1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Portions Copyright 2011 Martin Matuska 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/txg_impl.h> 29 #include <sys/dmu_impl.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/dsl_pool.h> 32 #include <sys/dsl_scan.h> 33 #include <sys/callb.h> 34 35 /* 36 * ZFS Transaction Groups 37 * ---------------------- 38 * 39 * ZFS transaction groups are, as the name implies, groups of transactions 40 * that act on persistent state. ZFS asserts consistency at the granularity of 41 * these transaction groups. Each successive transaction group (txg) is 42 * assigned a 64-bit consecutive identifier. There are three active 43 * transaction group states: open, quiescing, or syncing. At any given time, 44 * there may be an active txg associated with each state; each active txg may 45 * either be processing, or blocked waiting to enter the next state. There may 46 * be up to three active txgs, and there is always a txg in the open state 47 * (though it may be blocked waiting to enter the quiescing state). In broad 48 * strokes, transactions — operations that change in-memory structures — are 49 * accepted into the txg in the open state, and are completed while the txg is 50 * in the open or quiescing states. The accumulated changes are written to 51 * disk in the syncing state. 52 * 53 * Open 54 * 55 * When a new txg becomes active, it first enters the open state. New 56 * transactions — updates to in-memory structures — are assigned to the 57 * currently open txg. There is always a txg in the open state so that ZFS can 58 * accept new changes (though the txg may refuse new changes if it has hit 59 * some limit). ZFS advances the open txg to the next state for a variety of 60 * reasons such as it hitting a time or size threshold, or the execution of an 61 * administrative action that must be completed in the syncing state. 62 * 63 * Quiescing 64 * 65 * After a txg exits the open state, it enters the quiescing state. The 66 * quiescing state is intended to provide a buffer between accepting new 67 * transactions in the open state and writing them out to stable storage in 68 * the syncing state. While quiescing, transactions can continue their 69 * operation without delaying either of the other states. Typically, a txg is 70 * in the quiescing state very briefly since the operations are bounded by 71 * software latencies rather than, say, slower I/O latencies. After all 72 * transactions complete, the txg is ready to enter the next state. 73 * 74 * Syncing 75 * 76 * In the syncing state, the in-memory state built up during the open and (to 77 * a lesser degree) the quiescing states is written to stable storage. The 78 * process of writing out modified data can, in turn modify more data. For 79 * example when we write new blocks, we need to allocate space for them; those 80 * allocations modify metadata (space maps)... which themselves must be 81 * written to stable storage. During the sync state, ZFS iterates, writing out 82 * data until it converges and all in-memory changes have been written out. 83 * The first such pass is the largest as it encompasses all the modified user 84 * data (as opposed to filesystem metadata). Subsequent passes typically have 85 * far less data to write as they consist exclusively of filesystem metadata. 86 * 87 * To ensure convergence, after a certain number of passes ZFS begins 88 * overwriting locations on stable storage that had been allocated earlier in 89 * the syncing state (and subsequently freed). ZFS usually allocates new 90 * blocks to optimize for large, continuous, writes. For the syncing state to 91 * converge however it must complete a pass where no new blocks are allocated 92 * since each allocation requires a modification of persistent metadata. 