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1417 zfs_acl_ids_free(&acl_ids); 1418 error = SET_ERROR(EDQUOT); 1419 goto out; 1420 } 1421 1422 tx = dmu_tx_create(os); 1423 1424 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1425 ZFS_SA_BASE_ATTR_SIZE); 1426 1427 fuid_dirtied = zfsvfs->z_fuid_dirty; 1428 if (fuid_dirtied) 1429 zfs_fuid_txhold(zfsvfs, tx); 1430 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1431 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1432 if (!zfsvfs->z_use_sa && 1433 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1434 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1435 0, acl_ids.z_aclp->z_acl_bytes); 1436 } 1437 error = dmu_tx_assign(tx, TXG_NOWAIT); 1438 if (error) { 1439 zfs_dirent_unlock(dl); 1440 if (error == ERESTART) { 1441 dmu_tx_wait(tx); 1442 dmu_tx_abort(tx); 1443 goto top; 1444 } 1445 zfs_acl_ids_free(&acl_ids); 1446 dmu_tx_abort(tx); 1447 ZFS_EXIT(zfsvfs); 1448 return (error); 1449 } 1450 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1451 1452 if (fuid_dirtied) 1453 zfs_fuid_sync(zfsvfs, tx); 1454 1455 (void) zfs_link_create(dl, zp, tx, ZNEW); 1456 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1457 if (flag & FIGNORECASE) 1458 txtype |= TX_CI; 1459 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1460 vsecp, acl_ids.z_fuidp, vap); 1461 zfs_acl_ids_free(&acl_ids); 1462 dmu_tx_commit(tx); 1463 } else { 1464 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1465 1466 if (have_acl) 1467 zfs_acl_ids_free(&acl_ids); 1468 have_acl = B_FALSE; 1469 1470 /* 1471 * A directory entry already exists for this name. 1472 */ 1473 /* 1474 * Can't truncate an existing file if in exclusive mode. 1475 */ 1476 if (excl == EXCL) { 1477 error = SET_ERROR(EEXIST); 1478 goto out; 1479 } 1480 /* 1481 * Can't open a directory for writing. 1482 */ 1483 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1484 error = SET_ERROR(EISDIR); 1485 goto out; 1486 } 1487 /* 1488 * Verify requested access to file. 1489 */ 1490 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1491 goto out; 1492 } 1493 1494 mutex_enter(&dzp->z_lock); 1495 dzp->z_seq++; 1496 mutex_exit(&dzp->z_lock); 1497 1498 /* 1499 * Truncate regular files if requested. 1500 */ 1501 if ((ZTOV(zp)->v_type == VREG) && 1502 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1503 /* we can't hold any locks when calling zfs_freesp() */ 1504 zfs_dirent_unlock(dl); 1505 dl = NULL; 1506 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1507 if (error == 0) { 1508 vnevent_create(ZTOV(zp), ct); 1509 } 1510 } 1511 } 1512 out: 1513 1514 if (dl) 1515 zfs_dirent_unlock(dl); 1516 1517 if (error) { 1518 if (zp) 1519 VN_RELE(ZTOV(zp)); 1520 } else { 1521 *vpp = ZTOV(zp); 1522 error = specvp_check(vpp, cr); 1523 } 1524 1525 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1526 zil_commit(zilog, 0); 1527 1528 ZFS_EXIT(zfsvfs); 1529 return (error); 1530 } 1531 1532 /* 1533 * Remove an entry from a directory. 1534 * 1535 * IN: dvp - vnode of directory to remove entry from. 1536 * name - name of entry to remove. 1537 * cr - credentials of caller. 1538 * ct - caller context 1539 * flags - case flags 1540 * 1541 * RETURN: 0 on success, error code on failure. 1542 * 1543 * Timestamps: 1544 * dvp - ctime|mtime 1545 * vp - ctime (if nlink > 0) 1546 */ 1547 1548 uint64_t null_xattr = 0; 1549 1550 /*ARGSUSED*/ 1551 static int 1552 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1553 int flags) 1554 { 1555 znode_t *zp, *dzp = VTOZ(dvp); 1556 znode_t *xzp; 1557 vnode_t *vp; 1558 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1559 zilog_t *zilog; 1560 uint64_t acl_obj, xattr_obj; 1561 uint64_t xattr_obj_unlinked = 0; 1562 uint64_t obj = 0; 1563 zfs_dirlock_t *dl; 1564 dmu_tx_t *tx; 1565 boolean_t may_delete_now, delete_now = FALSE; 1566 boolean_t unlinked, toobig = FALSE; 1567 uint64_t txtype; 1568 pathname_t *realnmp = NULL; 1569 pathname_t realnm; 1570 int error; 1571 int zflg = ZEXISTS; 1572 1573 ZFS_ENTER(zfsvfs); 1574 ZFS_VERIFY_ZP(dzp); 1575 zilog = zfsvfs->z_log; 1576 1577 if (flags & FIGNORECASE) { 1578 zflg |= ZCILOOK; 1579 pn_alloc(&realnm); 1580 realnmp = &realnm; 1581 } 1582 1583 top: 1584 xattr_obj = 0; 1585 xzp = NULL; 1586 /* 1587 * Attempt to lock directory; fail if entry doesn't exist. 1588 */ 1589 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1590 NULL, realnmp)) { 1591 if (realnmp) 1592 pn_free(realnmp); 1593 ZFS_EXIT(zfsvfs); 1594 return (error); 1595 } 1596 1597 vp = ZTOV(zp); 1598 1599 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1600 goto out; 1601 } 1602 1603 /* 1604 * Need to use rmdir for removing directories. 1605 */ 1606 if (vp->v_type == VDIR) { 1607 error = SET_ERROR(EPERM); 1608 goto out; 1609 } 1610 1611 vnevent_remove(vp, dvp, name, ct); 1612 1613 if (realnmp) 1614 dnlc_remove(dvp, realnmp->pn_buf); 1615 else 1616 dnlc_remove(dvp, name); 1617 1618 mutex_enter(&vp->v_lock); 1619 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1620 mutex_exit(&vp->v_lock); 1621 1622 /* 1623 * We may delete the znode now, or we may put it in the unlinked set; 1624 * it depends on whether we're the last link, and on whether there are 1625 * other holds on the vnode. So we dmu_tx_hold() the right things to 1626 * allow for either case. 1627 */ 1628 obj = zp->z_id; 1629 tx = dmu_tx_create(zfsvfs->z_os); 1630 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1631 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1632 zfs_sa_upgrade_txholds(tx, zp); 1633 zfs_sa_upgrade_txholds(tx, dzp); 1634 if (may_delete_now) { 1635 toobig = 1636 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1637 /* if the file is too big, only hold_free a token amount */ 1638 dmu_tx_hold_free(tx, zp->z_id, 0, 1639 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1640 } 1641 1642 /* are there any extended attributes? */ 1643 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1644 &xattr_obj, sizeof (xattr_obj)); 1645 if (error == 0 && xattr_obj) { 1646 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1647 ASSERT0(error); 1648 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1649 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1650 } 1651 1652 mutex_enter(&zp->z_lock); 1653 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1654 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1655 mutex_exit(&zp->z_lock); 1656 1657 /* charge as an update -- would be nice not to charge at all */ 1658 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1659 1660 error = dmu_tx_assign(tx, TXG_NOWAIT); 1661 if (error) { 1662 zfs_dirent_unlock(dl); 1663 VN_RELE(vp); 1664 if (xzp) 1665 VN_RELE(ZTOV(xzp)); 1666 if (error == ERESTART) { 1667 dmu_tx_wait(tx); 1668 dmu_tx_abort(tx); 1669 goto top; 1670 } 1671 if (realnmp) 1672 pn_free(realnmp); 1673 dmu_tx_abort(tx); 1674 ZFS_EXIT(zfsvfs); 1675 return (error); 1676 } 1677 1678 /* 1679 * Remove the directory entry. 1680 */ 1681 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1682 1683 if (error) { 1684 dmu_tx_commit(tx); 1685 goto out; 1686 } 1687 1688 if (unlinked) { 1689 1690 /* 1691 * Hold z_lock so that we can make sure that the ACL obj 1692 * hasn't changed. Could have been deleted due to 1693 * zfs_sa_upgrade(). 1694 */ 1695 mutex_enter(&zp->z_lock); 1696 mutex_enter(&vp->v_lock); 1697 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1698 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1699 delete_now = may_delete_now && !toobig && 1700 vp->v_count == 1 && !vn_has_cached_data(vp) && 1701 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1702 acl_obj; 1703 mutex_exit(&vp->v_lock); 1704 } 1705 1706 if (delete_now) { 1707 if (xattr_obj_unlinked) { 1708 ASSERT3U(xzp->z_links, ==, 2); 1709 mutex_enter(&xzp->z_lock); 1710 xzp->z_unlinked = 1; 1711 xzp->z_links = 0; 1712 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1713 &xzp->z_links, sizeof (xzp->z_links), tx); 1714 ASSERT3U(error, ==, 0); 1715 mutex_exit(&xzp->z_lock); 1716 zfs_unlinked_add(xzp, tx); 1717 1718 if (zp->z_is_sa) 1719 error = sa_remove(zp->z_sa_hdl, 1720 SA_ZPL_XATTR(zfsvfs), tx); 1721 else 1722 error = sa_update(zp->z_sa_hdl, 1723 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1724 sizeof (uint64_t), tx); 1725 ASSERT0(error); 1726 } 1727 mutex_enter(&vp->v_lock); 1728 vp->v_count--; 1729 ASSERT0(vp->v_count); 1730 mutex_exit(&vp->v_lock); 1731 mutex_exit(&zp->z_lock); 1732 zfs_znode_delete(zp, tx); 1733 } else if (unlinked) { 1734 mutex_exit(&zp->z_lock); 1735 zfs_unlinked_add(zp, tx); 1736 } 1737 1738 txtype = TX_REMOVE; 1739 if (flags & FIGNORECASE) 1740 txtype |= TX_CI; 1741 zfs_log_remove(zilog, tx, txtype, dzp, name, obj); 1742 1743 dmu_tx_commit(tx); 1744 out: 1745 if (realnmp) 1746 pn_free(realnmp); 1747 1748 zfs_dirent_unlock(dl); 1749 1750 if (!delete_now) 1751 VN_RELE(vp); 1752 if (xzp) 1753 VN_RELE(ZTOV(xzp)); 1754 1755 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1756 zil_commit(zilog, 0); 1757 1758 ZFS_EXIT(zfsvfs); 1759 return (error); 1760 } 1761 1762 /* 1763 * Create a new directory and insert it into dvp using the name 1764 * provided. Return a pointer to the inserted directory. 1765 * 1766 * IN: dvp - vnode of directory to add subdir to. 1767 * dirname - name of new directory. 1768 * vap - attributes of new directory. 1769 * cr - credentials of caller. 1770 * ct - caller context 1771 * flags - case flags 1772 * vsecp - ACL to be set 1773 * 1774 * OUT: vpp - vnode of created directory. 1775 * 1776 * RETURN: 0 on success, error code on failure. 1777 * 1778 * Timestamps: 1779 * dvp - ctime|mtime updated 1780 * vp - ctime|mtime|atime updated 1781 */ 1782 /*ARGSUSED*/ 1783 static int 1784 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1785 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1786 { 1787 znode_t *zp, *dzp = VTOZ(dvp); 1788 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1789 zilog_t *zilog; 1790 zfs_dirlock_t *dl; 1791 uint64_t txtype; 1792 dmu_tx_t *tx; 1793 int error; 1794 int zf = ZNEW; 1795 ksid_t *ksid; 1796 uid_t uid; 1797 gid_t gid = crgetgid(cr); 1798 zfs_acl_ids_t acl_ids; 1799 boolean_t fuid_dirtied; 1800 1801 ASSERT(vap->va_type == VDIR); 1802 1803 /* 1804 * If we have an ephemeral id, ACL, or XVATTR then 1805 * make sure file system is at proper version 1806 */ 1807 1808 ksid = crgetsid(cr, KSID_OWNER); 1809 if (ksid) 1810 uid = ksid_getid(ksid); 1811 else 1812 uid = crgetuid(cr); 1813 if (zfsvfs->z_use_fuids == B_FALSE && 1814 (vsecp || (vap->va_mask & AT_XVATTR) || 1815 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1816 return (SET_ERROR(EINVAL)); 1817 1818 ZFS_ENTER(zfsvfs); 1819 ZFS_VERIFY_ZP(dzp); 1820 zilog = zfsvfs->z_log; 1821 1822 if (dzp->z_pflags & ZFS_XATTR) { 1823 ZFS_EXIT(zfsvfs); 1824 return (SET_ERROR(EINVAL)); 1825 } 1826 1827 if (zfsvfs->z_utf8 && u8_validate(dirname, 1828 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1829 ZFS_EXIT(zfsvfs); 1830 return (SET_ERROR(EILSEQ)); 1831 } 1832 if (flags & FIGNORECASE) 1833 zf |= ZCILOOK; 1834 1835 if (vap->va_mask & AT_XVATTR) { 1836 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1837 crgetuid(cr), cr, vap->va_type)) != 0) { 1838 ZFS_EXIT(zfsvfs); 1839 return (error); 1840 } 1841 } 1842 1843 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 1844 vsecp, &acl_ids)) != 0) { 1845 ZFS_EXIT(zfsvfs); 1846 return (error); 1847 } 1848 /* 1849 * First make sure the new directory doesn't exist. 1850 * 1851 * Existence is checked first to make sure we don't return 1852 * EACCES instead of EEXIST which can cause some applications 1853 * to fail. 1854 */ 1855 top: 1856 *vpp = NULL; 1857 1858 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1859 NULL, NULL)) { 1860 zfs_acl_ids_free(&acl_ids); 1861 ZFS_EXIT(zfsvfs); 1862 return (error); 1863 } 1864 1865 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1866 zfs_acl_ids_free(&acl_ids); 1867 zfs_dirent_unlock(dl); 1868 ZFS_EXIT(zfsvfs); 1869 return (error); 1870 } 1871 1872 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1873 zfs_acl_ids_free(&acl_ids); 1874 zfs_dirent_unlock(dl); 1875 ZFS_EXIT(zfsvfs); 1876 return (SET_ERROR(EDQUOT)); 1877 } 1878 1879 /* 1880 * Add a new entry to the directory. 1881 */ 1882 tx = dmu_tx_create(zfsvfs->z_os); 1883 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1884 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1885 fuid_dirtied = zfsvfs->z_fuid_dirty; 1886 if (fuid_dirtied) 1887 zfs_fuid_txhold(zfsvfs, tx); 1888 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1889 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1890 acl_ids.z_aclp->z_acl_bytes); 1891 } 1892 1893 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1894 ZFS_SA_BASE_ATTR_SIZE); 1895 1896 error = dmu_tx_assign(tx, TXG_NOWAIT); 1897 if (error) { 1898 zfs_dirent_unlock(dl); 1899 if (error == ERESTART) { 1900 dmu_tx_wait(tx); 1901 dmu_tx_abort(tx); 1902 goto top; 1903 } 1904 zfs_acl_ids_free(&acl_ids); 1905 dmu_tx_abort(tx); 1906 ZFS_EXIT(zfsvfs); 1907 return (error); 1908 } 1909 1910 /* 1911 * Create new node. 1912 */ 1913 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1914 1915 if (fuid_dirtied) 1916 zfs_fuid_sync(zfsvfs, tx); 1917 1918 /* 1919 * Now put new name in parent dir. 1920 */ 1921 (void) zfs_link_create(dl, zp, tx, ZNEW); 1922 1923 *vpp = ZTOV(zp); 1924 1925 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1926 if (flags & FIGNORECASE) 1927 txtype |= TX_CI; 1928 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 1929 acl_ids.z_fuidp, vap); 1930 1931 zfs_acl_ids_free(&acl_ids); 1932 1933 dmu_tx_commit(tx); 1934 1935 zfs_dirent_unlock(dl); 1936 1937 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1938 zil_commit(zilog, 0); 1939 1940 ZFS_EXIT(zfsvfs); 1941 return (0); 1942 } 1943 1944 /* 1945 * Remove a directory subdir entry. If the current working 1946 * directory is the same as the subdir to be removed, the 1947 * remove will fail. 1948 * 1949 * IN: dvp - vnode of directory to remove from. 1950 * name - name of directory to be removed. 