Print this page
    
3742 zfs comments need cleaner, more consistent style
Submitted by:   Will Andrews <willa@spectralogic.com>
Submitted by:   Alan Somers <alans@spectralogic.com>
Reviewed by:    Matthew Ahrens <mahrens@delphix.com>
Reviewed by:    George Wilson <george.wilson@delphix.com>
Reviewed by:    Eric Schrock <eric.schrock@delphix.com>
    
      
        | Split | Close | 
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/common/fs/zfs/zfs_vfsops.c
          +++ new/usr/src/uts/common/fs/zfs/zfs_vfsops.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  /*
  22   22   * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23   23   * Copyright (c) 2013 by Delphix. All rights reserved.
  24   24   */
  25   25  
  26   26  /* Portions Copyright 2010 Robert Milkowski */
  27   27  
  28   28  #include <sys/types.h>
  29   29  #include <sys/param.h>
  30   30  #include <sys/systm.h>
  31   31  #include <sys/sysmacros.h>
  32   32  #include <sys/kmem.h>
  33   33  #include <sys/pathname.h>
  34   34  #include <sys/vnode.h>
  35   35  #include <sys/vfs.h>
  36   36  #include <sys/vfs_opreg.h>
  37   37  #include <sys/mntent.h>
  38   38  #include <sys/mount.h>
  39   39  #include <sys/cmn_err.h>
  40   40  #include "fs/fs_subr.h"
  41   41  #include <sys/zfs_znode.h>
  42   42  #include <sys/zfs_dir.h>
  43   43  #include <sys/zil.h>
  44   44  #include <sys/fs/zfs.h>
  45   45  #include <sys/dmu.h>
  46   46  #include <sys/dsl_prop.h>
  47   47  #include <sys/dsl_dataset.h>
  48   48  #include <sys/dsl_deleg.h>
  49   49  #include <sys/spa.h>
  50   50  #include <sys/zap.h>
  51   51  #include <sys/sa.h>
  52   52  #include <sys/sa_impl.h>
  53   53  #include <sys/varargs.h>
  54   54  #include <sys/policy.h>
  55   55  #include <sys/atomic.h>
  56   56  #include <sys/mkdev.h>
  57   57  #include <sys/modctl.h>
  58   58  #include <sys/refstr.h>
  59   59  #include <sys/zfs_ioctl.h>
  60   60  #include <sys/zfs_ctldir.h>
  61   61  #include <sys/zfs_fuid.h>
  62   62  #include <sys/bootconf.h>
  63   63  #include <sys/sunddi.h>
  64   64  #include <sys/dnlc.h>
  65   65  #include <sys/dmu_objset.h>
  66   66  #include <sys/spa_boot.h>
  67   67  #include "zfs_comutil.h"
  68   68  
  69   69  int zfsfstype;
  70   70  vfsops_t *zfs_vfsops = NULL;
  71   71  static major_t zfs_major;
  72   72  static minor_t zfs_minor;
  73   73  static kmutex_t zfs_dev_mtx;
  74   74  
  75   75  extern int sys_shutdown;
  76   76  
  77   77  static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
  78   78  static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
  79   79  static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
  80   80  static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
  81   81  static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
  82   82  static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
  83   83  static void zfs_freevfs(vfs_t *vfsp);
  84   84  
  85   85  static const fs_operation_def_t zfs_vfsops_template[] = {
  86   86          VFSNAME_MOUNT,          { .vfs_mount = zfs_mount },
  87   87          VFSNAME_MOUNTROOT,      { .vfs_mountroot = zfs_mountroot },
  88   88          VFSNAME_UNMOUNT,        { .vfs_unmount = zfs_umount },
  89   89          VFSNAME_ROOT,           { .vfs_root = zfs_root },
  90   90          VFSNAME_STATVFS,        { .vfs_statvfs = zfs_statvfs },
  91   91          VFSNAME_SYNC,           { .vfs_sync = zfs_sync },
  92   92          VFSNAME_VGET,           { .vfs_vget = zfs_vget },
  93   93          VFSNAME_FREEVFS,        { .vfs_freevfs = zfs_freevfs },
  94   94          NULL,                   NULL
  95   95  };
  96   96  
  97   97  static const fs_operation_def_t zfs_vfsops_eio_template[] = {
  98   98          VFSNAME_FREEVFS,        { .vfs_freevfs =  zfs_freevfs },
  99   99          NULL,                   NULL
 100  100  };
 101  101  
 102  102  /*
 103  103   * We need to keep a count of active fs's.
 104  104   * This is necessary to prevent our module
 105  105   * from being unloaded after a umount -f
 106  106   */
 107  107  static uint32_t zfs_active_fs_count = 0;
 108  108  
 109  109  static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
 110  110  static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
 111  111  static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
 112  112  static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
 113  113  
 114  114  /*
 115  115   * MO_DEFAULT is not used since the default value is determined
 116  116   * by the equivalent property.
 117  117   */
 118  118  static mntopt_t mntopts[] = {
 119  119          { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
 120  120          { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
 121  121          { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
 122  122          { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
 123  123  };
 124  124  
 125  125  static mntopts_t zfs_mntopts = {
 126  126          sizeof (mntopts) / sizeof (mntopt_t),
 127  127          mntopts
 128  128  };
 129  129  
 130  130  /*ARGSUSED*/
 131  131  int
 132  132  zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
 133  133  {
 134  134          /*
 135  135           * Data integrity is job one.  We don't want a compromised kernel
 136  136           * writing to the storage pool, so we never sync during panic.
 137  137           */
 138  138          if (panicstr)
 139  139                  return (0);
 140  140  
 141  141          /*
 142  142           * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
 143  143           * to sync metadata, which they would otherwise cache indefinitely.
 144  144           * Semantically, the only requirement is that the sync be initiated.
 145  145           * The DMU syncs out txgs frequently, so there's nothing to do.
 146  146           */
 147  147          if (flag & SYNC_ATTR)
 148  148                  return (0);
 149  149  
 150  150          if (vfsp != NULL) {
 151  151                  /*
 152  152                   * Sync a specific filesystem.
 153  153                   */
 154  154                  zfsvfs_t *zfsvfs = vfsp->vfs_data;
 155  155                  dsl_pool_t *dp;
 156  156  
 157  157                  ZFS_ENTER(zfsvfs);
 158  158                  dp = dmu_objset_pool(zfsvfs->z_os);
 159  159  
 160  160                  /*
 161  161                   * If the system is shutting down, then skip any
 162  162                   * filesystems which may exist on a suspended pool.
 163  163                   */
 164  164                  if (sys_shutdown && spa_suspended(dp->dp_spa)) {
 165  165                          ZFS_EXIT(zfsvfs);
 166  166                          return (0);
 167  167                  }
 168  168  
 169  169                  if (zfsvfs->z_log != NULL)
 170  170                          zil_commit(zfsvfs->z_log, 0);
 171  171  
 172  172                  ZFS_EXIT(zfsvfs);
 173  173          } else {
 174  174                  /*
 175  175                   * Sync all ZFS filesystems.  This is what happens when you
 176  176                   * run sync(1M).  Unlike other filesystems, ZFS honors the
 177  177                   * request by waiting for all pools to commit all dirty data.
 178  178                   */
 179  179                  spa_sync_allpools();
 180  180          }
 181  181  
 182  182          return (0);
 183  183  }
 184  184  
 185  185  static int
 186  186  zfs_create_unique_device(dev_t *dev)
 187  187  {
 188  188          major_t new_major;
 189  189  
 190  190          do {
 191  191                  ASSERT3U(zfs_minor, <=, MAXMIN32);
 192  192                  minor_t start = zfs_minor;
 193  193                  do {
 194  194                          mutex_enter(&zfs_dev_mtx);
 195  195                          if (zfs_minor >= MAXMIN32) {
 196  196                                  /*
 197  197                                   * If we're still using the real major
 198  198                                   * keep out of /dev/zfs and /dev/zvol minor
 199  199                                   * number space.  If we're using a getudev()'ed
 200  200                                   * major number, we can use all of its minors.
 201  201                                   */
 202  202                                  if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
 203  203                                          zfs_minor = ZFS_MIN_MINOR;
 204  204                                  else
 205  205                                          zfs_minor = 0;
 206  206                          } else {
 207  207                                  zfs_minor++;
 208  208                          }
 209  209                          *dev = makedevice(zfs_major, zfs_minor);
 210  210                          mutex_exit(&zfs_dev_mtx);
 211  211                  } while (vfs_devismounted(*dev) && zfs_minor != start);
 212  212                  if (zfs_minor == start) {
 213  213                          /*
 214  214                           * We are using all ~262,000 minor numbers for the
 215  215                           * current major number.  Create a new major number.
 216  216                           */
 217  217                          if ((new_major = getudev()) == (major_t)-1) {
 218  218                                  cmn_err(CE_WARN,
 219  219                                      "zfs_mount: Can't get unique major "
 220  220                                      "device number.");
 221  221                                  return (-1);
 222  222                          }
 223  223                          mutex_enter(&zfs_dev_mtx);
 224  224                          zfs_major = new_major;
 225  225                          zfs_minor = 0;
 226  226  
 227  227                          mutex_exit(&zfs_dev_mtx);
 228  228                  } else {
 229  229                          break;
 230  230                  }
 231  231                  /* CONSTANTCONDITION */
 232  232          } while (1);
 233  233  
 234  234          return (0);
 235  235  }
 236  236  
 237  237  static void
 238  238  atime_changed_cb(void *arg, uint64_t newval)
 239  239  {
 240  240          zfsvfs_t *zfsvfs = arg;
 241  241  
 242  242          if (newval == TRUE) {
 243  243                  zfsvfs->z_atime = TRUE;
 244  244                  vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
 245  245                  vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
 246  246          } else {
 247  247                  zfsvfs->z_atime = FALSE;
 248  248                  vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
 249  249                  vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
 250  250          }
 251  251  }
 252  252  
 253  253  static void
 254  254  xattr_changed_cb(void *arg, uint64_t newval)
 255  255  {
 256  256          zfsvfs_t *zfsvfs = arg;
 257  257  
 258  258          if (newval == TRUE) {
 259  259                  /* XXX locking on vfs_flag? */
 260  260                  zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
 261  261                  vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
 262  262                  vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
 263  263          } else {
 264  264                  /* XXX locking on vfs_flag? */
 265  265                  zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
 266  266                  vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
 267  267                  vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
 268  268          }
 269  269  }
 270  270  
 271  271  static void
 272  272  blksz_changed_cb(void *arg, uint64_t newval)
 273  273  {
 274  274          zfsvfs_t *zfsvfs = arg;
 275  275  
 276  276          if (newval < SPA_MINBLOCKSIZE ||
 277  277              newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
 278  278                  newval = SPA_MAXBLOCKSIZE;
 279  279  
 280  280          zfsvfs->z_max_blksz = newval;
 281  281          zfsvfs->z_vfs->vfs_bsize = newval;
 282  282  }
 283  283  
 284  284  static void
 285  285  readonly_changed_cb(void *arg, uint64_t newval)
 286  286  {
 287  287          zfsvfs_t *zfsvfs = arg;
 288  288  
 289  289          if (newval) {
 290  290                  /* XXX locking on vfs_flag? */
 291  291                  zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
 292  292                  vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
 293  293                  vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
 294  294          } else {
 295  295                  /* XXX locking on vfs_flag? */
 296  296                  zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
 297  297                  vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
 298  298                  vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
 299  299          }
 300  300  }
 301  301  
 302  302  static void
 303  303  devices_changed_cb(void *arg, uint64_t newval)
 304  304  {
 305  305          zfsvfs_t *zfsvfs = arg;
 306  306  
 307  307          if (newval == FALSE) {
 308  308                  zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
 309  309                  vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
 310  310                  vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
 311  311          } else {
 312  312                  zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
 313  313                  vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
 314  314                  vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
 315  315          }
 316  316  }
 317  317  
 318  318  static void
 319  319  setuid_changed_cb(void *arg, uint64_t newval)
 320  320  {
 321  321          zfsvfs_t *zfsvfs = arg;
 322  322  
 323  323          if (newval == FALSE) {
 324  324                  zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
 325  325                  vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
 326  326                  vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
 327  327          } else {
 328  328                  zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
 329  329                  vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
 330  330                  vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
 331  331          }
 332  332  }
 333  333  
 334  334  static void
 335  335  exec_changed_cb(void *arg, uint64_t newval)
 336  336  {
 337  337          zfsvfs_t *zfsvfs = arg;
 338  338  
 339  339          if (newval == FALSE) {
 340  340                  zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
 341  341                  vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
 342  342                  vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
 343  343          } else {
 344  344                  zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
 345  345                  vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
 346  346                  vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
 347  347          }
 348  348  }
 349  349  
 350  350  /*
 351  351   * The nbmand mount option can be changed at mount time.