93 * Further, to hasten convergence, after a prescribed number of passes, ZFS 94 * also defers frees, and stops compressing. 95 * 96 * In addition to writing out user data, we must also execute synctasks during 97 * the syncing context. A synctask is the mechanism by which some 98 * administrative activities work such as creating and destroying snapshots or 99 * datasets. Note that when a synctask is initiated it enters the open txg, 100 * and ZFS then pushes that txg as quickly as possible to completion of the 101 * syncing state in order to reduce the latency of the administrative 102 * activity. To complete the syncing state, ZFS writes out a new uberblock, 103 * the root of the tree of blocks that comprise all state stored on the ZFS 104 * pool. Finally, if there is a quiesced txg waiting, we signal that it can 105 * now transition to the syncing state. 106 */ 107 108 static void txg_sync_thread(dsl_pool_t *dp); 109 static void txg_quiesce_thread(dsl_pool_t *dp); 110 111 int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */ 112 113 /* 114 * Prepare the txg subsystem. 115 */ 116 void 117 txg_init(dsl_pool_t *dp, uint64_t txg) 118 { 119 tx_state_t *tx = &dp->dp_tx; 120 int c; 121 bzero(tx, sizeof (tx_state_t)); 122 123 tx->tx_cpu = kmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP); 124 125 for (c = 0; c < max_ncpus; c++) { 126 int i; 127 128 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL); 129 for (i = 0; i < TXG_SIZE; i++) { 130 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT, 131 NULL); 132 list_create(&tx->tx_cpu[c].tc_callbacks[i], 133 sizeof (dmu_tx_callback_t), 134 offsetof(dmu_tx_callback_t, dcb_node)); 135 } 136 } 137 138 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL); 139 140 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL); 141 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL); 142 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL); 143 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL); 144 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL); 145 146 tx->tx_open_txg = txg; 147 } 148 149 /* 150 * Close down the txg subsystem. 151 */ 152 void 153 txg_fini(dsl_pool_t *dp) 154 { 155 tx_state_t *tx = &dp->dp_tx; 156 int c; 157 158 ASSERT(tx->tx_threads == 0); 159 160 mutex_destroy(&tx->tx_sync_lock); 161 162 cv_destroy(&tx->tx_sync_more_cv); 163 cv_destroy(&tx->tx_sync_done_cv); 164 cv_destroy(&tx->tx_quiesce_more_cv); 165 cv_destroy(&tx->tx_quiesce_done_cv); 166 cv_destroy(&tx->tx_exit_cv); 167 168 for (c = 0; c < max_ncpus; c++) { 169 int i; 170 171 mutex_destroy(&tx->tx_cpu[c].tc_lock); 172 for (i = 0; i < TXG_SIZE; i++) { 173 cv_destroy(&tx->tx_cpu[c].tc_cv[i]); 174 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]); 175 } 176 } 177 178 if (tx->tx_commit_cb_taskq != NULL) 179 taskq_destroy(tx->tx_commit_cb_taskq); 180 181 kmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t)); 182 183 bzero(tx, sizeof (tx_state_t)); 184 } 185 186 /* 187 * Start syncing transaction groups. 188 */ 189 void 190 txg_sync_start(dsl_pool_t *dp) 191 { 192 tx_state_t *tx = &dp->dp_tx; 193 194 mutex_enter(&tx->tx_sync_lock); 195 196 dprintf("pool %p\n", dp); 197 198 ASSERT(tx->tx_threads == 0); 199 200 tx->tx_threads = 2; 201 202 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread, 203 dp, 0, &p0, TS_RUN, minclsyspri); 204 205 /* 206 * The sync thread can need a larger-than-default stack size on 207 * 32-bit x86. This is due in part to nested pools and 208 * scrub_visitbp() recursion. 