1951 * cwd - vnode of current working directory. 1952 * cr - credentials of caller. 1953 * ct - caller context 1954 * flags - case flags 1955 * 1956 * RETURN: 0 on success, error code on failure. 1957 * 1958 * Timestamps: 1959 * dvp - ctime|mtime updated 1960 */ 1961 /*ARGSUSED*/ 1962 static int 1963 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1964 caller_context_t *ct, int flags) 1965 { 1966 znode_t *dzp = VTOZ(dvp); 1967 znode_t *zp; 1968 vnode_t *vp; 1969 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1970 zilog_t *zilog; 1971 zfs_dirlock_t *dl; 1972 dmu_tx_t *tx; 1973 int error; 1974 int zflg = ZEXISTS; 1975 1976 ZFS_ENTER(zfsvfs); 1977 ZFS_VERIFY_ZP(dzp); 1978 zilog = zfsvfs->z_log; 1979 1980 if (flags & FIGNORECASE) 1981 zflg |= ZCILOOK; 1982 top: 1983 zp = NULL; 1984 1985 /* 1986 * Attempt to lock directory; fail if entry doesn't exist. 1987 */ 1988 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1989 NULL, NULL)) { 1990 ZFS_EXIT(zfsvfs); 1991 return (error); 1992 } 1993 1994 vp = ZTOV(zp); 1995 1996 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1997 goto out; 1998 } 1999 2000 if (vp->v_type != VDIR) { 2001 error = SET_ERROR(ENOTDIR); 2002 goto out; 2003 } 2004 2005 if (vp == cwd) { 2006 error = SET_ERROR(EINVAL); 2007 goto out; 2008 } 2009 2010 vnevent_rmdir(vp, dvp, name, ct); 2011 2012 /* 2013 * Grab a lock on the directory to make sure that noone is 2014 * trying to add (or lookup) entries while we are removing it. 2015 */ 2016 rw_enter(&zp->z_name_lock, RW_WRITER); 2017 2018 /* 2019 * Grab a lock on the parent pointer to make sure we play well 2020 * with the treewalk and directory rename code. 2021 */ 2022 rw_enter(&zp->z_parent_lock, RW_WRITER); 2023 2024 tx = dmu_tx_create(zfsvfs->z_os); 2025 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2026 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2027 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2028 zfs_sa_upgrade_txholds(tx, zp); 2029 zfs_sa_upgrade_txholds(tx, dzp); 2030 error = dmu_tx_assign(tx, TXG_NOWAIT); 2031 if (error) { 2032 rw_exit(&zp->z_parent_lock); 2033 rw_exit(&zp->z_name_lock); 2034 zfs_dirent_unlock(dl); 2035 VN_RELE(vp); 2036 if (error == ERESTART) { 2037 dmu_tx_wait(tx); 2038 dmu_tx_abort(tx); 2039 goto top; 2040 } 2041 dmu_tx_abort(tx); 2042 ZFS_EXIT(zfsvfs); 2043 return (error); 2044 } 2045 2046 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2047 2048 if (error == 0) { 2049 uint64_t txtype = TX_RMDIR; 2050 if (flags & FIGNORECASE) 2051 txtype |= TX_CI; 2052 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT); 2053 } 2054 2055 dmu_tx_commit(tx); 2056 2057 rw_exit(&zp->z_parent_lock); 2058 rw_exit(&zp->z_name_lock); 2059 out: 2060 zfs_dirent_unlock(dl); 2061 2062 VN_RELE(vp); 2063 2064 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2065 zil_commit(zilog, 0); 2066 2067 ZFS_EXIT(zfsvfs); 2068 return (error); 2069 } 2070 2071 /* 2072 * Read as many directory entries as will fit into the provided 2073 * buffer from the given directory cursor position (specified in 2074 * the uio structure). 2075 * 2076 * IN: vp - vnode of directory to read. 2077 * uio - structure supplying read location, range info, 2078 * and return buffer. 2079 * cr - credentials of caller. 2080 * ct - caller context 2081 * flags - case flags 2082 * 2083 * OUT: uio - updated offset and range, buffer filled. 2084 * eofp - set to true if end-of-file detected. 2085 * 2086 * RETURN: 0 on success, error code on failure. 2087 * 2088 * Timestamps: 2089 * vp - atime updated 2090 * 2091 * Note that the low 4 bits of the cookie returned by zap is always zero. 2092 * This allows us to use the low range for "special" directory entries: 2093 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2094 * we use the offset 2 for the '.zfs' directory. 2095 */ 2096 /* ARGSUSED */ 2097 static int 2098 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2099 caller_context_t *ct, int flags) 2100 { 2101 znode_t *zp = VTOZ(vp); 2102 iovec_t *iovp; 2103 edirent_t *eodp; 2104 dirent64_t *odp; 2105 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2106 objset_t *os; 2107 caddr_t outbuf; 2108 size_t bufsize; 2109 zap_cursor_t zc; 2110 zap_attribute_t zap; 2111 uint_t bytes_wanted; 2112 uint64_t offset; /* must be unsigned; checks for < 1 */ 2113 uint64_t parent; 2114 int local_eof; 2115 int outcount; 2116 int error; 2117 uint8_t prefetch; 2118 boolean_t check_sysattrs; 2119 2120 ZFS_ENTER(zfsvfs); 2121 ZFS_VERIFY_ZP(zp); 2122 2123 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2124 &parent, sizeof (parent))) != 0) { 2125 ZFS_EXIT(zfsvfs); 2126 return (error); 2127 } 2128 2129 /* 2130 * If we are not given an eof variable, 2131 * use a local one. 2132 */ 2133 if (eofp == NULL) 2134 eofp = &local_eof; 2135 2136 /* 2137 * Check for valid iov_len. 2138 */ 2139 if (uio->uio_iov->iov_len <= 0) { 2140 ZFS_EXIT(zfsvfs); 2141 return (SET_ERROR(EINVAL)); 2142 } 2143 2144 /* 2145 * Quit if directory has been removed (posix) 2146 */ 2147 if ((*eofp = zp->z_unlinked) != 0) { 2148 ZFS_EXIT(zfsvfs); 2149 return (0); 2150 } 2151 2152 error = 0; 2153 os = zfsvfs->z_os; 2154 offset = uio->uio_loffset; 2155 prefetch = zp->z_zn_prefetch; 2156 2157 /* 2158 * Initialize the iterator cursor. 2159 */ 2160 if (offset <= 3) { 2161 /* 2162 * Start iteration from the beginning of the directory. 2163 */ 2164 zap_cursor_init(&zc, os, zp->z_id); 2165 } else { 2166 /* 2167 * The offset is a serialized cursor. 2168 */ 2169 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2170 } 2171 2172 /* 2173 * Get space to change directory entries into fs independent format. 2174 */ 2175 iovp = uio->uio_iov; 2176 bytes_wanted = iovp->iov_len; 2177 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2178 bufsize = bytes_wanted; 2179 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2180 odp = (struct dirent64 *)outbuf; 2181 } else { 2182 bufsize = bytes_wanted; 2183 outbuf = NULL; 2184 odp = (struct dirent64 *)iovp->iov_base; 2185 } 2186 eodp = (struct edirent *)odp; 2187 2188 /* 2189 * If this VFS supports the system attribute view interface; and 2190 * we're looking at an extended attribute directory; and we care 2191 * about normalization conflicts on this vfs; then we must check 2192 * for normalization conflicts with the sysattr name space. 2193 */ 2194 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2195 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2196 (flags & V_RDDIR_ENTFLAGS); 2197 2198 /* 2199 * Transform to file-system independent format 2200 */ 2201 outcount = 0; 2202 while (outcount < bytes_wanted) { 2203 ino64_t objnum; 2204 ushort_t reclen; 2205 off64_t *next = NULL; 2206 2207 /* 2208 * Special case `.', `..', and `.zfs'. 2209 */ 2210 if (offset == 0) { 2211 (void) strcpy(zap.za_name, "."); 2212 zap.za_normalization_conflict = 0; 2213 objnum = zp->z_id; 2214 } else if (offset == 1) { 2215 (void) strcpy(zap.za_name, ".."); 2216 zap.za_normalization_conflict = 0; 2217 objnum = parent; 2218 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2219 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2220 zap.za_normalization_conflict = 0; 2221 objnum = ZFSCTL_INO_ROOT; 2222 } else { 2223 /* 2224 * Grab next entry. 2225 */ 2226 if (error = zap_cursor_retrieve(&zc, &zap)) { 2227 if ((*eofp = (error == ENOENT)) != 0) 2228 break; 2229 else 2230 goto update; 2231 } 2232 2233 if (zap.za_integer_length != 8 || 2234 zap.za_num_integers != 1) { 2235 cmn_err(CE_WARN, "zap_readdir: bad directory " 2236 "entry, obj = %lld, offset = %lld\n", 2237 (u_longlong_t)zp->z_id, 2238 (u_longlong_t)offset); 2239 error = SET_ERROR(ENXIO); 2240 goto update; 2241 } 2242 2243 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2244 /* 2245 * MacOS X can extract the object type here such as: 2246 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2247 */ 2248 2249 if (check_sysattrs && !zap.za_normalization_conflict) { 2250 zap.za_normalization_conflict = 2251 xattr_sysattr_casechk(zap.za_name); 2252 } 2253 } 2254 2255 if (flags & V_RDDIR_ACCFILTER) { 2256 /* 2257 * If we have no access at all, don't include 2258 * this entry in the returned information 2259 */ 2260 znode_t *ezp; 2261 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2262 goto skip_entry; 2263 if (!zfs_has_access(ezp, cr)) { 2264 VN_RELE(ZTOV(ezp)); 2265 goto skip_entry; 2266 } 2267 VN_RELE(ZTOV(ezp)); 2268 } 2269 2270 if (flags & V_RDDIR_ENTFLAGS) 2271 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2272 else 2273 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2274 2275 /* 2276 * Will this entry fit in the buffer? 2277 */ 2278 if (outcount + reclen > bufsize) { 2279 /* 2280 * Did we manage to fit anything in the buffer? 2281 */ 2282 if (!outcount) { 2283 error = SET_ERROR(EINVAL); 2284 goto update; 2285 } 2286 break; 2287 } 2288 if (flags & V_RDDIR_ENTFLAGS) { 2289 /* 2290 * Add extended flag entry: 2291 */ 2292 eodp->ed_ino = objnum; 2293 eodp->ed_reclen = reclen; 2294 /* NOTE: ed_off is the offset for the *next* entry */ 2295 next = &(eodp->ed_off); 2296 eodp->ed_eflags = zap.za_normalization_conflict ? 2297 ED_CASE_CONFLICT : 0; 2298 (void) strncpy(eodp->ed_name, zap.za_name, 2299 EDIRENT_NAMELEN(reclen)); 2300 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2301 } else { 2302 /* 2303 * Add normal entry: 2304 */ 2305 odp->d_ino = objnum; 2306 odp->d_reclen = reclen; 2307 /* NOTE: d_off is the offset for the *next* entry */ 2308 next = &(odp->d_off); 2309 (void) strncpy(odp->d_name, zap.za_name, 2310 DIRENT64_NAMELEN(reclen)); 2311 odp = (dirent64_t *)((intptr_t)odp + reclen); 2312 } 2313 outcount += reclen; 2314 2315 ASSERT(outcount <= bufsize); 2316 2317 /* Prefetch znode */ 2318 if (prefetch) 2319 dmu_prefetch(os, objnum, 0, 0); 2320 2321 skip_entry: 2322 /* 2323 * Move to the next entry, fill in the previous offset. 2324 */ 2325 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2326 zap_cursor_advance(&zc); 2327 offset = zap_cursor_serialize(&zc); 2328 } else { 2329 offset += 1; 2330 } 2331 if (next) 2332 *next = offset; 2333 } 2334 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2335 2336 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2337 iovp->iov_base += outcount; 2338 iovp->iov_len -= outcount; 2339 uio->uio_resid -= outcount; 2340 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2341 /* 2342 * Reset the pointer. 2343 */ 2344 offset = uio->uio_loffset; 2345 } 2346 2347 update: 2348 zap_cursor_fini(&zc); 2349 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2350 kmem_free(outbuf, bufsize); 2351 2352 if (error == ENOENT) 2353 error = 0; 2354 2355 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2356 2357 uio->uio_loffset = offset; 2358 ZFS_EXIT(zfsvfs); 2359 return (error); 2360 } 2361 2362 ulong_t zfs_fsync_sync_cnt = 4; 2363 2364 static int 2365 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2366 { 2367 znode_t *zp = VTOZ(vp); 2368 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2369 2370 /* 2371 * Regardless of whether this is required for standards conformance, 2372 * this is the logical behavior when fsync() is called on a file with 2373 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2374 * going to be pushed out as part of the zil_commit(). 2375 */ 2376 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2377 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2378 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2379 2380 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2381 2382 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2383 ZFS_ENTER(zfsvfs); 2384 ZFS_VERIFY_ZP(zp); 2385 zil_commit(zfsvfs->z_log, zp->z_id); 2386 ZFS_EXIT(zfsvfs); 2387 } 2388 return (0); 2389 } 2390 2391 2392 /* 2393 * Get the requested file attributes and place them in the provided 2394 * vattr structure. 2395 * 2396 * IN: vp - vnode of file. 2397 * vap - va_mask identifies requested attributes. 2398 * If AT_XVATTR set, then optional attrs are requested 2399 * flags - ATTR_NOACLCHECK (CIFS server context) 2400 * cr - credentials of caller. 2401 * ct - caller context 2402 * 2403 * OUT: vap - attribute values. 2404 * 2405 * RETURN: 0 (always succeeds). 2406 */ 2407 /* ARGSUSED */ 2408 static int 2409 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2410 caller_context_t *ct) 2411 { 2412 znode_t *zp = VTOZ(vp); 2413 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2414 int error = 0; 2415 uint64_t links; 2416 uint64_t mtime[2], ctime[2]; 2417 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2418 xoptattr_t *xoap = NULL; 2419 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2420 sa_bulk_attr_t bulk[2]; 2421 int count = 0; 2422 2423 ZFS_ENTER(zfsvfs); 2424 ZFS_VERIFY_ZP(zp); 2425 2426 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2427 2428 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2429 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2430 2431 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2432 ZFS_EXIT(zfsvfs); 2433 return (error); 2434 } 2435 2436 /* 2437 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2438 * Also, if we are the owner don't bother, since owner should 2439 * always be allowed to read basic attributes of file. 2440 */ 2441 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && 2442 (vap->va_uid != crgetuid(cr))) { 2443 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2444 skipaclchk, cr)) { 2445 ZFS_EXIT(zfsvfs); 2446 return (error); 2447 } 2448 } 2449 2450 /* 2451 * Return all attributes. It's cheaper to provide the answer 2452 * than to determine whether we were asked the question. 