 352  352   * We can't allow it to be toggled on live file systems or incorrect
 353  353   * behavior may be seen from cifs clients
 354  354   *
 355  355   * This property isn't registered via dsl_prop_register(), but this callback
 356  356   * will be called when a file system is first mounted
 357  357   */
 358  358  static void
 359  359  nbmand_changed_cb(void *arg, uint64_t newval)
 360  360  {
 361  361          zfsvfs_t *zfsvfs = arg;
 362  362          if (newval == FALSE) {
 363  363                  vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
 364  364                  vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
 365  365          } else {
 366  366                  vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
 367  367                  vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
 368  368          }
 369  369  }
 370  370  
 371  371  static void
 372  372  snapdir_changed_cb(void *arg, uint64_t newval)
 373  373  {
 374  374          zfsvfs_t *zfsvfs = arg;
 375  375  
 376  376          zfsvfs->z_show_ctldir = newval;
 377  377  }
 378  378  
 379  379  static void
 380  380  vscan_changed_cb(void *arg, uint64_t newval)
 381  381  {
 382  382          zfsvfs_t *zfsvfs = arg;
 383  383  
 384  384          zfsvfs->z_vscan = newval;
 385  385  }
 386  386  
 387  387  static void
 388  388  acl_mode_changed_cb(void *arg, uint64_t newval)
 389  389  {
 390  390          zfsvfs_t *zfsvfs = arg;
 391  391  
 392  392          zfsvfs->z_acl_mode = newval;
 393  393  }
 394  394  
 395  395  static void
 396  396  acl_inherit_changed_cb(void *arg, uint64_t newval)
 397  397  {
 398  398          zfsvfs_t *zfsvfs = arg;
 399  399  
 400  400          zfsvfs->z_acl_inherit = newval;
 401  401  }
 402  402  
 403  403  static int
 404  404  zfs_register_callbacks(vfs_t *vfsp)
 405  405  {
 406  406          struct dsl_dataset *ds = NULL;
 407  407          objset_t *os = NULL;
 408  408          zfsvfs_t *zfsvfs = NULL;
 409  409          uint64_t nbmand;
 410  410          boolean_t readonly = B_FALSE;
 411  411          boolean_t do_readonly = B_FALSE;
 412  412          boolean_t setuid = B_FALSE;
 413  413          boolean_t do_setuid = B_FALSE;
 414  414          boolean_t exec = B_FALSE;
 415  415          boolean_t do_exec = B_FALSE;
 416  416          boolean_t devices = B_FALSE;
 417  417          boolean_t do_devices = B_FALSE;
 418  418          boolean_t xattr = B_FALSE;
 419  419          boolean_t do_xattr = B_FALSE;
 420  420          boolean_t atime = B_FALSE;
 421  421          boolean_t do_atime = B_FALSE;
 422  422          int error = 0;
 423  423  
 424  424          ASSERT(vfsp);
 425  425          zfsvfs = vfsp->vfs_data;
 426  426          ASSERT(zfsvfs);
 427  427          os = zfsvfs->z_os;
 428  428  
 429  429          /*
 430  430           * The act of registering our callbacks will destroy any mount
 431  431           * options we may have.  In order to enable temporary overrides
 432  432           * of mount options, we stash away the current values and
 433  433           * restore them after we register the callbacks.
 434  434           */
 435  435          if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
 436  436              !spa_writeable(dmu_objset_spa(os))) {
 437  437                  readonly = B_TRUE;
 438  438                  do_readonly = B_TRUE;
 439  439          } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
 440  440                  readonly = B_FALSE;
 441  441                  do_readonly = B_TRUE;
 442  442          }
 443  443          if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
 444  444                  devices = B_FALSE;
 445  445                  setuid = B_FALSE;
 446  446                  do_devices = B_TRUE;
 447  447                  do_setuid = B_TRUE;
 448  448          } else {
 449  449                  if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
 450  450                          devices = B_FALSE;
 451  451                          do_devices = B_TRUE;
 452  452                  } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
 453  453                          devices = B_TRUE;
 454  454                          do_devices = B_TRUE;
 455  455                  }
 456  456  
 457  457                  if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
 458  458                          setuid = B_FALSE;
 459  459                          do_setuid = B_TRUE;
 460  460                  } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
 461  461                          setuid = B_TRUE;
 462  462                          do_setuid = B_TRUE;
 463  463                  }
 464  464          }
 465  465          if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
 466  466                  exec = B_FALSE;
 467  467                  do_exec = B_TRUE;
 468  468          } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
 469  469                  exec = B_TRUE;
 470  470                  do_exec = B_TRUE;
 471  471          }
 472  472          if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
 473  473                  xattr = B_FALSE;
 474  474                  do_xattr = B_TRUE;
 475  475          } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
 476  476                  xattr = B_TRUE;
 477  477                  do_xattr = B_TRUE;
 478  478          }
 479  479          if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
 480  480                  atime = B_FALSE;
 481  481                  do_atime = B_TRUE;
 482  482          } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
 483  483                  atime = B_TRUE;
 484  484                  do_atime = B_TRUE;
 485  485          }
 486  486  
 487  487          /*
 488  488           * nbmand is a special property.  It can only be changed at
 489  489           * mount time.
 490  490           *
 491  491           * This is weird, but it is documented to only be changeable
 492  492           * at mount time.
 493  493           */
 494  494          if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
 495  495                  nbmand = B_FALSE;
 496  496          } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
 497  497                  nbmand = B_TRUE;
 498  498          } else {
 499  499                  char osname[MAXNAMELEN];
 500  500  
 501  501                  dmu_objset_name(os, osname);
 502  502                  if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
 503  503                      NULL)) {
 504  504                          return (error);
 505  505                  }
 506  506          }
 507  507  
 508  508          /*
 509  509           * Register property callbacks.
 510  510           *
 511  511           * It would probably be fine to just check for i/o error from
 512  512           * the first prop_register(), but I guess I like to go
 513  513           * overboard...
 514  514           */
 515  515          ds = dmu_objset_ds(os);
 516  516          dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
 517  517          error = dsl_prop_register(ds,
 518  518              zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
 519  519          error = error ? error : dsl_prop_register(ds,
 520  520              zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
 521  521          error = error ? error : dsl_prop_register(ds,
 522  522              zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
 523  523          error = error ? error : dsl_prop_register(ds,
 524  524              zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
 525  525          error = error ? error : dsl_prop_register(ds,
 526  526              zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
 527  527          error = error ? error : dsl_prop_register(ds,
 528  528              zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
 529  529          error = error ? error : dsl_prop_register(ds,
 530  530              zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
 531  531          error = error ? error : dsl_prop_register(ds,
 532  532              zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
 533  533          error = error ? error : dsl_prop_register(ds,
 534  534              zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
 535  535          error = error ? error : dsl_prop_register(ds,
 536  536              zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
 537  537              zfsvfs);
 538  538          error = error ? error : dsl_prop_register(ds,
 539  539              zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
 540  540          dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
 541  541          if (error)
 542  542                  goto unregister;
 543  543  
 544  544          /*
 545  545           * Invoke our callbacks to restore temporary mount options.
 546  546           */
 547  547          if (do_readonly)
 548  548                  readonly_changed_cb(zfsvfs, readonly);
 549  549          if (do_setuid)
 550  550                  setuid_changed_cb(zfsvfs, setuid);
 551  551          if (do_exec)
 552  552                  exec_changed_cb(zfsvfs, exec);
 553  553          if (do_devices)
 554  554                  devices_changed_cb(zfsvfs, devices);
 555  555          if (do_xattr)
 556  556                  xattr_changed_cb(zfsvfs, xattr);
 557  557          if (do_atime)
 558  558                  atime_changed_cb(zfsvfs, atime);
 559  559  
 560  560          nbmand_changed_cb(zfsvfs, nbmand);
 561  561  
 562  562          return (0);
 563  563  
 564  564  unregister:
 565  565          /*
 566  566           * We may attempt to unregister some callbacks that are not
 567  567           * registered, but this is OK; it will simply return ENOMSG,
 568  568           * which we will ignore.
 569  569           */
 570  570          (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ATIME),
 571  571              atime_changed_cb, zfsvfs);
 572  572          (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_XATTR),
 573  573              xattr_changed_cb, zfsvfs);
 574  574          (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
 575  575              blksz_changed_cb, zfsvfs);
 576  576          (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_READONLY),
 577  577              readonly_changed_cb, zfsvfs);
 578  578          (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_DEVICES),
 579  579              devices_changed_cb, zfsvfs);
 580  580          (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SETUID),
 581  581              setuid_changed_cb, zfsvfs);
 582  582          (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_EXEC),
 583  583              exec_changed_cb, zfsvfs);
 584  584          (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SNAPDIR),
 585  585              snapdir_changed_cb, zfsvfs);
 586  586          (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLMODE),
 587  587              acl_mode_changed_cb, zfsvfs);
 588  588          (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLINHERIT),
 589  589              acl_inherit_changed_cb, zfsvfs);
 590  590          (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_VSCAN),
 591  591              vscan_changed_cb, zfsvfs);
 592  592          return (error);
 593  593  }
 594  594  
 595  595  static int
 596  596  zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
 597  597      uint64_t *userp, uint64_t *groupp)
 598  598  {
 599  599          /*
 600  600           * Is it a valid type of object to track?