209 */ 210 tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread, 211 dp, 0, &p0, TS_RUN, minclsyspri); 212 213 mutex_exit(&tx->tx_sync_lock); 214 } 215 216 static void 217 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr) 218 { 219 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG); 220 mutex_enter(&tx->tx_sync_lock); 221 } 222 223 static void 224 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp) 225 { 226 ASSERT(*tpp != NULL); 227 *tpp = NULL; 228 tx->tx_threads--; 229 cv_broadcast(&tx->tx_exit_cv); 230 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */ 231 thread_exit(); 232 } 233 234 static void 235 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time) 236 { 237 CALLB_CPR_SAFE_BEGIN(cpr); 238 239 if (time) 240 (void) cv_timedwait(cv, &tx->tx_sync_lock, 241 ddi_get_lbolt() + time); 242 else 243 cv_wait(cv, &tx->tx_sync_lock); 244 245 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock); 246 } 247 248 /* 249 * Stop syncing transaction groups. 250 */ 251 void 252 txg_sync_stop(dsl_pool_t *dp) 253 { 254 tx_state_t *tx = &dp->dp_tx; 255 256 dprintf("pool %p\n", dp); 257 /* 258 * Finish off any work in progress. 259 */ 260 ASSERT(tx->tx_threads == 2); 261 262 /* 263 * We need to ensure that we've vacated the deferred space_maps. 264 */ 265 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE); 266 267 /* 268 * Wake all sync threads and wait for them to die. 269 */ 270 mutex_enter(&tx->tx_sync_lock); 271 272 ASSERT(tx->tx_threads == 2); 273 274 tx->tx_exiting = 1; 275 276 cv_broadcast(&tx->tx_quiesce_more_cv); 277 cv_broadcast(&tx->tx_quiesce_done_cv); 278 cv_broadcast(&tx->tx_sync_more_cv); 279 280 while (tx->tx_threads != 0) 281 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock); 282 283 tx->tx_exiting = 0; 284 285 mutex_exit(&tx->tx_sync_lock); 286 } 287 288 uint64_t 289 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th) 290 { 291 tx_state_t *tx = &dp->dp_tx; 292 tx_cpu_t *tc = &tx->tx_cpu[CPU_SEQID]; 293 uint64_t txg; 294 295 mutex_enter(&tc->tc_lock); 296 297 txg = tx->tx_open_txg; 298 tc->tc_count[txg & TXG_MASK]++; 299 300 th->th_cpu = tc; 301 th->th_txg = txg; 302 303 return (txg); 304 } 305 306 void 307 txg_rele_to_quiesce(txg_handle_t *th) 308 { 309 tx_cpu_t *tc = th->th_cpu; 310 311 mutex_exit(&tc->tc_lock); 312 } 313 314 void 315 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks) 316 { 317 tx_cpu_t *tc = th->th_cpu; 318 int g = th->th_txg & TXG_MASK; 319 320 mutex_enter(&tc->tc_lock); 321 list_move_tail(&tc->tc_callbacks[g], tx_callbacks); 322 mutex_exit(&tc->tc_lock); 323 } 324 325 void 326 txg_rele_to_sync(txg_handle_t *th) 327 { 328 tx_cpu_t *tc = th->th_cpu; 329 int g = th->th_txg & TXG_MASK; 330 331 mutex_enter(&tc->tc_lock); 332 ASSERT(tc->tc_count[g] != 0); 333 if (--tc->tc_count[g] == 0) 334 cv_broadcast(&tc->tc_cv[g]); 335 mutex_exit(&tc->tc_lock); 336 337 th->th_cpu = NULL; /* defensive */ 338 } 339 340 /* 341 * Blocks until all transactions in the group are committed. 342 * 343 * On return, the transaction group has reached a stable state in which it can 344 * then be passed off to the syncing context. 345 */ 346 static void 347 txg_quiesce(dsl_pool_t *dp, uint64_t txg) 348 { 349 tx_state_t *tx = &dp->dp_tx; 350 int g = txg & TXG_MASK; 351 int c; 352 353 /* 354 * Grab all tx_cpu locks so nobody else can get into this txg. 355 */ 356 for (c = 0; c < max_ncpus; c++) 357 mutex_enter(&tx->tx_cpu[c].tc_lock); 358 359 ASSERT(txg == tx->tx_open_txg); 360 tx->tx_open_txg++; 361 362 DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg); 363 DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg); 364 365 /* 366 * Now that we've incremented tx_open_txg, we can let threads 367 * enter the next transaction group. 368 */ 369 for (c = 0; c < max_ncpus; c++) 370 mutex_exit(&tx->tx_cpu[c].tc_lock); 371 372 /* 373 * Quiesce the transaction group by waiting for everyone to txg_exit(). 374 */ 375 for (c = 0; c < max_ncpus; c++) { 376 tx_cpu_t *tc = &tx->tx_cpu[c]; 377 mutex_enter(&tc->tc_lock); 378 while (tc->tc_count[g] != 0) 379 cv_wait(&tc->tc_cv[g], &tc->tc_lock); 380 mutex_exit(&tc->tc_lock); 381 } 382 } 383 384 static void 385 txg_do_callbacks(list_t *cb_list) 386 { 387 dmu_tx_do_callbacks(cb_list, 0); 388 389 list_destroy(cb_list); 390 391 kmem_free(cb_list, sizeof (list_t)); 392 } 393 394 /* 395 * Dispatch the commit callbacks registered on this txg to worker threads. 