1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2012 by Delphix. All rights reserved. 26 */ 27 28 #include <sys/spa.h> 29 #include <sys/spa_impl.h> 30 #include <sys/nvpair.h> 31 #include <sys/uio.h> 32 #include <sys/fs/zfs.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/zfs_ioctl.h> 35 #include <sys/utsname.h> 36 #include <sys/systeminfo.h> 37 #include <sys/sunddi.h> 38 #include <sys/zfeature.h> 39 #ifdef _KERNEL 40 #include <sys/kobj.h> 41 #include <sys/zone.h> 42 #endif 43 44 /* 45 * Pool configuration repository. 46 * 47 * Pool configuration is stored as a packed nvlist on the filesystem. By 48 * default, all pools are stored in /etc/zfs/zpool.cache and loaded on boot 49 * (when the ZFS module is loaded). Pools can also have the 'cachefile' 50 * property set that allows them to be stored in an alternate location until 51 * the control of external software. 52 * 53 * For each cache file, we have a single nvlist which holds all the 54 * configuration information. When the module loads, we read this information 55 * from /etc/zfs/zpool.cache and populate the SPA namespace. This namespace is 56 * maintained independently in spa.c. Whenever the namespace is modified, or 57 * the configuration of a pool is changed, we call spa_config_sync(), which 58 * walks through all the active pools and writes the configuration to disk. 59 */ 60 61 static uint64_t spa_config_generation = 1; 62 63 /* 64 * This can be overridden in userland to preserve an alternate namespace for 65 * userland pools when doing testing. 66 */ 67 const char *spa_config_path = ZPOOL_CACHE; 68 69 /* 70 * Called when the module is first loaded, this routine loads the configuration 71 * file into the SPA namespace. It does not actually open or load the pools; it 72 * only populates the namespace. 73 */ 74 void 75 spa_config_load(void) 76 { 77 void *buf = NULL; 78 nvlist_t *nvlist, *child; 79 nvpair_t *nvpair; 80 char *pathname; 81 struct _buf *file; 82 uint64_t fsize; 83 84 /* 85 * Open the configuration file. 86 */ 87 pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 88 89 (void) snprintf(pathname, MAXPATHLEN, "%s%s", 90 (rootdir != NULL) ? "./" : "", spa_config_path); 91 92 file = kobj_open_file(pathname); 93 94 kmem_free(pathname, MAXPATHLEN); 95 96 if (file == (struct _buf *)-1) 97 return; 98 99 if (kobj_get_filesize(file, &fsize) != 0) 100 goto out; 101 102 buf = kmem_alloc(fsize, KM_SLEEP); 103 104 /* 105 * Read the nvlist from the file. 106 */ 107 if (kobj_read_file(file, buf, fsize, 0) < 0) 108 goto out; 109 110 /* 111 * Unpack the nvlist. 112 */ 113 if (nvlist_unpack(buf, fsize, &nvlist, KM_SLEEP) != 0) 114 goto out; 115 116 /* 117 * Iterate over all elements in the nvlist, creating a new spa_t for 118 * each one with the specified configuration. 119 */ 120 mutex_enter(&spa_namespace_lock); 121 nvpair = NULL; 122 while ((nvpair = nvlist_next_nvpair(nvlist, nvpair)) != NULL) { 123 if (nvpair_type(nvpair) != DATA_TYPE_NVLIST) 124 continue; 125 126 VERIFY(nvpair_value_nvlist(nvpair, &child) == 0); 127 128 if (spa_lookup(nvpair_name(nvpair)) != NULL) 129 continue; 130 (void) spa_add(nvpair_name(nvpair), child, NULL); 131 } 132 mutex_exit(&spa_namespace_lock); 133 134 nvlist_free(nvlist); 135 136 out: 137 if (buf != NULL) 138 kmem_free(buf, fsize); 139 140 kobj_close_file(file); 141 } 142 143 static void 144 spa_config_write(spa_config_dirent_t *dp, nvlist_t *nvl) 145 { 146 size_t buflen; 147 char *buf; 148 vnode_t *vp; 149 int oflags = FWRITE | FTRUNC | FCREAT | FOFFMAX; 150 char *temp; 151 152 /* 153 * If the nvlist is empty (NULL), then remove the old cachefile. 154 */ 155 if (nvl == NULL) { 156 (void) vn_remove(dp->scd_path, UIO_SYSSPACE, RMFILE); 157 return; 158 } 159 160 /* 161 * Pack the configuration into a buffer. 162 */ 163 VERIFY(nvlist_size(nvl, &buflen, NV_ENCODE_XDR) == 0); 164 165 buf = kmem_alloc(buflen, KM_SLEEP); 166 temp = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 167 168 VERIFY(nvlist_pack(nvl, &buf, &buflen, NV_ENCODE_XDR, 169 KM_SLEEP) == 0); 170 171 /* 172 * Write the configuration to disk. We need to do the traditional 173 * 'write to temporary file, sync, move over original' to make sure we 174 * always have a consistent view of the data. 175 */ 176 (void) snprintf(temp, MAXPATHLEN, "%s.tmp", dp->scd_path); 177 178 if (vn_open(temp, UIO_SYSSPACE, oflags, 0644, &vp, CRCREAT, 0) == 0) { 179 if (vn_rdwr(UIO_WRITE, vp, buf, buflen, 0, UIO_SYSSPACE, 180 0, RLIM64_INFINITY, kcred, NULL) == 0 && 181 VOP_FSYNC(vp, FSYNC, kcred, NULL) == 0) { 182 (void) vn_rename(temp, dp->scd_path, UIO_SYSSPACE); 183 } 184 (void) VOP_CLOSE(vp, oflags, 1, 0, kcred, NULL); 185 VN_RELE(vp); 186 } 187 188 (void) vn_remove(temp, UIO_SYSSPACE, RMFILE); 189 190 kmem_free(buf, buflen); 191 kmem_free(temp, MAXPATHLEN); 192 } 193 194 /* 195 * Synchronize pool configuration to disk. This must be called with the 196 * namespace lock held. 197 */ 198 void 199 spa_config_sync(spa_t *target, boolean_t removing, boolean_t postsysevent) 200 { 201 spa_config_dirent_t *dp, *tdp; 202 nvlist_t *nvl; 203 204 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 205 206 if (rootdir == NULL || !(spa_mode_global & FWRITE)) 207 return; 208 209 /* 210 * Iterate over all cachefiles for the pool, past or present. When the 211 * cachefile is changed, the new one is pushed onto this list, allowing 212 * us to update previous cachefiles that no longer contain this pool. 213 */ 214 for (dp = list_head(&target->spa_config_list); dp != NULL; 215 dp = list_next(&target->spa_config_list, dp)) { 216 spa_t *spa = NULL; 217 if (dp->scd_path == NULL) 218 continue; 219 220 /* 221 * Iterate over all pools, adding any matching pools to 'nvl'. 222 */ 223 nvl = NULL; 224 while ((spa = spa_next(spa)) != NULL) { 225 /* 226 * Skip over our own pool if we're about to remove 227 * ourselves from the spa namespace or any pool that 228 * is readonly. Since we cannot guarantee that a 229 * readonly pool would successfully import upon reboot, 230 * we don't allow them to be written to the cache file. 231 */ 232 if ((spa == target && removing) || 233 !spa_writeable(spa)) 234 continue; 235 236 mutex_enter(&spa->spa_props_lock); 237 tdp = list_head(&spa->spa_config_list); 238 if (spa->spa_config == NULL || 239 tdp->scd_path == NULL || 240 strcmp(tdp->scd_path, dp->scd_path) != 0) { 241 mutex_exit(&spa->spa_props_lock); 242 continue; 243 } 244 245 if (nvl == NULL) 246 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, 247 KM_SLEEP) == 0); 248 249 VERIFY(nvlist_add_nvlist(nvl, spa->spa_name, 250 spa->spa_config) == 0); 251 mutex_exit(&spa->spa_props_lock); 252 } 253 254 spa_config_write(dp, nvl); 255 nvlist_free(nvl); 256 } 257 258 /* 259 * Remove any config entries older than the current one. 260 */ 261 dp = list_head(&target->spa_config_list); 262 while ((tdp = list_next(&target->spa_config_list, dp)) != NULL) { 263 list_remove(&target->spa_config_list, tdp); 264 if (tdp->scd_path != NULL) 265 spa_strfree(tdp->scd_path); 266 kmem_free(tdp, sizeof (spa_config_dirent_t)); 267 } 268 269 spa_config_generation++; 270 271 if (postsysevent) 272 spa_event_notify(target, NULL, ESC_ZFS_CONFIG_SYNC); 273 } 274 275 /* 276 * Sigh. Inside a local zone, we don't have access to /etc/zfs/zpool.cache, 277 * and we don't want to allow the local zone to see all the pools anyway. 278 * So we have to invent the ZFS_IOC_CONFIG ioctl to grab the configuration 279 * information for all pool visible within the zone. 280 */ 281 nvlist_t * 282 spa_all_configs(uint64_t *generation) 283 { 284 nvlist_t *pools; 285 spa_t *spa = NULL; 286 287 if (*generation == spa_config_generation) 288 return (NULL); 289 290 VERIFY(nvlist_alloc(&pools, NV_UNIQUE_NAME, KM_SLEEP) == 0); 291 292 mutex_enter(&spa_namespace_lock); 293 while ((spa = spa_next(spa)) != NULL) { 294 if (INGLOBALZONE(curproc) || 295 zone_dataset_visible(spa_name(spa), NULL)) { 296 mutex_enter(&spa->spa_props_lock); 297 VERIFY(nvlist_add_nvlist(pools, spa_name(spa), 298 spa->spa_config) == 0); 299 mutex_exit(&spa->spa_props_lock); 300 } 301 } 302 *generation = spa_config_generation; 303 mutex_exit(&spa_namespace_lock); 304 305 return (pools); 306 } 307 308 void 309 spa_config_set(spa_t *spa, nvlist_t *config) 310 { 311 mutex_enter(&spa->spa_props_lock); 312 if (spa->spa_config != NULL) 313 nvlist_free(spa->spa_config); 314 spa->spa_config = config; 315 mutex_exit(&spa->spa_props_lock); 316 } 317 318 /* 319 * Generate the pool's configuration based on the current in-core state. 320 * We infer whether to generate a complete config or just one top-level config 321 * based on whether vd is the root vdev. 322 */ 323 nvlist_t * 324 spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats) 325 { 326 nvlist_t *config, *nvroot; 327 vdev_t *rvd = spa->spa_root_vdev; 328 unsigned long hostid = 0; 329 boolean_t locked = B_FALSE; 330 uint64_t split_guid; 331 332 if (vd == NULL) { 333 vd = rvd; 334 locked = B_TRUE; 335 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 336 } 337 338 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER) == 339 (SCL_CONFIG | SCL_STATE)); 340 341 /* 342 * If txg is -1, report the current value of spa->spa_config_txg. 343 */ 344 if (txg == -1ULL) 345 txg = spa->spa_config_txg; 346 347 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, KM_SLEEP) == 0); 348 349 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 350 spa_version(spa)) == 0); 351 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 352 spa_name(spa)) == 0); 353 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 354 spa_state(spa)) == 0); 355 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 356 txg) == 0); 357 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 358 spa_guid(spa)) == 0); 359 VERIFY(spa->spa_comment == NULL || nvlist_add_string(config, 360 ZPOOL_CONFIG_COMMENT, spa->spa_comment) == 0); 361 362 363 #ifdef _KERNEL 364 hostid = zone_get_hostid(NULL); 365 #else /* _KERNEL */ 366 /* 367 * We're emulating the system's hostid in userland, so we can't use 368 * zone_get_hostid(). 369 */ 370 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 371 #endif /* _KERNEL */ 372 if (hostid != 0) { 373 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, 374 hostid) == 0); 375 } 376 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, 377 utsname.nodename) == 0); 378 379 if (vd != rvd) { 380 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TOP_GUID, 381 vd->vdev_top->vdev_guid) == 0); 382 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_GUID, 383 vd->vdev_guid) == 0); 384 if (vd->vdev_isspare) 385 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_SPARE, 386 1ULL) == 0); 387 if (vd->vdev_islog) 388 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_LOG, 389 1ULL) == 0); 390 vd = vd->vdev_top; /* label contains top config */ 391 } else { 392 /* 393 * Only add the (potentially large) split information 394 * in the mos config, and not in the vdev labels 395 */ 396 if (spa->spa_config_splitting != NULL) 397 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_SPLIT, 398 spa->spa_config_splitting) == 0); 399 } 400 401 /* 402 * Add the top-level config. We even add this on pools which 403 * don't support holes in the namespace. 