 601  601           */
 602  602          if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
 603  603                  return (SET_ERROR(ENOENT));
 604  604  
 605  605          /*
 606  606           * If we have a NULL data pointer
 607  607           * then assume the id's aren't changing and
 608  608           * return EEXIST to the dmu to let it know to
 609  609           * use the same ids
 610  610           */
 611  611          if (data == NULL)
 612  612                  return (SET_ERROR(EEXIST));
 613  613  
 614  614          if (bonustype == DMU_OT_ZNODE) {
 615  615                  znode_phys_t *znp = data;
 616  616                  *userp = znp->zp_uid;
 617  617                  *groupp = znp->zp_gid;
 618  618          } else {
 619  619                  int hdrsize;
 620  620                  sa_hdr_phys_t *sap = data;
 621  621                  sa_hdr_phys_t sa = *sap;
 622  622                  boolean_t swap = B_FALSE;
 623  623  
 624  624                  ASSERT(bonustype == DMU_OT_SA);
 625  625  
 626  626                  if (sa.sa_magic == 0) {
 627  627                          /*
 628  628                           * This should only happen for newly created
 629  629                           * files that haven't had the znode data filled
 630  630                           * in yet.
 631  631                           */
 632  632                          *userp = 0;
 633  633                          *groupp = 0;
 634  634                          return (0);
 635  635                  }
 636  636                  if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
 637  637                          sa.sa_magic = SA_MAGIC;
 638  638                          sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
 639  639                          swap = B_TRUE;
 640  640                  } else {
 641  641                          VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
 642  642                  }
 643  643  
 644  644                  hdrsize = sa_hdrsize(&sa);
 645  645                  VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
 646  646                  *userp = *((uint64_t *)((uintptr_t)data + hdrsize +
 647  647                      SA_UID_OFFSET));
 648  648                  *groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
 649  649                      SA_GID_OFFSET));
 650  650                  if (swap) {
 651  651                          *userp = BSWAP_64(*userp);
 652  652                          *groupp = BSWAP_64(*groupp);
 653  653                  }
 654  654          }
 655  655          return (0);
 656  656  }
 657  657  
 658  658  static void
 659  659  fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
 660  660      char *domainbuf, int buflen, uid_t *ridp)
 661  661  {
 662  662          uint64_t fuid;
 663  663          const char *domain;
 664  664  
 665  665          fuid = strtonum(fuidstr, NULL);
 666  666  
 667  667          domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
 668  668          if (domain)
 669  669                  (void) strlcpy(domainbuf, domain, buflen);
 670  670          else
 671  671                  domainbuf[0] = '\0';
 672  672          *ridp = FUID_RID(fuid);
 673  673  }
 674  674  
 675  675  static uint64_t
 676  676  zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
 677  677  {
 678  678          switch (type) {
 679  679          case ZFS_PROP_USERUSED:
 680  680                  return (DMU_USERUSED_OBJECT);
 681  681          case ZFS_PROP_GROUPUSED:
 682  682                  return (DMU_GROUPUSED_OBJECT);
 683  683          case ZFS_PROP_USERQUOTA:
 684  684                  return (zfsvfs->z_userquota_obj);
 685  685          case ZFS_PROP_GROUPQUOTA:
 686  686                  return (zfsvfs->z_groupquota_obj);
 687  687          }
 688  688          return (0);
 689  689  }
 690  690  
 691  691  int
 692  692  zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
 693  693      uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
 694  694  {
 695  695          int error;
 696  696          zap_cursor_t zc;
 697  697          zap_attribute_t za;
 698  698          zfs_useracct_t *buf = vbuf;
 699  699          uint64_t obj;
 700  700  
 701  701          if (!dmu_objset_userspace_present(zfsvfs->z_os))
 702  702                  return (SET_ERROR(ENOTSUP));
 703  703  
 704  704          obj = zfs_userquota_prop_to_obj(zfsvfs, type);
 705  705          if (obj == 0) {
 706  706                  *bufsizep = 0;
 707  707                  return (0);
 708  708          }
 709  709  
 710  710          for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
 711  711              (error = zap_cursor_retrieve(&zc, &za)) == 0;
 712  712              zap_cursor_advance(&zc)) {
 713  713                  if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
 714  714                      *bufsizep)
 715  715                          break;
 716  716  
 717  717                  fuidstr_to_sid(zfsvfs, za.za_name,
 718  718                      buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
 719  719  
 720  720                  buf->zu_space = za.za_first_integer;
 721  721                  buf++;
 722  722          }
 723  723          if (error == ENOENT)
 724  724                  error = 0;
 725  725  
 726  726          ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
 727  727          *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
 728  728          *cookiep = zap_cursor_serialize(&zc);
 729  729          zap_cursor_fini(&zc);
 730  730          return (error);
 731  731  }
 732  732  
 733  733  /*
 734  734   * buf must be big enough (eg, 32 bytes)
 735  735   */
 736  736  static int
 737  737  id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
 738  738      char *buf, boolean_t addok)
 739  739  {
 740  740          uint64_t fuid;
 741  741          int domainid = 0;
 742  742  
 743  743          if (domain && domain[0]) {
 744  744                  domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
 745  745                  if (domainid == -1)
 746  746                          return (SET_ERROR(ENOENT));
 747  747          }
 748  748          fuid = FUID_ENCODE(domainid, rid);
 749  749          (void) sprintf(buf, "%llx", (longlong_t)fuid);
 750  750          return (0);
 751  751  }
 752  752  
 753  753  int
 754  754  zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
 755  755      const char *domain, uint64_t rid, uint64_t *valp)
 756  756  {
 757  757          char buf[32];
 758  758          int err;
 759  759          uint64_t obj;
 760  760  
 761  761          *valp = 0;
 762  762  
 763  763          if (!dmu_objset_userspace_present(zfsvfs->z_os))
 764  764                  return (SET_ERROR(ENOTSUP));
 765  765  
 766  766          obj = zfs_userquota_prop_to_obj(zfsvfs, type);
 767  767          if (obj == 0)
 768  768                  return (0);
 769  769  
 770  770          err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
 771  771          if (err)
 772  772                  return (err);
 773  773  
 774  774          err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
 775  775          if (err == ENOENT)
 776  776                  err = 0;
 777  777          return (err);
 778  778  }
 779  779  
 780  780  int
 781  781  zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
 782  782      const char *domain, uint64_t rid, uint64_t quota)
 783  783  {
 784  784          char buf[32];
 785  785          int err;
 786  786          dmu_tx_t *tx;
 787  787          uint64_t *objp;
 788  788          boolean_t fuid_dirtied;
 789  789  
 790  790          if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
 791  791                  return (SET_ERROR(EINVAL));
 792  792  
 793  793          if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
 794  794                  return (SET_ERROR(ENOTSUP));
 795  795  
 796  796          objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
 797  797              &zfsvfs->z_groupquota_obj;
 798  798  
 799  799          err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
 800  800          if (err)
 801  801                  return (err);
 802  802          fuid_dirtied = zfsvfs->z_fuid_dirty;
 803  803  
 804  804          tx = dmu_tx_create(zfsvfs->z_os);
 805  805          dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
 806  806          if (*objp == 0) {
 807  807                  dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
 808  808                      zfs_userquota_prop_prefixes[type]);
 809  809          }
 810  810          if (fuid_dirtied)
 811  811                  zfs_fuid_txhold(zfsvfs, tx);
 812  812          err = dmu_tx_assign(tx, TXG_WAIT);
 813  813          if (err) {
 814  814                  dmu_tx_abort(tx);
 815  815                  return (err);
 816  816          }
 817  817  
 818  818          mutex_enter(&zfsvfs->z_lock);
 819  819          if (*objp == 0) {
 820  820                  *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
 821  821                      DMU_OT_NONE, 0, tx);
 822  822                  VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
 823  823                      zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
 824  824          }
 825  825          mutex_exit(&zfsvfs->z_lock);
 826  826  
 827  827          if (quota == 0) {
 828  828                  err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
 829  829                  if (err == ENOENT)
 830  830                          err = 0;
 831  831          } else {
 832  832                  err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx);
 833  833          }
 834  834          ASSERT(err == 0);
 835  835          if (fuid_dirtied)
 836  836                  zfs_fuid_sync(zfsvfs, tx);
 837  837          dmu_tx_commit(tx);
 838  838          return (err);
 839  839  }
 840  840  
 841  841  boolean_t
 842  842  zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
 843  843  {
 844  844          char buf[32];
 845  845          uint64_t used, quota, usedobj, quotaobj;
 846  846          int err;
 847  847  
 848  848          usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
 849  849          quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
 850  850  
 851  851          if (quotaobj == 0 || zfsvfs->z_replay)
 852  852                  return (B_FALSE);
 853  853  
 854  854          (void) sprintf(buf, "%llx", (longlong_t)fuid);
 855  855          err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a);
 856  856          if (err != 0)
 857  857                  return (B_FALSE);
 858  858  
 859  859          err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
 860  860          if (err != 0)
 861  861                  return (B_FALSE);
 862  862          return (used >= quota);
 863  863  }
 864  864  
 865  865  boolean_t
 866  866  zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
 867  867  {
 868  868          uint64_t fuid;
 869  869          uint64_t quotaobj;
 870  870  
 871  871          quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
 872  872  
 873  873          fuid = isgroup ? zp->z_gid : zp->z_uid;
 874  874  
 875  875          if (quotaobj == 0 || zfsvfs->z_replay)
 876  876                  return (B_FALSE);
 877  877  
 878  878          return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
 879  879  }
 880  880  
 881  881  int
 882  882  zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
 883  883  {
 884  884          objset_t *os;
 885  885          zfsvfs_t *zfsvfs;
 886  886          uint64_t zval;
 887  887          int i, error;
 888  888          uint64_t sa_obj;
 889  889  
 890  890          zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
 891  891  
 892  892          /*
 893  893           * We claim to always be readonly so we can open snapshots;
 894  894           * other ZPL code will prevent us from writing to snapshots.
 895  895           */
 896  896          error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
 897  897          if (error) {
 898  898                  kmem_free(zfsvfs, sizeof (zfsvfs_t));
 899  899                  return (error);
 900  900          }
 901  901  
 902  902          /*
 903  903           * Initialize the zfs-specific filesystem structure.
 904  904           * Should probably make this a kmem cache, shuffle fields,
 905  905           * and just bzero up to z_hold_mtx[].
