1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2013 by Delphix. All rights reserved.
  24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  25  */
  26 
  27 #include <sys/zfs_context.h>
  28 #include <sys/spa_impl.h>
  29 #include <sys/spa_boot.h>
  30 #include <sys/zio.h>
  31 #include <sys/zio_checksum.h>
  32 #include <sys/zio_compress.h>
  33 #include <sys/dmu.h>
  34 #include <sys/dmu_tx.h>
  35 #include <sys/zap.h>
  36 #include <sys/zil.h>
  37 #include <sys/vdev_impl.h>
  38 #include <sys/metaslab.h>
  39 #include <sys/uberblock_impl.h>
  40 #include <sys/txg.h>
  41 #include <sys/avl.h>
  42 #include <sys/unique.h>
  43 #include <sys/dsl_pool.h>
  44 #include <sys/dsl_dir.h>
  45 #include <sys/dsl_prop.h>
  46 #include <sys/dsl_scan.h>
  47 #include <sys/fs/zfs.h>
  48 #include <sys/metaslab_impl.h>
  49 #include <sys/arc.h>
  50 #include <sys/ddt.h>
  51 #include "zfs_prop.h"
  52 #include "zfeature_common.h"
  53 
  54 /*
  55  * SPA locking
  56  *
  57  * There are four basic locks for managing spa_t structures:
  58  *
  59  * spa_namespace_lock (global mutex)
  60  *
  61  *      This lock must be acquired to do any of the following:
  62  *
  63  *              - Lookup a spa_t by name
  64  *              - Add or remove a spa_t from the namespace
  65  *              - Increase spa_refcount from non-zero
  66  *              - Check if spa_refcount is zero
  67  *              - Rename a spa_t
  68  *              - add/remove/attach/detach devices
  69  *              - Held for the duration of create/destroy/import/export
  70  *
  71  *      It does not need to handle recursion.  A create or destroy may
  72  *      reference objects (files or zvols) in other pools, but by
  73  *      definition they must have an existing reference, and will never need
  74  *      to lookup a spa_t by name.
  75  *
  76  * spa_refcount (per-spa refcount_t protected by mutex)
  77  *
  78  *      This reference count keep track of any active users of the spa_t.  The
  79  *      spa_t cannot be destroyed or freed while this is non-zero.  Internally,
  80  *      the refcount is never really 'zero' - opening a pool implicitly keeps
  81  *      some references in the DMU.  Internally we check against spa_minref, but
  82  *      present the image of a zero/non-zero value to consumers.
  83  *
  84  * spa_config_lock[] (per-spa array of rwlocks)
  85  *
  86  *      This protects the spa_t from config changes, and must be held in
  87  *      the following circumstances:
  88  *
  89  *              - RW_READER to perform I/O to the spa
  90  *              - RW_WRITER to change the vdev config
  91  *
  92  * The locking order is fairly straightforward:
  93  *
  94  *              spa_namespace_lock      ->   spa_refcount
  95  *
  96  *      The namespace lock must be acquired to increase the refcount from 0
  97  *      or to check if it is zero.
  98  *
  99  *              spa_refcount            ->   spa_config_lock[]
 100  *
 101  *      There must be at least one valid reference on the spa_t to acquire
 102  *      the config lock.
 103  *
 104  *              spa_namespace_lock      ->   spa_config_lock[]
 105  *
 106  *      The namespace lock must always be taken before the config lock.
 107  *
 108  *
 109  * The spa_namespace_lock can be acquired directly and is globally visible.
 110  *
 111  * The namespace is manipulated using the following functions, all of which
 112  * require the spa_namespace_lock to be held.
 113  *
 114  *      spa_lookup()            Lookup a spa_t by name.
 115  *
 116  *      spa_add()               Create a new spa_t in the namespace.
 117  *
 118  *      spa_remove()            Remove a spa_t from the namespace.  This also
 119  *                              frees up any memory associated with the spa_t.
 120  *
 121  *      spa_next()              Returns the next spa_t in the system, or the
 122  *                              first if NULL is passed.
 123  *
 124  *      spa_evict_all()         Shutdown and remove all spa_t structures in
 125  *                              the system.
 126  *
 127  *      spa_guid_exists()       Determine whether a pool/device guid exists.
 128  *
 129  * The spa_refcount is manipulated using the following functions:
 130  *
 131  *      spa_open_ref()          Adds a reference to the given spa_t.  Must be
 132  *                              called with spa_namespace_lock held if the
 133  *                              refcount is currently zero.
 134  *
 135  *      spa_close()             Remove a reference from the spa_t.  This will
 136  *                              not free the spa_t or remove it from the
 137  *                              namespace.  No locking is required.
 138  *
 139  *      spa_refcount_zero()     Returns true if the refcount is currently
 140  *                              zero.  Must be called with spa_namespace_lock
 141  *                              held.
 142  *
 143  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
 144  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
 145  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
 146  *
 147  * To read the configuration, it suffices to hold one of these locks as reader.
 148  * To modify the configuration, you must hold all locks as writer.  To modify
 149  * vdev state without altering the vdev tree's topology (e.g. online/offline),
 150  * you must hold SCL_STATE and SCL_ZIO as writer.
 151  *
 152  * We use these distinct config locks to avoid recursive lock entry.
 153  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
 154  * block allocations (SCL_ALLOC), which may require reading space maps
 155  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
 156  *
 157  * The spa config locks cannot be normal rwlocks because we need the
 158  * ability to hand off ownership.  For example, SCL_ZIO is acquired
 159  * by the issuing thread and later released by an interrupt thread.
 160  * They do, however, obey the usual write-wanted semantics to prevent
 161  * writer (i.e. system administrator) starvation.
 162  *
 163  * The lock acquisition rules are as follows:
 164  *
 165  * SCL_CONFIG
 166  *      Protects changes to the vdev tree topology, such as vdev
 167  *      add/remove/attach/detach.  Protects the dirty config list
 168  *      (spa_config_dirty_list) and the set of spares and l2arc devices.
 169  *
 170  * SCL_STATE
 171  *      Protects changes to pool state and vdev state, such as vdev
 172  *      online/offline/fault/degrade/clear.  Protects the dirty state list
 173  *      (spa_state_dirty_list) and global pool state (spa_state).
 174  *
 175  * SCL_ALLOC
 176  *      Protects changes to metaslab groups and classes.
 177  *      Held as reader by metaslab_alloc() and metaslab_claim().
 178  *
 179  * SCL_ZIO
 180  *      Held by bp-level zios (those which have no io_vd upon entry)
 181  *      to prevent changes to the vdev tree.  The bp-level zio implicitly
 182  *      protects all of its vdev child zios, which do not hold SCL_ZIO.
 183  *
 184  * SCL_FREE
 185  *      Protects changes to metaslab groups and classes.
 186  *      Held as reader by metaslab_free().  SCL_FREE is distinct from
 187  *      SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
 188  *      blocks in zio_done() while another i/o that holds either
 189  *      SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
 190  *
 191  * SCL_VDEV
 192  *      Held as reader to prevent changes to the vdev tree during trivial
 193  *      inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
 194  *      other locks, and lower than all of them, to ensure that it's safe
 195  *      to acquire regardless of caller context.