2453 */ 2454 2455 mutex_enter(&zp->z_lock); 2456 vap->va_type = vp->v_type; 2457 vap->va_mode = zp->z_mode & MODEMASK; 2458 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2459 vap->va_nodeid = zp->z_id; 2460 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2461 links = zp->z_links + 1; 2462 else 2463 links = zp->z_links; 2464 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2465 vap->va_size = zp->z_size; 2466 vap->va_rdev = vp->v_rdev; 2467 vap->va_seq = zp->z_seq; 2468 2469 /* 2470 * Add in any requested optional attributes and the create time. 2471 * Also set the corresponding bits in the returned attribute bitmap. 2472 */ 2473 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2474 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2475 xoap->xoa_archive = 2476 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2477 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2478 } 2479 2480 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2481 xoap->xoa_readonly = 2482 ((zp->z_pflags & ZFS_READONLY) != 0); 2483 XVA_SET_RTN(xvap, XAT_READONLY); 2484 } 2485 2486 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2487 xoap->xoa_system = 2488 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2489 XVA_SET_RTN(xvap, XAT_SYSTEM); 2490 } 2491 2492 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2493 xoap->xoa_hidden = 2494 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2495 XVA_SET_RTN(xvap, XAT_HIDDEN); 2496 } 2497 2498 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2499 xoap->xoa_nounlink = 2500 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2501 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2502 } 2503 2504 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2505 xoap->xoa_immutable = 2506 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2507 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2508 } 2509 2510 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2511 xoap->xoa_appendonly = 2512 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2513 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2514 } 2515 2516 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2517 xoap->xoa_nodump = 2518 ((zp->z_pflags & ZFS_NODUMP) != 0); 2519 XVA_SET_RTN(xvap, XAT_NODUMP); 2520 } 2521 2522 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2523 xoap->xoa_opaque = 2524 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2525 XVA_SET_RTN(xvap, XAT_OPAQUE); 2526 } 2527 2528 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2529 xoap->xoa_av_quarantined = 2530 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2531 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2532 } 2533 2534 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2535 xoap->xoa_av_modified = 2536 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2537 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2538 } 2539 2540 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2541 vp->v_type == VREG) { 2542 zfs_sa_get_scanstamp(zp, xvap); 2543 } 2544 2545 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2546 uint64_t times[2]; 2547 2548 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2549 times, sizeof (times)); 2550 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2551 XVA_SET_RTN(xvap, XAT_CREATETIME); 2552 } 2553 2554 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2555 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2556 XVA_SET_RTN(xvap, XAT_REPARSE); 2557 } 2558 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 2559 xoap->xoa_generation = zp->z_gen; 2560 XVA_SET_RTN(xvap, XAT_GEN); 2561 } 2562 2563 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 2564 xoap->xoa_offline = 2565 ((zp->z_pflags & ZFS_OFFLINE) != 0); 2566 XVA_SET_RTN(xvap, XAT_OFFLINE); 2567 } 2568 2569 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 2570 xoap->xoa_sparse = 2571 ((zp->z_pflags & ZFS_SPARSE) != 0); 2572 XVA_SET_RTN(xvap, XAT_SPARSE); 2573 } 2574 } 2575 2576 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2577 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2578 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2579 2580 mutex_exit(&zp->z_lock); 2581 2582 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2583 2584 if (zp->z_blksz == 0) { 2585 /* 2586 * Block size hasn't been set; suggest maximal I/O transfers. 2587 */ 2588 vap->va_blksize = zfsvfs->z_max_blksz; 2589 } 2590 2591 ZFS_EXIT(zfsvfs); 2592 return (0); 2593 } 2594 2595 /* 2596 * Set the file attributes to the values contained in the 2597 * vattr structure. 2598 * 2599 * IN: vp - vnode of file to be modified. 2600 * vap - new attribute values. 2601 * If AT_XVATTR set, then optional attrs are being set 2602 * flags - ATTR_UTIME set if non-default time values provided. 2603 * - ATTR_NOACLCHECK (CIFS context only). 2604 * cr - credentials of caller. 2605 * ct - caller context 2606 * 2607 * RETURN: 0 on success, error code on failure. 2608 * 2609 * Timestamps: 2610 * vp - ctime updated, mtime updated if size changed. 2611 */ 2612 /* ARGSUSED */ 2613 static int 2614 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2615 caller_context_t *ct) 2616 { 2617 znode_t *zp = VTOZ(vp); 2618 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2619 zilog_t *zilog; 2620 dmu_tx_t *tx; 2621 vattr_t oldva; 2622 xvattr_t tmpxvattr; 2623 uint_t mask = vap->va_mask; 2624 uint_t saved_mask = 0; 2625 int trim_mask = 0; 2626 uint64_t new_mode; 2627 uint64_t new_uid, new_gid; 2628 uint64_t xattr_obj; 2629 uint64_t mtime[2], ctime[2]; 2630 znode_t *attrzp; 2631 int need_policy = FALSE; 2632 int err, err2; 2633 zfs_fuid_info_t *fuidp = NULL; 2634 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2635 xoptattr_t *xoap; 2636 zfs_acl_t *aclp; 2637 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2638 boolean_t fuid_dirtied = B_FALSE; 2639 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2640 int count = 0, xattr_count = 0; 2641 2642 if (mask == 0) 2643 return (0); 2644 2645 if (mask & AT_NOSET) 2646 return (SET_ERROR(EINVAL)); 2647 2648 ZFS_ENTER(zfsvfs); 2649 ZFS_VERIFY_ZP(zp); 2650 2651 zilog = zfsvfs->z_log; 2652 2653 /* 2654 * Make sure that if we have ephemeral uid/gid or xvattr specified 2655 * that file system is at proper version level 2656 */ 2657 2658 if (zfsvfs->z_use_fuids == B_FALSE && 2659 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2660 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2661 (mask & AT_XVATTR))) { 2662 ZFS_EXIT(zfsvfs); 2663 return (SET_ERROR(EINVAL)); 2664 } 2665 2666 if (mask & AT_SIZE && vp->v_type == VDIR) { 2667 ZFS_EXIT(zfsvfs); 2668 return (SET_ERROR(EISDIR)); 2669 } 2670 2671 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2672 ZFS_EXIT(zfsvfs); 2673 return (SET_ERROR(EINVAL)); 2674 } 2675 2676 /* 2677 * If this is an xvattr_t, then get a pointer to the structure of 2678 * optional attributes. If this is NULL, then we have a vattr_t. 2679 */ 2680 xoap = xva_getxoptattr(xvap); 2681 2682 xva_init(&tmpxvattr); 2683 2684 /* 2685 * Immutable files can only alter immutable bit and atime 2686 */ 2687 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2688 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2689 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2690 ZFS_EXIT(zfsvfs); 2691 return (SET_ERROR(EPERM)); 2692 } 2693 2694 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) { 2695 ZFS_EXIT(zfsvfs); 2696 return (SET_ERROR(EPERM)); 2697 } 2698 2699 /* 2700 * Verify timestamps doesn't overflow 32 bits. 2701 * ZFS can handle large timestamps, but 32bit syscalls can't 2702 * handle times greater than 2039. This check should be removed 2703 * once large timestamps are fully supported. 2704 */ 2705 if (mask & (AT_ATIME | AT_MTIME)) { 2706 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2707 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2708 ZFS_EXIT(zfsvfs); 2709 return (SET_ERROR(EOVERFLOW)); 2710 } 2711 } 2712 2713 top: 2714 attrzp = NULL; 2715 aclp = NULL; 2716 2717 /* Can this be moved to before the top label? */ 2718 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2719 ZFS_EXIT(zfsvfs); 2720 return (SET_ERROR(EROFS)); 2721 } 2722 2723 /* 2724 * First validate permissions 2725 */ 2726 2727 if (mask & AT_SIZE) { 2728 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2729 if (err) { 2730 ZFS_EXIT(zfsvfs); 2731 return (err); 2732 } 2733 /* 2734 * XXX - Note, we are not providing any open 2735 * mode flags here (like FNDELAY), so we may 2736 * block if there are locks present... this 2737 * should be addressed in openat(). 2738 */ 2739 /* XXX - would it be OK to generate a log record here? */ 2740 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2741 if (err) { 2742 ZFS_EXIT(zfsvfs); 2743 return (err); 2744 } 2745 } 2746 2747 if (mask & (AT_ATIME|AT_MTIME) || 2748 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2749 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2750 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2751 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 2752 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 2753 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2754 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2755 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2756 skipaclchk, cr); 2757 } 2758 2759 if (mask & (AT_UID|AT_GID)) { 2760 int idmask = (mask & (AT_UID|AT_GID)); 2761 int take_owner; 2762 int take_group; 2763 2764 /* 2765 * NOTE: even if a new mode is being set, 2766 * we may clear S_ISUID/S_ISGID bits. 2767 */ 2768 2769 if (!(mask & AT_MODE)) 2770 vap->va_mode = zp->z_mode; 2771 2772 /* 2773 * Take ownership or chgrp to group we are a member of 2774 */ 2775 2776 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2777 take_group = (mask & AT_GID) && 2778 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2779 2780 /* 2781 * If both AT_UID and AT_GID are set then take_owner and 2782 * take_group must both be set in order to allow taking 2783 * ownership. 2784 * 2785 * Otherwise, send the check through secpolicy_vnode_setattr() 2786 * 2787 */ 2788 2789 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2790 ((idmask == AT_UID) && take_owner) || 2791 ((idmask == AT_GID) && take_group)) { 2792 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2793 skipaclchk, cr) == 0) { 2794 /* 2795 * Remove setuid/setgid for non-privileged users 2796 */ 2797 secpolicy_setid_clear(vap, cr); 2798 trim_mask = (mask & (AT_UID|AT_GID)); 2799 } else { 2800 need_policy = TRUE; 2801 } 2802 } else { 2803 need_policy = TRUE; 2804 } 2805 } 2806 2807 mutex_enter(&zp->z_lock); 2808 oldva.va_mode = zp->z_mode; 2809 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2810 if (mask & AT_XVATTR) { 2811 /* 2812 * Update xvattr mask to include only those attributes 2813 * that are actually changing. 2814 * 2815 * the bits will be restored prior to actually setting 2816 * the attributes so the caller thinks they were set. 2817 */ 2818 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2819 if (xoap->xoa_appendonly != 2820 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2821 need_policy = TRUE; 2822 } else { 2823 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2824 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2825 } 2826 } 2827 2828 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2829 if (xoap->xoa_nounlink != 2830 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2831 need_policy = TRUE; 2832 } else { 2833 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2834 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2835 } 2836 } 2837 2838 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2839 if (xoap->xoa_immutable != 2840 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2841 need_policy = TRUE; 2842 } else { 2843 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2844 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2845 } 2846 } 2847 2848 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2849 if (xoap->xoa_nodump != 2850 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2851 need_policy = TRUE; 2852 } else { 2853 XVA_CLR_REQ(xvap, XAT_NODUMP); 2854 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2855 } 2856 } 2857 2858 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2859 if (xoap->xoa_av_modified != 2860 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2861 need_policy = TRUE; 2862 } else { 2863 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2864 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2865 } 2866 } 2867 2868 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2869 if ((vp->v_type != VREG && 2870 xoap->xoa_av_quarantined) || 2871 xoap->xoa_av_quarantined != 2872 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 2873 need_policy = TRUE; 2874 } else { 2875 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2876 