404 */ 405 vdev_top_config_generate(spa, config); 406 407 /* 408 * If we're splitting, record the original pool's guid. 409 */ 410 if (spa->spa_config_splitting != NULL && 411 nvlist_lookup_uint64(spa->spa_config_splitting, 412 ZPOOL_CONFIG_SPLIT_GUID, &split_guid) == 0) { 413 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_SPLIT_GUID, 414 split_guid) == 0); 415 } 416 417 nvroot = vdev_config_generate(spa, vd, getstats, 0); 418 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 419 nvlist_free(nvroot); 420 421 /* 422 * Store what's necessary for reading the MOS in the label. 423 */ 424 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 425 spa->spa_label_features) == 0); 426 427 if (getstats && spa_load_state(spa) == SPA_LOAD_NONE) { 428 ddt_histogram_t *ddh; 429 ddt_stat_t *dds; 430 ddt_object_t *ddo; 431 432 ddh = kmem_zalloc(sizeof (ddt_histogram_t), KM_SLEEP); 433 ddt_get_dedup_histogram(spa, ddh); 434 VERIFY(nvlist_add_uint64_array(config, 435 ZPOOL_CONFIG_DDT_HISTOGRAM, 436 (uint64_t *)ddh, sizeof (*ddh) / sizeof (uint64_t)) == 0); 437 kmem_free(ddh, sizeof (ddt_histogram_t)); 438 439 ddo = kmem_zalloc(sizeof (ddt_object_t), KM_SLEEP); 440 ddt_get_dedup_object_stats(spa, ddo); 441 VERIFY(nvlist_add_uint64_array(config, 442 ZPOOL_CONFIG_DDT_OBJ_STATS, 443 (uint64_t *)ddo, sizeof (*ddo) / sizeof (uint64_t)) == 0); 444 kmem_free(ddo, sizeof (ddt_object_t)); 445 446 dds = kmem_zalloc(sizeof (ddt_stat_t), KM_SLEEP); 447 ddt_get_dedup_stats(spa, dds); 448 VERIFY(nvlist_add_uint64_array(config, 449 ZPOOL_CONFIG_DDT_STATS, 450 (uint64_t *)dds, sizeof (*dds) / sizeof (uint64_t)) == 0); 451 kmem_free(dds, sizeof (ddt_stat_t)); 452 } 453 454 if (locked) 455 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 456 457 return (config); 458 } 459 460 /* 461 * Update all disk labels, generate a fresh config based on the current 462 * in-core state, and sync the global config cache (do not sync the config 463 * cache if this is a booting rootpool). 464 */ 465 void 466 spa_config_update(spa_t *spa, int what) 467 { 468 vdev_t *rvd = spa->spa_root_vdev; 469 uint64_t txg; 470 int c; 471 472 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 473 474 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 475 txg = spa_last_synced_txg(spa) + 1; 476 if (what == SPA_CONFIG_UPDATE_POOL) { 477 vdev_config_dirty(rvd); 478 } else { 479 /* 480 * If we have top-level vdevs that were added but have 481 * not yet been prepared for allocation, do that now. 482 * (It's safe now because the config cache is up to date, 483 * so it will be able to translate the new DVAs.) 484 * See comments in spa_vdev_add() for full details. 485 */ 486 for (c = 0; c < rvd->vdev_children; c++) { 487 vdev_t *tvd = rvd->vdev_child[c]; 488 if (tvd->vdev_ms_array == 0) 489 vdev_metaslab_set_size(tvd); 490 vdev_expand(tvd, txg); 491 } 492 } 493 spa_config_exit(spa, SCL_ALL, FTAG); 494 495 /* 496 * Wait for the mosconfig to be regenerated and synced. 497 */ 498 txg_wait_synced(spa->spa_dsl_pool, txg); 499 500 /* 501 * Update the global config cache to reflect the new mosconfig. 502 */ 503 if (!spa->spa_is_root) 504 spa_config_sync(spa, B_FALSE, what != SPA_CONFIG_UPDATE_POOL); 505 506 if (what == SPA_CONFIG_UPDATE_POOL) 507 spa_config_update(spa, SPA_CONFIG_UPDATE_VDEVS); 508 }