 196  *
 197  * In addition, the following rules apply:
 198  *
 199  * (a)  spa_props_lock protects pool properties, spa_config and spa_config_list.
 200  *      The lock ordering is SCL_CONFIG > spa_props_lock.
 201  *
 202  * (b)  I/O operations on leaf vdevs.  For any zio operation that takes
 203  *      an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
 204  *      or zio_write_phys() -- the caller must ensure that the config cannot
 205  *      cannot change in the interim, and that the vdev cannot be reopened.
 206  *      SCL_STATE as reader suffices for both.
 207  *
 208  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
 209  *
 210  *      spa_vdev_enter()        Acquire the namespace lock and the config lock
 211  *                              for writing.
 212  *
 213  *      spa_vdev_exit()         Release the config lock, wait for all I/O
 214  *                              to complete, sync the updated configs to the
 215  *                              cache, and release the namespace lock.
 216  *
 217  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
 218  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
 219  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
 220  *
 221  * spa_rename() is also implemented within this file since it requires
 222  * manipulation of the namespace.
 223  */
 224 
 225 static avl_tree_t spa_namespace_avl;
 226 kmutex_t spa_namespace_lock;
 227 static kcondvar_t spa_namespace_cv;
 228 static int spa_active_count;
 229 int spa_max_replication_override = SPA_DVAS_PER_BP;
 230 
 231 static kmutex_t spa_spare_lock;
 232 static avl_tree_t spa_spare_avl;
 233 static kmutex_t spa_l2cache_lock;
 234 static avl_tree_t spa_l2cache_avl;
 235 
 236 kmem_cache_t *spa_buffer_pool;
 237 int spa_mode_global;
 238 
 239 #ifdef ZFS_DEBUG
 240 /* Everything except dprintf and spa is on by default in debug builds */
 241 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
 242 #else
 243 int zfs_flags = 0;
 244 #endif
 245 
 246 /*
 247  * zfs_recover can be set to nonzero to attempt to recover from
 248  * otherwise-fatal errors, typically caused by on-disk corruption.  When
 249  * set, calls to zfs_panic_recover() will turn into warning messages.
 250  */
 251 int zfs_recover = 0;
 252 
 253 extern int zfs_txg_synctime_ms;
 254 
 255 /*
 256  * Expiration time in units of zfs_txg_synctime_ms. This value has two
 257  * meanings. First it is used to determine when the spa_deadman logic
 258  * should fire. By default the spa_deadman will fire if spa_sync has
 259  * not completed in 1000 * zfs_txg_synctime_ms (i.e. 1000 seconds).
 260  * Secondly, the value determines if an I/O is considered "hung".
 261  * Any I/O that has not completed in zfs_deadman_synctime is considered
 262  * "hung" resulting in a system panic.
 263  */
 264 uint64_t zfs_deadman_synctime = 1000ULL;
 265 
 266 /*
 267  * Override the zfs deadman behavior via /etc/system. By default the
 268  * deadman is enabled except on VMware and sparc deployments.
 269  */
 270 int zfs_deadman_enabled = -1;
 271 
 272 
 273 /*
 274  * ==========================================================================
 275  * SPA config locking
 276  * ==========================================================================
 277  */
 278 static void
 279 spa_config_lock_init(spa_t *spa)
 280 {
 281         for (int i = 0; i < SCL_LOCKS; i++) {
 282                 spa_config_lock_t *scl = &spa->spa_config_lock[i];
 283                 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
 284                 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
 285                 refcount_create_untracked(&scl->scl_count);
 286                 scl->scl_writer = NULL;
 287                 scl->scl_write_wanted = 0;
 288         }
 289 }
 290 
 291 static void
 292 spa_config_lock_destroy(spa_t *spa)
 293 {
 294         for (int i = 0; i < SCL_LOCKS; i++) {
 295                 spa_config_lock_t *scl = &spa->spa_config_lock[i];
 296                 mutex_destroy(&scl->scl_lock);
 297                 cv_destroy(&scl->scl_cv);
 298                 refcount_destroy(&scl->scl_count);
 299                 ASSERT(scl->scl_writer == NULL);
 300                 ASSERT(scl->scl_write_wanted == 0);
 301         }
 302 }
 303 
 304 int
 305 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
 306 {
 307         for (int i = 0; i < SCL_LOCKS; i++) {
 308                 spa_config_lock_t *scl = &spa->spa_config_lock[i];
 309                 if (!(locks & (1 << i)))
 310                         continue;
 311                 mutex_enter(&scl->scl_lock);
 312                 if (rw == RW_READER) {
 313                         if (scl->scl_writer || scl->scl_write_wanted) {
 314                                 mutex_exit(&scl->scl_lock);
 315                                 spa_config_exit(spa, locks ^ (1 << i), tag);
 316                                 return (0);
 317                         }
 318                 } else {
 319                         ASSERT(scl->scl_writer != curthread);
 320                         if (!refcount_is_zero(&scl->scl_count)) {
 321                                 mutex_exit(&scl->scl_lock);
 322                                 spa_config_exit(spa, locks ^ (1 << i), tag);
 323                                 return (0);
 324                         }
 325                         scl->scl_writer = curthread;
 326                 }
 327                 (void) refcount_add(&scl->scl_count, tag);
 328                 mutex_exit(&scl->scl_lock);
 329         }
 330         return (1);
 331 }
 332 
 333 void
 334 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
 335 {
 336         int wlocks_held = 0;
 337 
 338         ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
 339 
 340         for (int i = 0; i < SCL_LOCKS; i++) {
 341                 spa_config_lock_t *scl = &spa->spa_config_lock[i];
 342                 if (scl->scl_writer == curthread)
 343                         wlocks_held |= (1 << i);
 344                 if (!(locks & (1 << i)))
 345                         continue;
 346                 mutex_enter(&scl->scl_lock);
 347                 if (rw == RW_READER) {
 348                         while (scl->scl_writer || scl->scl_write_wanted) {
 349                                 cv_wait(&scl->scl_cv, &scl->scl_lock);
 350                         }
 351                 } else {
 352                         ASSERT(scl->scl_writer != curthread);
 353                         while (!refcount_is_zero(&scl->scl_count)) {
 354                                 scl->scl_write_wanted++;
 355                                 cv_wait(&scl->scl_cv, &scl->scl_lock);
 356                                 scl->scl_write_wanted--;
 357                         }
 358                         scl->scl_writer = curthread;
 359                 }
 360                 (void) refcount_add(&scl->scl_count, tag);
 361                 mutex_exit(&scl->scl_lock);
 362         }
 363         ASSERT(wlocks_held <= locks);
 364 }
 365 
 366 void
 367 spa_config_exit(spa_t *spa, int locks, void *tag)
 368 {
 369         for (int i = SCL_LOCKS - 1; i >= 0; i--) {
 370                 spa_config_lock_t *scl = &spa->spa_config_lock[i];
 371                 if (!(locks & (1 << i)))
 372                         continue;
 373                 mutex_enter(&scl->scl_lock);
 374                 ASSERT(!refcount_is_zero(&scl->scl_count));
 375                 if (refcount_remove(&scl->scl_count, tag) == 0) {
 376                         ASSERT(scl->scl_writer == NULL ||
 377                             scl->scl_writer == curthread);
 378                         scl->scl_writer = NULL;      /* OK in either case */
 379                         cv_broadcast(&scl->scl_cv);
 380                 }
 381                 mutex_exit(&scl->scl_lock);
 382         }
 383 }
 384 
 385 int
 386 spa_config_held(spa_t *spa, int locks, krw_t rw)
 387 {
 388         int locks_held = 0;
 389 
 390         for (int i = 0; i < SCL_LOCKS; i++) {
 391                 spa_config_lock_t *scl = &spa->spa_config_lock[i];
 392                 if (!(locks & (1 << i)))
 393                         continue;
 394                 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
 395                     (rw == RW_WRITER && scl->scl_writer == curthread))
 396                         locks_held |= 1 << i;
 397         }
 398 
 399         return (locks_held);
 400 }
 401 
 402 /*
 403  * ==========================================================================
 404  * SPA namespace functions
 405  * ==========================================================================
 406  */
 407 
 408 /*
 409  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
 410  * Returns NULL if no matching spa_t is found.