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2877 } 2878 } 2879 2880 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2881 mutex_exit(&zp->z_lock); 2882 ZFS_EXIT(zfsvfs); 2883 return (SET_ERROR(EPERM)); 2884 } 2885 2886 if (need_policy == FALSE && 2887 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2888 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2889 need_policy = TRUE; 2890 } 2891 } 2892 2893 mutex_exit(&zp->z_lock); 2894 2895 if (mask & AT_MODE) { 2896 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2897 err = secpolicy_setid_setsticky_clear(vp, vap, 2898 &oldva, cr); 2899 if (err) { 2900 ZFS_EXIT(zfsvfs); 2901 return (err); 2902 } 2903 trim_mask |= AT_MODE; 2904 } else { 2905 need_policy = TRUE; 2906 } 2907 } 2908 2909 if (need_policy) { 2910 /* 2911 * If trim_mask is set then take ownership 2912 * has been granted or write_acl is present and user 2913 * has the ability to modify mode. In that case remove 2914 * UID|GID and or MODE from mask so that 2915 * secpolicy_vnode_setattr() doesn't revoke it. 2916 */ 2917 2918 if (trim_mask) { 2919 saved_mask = vap->va_mask; 2920 vap->va_mask &= ~trim_mask; 2921 } 2922 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2923 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2924 if (err) { 2925 ZFS_EXIT(zfsvfs); 2926 return (err); 2927 } 2928 2929 if (trim_mask) 2930 vap->va_mask |= saved_mask; 2931 } 2932 2933 /* 2934 * secpolicy_vnode_setattr, or take ownership may have 2935 * changed va_mask 2936 */ 2937 mask = vap->va_mask; 2938 2939 if ((mask & (AT_UID | AT_GID))) { 2940 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 2941 &xattr_obj, sizeof (xattr_obj)); 2942 2943 if (err == 0 && xattr_obj) { 2944 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 2945 if (err) 2946 goto out2; 2947 } 2948 if (mask & AT_UID) { 2949 new_uid = zfs_fuid_create(zfsvfs, 2950 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 2951 if (new_uid != zp->z_uid && 2952 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { 2953 if (attrzp) 2954 VN_RELE(ZTOV(attrzp)); 2955 err = SET_ERROR(EDQUOT); 2956 goto out2; 2957 } 2958 } 2959 2960 if (mask & AT_GID) { 2961 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 2962 cr, ZFS_GROUP, &fuidp); 2963 if (new_gid != zp->z_gid && 2964 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { 2965 if (attrzp) 2966 VN_RELE(ZTOV(attrzp)); 2967 err = SET_ERROR(EDQUOT); 2968 goto out2; 2969 } 2970 } 2971 } 2972 tx = dmu_tx_create(zfsvfs->z_os); 2973 2974 if (mask & AT_MODE) { 2975 uint64_t pmode = zp->z_mode; 2976 uint64_t acl_obj; 2977 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2978 2979 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && 2980 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { 2981 err = SET_ERROR(EPERM); 2982 goto out; 2983 } 2984 2985 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 2986 goto out; 2987 2988 mutex_enter(&zp->z_lock); 2989 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 2990 /* 2991 * Are we upgrading ACL from old V0 format 2992 * to V1 format? 2993 */ 2994 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 2995 zfs_znode_acl_version(zp) == 2996 ZFS_ACL_VERSION_INITIAL) { 2997 dmu_tx_hold_free(tx, acl_obj, 0, 2998 DMU_OBJECT_END); 2999 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3000 0, aclp->z_acl_bytes); 3001 } else { 3002 dmu_tx_hold_write(tx, acl_obj, 0, 3003 aclp->z_acl_bytes); 3004 } 3005 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3006 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3007 0, aclp->z_acl_bytes); 3008 } 3009 mutex_exit(&zp->z_lock); 3010 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3011 } else { 3012 if ((mask & AT_XVATTR) && 3013 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3014 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3015 else 3016 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3017 } 3018 3019 if (attrzp) { 3020 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 3021 } 3022 3023 fuid_dirtied = zfsvfs->z_fuid_dirty; 3024 if (fuid_dirtied) 3025 zfs_fuid_txhold(zfsvfs, tx); 3026 3027 zfs_sa_upgrade_txholds(tx, zp); 3028 3029 err = dmu_tx_assign(tx, TXG_NOWAIT); 3030 if (err) { 3031 if (err == ERESTART) 3032 dmu_tx_wait(tx); 3033 goto out; 3034 } 3035 3036 count = 0; 3037 /* 3038 * Set each attribute requested. 3039 * We group settings according to the locks they need to acquire. 3040 * 3041 * Note: you cannot set ctime directly, although it will be 3042 * updated as a side-effect of calling this function. 3043 */ 3044 3045 3046 if (mask & (AT_UID|AT_GID|AT_MODE)) 3047 mutex_enter(&zp->z_acl_lock); 3048 mutex_enter(&zp->z_lock); 3049 3050 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3051 &zp->z_pflags, sizeof (zp->z_pflags)); 3052 3053 if (attrzp) { 3054 if (mask & (AT_UID|AT_GID|AT_MODE)) 3055 mutex_enter(&attrzp->z_acl_lock); 3056 mutex_enter(&attrzp->z_lock); 3057 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3058 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3059 sizeof (attrzp->z_pflags)); 3060 } 3061 3062 if (mask & (AT_UID|AT_GID)) { 3063 3064 if (mask & AT_UID) { 3065 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3066 &new_uid, sizeof (new_uid)); 3067 zp->z_uid = new_uid; 3068 if (attrzp) { 3069 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3070 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3071 sizeof (new_uid)); 3072 attrzp->z_uid = new_uid; 3073 } 3074 } 3075 3076 if (mask & AT_GID) { 3077 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3078 NULL, &new_gid, sizeof (new_gid)); 3079 zp->z_gid = new_gid; 3080 if (attrzp) { 3081 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3082 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3083 sizeof (new_gid)); 3084 attrzp->z_gid = new_gid; 3085 } 3086 } 3087 if (!(mask & AT_MODE)) { 3088 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3089 NULL, &new_mode, sizeof (new_mode)); 3090 new_mode = zp->z_mode; 3091 } 3092 err = zfs_acl_chown_setattr(zp); 3093 ASSERT(err == 0); 3094 if (attrzp) { 3095 err = zfs_acl_chown_setattr(attrzp); 3096 ASSERT(err == 0); 3097 } 3098 } 3099 3100 if (mask & AT_MODE) { 3101 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3102 &new_mode, sizeof (new_mode)); 3103 zp->z_mode = new_mode; 3104 ASSERT3U((uintptr_t)aclp, !=, NULL); 3105 err = zfs_aclset_common(zp, aclp, cr, tx); 3106 ASSERT0(err); 3107 if (zp->z_acl_cached) 3108 zfs_acl_free(zp->z_acl_cached); 3109 zp->z_acl_cached = aclp; 3110 aclp = NULL; 3111 } 3112 3113 3114 if (mask & AT_ATIME) { 3115 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3116 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3117 &zp->z_atime, sizeof (zp->z_atime)); 3118 } 3119 3120 if (mask & AT_MTIME) { 3121 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3122 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3123 mtime, sizeof (mtime)); 3124 } 3125 3126 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3127 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3128 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3129 NULL, mtime, sizeof (mtime)); 3130 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3131 &ctime, sizeof (ctime)); 3132 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3133 B_TRUE); 3134 } else if (mask != 0) { 3135 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3136 &ctime, sizeof (ctime)); 3137 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3138 B_TRUE); 3139 if (attrzp) { 3140 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3141 SA_ZPL_CTIME(zfsvfs), NULL, 3142 &ctime, sizeof (ctime)); 3143 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3144 mtime, ctime, B_TRUE); 3145 } 3146 } 3147 /* 3148 * Do this after setting timestamps to prevent timestamp 3149 * update from toggling bit 3150 */ 3151 3152 if (xoap && (mask & AT_XVATTR)) { 3153 3154 /* 3155 * restore trimmed off masks 3156 * so that return masks can be set for caller. 3157 */ 3158 3159 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3160 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3161 } 3162 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3163 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3164 } 3165 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3166 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3167 } 3168 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3169 XVA_SET_REQ(xvap, XAT_NODUMP); 3170 } 3171 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3172 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3173 } 3174 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3175 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3176 } 3177 3178 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3179 ASSERT(vp->v_type == VREG); 3180 3181 zfs_xvattr_set(zp, xvap, tx); 3182 } 3183 3184 if (fuid_dirtied) 3185 zfs_fuid_sync(zfsvfs, tx); 3186 3187 if (mask != 0) 3188 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3189 3190 mutex_exit(&zp->z_lock); 3191 if (mask & (AT_UID|AT_GID|AT_MODE)) 3192 mutex_exit(&zp->z_acl_lock); 3193 3194 if (attrzp) { 3195 if (mask & (AT_UID|AT_GID|AT_MODE)) 3196 mutex_exit(&attrzp->z_acl_lock); 3197 mutex_exit(&attrzp->z_lock); 3198 } 3199 out: 3200 if (err == 0 && attrzp) { 3201 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3202 xattr_count, tx); 3203 ASSERT(err2 == 0); 3204 } 3205 3206 if (attrzp) 3207 VN_RELE(ZTOV(attrzp)); 3208 3209 if (aclp) 3210 zfs_acl_free(aclp); 3211 3212 if (fuidp) { 3213 zfs_fuid_info_free(fuidp); 3214 fuidp = NULL; 3215 } 3216 3217 if (err) { 3218 dmu_tx_abort(tx); 3219 if (err == ERESTART) 3220 goto top; 3221 } else { 3222 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3223 dmu_tx_commit(tx); 3224 } 3225 3226 out2: 3227 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3228 zil_commit(zilog, 0); 3229 3230 ZFS_EXIT(zfsvfs); 3231 return (err); 3232 } 3233 3234 typedef struct zfs_zlock { 3235 krwlock_t *zl_rwlock; /* lock we acquired */ 3236 znode_t *zl_znode; /* znode we held */ 3237 struct zfs_zlock *zl_next; /* next in list */ 3238 } zfs_zlock_t; 3239 3240 /* 3241 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3242 */ 3243 static void 3244 zfs_rename_unlock(zfs_zlock_t **zlpp) 3245 { 3246 zfs_zlock_t *zl; 3247 3248 while ((zl = *zlpp) != NULL) { 3249 if (zl->zl_znode != NULL) 3250 VN_RELE(ZTOV(zl->zl_znode)); 3251 rw_exit(zl->zl_rwlock); 3252 *zlpp = zl->zl_next; 3253 kmem_free(zl, sizeof (*zl)); 3254 } 3255 } 3256 3257 /* 3258 * Search back through the directory tree, using the ".." entries. 3259 * Lock each directory in the chain to prevent concurrent renames. 3260 * Fail any attempt to move a directory into one of its own descendants. 3261 * XXX - z_parent_lock can overlap with map or grow locks 3262 */ 3263 static int 3264 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3265 { 3266 zfs_zlock_t *zl; 3267 znode_t *zp = tdzp; 3268 uint64_t rootid = zp->z_zfsvfs->z_root; 3269 uint64_t oidp = zp->z_id; 3270 krwlock_t *rwlp = &szp->z_parent_lock; 3271 krw_t rw = RW_WRITER; 3272 3273 /* 3274 * First pass write-locks szp and compares to zp->z_id. 3275 * Later passes read-lock zp and compare to zp->z_parent. 3276 */ 3277 do { 3278 if (!rw_tryenter(rwlp, rw)) { 3279 /* 3280 * Another thread is renaming in this path. 3281 * Note that if we are a WRITER, we don't have any 3282 * parent_locks held yet. 3283 */ 3284 if (rw == RW_READER && zp->z_id > szp->z_id) { 3285 /* 3286 * Drop our locks and restart 3287 */ 3288 zfs_rename_unlock(&zl); 3289 *zlpp = NULL; 3290 zp = tdzp; 3291 oidp = zp->z_id; 3292 rwlp = &szp->z_parent_lock; 3293 rw = RW_WRITER; 3294 continue; 3295 } else { 3296 /* 3297 * Wait for other thread to drop its locks 3298 */ 3299 rw_enter(rwlp, rw); 3300 } 3301 } 3302 3303 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3304 zl->zl_rwlock = rwlp; 3305 zl->zl_znode = NULL; 3306 zl->zl_next = *zlpp; 3307 *zlpp = zl; 3308 3309 if (oidp == szp->z_id) /* We're a descendant of szp */ 3310 return (SET_ERROR(EINVAL)); 3311 3312 if (oidp == rootid) /* We've hit the top */ 3313 return (0); 3314 3315 if (rw == RW_READER) { /* i.e. not the first pass */ 3316 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3317 if (error) 3318 return (error); 3319 zl->zl_znode = zp; 3320 } 3321 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3322 &oidp, sizeof (oidp)); 3323 rwlp = &zp->z_parent_lock; 3324 rw = RW_READER; 3325 3326 } while (zp->z_id != sdzp->z_id); 3327 3328 return (0); 3329 } 3330 3331 /* 3332 * Move an entry from the provided source directory to the target 3333 * directory. Change the entry name as indicated. 3334 * 3335 * IN: sdvp - Source directory containing the "old entry". 3336 * snm - Old entry name. 3337 * tdvp - Target directory to contain the "new entry". 3338 * tnm - New entry name. 3339 * cr - credentials of caller. 3340 * ct - caller context 3341 * flags - case flags 3342 * 3343 * RETURN: 0 on success, error code on failure. 3344 * 3345 * Timestamps: 3346 * sdvp,tdvp - ctime|mtime updated 3347 */ 3348 /*ARGSUSED*/ 3349 static int 3350 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3351 caller_context_t *ct, int flags) 3352 { 3353 znode_t *tdzp, *szp, *tzp; 3354 znode_t *sdzp = VTOZ(sdvp); 3355 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3356 zilog_t *zilog; 3357 vnode_t *realvp; 3358 zfs_dirlock_t *sdl, *tdl; 3359 dmu_tx_t *tx; 3360 zfs_zlock_t *zl; 3361 int cmp, serr, terr; 3362 int error = 0; 3363 int zflg = 0; 3364 3365 ZFS_ENTER(zfsvfs); 3366 ZFS_VERIFY_ZP(sdzp); 3367 zilog = zfsvfs->z_log; 3368 3369 /* 3370 * Make sure we have the real vp for the target directory. 3371 */ 3372 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3373 tdvp = realvp; 3374 3375 if (tdvp->v_vfsp != sdvp->v_vfsp || zfsctl_is_node(tdvp)) { 3376 ZFS_EXIT(zfsvfs); 3377 return (SET_ERROR(EXDEV)); 3378 } 3379 3380 tdzp = VTOZ(tdvp); 3381 ZFS_VERIFY_ZP(tdzp); 3382 if (zfsvfs->z_utf8 && u8_validate(tnm, 3383 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3384 ZFS_EXIT(zfsvfs); 3385 return (SET_ERROR(EILSEQ)); 3386 } 3387 3388 if (flags & FIGNORECASE) 3389 zflg |= ZCILOOK; 3390 3391 top: 3392 szp = NULL; 3393 tzp = NULL; 3394 zl = NULL; 3395 3396 /* 3397 * This is to prevent the creation of links into attribute space 3398 * by renaming a linked file into/outof an attribute directory. 3399 * See the comment in zfs_link() for why this is considered bad. 3400 */ 3401 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3402 ZFS_EXIT(zfsvfs); 3403 return (SET_ERROR(EINVAL)); 3404 } 3405 3406 /* 3407 * Lock source and target directory entries. To prevent deadlock, 3408 * a lock ordering must be defined. We lock the directory with 3409 * the smallest object id first, or if it's a tie, the one with 3410 * the lexically first name. 3411 */ 3412 if (sdzp->z_id < tdzp->z_id) { 3413 cmp = -1; 3414 } else if (sdzp->z_id > tdzp->z_id) { 3415 cmp = 1; 3416 } else { 3417 /* 3418 * First compare the two name arguments without 3419 * considering any case folding. 3420 */ 3421 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3422 3423 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3424 ASSERT(error == 0 || !zfsvfs->z_utf8); 3425 if (cmp == 0) { 3426 /* 3427 * POSIX: "If the old argument and the new argument 3428 * both refer to links to the same existing file, 3429 * the rename() function shall return successfully 3430 * and perform no other action." 3431 */ 3432 ZFS_EXIT(zfsvfs); 3433 return (0); 3434 } 3435 /* 3436 * If the file system is case-folding, then we may 3437 * have some more checking to do. A case-folding file 3438 * system is either supporting mixed case sensitivity 3439 * access or is completely case-insensitive. Note 3440 * that the file system is always case preserving. 3441 * 3442 * In mixed sensitivity mode case sensitive behavior 3443 * is the default. FIGNORECASE must be used to 3444 * explicitly request case insensitive behavior. 3445 * 3446 * If the source and target names provided differ only 3447 * by case (e.g., a request to rename 'tim' to 'Tim'), 3448 * we will treat this as a special case in the 3449 * case-insensitive mode: as long as the source name 3450 * is an exact match, we will allow this to proceed as 3451 * a name-change request. 3452 */ 3453 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3454 (zfsvfs->z_case == ZFS_CASE_MIXED && 3455 flags & FIGNORECASE)) && 3456 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3457 &error) == 0) { 3458 /* 3459 * case preserving rename request, require exact 3460 * name matches 3461 */ 3462 zflg |= ZCIEXACT; 3463 zflg &= ~ZCILOOK; 3464 } 3465 } 3466 3467 /* 3468 * If the source and destination directories are the same, we should 3469 * grab the z_name_lock of that directory only once. 3470 */ 3471 if (sdzp == tdzp) { 3472 zflg |= ZHAVELOCK; 3473 rw_enter(&sdzp->z_name_lock, RW_READER); 3474 } 3475 3476 if (cmp < 0) { 3477 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3478 ZEXISTS | zflg, NULL, NULL); 3479 terr = zfs_dirent_lock(&tdl, 3480 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3481 } else { 3482 terr = zfs_dirent_lock(&tdl, 3483 tdzp, tnm, &tzp, zflg, NULL, NULL); 3484 serr = zfs_dirent_lock(&sdl, 3485 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3486 NULL, NULL); 3487 } 3488 3489 if (serr) { 3490 /* 3491 * Source entry invalid or not there. 3492 */ 3493 if (!terr) { 3494 zfs_dirent_unlock(tdl); 3495 if (tzp) 3496 VN_RELE(ZTOV(tzp)); 3497 } 3498 3499 if (sdzp == tdzp) 3500 rw_exit(&sdzp->z_name_lock); 3501 3502 if (strcmp(snm, "..") == 0) 3503 serr = SET_ERROR(EINVAL); 3504 ZFS_EXIT(zfsvfs); 3505 return (serr); 3506 } 3507 if (terr) { 3508 zfs_dirent_unlock(sdl); 3509 VN_RELE(ZTOV(szp)); 3510 3511 if (sdzp == tdzp) 3512 rw_exit(&sdzp->z_name_lock); 3513 3514 if (strcmp(tnm, "..") == 0) 3515 terr = SET_ERROR(EINVAL); 3516 ZFS_EXIT(zfsvfs); 3517 return (terr); 3518 } 3519 3520 /* 3521 * Must have write access at the source to remove the old entry 3522 * and write access at the target to create the new entry. 3523 * Note that if target and source are the same, this can be 3524 * done in a single check. 3525 */ 3526 3527 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3528 goto out; 3529 3530 if (ZTOV(szp)->v_type == VDIR) { 3531 /* 3532 * Check to make sure rename is valid. 3533 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3534 */ 3535 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3536 goto out; 3537 } 3538 3539 /* 3540 * Does target exist? 3541 */ 3542 if (tzp) { 3543 /* 3544 * Source and target must be the same type. 3545 */ 3546 if (ZTOV(szp)->v_type == VDIR) { 3547 if (ZTOV(tzp)->v_type != VDIR) { 3548 error = SET_ERROR(ENOTDIR); 3549 goto out; 3550 } 3551 } else { 3552 if (ZTOV(tzp)->v_type == VDIR) { 3553 error = SET_ERROR(EISDIR); 3554 goto out; 3555 } 3556 } 3557 /* 3558 * POSIX dictates that when the source and target 3559 * entries refer to the same file object, rename 3560 * must do nothing and exit without error. 3561 */ 3562 if (szp->z_id == tzp->z_id) { 3563 error = 0; 3564 goto out; 3565 } 3566 } 3567 3568 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3569 if (tzp) 3570 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3571 3572 /* 3573 * notify the target directory if it is not the same 3574 * as source directory. 3575 */ 3576 if (tdvp != sdvp) { 3577 vnevent_rename_dest_dir(tdvp, ct); 3578 } 3579 3580 tx = dmu_tx_create(zfsvfs->z_os); 3581 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3582 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3583 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3584 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3585 if (sdzp != tdzp) { 3586 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3587 zfs_sa_upgrade_txholds(tx, tdzp); 3588 } 3589 if (tzp) { 3590 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3591 zfs_sa_upgrade_txholds(tx, tzp); 3592 } 3593 3594 zfs_sa_upgrade_txholds(tx, szp); 3595 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3596 error = dmu_tx_assign(tx, TXG_NOWAIT); 3597 if (error) { 3598 if (zl != NULL) 3599 zfs_rename_unlock(&zl); 3600 zfs_dirent_unlock(sdl); 3601 zfs_dirent_unlock(tdl); 3602 3603 if (sdzp == tdzp) 3604 rw_exit(&sdzp->z_name_lock); 3605 3606 VN_RELE(ZTOV(szp)); 3607 if (tzp) 3608 VN_RELE(ZTOV(tzp)); 3609 if (error == ERESTART) { 3610 dmu_tx_wait(tx); 3611 dmu_tx_abort(tx); 3612 goto top; 3613 } 3614 dmu_tx_abort(tx); 3615 ZFS_EXIT(zfsvfs); 3616 return (error); 3617 } 3618 3619 if (tzp) /* Attempt to remove the existing target */ 3620 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3621 3622 if (error == 0) { 3623 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3624 if (error == 0) { 3625 szp->z_pflags |= ZFS_AV_MODIFIED; 3626 3627 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3628 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3629 ASSERT0(error); 3630 3631 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3632 if (error == 0) { 3633 zfs_log_rename(zilog, tx, TX_RENAME | 3634 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 3635 sdl->dl_name, tdzp, tdl->dl_name, szp); 3636 3637 /* 3638 * Update path information for the target vnode 3639 */ 3640 vn_renamepath(tdvp, ZTOV(szp), tnm, 3641 strlen(tnm)); 3642 } else { 3643 /* 3644 * At this point, we have successfully created 3645 * the target name, but have failed to remove 3646 * the source name. Since the create was done 3647 * with the ZRENAMING flag, there are 3648 * complications; for one, the link count is 3649 * wrong. The easiest way to deal with this 3650 * is to remove the newly created target, and 3651 * return the original error. This must 3652 * succeed; fortunately, it is very unlikely to 3653 * fail, since we just created it. 3654 */ 3655 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 3656 ZRENAMING, NULL), ==, 0); 3657 } 3658 } 3659 } 3660 3661 dmu_tx_commit(tx); 3662 out: 3663 if (zl != NULL) 3664 zfs_rename_unlock(&zl); 3665 3666 zfs_dirent_unlock(sdl); 3667 zfs_dirent_unlock(tdl); 3668 3669 if (sdzp == tdzp) 3670 rw_exit(&sdzp->z_name_lock); 3671 3672 3673 VN_RELE(ZTOV(szp)); 3674 if (tzp) 3675 VN_RELE(ZTOV(tzp)); 3676 3677 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3678 zil_commit(zilog, 0); 3679 3680 ZFS_EXIT(zfsvfs); 3681 return (error); 3682 } 3683 3684 /* 3685 * Insert the indicated symbolic reference entry into the directory. 3686 * 3687 * IN: dvp - Directory to contain new symbolic link. 3688 * link - Name for new symlink entry. 3689 * vap - Attributes of new entry. 3690 * cr - credentials of caller. 3691 * ct - caller context 3692 * flags - case flags 3693 * 3694 * RETURN: 0 on success, error code on failure. 3695 * 3696 * Timestamps: 3697 * dvp - ctime|mtime updated 3698 */ 3699 /*ARGSUSED*/ 3700 static int 3701 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3702 caller_context_t *ct, int flags) 3703 { 3704 znode_t *zp, *dzp = VTOZ(dvp); 3705 zfs_dirlock_t *dl; 3706 dmu_tx_t *tx; 3707 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3708 zilog_t *zilog; 3709 uint64_t len = strlen(link); 3710 int error; 3711 int zflg = ZNEW; 3712 zfs_acl_ids_t acl_ids; 3713 boolean_t fuid_dirtied; 3714 uint64_t txtype = TX_SYMLINK; 3715 3716 ASSERT(vap->va_type == VLNK); 3717 3718 ZFS_ENTER(zfsvfs); 3719 ZFS_VERIFY_ZP(dzp); 3720 zilog = zfsvfs->z_log; 3721 3722 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3723 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3724 ZFS_EXIT(zfsvfs); 3725 return (SET_ERROR(EILSEQ)); 3726 } 3727 if (flags & FIGNORECASE) 3728 zflg |= ZCILOOK; 3729 3730 if (len > MAXPATHLEN) { 3731 ZFS_EXIT(zfsvfs); 3732 return (SET_ERROR(ENAMETOOLONG)); 3733 } 3734 3735 if ((error = zfs_acl_ids_create(dzp, 0, 3736 vap, cr, NULL, &acl_ids)) != 0) { 3737 ZFS_EXIT(zfsvfs); 3738 return (error); 3739 } 3740 top: 3741 /* 3742 * Attempt to lock directory; fail if entry already exists. 3743 */ 3744 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3745 if (error) { 3746 zfs_acl_ids_free(&acl_ids); 3747 ZFS_EXIT(zfsvfs); 3748 return (error); 3749 } 3750 3751 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3752 zfs_acl_ids_free(&acl_ids); 3753 zfs_dirent_unlock(dl); 3754 ZFS_EXIT(zfsvfs); 3755 return (error); 3756 } 3757 3758 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3759 zfs_acl_ids_free(&acl_ids); 3760 zfs_dirent_unlock(dl); 3761 ZFS_EXIT(zfsvfs); 3762 return (SET_ERROR(EDQUOT)); 3763 } 3764 tx = dmu_tx_create(zfsvfs->z_os); 3765 fuid_dirtied = zfsvfs->z_fuid_dirty; 3766 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3767 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3768 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3769 ZFS_SA_BASE_ATTR_SIZE + len); 3770 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3771 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3772 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3773 acl_ids.z_aclp->z_acl_bytes); 3774 } 3775 if (fuid_dirtied) 3776 zfs_fuid_txhold(zfsvfs, tx); 3777 error = dmu_tx_assign(tx, TXG_NOWAIT); 3778 if (error) { 3779 zfs_dirent_unlock(dl); 3780 if (error == ERESTART) { 3781 dmu_tx_wait(tx); 3782 dmu_tx_abort(tx); 3783 goto top; 3784 } 3785 zfs_acl_ids_free(&acl_ids); 3786 dmu_tx_abort(tx); 3787 ZFS_EXIT(zfsvfs); 3788 return (error); 3789 } 3790 3791 /* 3792 * Create a new object for the symlink. 3793 * for version 4 ZPL datsets the symlink will be an SA attribute 3794 */ 3795 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3796 3797 if (fuid_dirtied) 3798 zfs_fuid_sync(zfsvfs, tx); 3799 3800 mutex_enter(&zp->z_lock); 3801 if (zp->z_is_sa) 3802 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3803 link, len, tx); 3804 else 3805 zfs_sa_symlink(zp, link, len, tx); 3806 mutex_exit(&zp->z_lock); 3807 3808 zp->z_size = len; 3809 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3810 &zp->z_size, sizeof (zp->z_size), tx); 3811 /* 3812 * Insert the new object into the directory. 3813 */ 3814 (void) zfs_link_create(dl, zp, tx, ZNEW); 3815 3816 if (flags & FIGNORECASE) 3817 txtype |= TX_CI; 3818 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3819 3820 zfs_acl_ids_free(&acl_ids); 3821 3822 dmu_tx_commit(tx); 3823 3824 zfs_dirent_unlock(dl); 3825 3826 VN_RELE(ZTOV(zp)); 3827 3828 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3829 zil_commit(zilog, 0); 3830 3831 ZFS_EXIT(zfsvfs); 3832 return (error); 3833 } 3834 3835 /* 3836 * Return, in the buffer contained in the provided uio structure, 3837 * the symbolic path referred to by vp. 3838 * 3839 * IN: vp - vnode of symbolic link. 3840 * uio - structure to contain the link path. 3841 * cr - credentials of caller. 3842 * ct - caller context 3843 * 3844 * OUT: uio - structure containing the link path. 3845 * 3846 * RETURN: 0 on success, error code on failure. 3847 * 3848 * Timestamps: 3849 * vp - atime updated 3850 */ 3851 /* ARGSUSED */ 3852 static int 3853 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3854 { 3855 znode_t *zp = VTOZ(vp); 3856 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3857 int error; 3858 3859 ZFS_ENTER(zfsvfs); 3860 ZFS_VERIFY_ZP(zp); 3861 3862 mutex_enter(&zp->z_lock); 3863 if (zp->z_is_sa) 3864 error = sa_lookup_uio(zp->z_sa_hdl, 3865 SA_ZPL_SYMLINK(zfsvfs), uio); 3866 else 3867 error = zfs_sa_readlink(zp, uio); 3868 mutex_exit(&zp->z_lock); 3869 3870 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3871 3872 ZFS_EXIT(zfsvfs); 3873 return (error); 3874 } 3875 3876 /* 3877 * Insert a new entry into directory tdvp referencing svp. 3878 * 3879 * IN: tdvp - Directory to contain new entry. 3880 * svp - vnode of new entry. 3881 * name - name of new entry. 3882 * cr - credentials of caller. 3883 * ct - caller context 3884 * 3885 * RETURN: 0 on success, error code on failure. 3886 * 3887 * Timestamps: 3888 * tdvp - ctime|mtime updated 3889 * svp - ctime updated 3890 */ 3891 /* ARGSUSED */ 3892 static int 3893 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3894 caller_context_t *ct, int flags) 3895 { 3896 znode_t *dzp = VTOZ(tdvp); 3897 znode_t *tzp, *szp; 3898 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3899 zilog_t *zilog; 3900 zfs_dirlock_t *dl; 3901 dmu_tx_t *tx; 3902 vnode_t *realvp; 3903 int error; 3904 int zf = ZNEW; 3905 uint64_t parent; 3906 uid_t owner; 3907 3908 ASSERT(tdvp->v_type == VDIR); 3909 3910 ZFS_ENTER(zfsvfs); 3911 ZFS_VERIFY_ZP(dzp); 3912 zilog = zfsvfs->z_log; 3913 3914 if (VOP_REALVP(svp, &realvp, ct) == 0) 3915 svp = realvp; 3916 3917 /* 3918 * POSIX dictates that we return EPERM here. 3919 * Better choices include ENOTSUP or EISDIR. 3920 */ 3921 if (svp->v_type == VDIR) { 3922 ZFS_EXIT(zfsvfs); 3923 return (SET_ERROR(EPERM)); 3924 } 3925 3926 if (svp->v_vfsp != tdvp->v_vfsp || zfsctl_is_node(svp)) { 3927 ZFS_EXIT(zfsvfs); 3928 return (SET_ERROR(EXDEV)); 3929 } 3930 3931 szp = VTOZ(svp); 3932 ZFS_VERIFY_ZP(szp); 3933 3934 /* Prevent links to .zfs/shares files */ 3935 3936 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 3937 &parent, sizeof (uint64_t))) != 0) { 3938 ZFS_EXIT(zfsvfs); 3939 return (error); 3940 } 3941 if (parent == zfsvfs->z_shares_dir) { 3942 ZFS_EXIT(zfsvfs); 3943 return (SET_ERROR(EPERM)); 3944 } 3945 3946 if (zfsvfs->z_utf8 && u8_validate(name, 3947 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3948 ZFS_EXIT(zfsvfs); 3949 return (SET_ERROR(EILSEQ)); 3950 } 3951 if (flags & FIGNORECASE) 3952 zf |= ZCILOOK; 3953 3954 /* 3955 * We do not support links between attributes and non-attributes 3956 * because of the potential security risk of creating links 3957 * into "normal" file space in order to circumvent restrictions 3958 * imposed in attribute space. 3959 */ 3960 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 3961 ZFS_EXIT(zfsvfs); 3962 return (SET_ERROR(EINVAL)); 3963 } 3964 3965 3966 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); 3967 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { 3968 ZFS_EXIT(zfsvfs); 3969 return (SET_ERROR(EPERM)); 3970 } 3971 3972 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3973 ZFS_EXIT(zfsvfs); 3974 return (error); 3975 } 3976 3977 top: 3978 /* 3979 * Attempt to lock directory; fail if entry already exists. 3980 */ 3981 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3982 if (error) { 3983 ZFS_EXIT(zfsvfs); 3984 return (error); 3985 } 3986 3987 tx = dmu_tx_create(zfsvfs->z_os); 3988 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3989 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3990 zfs_sa_upgrade_txholds(tx, szp); 3991 zfs_sa_upgrade_txholds(tx, dzp); 3992 error = dmu_tx_assign(tx, TXG_NOWAIT); 3993 if (error) { 3994 zfs_dirent_unlock(dl); 3995 if (error == ERESTART) { 3996 dmu_tx_wait(tx); 3997 dmu_tx_abort(tx); 3998 goto top; 3999 } 4000 dmu_tx_abort(tx); 4001 ZFS_EXIT(zfsvfs); 4002 return (error); 4003 } 4004 4005 error = zfs_link_create(dl, szp, tx, 0); 4006 4007 if (error == 0) { 4008 uint64_t txtype = TX_LINK; 4009 if (flags & FIGNORECASE) 4010 txtype |= TX_CI; 4011 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 4012 } 4013 4014 dmu_tx_commit(tx); 4015 4016 zfs_dirent_unlock(dl); 4017 4018 if (error == 0) { 4019 vnevent_link(svp, ct); 4020 } 4021 4022 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4023 zil_commit(zilog, 0); 4024 4025 ZFS_EXIT(zfsvfs); 4026 return (error); 4027 } 4028 4029 /* 4030 * zfs_null_putapage() is used when the file system has been force 4031 * unmounted. It just drops the pages. 4032 */ 4033 /* ARGSUSED */ 4034 static int 4035 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4036 size_t *lenp, int flags, cred_t *cr) 4037 { 4038 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 4039 return (0); 4040 } 4041 4042 /* 4043 * Push a page out to disk, klustering if possible. 4044 * 4045 * IN: vp - file to push page to. 4046 * pp - page to push. 4047 * flags - additional flags. 4048 * cr - credentials of caller. 4049 * 4050 * OUT: offp - start of range pushed. 4051 * lenp - len of range pushed. 4052 * 4053 * RETURN: 0 on success, error code on failure. 4054 * 4055 * NOTE: callers must have locked the page to be pushed. On 4056 * exit, the page (and all other pages in the kluster) must be 4057 * unlocked. 4058 */ 4059 /* ARGSUSED */ 4060 static int 4061 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4062 size_t *lenp, int flags, cred_t *cr) 4063 { 4064 znode_t *zp = VTOZ(vp); 4065 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4066 dmu_tx_t *tx; 4067 u_offset_t off, koff; 4068 size_t len, klen; 4069 int err; 4070 4071 off = pp->p_offset; 4072 len = PAGESIZE; 4073 /* 4074 * If our blocksize is bigger than the page size, try to kluster 4075 * multiple pages so that we write a full block (thus avoiding 4076 * a read-modify-write). 4077 */ 4078 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4079 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4080 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4081 ASSERT(koff <= zp->z_size); 4082 if (koff + klen > zp->z_size) 4083 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4084 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4085 } 4086 ASSERT3U(btop(len), ==, btopr(len)); 4087 4088 /* 4089 * Can't push pages past end-of-file. 4090 */ 4091 if (off >= zp->z_size) { 4092 /* ignore all pages */ 4093 err = 0; 4094 goto out; 4095 } else if (off + len > zp->z_size) { 4096 int npages = btopr(zp->z_size - off); 4097 page_t *trunc; 4098 4099 page_list_break(&pp, &trunc, npages); 4100 /* ignore pages past end of file */ 4101 if (trunc) 4102 pvn_write_done(trunc, flags); 4103 len = zp->z_size - off; 4104 } 4105 4106 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 4107 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 4108 err = SET_ERROR(EDQUOT); 4109 goto out; 4110 } 4111 top: 4112 tx = dmu_tx_create(zfsvfs->z_os); 4113 dmu_tx_hold_write(tx, zp->z_id, off, len); 4114 4115 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4116 zfs_sa_upgrade_txholds(tx, zp); 4117 err = dmu_tx_assign(tx, TXG_NOWAIT); 4118 if (err != 0) { 4119 if (err == ERESTART) { 4120 dmu_tx_wait(tx); 4121 dmu_tx_abort(tx); 4122 goto top; 4123 } 4124 dmu_tx_abort(tx); 4125 goto out; 4126 } 4127 4128 if (zp->z_blksz <= PAGESIZE) { 4129 caddr_t va = zfs_map_page(pp, S_READ); 4130 ASSERT3U(len, <=, PAGESIZE); 4131 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4132 zfs_unmap_page(pp, va); 4133 } else { 4134 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4135 } 4136 4137 if (err == 0) { 4138 uint64_t mtime[2], ctime[2]; 4139 sa_bulk_attr_t bulk[3]; 4140 int count = 0; 4141 4142 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4143 &mtime, 16); 4144 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4145 &ctime, 16); 4146 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4147 &zp->z_pflags, 8); 4148 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4149 B_TRUE); 4150 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4151 } 4152 dmu_tx_commit(tx); 4153 4154 out: 4155 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4156 if (offp) 4157 *offp = off; 4158 if (lenp) 4159 *lenp = len; 4160 4161 return (err); 4162 } 4163 4164 /* 4165 * Copy the portion of the file indicated from pages into the file. 4166 * The pages are stored in a page list attached to the files vnode. 4167 * 4168 * IN: vp - vnode of file to push page data to. 4169 * off - position in file to put data. 4170 * len - amount of data to write. 4171 * flags - flags to control the operation. 4172 * cr - credentials of caller. 4173 * ct - caller context. 4174 * 4175 * RETURN: 0 on success, error code on failure. 4176 * 4177 * Timestamps: 4178 * vp - ctime|mtime updated 4179 */ 4180 /*ARGSUSED*/ 4181 static int 4182 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4183 caller_context_t *ct) 4184 { 4185 znode_t *zp = VTOZ(vp); 4186 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4187 page_t *pp; 4188 size_t io_len; 4189 u_offset_t io_off; 4190 uint_t blksz; 4191 rl_t *rl; 4192 int error = 0; 4193 4194 ZFS_ENTER(zfsvfs); 4195 ZFS_VERIFY_ZP(zp); 4196 4197 /* 4198 * There's nothing to do if no data is cached. 4199 */ 4200 if (!vn_has_cached_data(vp)) { 4201 ZFS_EXIT(zfsvfs); 4202 return (0); 4203 } 4204 4205 /* 4206 * Align this request to the file block size in case we kluster. 4207 * XXX - this can result in pretty aggresive locking, which can 4208 * impact simultanious read/write access. One option might be 4209 * to break up long requests (len == 0) into block-by-block 4210 * operations to get narrower locking. 4211 */ 4212 blksz = zp->z_blksz; 4213 if (ISP2(blksz)) 4214 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4215 else 4216 io_off = 0; 4217 if (len > 0 && ISP2(blksz)) 4218 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4219 else 4220 io_len = 0; 4221 4222 if (io_len == 0) { 4223 /* 4224 * Search the entire vp list for pages >= io_off. 4225 */ 4226 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 4227 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4228 goto out; 4229 } 4230 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 4231 4232 if (off > zp->z_size) { 4233 /* past end of file */ 4234 zfs_range_unlock(rl); 4235 ZFS_EXIT(zfsvfs); 4236 return (0); 4237 } 4238 4239 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4240 4241 for (off = io_off; io_off < off + len; io_off += io_len) { 4242 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4243 pp = page_lookup(vp, io_off, 4244 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4245 } else { 4246 pp = page_lookup_nowait(vp, io_off, 4247 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4248 } 4249 4250 if (pp != NULL && pvn_getdirty(pp, flags)) { 4251 int err; 4252 4253 /* 4254 * Found a dirty page to push 4255 */ 4256 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4257 if (err) 4258 error = err; 4259 } else { 4260 io_len = PAGESIZE; 4261 } 4262 } 4263 out: 4264 zfs_range_unlock(rl); 4265 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4266 zil_commit(zfsvfs->z_log, zp->z_id); 4267 ZFS_EXIT(zfsvfs); 4268 return (error); 4269 } 4270 4271 /*ARGSUSED*/ 4272 void 4273 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4274 { 4275 znode_t *zp = VTOZ(vp); 4276 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4277 int error; 4278 4279 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4280 if (zp->z_sa_hdl == NULL) { 4281 /* 4282 * The fs has been unmounted, or we did a 4283 * suspend/resume and this file no longer exists. 4284 */ 4285 if (vn_has_cached_data(vp)) { 4286 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4287 B_INVAL, cr); 4288 } 4289 4290 mutex_enter(&zp->z_lock); 4291 mutex_enter(&vp->v_lock); 4292 ASSERT(vp->v_count == 1); 4293 vp->v_count = 0; 4294 mutex_exit(&vp->v_lock); 4295 mutex_exit(&zp->z_lock); 4296 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4297 zfs_znode_free(zp); 4298 return; 4299 } 4300 4301 /* 4302 * Attempt to push any data in the page cache. If this fails 4303 * we will get kicked out later in zfs_zinactive(). 4304 */ 4305 if (vn_has_cached_data(vp)) { 4306 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4307 cr); 4308 } 4309 4310 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4311 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4312 4313 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4314 zfs_sa_upgrade_txholds(tx, zp); 4315 error = dmu_tx_assign(tx, TXG_WAIT); 4316 if (error) { 4317 dmu_tx_abort(tx); 4318 } else { 4319 mutex_enter(&zp->z_lock); 4320 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4321 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4322 zp->z_atime_dirty = 0; 4323 mutex_exit(&zp->z_lock); 4324 dmu_tx_commit(tx); 4325 } 4326 } 4327 4328 zfs_zinactive(zp); 4329 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4330 } 4331 4332 /* 4333 * Bounds-check the seek operation. 4334 * 4335 * IN: vp - vnode seeking within 4336 * ooff - old file offset 4337 * noffp - pointer to new file offset 4338 * ct - caller context 4339 * 4340 * RETURN: 0 on success, EINVAL if new offset invalid. 4341 */ 4342 /* ARGSUSED */ 4343 static int 4344 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4345 caller_context_t *ct) 4346 { 4347 if (vp->v_type == VDIR) 4348 return (0); 4349 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4350 } 4351 4352 /* 4353 * Pre-filter the generic locking function to trap attempts to place 4354 * a mandatory lock on a memory mapped file. 4355 */ 4356 static int 4357 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4358 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4359 { 4360 znode_t *zp = VTOZ(vp); 4361 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4362 4363 ZFS_ENTER(zfsvfs); 4364 ZFS_VERIFY_ZP(zp); 4365 4366 /* 4367 * We are following the UFS semantics with respect to mapcnt 4368 * here: If we see that the file is mapped already, then we will 4369 * return an error, but we don't worry about races between this 4370 * function and zfs_map(). 