396 * 397 * If no callbacks are registered for a given TXG, nothing happens. 398 * This function creates a taskq for the associated pool, if needed. 399 */ 400 static void 401 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg) 402 { 403 int c; 404 tx_state_t *tx = &dp->dp_tx; 405 list_t *cb_list; 406 407 for (c = 0; c < max_ncpus; c++) { 408 tx_cpu_t *tc = &tx->tx_cpu[c]; 409 /* 410 * No need to lock tx_cpu_t at this point, since this can 411 * only be called once a txg has been synced. 412 */ 413 414 int g = txg & TXG_MASK; 415 416 if (list_is_empty(&tc->tc_callbacks[g])) 417 continue; 418 419 if (tx->tx_commit_cb_taskq == NULL) { 420 /* 421 * Commit callback taskq hasn't been created yet. 422 */ 423 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb", 424 max_ncpus, minclsyspri, max_ncpus, max_ncpus * 2, 425 TASKQ_PREPOPULATE); 426 } 427 428 cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 429 list_create(cb_list, sizeof (dmu_tx_callback_t), 430 offsetof(dmu_tx_callback_t, dcb_node)); 431 432 list_move_tail(&tc->tc_callbacks[g], cb_list); 433 434 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *) 435 txg_do_callbacks, cb_list, TQ_SLEEP); 436 } 437 } 438 439 static void 440 txg_sync_thread(dsl_pool_t *dp) 441 { 442 spa_t *spa = dp->dp_spa; 443 tx_state_t *tx = &dp->dp_tx; 444 callb_cpr_t cpr; 445 uint64_t start, delta; 446 447 txg_thread_enter(tx, &cpr); 448 449 start = delta = 0; 450 for (;;) { 451 uint64_t timer, timeout = zfs_txg_timeout * hz; 452 uint64_t txg; 453 454 /* 455 * We sync when we're scanning, there's someone waiting 456 * on us, or the quiesce thread has handed off a txg to 457 * us, or we have reached our timeout. 458 */ 459 timer = (delta >= timeout ? 0 : timeout - delta); 460 while (!dsl_scan_active(dp->dp_scan) && 461 !tx->tx_exiting && timer > 0 && 462 tx->tx_synced_txg >= tx->tx_sync_txg_waiting && 463 tx->tx_quiesced_txg == 0) { 464 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n", 465 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 466 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer); 467 delta = ddi_get_lbolt() - start; 468 timer = (delta > timeout ? 0 : timeout - delta); 469 } 470 471 /* 472 * Wait until the quiesce thread hands off a txg to us, 473 * prompting it to do so if necessary. 474 */ 475 while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) { 476 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1) 477 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1; 478 cv_broadcast(&tx->tx_quiesce_more_cv); 479 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0); 480 } 481 482 if (tx->tx_exiting) 483 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread); 484 485 /* 486 * Consume the quiesced txg which has been handed off to 487 * us. This may cause the quiescing thread to now be 488 * able to quiesce another txg, so we must signal it. 489 */ 490 txg = tx->tx_quiesced_txg; 491 tx->tx_quiesced_txg = 0; 492 tx->tx_syncing_txg = txg; 493 DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg); 494 cv_broadcast(&tx->tx_quiesce_more_cv); 495 496 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 497 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 498 mutex_exit(&tx->tx_sync_lock); 499 500 start = ddi_get_lbolt(); 501 spa_sync(spa, txg); 502 delta = ddi_get_lbolt() - start; 503 504 mutex_enter(&tx->tx_sync_lock); 505 tx->tx_synced_txg = txg; 506 tx->tx_syncing_txg = 0; 507 DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg); 508 cv_broadcast(&tx->tx_sync_done_cv); 509 510 /* 511 * Dispatch commit callbacks to worker threads. 