 411  */
 412 spa_t *
 413 spa_lookup(const char *name)
 414 {
 415         static spa_t search;    /* spa_t is large; don't allocate on stack */
 416         spa_t *spa;
 417         avl_index_t where;
 418         char *cp;
 419 
 420         ASSERT(MUTEX_HELD(&spa_namespace_lock));
 421 
 422         (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
 423 
 424         /*
 425          * If it's a full dataset name, figure out the pool name and
 426          * just use that.
 427          */
 428         cp = strpbrk(search.spa_name, "/@");
 429         if (cp != NULL)
 430                 *cp = '\0';
 431 
 432         spa = avl_find(&spa_namespace_avl, &search, &where);
 433 
 434         return (spa);
 435 }
 436 
 437 /*
 438  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
 439  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
 440  * looking for potentially hung I/Os.
 441  */
 442 void
 443 spa_deadman(void *arg)
 444 {
 445         spa_t *spa = arg;
 446 
 447         zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
 448             (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
 449             ++spa->spa_deadman_calls);
 450         if (zfs_deadman_enabled)
 451                 vdev_deadman(spa->spa_root_vdev);
 452 }
 453 
 454 /*
 455  * Create an uninitialized spa_t with the given name.  Requires
 456  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
 457  * exist by calling spa_lookup() first.
 458  */
 459 spa_t *
 460 spa_add(const char *name, nvlist_t *config, const char *altroot)
 461 {
 462         spa_t *spa;
 463         spa_config_dirent_t *dp;
 464         cyc_handler_t hdlr;
 465         cyc_time_t when;
 466 
 467         ASSERT(MUTEX_HELD(&spa_namespace_lock));
 468 
 469         spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
 470 
 471         mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
 472         mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
 473         mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
 474         mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
 475         mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
 476         mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
 477         mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
 478         mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
 479         mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
 480         mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
 481 
 482         cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
 483         cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
 484         cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
 485         cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
 486 
 487         for (int t = 0; t < TXG_SIZE; t++)
 488                 bplist_create(&spa->spa_free_bplist[t]);
 489 
 490         (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
 491         spa->spa_state = POOL_STATE_UNINITIALIZED;
 492         spa->spa_freeze_txg = UINT64_MAX;
 493         spa->spa_final_txg = UINT64_MAX;
 494         spa->spa_load_max_txg = UINT64_MAX;
 495         spa->spa_proc = &p0;
 496         spa->spa_proc_state = SPA_PROC_NONE;
 497 
 498         hdlr.cyh_func = spa_deadman;
 499         hdlr.cyh_arg = spa;
 500         hdlr.cyh_level = CY_LOW_LEVEL;
 501 
 502         spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime *
 503             zfs_txg_synctime_ms);
 504 
 505         /*
 506          * This determines how often we need to check for hung I/Os after
 507          * the cyclic has already fired. Since checking for hung I/Os is
 508          * an expensive operation we don't want to check too frequently.
 509          * Instead wait for 5 synctimes before checking again.
 510          */
 511         when.cyt_interval = MSEC2NSEC(5 * zfs_txg_synctime_ms);
 512         when.cyt_when = CY_INFINITY;
 513         mutex_enter(&cpu_lock);
 514         spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
 515         mutex_exit(&cpu_lock);
 516 
 517         refcount_create(&spa->spa_refcount);
 518         spa_config_lock_init(spa);
 519 
 520         avl_add(&spa_namespace_avl, spa);
 521 
 522         /*
 523          * Set the alternate root, if there is one.
 524          */
 525         if (altroot) {
 526                 spa->spa_root = spa_strdup(altroot);
 527                 spa_active_count++;
 528         }
 529 
 530         /*
 531          * Every pool starts with the default cachefile
 532          */
 533         list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
 534             offsetof(spa_config_dirent_t, scd_link));
 535 
 536         dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
 537         dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
 538         list_insert_head(&spa->spa_config_list, dp);
 539 
 540         VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
 541             KM_SLEEP) == 0);
 542 
 543         if (config != NULL) {
 544                 nvlist_t *features;
 545 
 546                 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
 547                     &features) == 0) {
 548                         VERIFY(nvlist_dup(features, &spa->spa_label_features,
 549                             0) == 0);
 550                 }
 551 
 552                 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
 553         }
 554 
 555         if (spa->spa_label_features == NULL) {
 556                 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
 557                     KM_SLEEP) == 0);
 558         }
 559 
 560         spa->spa_iokstat = kstat_create("zfs", 0, name,
 561             "disk", KSTAT_TYPE_IO, 1, 0);
 562         if (spa->spa_iokstat) {
 563                 spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
 564                 kstat_install(spa->spa_iokstat);
 565         }
 566 
 567         spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
 568 
 569         return (spa);
 570 }
 571 
 572 /*
 573  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
 574  * spa_namespace_lock.  This is called only after the spa_t has been closed and
 575  * deactivated.