 906  906           */
 907  907          zfsvfs->z_vfs = NULL;
 908  908          zfsvfs->z_parent = zfsvfs;
 909  909          zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
 910  910          zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
 911  911          zfsvfs->z_os = os;
 912  912  
 913  913          error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
 914  914          if (error) {
 915  915                  goto out;
 916  916          } else if (zfsvfs->z_version >
 917  917              zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
 918  918                  (void) printf("Can't mount a version %lld file system "
 919  919                      "on a version %lld pool\n. Pool must be upgraded to mount "
 920  920                      "this file system.", (u_longlong_t)zfsvfs->z_version,
 921  921                      (u_longlong_t)spa_version(dmu_objset_spa(os)));
 922  922                  error = SET_ERROR(ENOTSUP);
 923  923                  goto out;
 924  924          }
 925  925          if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
 926  926                  goto out;
 927  927          zfsvfs->z_norm = (int)zval;
 928  928  
 929  929          if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
 930  930                  goto out;
 931  931          zfsvfs->z_utf8 = (zval != 0);
 932  932  
 933  933          if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
 934  934                  goto out;
 935  935          zfsvfs->z_case = (uint_t)zval;
 936  936  
 937  937          /*
 938  938           * Fold case on file systems that are always or sometimes case
 939  939           * insensitive.
 940  940           */
 941  941          if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
 942  942              zfsvfs->z_case == ZFS_CASE_MIXED)
 943  943                  zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
 944  944  
 945  945          zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
 946  946          zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
 947  947  
 948  948          if (zfsvfs->z_use_sa) {
 949  949                  /* should either have both of these objects or none */
 950  950                  error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
 951  951                      &sa_obj);
 952  952                  if (error)
 953  953                          return (error);
 954  954          } else {
 955  955                  /*
 956  956                   * Pre SA versions file systems should never touch
 957  957                   * either the attribute registration or layout objects.
 958  958                   */
 959  959                  sa_obj = 0;
 960  960          }
 961  961  
 962  962          error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
 963  963              &zfsvfs->z_attr_table);
 964  964          if (error)
 965  965                  goto out;
 966  966  
 967  967          if (zfsvfs->z_version >= ZPL_VERSION_SA)
 968  968                  sa_register_update_callback(os, zfs_sa_upgrade);
 969  969  
 970  970          error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
 971  971              &zfsvfs->z_root);
 972  972          if (error)
 973  973                  goto out;
 974  974          ASSERT(zfsvfs->z_root != 0);
 975  975  
 976  976          error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
 977  977              &zfsvfs->z_unlinkedobj);
 978  978          if (error)
 979  979                  goto out;
 980  980  
 981  981          error = zap_lookup(os, MASTER_NODE_OBJ,
 982  982              zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
 983  983              8, 1, &zfsvfs->z_userquota_obj);
 984  984          if (error && error != ENOENT)
 985  985                  goto out;
 986  986  
 987  987          error = zap_lookup(os, MASTER_NODE_OBJ,
 988  988              zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
 989  989              8, 1, &zfsvfs->z_groupquota_obj);
 990  990          if (error && error != ENOENT)
 991  991                  goto out;
 992  992  
 993  993          error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
 994  994              &zfsvfs->z_fuid_obj);
 995  995          if (error && error != ENOENT)
 996  996                  goto out;
 997  997  
 998  998          error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
 999  999              &zfsvfs->z_shares_dir);
1000 1000          if (error && error != ENOENT)
1001 1001                  goto out;
1002 1002  
1003 1003          mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1004 1004          mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
1005 1005          list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
1006 1006              offsetof(znode_t, z_link_node));
1007 1007          rrw_init(&zfsvfs->z_teardown_lock, B_FALSE);
1008 1008          rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
1009 1009          rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
1010 1010          for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1011 1011                  mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1012 1012  
1013 1013          *zfvp = zfsvfs;
1014 1014          return (0);
1015 1015  
1016 1016  out:
1017 1017          dmu_objset_disown(os, zfsvfs);
1018 1018          *zfvp = NULL;
1019 1019          kmem_free(zfsvfs, sizeof (zfsvfs_t));
1020 1020          return (error);
1021 1021  }
1022 1022  
1023 1023  static int
1024 1024  zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1025 1025  {
1026 1026          int error;
1027 1027  
1028 1028          error = zfs_register_callbacks(zfsvfs->z_vfs);
1029 1029          if (error)
1030 1030                  return (error);
1031 1031  
1032 1032          /*
1033 1033           * Set the objset user_ptr to track its zfsvfs.
1034 1034           */
1035 1035          mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1036 1036          dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1037 1037          mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1038 1038  
1039 1039          zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1040 1040  
1041 1041          /*
1042 1042           * If we are not mounting (ie: online recv), then we don't
1043 1043           * have to worry about replaying the log as we blocked all
1044 1044           * operations out since we closed the ZIL.
1045 1045           */
1046 1046          if (mounting) {
1047 1047                  boolean_t readonly;
1048 1048  
1049 1049                  /*
1050 1050                   * During replay we remove the read only flag to
1051 1051                   * allow replays to succeed.
1052 1052                   */
1053 1053                  readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1054 1054                  if (readonly != 0)
1055 1055                          zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1056 1056                  else
1057 1057                          zfs_unlinked_drain(zfsvfs);
1058 1058  
1059 1059                  /*
1060 1060                   * Parse and replay the intent log.
1061 1061                   *
1062 1062                   * Because of ziltest, this must be done after
1063 1063                   * zfs_unlinked_drain().  (Further note: ziltest
1064 1064                   * doesn't use readonly mounts, where
1065 1065                   * zfs_unlinked_drain() isn't called.)  This is because
1066 1066                   * ziltest causes spa_sync() to think it's committed,
1067 1067                   * but actually it is not, so the intent log contains
1068 1068                   * many txg's worth of changes.
1069 1069                   *
1070 1070                   * In particular, if object N is in the unlinked set in
1071 1071                   * the last txg to actually sync, then it could be
1072 1072                   * actually freed in a later txg and then reallocated
1073 1073                   * in a yet later txg.  This would write a "create
1074 1074                   * object N" record to the intent log.  Normally, this
1075 1075                   * would be fine because the spa_sync() would have
1076 1076                   * written out the fact that object N is free, before
1077 1077                   * we could write the "create object N" intent log
1078 1078                   * record.
1079 1079                   *
1080 1080                   * But when we are in ziltest mode, we advance the "open
1081 1081                   * txg" without actually spa_sync()-ing the changes to
1082 1082                   * disk.  So we would see that object N is still
1083 1083                   * allocated and in the unlinked set, and there is an
1084 1084                   * intent log record saying to allocate it.
1085 1085                   */
1086 1086                  if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1087 1087                          if (zil_replay_disable) {
1088 1088                                  zil_destroy(zfsvfs->z_log, B_FALSE);
1089 1089                          } else {
1090 1090                                  zfsvfs->z_replay = B_TRUE;
1091 1091                                  zil_replay(zfsvfs->z_os, zfsvfs,
1092 1092                                      zfs_replay_vector);
1093 1093                                  zfsvfs->z_replay = B_FALSE;
1094 1094                          }
1095 1095                  }
1096 1096                  zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1097 1097          }
1098 1098  
1099 1099          return (0);
1100 1100  }
1101 1101  
1102 1102  void
1103 1103  zfsvfs_free(zfsvfs_t *zfsvfs)
1104 1104  {
1105 1105          int i;
1106 1106          extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1107 1107  
1108 1108          /*
1109 1109           * This is a barrier to prevent the filesystem from going away in
1110 1110           * zfs_znode_move() until we can safely ensure that the filesystem is
1111 1111           * not unmounted. We consider the filesystem valid before the barrier
1112 1112           * and invalid after the barrier.
1113 1113           */
1114 1114          rw_enter(&zfsvfs_lock, RW_READER);
1115 1115          rw_exit(&zfsvfs_lock);
1116 1116  
1117 1117          zfs_fuid_destroy(zfsvfs);
1118 1118  
1119 1119          mutex_destroy(&zfsvfs->z_znodes_lock);
1120 1120          mutex_destroy(&zfsvfs->z_lock);
1121 1121          list_destroy(&zfsvfs->z_all_znodes);
1122 1122          rrw_destroy(&zfsvfs->z_teardown_lock);
1123 1123          rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1124 1124          rw_destroy(&zfsvfs->z_fuid_lock);
1125 1125          for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1126 1126                  mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1127 1127          kmem_free(zfsvfs, sizeof (zfsvfs_t));
1128 1128  }
1129 1129  
1130 1130  static void
1131 1131  zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1132 1132  {
1133 1133          zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1134 1134          if (zfsvfs->z_vfs) {
1135 1135                  if (zfsvfs->z_use_fuids) {
1136 1136                          vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1137 1137                          vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1138 1138                          vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1139 1139                          vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1140 1140                          vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1141 1141                          vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1142 1142                  } else {
1143 1143                          vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1144 1144                          vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1145 1145                          vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1146 1146                          vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1147 1147                          vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1148 1148                          vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1149 1149                  }
1150 1150          }
1151 1151          zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1152 1152  }
1153 1153  
1154 1154  static int
1155 1155  zfs_domount(vfs_t *vfsp, char *osname)
1156 1156  {
1157 1157          dev_t mount_dev;
1158 1158          uint64_t recordsize, fsid_guid;
1159 1159          int error = 0;
1160 1160          zfsvfs_t *zfsvfs;
1161 1161  
1162 1162          ASSERT(vfsp);
1163 1163          ASSERT(osname);
1164 1164  
1165 1165          error = zfsvfs_create(osname, &zfsvfs);
1166 1166          if (error)
1167 1167                  return (error);
1168 1168          zfsvfs->z_vfs = vfsp;
1169 1169  
1170 1170          /* Initialize the generic filesystem structure. */
1171 1171          vfsp->vfs_bcount = 0;
1172 1172          vfsp->vfs_data = NULL;
1173 1173  
1174 1174          if (zfs_create_unique_device(&mount_dev) == -1) {
1175 1175                  error = SET_ERROR(ENODEV);
1176 1176                  goto out;
1177 1177          }
1178 1178          ASSERT(vfs_devismounted(mount_dev) == 0);
1179 1179  
1180 1180          if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1181 1181              NULL))
1182 1182                  goto out;
1183 1183  
1184 1184          vfsp->vfs_dev = mount_dev;
1185 1185          vfsp->vfs_fstype = zfsfstype;
1186 1186          vfsp->vfs_bsize = recordsize;
1187 1187          vfsp->vfs_flag |= VFS_NOTRUNC;
1188 1188          vfsp->vfs_data = zfsvfs;
1189 1189  
1190 1190          /*
1191 1191           * The fsid is 64 bits, composed of an 8-bit fs type, which
1192 1192           * separates our fsid from any other filesystem types, and a
1193 1193           * 56-bit objset unique ID.  The objset unique ID is unique to
1194 1194           * all objsets open on this system, provided by unique_create().
1195 1195           * The 8-bit fs type must be put in the low bits of fsid[1]
1196 1196           * because that's where other Solaris filesystems put it.
1197 1197           */
1198 1198          fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1199 1199          ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1200 1200          vfsp->vfs_fsid.val[0] = fsid_guid;
1201 1201          vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1202 1202              zfsfstype & 0xFF;
1203 1203  
1204 1204          /*
1205 1205           * Set features for file system.