512 */ 513 txg_dispatch_callbacks(dp, txg); 514 } 515 } 516 517 static void 518 txg_quiesce_thread(dsl_pool_t *dp) 519 { 520 tx_state_t *tx = &dp->dp_tx; 521 callb_cpr_t cpr; 522 523 txg_thread_enter(tx, &cpr); 524 525 for (;;) { 526 uint64_t txg; 527 528 /* 529 * We quiesce when there's someone waiting on us. 530 * However, we can only have one txg in "quiescing" or 531 * "quiesced, waiting to sync" state. So we wait until 532 * the "quiesced, waiting to sync" txg has been consumed 533 * by the sync thread. 534 */ 535 while (!tx->tx_exiting && 536 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting || 537 tx->tx_quiesced_txg != 0)) 538 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0); 539 540 if (tx->tx_exiting) 541 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread); 542 543 txg = tx->tx_open_txg; 544 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 545 txg, tx->tx_quiesce_txg_waiting, 546 tx->tx_sync_txg_waiting); 547 mutex_exit(&tx->tx_sync_lock); 548 txg_quiesce(dp, txg); 549 mutex_enter(&tx->tx_sync_lock); 550 551 /* 552 * Hand this txg off to the sync thread. 553 */ 554 dprintf("quiesce done, handing off txg %llu\n", txg); 555 tx->tx_quiesced_txg = txg; 556 DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg); 557 cv_broadcast(&tx->tx_sync_more_cv); 558 cv_broadcast(&tx->tx_quiesce_done_cv); 559 } 560 } 561 562 /* 563 * Delay this thread by delay nanoseconds if we are still in the open 564 * transaction group and there is already a waiting txg quiescing or quiesced. 565 * Abort the delay if this txg stalls or enters the quiescing state. 566 */ 567 void 568 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution) 569 { 570 tx_state_t *tx = &dp->dp_tx; 571 hrtime_t start = gethrtime(); 572 573 /* don't delay if this txg could transition to quiescing immediately */ 574 if (tx->tx_open_txg > txg || 575 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1) 576 return; 577 578 mutex_enter(&tx->tx_sync_lock); 579 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) { 580 mutex_exit(&tx->tx_sync_lock); 581 return; 582 } 583 584 while (gethrtime() - start < delay && 585 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) { 586 (void) cv_timedwait_hires(&tx->tx_quiesce_more_cv, 587 &tx->tx_sync_lock, delay, resolution, 0); 588 } 589 590 mutex_exit(&tx->tx_sync_lock); 591 } 592 593 void 594 txg_wait_synced(dsl_pool_t *dp, uint64_t txg) 595 { 596 tx_state_t *tx = &dp->dp_tx; 597 598 ASSERT(!dsl_pool_config_held(dp)); 599 600 mutex_enter(&tx->tx_sync_lock); 601 ASSERT(tx->tx_threads == 2); 602 if (txg == 0) 603 txg = tx->tx_open_txg + TXG_DEFER_SIZE; 604 if (tx->tx_sync_txg_waiting < txg) 605 tx->tx_sync_txg_waiting = txg; 606 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 607 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 608 while (tx->tx_synced_txg < txg) { 609 dprintf("broadcasting sync more " 610 "tx_synced=%llu waiting=%llu dp=%p\n", 611 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 612 cv_broadcast(&tx->tx_sync_more_cv); 613 cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock); 614 } 615 mutex_exit(&tx->tx_sync_lock); 616 } 617 618 void 619 txg_wait_open(dsl_pool_t *dp, uint64_t txg) 620 { 621 tx_state_t *tx = &dp->dp_tx; 622 623 ASSERT(!dsl_pool_config_held(dp)); 624 625 mutex_enter(&tx->tx_sync_lock); 626 ASSERT(tx->tx_threads == 2); 627 if (txg == 0) 628 txg = tx->tx_open_txg + 1; 629 if (tx->tx_quiesce_txg_waiting < txg) 630 tx->tx_quiesce_txg_waiting = txg; 631 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 632 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 633 while (tx->tx_open_txg < txg) { 634 cv_broadcast(&tx->tx_quiesce_more_cv); 635 cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock); 636 } 637 mutex_exit(&tx->tx_sync_lock); 638 } 639 640 boolean_t 641 txg_stalled(dsl_pool_t *dp) 642 { 643 tx_state_t *tx = &dp->dp_tx; 644 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg); 645 } 646 647 boolean_t 648 txg_sync_waiting(dsl_pool_t *dp) 649 { 650 tx_state_t *tx = &dp->dp_tx; 651 652 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting || 653 tx->tx_quiesced_txg != 0); 654 } 655 656 /* 657 * Per-txg object lists. 