 576  */
 577 void
 578 spa_remove(spa_t *spa)
 579 {
 580         spa_config_dirent_t *dp;
 581 
 582         ASSERT(MUTEX_HELD(&spa_namespace_lock));
 583         ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
 584 
 585         nvlist_free(spa->spa_config_splitting);
 586 
 587         avl_remove(&spa_namespace_avl, spa);
 588         cv_broadcast(&spa_namespace_cv);
 589 
 590         if (spa->spa_root) {
 591                 spa_strfree(spa->spa_root);
 592                 spa_active_count--;
 593         }
 594 
 595         while ((dp = list_head(&spa->spa_config_list)) != NULL) {
 596                 list_remove(&spa->spa_config_list, dp);
 597                 if (dp->scd_path != NULL)
 598                         spa_strfree(dp->scd_path);
 599                 kmem_free(dp, sizeof (spa_config_dirent_t));
 600         }
 601 
 602         list_destroy(&spa->spa_config_list);
 603 
 604         nvlist_free(spa->spa_label_features);
 605         nvlist_free(spa->spa_load_info);
 606         spa_config_set(spa, NULL);
 607 
 608         mutex_enter(&cpu_lock);
 609         if (spa->spa_deadman_cycid != CYCLIC_NONE)
 610                 cyclic_remove(spa->spa_deadman_cycid);
 611         mutex_exit(&cpu_lock);
 612         spa->spa_deadman_cycid = CYCLIC_NONE;
 613 
 614         refcount_destroy(&spa->spa_refcount);
 615 
 616         spa_config_lock_destroy(spa);
 617 
 618         kstat_delete(spa->spa_iokstat);
 619         spa->spa_iokstat = NULL;
 620 
 621         for (int t = 0; t < TXG_SIZE; t++)
 622                 bplist_destroy(&spa->spa_free_bplist[t]);
 623 
 624         cv_destroy(&spa->spa_async_cv);
 625         cv_destroy(&spa->spa_proc_cv);
 626         cv_destroy(&spa->spa_scrub_io_cv);
 627         cv_destroy(&spa->spa_suspend_cv);
 628 
 629         mutex_destroy(&spa->spa_async_lock);
 630         mutex_destroy(&spa->spa_errlist_lock);
 631         mutex_destroy(&spa->spa_errlog_lock);
 632         mutex_destroy(&spa->spa_history_lock);
 633         mutex_destroy(&spa->spa_proc_lock);
 634         mutex_destroy(&spa->spa_props_lock);
 635         mutex_destroy(&spa->spa_scrub_lock);
 636         mutex_destroy(&spa->spa_suspend_lock);
 637         mutex_destroy(&spa->spa_vdev_top_lock);
 638         mutex_destroy(&spa->spa_iokstat_lock);
 639 
 640         kmem_free(spa, sizeof (spa_t));
 641 }
 642 
 643 /*
 644  * Given a pool, return the next pool in the namespace, or NULL if there is
 645  * none.  If 'prev' is NULL, return the first pool.
 646  */
 647 spa_t *
 648 spa_next(spa_t *prev)
 649 {
 650         ASSERT(MUTEX_HELD(&spa_namespace_lock));
 651 
 652         if (prev)
 653                 return (AVL_NEXT(&spa_namespace_avl, prev));
 654         else
 655                 return (avl_first(&spa_namespace_avl));
 656 }
 657 
 658 /*
 659  * ==========================================================================
 660  * SPA refcount functions
 661  * ==========================================================================
 662  */
 663 
 664 /*
 665  * Add a reference to the given spa_t.  Must have at least one reference, or
 666  * have the namespace lock held.
 667  */
 668 void
 669 spa_open_ref(spa_t *spa, void *tag)
 670 {
 671         ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
 672             MUTEX_HELD(&spa_namespace_lock));
 673         (void) refcount_add(&spa->spa_refcount, tag);
 674 }
 675 
 676 /*
 677  * Remove a reference to the given spa_t.  Must have at least one reference, or
 678  * have the namespace lock held.
 679  */
 680 void
 681 spa_close(spa_t *spa, void *tag)
 682 {
 683         ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
 684             MUTEX_HELD(&spa_namespace_lock));
 685         (void) refcount_remove(&spa->spa_refcount, tag);
 686 }
 687 
 688 /*
 689  * Check to see if the spa refcount is zero.  Must be called with
 690  * spa_namespace_lock held.  We really compare against spa_minref, which is the
 691  * number of references acquired when opening a pool
 692  */
 693 boolean_t
 694 spa_refcount_zero(spa_t *spa)
 695 {
 696         ASSERT(MUTEX_HELD(&spa_namespace_lock));
 697 
 698         return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
 699 }
 700 
 701 /*
 702  * ==========================================================================
 703  * SPA spare and l2cache tracking
 704  * ==========================================================================
 705  */
 706 
 707 /*
 708  * Hot spares and cache devices are tracked using the same code below,
 709  * for 'auxiliary' devices.
 710  */
 711 
 712 typedef struct spa_aux {
 713         uint64_t        aux_guid;
 714         uint64_t        aux_pool;
 715         avl_node_t      aux_avl;
 716         int             aux_count;
 717 } spa_aux_t;
 718 
 719 static int
 720 spa_aux_compare(const void *a, const void *b)
 721 {
 722         const spa_aux_t *sa = a;
 723         const spa_aux_t *sb = b;
 724 
 725         if (sa->aux_guid < sb->aux_guid)
 726                 return (-1);
 727         else if (sa->aux_guid > sb->aux_guid)
 728                 return (1);
 729         else
 730                 return (0);
 731 }
 732 
 733 void
 734 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
 735 {
 736         avl_index_t where;
 737         spa_aux_t search;
 738         spa_aux_t *aux;
 739 
 740         search.aux_guid = vd->vdev_guid;
 741         if ((aux = avl_find(avl, &search, &where)) != NULL) {
 742                 aux->aux_count++;
 743         } else {
 744                 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
 745                 aux->aux_guid = vd->vdev_guid;
 746                 aux->aux_count = 1;
 747                 avl_insert(avl, aux, where);
 748         }
 749 }
 750 
 751 void
 752 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
 753 {
 754         spa_aux_t search;
 755         spa_aux_t *aux;
 756         avl_index_t where;
 757 
 758         search.aux_guid = vd->vdev_guid;
 759         aux = avl_find(avl, &search, &where);
 760 
 761         ASSERT(aux != NULL);
 762 
 763         if (--aux->aux_count == 0) {
 764                 avl_remove(avl, aux);
 765                 kmem_free(aux, sizeof (spa_aux_t));
 766         } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
 767                 aux->aux_pool = 0ULL;
 768         }
 769 }
 770 
 771 boolean_t
 772 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
 773 {
 774         spa_aux_t search, *found;
 775 
 776         search.aux_guid = guid;
 777         found = avl_find(avl, &search, NULL);
 778 
 779         if (pool) {
 780                 if (found)
 781                         *pool = found->aux_pool;
 782                 else
 783                         *pool = 0ULL;
 784         }
 785 
 786         if (refcnt) {
 787                 if (found)
 788                         *refcnt = found->aux_count;
 789                 else
 790                         *refcnt = 0;
 791         }
 792 
 793         return (found != NULL);
 794 }
 795 
 796 void
 797 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
 798 {
 799         spa_aux_t search, *found;
 800         avl_index_t where;
 801 
 802         search.aux_guid = vd->vdev_guid;
 803         found = avl_find(avl, &search, &where);
 804         ASSERT(found != NULL);
 805         ASSERT(found->aux_pool == 0ULL);
 806 
 807         found->aux_pool = spa_guid(vd->vdev_spa);
 808 }
 809 
 810 /*
 811  * Spares are tracked globally due to the following constraints:
 812  *
 813  *      - A spare may be part of multiple pools.
 814  *      - A spare may be added to a pool even if it's actively in use within
 815  *        another pool.
 816  *      - A spare in use in any pool can only be the source of a replacement if
 817  *        the target is a spare in the same pool.
 818  *
 819  * We keep track of all spares on the system through the use of a reference
 820  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
 821  * spare, then we bump the reference count in the AVL tree.  In addition, we set
 822  * the 'vdev_isspare' member to indicate that the device is a spare (active or
 823  * inactive).  When a spare is made active (used to replace a device in the
 824  * pool), we also keep track of which pool its been made a part of.
 825  *
 826  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
 827  * called under the spa_namespace lock as part of vdev reconfiguration.  The
 828  * separate spare lock exists for the status query path, which does not need to
 829  * be completely consistent with respect to other vdev configuration changes.
 830  */
 831 
 832 static int
 833 spa_spare_compare(const void *a, const void *b)
 834 {
 835         return (spa_aux_compare(a, b));
 836 }
 837 
 838 void
 839 spa_spare_add(vdev_t *vd)
 840 {
 841         mutex_enter(&spa_spare_lock);
 842         ASSERT(!vd->vdev_isspare);
 843         spa_aux_add(vd, &spa_spare_avl);
 844         vd->vdev_isspare = B_TRUE;
 845         mutex_exit(&spa_spare_lock);
 846 }
 847 
 848 void
 849 spa_spare_remove(vdev_t *vd)
 850 {
 851         mutex_enter(&spa_spare_lock);
 852         ASSERT(vd->vdev_isspare);
 853         spa_aux_remove(vd, &spa_spare_avl);
 854         vd->vdev_isspare = B_FALSE;
 855         mutex_exit(&spa_spare_lock);
 856 }
 857 
 858 boolean_t
 859 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
 860 {
 861         boolean_t found;
 862 
 863         mutex_enter(&spa_spare_lock);
 864         found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
 865         mutex_exit(&spa_spare_lock);
 866 
 867         return (found);
 868 }
 869 
 870 void
 871 spa_spare_activate(vdev_t *vd)
 872 {
 873         mutex_enter(&spa_spare_lock);
 874         ASSERT(vd->vdev_isspare);
 875         spa_aux_activate(vd, &spa_spare_avl);
 876         mutex_exit(&spa_spare_lock);
 877 }
 878 
 879 /*
 880  * Level 2 ARC devices are tracked globally for the same reasons as spares.
 881  * Cache devices currently only support one pool per cache device, and so
 882  * for these devices the aux reference count is currently unused beyond 1.
 883  */
 884 
 885 static int
 886 spa_l2cache_compare(const void *a, const void *b)
 887 {
 888         return (spa_aux_compare(a, b));
 889 }
 890 
 891 void
 892 spa_l2cache_add(vdev_t *vd)
 893 {
 894         mutex_enter(&spa_l2cache_lock);
 895         ASSERT(!vd->vdev_isl2cache);
 896         spa_aux_add(vd, &spa_l2cache_avl);
 897         vd->vdev_isl2cache = B_TRUE;
 898         mutex_exit(&spa_l2cache_lock);
 899 }
 900 
 901 void
 902 spa_l2cache_remove(vdev_t *vd)
 903 {
 904         mutex_enter(&spa_l2cache_lock);
 905         ASSERT(vd->vdev_isl2cache);
 906         spa_aux_remove(vd, &spa_l2cache_avl);
 907         vd->vdev_isl2cache = B_FALSE;
 908         mutex_exit(&spa_l2cache_lock);
 909 }
 910 
 911 boolean_t
 912 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
 913 {
 914         boolean_t found;
 915 
 916         mutex_enter(&spa_l2cache_lock);
 917         found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
 918         mutex_exit(&spa_l2cache_lock);
 919 
 920         return (found);
 921 }
 922 
 923 void
 924 spa_l2cache_activate(vdev_t *vd)
 925 {
 926         mutex_enter(&spa_l2cache_lock);
 927         ASSERT(vd->vdev_isl2cache);
 928         spa_aux_activate(vd, &spa_l2cache_avl);
 929         mutex_exit(&spa_l2cache_lock);
 930 }
 931 
 932 /*
 933  * ==========================================================================
 934  * SPA vdev locking
 935  * ==========================================================================
 936  */
 937 
 938 /*
 939  * Lock the given spa_t for the purpose of adding or removing a vdev.
 940  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
 941  * It returns the next transaction group for the spa_t.
 942  */
 943 uint64_t
 944 spa_vdev_enter(spa_t *spa)
 945 {
 946         mutex_enter(&spa->spa_vdev_top_lock);
 947         mutex_enter(&spa_namespace_lock);
 948         return (spa_vdev_config_enter(spa));
 949 }
 950 
 951 /*
 952  * Internal implementation for spa_vdev_enter().  Used when a vdev
 953  * operation requires multiple syncs (i.e. removing a device) while
 954  * keeping the spa_namespace_lock held.
 955  */
 956 uint64_t
 957 spa_vdev_config_enter(spa_t *spa)
 958 {
 959         ASSERT(MUTEX_HELD(&spa_namespace_lock));
 960 
 961         spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
 962 
 963         return (spa_last_synced_txg(spa) + 1);
 964 }
 965 
 966 /*
 967  * Used in combination with spa_vdev_config_enter() to allow the syncing
 968  * of multiple transactions without releasing the spa_namespace_lock.
 969  */
 970 void
 971 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
 972 {
 973         ASSERT(MUTEX_HELD(&spa_namespace_lock));
 974 
 975         int config_changed = B_FALSE;
 976 
 977         ASSERT(txg > spa_last_synced_txg(spa));
 978 
 979         spa->spa_pending_vdev = NULL;
 980 
 981         /*
 982          * Reassess the DTLs.
 983          */
 984         vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
 985 
 986         if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
 987                 config_changed = B_TRUE;
 988                 spa->spa_config_generation++;
 989         }
 990 
 991         /*
 992          * Verify the metaslab classes.
 993          */
 994         ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
 995         ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
 996 
 997         spa_config_exit(spa, SCL_ALL, spa);
 998 
 999         /*
1000          * Panic the system if the specified tag requires it.  This
1001          * is useful for ensuring that configurations are updated
1002          * transactionally.
1003          */
1004         if (zio_injection_enabled)
1005                 zio_handle_panic_injection(spa, tag, 0);
1006 
1007         /*
1008          * Note: this txg_wait_synced() is important because it ensures
1009          * that there won't be more than one config change per txg.
1010          * This allows us to use the txg as the generation number.
1011          */
1012         if (error == 0)
1013                 txg_wait_synced(spa->spa_dsl_pool, txg);
1014 
1015         if (vd != NULL) {
1016                 ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
1017                 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1018                 vdev_free(vd);
1019                 spa_config_exit(spa, SCL_ALL, spa);
1020         }
1021 
1022         /*
1023          * If the config changed, update the config cache.
1024          */
1025         if (config_changed)
1026                 spa_config_sync(spa, B_FALSE, B_TRUE);
1027 }
1028 
1029 /*
1030  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1031  * locking of spa_vdev_enter(), we also want make sure the transactions have
1032  * synced to disk, and then update the global configuration cache with the new
1033  * information.
1034  */
1035 int
1036 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1037 {
1038         spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1039         mutex_exit(&spa_namespace_lock);
1040         mutex_exit(&spa->spa_vdev_top_lock);
1041 
1042         return (error);
1043 }
1044 
1045 /*
1046  * Lock the given spa_t for the purpose of changing vdev state.
1047  */
1048 void
1049 spa_vdev_state_enter(spa_t *spa, int oplocks)
1050 {
1051         int locks = SCL_STATE_ALL | oplocks;
1052 
1053         /*
1054          * Root pools may need to read of the underlying devfs filesystem
1055          * when opening up a vdev.  Unfortunately if we're holding the
1056          * SCL_ZIO lock it will result in a deadlock when we try to issue
1057          * the read from the root filesystem.  Instead we "prefetch"
1058          * the associated vnodes that we need prior to opening the
1059          * underlying devices and cache them so that we can prevent
1060          * any I/O when we are doing the actual open.
1061          */
1062         if (spa_is_root(spa)) {
1063                 int low = locks & ~(SCL_ZIO - 1);
1064                 int high = locks & ~low;
1065 
1066                 spa_config_enter(spa, high, spa, RW_WRITER);
1067                 vdev_hold(spa->spa_root_vdev);
1068                 spa_config_enter(spa, low, spa, RW_WRITER);
1069         } else {
1070                 spa_config_enter(spa, locks, spa, RW_WRITER);
1071         }
1072         spa->spa_vdev_locks = locks;
1073 }
1074 
1075 int
1076 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1077 {
1078         boolean_t config_changed = B_FALSE;
1079 
1080         if (vd != NULL || error == 0)
1081                 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1082                     0, 0, B_FALSE);
1083 
1084         if (vd != NULL) {
1085                 vdev_state_dirty(vd->vdev_top);
1086                 config_changed = B_TRUE;
1087                 spa->spa_config_generation++;
1088         }
1089 
1090         if (spa_is_root(spa))
1091                 vdev_rele(spa->spa_root_vdev);
1092 
1093         ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1094         spa_config_exit(spa, spa->spa_vdev_locks, spa);
1095 
1096         /*
1097          * If anything changed, wait for it to sync.  This ensures that,
1098          * from the system administrator's perspective, zpool(1M) commands
1099          * are synchronous.  This is important for things like zpool offline:
1100          * when the command completes, you expect no further I/O from ZFS.
1101          */
1102         if (vd != NULL)
1103                 txg_wait_synced(spa->spa_dsl_pool, 0);
1104 
1105         /*
1106          * If the config changed, update the config cache.
1107          */
1108         if (config_changed) {
1109                 mutex_enter(&spa_namespace_lock);
1110                 spa_config_sync(spa, B_FALSE, B_TRUE);
1111                 mutex_exit(&spa_namespace_lock);
1112         }
1113 
1114         return (error);
1115 }
1116 
1117 /*
1118  * ==========================================================================
1119  * Miscellaneous functions
1120  * ==========================================================================
1121  */
1122 
1123 void
1124 spa_activate_mos_feature(spa_t *spa, const char *feature)
1125 {
1126         (void) nvlist_add_boolean(spa->spa_label_features, feature);
1127         vdev_config_dirty(spa->spa_root_vdev);
1128 }
1129 
1130 void
1131 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1132 {
1133         (void) nvlist_remove_all(spa->spa_label_features, feature);
1134         vdev_config_dirty(spa->spa_root_vdev);
1135 }
1136 
1137 /*
1138  * Rename a spa_t.
1139  */
1140 int
1141 spa_rename(const char *name, const char *newname)
1142 {
1143         spa_t *spa;
1144         int err;
1145 
1146         /*
1147          * Lookup the spa_t and grab the config lock for writing.  We need to
1148          * actually open the pool so that we can sync out the necessary labels.
1149          * It's OK to call spa_open() with the namespace lock held because we
1150          * allow recursive calls for other reasons.
1151          */
1152         mutex_enter(&spa_namespace_lock);
1153         if ((err = spa_open(name, &spa, FTAG)) != 0) {
1154                 mutex_exit(&spa_namespace_lock);
1155                 return (err);
1156         }
1157 
1158         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1159 
1160         avl_remove(&spa_namespace_avl, spa);
1161         (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1162         avl_add(&spa_namespace_avl, spa);
1163 
1164         /*
1165          * Sync all labels to disk with the new names by marking the root vdev
1166          * dirty and waiting for it to sync.  It will pick up the new pool name
1167          * during the sync.
1168          */
1169         vdev_config_dirty(spa->spa_root_vdev);
1170 
1171         spa_config_exit(spa, SCL_ALL, FTAG);
1172 
1173         txg_wait_synced(spa->spa_dsl_pool, 0);
1174 
1175         /*
1176          * Sync the updated config cache.
1177          */
1178         spa_config_sync(spa, B_FALSE, B_TRUE);
1179 
1180         spa_close(spa, FTAG);
1181 
1182         mutex_exit(&spa_namespace_lock);
1183 
1184         return (0);
1185 }
1186 
1187 /*
1188  * Return the spa_t associated with given pool_guid, if it exists.  If
1189  * device_guid is non-zero, determine whether the pool exists *and* contains
1190  * a device with the specified device_guid.
1191  */
1192 spa_t *
1193 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1194 {
1195         spa_t *spa;
1196         avl_tree_t *t = &spa_namespace_avl;
1197 
1198         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1199 
1200         for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1201                 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1202                         continue;
1203                 if (spa->spa_root_vdev == NULL)
1204                         continue;
1205                 if (spa_guid(spa) == pool_guid) {
1206                         if (device_guid == 0)
1207                                 break;
1208 
1209                         if (vdev_lookup_by_guid(spa->spa_root_vdev,
1210                             device_guid) != NULL)
1211                                 break;
1212 
1213                         /*
1214                          * Check any devices we may be in the process of adding.
1215                          */
1216                         if (spa->spa_pending_vdev) {
1217                                 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1218                                     device_guid) != NULL)
1219                                         break;
1220                         }
1221                 }
1222         }
1223 
1224         return (spa);
1225 }
1226 
1227 /*
1228  * Determine whether a pool with the given pool_guid exists.
1229  */
1230 boolean_t
1231 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1232 {
1233         return (spa_by_guid(pool_guid, device_guid) != NULL);
1234 }
1235 
1236 char *
1237 spa_strdup(const char *s)
1238 {
1239         size_t len;
1240         char *new;
1241 
1242         len = strlen(s);
1243         new = kmem_alloc(len + 1, KM_SLEEP);
1244         bcopy(s, new, len);
1245         new[len] = '\0';
1246 
1247         return (new);
1248 }
1249 
1250 void
1251 spa_strfree(char *s)
1252 {
1253         kmem_free(s, strlen(s) + 1);
1254 }
1255 
1256 uint64_t
1257 spa_get_random(uint64_t range)
1258 {
1259         uint64_t r;
1260 
1261         ASSERT(range != 0);
1262 
1263         (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1264 
1265         return (r % range);
1266 }
1267 
1268 uint64_t
1269 spa_generate_guid(spa_t *spa)
1270 {
1271         uint64_t guid = spa_get_random(-1ULL);
1272 
1273         if (spa != NULL) {
1274                 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1275                         guid = spa_get_random(-1ULL);
1276         } else {
1277                 while (guid == 0 || spa_guid_exists(guid, 0))
1278                         guid = spa_get_random(-1ULL);
1279         }
1280 
1281         return (guid);
1282 }
1283 
1284 void
1285 sprintf_blkptr(char *buf, const blkptr_t *bp)
1286 {
1287         char type[256];
1288         char *checksum = NULL;
1289         char *compress = NULL;
1290 
1291         if (bp != NULL) {
1292                 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1293                         dmu_object_byteswap_t bswap =
1294                             DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1295                         (void) snprintf(type, sizeof (type), "bswap %s %s",
1296                             DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1297                             "metadata" : "data",
1298                             dmu_ot_byteswap[bswap].ob_name);
1299                 } else {
1300                         (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1301                             sizeof (type));
1302                 }
1303                 checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1304                 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1305         }
1306 
1307         SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1308 }
1309 
1310 void
1311 spa_freeze(spa_t *spa)
1312 {
1313         uint64_t freeze_txg = 0;
1314 
1315         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1316         if (spa->spa_freeze_txg == UINT64_MAX) {
1317                 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1318                 spa->spa_freeze_txg = freeze_txg;
1319         }
1320         spa_config_exit(spa, SCL_ALL, FTAG);
1321         if (freeze_txg != 0)
1322                 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1323 }
1324 
1325 void
1326 zfs_panic_recover(const char *fmt, ...)