1206 1206           */
1207 1207          zfs_set_fuid_feature(zfsvfs);
1208 1208          if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1209 1209                  vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1210 1210                  vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1211 1211                  vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1212 1212          } else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1213 1213                  vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1214 1214                  vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1215 1215          }
1216 1216          vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1217 1217  
1218 1218          if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1219 1219                  uint64_t pval;
1220 1220  
1221 1221                  atime_changed_cb(zfsvfs, B_FALSE);
1222 1222                  readonly_changed_cb(zfsvfs, B_TRUE);
1223 1223                  if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1224 1224                          goto out;
1225 1225                  xattr_changed_cb(zfsvfs, pval);
1226 1226                  zfsvfs->z_issnap = B_TRUE;
1227 1227                  zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1228 1228  
1229 1229                  mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1230 1230                  dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1231 1231                  mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1232 1232          } else {
1233 1233                  error = zfsvfs_setup(zfsvfs, B_TRUE);
1234 1234          }
1235 1235  
1236 1236          if (!zfsvfs->z_issnap)
1237 1237                  zfsctl_create(zfsvfs);
1238 1238  out:
1239 1239          if (error) {
1240 1240                  dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1241 1241                  zfsvfs_free(zfsvfs);
1242 1242          } else {
1243 1243                  atomic_add_32(&zfs_active_fs_count, 1);
1244 1244          }
1245 1245  
1246 1246          return (error);
1247 1247  }
1248 1248  
1249 1249  void
1250 1250  zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1251 1251  {
1252 1252          objset_t *os = zfsvfs->z_os;
1253 1253          struct dsl_dataset *ds;
1254 1254  
1255 1255          /*
1256 1256           * Unregister properties.
1257 1257           */
1258 1258          if (!dmu_objset_is_snapshot(os)) {
1259 1259                  ds = dmu_objset_ds(os);
1260 1260                  VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1261 1261                      zfsvfs) == 0);
1262 1262  
1263 1263                  VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1264 1264                      zfsvfs) == 0);
1265 1265  
1266 1266                  VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1267 1267                      zfsvfs) == 0);
1268 1268  
1269 1269                  VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1270 1270                      zfsvfs) == 0);
1271 1271  
1272 1272                  VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1273 1273                      zfsvfs) == 0);
1274 1274  
1275 1275                  VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1276 1276                      zfsvfs) == 0);
1277 1277  
1278 1278                  VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1279 1279                      zfsvfs) == 0);
1280 1280  
1281 1281                  VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1282 1282                      zfsvfs) == 0);
1283 1283  
1284 1284                  VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1285 1285                      zfsvfs) == 0);
1286 1286  
1287 1287                  VERIFY(dsl_prop_unregister(ds, "aclinherit",
1288 1288                      acl_inherit_changed_cb, zfsvfs) == 0);
1289 1289  
1290 1290                  VERIFY(dsl_prop_unregister(ds, "vscan",
1291 1291                      vscan_changed_cb, zfsvfs) == 0);
1292 1292          }
1293 1293  }
1294 1294  
1295 1295  /*
1296 1296   * Convert a decimal digit string to a uint64_t integer.
1297 1297   */
1298 1298  static int
1299 1299  str_to_uint64(char *str, uint64_t *objnum)
1300 1300  {
1301 1301          uint64_t num = 0;
1302 1302  
1303 1303          while (*str) {
1304 1304                  if (*str < '0' || *str > '9')
1305 1305                          return (SET_ERROR(EINVAL));
1306 1306  
1307 1307                  num = num*10 + *str++ - '0';
1308 1308          }
1309 1309  
1310 1310          *objnum = num;
1311 1311          return (0);
1312 1312  }
1313 1313  
1314 1314  /*
1315 1315   * The boot path passed from the boot loader is in the form of
1316 1316   * "rootpool-name/root-filesystem-object-number'. Convert this
1317 1317   * string to a dataset name: "rootpool-name/root-filesystem-name".
1318 1318   */
1319 1319  static int
1320 1320  zfs_parse_bootfs(char *bpath, char *outpath)
1321 1321  {
1322 1322          char *slashp;
1323 1323          uint64_t objnum;
1324 1324          int error;
1325 1325  
1326 1326          if (*bpath == 0 || *bpath == '/')
1327 1327                  return (SET_ERROR(EINVAL));
1328 1328  
1329 1329          (void) strcpy(outpath, bpath);
1330 1330  
1331 1331          slashp = strchr(bpath, '/');
1332 1332  
1333 1333          /* if no '/', just return the pool name */
1334 1334          if (slashp == NULL) {
1335 1335                  return (0);
1336 1336          }
1337 1337  
1338 1338          /* if not a number, just return the root dataset name */
1339 1339          if (str_to_uint64(slashp+1, &objnum)) {
1340 1340                  return (0);
  
    | ↓ open down ↓ | 1340 lines elided | ↑ open up ↑ | 
1341 1341          }
1342 1342  
1343 1343          *slashp = '\0';
1344 1344          error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1345 1345          *slashp = '/';
1346 1346  
1347 1347          return (error);
1348 1348  }
1349 1349  
1350 1350  /*
1351      - * zfs_check_global_label:
1352      - *      Check that the hex label string is appropriate for the dataset
1353      - *      being mounted into the global_zone proper.
     1351 + * Check that the hex label string is appropriate for the dataset being
     1352 + * mounted into the global_zone proper.
1354 1353   *
1355      - *      Return an error if the hex label string is not default or
1356      - *      admin_low/admin_high.  For admin_low labels, the corresponding
1357      - *      dataset must be readonly.
     1354 + * Return an error if the hex label string is not default or
     1355 + * admin_low/admin_high.  For admin_low labels, the corresponding
     1356 + * dataset must be readonly.
1358 1357   */
1359 1358  int
1360 1359  zfs_check_global_label(const char *dsname, const char *hexsl)
1361 1360  {
1362 1361          if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1363 1362                  return (0);
1364 1363          if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1365 1364                  return (0);
1366 1365          if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1367 1366                  /* must be readonly */
1368 1367                  uint64_t rdonly;
  
    | ↓ open down ↓ | 1 lines elided | ↑ open up ↑ | 
1369 1368  
1370 1369                  if (dsl_prop_get_integer(dsname,
1371 1370                      zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1372 1371                          return (SET_ERROR(EACCES));
1373 1372                  return (rdonly ? 0 : EACCES);
1374 1373          }
1375 1374          return (SET_ERROR(EACCES));
1376 1375  }
1377 1376  
1378 1377  /*
1379      - * zfs_mount_label_policy:
1380      - *      Determine whether the mount is allowed according to MAC check.
1381      - *      by comparing (where appropriate) label of the dataset against
1382      - *      the label of the zone being mounted into.  If the dataset has
1383      - *      no label, create one.
     1378 + * Determine whether the mount is allowed according to MAC check.
     1379 + * by comparing (where appropriate) label of the dataset against
     1380 + * the label of the zone being mounted into.  If the dataset has
     1381 + * no label, create one.
1384 1382   *
1385      - *      Returns:
1386      - *               0 :    access allowed
1387      - *              >0 :    error code, such as EACCES
     1383 + * Returns 0 if access allowed, error otherwise (e.g. EACCES)
1388 1384   */
1389 1385  static int
1390 1386  zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1391 1387  {
1392 1388          int             error, retv;
1393 1389          zone_t          *mntzone = NULL;
1394 1390          ts_label_t      *mnt_tsl;
1395 1391          bslabel_t       *mnt_sl;
1396 1392          bslabel_t       ds_sl;
1397 1393          char            ds_hexsl[MAXNAMELEN];
1398 1394  
1399 1395          retv = EACCES;                          /* assume the worst */
1400 1396  
1401 1397          /*
1402 1398           * Start by getting the dataset label if it exists.
1403 1399           */
1404 1400          error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1405 1401              1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1406 1402          if (error)
1407 1403                  return (SET_ERROR(EACCES));
1408 1404  
1409 1405          /*
1410 1406           * If labeling is NOT enabled, then disallow the mount of datasets
1411 1407           * which have a non-default label already.  No other label checks
1412 1408           * are needed.
1413 1409           */
1414 1410          if (!is_system_labeled()) {
1415 1411                  if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1416 1412                          return (0);
1417 1413                  return (SET_ERROR(EACCES));
1418 1414          }
1419 1415  
1420 1416          /*
1421 1417           * Get the label of the mountpoint.  If mounting into the global
1422 1418           * zone (i.e. mountpoint is not within an active zone and the
1423 1419           * zoned property is off), the label must be default or
1424 1420           * admin_low/admin_high only; no other checks are needed.
1425 1421           */
1426 1422          mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1427 1423          if (mntzone->zone_id == GLOBAL_ZONEID) {
1428 1424                  uint64_t zoned;
1429 1425  
1430 1426                  zone_rele(mntzone);
1431 1427  
1432 1428                  if (dsl_prop_get_integer(osname,
1433 1429                      zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1434 1430                          return (SET_ERROR(EACCES));
1435 1431                  if (!zoned)
1436 1432                          return (zfs_check_global_label(osname, ds_hexsl));
1437 1433                  else
1438 1434                          /*
1439 1435                           * This is the case of a zone dataset being mounted
1440 1436                           * initially, before the zone has been fully created;
1441 1437                           * allow this mount into global zone.
1442 1438                           */
1443 1439                          return (0);
1444 1440          }
1445 1441  
1446 1442          mnt_tsl = mntzone->zone_slabel;
1447 1443          ASSERT(mnt_tsl != NULL);
1448 1444          label_hold(mnt_tsl);
1449 1445          mnt_sl = label2bslabel(mnt_tsl);
1450 1446  
1451 1447          if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1452 1448                  /*
1453 1449                   * The dataset doesn't have a real label, so fabricate one.
1454 1450                   */
1455 1451                  char *str = NULL;
1456 1452  
1457 1453                  if (l_to_str_internal(mnt_sl, &str) == 0 &&
1458 1454                      dsl_prop_set_string(osname,
1459 1455                      zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1460 1456                      ZPROP_SRC_LOCAL, str) == 0)
1461 1457                          retv = 0;
1462 1458                  if (str != NULL)
1463 1459                          kmem_free(str, strlen(str) + 1);
1464 1460          } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1465 1461                  /*
1466 1462                   * Now compare labels to complete the MAC check.  If the
1467 1463                   * labels are equal then allow access.  If the mountpoint
1468 1464                   * label dominates the dataset label, allow readonly access.
1469 1465                   * Otherwise, access is denied.
1470 1466                   */
1471 1467                  if (blequal(mnt_sl, &ds_sl))
1472 1468                          retv = 0;
1473 1469                  else if (bldominates(mnt_sl, &ds_sl)) {
1474 1470                          vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1475 1471                          retv = 0;
1476 1472                  }
1477 1473          }
1478 1474  
1479 1475          label_rele(mnt_tsl);
1480 1476          zone_rele(mntzone);
1481 1477          return (retv);
1482 1478  }
1483 1479  
1484 1480  static int
1485 1481  zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1486 1482  {
1487 1483          int error = 0;
1488 1484          static int zfsrootdone = 0;
1489 1485          zfsvfs_t *zfsvfs = NULL;
1490 1486          znode_t *zp = NULL;
1491 1487          vnode_t *vp = NULL;
1492 1488          char *zfs_bootfs;
1493 1489          char *zfs_devid;
1494 1490  
1495 1491          ASSERT(vfsp);
1496 1492  
1497 1493          /*
1498 1494           * The filesystem that we mount as root is defined in the
1499 1495           * boot property "zfs-bootfs" with a format of
1500 1496           * "poolname/root-dataset-objnum".