4371 */ 4372 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4373 ZFS_EXIT(zfsvfs); 4374 return (SET_ERROR(EAGAIN)); 4375 } 4376 ZFS_EXIT(zfsvfs); 4377 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4378 } 4379 4380 /* 4381 * If we can't find a page in the cache, we will create a new page 4382 * and fill it with file data. For efficiency, we may try to fill 4383 * multiple pages at once (klustering) to fill up the supplied page 4384 * list. Note that the pages to be filled are held with an exclusive 4385 * lock to prevent access by other threads while they are being filled. 4386 */ 4387 static int 4388 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4389 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4390 { 4391 znode_t *zp = VTOZ(vp); 4392 page_t *pp, *cur_pp; 4393 objset_t *os = zp->z_zfsvfs->z_os; 4394 u_offset_t io_off, total; 4395 size_t io_len; 4396 int err; 4397 4398 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4399 /* 4400 * We only have a single page, don't bother klustering 4401 */ 4402 io_off = off; 4403 io_len = PAGESIZE; 4404 pp = page_create_va(vp, io_off, io_len, 4405 PG_EXCL | PG_WAIT, seg, addr); 4406 } else { 4407 /* 4408 * Try to find enough pages to fill the page list 4409 */ 4410 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4411 &io_len, off, plsz, 0); 4412 } 4413 if (pp == NULL) { 4414 /* 4415 * The page already exists, nothing to do here. 4416 */ 4417 *pl = NULL; 4418 return (0); 4419 } 4420 4421 /* 4422 * Fill the pages in the kluster. 4423 */ 4424 cur_pp = pp; 4425 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4426 caddr_t va; 4427 4428 ASSERT3U(io_off, ==, cur_pp->p_offset); 4429 va = zfs_map_page(cur_pp, S_WRITE); 4430 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4431 DMU_READ_PREFETCH); 4432 zfs_unmap_page(cur_pp, va); 4433 if (err) { 4434 /* On error, toss the entire kluster */ 4435 pvn_read_done(pp, B_ERROR); 4436 /* convert checksum errors into IO errors */ 4437 if (err == ECKSUM) 4438 err = SET_ERROR(EIO); 4439 return (err); 4440 } 4441 cur_pp = cur_pp->p_next; 4442 } 4443 4444 /* 4445 * Fill in the page list array from the kluster starting 4446 * from the desired offset `off'. 4447 * NOTE: the page list will always be null terminated. 4448 */ 4449 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4450 ASSERT(pl == NULL || (*pl)->p_offset == off); 4451 4452 return (0); 4453 } 4454 4455 /* 4456 * Return pointers to the pages for the file region [off, off + len] 4457 * in the pl array. If plsz is greater than len, this function may 4458 * also return page pointers from after the specified region 4459 * (i.e. the region [off, off + plsz]). These additional pages are 4460 * only returned if they are already in the cache, or were created as 4461 * part of a klustered read. 4462 * 4463 * IN: vp - vnode of file to get data from. 4464 * off - position in file to get data from. 4465 * len - amount of data to retrieve. 4466 * plsz - length of provided page list. 4467 * seg - segment to obtain pages for. 4468 * addr - virtual address of fault. 4469 * rw - mode of created pages. 4470 * cr - credentials of caller. 4471 * ct - caller context. 4472 * 4473 * OUT: protp - protection mode of created pages. 4474 * pl - list of pages created. 4475 * 4476 * RETURN: 0 on success, error code on failure. 4477 * 4478 * Timestamps: 4479 * vp - atime updated 4480 */ 4481 /* ARGSUSED */ 4482 static int 4483 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4484 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4485 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4486 { 4487 znode_t *zp = VTOZ(vp); 4488 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4489 page_t **pl0 = pl; 4490 int err = 0; 4491 4492 /* we do our own caching, faultahead is unnecessary */ 4493 if (pl == NULL) 4494 return (0); 4495 else if (len > plsz) 4496 len = plsz; 4497 else 4498 len = P2ROUNDUP(len, PAGESIZE); 4499 ASSERT(plsz >= len); 4500 4501 ZFS_ENTER(zfsvfs); 4502 ZFS_VERIFY_ZP(zp); 4503 4504 if (protp) 4505 *protp = PROT_ALL; 4506 4507 /* 4508 * Loop through the requested range [off, off + len) looking 4509 * for pages. If we don't find a page, we will need to create 4510 * a new page and fill it with data from the file. 4511 */ 4512 while (len > 0) { 4513 if (*pl = page_lookup(vp, off, SE_SHARED)) 4514 *(pl+1) = NULL; 4515 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4516 goto out; 4517 while (*pl) { 4518 ASSERT3U((*pl)->p_offset, ==, off); 4519 off += PAGESIZE; 4520 addr += PAGESIZE; 4521 if (len > 0) { 4522 ASSERT3U(len, >=, PAGESIZE); 4523 len -= PAGESIZE; 4524 } 4525 ASSERT3U(plsz, >=, PAGESIZE); 4526 plsz -= PAGESIZE; 4527 pl++; 4528 } 4529 } 4530 4531 /* 4532 * Fill out the page array with any pages already in the cache. 4533 */ 4534 while (plsz > 0 && 4535 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4536 off += PAGESIZE; 4537 plsz -= PAGESIZE; 4538 } 4539 out: 4540 if (err) { 4541 /* 4542 * Release any pages we have previously locked. 4543 */ 4544 while (pl > pl0) 4545 page_unlock(*--pl); 4546 } else { 4547 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4548 } 4549 4550 *pl = NULL; 4551 4552 ZFS_EXIT(zfsvfs); 4553 return (err); 4554 } 4555 4556 /* 4557 * Request a memory map for a section of a file. This code interacts 4558 * with common code and the VM system as follows: 4559 * 4560 * - common code calls mmap(), which ends up in smmap_common() 4561 * - this calls VOP_MAP(), which takes you into (say) zfs 4562 * - zfs_map() calls as_map(), passing segvn_create() as the callback 4563 * - segvn_create() creates the new segment and calls VOP_ADDMAP() 4564 * - zfs_addmap() updates z_mapcnt 4565 */ 4566 /*ARGSUSED*/ 4567 static int 4568 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4569 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4570 caller_context_t *ct) 4571 { 4572 znode_t *zp = VTOZ(vp); 4573 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4574 segvn_crargs_t vn_a; 4575 int error; 4576 4577 ZFS_ENTER(zfsvfs); 4578 ZFS_VERIFY_ZP(zp); 4579 4580 if ((prot & PROT_WRITE) && (zp->z_pflags & 4581 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) { 4582 ZFS_EXIT(zfsvfs); 4583 return (SET_ERROR(EPERM)); 4584 } 4585 4586 if ((prot & (PROT_READ | PROT_EXEC)) && 4587 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 4588 ZFS_EXIT(zfsvfs); 4589 return (SET_ERROR(EACCES)); 4590 } 4591 4592 if (vp->v_flag & VNOMAP) { 4593 ZFS_EXIT(zfsvfs); 4594 return (SET_ERROR(ENOSYS)); 4595 } 4596 4597 if (off < 0 || len > MAXOFFSET_T - off) { 4598 ZFS_EXIT(zfsvfs); 4599 return (SET_ERROR(ENXIO)); 4600 } 4601 4602 if (vp->v_type != VREG) { 4603 ZFS_EXIT(zfsvfs); 4604 return (SET_ERROR(ENODEV)); 4605 } 4606 4607 /* 4608 * If file is locked, disallow mapping. 4609 */ 4610 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 4611 ZFS_EXIT(zfsvfs); 4612 return (SET_ERROR(EAGAIN)); 4613 } 4614 4615 as_rangelock(as); 4616 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4617 if (error != 0) { 4618 as_rangeunlock(as); 4619 ZFS_EXIT(zfsvfs); 4620 return (error); 4621 } 4622 4623 vn_a.vp = vp; 4624 vn_a.offset = (u_offset_t)off; 4625 vn_a.type = flags & MAP_TYPE; 4626 vn_a.prot = prot; 4627 vn_a.maxprot = maxprot; 4628 vn_a.cred = cr; 4629 vn_a.amp = NULL; 4630 vn_a.flags = flags & ~MAP_TYPE; 4631 vn_a.szc = 0; 4632 vn_a.lgrp_mem_policy_flags = 0; 4633 4634 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4635 4636 as_rangeunlock(as); 4637 ZFS_EXIT(zfsvfs); 4638 return (error); 4639 } 4640 4641 /* ARGSUSED */ 4642 static int 4643 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4644 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4645 caller_context_t *ct) 4646 { 4647 uint64_t pages = btopr(len); 4648 4649 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4650 return (0); 4651 } 4652 4653 /* 4654 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4655 * more accurate mtime for the associated file. Since we don't have a way of 4656 * detecting when the data was actually modified, we have to resort to 4657 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4658 * last page is pushed. The problem occurs when the msync() call is omitted, 4659 * which by far the most common case: 4660 * 4661 * open() 4662 * mmap() 4663 * <modify memory> 4664 * munmap() 4665 * close() 4666 * <time lapse> 4667 * putpage() via fsflush 4668 * 4669 * If we wait until fsflush to come along, we can have a modification time that 4670 * is some arbitrary point in the future. In order to prevent this in the 4671 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4672 * torn down. 4673 */ 4674 /* ARGSUSED */ 4675 static int 4676 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4677 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4678 caller_context_t *ct) 4679 { 4680 uint64_t pages = btopr(len); 4681 4682 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4683 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4684 4685 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4686 vn_has_cached_data(vp)) 4687 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4688 4689 return (0); 4690 } 4691 4692 /* 4693 * Free or allocate space in a file. Currently, this function only 4694 * supports the `F_FREESP' command. However, this command is somewhat 4695 * misnamed, as its functionality includes the ability to allocate as 4696 * well as free space. 4697 * 4698 * IN: vp - vnode of file to free data in. 4699 * cmd - action to take (only F_FREESP supported). 4700 * bfp - section of file to free/alloc. 4701 * flag - current file open mode flags. 4702 * offset - current file offset. 4703 * cr - credentials of caller [UNUSED]. 4704 * ct - caller context. 4705 * 4706 * RETURN: 0 on success, error code on failure. 4707 * 4708 * Timestamps: 4709 * vp - ctime|mtime updated 4710 */ 4711 /* ARGSUSED */ 4712 static int 4713 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4714 offset_t offset, cred_t *cr, caller_context_t *ct) 4715 { 4716 znode_t *zp = VTOZ(vp); 4717 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4718 uint64_t off, len; 4719 int error; 4720 4721 ZFS_ENTER(zfsvfs); 4722 ZFS_VERIFY_ZP(zp); 4723 4724 if (cmd != F_FREESP) { 4725 ZFS_EXIT(zfsvfs); 4726 return (SET_ERROR(EINVAL)); 4727 } 4728 4729 if (error = convoff(vp, bfp, 0, offset)) { 4730 ZFS_EXIT(zfsvfs); 4731 return (error); 4732 } 4733 4734 if (bfp->l_len < 0) { 4735 ZFS_EXIT(zfsvfs); 4736 return (SET_ERROR(EINVAL)); 4737 } 4738 4739 off = bfp->l_start; 4740 len = bfp->l_len; /* 0 means from off to end of file */ 4741 4742 error = zfs_freesp(zp, off, len, flag, TRUE); 4743 4744 ZFS_EXIT(zfsvfs); 4745 return (error); 4746 } 4747 4748 /*ARGSUSED*/ 4749 static int 4750 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4751 { 4752 znode_t *zp = VTOZ(vp); 4753 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4754 uint32_t gen; 4755 uint64_t gen64; 4756 uint64_t object = zp->z_id; 4757 zfid_short_t *zfid; 4758 int size, i, error; 4759 4760 ZFS_ENTER(zfsvfs); 4761 ZFS_VERIFY_ZP(zp); 4762 4763 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 4764 &gen64, sizeof (uint64_t))) != 0) { 4765 ZFS_EXIT(zfsvfs); 4766 return (error); 4767 } 4768 4769 gen = (uint32_t)gen64; 4770 4771 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4772 if (fidp->fid_len < size) { 4773 fidp->fid_len = size; 4774 ZFS_EXIT(zfsvfs); 4775 return (SET_ERROR(ENOSPC)); 4776 } 4777 4778 zfid = (zfid_short_t *)fidp; 4779 4780 zfid->zf_len = size; 4781 4782 for (i = 0; i < sizeof (zfid->zf_object); i++) 4783 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4784 4785 /* Must have a non-zero generation number to distinguish from .zfs */ 4786 if (gen == 0) 4787 gen = 1; 4788 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4789 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4790 4791 if (size == LONG_FID_LEN) { 4792 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4793 zfid_long_t *zlfid; 4794 4795 zlfid = (zfid_long_t *)fidp; 4796 4797 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4798 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4799 4800 /* XXX - this should be the generation number for the objset */ 4801 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4802 zlfid->zf_setgen[i] = 0; 4803 } 4804 4805 ZFS_EXIT(zfsvfs); 4806 return (0); 4807 } 4808 4809 static int 4810 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4811 caller_context_t *ct) 4812 { 4813 znode_t *zp, *xzp; 4814 zfsvfs_t *zfsvfs; 4815 zfs_dirlock_t *dl; 4816 int error; 4817 4818 switch (cmd) { 4819 case _PC_LINK_MAX: 4820 *valp = ULONG_MAX; 4821 return (0); 4822 4823 case _PC_FILESIZEBITS: 4824 *valp = 64; 4825 return (0); 4826 4827 case _PC_XATTR_EXISTS: 4828 zp = VTOZ(vp); 4829 zfsvfs = zp->z_zfsvfs; 4830 ZFS_ENTER(zfsvfs); 4831 ZFS_VERIFY_ZP(zp); 4832 *valp = 0; 4833 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4834 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4835 if (error == 0) { 4836 zfs_dirent_unlock(dl); 4837 if (!zfs_dirempty(xzp)) 4838 *valp = 1; 4839 