1327 {
1328         va_list adx;
1329 
1330         va_start(adx, fmt);
1331         vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1332         va_end(adx);
1333 }
1334 
1335 /*
1336  * This is a stripped-down version of strtoull, suitable only for converting
1337  * lowercase hexadecimal numbers that don't overflow.
1338  */
1339 uint64_t
1340 strtonum(const char *str, char **nptr)
1341 {
1342         uint64_t val = 0;
1343         char c;
1344         int digit;
1345 
1346         while ((c = *str) != '\0') {
1347                 if (c >= '0' && c <= '9')
1348                         digit = c - '0';
1349                 else if (c >= 'a' && c <= 'f')
1350                         digit = 10 + c - 'a';
1351                 else
1352                         break;
1353 
1354                 val *= 16;
1355                 val += digit;
1356 
1357                 str++;
1358         }
1359 
1360         if (nptr)
1361                 *nptr = (char *)str;
1362 
1363         return (val);
1364 }
1365 
1366 /*
1367  * ==========================================================================
1368  * Accessor functions
1369  * ==========================================================================
1370  */
1371 
1372 boolean_t
1373 spa_shutting_down(spa_t *spa)
1374 {
1375         return (spa->spa_async_suspended);
1376 }
1377 
1378 dsl_pool_t *
1379 spa_get_dsl(spa_t *spa)
1380 {
1381         return (spa->spa_dsl_pool);
1382 }
1383 
1384 boolean_t
1385 spa_is_initializing(spa_t *spa)
1386 {
1387         return (spa->spa_is_initializing);
1388 }
1389 
1390 blkptr_t *
1391 spa_get_rootblkptr(spa_t *spa)
1392 {
1393         return (&spa->spa_ubsync.ub_rootbp);
1394 }
1395 
1396 void
1397 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1398 {
1399         spa->spa_uberblock.ub_rootbp = *bp;
1400 }
1401 
1402 void
1403 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1404 {
1405         if (spa->spa_root == NULL)
1406                 buf[0] = '\0';
1407         else
1408                 (void) strncpy(buf, spa->spa_root, buflen);
1409 }
1410 
1411 int
1412 spa_sync_pass(spa_t *spa)
1413 {
1414         return (spa->spa_sync_pass);
1415 }
1416 
1417 char *
1418 spa_name(spa_t *spa)
1419 {
1420         return (spa->spa_name);
1421 }
1422 
1423 uint64_t
1424 spa_guid(spa_t *spa)
1425 {
1426         dsl_pool_t *dp = spa_get_dsl(spa);
1427         uint64_t guid;
1428 
1429         /*
1430          * If we fail to parse the config during spa_load(), we can go through
1431          * the error path (which posts an ereport) and end up here with no root
1432          * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1433          * this case.
1434          */
1435         if (spa->spa_root_vdev == NULL)
1436                 return (spa->spa_config_guid);
1437 
1438         guid = spa->spa_last_synced_guid != 0 ?
1439             spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1440 
1441         /*
1442          * Return the most recently synced out guid unless we're
1443          * in syncing context.
1444          */
1445         if (dp && dsl_pool_sync_context(dp))
1446                 return (spa->spa_root_vdev->vdev_guid);
1447         else
1448                 return (guid);
1449 }
1450 
1451 uint64_t
1452 spa_load_guid(spa_t *spa)
1453 {
1454         /*
1455          * This is a GUID that exists solely as a reference for the
1456          * purposes of the arc.  It is generated at load time, and
1457          * is never written to persistent storage.
1458          */
1459         return (spa->spa_load_guid);
1460 }
1461 
1462 uint64_t
1463 spa_last_synced_txg(spa_t *spa)
1464 {
1465         return (spa->spa_ubsync.ub_txg);
1466 }
1467 
1468 uint64_t
1469 spa_first_txg(spa_t *spa)
1470 {
1471         return (spa->spa_first_txg);
1472 }
1473 
1474 uint64_t
1475 spa_syncing_txg(spa_t *spa)
1476 {
1477         return (spa->spa_syncing_txg);
1478 }
1479 
1480 pool_state_t
1481 spa_state(spa_t *spa)
1482 {
1483         return (spa->spa_state);
1484 }
1485 
1486 spa_load_state_t
1487 spa_load_state(spa_t *spa)
1488 {
1489         return (spa->spa_load_state);
1490 }
1491 
1492 uint64_t
1493 spa_freeze_txg(spa_t *spa)
1494 {
1495         return (spa->spa_freeze_txg);
1496 }
1497 
1498 /* ARGSUSED */
1499 uint64_t
1500 spa_get_asize(spa_t *spa, uint64_t lsize)
1501 {
1502         /*
1503          * The worst case is single-sector max-parity RAID-Z blocks, in which
1504          * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
1505          * times the size; so just assume that.  Add to this the fact that
1506          * we can have up to 3 DVAs per bp, and one more factor of 2 because
1507          * the block may be dittoed with up to 3 DVAs by ddt_sync().
1508          */
1509         return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2);
1510 }
1511 
1512 uint64_t
1513 spa_get_dspace(spa_t *spa)
1514 {
1515         return (spa->spa_dspace);
1516 }
1517 
1518 void
1519 spa_update_dspace(spa_t *spa)
1520 {
1521         spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1522             ddt_get_dedup_dspace(spa);
1523 }
1524 
1525 /*
1526  * Return the failure mode that has been set to this pool. The default
1527  * behavior will be to block all I/Os when a complete failure occurs.
1528  */
1529 uint8_t
1530 spa_get_failmode(spa_t *spa)
1531 {
1532         return (spa->spa_failmode);
1533 }
1534 
1535 boolean_t
1536 spa_suspended(spa_t *spa)
1537 {
1538         return (spa->spa_suspended);
1539 }
1540 
1541 uint64_t
1542 spa_version(spa_t *spa)
1543 {
1544         return (spa->spa_ubsync.ub_version);
1545 }
1546 
1547 boolean_t
1548 spa_deflate(spa_t *spa)
1549 {
1550         return (spa->spa_deflate);
1551 }
1552 
1553 metaslab_class_t *
1554 spa_normal_class(spa_t *spa)
1555 {
1556         return (spa->spa_normal_class);
1557 }
1558 
1559 metaslab_class_t *
1560 spa_log_class(spa_t *spa)
1561 {
1562         return (spa->spa_log_class);
1563 }
1564 
1565 int
1566 spa_max_replication(spa_t *spa)
1567 {
1568         /*
1569          * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1570          * handle BPs with more than one DVA allocated.  Set our max
1571          * replication level accordingly.
1572          */
1573         if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1574                 return (1);
1575         return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1576 }
1577 
1578 int
1579 spa_prev_software_version(spa_t *spa)
1580 {
1581         return (spa->spa_prev_software_version);
1582 }
1583 
1584 uint64_t
1585 spa_deadman_synctime(spa_t *spa)
1586 {
1587         return (spa->spa_deadman_synctime);
1588 }
1589 
1590 uint64_t
1591 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1592 {
1593         uint64_t asize = DVA_GET_ASIZE(dva);
1594         uint64_t dsize = asize;
1595 
1596         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1597 
1598         if (asize != 0 && spa->spa_deflate) {
1599                 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1600                 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1601         }
1602 
1603         return (dsize);
1604 }
1605 
1606 uint64_t
1607 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1608 {
1609         uint64_t dsize = 0;
1610 
1611         for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1612                 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1613 
1614         return (dsize);
1615 }
1616 
1617 uint64_t
1618 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1619 {
1620         uint64_t dsize = 0;
1621 
1622         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1623 
1624         for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1625                 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1626 
1627         spa_config_exit(spa, SCL_VDEV, FTAG);
1628 
1629         return (dsize);
1630 }
1631 
1632 /*
1633  * ==========================================================================
1634  * Initialization and Termination
1635  * ==========================================================================
1636  */
1637 
1638 static int
1639 spa_name_compare(const void *a1, const void *a2)
1640 {
1641         const spa_t *s1 = a1;
1642         const spa_t *s2 = a2;
1643         int s;
1644 
1645         s = strcmp(s1->spa_name, s2->spa_name);
1646         if (s > 0)
1647                 return (1);
1648         if (s < 0)
1649                 return (-1);
1650         return (0);
1651 }
1652 
1653 int
1654 spa_busy(void)
1655 {
1656         return (spa_active_count);
1657 }
1658 
1659 void
1660 spa_boot_init()
1661 {
1662         spa_config_load();
1663 }
1664 
1665 void
1666 spa_init(int mode)
1667 {
1668         mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1669         mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1670         mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1671         cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1672 
1673         avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1674             offsetof(spa_t, spa_avl));
1675 
1676         avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1677             offsetof(spa_aux_t, aux_avl));
1678 
1679         avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1680             offsetof(spa_aux_t, aux_avl));
1681 
1682         spa_mode_global = mode;
1683 
1684 #ifdef _KERNEL
1685         spa_arch_init();
1686 #else
1687         if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1688                 arc_procfd = open("/proc/self/ctl", O_WRONLY);
1689                 if (arc_procfd == -1) {
1690                         perror("could not enable watchpoints: "
1691                             "opening /proc/self/ctl failed: ");
1692                 } else {
1693                         arc_watch = B_TRUE;
1694                 }
1695         }
1696 #endif
1697 
1698         refcount_init();
1699         unique_init();
1700         space_map_init();
1701         zio_init();
1702         dmu_init();
1703         zil_init();
1704         vdev_cache_stat_init();
1705         zfs_prop_init();
1706         zpool_prop_init();
1707         zpool_feature_init();
1708         spa_config_load();
1709         l2arc_start();
1710 }
1711 
1712 void
1713 spa_fini(void)
1714 {
1715         l2arc_stop();
1716 
1717         spa_evict_all();
1718 
1719         vdev_cache_stat_fini();
1720         zil_fini();
1721         dmu_fini();
1722         zio_fini();
1723         space_map_fini();
1724         unique_fini();
1725         refcount_fini();
1726 
1727         avl_destroy(&spa_namespace_avl);
1728         avl_destroy(&spa_spare_avl);
1729         avl_destroy(&spa_l2cache_avl);
1730 
1731         cv_destroy(&spa_namespace_cv);
1732         mutex_destroy(&spa_namespace_lock);
1733         mutex_destroy(&spa_spare_lock);
1734         mutex_destroy(&spa_l2cache_lock);
1735 }
1736 
1737 /*
1738  * Return whether this pool has slogs. No locking needed.
1739  * It's not a problem if the wrong answer is returned as it's only for
1740  * performance and not correctness
1741  */
1742 boolean_t
1743 spa_has_slogs(spa_t *spa)
1744 {
1745         return (spa->spa_log_class->mc_rotor != NULL);
1746 }
1747 
1748 spa_log_state_t
1749 spa_get_log_state(spa_t *spa)
1750 {
1751         return (spa->spa_log_state);
1752 }
1753 
1754 void
1755 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1756 {
1757         spa->spa_log_state = state;
1758 }
1759 
1760 boolean_t
1761 spa_is_root(spa_t *spa)
1762 {
1763         return (spa->spa_is_root);
1764 }
1765 
1766 boolean_t
1767 spa_writeable(spa_t *spa)
1768 {
1769         return (!!(spa->spa_mode & FWRITE));
1770 }
1771 
1772 int
1773 spa_mode(spa_t *spa)
1774 {
1775         return (spa->spa_mode);
1776 }
1777 
1778 uint64_t
1779 spa_bootfs(spa_t *spa)
1780 {
1781         return (spa->spa_bootfs);
1782 }
1783 
1784 uint64_t
1785 spa_delegation(spa_t *spa)
1786 {
1787         return (spa->spa_delegation);
1788 }
1789 
1790 objset_t *
1791 spa_meta_objset(spa_t *spa)
1792 {
1793         return (spa->spa_meta_objset);
1794 }
1795 
1796 enum zio_checksum
1797 spa_dedup_checksum(spa_t *spa)
1798 {
1799         return (spa->spa_dedup_checksum);
1800 }
1801 
1802 /*
1803  * Reset pool scan stat per scan pass (or reboot).
1804  */
1805 void
1806 spa_scan_stat_init(spa_t *spa)
1807 {
1808         /* data not stored on disk */
1809         spa->spa_scan_pass_start = gethrestime_sec();
1810         spa->spa_scan_pass_exam = 0;
1811         vdev_scan_stat_init(spa->spa_root_vdev);
1812 }
1813 
1814 /*
1815  * Get scan stats for zpool status reports
1816  */
1817 int
1818 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1819 {
1820         dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1821 
1822         if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1823                 return (SET_ERROR(ENOENT));
1824         bzero(ps, sizeof (pool_scan_stat_t));
1825 
1826         /* data stored on disk */
1827         ps->pss_func = scn->scn_phys.scn_func;
1828         ps->pss_start_time = scn->scn_phys.scn_start_time;
1829         ps->pss_end_time = scn->scn_phys.scn_end_time;
1830         ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1831         ps->pss_examined = scn->scn_phys.scn_examined;
1832         ps->pss_to_process = scn->scn_phys.scn_to_process;
1833         ps->pss_processed = scn->scn_phys.scn_processed;
1834         ps->pss_errors = scn->scn_phys.scn_errors;
1835         ps->pss_state = scn->scn_phys.scn_state;
1836 
1837         /* data not stored on disk */
1838         ps->pss_pass_start = spa->spa_scan_pass_start;
1839         ps->pss_pass_exam = spa->spa_scan_pass_exam;
1840 
1841         return (0);
1842 }
1843 
1844 boolean_t
1845 spa_debug_enabled(spa_t *spa)
1846 {
1847         return (spa->spa_debug);
1848 }