1501 1497           */
1502 1498          if (why == ROOT_INIT) {
1503 1499                  if (zfsrootdone++)
1504 1500                          return (SET_ERROR(EBUSY));
1505 1501                  /*
1506 1502                   * the process of doing a spa_load will require the
1507 1503                   * clock to be set before we could (for example) do
1508 1504                   * something better by looking at the timestamp on
1509 1505                   * an uberblock, so just set it to -1.
1510 1506                   */
1511 1507                  clkset(-1);
1512 1508  
1513 1509                  if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1514 1510                          cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1515 1511                              "bootfs name");
1516 1512                          return (SET_ERROR(EINVAL));
1517 1513                  }
1518 1514                  zfs_devid = spa_get_bootprop("diskdevid");
1519 1515                  error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1520 1516                  if (zfs_devid)
1521 1517                          spa_free_bootprop(zfs_devid);
1522 1518                  if (error) {
1523 1519                          spa_free_bootprop(zfs_bootfs);
1524 1520                          cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1525 1521                              error);
1526 1522                          return (error);
1527 1523                  }
1528 1524                  if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1529 1525                          spa_free_bootprop(zfs_bootfs);
1530 1526                          cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1531 1527                              error);
1532 1528                          return (error);
1533 1529                  }
1534 1530  
1535 1531                  spa_free_bootprop(zfs_bootfs);
1536 1532  
1537 1533                  if (error = vfs_lock(vfsp))
1538 1534                          return (error);
1539 1535  
1540 1536                  if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1541 1537                          cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1542 1538                          goto out;
1543 1539                  }
1544 1540  
1545 1541                  zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1546 1542                  ASSERT(zfsvfs);
1547 1543                  if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1548 1544                          cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1549 1545                          goto out;
1550 1546                  }
1551 1547  
1552 1548                  vp = ZTOV(zp);
1553 1549                  mutex_enter(&vp->v_lock);
1554 1550                  vp->v_flag |= VROOT;
1555 1551                  mutex_exit(&vp->v_lock);
1556 1552                  rootvp = vp;
1557 1553  
1558 1554                  /*
1559 1555                   * Leave rootvp held.  The root file system is never unmounted.
1560 1556                   */
1561 1557  
1562 1558                  vfs_add((struct vnode *)0, vfsp,
1563 1559                      (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1564 1560  out:
1565 1561                  vfs_unlock(vfsp);
1566 1562                  return (error);
1567 1563          } else if (why == ROOT_REMOUNT) {
1568 1564                  readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1569 1565                  vfsp->vfs_flag |= VFS_REMOUNT;
1570 1566  
1571 1567                  /* refresh mount options */
1572 1568                  zfs_unregister_callbacks(vfsp->vfs_data);
1573 1569                  return (zfs_register_callbacks(vfsp));
1574 1570  
1575 1571          } else if (why == ROOT_UNMOUNT) {
1576 1572                  zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1577 1573                  (void) zfs_sync(vfsp, 0, 0);
1578 1574                  return (0);
1579 1575          }
1580 1576  
1581 1577          /*
1582 1578           * if "why" is equal to anything else other than ROOT_INIT,
1583 1579           * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1584 1580           */
1585 1581          return (SET_ERROR(ENOTSUP));
1586 1582  }
1587 1583  
1588 1584  /*ARGSUSED*/
1589 1585  static int
1590 1586  zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1591 1587  {
1592 1588          char            *osname;
1593 1589          pathname_t      spn;
1594 1590          int             error = 0;
1595 1591          uio_seg_t       fromspace = (uap->flags & MS_SYSSPACE) ?
1596 1592              UIO_SYSSPACE : UIO_USERSPACE;
1597 1593          int             canwrite;
1598 1594  
1599 1595          if (mvp->v_type != VDIR)
1600 1596                  return (SET_ERROR(ENOTDIR));
1601 1597  
1602 1598          mutex_enter(&mvp->v_lock);
1603 1599          if ((uap->flags & MS_REMOUNT) == 0 &&
1604 1600              (uap->flags & MS_OVERLAY) == 0 &&
1605 1601              (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1606 1602                  mutex_exit(&mvp->v_lock);
1607 1603                  return (SET_ERROR(EBUSY));
1608 1604          }
1609 1605          mutex_exit(&mvp->v_lock);
1610 1606  
1611 1607          /*
1612 1608           * ZFS does not support passing unparsed data in via MS_DATA.
1613 1609           * Users should use the MS_OPTIONSTR interface; this means
1614 1610           * that all option parsing is already done and the options struct
1615 1611           * can be interrogated.
1616 1612           */
1617 1613          if ((uap->flags & MS_DATA) && uap->datalen > 0)
1618 1614                  return (SET_ERROR(EINVAL));
1619 1615  
1620 1616          /*
1621 1617           * Get the objset name (the "special" mount argument).
1622 1618           */
1623 1619          if (error = pn_get(uap->spec, fromspace, &spn))
1624 1620                  return (error);
1625 1621  
1626 1622          osname = spn.pn_path;
1627 1623  
1628 1624          /*
1629 1625           * Check for mount privilege?
1630 1626           *
1631 1627           * If we don't have privilege then see if
1632 1628           * we have local permission to allow it
1633 1629           */
1634 1630          error = secpolicy_fs_mount(cr, mvp, vfsp);
1635 1631          if (error) {
1636 1632                  if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
1637 1633                          vattr_t         vattr;
1638 1634  
1639 1635                          /*
1640 1636                           * Make sure user is the owner of the mount point
1641 1637                           * or has sufficient privileges.
1642 1638                           */
1643 1639  
1644 1640                          vattr.va_mask = AT_UID;
1645 1641  
1646 1642                          if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1647 1643                                  goto out;
1648 1644                          }
1649 1645  
1650 1646                          if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1651 1647                              VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1652 1648                                  goto out;
1653 1649                          }
1654 1650                          secpolicy_fs_mount_clearopts(cr, vfsp);
1655 1651                  } else {
1656 1652                          goto out;
1657 1653                  }
1658 1654          }
1659 1655  
1660 1656          /*
1661 1657           * Refuse to mount a filesystem if we are in a local zone and the
1662 1658           * dataset is not visible.
1663 1659           */
1664 1660          if (!INGLOBALZONE(curproc) &&
1665 1661              (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1666 1662                  error = SET_ERROR(EPERM);
1667 1663                  goto out;
1668 1664          }
1669 1665  
1670 1666          error = zfs_mount_label_policy(vfsp, osname);
1671 1667          if (error)
1672 1668                  goto out;
1673 1669  
1674 1670          /*
1675 1671           * When doing a remount, we simply refresh our temporary properties
1676 1672           * according to those options set in the current VFS options.
1677 1673           */
1678 1674          if (uap->flags & MS_REMOUNT) {
1679 1675                  /* refresh mount options */
1680 1676                  zfs_unregister_callbacks(vfsp->vfs_data);
1681 1677                  error = zfs_register_callbacks(vfsp);
1682 1678                  goto out;
1683 1679          }
1684 1680  
1685 1681          error = zfs_domount(vfsp, osname);
1686 1682  
1687 1683          /*
1688 1684           * Add an extra VFS_HOLD on our parent vfs so that it can't
1689 1685           * disappear due to a forced unmount.
1690 1686           */
1691 1687          if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1692 1688                  VFS_HOLD(mvp->v_vfsp);
1693 1689  
1694 1690  out:
1695 1691          pn_free(&spn);
1696 1692          return (error);
1697 1693  }
1698 1694  
1699 1695  static int
1700 1696  zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1701 1697  {
1702 1698          zfsvfs_t *zfsvfs = vfsp->vfs_data;
1703 1699          dev32_t d32;
1704 1700          uint64_t refdbytes, availbytes, usedobjs, availobjs;
1705 1701  
1706 1702          ZFS_ENTER(zfsvfs);
1707 1703  
1708 1704          dmu_objset_space(zfsvfs->z_os,
1709 1705              &refdbytes, &availbytes, &usedobjs, &availobjs);
1710 1706  
1711 1707          /*
1712 1708           * The underlying storage pool actually uses multiple block sizes.
1713 1709           * We report the fragsize as the smallest block size we support,
1714 1710           * and we report our blocksize as the filesystem's maximum blocksize.
1715 1711           */
1716 1712          statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1717 1713          statp->f_bsize = zfsvfs->z_max_blksz;
1718 1714  
1719 1715          /*
1720 1716           * The following report "total" blocks of various kinds in the
1721 1717           * file system, but reported in terms of f_frsize - the
1722 1718           * "fragment" size.
1723 1719           */
1724 1720  
1725 1721          statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1726 1722          statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1727 1723          statp->f_bavail = statp->f_bfree; /* no root reservation */
1728 1724  
1729 1725          /*
1730 1726           * statvfs() should really be called statufs(), because it assumes
1731 1727           * static metadata.  ZFS doesn't preallocate files, so the best
1732 1728           * we can do is report the max that could possibly fit in f_files,
1733 1729           * and that minus the number actually used in f_ffree.
1734 1730           * For f_ffree, report the smaller of the number of object available
1735 1731           * and the number of blocks (each object will take at least a block).
1736 1732           */
1737 1733          statp->f_ffree = MIN(availobjs, statp->f_bfree);
1738 1734          statp->f_favail = statp->f_ffree;       /* no "root reservation" */
1739 1735          statp->f_files = statp->f_ffree + usedobjs;
1740 1736  
1741 1737          (void) cmpldev(&d32, vfsp->vfs_dev);
1742 1738          statp->f_fsid = d32;
1743 1739  
1744 1740          /*
1745 1741           * We're a zfs filesystem.
1746 1742           */
1747 1743          (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1748 1744  
1749 1745          statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1750 1746  
1751 1747          statp->f_namemax = ZFS_MAXNAMELEN;
1752 1748  
1753 1749          /*
1754 1750           * We have all of 32 characters to stuff a string here.
1755 1751           * Is there anything useful we could/should provide?
1756 1752           */
1757 1753          bzero(statp->f_fstr, sizeof (statp->f_fstr));
1758 1754  
1759 1755          ZFS_EXIT(zfsvfs);
1760 1756          return (0);
1761 1757  }
1762 1758  
1763 1759  static int
1764 1760  zfs_root(vfs_t *vfsp, vnode_t **vpp)
1765 1761  {
1766 1762          zfsvfs_t *zfsvfs = vfsp->vfs_data;
1767 1763          znode_t *rootzp;
1768 1764          int error;
1769 1765  
1770 1766          ZFS_ENTER(zfsvfs);
1771 1767  
1772 1768          error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1773 1769          if (error == 0)
1774 1770                  *vpp = ZTOV(rootzp);
1775 1771  
1776 1772          ZFS_EXIT(zfsvfs);
1777 1773          return (error);
1778 1774  }
1779 1775  
1780 1776  /*
1781 1777   * Teardown the zfsvfs::z_os.