VN_RELE(ZTOV(xzp)); 4840 } else if (error == ENOENT) { 4841 /* 4842 * If there aren't extended attributes, it's the 4843 * same as having zero of them. 4844 */ 4845 error = 0; 4846 } 4847 ZFS_EXIT(zfsvfs); 4848 return (error); 4849 4850 case _PC_SATTR_ENABLED: 4851 case _PC_SATTR_EXISTS: 4852 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4853 (vp->v_type == VREG || vp->v_type == VDIR); 4854 return (0); 4855 4856 case _PC_ACCESS_FILTERING: 4857 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4858 vp->v_type == VDIR; 4859 return (0); 4860 4861 case _PC_ACL_ENABLED: 4862 *valp = _ACL_ACE_ENABLED; 4863 return (0); 4864 4865 case _PC_MIN_HOLE_SIZE: 4866 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4867 return (0); 4868 4869 case _PC_TIMESTAMP_RESOLUTION: 4870 /* nanosecond timestamp resolution */ 4871 *valp = 1L; 4872 return (0); 4873 4874 default: 4875 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4876 } 4877 } 4878 4879 /*ARGSUSED*/ 4880 static int 4881 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4882 caller_context_t *ct) 4883 { 4884 znode_t *zp = VTOZ(vp); 4885 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4886 int error; 4887 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4888 4889 ZFS_ENTER(zfsvfs); 4890 ZFS_VERIFY_ZP(zp); 4891 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4892 ZFS_EXIT(zfsvfs); 4893 4894 return (error); 4895 } 4896 4897 /*ARGSUSED*/ 4898 static int 4899 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4900 caller_context_t *ct) 4901 { 4902 znode_t *zp = VTOZ(vp); 4903 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4904 int error; 4905 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4906 zilog_t *zilog = zfsvfs->z_log; 4907 4908 ZFS_ENTER(zfsvfs); 4909 ZFS_VERIFY_ZP(zp); 4910 4911 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4912 4913 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4914 zil_commit(zilog, 0); 4915 4916 ZFS_EXIT(zfsvfs); 4917 return (error); 4918 } 4919 4920 /* 4921 * The smallest read we may consider to loan out an arcbuf. 4922 * This must be a power of 2. 4923 */ 4924 int zcr_blksz_min = (1 << 10); /* 1K */ 4925 /* 4926 * If set to less than the file block size, allow loaning out of an 4927 * arcbuf for a partial block read. This must be a power of 2. 4928 */ 4929 int zcr_blksz_max = (1 << 17); /* 128K */ 4930 4931 /*ARGSUSED*/ 4932 static int 4933 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 4934 caller_context_t *ct) 4935 { 4936 znode_t *zp = VTOZ(vp); 4937 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4938 int max_blksz = zfsvfs->z_max_blksz; 4939 uio_t *uio = &xuio->xu_uio; 4940 ssize_t size = uio->uio_resid; 4941 offset_t offset = uio->uio_loffset; 4942 int blksz; 4943 int fullblk, i; 4944 arc_buf_t *abuf; 4945 ssize_t maxsize; 4946 int preamble, postamble; 4947 4948 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 4949 return (SET_ERROR(EINVAL)); 4950 4951 ZFS_ENTER(zfsvfs); 4952 ZFS_VERIFY_ZP(zp); 4953 switch (ioflag) { 4954 case UIO_WRITE: 4955 /* 4956 * Loan out an arc_buf for write if write size is bigger than 4957 * max_blksz, and the file's block size is also max_blksz. 4958 */ 4959 blksz = max_blksz; 4960 if (size < blksz || zp->z_blksz != blksz) { 4961 ZFS_EXIT(zfsvfs); 4962 return (SET_ERROR(EINVAL)); 4963 } 4964 /* 4965 * Caller requests buffers for write before knowing where the 4966 * write offset might be (e.g. NFS TCP write). 4967 */ 4968 if (offset == -1) { 4969 preamble = 0; 4970 } else { 4971 preamble = P2PHASE(offset, blksz); 4972 if (preamble) { 4973 preamble = blksz - preamble; 4974 size -= preamble; 4975 } 4976 } 4977 4978 postamble = P2PHASE(size, blksz); 4979 size -= postamble; 4980 4981 fullblk = size / blksz; 4982 (void) dmu_xuio_init(xuio, 4983 (preamble != 0) + fullblk + (postamble != 0)); 4984 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 4985 int, postamble, int, 4986 (preamble != 0) + fullblk + (postamble != 0)); 4987 4988 /* 4989 * Have to fix iov base/len for partial buffers. They 4990 * currently represent full arc_buf's. 4991 */ 4992 if (preamble) { 4993 /* data begins in the middle of the arc_buf */ 4994 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 4995 blksz); 4996 ASSERT(abuf); 4997 (void) dmu_xuio_add(xuio, abuf, 4998 blksz - preamble, preamble); 4999 } 5000 5001 for (i = 0; i < fullblk; i++) { 5002 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5003 blksz); 5004 ASSERT(abuf); 5005 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 5006 } 5007 5008 if (postamble) { 5009 /* data ends in the middle of the arc_buf */ 5010 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5011 blksz); 5012 ASSERT(abuf); 5013 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 5014 } 5015 break; 5016 case UIO_READ: 5017 /* 5018 * Loan out an arc_buf for read if the read size is larger than 5019 * the current file block size. Block alignment is not 5020 * considered. Partial arc_buf will be loaned out for read. 5021 */ 5022 blksz = zp->z_blksz; 5023 if (blksz < zcr_blksz_min) 5024 blksz = zcr_blksz_min; 5025 if (blksz > zcr_blksz_max) 5026 blksz = zcr_blksz_max; 5027 /* avoid potential complexity of dealing with it */ 5028 if (blksz > max_blksz) { 5029 ZFS_EXIT(zfsvfs); 5030 return (SET_ERROR(EINVAL)); 5031 } 5032 5033 maxsize = zp->z_size - uio->uio_loffset; 5034 if (size > maxsize) 5035 size = maxsize; 5036 5037 if (size < blksz || vn_has_cached_data(vp)) { 5038 ZFS_EXIT(zfsvfs); 5039 return (SET_ERROR(EINVAL)); 5040 } 5041 break; 5042 default: 5043 ZFS_EXIT(zfsvfs); 5044 return (SET_ERROR(EINVAL)); 5045 } 5046 5047 uio->uio_extflg = UIO_XUIO; 5048 XUIO_XUZC_RW(xuio) = ioflag; 5049 ZFS_EXIT(zfsvfs); 5050 return (0); 5051 } 5052 5053 /*ARGSUSED*/ 5054 static int 5055 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5056 { 5057 int i; 5058 arc_buf_t *abuf; 5059 int ioflag = XUIO_XUZC_RW(xuio); 5060 5061 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5062 5063 i = dmu_xuio_cnt(xuio); 5064 while (i-- > 0) { 5065 abuf = dmu_xuio_arcbuf(xuio, i); 5066 /* 5067 * if abuf == NULL, it must be a write buffer 5068 * that has been returned in zfs_write(). 5069 */ 5070 if (abuf) 5071 dmu_return_arcbuf(abuf); 5072 ASSERT(abuf || ioflag == UIO_WRITE); 5073 } 5074 5075 dmu_xuio_fini(xuio); 5076 return (0); 5077 } 5078 5079 /* 5080 * Predeclare these here so that the compiler assumes that 5081 * this is an "old style" function declaration that does 5082 * not include arguments => we won't get type mismatch errors 5083 * in the initializations that follow. 5084 */ 5085 static int zfs_inval(); 5086 static int zfs_isdir(); 5087 5088 static int 5089 zfs_inval() 5090 { 5091 return (SET_ERROR(EINVAL)); 5092 } 5093 5094 static int 5095 zfs_isdir() 5096 { 5097 return (SET_ERROR(EISDIR)); 5098 } 5099 /* 5100 * Directory vnode operations template 5101 */ 5102 vnodeops_t *zfs_dvnodeops; 5103 const fs_operation_def_t zfs_dvnodeops_template[] = { 5104 VOPNAME_OPEN, { .vop_open = zfs_open }, 5105 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5106 VOPNAME_READ, { .error = zfs_isdir }, 5107 VOPNAME_WRITE, { .error = zfs_isdir }, 5108 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5109 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5110 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5111 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5112 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5113 VOPNAME_CREATE, { .vop_create = zfs_create }, 5114 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5115 VOPNAME_LINK, { .vop_link = zfs_link }, 5116 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5117 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5118 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5119 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5120 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5121 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5122 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5123 VOPNAME_FID, { .vop_fid = zfs_fid }, 5124 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5125 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5126 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5127 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5128 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5129 NULL, NULL 5130 }; 5131 5132 /* 5133 * Regular file vnode operations template 5134 */ 5135 vnodeops_t *zfs_fvnodeops; 5136 const fs_operation_def_t zfs_fvnodeops_template[] = { 5137 VOPNAME_OPEN, { .vop_open = zfs_open }, 5138 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5139 VOPNAME_READ, { .vop_read = zfs_read }, 5140 VOPNAME_WRITE, { .vop_write = zfs_write }, 5141 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5142 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5143 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5144 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5145 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5146 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5147 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5148 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5149 VOPNAME_FID, { .vop_fid = zfs_fid }, 5150 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5151 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5152 VOPNAME_SPACE, { .vop_space = zfs_space }, 5153 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5154 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5155 VOPNAME_MAP, { .vop_map = zfs_map }, 5156 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5157 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5158 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5159 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5160 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5161 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5162 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5163 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5164 NULL, NULL 5165 }; 5166 5167 /* 5168 * Symbolic link vnode operations template 5169 */ 5170 vnodeops_t *zfs_symvnodeops; 5171 const fs_operation_def_t zfs_symvnodeops_template[] = { 5172 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5173 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5174 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5175 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5176 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5177 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5178 VOPNAME_FID, { .vop_fid = zfs_fid }, 5179 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5180 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5181 NULL, NULL 5182 }; 5183 5184 /* 5185 * special share hidden files vnode operations template 5186 */ 5187 vnodeops_t *zfs_sharevnodeops; 5188 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5189 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5190 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5191 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5192 VOPNAME_FID, { .vop_fid = zfs_fid }, 5193 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5194 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5195 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5196 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5197 NULL, NULL 5198 }; 5199 5200 /* 5201 * Extended attribute directory vnode operations template 5202 * 5203 * This template is identical to the directory vnodes 5204 * operation template except for restricted operations: 5205 * VOP_MKDIR() 5206 * VOP_SYMLINK() 5207 * 5208 * Note that there are other restrictions embedded in: 5209 * zfs_create() - restrict type to VREG 5210 * zfs_link() - no links into/out of attribute space 5211 * zfs_rename() - no moves into/out of attribute space 5212 */ 5213 vnodeops_t *zfs_xdvnodeops; 5214 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5215 VOPNAME_OPEN, { .vop_open = zfs_open }, 5216 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5217 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5218 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5219 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5220 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5221 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5222 VOPNAME_CREATE, { .vop_create = zfs_create }, 5223 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5224 VOPNAME_LINK, { .vop_link = zfs_link }, 5225 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5226 VOPNAME_MKDIR, { .error = zfs_inval }, 5227 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5228 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5229 VOPNAME_SYMLINK, { .error = zfs_inval }, 5230 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5231 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5232 VOPNAME_FID, { .vop_fid = zfs_fid }, 5233 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5234 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5235 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5236 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5237 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5238 NULL, NULL 5239 }; 5240 5241 /* 5242 * Error vnode operations template 5243 */ 5244 vnodeops_t *zfs_evnodeops; 5245 const fs_operation_def_t zfs_evnodeops_template[] = { 5246 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5247 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5248 NULL, NULL 5249 };