658 */ 659 void 660 txg_list_create(txg_list_t *tl, size_t offset) 661 { 662 int t; 663 664 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL); 665 666 tl->tl_offset = offset; 667 668 for (t = 0; t < TXG_SIZE; t++) 669 tl->tl_head[t] = NULL; 670 } 671 672 void 673 txg_list_destroy(txg_list_t *tl) 674 { 675 int t; 676 677 for (t = 0; t < TXG_SIZE; t++) 678 ASSERT(txg_list_empty(tl, t)); 679 680 mutex_destroy(&tl->tl_lock); 681 } 682 683 boolean_t 684 txg_list_empty(txg_list_t *tl, uint64_t txg) 685 { 686 return (tl->tl_head[txg & TXG_MASK] == NULL); 687 } 688 689 /* 690 * Add an entry to the list (unless it's already on the list). 691 * Returns B_TRUE if it was actually added. 692 */ 693 boolean_t 694 txg_list_add(txg_list_t *tl, void *p, uint64_t txg) 695 { 696 int t = txg & TXG_MASK; 697 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 698 boolean_t add; 699 700 mutex_enter(&tl->tl_lock); 701 add = (tn->tn_member[t] == 0); 702 if (add) { 703 tn->tn_member[t] = 1; 704 tn->tn_next[t] = tl->tl_head[t]; 705 tl->tl_head[t] = tn; 706 } 707 mutex_exit(&tl->tl_lock); 708 709 return (add); 710 } 711 712 /* 713 * Add an entry to the end of the list, unless it's already on the list. 714 * (walks list to find end) 715 * Returns B_TRUE if it was actually added. 716 */ 717 boolean_t 718 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg) 719 { 720 int t = txg & TXG_MASK; 721 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 722 boolean_t add; 723 724 mutex_enter(&tl->tl_lock); 725 add = (tn->tn_member[t] == 0); 726 if (add) { 727 txg_node_t **tp; 728 729 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t]) 730 continue; 731 732 tn->tn_member[t] = 1; 733 tn->tn_next[t] = NULL; 734 *tp = tn; 735 } 736 mutex_exit(&tl->tl_lock); 737 738 return (add); 739 } 740 741 /* 742 * Remove the head of the list and return it. 743 */ 744 void * 745 txg_list_remove(txg_list_t *tl, uint64_t txg) 746 { 747 int t = txg & TXG_MASK; 748 txg_node_t *tn; 749 void *p = NULL; 750 751 mutex_enter(&tl->tl_lock); 752 if ((tn = tl->tl_head[t]) != NULL) { 753 p = (char *)tn - tl->tl_offset; 754 tl->tl_head[t] = tn->tn_next[t]; 755 tn->tn_next[t] = NULL; 756 tn->tn_member[t] = 0; 757 } 758 mutex_exit(&tl->tl_lock); 759 760 return (p); 761 } 762 763 /* 764 * Remove a specific item from the list and return it. 765 */ 766 void * 767 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg) 768 { 769 int t = txg & TXG_MASK; 770 txg_node_t *tn, **tp; 771 772 mutex_enter(&tl->tl_lock); 773 774 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) { 775 if ((char *)tn - tl->tl_offset == p) { 776 *tp = tn->tn_next[t]; 777 tn->tn_next[t] = NULL; 778 tn->tn_member[t] = 0; 779 mutex_exit(&tl->tl_lock); 780 return (p); 781 } 782 } 783 784 mutex_exit(&tl->tl_lock); 785 786 return (NULL); 787 } 788 789 boolean_t 790 txg_list_member(txg_list_t *tl, void *p, uint64_t txg) 791 { 792 int t = txg & TXG_MASK; 793 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 794 795 return (tn->tn_member[t] != 0); 796 } 797 798 /* 799 * Walk a txg list -- only safe if you know it's not changing. 800 */ 801 void * 802 txg_list_head(txg_list_t *tl, uint64_t txg) 803 { 804 int t = txg & TXG_MASK; 805 txg_node_t *tn = tl->tl_head[t]; 806 807 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 808 } 809 810 void * 811 txg_list_next(txg_list_t *tl, void *p, uint64_t txg) 812 { 813 int t = txg & TXG_MASK; 814 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 815 816 tn = tn->tn_next[t]; 817 818 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 819 }