1782 1778   *
1783 1779   * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1784 1780   * and 'z_teardown_inactive_lock' held.
1785 1781   */
1786 1782  static int
1787 1783  zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1788 1784  {
1789 1785          znode_t *zp;
1790 1786  
1791 1787          rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1792 1788  
1793 1789          if (!unmounting) {
1794 1790                  /*
1795 1791                   * We purge the parent filesystem's vfsp as the parent
1796 1792                   * filesystem and all of its snapshots have their vnode's
1797 1793                   * v_vfsp set to the parent's filesystem's vfsp.  Note,
1798 1794                   * 'z_parent' is self referential for non-snapshots.
1799 1795                   */
1800 1796                  (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1801 1797          }
1802 1798  
1803 1799          /*
1804 1800           * Close the zil. NB: Can't close the zil while zfs_inactive
1805 1801           * threads are blocked as zil_close can call zfs_inactive.
1806 1802           */
1807 1803          if (zfsvfs->z_log) {
1808 1804                  zil_close(zfsvfs->z_log);
1809 1805                  zfsvfs->z_log = NULL;
1810 1806          }
1811 1807  
1812 1808          rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1813 1809  
1814 1810          /*
1815 1811           * If we are not unmounting (ie: online recv) and someone already
1816 1812           * unmounted this file system while we were doing the switcheroo,
1817 1813           * or a reopen of z_os failed then just bail out now.
1818 1814           */
1819 1815          if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1820 1816                  rw_exit(&zfsvfs->z_teardown_inactive_lock);
1821 1817                  rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1822 1818                  return (SET_ERROR(EIO));
1823 1819          }
1824 1820  
1825 1821          /*
1826 1822           * At this point there are no vops active, and any new vops will
1827 1823           * fail with EIO since we have z_teardown_lock for writer (only
1828 1824           * relavent for forced unmount).
1829 1825           *
1830 1826           * Release all holds on dbufs.
1831 1827           */
1832 1828          mutex_enter(&zfsvfs->z_znodes_lock);
1833 1829          for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1834 1830              zp = list_next(&zfsvfs->z_all_znodes, zp))
1835 1831                  if (zp->z_sa_hdl) {
1836 1832                          ASSERT(ZTOV(zp)->v_count > 0);
1837 1833                          zfs_znode_dmu_fini(zp);
1838 1834                  }
1839 1835          mutex_exit(&zfsvfs->z_znodes_lock);
1840 1836  
1841 1837          /*
1842 1838           * If we are unmounting, set the unmounted flag and let new vops
1843 1839           * unblock.  zfs_inactive will have the unmounted behavior, and all
1844 1840           * other vops will fail with EIO.
1845 1841           */
1846 1842          if (unmounting) {
1847 1843                  zfsvfs->z_unmounted = B_TRUE;
1848 1844                  rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1849 1845                  rw_exit(&zfsvfs->z_teardown_inactive_lock);
1850 1846          }
1851 1847  
1852 1848          /*
1853 1849           * z_os will be NULL if there was an error in attempting to reopen
1854 1850           * zfsvfs, so just return as the properties had already been
1855 1851           * unregistered and cached data had been evicted before.
1856 1852           */
1857 1853          if (zfsvfs->z_os == NULL)
1858 1854                  return (0);
1859 1855  
1860 1856          /*
1861 1857           * Unregister properties.
1862 1858           */
1863 1859          zfs_unregister_callbacks(zfsvfs);
1864 1860  
1865 1861          /*
1866 1862           * Evict cached data
1867 1863           */
1868 1864          if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) &&
1869 1865              !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1870 1866                  txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1871 1867          dmu_objset_evict_dbufs(zfsvfs->z_os);
1872 1868  
1873 1869          return (0);
1874 1870  }
1875 1871  
1876 1872  /*ARGSUSED*/
1877 1873  static int
1878 1874  zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1879 1875  {
1880 1876          zfsvfs_t *zfsvfs = vfsp->vfs_data;
1881 1877          objset_t *os;
1882 1878          int ret;
1883 1879  
1884 1880          ret = secpolicy_fs_unmount(cr, vfsp);
1885 1881          if (ret) {
1886 1882                  if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1887 1883                      ZFS_DELEG_PERM_MOUNT, cr))
1888 1884                          return (ret);
1889 1885          }
1890 1886  
1891 1887          /*
1892 1888           * We purge the parent filesystem's vfsp as the parent filesystem
1893 1889           * and all of its snapshots have their vnode's v_vfsp set to the
1894 1890           * parent's filesystem's vfsp.  Note, 'z_parent' is self
1895 1891           * referential for non-snapshots.
1896 1892           */
1897 1893          (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1898 1894  
1899 1895          /*
1900 1896           * Unmount any snapshots mounted under .zfs before unmounting the
1901 1897           * dataset itself.
1902 1898           */
1903 1899          if (zfsvfs->z_ctldir != NULL &&
1904 1900              (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1905 1901                  return (ret);
1906 1902          }
1907 1903  
1908 1904          if (!(fflag & MS_FORCE)) {
1909 1905                  /*
1910 1906                   * Check the number of active vnodes in the file system.
1911 1907                   * Our count is maintained in the vfs structure, but the
1912 1908                   * number is off by 1 to indicate a hold on the vfs
1913 1909                   * structure itself.
1914 1910                   *
1915 1911                   * The '.zfs' directory maintains a reference of its
1916 1912                   * own, and any active references underneath are
1917 1913                   * reflected in the vnode count.
1918 1914                   */
1919 1915                  if (zfsvfs->z_ctldir == NULL) {
1920 1916                          if (vfsp->vfs_count > 1)
1921 1917                                  return (SET_ERROR(EBUSY));
1922 1918                  } else {
1923 1919                          if (vfsp->vfs_count > 2 ||
1924 1920                              zfsvfs->z_ctldir->v_count > 1)
1925 1921                                  return (SET_ERROR(EBUSY));
1926 1922                  }
1927 1923          }
1928 1924  
1929 1925          vfsp->vfs_flag |= VFS_UNMOUNTED;
1930 1926  
1931 1927          VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1932 1928          os = zfsvfs->z_os;
1933 1929  
1934 1930          /*
1935 1931           * z_os will be NULL if there was an error in
1936 1932           * attempting to reopen zfsvfs.
1937 1933           */
1938 1934          if (os != NULL) {
1939 1935                  /*
1940 1936                   * Unset the objset user_ptr.
1941 1937                   */
1942 1938                  mutex_enter(&os->os_user_ptr_lock);
1943 1939                  dmu_objset_set_user(os, NULL);
1944 1940                  mutex_exit(&os->os_user_ptr_lock);
1945 1941  
1946 1942                  /*
1947 1943                   * Finally release the objset
1948 1944                   */
1949 1945                  dmu_objset_disown(os, zfsvfs);
1950 1946          }
1951 1947  
1952 1948          /*
1953 1949           * We can now safely destroy the '.zfs' directory node.
1954 1950           */
1955 1951          if (zfsvfs->z_ctldir != NULL)
1956 1952                  zfsctl_destroy(zfsvfs);
1957 1953  
1958 1954          return (0);
1959 1955  }
1960 1956  
1961 1957  static int
1962 1958  zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1963 1959  {
1964 1960          zfsvfs_t        *zfsvfs = vfsp->vfs_data;
1965 1961          znode_t         *zp;
1966 1962          uint64_t        object = 0;
1967 1963          uint64_t        fid_gen = 0;
1968 1964          uint64_t        gen_mask;
1969 1965          uint64_t        zp_gen;
1970 1966          int             i, err;
1971 1967  
1972 1968          *vpp = NULL;
1973 1969  
1974 1970          ZFS_ENTER(zfsvfs);
1975 1971  
1976 1972          if (fidp->fid_len == LONG_FID_LEN) {
1977 1973                  zfid_long_t     *zlfid = (zfid_long_t *)fidp;
1978 1974                  uint64_t        objsetid = 0;
1979 1975                  uint64_t        setgen = 0;
1980 1976  
1981 1977                  for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1982 1978                          objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1983 1979  
1984 1980                  for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1985 1981                          setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1986 1982  
1987 1983                  ZFS_EXIT(zfsvfs);
1988 1984  
1989 1985                  err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1990 1986                  if (err)
1991 1987                          return (SET_ERROR(EINVAL));
1992 1988                  ZFS_ENTER(zfsvfs);
1993 1989          }
1994 1990  
1995 1991          if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1996 1992                  zfid_short_t    *zfid = (zfid_short_t *)fidp;
1997 1993  
1998 1994                  for (i = 0; i < sizeof (zfid->zf_object); i++)
1999 1995                          object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
2000 1996  
2001 1997                  for (i = 0; i < sizeof (zfid->zf_gen); i++)
2002 1998                          fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
2003 1999          } else {
2004 2000                  ZFS_EXIT(zfsvfs);
2005 2001                  return (SET_ERROR(EINVAL));
2006 2002          }
2007 2003  
2008 2004          /* A zero fid_gen means we are in the .zfs control directories */
2009 2005          if (fid_gen == 0 &&
2010 2006              (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
2011 2007                  *vpp = zfsvfs->z_ctldir;
2012 2008                  ASSERT(*vpp != NULL);
2013 2009                  if (object == ZFSCTL_INO_SNAPDIR) {
2014 2010                          VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
2015 2011                              0, NULL, NULL, NULL, NULL, NULL) == 0);
2016 2012                  } else {
2017 2013                          VN_HOLD(*vpp);
2018 2014                  }
2019 2015                  ZFS_EXIT(zfsvfs);
2020 2016                  return (0);
2021 2017          }
2022 2018  
2023 2019          gen_mask = -1ULL >> (64 - 8 * i);
2024 2020  
2025 2021          dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
2026 2022          if (err = zfs_zget(zfsvfs, object, &zp)) {
2027 2023                  ZFS_EXIT(zfsvfs);
2028 2024                  return (err);
2029 2025          }
2030 2026          (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
2031 2027              sizeof (uint64_t));
2032 2028          zp_gen = zp_gen & gen_mask;
2033 2029          if (zp_gen == 0)
2034 2030                  zp_gen = 1;
2035 2031          if (zp->z_unlinked || zp_gen != fid_gen) {
2036 2032                  dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2037 2033                  VN_RELE(ZTOV(zp));
2038 2034                  ZFS_EXIT(zfsvfs);
2039 2035                  return (SET_ERROR(EINVAL));
2040 2036          }
2041 2037  
2042 2038          *vpp = ZTOV(zp);
2043 2039          ZFS_EXIT(zfsvfs);
2044 2040          return (0);
2045 2041  }
2046 2042  
2047 2043  /*
2048 2044   * Block out VOPs and close zfsvfs_t::z_os
2049 2045   *
2050 2046   * Note, if successful, then we return with the 'z_teardown_lock' and
2051 2047   * 'z_teardown_inactive_lock' write held.
2052 2048   */
2053 2049  int
2054 2050  zfs_suspend_fs(zfsvfs_t *zfsvfs)
2055 2051  {
2056 2052          int error;
2057 2053  
2058 2054          if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2059 2055                  return (error);
2060 2056          dmu_objset_disown(zfsvfs->z_os, zfsvfs);
2061 2057  
2062 2058          return (0);
2063 2059  }
2064 2060  
2065 2061  /*
2066 2062   * Reopen zfsvfs_t::z_os and release VOPs.
2067 2063   */
2068 2064  int
2069 2065  zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2070 2066  {
2071 2067          int err;
2072 2068  
2073 2069          ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
2074 2070          ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2075 2071  
2076 2072          err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
2077 2073              &zfsvfs->z_os);
2078 2074          if (err) {
2079 2075                  zfsvfs->z_os = NULL;
2080 2076          } else {
2081 2077                  znode_t *zp;
2082 2078                  uint64_t sa_obj = 0;
2083 2079  
2084 2080                  /*
2085 2081                   * Make sure version hasn't changed
2086 2082                   */
2087 2083  
2088 2084                  err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
2089 2085                      &zfsvfs->z_version);
2090 2086  
2091 2087                  if (err)
2092 2088                          goto bail;
2093 2089  
2094 2090                  err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2095 2091                      ZFS_SA_ATTRS, 8, 1, &sa_obj);
2096 2092  
2097 2093                  if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
2098 2094                          goto bail;
2099 2095  
2100 2096                  if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2101 2097                      zfs_attr_table,  ZPL_END, &zfsvfs->z_attr_table)) != 0)
2102 2098                          goto bail;
2103 2099  
2104 2100                  if (zfsvfs->z_version >= ZPL_VERSION_SA)
2105 2101                          sa_register_update_callback(zfsvfs->z_os,
2106 2102                              zfs_sa_upgrade);
2107 2103  
2108 2104                  VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2109 2105  
2110 2106                  zfs_set_fuid_feature(zfsvfs);
2111 2107  
2112 2108                  /*
2113 2109                   * Attempt to re-establish all the active znodes with
2114 2110                   * their dbufs.  If a zfs_rezget() fails, then we'll let
2115 2111                   * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2116 2112                   * when they try to use their znode.
2117 2113                   */
2118 2114                  mutex_enter(&zfsvfs->z_znodes_lock);
2119 2115                  for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2120 2116                      zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2121 2117                          (void) zfs_rezget(zp);
2122 2118                  }
2123 2119                  mutex_exit(&zfsvfs->z_znodes_lock);
2124 2120          }
2125 2121  
2126 2122  bail:
2127 2123          /* release the VOPs */
2128 2124          rw_exit(&zfsvfs->z_teardown_inactive_lock);
2129 2125          rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2130 2126  
2131 2127          if (err) {
2132 2128                  /*
2133 2129                   * Since we couldn't reopen zfsvfs::z_os, or
2134 2130                   * setup the sa framework force unmount this file system.
2135 2131                   */
2136 2132                  if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2137 2133                          (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2138 2134          }
2139 2135          return (err);
2140 2136  }
2141 2137  
2142 2138  static void
2143 2139  zfs_freevfs(vfs_t *vfsp)
2144 2140  {
2145 2141          zfsvfs_t *zfsvfs = vfsp->vfs_data;
2146 2142  
2147 2143          /*
2148 2144           * If this is a snapshot, we have an extra VFS_HOLD on our parent
2149 2145           * from zfs_mount().  Release it here.  If we came through
2150 2146           * zfs_mountroot() instead, we didn't grab an extra hold, so
2151 2147           * skip the VFS_RELE for rootvfs.
2152 2148           */
2153 2149          if (zfsvfs->z_issnap && (vfsp != rootvfs))
2154 2150                  VFS_RELE(zfsvfs->z_parent->z_vfs);
2155 2151  
2156 2152          zfsvfs_free(zfsvfs);
2157 2153  
2158 2154          atomic_add_32(&zfs_active_fs_count, -1);
2159 2155  }
2160 2156  
2161 2157  /*
2162 2158   * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
2163 2159   * so we can't safely do any non-idempotent initialization here.
2164 2160   * Leave that to zfs_init() and zfs_fini(), which are called
2165 2161   * from the module's _init() and _fini() entry points.
2166 2162   */
2167 2163  /*ARGSUSED*/
2168 2164  static int
2169 2165  zfs_vfsinit(int fstype, char *name)
2170 2166  {
2171 2167          int error;
2172 2168  
2173 2169          zfsfstype = fstype;
2174 2170  
2175 2171          /*
2176 2172           * Setup vfsops and vnodeops tables.
2177 2173           */
2178 2174          error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2179 2175          if (error != 0) {
2180 2176                  cmn_err(CE_WARN, "zfs: bad vfs ops template");
2181 2177          }
2182 2178  
2183 2179          error = zfs_create_op_tables();
2184 2180          if (error) {
2185 2181                  zfs_remove_op_tables();
2186 2182                  cmn_err(CE_WARN, "zfs: bad vnode ops template");
2187 2183                  (void) vfs_freevfsops_by_type(zfsfstype);
2188 2184                  return (error);
2189 2185          }
2190 2186  
2191 2187          mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2192 2188  
2193 2189          /*
2194 2190           * Unique major number for all zfs mounts.
2195 2191           * If we run out of 32-bit minors, we'll getudev() another major.
2196 2192           */
2197 2193          zfs_major = ddi_name_to_major(ZFS_DRIVER);
2198 2194          zfs_minor = ZFS_MIN_MINOR;
2199 2195  
2200 2196          return (0);
2201 2197  }
2202 2198  
2203 2199  void
2204 2200  zfs_init(void)
2205 2201  {
2206 2202          /*
2207 2203           * Initialize .zfs directory structures
2208 2204           */
2209 2205          zfsctl_init();
2210 2206  
2211 2207          /*
2212 2208           * Initialize znode cache, vnode ops, etc...
2213 2209           */
2214 2210          zfs_znode_init();
2215 2211  
2216 2212          dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2217 2213  }
2218 2214  
2219 2215  void
2220 2216  zfs_fini(void)
2221 2217  {
2222 2218          zfsctl_fini();
2223 2219          zfs_znode_fini();
2224 2220  }
2225 2221  
2226 2222  int
2227 2223  zfs_busy(void)
2228 2224  {
2229 2225          return (zfs_active_fs_count != 0);
2230 2226  }
2231 2227  
2232 2228  int
2233 2229  zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2234 2230  {
2235 2231          int error;
2236 2232          objset_t *os = zfsvfs->z_os;
2237 2233          dmu_tx_t *tx;
2238 2234  
2239 2235          if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2240 2236                  return (SET_ERROR(EINVAL));
2241 2237  
2242 2238          if (newvers < zfsvfs->z_version)
2243 2239                  return (SET_ERROR(EINVAL));
2244 2240  
2245 2241          if (zfs_spa_version_map(newvers) >
2246 2242              spa_version(dmu_objset_spa(zfsvfs->z_os)))
2247 2243                  return (SET_ERROR(ENOTSUP));
2248 2244  
2249 2245          tx = dmu_tx_create(os);
2250 2246          dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2251 2247          if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2252 2248                  dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2253 2249                      ZFS_SA_ATTRS);
2254 2250                  dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2255 2251          }
2256 2252          error = dmu_tx_assign(tx, TXG_WAIT);
2257 2253          if (error) {
2258 2254                  dmu_tx_abort(tx);
2259 2255                  return (error);
2260 2256          }
2261 2257  
2262 2258          error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2263 2259              8, 1, &newvers, tx);
2264 2260  
2265 2261          if (error) {
2266 2262                  dmu_tx_commit(tx);
2267 2263                  return (error);
2268 2264          }
2269 2265  
2270 2266          if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2271 2267                  uint64_t sa_obj;
2272 2268  
2273 2269                  ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2274 2270                      SPA_VERSION_SA);
2275 2271                  sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2276 2272                      DMU_OT_NONE, 0, tx);
2277 2273  
2278 2274                  error = zap_add(os, MASTER_NODE_OBJ,
2279 2275                      ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2280 2276                  ASSERT0(error);
2281 2277  
2282 2278                  VERIFY(0 == sa_set_sa_object(os, sa_obj));
2283 2279                  sa_register_update_callback(os, zfs_sa_upgrade);
2284 2280          }
2285 2281  
2286 2282          spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2287 2283              "from %llu to %llu", zfsvfs->z_version, newvers);
2288 2284  
2289 2285          dmu_tx_commit(tx);
2290 2286  
2291 2287          zfsvfs->z_version = newvers;
2292 2288  
2293 2289          zfs_set_fuid_feature(zfsvfs);
2294 2290  
2295 2291          return (0);
2296 2292  }
2297 2293  
2298 2294  /*
2299 2295   * Read a property stored within the master node.
2300 2296   */
2301 2297  int
2302 2298  zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2303 2299  {
2304 2300          const char *pname;
2305 2301          int error = ENOENT;
2306 2302  
2307 2303          /*
2308 2304           * Look up the file system's value for the property.  For the
2309 2305           * version property, we look up a slightly different string.
2310 2306           */
2311 2307          if (prop == ZFS_PROP_VERSION)
2312 2308                  pname = ZPL_VERSION_STR;
2313 2309          else
2314 2310                  pname = zfs_prop_to_name(prop);
2315 2311  
2316 2312          if (os != NULL)
2317 2313                  error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2318 2314  
2319 2315          if (error == ENOENT) {
2320 2316                  /* No value set, use the default value */
2321 2317                  switch (prop) {
2322 2318                  case ZFS_PROP_VERSION:
2323 2319                          *value = ZPL_VERSION;
2324 2320                          break;
2325 2321                  case ZFS_PROP_NORMALIZE:
2326 2322                  case ZFS_PROP_UTF8ONLY:
2327 2323                          *value = 0;
2328 2324                          break;
2329 2325                  case ZFS_PROP_CASE:
2330 2326                          *value = ZFS_CASE_SENSITIVE;
2331 2327                          break;
2332 2328                  default:
2333 2329                          return (error);
2334 2330                  }
2335 2331                  error = 0;
2336 2332          }
2337 2333          return (error);
2338 2334  }
2339 2335  
2340 2336  static vfsdef_t vfw = {
2341 2337          VFSDEF_VERSION,
2342 2338          MNTTYPE_ZFS,
2343 2339          zfs_vfsinit,
2344 2340          VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2345 2341              VSW_XID|VSW_ZMOUNT,
2346 2342          &zfs_mntopts
2347 2343  };
2348 2344  
2349 2345  struct modlfs zfs_modlfs = {
2350 2346          &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2351 2347  };
  
    | ↓ open down ↓ | 954 lines elided | ↑ open up ↑ | 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX