1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 /* 29 * SPA: Storage Pool Allocator 30 * 31 * This file contains all the routines used when modifying on-disk SPA state. 32 * This includes opening, importing, destroying, exporting a pool, and syncing a 33 * pool. 34 */ 35 36 #include <sys/zfs_context.h> 37 #include <sys/fm/fs/zfs.h> 38 #include <sys/spa_impl.h> 39 #include <sys/zio.h> 40 #include <sys/zio_checksum.h> 41 #include <sys/dmu.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/zap.h> 44 #include <sys/zil.h> 45 #include <sys/ddt.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/uberblock_impl.h> 50 #include <sys/txg.h> 51 #include <sys/avl.h> 52 #include <sys/dmu_traverse.h> 53 #include <sys/dmu_objset.h> 54 #include <sys/unique.h> 55 #include <sys/dsl_pool.h> 56 #include <sys/dsl_dataset.h> 57 #include <sys/dsl_dir.h> 58 #include <sys/dsl_prop.h> 59 #include <sys/dsl_synctask.h> 60 #include <sys/fs/zfs.h> 61 #include <sys/arc.h> 62 #include <sys/callb.h> 63 #include <sys/systeminfo.h> 64 #include <sys/spa_boot.h> 65 #include <sys/zfs_ioctl.h> 66 #include <sys/dsl_scan.h> 67 #include <sys/zfeature.h> 68 #include <sys/dsl_destroy.h> 69 70 #ifdef _KERNEL 71 #include <sys/bootprops.h> 72 #include <sys/callb.h> 73 #include <sys/cpupart.h> 74 #include <sys/pool.h> 75 #include <sys/sysdc.h> 76 #include <sys/zone.h> 77 #endif /* _KERNEL */ 78 79 #include "zfs_prop.h" 80 #include "zfs_comutil.h" 81 82 typedef enum zti_modes { 83 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 84 ZTI_MODE_ONLINE_PERCENT, /* value is % of online CPUs */ 85 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 86 ZTI_MODE_NULL, /* don't create a taskq */ 87 ZTI_NMODES 88 } zti_modes_t; 89 90 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 91 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 } 92 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 93 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 94 95 #define ZTI_N(n) ZTI_P(n, 1) 96 #define ZTI_ONE ZTI_N(1) 97 98 typedef struct zio_taskq_info { 99 zti_modes_t zti_mode; 100 uint_t zti_value; 101 uint_t zti_count; 102 } zio_taskq_info_t; 103 104 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 105 "issue", "issue_high", "intr", "intr_high" 106 }; 107 108 /* 109 * This table defines the taskq settings for each ZFS I/O type. When 110 * initializing a pool, we use this table to create an appropriately sized 111 * taskq. Some operations are low volume and therefore have a small, static 112 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 113 * macros. Other operations process a large amount of data; the ZTI_BATCH 114 * macro causes us to create a taskq oriented for throughput. Some operations 115 * are so high frequency and short-lived that the taskq itself can become a a 116 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 117 * additional degree of parallelism specified by the number of threads per- 118 * taskq and the number of taskqs; when dispatching an event in this case, the 119 * particular taskq is chosen at random. 120 * 121 * The different taskq priorities are to handle the different contexts (issue 122 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 123 * need to be handled with minimum delay. 124 */ 125 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 126 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 127 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 128 { ZTI_N(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, /* READ */ 129 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 130 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 131 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 132 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 133 }; 134 135 static void spa_sync_version(void *arg, dmu_tx_t *tx); 136 static void spa_sync_props(void *arg, dmu_tx_t *tx); 137 static boolean_t spa_has_active_shared_spare(spa_t *spa); 138 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 139 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 140 char **ereport); 141 static void spa_vdev_resilver_done(spa_t *spa); 142 143 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */ 144 id_t zio_taskq_psrset_bind = PS_NONE; 145 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 146 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 147 148 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 149 extern int zfs_sync_pass_deferred_free; 150 151 /* 152 * This (illegal) pool name is used when temporarily importing a spa_t in order 153 * to get the vdev stats associated with the imported devices. 154 */ 155 #define TRYIMPORT_NAME "$import" 156 157 /* 158 * ========================================================================== 159 * SPA properties routines 160 * ========================================================================== 161 */ 162 163 /* 164 * Add a (source=src, propname=propval) list to an nvlist. 165 */ 166 static void 167 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 168 uint64_t intval, zprop_source_t src) 169 { 170 const char *propname = zpool_prop_to_name(prop); 171 nvlist_t *propval; 172 173 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 174 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 175 176 if (strval != NULL) 177 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 178 else 179 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 180 181 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 182 nvlist_free(propval); 183 } 184 185 /* 186 * Get property values from the spa configuration. 187 */ 188 static void 189 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 190 { 191 vdev_t *rvd = spa->spa_root_vdev; 192 dsl_pool_t *pool = spa->spa_dsl_pool; 193 uint64_t size; 194 uint64_t alloc; 195 uint64_t space; 196 uint64_t cap, version; 197 zprop_source_t src = ZPROP_SRC_NONE; 198 spa_config_dirent_t *dp; 199 200 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 201 202 if (rvd != NULL) { 203 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 204 size = metaslab_class_get_space(spa_normal_class(spa)); 205 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 206 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 207 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 208 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 209 size - alloc, src); 210 211 space = 0; 212 for (int c = 0; c < rvd->vdev_children; c++) { 213 vdev_t *tvd = rvd->vdev_child[c]; 214 space += tvd->vdev_max_asize - tvd->vdev_asize; 215 } 216 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space, 217 src); 218 219 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 220 (spa_mode(spa) == FREAD), src); 221 222 cap = (size == 0) ? 0 : (alloc * 100 / size); 223 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 224 225 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 226 ddt_get_pool_dedup_ratio(spa), src); 227 228 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 229 rvd->vdev_state, src); 230 231 version = spa_version(spa); 232 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 233 src = ZPROP_SRC_DEFAULT; 234 else 235 src = ZPROP_SRC_LOCAL; 236 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 237 } 238 239 if (pool != NULL) { 240 dsl_dir_t *freedir = pool->dp_free_dir; 241 242 /* 243 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 244 * when opening pools before this version freedir will be NULL. 245 */ 246 if (freedir != NULL) { 247 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 248 freedir->dd_phys->dd_used_bytes, src); 249 } else { 250 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 251 NULL, 0, src); 252 } 253 } 254 255 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 256 257 if (spa->spa_comment != NULL) { 258 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 259 0, ZPROP_SRC_LOCAL); 260 } 261 262 if (spa->spa_root != NULL) 263 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 264 0, ZPROP_SRC_LOCAL); 265 266 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 267 if (dp->scd_path == NULL) { 268 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 269 "none", 0, ZPROP_SRC_LOCAL); 270 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 271 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 272 dp->scd_path, 0, ZPROP_SRC_LOCAL); 273 } 274 } 275 } 276 277 /* 278 * Get zpool property values. 279 */ 280 int 281 spa_prop_get(spa_t *spa, nvlist_t **nvp) 282 { 283 objset_t *mos = spa->spa_meta_objset; 284 zap_cursor_t zc; 285 zap_attribute_t za; 286 int err; 287 288 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 289 290 mutex_enter(&spa->spa_props_lock); 291 292 /* 293 * Get properties from the spa config. 294 */ 295 spa_prop_get_config(spa, nvp); 296 297 /* If no pool property object, no more prop to get. */ 298 if (mos == NULL || spa->spa_pool_props_object == 0) { 299 mutex_exit(&spa->spa_props_lock); 300 return (0); 301 } 302 303 /* 304 * Get properties from the MOS pool property object. 305 */ 306 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 307 (err = zap_cursor_retrieve(&zc, &za)) == 0; 308 zap_cursor_advance(&zc)) { 309 uint64_t intval = 0; 310 char *strval = NULL; 311 zprop_source_t src = ZPROP_SRC_DEFAULT; 312 zpool_prop_t prop; 313 314 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 315 continue; 316 317 switch (za.za_integer_length) { 318 case 8: 319 /* integer property */ 320 if (za.za_first_integer != 321 zpool_prop_default_numeric(prop)) 322 src = ZPROP_SRC_LOCAL; 323 324 if (prop == ZPOOL_PROP_BOOTFS) { 325 dsl_pool_t *dp; 326 dsl_dataset_t *ds = NULL; 327 328 dp = spa_get_dsl(spa); 329 dsl_pool_config_enter(dp, FTAG); 330 if (err = dsl_dataset_hold_obj(dp, 331 za.za_first_integer, FTAG, &ds)) { 332 dsl_pool_config_exit(dp, FTAG); 333 break; 334 } 335 336 strval = kmem_alloc( 337 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 338 KM_SLEEP); 339 dsl_dataset_name(ds, strval); 340 dsl_dataset_rele(ds, FTAG); 341 dsl_pool_config_exit(dp, FTAG); 342 } else { 343 strval = NULL; 344 intval = za.za_first_integer; 345 } 346 347 spa_prop_add_list(*nvp, prop, strval, intval, src); 348 349 if (strval != NULL) 350 kmem_free(strval, 351 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 352 353 break; 354 355 case 1: 356 /* string property */ 357 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 358 err = zap_lookup(mos, spa->spa_pool_props_object, 359 za.za_name, 1, za.za_num_integers, strval); 360 if (err) { 361 kmem_free(strval, za.za_num_integers); 362 break; 363 } 364 spa_prop_add_list(*nvp, prop, strval, 0, src); 365 kmem_free(strval, za.za_num_integers); 366 break; 367 368 default: 369 break; 370 } 371 } 372 zap_cursor_fini(&zc); 373 mutex_exit(&spa->spa_props_lock); 374 out: 375 if (err && err != ENOENT) { 376 nvlist_free(*nvp); 377 *nvp = NULL; 378 return (err); 379 } 380 381 return (0); 382 } 383 384 /* 385 * Validate the given pool properties nvlist and modify the list 386 * for the property values to be set. 387 */ 388 static int 389 spa_prop_validate(spa_t *spa, nvlist_t *props) 390 { 391 nvpair_t *elem; 392 int error = 0, reset_bootfs = 0; 393 uint64_t objnum = 0; 394 boolean_t has_feature = B_FALSE; 395 396 elem = NULL; 397 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 398 uint64_t intval; 399 char *strval, *slash, *check, *fname; 400 const char *propname = nvpair_name(elem); 401 zpool_prop_t prop = zpool_name_to_prop(propname); 402 403 switch (prop) { 404 case ZPROP_INVAL: 405 if (!zpool_prop_feature(propname)) { 406 error = SET_ERROR(EINVAL); 407 break; 408 } 409 410 /* 411 * Sanitize the input. 412 */ 413 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 414 error = SET_ERROR(EINVAL); 415 break; 416 } 417 418 if (nvpair_value_uint64(elem, &intval) != 0) { 419 error = SET_ERROR(EINVAL); 420 break; 421 } 422 423 if (intval != 0) { 424 error = SET_ERROR(EINVAL); 425 break; 426 } 427 428 fname = strchr(propname, '@') + 1; 429 if (zfeature_lookup_name(fname, NULL) != 0) { 430 error = SET_ERROR(EINVAL); 431 break; 432 } 433 434 has_feature = B_TRUE; 435 break; 436 437 case ZPOOL_PROP_VERSION: 438 error = nvpair_value_uint64(elem, &intval); 439 if (!error && 440 (intval < spa_version(spa) || 441 intval > SPA_VERSION_BEFORE_FEATURES || 442 has_feature)) 443 error = SET_ERROR(EINVAL); 444 break; 445 446 case ZPOOL_PROP_DELEGATION: 447 case ZPOOL_PROP_AUTOREPLACE: 448 case ZPOOL_PROP_LISTSNAPS: 449 case ZPOOL_PROP_AUTOEXPAND: 450 error = nvpair_value_uint64(elem, &intval); 451 if (!error && intval > 1) 452 error = SET_ERROR(EINVAL); 453 break; 454 455 case ZPOOL_PROP_BOOTFS: 456 /* 457 * If the pool version is less than SPA_VERSION_BOOTFS, 458 * or the pool is still being created (version == 0), 459 * the bootfs property cannot be set. 460 */ 461 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 462 error = SET_ERROR(ENOTSUP); 463 break; 464 } 465 466 /* 467 * Make sure the vdev config is bootable 468 */ 469 if (!vdev_is_bootable(spa->spa_root_vdev)) { 470 error = SET_ERROR(ENOTSUP); 471 break; 472 } 473 474 reset_bootfs = 1; 475 476 error = nvpair_value_string(elem, &strval); 477 478 if (!error) { 479 objset_t *os; 480 uint64_t compress; 481 482 if (strval == NULL || strval[0] == '\0') { 483 objnum = zpool_prop_default_numeric( 484 ZPOOL_PROP_BOOTFS); 485 break; 486 } 487 488 if (error = dmu_objset_hold(strval, FTAG, &os)) 489 break; 490 491 /* Must be ZPL and not gzip compressed. */ 492 493 if (dmu_objset_type(os) != DMU_OST_ZFS) { 494 error = SET_ERROR(ENOTSUP); 495 } else if ((error = 496 dsl_prop_get_int_ds(dmu_objset_ds(os), 497 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 498 &compress)) == 0 && 499 !BOOTFS_COMPRESS_VALID(compress)) { 500 error = SET_ERROR(ENOTSUP); 501 } else { 502 objnum = dmu_objset_id(os); 503 } 504 dmu_objset_rele(os, FTAG); 505 } 506 break; 507 508 case ZPOOL_PROP_FAILUREMODE: 509 error = nvpair_value_uint64(elem, &intval); 510 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 511 intval > ZIO_FAILURE_MODE_PANIC)) 512 error = SET_ERROR(EINVAL); 513 514 /* 515 * This is a special case which only occurs when 516 * the pool has completely failed. This allows 517 * the user to change the in-core failmode property 518 * without syncing it out to disk (I/Os might 519 * currently be blocked). We do this by returning 520 * EIO to the caller (spa_prop_set) to trick it 521 * into thinking we encountered a property validation 522 * error. 523 */ 524 if (!error && spa_suspended(spa)) { 525 spa->spa_failmode = intval; 526 error = SET_ERROR(EIO); 527 } 528 break; 529 530 case ZPOOL_PROP_CACHEFILE: 531 if ((error = nvpair_value_string(elem, &strval)) != 0) 532 break; 533 534 if (strval[0] == '\0') 535 break; 536 537 if (strcmp(strval, "none") == 0) 538 break; 539 540 if (strval[0] != '/') { 541 error = SET_ERROR(EINVAL); 542 break; 543 } 544 545 slash = strrchr(strval, '/'); 546 ASSERT(slash != NULL); 547 548 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 549 strcmp(slash, "/..") == 0) 550 error = SET_ERROR(EINVAL); 551 break; 552 553 case ZPOOL_PROP_COMMENT: 554 if ((error = nvpair_value_string(elem, &strval)) != 0) 555 break; 556 for (check = strval; *check != '\0'; check++) { 557 /* 558 * The kernel doesn't have an easy isprint() 559 * check. For this kernel check, we merely 560 * check ASCII apart from DEL. Fix this if 561 * there is an easy-to-use kernel isprint(). 562 */ 563 if (*check >= 0x7f) { 564 error = SET_ERROR(EINVAL); 565 break; 566 } 567 check++; 568 } 569 if (strlen(strval) > ZPROP_MAX_COMMENT) 570 error = E2BIG; 571 break; 572 573 case ZPOOL_PROP_DEDUPDITTO: 574 if (spa_version(spa) < SPA_VERSION_DEDUP) 575 error = SET_ERROR(ENOTSUP); 576 else 577 error = nvpair_value_uint64(elem, &intval); 578 if (error == 0 && 579 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 580 error = SET_ERROR(EINVAL); 581 break; 582 } 583 584 if (error) 585 break; 586 } 587 588 if (!error && reset_bootfs) { 589 error = nvlist_remove(props, 590 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 591 592 if (!error) { 593 error = nvlist_add_uint64(props, 594 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 595 } 596 } 597 598 return (error); 599 } 600 601 void 602 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 603 { 604 char *cachefile; 605 spa_config_dirent_t *dp; 606 607 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 608 &cachefile) != 0) 609 return; 610 611 dp = kmem_alloc(sizeof (spa_config_dirent_t), 612 KM_SLEEP); 613 614 if (cachefile[0] == '\0') 615 dp->scd_path = spa_strdup(spa_config_path); 616 else if (strcmp(cachefile, "none") == 0) 617 dp->scd_path = NULL; 618 else 619 dp->scd_path = spa_strdup(cachefile); 620 621 list_insert_head(&spa->spa_config_list, dp); 622 if (need_sync) 623 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 624 } 625 626 int 627 spa_prop_set(spa_t *spa, nvlist_t *nvp) 628 { 629 int error; 630 nvpair_t *elem = NULL; 631 boolean_t need_sync = B_FALSE; 632 633 if ((error = spa_prop_validate(spa, nvp)) != 0) 634 return (error); 635 636 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 637 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 638 639 if (prop == ZPOOL_PROP_CACHEFILE || 640 prop == ZPOOL_PROP_ALTROOT || 641 prop == ZPOOL_PROP_READONLY) 642 continue; 643 644 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 645 uint64_t ver; 646 647 if (prop == ZPOOL_PROP_VERSION) { 648 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 649 } else { 650 ASSERT(zpool_prop_feature(nvpair_name(elem))); 651 ver = SPA_VERSION_FEATURES; 652 need_sync = B_TRUE; 653 } 654 655 /* Save time if the version is already set. */ 656 if (ver == spa_version(spa)) 657 continue; 658 659 /* 660 * In addition to the pool directory object, we might 661 * create the pool properties object, the features for 662 * read object, the features for write object, or the 663 * feature descriptions object. 664 */ 665 error = dsl_sync_task(spa->spa_name, NULL, 666 spa_sync_version, &ver, 6); 667 if (error) 668 return (error); 669 continue; 670 } 671 672 need_sync = B_TRUE; 673 break; 674 } 675 676 if (need_sync) { 677 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 678 nvp, 6)); 679 } 680 681 return (0); 682 } 683 684 /* 685 * If the bootfs property value is dsobj, clear it. 686 */ 687 void 688 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 689 { 690 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 691 VERIFY(zap_remove(spa->spa_meta_objset, 692 spa->spa_pool_props_object, 693 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 694 spa->spa_bootfs = 0; 695 } 696 } 697 698 /*ARGSUSED*/ 699 static int 700 spa_change_guid_check(void *arg, dmu_tx_t *tx) 701 { 702 uint64_t *newguid = arg; 703 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 704 vdev_t *rvd = spa->spa_root_vdev; 705 uint64_t vdev_state; 706 707 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 708 vdev_state = rvd->vdev_state; 709 spa_config_exit(spa, SCL_STATE, FTAG); 710 711 if (vdev_state != VDEV_STATE_HEALTHY) 712 return (SET_ERROR(ENXIO)); 713 714 ASSERT3U(spa_guid(spa), !=, *newguid); 715 716 return (0); 717 } 718 719 static void 720 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 721 { 722 uint64_t *newguid = arg; 723 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 724 uint64_t oldguid; 725 vdev_t *rvd = spa->spa_root_vdev; 726 727 oldguid = spa_guid(spa); 728 729 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 730 rvd->vdev_guid = *newguid; 731 rvd->vdev_guid_sum += (*newguid - oldguid); 732 vdev_config_dirty(rvd); 733 spa_config_exit(spa, SCL_STATE, FTAG); 734 735 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 736 oldguid, *newguid); 737 } 738 739 /* 740 * Change the GUID for the pool. This is done so that we can later 741 * re-import a pool built from a clone of our own vdevs. We will modify 742 * the root vdev's guid, our own pool guid, and then mark all of our 743 * vdevs dirty. Note that we must make sure that all our vdevs are 744 * online when we do this, or else any vdevs that weren't present 745 * would be orphaned from our pool. We are also going to issue a 746 * sysevent to update any watchers. 747 */ 748 int 749 spa_change_guid(spa_t *spa) 750 { 751 int error; 752 uint64_t guid; 753 754 mutex_enter(&spa_namespace_lock); 755 guid = spa_generate_guid(NULL); 756 757 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 758 spa_change_guid_sync, &guid, 5); 759 760 if (error == 0) { 761 spa_config_sync(spa, B_FALSE, B_TRUE); 762 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 763 } 764 765 mutex_exit(&spa_namespace_lock); 766 767 return (error); 768 } 769 770 /* 771 * ========================================================================== 772 * SPA state manipulation (open/create/destroy/import/export) 773 * ========================================================================== 774 */ 775 776 static int 777 spa_error_entry_compare(const void *a, const void *b) 778 { 779 spa_error_entry_t *sa = (spa_error_entry_t *)a; 780 spa_error_entry_t *sb = (spa_error_entry_t *)b; 781 int ret; 782 783 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 784 sizeof (zbookmark_t)); 785 786 if (ret < 0) 787 return (-1); 788 else if (ret > 0) 789 return (1); 790 else 791 return (0); 792 } 793 794 /* 795 * Utility function which retrieves copies of the current logs and 796 * re-initializes them in the process. 797 */ 798 void 799 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 800 { 801 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 802 803 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 804 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 805 806 avl_create(&spa->spa_errlist_scrub, 807 spa_error_entry_compare, sizeof (spa_error_entry_t), 808 offsetof(spa_error_entry_t, se_avl)); 809 avl_create(&spa->spa_errlist_last, 810 spa_error_entry_compare, sizeof (spa_error_entry_t), 811 offsetof(spa_error_entry_t, se_avl)); 812 } 813 814 static void 815 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 816 { 817 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 818 enum zti_modes mode = ztip->zti_mode; 819 uint_t value = ztip->zti_value; 820 uint_t count = ztip->zti_count; 821 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 822 char name[32]; 823 uint_t flags = 0; 824 boolean_t batch = B_FALSE; 825 826 if (mode == ZTI_MODE_NULL) { 827 tqs->stqs_count = 0; 828 tqs->stqs_taskq = NULL; 829 return; 830 } 831 832 ASSERT3U(count, >, 0); 833 834 tqs->stqs_count = count; 835 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 836 837 for (uint_t i = 0; i < count; i++) { 838 taskq_t *tq; 839 840 switch (mode) { 841 case ZTI_MODE_FIXED: 842 ASSERT3U(value, >=, 1); 843 value = MAX(value, 1); 844 break; 845 846 case ZTI_MODE_BATCH: 847 batch = B_TRUE; 848 flags |= TASKQ_THREADS_CPU_PCT; 849 value = zio_taskq_batch_pct; 850 break; 851 852 case ZTI_MODE_ONLINE_PERCENT: 853 flags |= TASKQ_THREADS_CPU_PCT; 854 break; 855 856 default: 857 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 858 "spa_activate()", 859 zio_type_name[t], zio_taskq_types[q], mode, value); 860 break; 861 } 862 863 if (count > 1) { 864 (void) snprintf(name, sizeof (name), "%s_%s_%u", 865 zio_type_name[t], zio_taskq_types[q], i); 866 } else { 867 (void) snprintf(name, sizeof (name), "%s_%s", 868 zio_type_name[t], zio_taskq_types[q]); 869 } 870 871 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 872 if (batch) 873 flags |= TASKQ_DC_BATCH; 874 875 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 876 spa->spa_proc, zio_taskq_basedc, flags); 877 } else { 878 tq = taskq_create_proc(name, value, maxclsyspri, 50, 879 INT_MAX, spa->spa_proc, flags); 880 } 881 882 tqs->stqs_taskq[i] = tq; 883 } 884 } 885 886 static void 887 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 888 { 889 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 890 891 if (tqs->stqs_taskq == NULL) { 892 ASSERT0(tqs->stqs_count); 893 return; 894 } 895 896 for (uint_t i = 0; i < tqs->stqs_count; i++) { 897 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 898 taskq_destroy(tqs->stqs_taskq[i]); 899 } 900 901 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 902 tqs->stqs_taskq = NULL; 903 } 904 905 /* 906 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 907 * Note that a type may have multiple discrete taskqs to avoid lock contention 908 * on the taskq itself. In that case we choose which taskq at random by using 909 * the low bits of gethrtime(). 910 */ 911 void 912 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 913 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 914 { 915 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 916 taskq_t *tq; 917 918 ASSERT3P(tqs->stqs_taskq, !=, NULL); 919 ASSERT3U(tqs->stqs_count, !=, 0); 920 921 if (tqs->stqs_count == 1) { 922 tq = tqs->stqs_taskq[0]; 923 } else { 924 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 925 } 926 927 taskq_dispatch_ent(tq, func, arg, flags, ent); 928 } 929 930 static void 931 spa_create_zio_taskqs(spa_t *spa) 932 { 933 for (int t = 0; t < ZIO_TYPES; t++) { 934 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 935 spa_taskqs_init(spa, t, q); 936 } 937 } 938 } 939 940 #ifdef _KERNEL 941 static void 942 spa_thread(void *arg) 943 { 944 callb_cpr_t cprinfo; 945 946 spa_t *spa = arg; 947 user_t *pu = PTOU(curproc); 948 949 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 950 spa->spa_name); 951 952 ASSERT(curproc != &p0); 953 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 954 "zpool-%s", spa->spa_name); 955 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 956 957 /* bind this thread to the requested psrset */ 958 if (zio_taskq_psrset_bind != PS_NONE) { 959 pool_lock(); 960 mutex_enter(&cpu_lock); 961 mutex_enter(&pidlock); 962 mutex_enter(&curproc->p_lock); 963 964 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 965 0, NULL, NULL) == 0) { 966 curthread->t_bind_pset = zio_taskq_psrset_bind; 967 } else { 968 cmn_err(CE_WARN, 969 "Couldn't bind process for zfs pool \"%s\" to " 970 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 971 } 972 973 mutex_exit(&curproc->p_lock); 974 mutex_exit(&pidlock); 975 mutex_exit(&cpu_lock); 976 pool_unlock(); 977 } 978 979 if (zio_taskq_sysdc) { 980 sysdc_thread_enter(curthread, 100, 0); 981 } 982 983 spa->spa_proc = curproc; 984 spa->spa_did = curthread->t_did; 985 986 spa_create_zio_taskqs(spa); 987 988 mutex_enter(&spa->spa_proc_lock); 989 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 990 991 spa->spa_proc_state = SPA_PROC_ACTIVE; 992 cv_broadcast(&spa->spa_proc_cv); 993 994 CALLB_CPR_SAFE_BEGIN(&cprinfo); 995 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 996 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 997 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 998 999 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1000 spa->spa_proc_state = SPA_PROC_GONE; 1001 spa->spa_proc = &p0; 1002 cv_broadcast(&spa->spa_proc_cv); 1003 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1004 1005 mutex_enter(&curproc->p_lock); 1006 lwp_exit(); 1007 } 1008 #endif 1009 1010 /* 1011 * Activate an uninitialized pool. 1012 */ 1013 static void 1014 spa_activate(spa_t *spa, int mode) 1015 { 1016 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1017 1018 spa->spa_state = POOL_STATE_ACTIVE; 1019 spa->spa_mode = mode; 1020 1021 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1022 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1023 1024 /* Try to create a covering process */ 1025 mutex_enter(&spa->spa_proc_lock); 1026 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1027 ASSERT(spa->spa_proc == &p0); 1028 spa->spa_did = 0; 1029 1030 /* Only create a process if we're going to be around a while. */ 1031 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1032 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1033 NULL, 0) == 0) { 1034 spa->spa_proc_state = SPA_PROC_CREATED; 1035 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1036 cv_wait(&spa->spa_proc_cv, 1037 &spa->spa_proc_lock); 1038 } 1039 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1040 ASSERT(spa->spa_proc != &p0); 1041 ASSERT(spa->spa_did != 0); 1042 } else { 1043 #ifdef _KERNEL 1044 cmn_err(CE_WARN, 1045 "Couldn't create process for zfs pool \"%s\"\n", 1046 spa->spa_name); 1047 #endif 1048 } 1049 } 1050 mutex_exit(&spa->spa_proc_lock); 1051 1052 /* If we didn't create a process, we need to create our taskqs. */ 1053 if (spa->spa_proc == &p0) { 1054 spa_create_zio_taskqs(spa); 1055 } 1056 1057 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1058 offsetof(vdev_t, vdev_config_dirty_node)); 1059 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1060 offsetof(vdev_t, vdev_state_dirty_node)); 1061 1062 txg_list_create(&spa->spa_vdev_txg_list, 1063 offsetof(struct vdev, vdev_txg_node)); 1064 1065 avl_create(&spa->spa_errlist_scrub, 1066 spa_error_entry_compare, sizeof (spa_error_entry_t), 1067 offsetof(spa_error_entry_t, se_avl)); 1068 avl_create(&spa->spa_errlist_last, 1069 spa_error_entry_compare, sizeof (spa_error_entry_t), 1070 offsetof(spa_error_entry_t, se_avl)); 1071 } 1072 1073 /* 1074 * Opposite of spa_activate(). 1075 */ 1076 static void 1077 spa_deactivate(spa_t *spa) 1078 { 1079 ASSERT(spa->spa_sync_on == B_FALSE); 1080 ASSERT(spa->spa_dsl_pool == NULL); 1081 ASSERT(spa->spa_root_vdev == NULL); 1082 ASSERT(spa->spa_async_zio_root == NULL); 1083 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1084 1085 txg_list_destroy(&spa->spa_vdev_txg_list); 1086 1087 list_destroy(&spa->spa_config_dirty_list); 1088 list_destroy(&spa->spa_state_dirty_list); 1089 1090 for (int t = 0; t < ZIO_TYPES; t++) { 1091 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1092 spa_taskqs_fini(spa, t, q); 1093 } 1094 } 1095 1096 metaslab_class_destroy(spa->spa_normal_class); 1097 spa->spa_normal_class = NULL; 1098 1099 metaslab_class_destroy(spa->spa_log_class); 1100 spa->spa_log_class = NULL; 1101 1102 /* 1103 * If this was part of an import or the open otherwise failed, we may 1104 * still have errors left in the queues. Empty them just in case. 1105 */ 1106 spa_errlog_drain(spa); 1107 1108 avl_destroy(&spa->spa_errlist_scrub); 1109 avl_destroy(&spa->spa_errlist_last); 1110 1111 spa->spa_state = POOL_STATE_UNINITIALIZED; 1112 1113 mutex_enter(&spa->spa_proc_lock); 1114 if (spa->spa_proc_state != SPA_PROC_NONE) { 1115 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1116 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1117 cv_broadcast(&spa->spa_proc_cv); 1118 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1119 ASSERT(spa->spa_proc != &p0); 1120 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1121 } 1122 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1123 spa->spa_proc_state = SPA_PROC_NONE; 1124 } 1125 ASSERT(spa->spa_proc == &p0); 1126 mutex_exit(&spa->spa_proc_lock); 1127 1128 /* 1129 * We want to make sure spa_thread() has actually exited the ZFS 1130 * module, so that the module can't be unloaded out from underneath 1131 * it. 1132 */ 1133 if (spa->spa_did != 0) { 1134 thread_join(spa->spa_did); 1135 spa->spa_did = 0; 1136 } 1137 } 1138 1139 /* 1140 * Verify a pool configuration, and construct the vdev tree appropriately. This 1141 * will create all the necessary vdevs in the appropriate layout, with each vdev 1142 * in the CLOSED state. This will prep the pool before open/creation/import. 1143 * All vdev validation is done by the vdev_alloc() routine. 1144 */ 1145 static int 1146 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1147 uint_t id, int atype) 1148 { 1149 nvlist_t **child; 1150 uint_t children; 1151 int error; 1152 1153 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1154 return (error); 1155 1156 if ((*vdp)->vdev_ops->vdev_op_leaf) 1157 return (0); 1158 1159 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1160 &child, &children); 1161 1162 if (error == ENOENT) 1163 return (0); 1164 1165 if (error) { 1166 vdev_free(*vdp); 1167 *vdp = NULL; 1168 return (SET_ERROR(EINVAL)); 1169 } 1170 1171 for (int c = 0; c < children; c++) { 1172 vdev_t *vd; 1173 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1174 atype)) != 0) { 1175 vdev_free(*vdp); 1176 *vdp = NULL; 1177 return (error); 1178 } 1179 } 1180 1181 ASSERT(*vdp != NULL); 1182 1183 return (0); 1184 } 1185 1186 /* 1187 * Opposite of spa_load(). 1188 */ 1189 static void 1190 spa_unload(spa_t *spa) 1191 { 1192 int i; 1193 1194 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1195 1196 /* 1197 * Stop async tasks. 1198 */ 1199 spa_async_suspend(spa); 1200 1201 /* 1202 * Stop syncing. 1203 */ 1204 if (spa->spa_sync_on) { 1205 txg_sync_stop(spa->spa_dsl_pool); 1206 spa->spa_sync_on = B_FALSE; 1207 } 1208 1209 /* 1210 * Wait for any outstanding async I/O to complete. 1211 */ 1212 if (spa->spa_async_zio_root != NULL) { 1213 (void) zio_wait(spa->spa_async_zio_root); 1214 spa->spa_async_zio_root = NULL; 1215 } 1216 1217 bpobj_close(&spa->spa_deferred_bpobj); 1218 1219 /* 1220 * Close the dsl pool. 1221 */ 1222 if (spa->spa_dsl_pool) { 1223 dsl_pool_close(spa->spa_dsl_pool); 1224 spa->spa_dsl_pool = NULL; 1225 spa->spa_meta_objset = NULL; 1226 } 1227 1228 ddt_unload(spa); 1229 1230 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1231 1232 /* 1233 * Drop and purge level 2 cache 1234 */ 1235 spa_l2cache_drop(spa); 1236 1237 /* 1238 * Close all vdevs. 1239 */ 1240 if (spa->spa_root_vdev) 1241 vdev_free(spa->spa_root_vdev); 1242 ASSERT(spa->spa_root_vdev == NULL); 1243 1244 for (i = 0; i < spa->spa_spares.sav_count; i++) 1245 vdev_free(spa->spa_spares.sav_vdevs[i]); 1246 if (spa->spa_spares.sav_vdevs) { 1247 kmem_free(spa->spa_spares.sav_vdevs, 1248 spa->spa_spares.sav_count * sizeof (void *)); 1249 spa->spa_spares.sav_vdevs = NULL; 1250 } 1251 if (spa->spa_spares.sav_config) { 1252 nvlist_free(spa->spa_spares.sav_config); 1253 spa->spa_spares.sav_config = NULL; 1254 } 1255 spa->spa_spares.sav_count = 0; 1256 1257 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1258 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1259 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1260 } 1261 if (spa->spa_l2cache.sav_vdevs) { 1262 kmem_free(spa->spa_l2cache.sav_vdevs, 1263 spa->spa_l2cache.sav_count * sizeof (void *)); 1264 spa->spa_l2cache.sav_vdevs = NULL; 1265 } 1266 if (spa->spa_l2cache.sav_config) { 1267 nvlist_free(spa->spa_l2cache.sav_config); 1268 spa->spa_l2cache.sav_config = NULL; 1269 } 1270 spa->spa_l2cache.sav_count = 0; 1271 1272 spa->spa_async_suspended = 0; 1273 1274 if (spa->spa_comment != NULL) { 1275 spa_strfree(spa->spa_comment); 1276 spa->spa_comment = NULL; 1277 } 1278 1279 spa_config_exit(spa, SCL_ALL, FTAG); 1280 } 1281 1282 /* 1283 * Load (or re-load) the current list of vdevs describing the active spares for 1284 * this pool. When this is called, we have some form of basic information in 1285 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1286 * then re-generate a more complete list including status information. 1287 */ 1288 static void 1289 spa_load_spares(spa_t *spa) 1290 { 1291 nvlist_t **spares; 1292 uint_t nspares; 1293 int i; 1294 vdev_t *vd, *tvd; 1295 1296 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1297 1298 /* 1299 * First, close and free any existing spare vdevs. 1300 */ 1301 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1302 vd = spa->spa_spares.sav_vdevs[i]; 1303 1304 /* Undo the call to spa_activate() below */ 1305 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1306 B_FALSE)) != NULL && tvd->vdev_isspare) 1307 spa_spare_remove(tvd); 1308 vdev_close(vd); 1309 vdev_free(vd); 1310 } 1311 1312 if (spa->spa_spares.sav_vdevs) 1313 kmem_free(spa->spa_spares.sav_vdevs, 1314 spa->spa_spares.sav_count * sizeof (void *)); 1315 1316 if (spa->spa_spares.sav_config == NULL) 1317 nspares = 0; 1318 else 1319 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1320 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1321 1322 spa->spa_spares.sav_count = (int)nspares; 1323 spa->spa_spares.sav_vdevs = NULL; 1324 1325 if (nspares == 0) 1326 return; 1327 1328 /* 1329 * Construct the array of vdevs, opening them to get status in the 1330 * process. For each spare, there is potentially two different vdev_t 1331 * structures associated with it: one in the list of spares (used only 1332 * for basic validation purposes) and one in the active vdev 1333 * configuration (if it's spared in). During this phase we open and 1334 * validate each vdev on the spare list. If the vdev also exists in the 1335 * active configuration, then we also mark this vdev as an active spare. 1336 */ 1337 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1338 KM_SLEEP); 1339 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1340 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1341 VDEV_ALLOC_SPARE) == 0); 1342 ASSERT(vd != NULL); 1343 1344 spa->spa_spares.sav_vdevs[i] = vd; 1345 1346 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1347 B_FALSE)) != NULL) { 1348 if (!tvd->vdev_isspare) 1349 spa_spare_add(tvd); 1350 1351 /* 1352 * We only mark the spare active if we were successfully 1353 * able to load the vdev. Otherwise, importing a pool 1354 * with a bad active spare would result in strange 1355 * behavior, because multiple pool would think the spare 1356 * is actively in use. 1357 * 1358 * There is a vulnerability here to an equally bizarre 1359 * circumstance, where a dead active spare is later 1360 * brought back to life (onlined or otherwise). Given 1361 * the rarity of this scenario, and the extra complexity 1362 * it adds, we ignore the possibility. 1363 */ 1364 if (!vdev_is_dead(tvd)) 1365 spa_spare_activate(tvd); 1366 } 1367 1368 vd->vdev_top = vd; 1369 vd->vdev_aux = &spa->spa_spares; 1370 1371 if (vdev_open(vd) != 0) 1372 continue; 1373 1374 if (vdev_validate_aux(vd) == 0) 1375 spa_spare_add(vd); 1376 } 1377 1378 /* 1379 * Recompute the stashed list of spares, with status information 1380 * this time. 1381 */ 1382 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1383 DATA_TYPE_NVLIST_ARRAY) == 0); 1384 1385 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1386 KM_SLEEP); 1387 for (i = 0; i < spa->spa_spares.sav_count; i++) 1388 spares[i] = vdev_config_generate(spa, 1389 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1390 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1391 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1392 for (i = 0; i < spa->spa_spares.sav_count; i++) 1393 nvlist_free(spares[i]); 1394 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1395 } 1396 1397 /* 1398 * Load (or re-load) the current list of vdevs describing the active l2cache for 1399 * this pool. When this is called, we have some form of basic information in 1400 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1401 * then re-generate a more complete list including status information. 1402 * Devices which are already active have their details maintained, and are 1403 * not re-opened. 1404 */ 1405 static void 1406 spa_load_l2cache(spa_t *spa) 1407 { 1408 nvlist_t **l2cache; 1409 uint_t nl2cache; 1410 int i, j, oldnvdevs; 1411 uint64_t guid; 1412 vdev_t *vd, **oldvdevs, **newvdevs; 1413 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1414 1415 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1416 1417 if (sav->sav_config != NULL) { 1418 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1419 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1420 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1421 } else { 1422 nl2cache = 0; 1423 newvdevs = NULL; 1424 } 1425 1426 oldvdevs = sav->sav_vdevs; 1427 oldnvdevs = sav->sav_count; 1428 sav->sav_vdevs = NULL; 1429 sav->sav_count = 0; 1430 1431 /* 1432 * Process new nvlist of vdevs. 1433 */ 1434 for (i = 0; i < nl2cache; i++) { 1435 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1436 &guid) == 0); 1437 1438 newvdevs[i] = NULL; 1439 for (j = 0; j < oldnvdevs; j++) { 1440 vd = oldvdevs[j]; 1441 if (vd != NULL && guid == vd->vdev_guid) { 1442 /* 1443 * Retain previous vdev for add/remove ops. 1444 */ 1445 newvdevs[i] = vd; 1446 oldvdevs[j] = NULL; 1447 break; 1448 } 1449 } 1450 1451 if (newvdevs[i] == NULL) { 1452 /* 1453 * Create new vdev 1454 */ 1455 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1456 VDEV_ALLOC_L2CACHE) == 0); 1457 ASSERT(vd != NULL); 1458 newvdevs[i] = vd; 1459 1460 /* 1461 * Commit this vdev as an l2cache device, 1462 * even if it fails to open. 1463 */ 1464 spa_l2cache_add(vd); 1465 1466 vd->vdev_top = vd; 1467 vd->vdev_aux = sav; 1468 1469 spa_l2cache_activate(vd); 1470 1471 if (vdev_open(vd) != 0) 1472 continue; 1473 1474 (void) vdev_validate_aux(vd); 1475 1476 if (!vdev_is_dead(vd)) 1477 l2arc_add_vdev(spa, vd); 1478 } 1479 } 1480 1481 /* 1482 * Purge vdevs that were dropped 1483 */ 1484 for (i = 0; i < oldnvdevs; i++) { 1485 uint64_t pool; 1486 1487 vd = oldvdevs[i]; 1488 if (vd != NULL) { 1489 ASSERT(vd->vdev_isl2cache); 1490 1491 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1492 pool != 0ULL && l2arc_vdev_present(vd)) 1493 l2arc_remove_vdev(vd); 1494 vdev_clear_stats(vd); 1495 vdev_free(vd); 1496 } 1497 } 1498 1499 if (oldvdevs) 1500 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1501 1502 if (sav->sav_config == NULL) 1503 goto out; 1504 1505 sav->sav_vdevs = newvdevs; 1506 sav->sav_count = (int)nl2cache; 1507 1508 /* 1509 * Recompute the stashed list of l2cache devices, with status 1510 * information this time. 1511 */ 1512 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1513 DATA_TYPE_NVLIST_ARRAY) == 0); 1514 1515 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1516 for (i = 0; i < sav->sav_count; i++) 1517 l2cache[i] = vdev_config_generate(spa, 1518 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1519 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1520 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1521 out: 1522 for (i = 0; i < sav->sav_count; i++) 1523 nvlist_free(l2cache[i]); 1524 if (sav->sav_count) 1525 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1526 } 1527 1528 static int 1529 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1530 { 1531 dmu_buf_t *db; 1532 char *packed = NULL; 1533 size_t nvsize = 0; 1534 int error; 1535 *value = NULL; 1536 1537 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1538 nvsize = *(uint64_t *)db->db_data; 1539 dmu_buf_rele(db, FTAG); 1540 1541 packed = kmem_alloc(nvsize, KM_SLEEP); 1542 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1543 DMU_READ_PREFETCH); 1544 if (error == 0) 1545 error = nvlist_unpack(packed, nvsize, value, 0); 1546 kmem_free(packed, nvsize); 1547 1548 return (error); 1549 } 1550 1551 /* 1552 * Checks to see if the given vdev could not be opened, in which case we post a 1553 * sysevent to notify the autoreplace code that the device has been removed. 1554 */ 1555 static void 1556 spa_check_removed(vdev_t *vd) 1557 { 1558 for (int c = 0; c < vd->vdev_children; c++) 1559 spa_check_removed(vd->vdev_child[c]); 1560 1561 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1562 !vd->vdev_ishole) { 1563 zfs_post_autoreplace(vd->vdev_spa, vd); 1564 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1565 } 1566 } 1567 1568 /* 1569 * Validate the current config against the MOS config 1570 */ 1571 static boolean_t 1572 spa_config_valid(spa_t *spa, nvlist_t *config) 1573 { 1574 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1575 nvlist_t *nv; 1576 1577 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1578 1579 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1580 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1581 1582 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1583 1584 /* 1585 * If we're doing a normal import, then build up any additional 1586 * diagnostic information about missing devices in this config. 1587 * We'll pass this up to the user for further processing. 1588 */ 1589 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1590 nvlist_t **child, *nv; 1591 uint64_t idx = 0; 1592 1593 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1594 KM_SLEEP); 1595 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1596 1597 for (int c = 0; c < rvd->vdev_children; c++) { 1598 vdev_t *tvd = rvd->vdev_child[c]; 1599 vdev_t *mtvd = mrvd->vdev_child[c]; 1600 1601 if (tvd->vdev_ops == &vdev_missing_ops && 1602 mtvd->vdev_ops != &vdev_missing_ops && 1603 mtvd->vdev_islog) 1604 child[idx++] = vdev_config_generate(spa, mtvd, 1605 B_FALSE, 0); 1606 } 1607 1608 if (idx) { 1609 VERIFY(nvlist_add_nvlist_array(nv, 1610 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1611 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1612 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1613 1614 for (int i = 0; i < idx; i++) 1615 nvlist_free(child[i]); 1616 } 1617 nvlist_free(nv); 1618 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1619 } 1620 1621 /* 1622 * Compare the root vdev tree with the information we have 1623 * from the MOS config (mrvd). Check each top-level vdev 1624 * with the corresponding MOS config top-level (mtvd). 1625 */ 1626 for (int c = 0; c < rvd->vdev_children; c++) { 1627 vdev_t *tvd = rvd->vdev_child[c]; 1628 vdev_t *mtvd = mrvd->vdev_child[c]; 1629 1630 /* 1631 * Resolve any "missing" vdevs in the current configuration. 1632 * If we find that the MOS config has more accurate information 1633 * about the top-level vdev then use that vdev instead. 1634 */ 1635 if (tvd->vdev_ops == &vdev_missing_ops && 1636 mtvd->vdev_ops != &vdev_missing_ops) { 1637 1638 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1639 continue; 1640 1641 /* 1642 * Device specific actions. 1643 */ 1644 if (mtvd->vdev_islog) { 1645 spa_set_log_state(spa, SPA_LOG_CLEAR); 1646 } else { 1647 /* 1648 * XXX - once we have 'readonly' pool 1649 * support we should be able to handle 1650 * missing data devices by transitioning 1651 * the pool to readonly. 1652 */ 1653 continue; 1654 } 1655 1656 /* 1657 * Swap the missing vdev with the data we were 1658 * able to obtain from the MOS config. 1659 */ 1660 vdev_remove_child(rvd, tvd); 1661 vdev_remove_child(mrvd, mtvd); 1662 1663 vdev_add_child(rvd, mtvd); 1664 vdev_add_child(mrvd, tvd); 1665 1666 spa_config_exit(spa, SCL_ALL, FTAG); 1667 vdev_load(mtvd); 1668 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1669 1670 vdev_reopen(rvd); 1671 } else if (mtvd->vdev_islog) { 1672 /* 1673 * Load the slog device's state from the MOS config 1674 * since it's possible that the label does not 1675 * contain the most up-to-date information. 1676 */ 1677 vdev_load_log_state(tvd, mtvd); 1678 vdev_reopen(tvd); 1679 } 1680 } 1681 vdev_free(mrvd); 1682 spa_config_exit(spa, SCL_ALL, FTAG); 1683 1684 /* 1685 * Ensure we were able to validate the config. 1686 */ 1687 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1688 } 1689 1690 /* 1691 * Check for missing log devices 1692 */ 1693 static boolean_t 1694 spa_check_logs(spa_t *spa) 1695 { 1696 boolean_t rv = B_FALSE; 1697 1698 switch (spa->spa_log_state) { 1699 case SPA_LOG_MISSING: 1700 /* need to recheck in case slog has been restored */ 1701 case SPA_LOG_UNKNOWN: 1702 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain, 1703 NULL, DS_FIND_CHILDREN) != 0); 1704 if (rv) 1705 spa_set_log_state(spa, SPA_LOG_MISSING); 1706 break; 1707 } 1708 return (rv); 1709 } 1710 1711 static boolean_t 1712 spa_passivate_log(spa_t *spa) 1713 { 1714 vdev_t *rvd = spa->spa_root_vdev; 1715 boolean_t slog_found = B_FALSE; 1716 1717 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1718 1719 if (!spa_has_slogs(spa)) 1720 return (B_FALSE); 1721 1722 for (int c = 0; c < rvd->vdev_children; c++) { 1723 vdev_t *tvd = rvd->vdev_child[c]; 1724 metaslab_group_t *mg = tvd->vdev_mg; 1725 1726 if (tvd->vdev_islog) { 1727 metaslab_group_passivate(mg); 1728 slog_found = B_TRUE; 1729 } 1730 } 1731 1732 return (slog_found); 1733 } 1734 1735 static void 1736 spa_activate_log(spa_t *spa) 1737 { 1738 vdev_t *rvd = spa->spa_root_vdev; 1739 1740 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1741 1742 for (int c = 0; c < rvd->vdev_children; c++) { 1743 vdev_t *tvd = rvd->vdev_child[c]; 1744 metaslab_group_t *mg = tvd->vdev_mg; 1745 1746 if (tvd->vdev_islog) 1747 metaslab_group_activate(mg); 1748 } 1749 } 1750 1751 int 1752 spa_offline_log(spa_t *spa) 1753 { 1754 int error; 1755 1756 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1757 NULL, DS_FIND_CHILDREN); 1758 if (error == 0) { 1759 /* 1760 * We successfully offlined the log device, sync out the 1761 * current txg so that the "stubby" block can be removed 1762 * by zil_sync(). 1763 */ 1764 txg_wait_synced(spa->spa_dsl_pool, 0); 1765 } 1766 return (error); 1767 } 1768 1769 static void 1770 spa_aux_check_removed(spa_aux_vdev_t *sav) 1771 { 1772 for (int i = 0; i < sav->sav_count; i++) 1773 spa_check_removed(sav->sav_vdevs[i]); 1774 } 1775 1776 void 1777 spa_claim_notify(zio_t *zio) 1778 { 1779 spa_t *spa = zio->io_spa; 1780 1781 if (zio->io_error) 1782 return; 1783 1784 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1785 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1786 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1787 mutex_exit(&spa->spa_props_lock); 1788 } 1789 1790 typedef struct spa_load_error { 1791 uint64_t sle_meta_count; 1792 uint64_t sle_data_count; 1793 } spa_load_error_t; 1794 1795 static void 1796 spa_load_verify_done(zio_t *zio) 1797 { 1798 blkptr_t *bp = zio->io_bp; 1799 spa_load_error_t *sle = zio->io_private; 1800 dmu_object_type_t type = BP_GET_TYPE(bp); 1801 int error = zio->io_error; 1802 1803 if (error) { 1804 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1805 type != DMU_OT_INTENT_LOG) 1806 atomic_add_64(&sle->sle_meta_count, 1); 1807 else 1808 atomic_add_64(&sle->sle_data_count, 1); 1809 } 1810 zio_data_buf_free(zio->io_data, zio->io_size); 1811 } 1812 1813 /*ARGSUSED*/ 1814 static int 1815 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1816 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1817 { 1818 if (bp != NULL) { 1819 zio_t *rio = arg; 1820 size_t size = BP_GET_PSIZE(bp); 1821 void *data = zio_data_buf_alloc(size); 1822 1823 zio_nowait(zio_read(rio, spa, bp, data, size, 1824 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1825 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1826 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1827 } 1828 return (0); 1829 } 1830 1831 static int 1832 spa_load_verify(spa_t *spa) 1833 { 1834 zio_t *rio; 1835 spa_load_error_t sle = { 0 }; 1836 zpool_rewind_policy_t policy; 1837 boolean_t verify_ok = B_FALSE; 1838 int error; 1839 1840 zpool_get_rewind_policy(spa->spa_config, &policy); 1841 1842 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1843 return (0); 1844 1845 rio = zio_root(spa, NULL, &sle, 1846 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1847 1848 error = traverse_pool(spa, spa->spa_verify_min_txg, 1849 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1850 1851 (void) zio_wait(rio); 1852 1853 spa->spa_load_meta_errors = sle.sle_meta_count; 1854 spa->spa_load_data_errors = sle.sle_data_count; 1855 1856 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1857 sle.sle_data_count <= policy.zrp_maxdata) { 1858 int64_t loss = 0; 1859 1860 verify_ok = B_TRUE; 1861 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1862 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1863 1864 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1865 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1866 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1867 VERIFY(nvlist_add_int64(spa->spa_load_info, 1868 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1869 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1870 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1871 } else { 1872 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1873 } 1874 1875 if (error) { 1876 if (error != ENXIO && error != EIO) 1877 error = SET_ERROR(EIO); 1878 return (error); 1879 } 1880 1881 return (verify_ok ? 0 : EIO); 1882 } 1883 1884 /* 1885 * Find a value in the pool props object. 1886 */ 1887 static void 1888 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1889 { 1890 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1891 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1892 } 1893 1894 /* 1895 * Find a value in the pool directory object. 1896 */ 1897 static int 1898 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1899 { 1900 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1901 name, sizeof (uint64_t), 1, val)); 1902 } 1903 1904 static int 1905 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1906 { 1907 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1908 return (err); 1909 } 1910 1911 /* 1912 * Fix up config after a partly-completed split. This is done with the 1913 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1914 * pool have that entry in their config, but only the splitting one contains 1915 * a list of all the guids of the vdevs that are being split off. 1916 * 1917 * This function determines what to do with that list: either rejoin 1918 * all the disks to the pool, or complete the splitting process. To attempt 1919 * the rejoin, each disk that is offlined is marked online again, and 1920 * we do a reopen() call. If the vdev label for every disk that was 1921 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1922 * then we call vdev_split() on each disk, and complete the split. 1923 * 1924 * Otherwise we leave the config alone, with all the vdevs in place in 1925 * the original pool. 1926 */ 1927 static void 1928 spa_try_repair(spa_t *spa, nvlist_t *config) 1929 { 1930 uint_t extracted; 1931 uint64_t *glist; 1932 uint_t i, gcount; 1933 nvlist_t *nvl; 1934 vdev_t **vd; 1935 boolean_t attempt_reopen; 1936 1937 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1938 return; 1939 1940 /* check that the config is complete */ 1941 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1942 &glist, &gcount) != 0) 1943 return; 1944 1945 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1946 1947 /* attempt to online all the vdevs & validate */ 1948 attempt_reopen = B_TRUE; 1949 for (i = 0; i < gcount; i++) { 1950 if (glist[i] == 0) /* vdev is hole */ 1951 continue; 1952 1953 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1954 if (vd[i] == NULL) { 1955 /* 1956 * Don't bother attempting to reopen the disks; 1957 * just do the split. 1958 */ 1959 attempt_reopen = B_FALSE; 1960 } else { 1961 /* attempt to re-online it */ 1962 vd[i]->vdev_offline = B_FALSE; 1963 } 1964 } 1965 1966 if (attempt_reopen) { 1967 vdev_reopen(spa->spa_root_vdev); 1968 1969 /* check each device to see what state it's in */ 1970 for (extracted = 0, i = 0; i < gcount; i++) { 1971 if (vd[i] != NULL && 1972 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1973 break; 1974 ++extracted; 1975 } 1976 } 1977 1978 /* 1979 * If every disk has been moved to the new pool, or if we never 1980 * even attempted to look at them, then we split them off for 1981 * good. 1982 */ 1983 if (!attempt_reopen || gcount == extracted) { 1984 for (i = 0; i < gcount; i++) 1985 if (vd[i] != NULL) 1986 vdev_split(vd[i]); 1987 vdev_reopen(spa->spa_root_vdev); 1988 } 1989 1990 kmem_free(vd, gcount * sizeof (vdev_t *)); 1991 } 1992 1993 static int 1994 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 1995 boolean_t mosconfig) 1996 { 1997 nvlist_t *config = spa->spa_config; 1998 char *ereport = FM_EREPORT_ZFS_POOL; 1999 char *comment; 2000 int error; 2001 uint64_t pool_guid; 2002 nvlist_t *nvl; 2003 2004 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2005 return (SET_ERROR(EINVAL)); 2006 2007 ASSERT(spa->spa_comment == NULL); 2008 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2009 spa->spa_comment = spa_strdup(comment); 2010 2011 /* 2012 * Versioning wasn't explicitly added to the label until later, so if 2013 * it's not present treat it as the initial version. 2014 */ 2015 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2016 &spa->spa_ubsync.ub_version) != 0) 2017 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2018 2019 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2020 &spa->spa_config_txg); 2021 2022 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2023 spa_guid_exists(pool_guid, 0)) { 2024 error = SET_ERROR(EEXIST); 2025 } else { 2026 spa->spa_config_guid = pool_guid; 2027 2028 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2029 &nvl) == 0) { 2030 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2031 KM_SLEEP) == 0); 2032 } 2033 2034 nvlist_free(spa->spa_load_info); 2035 spa->spa_load_info = fnvlist_alloc(); 2036 2037 gethrestime(&spa->spa_loaded_ts); 2038 error = spa_load_impl(spa, pool_guid, config, state, type, 2039 mosconfig, &ereport); 2040 } 2041 2042 spa->spa_minref = refcount_count(&spa->spa_refcount); 2043 if (error) { 2044 if (error != EEXIST) { 2045 spa->spa_loaded_ts.tv_sec = 0; 2046 spa->spa_loaded_ts.tv_nsec = 0; 2047 } 2048 if (error != EBADF) { 2049 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2050 } 2051 } 2052 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2053 spa->spa_ena = 0; 2054 2055 return (error); 2056 } 2057 2058 /* 2059 * Load an existing storage pool, using the pool's builtin spa_config as a 2060 * source of configuration information. 2061 */ 2062 static int 2063 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2064 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2065 char **ereport) 2066 { 2067 int error = 0; 2068 nvlist_t *nvroot = NULL; 2069 nvlist_t *label; 2070 vdev_t *rvd; 2071 uberblock_t *ub = &spa->spa_uberblock; 2072 uint64_t children, config_cache_txg = spa->spa_config_txg; 2073 int orig_mode = spa->spa_mode; 2074 int parse; 2075 uint64_t obj; 2076 boolean_t missing_feat_write = B_FALSE; 2077 2078 /* 2079 * If this is an untrusted config, access the pool in read-only mode. 2080 * This prevents things like resilvering recently removed devices. 2081 */ 2082 if (!mosconfig) 2083 spa->spa_mode = FREAD; 2084 2085 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2086 2087 spa->spa_load_state = state; 2088 2089 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2090 return (SET_ERROR(EINVAL)); 2091 2092 parse = (type == SPA_IMPORT_EXISTING ? 2093 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2094 2095 /* 2096 * Create "The Godfather" zio to hold all async IOs 2097 */ 2098 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2099 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2100 2101 /* 2102 * Parse the configuration into a vdev tree. We explicitly set the 2103 * value that will be returned by spa_version() since parsing the 2104 * configuration requires knowing the version number. 2105 */ 2106 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2107 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2108 spa_config_exit(spa, SCL_ALL, FTAG); 2109 2110 if (error != 0) 2111 return (error); 2112 2113 ASSERT(spa->spa_root_vdev == rvd); 2114 2115 if (type != SPA_IMPORT_ASSEMBLE) { 2116 ASSERT(spa_guid(spa) == pool_guid); 2117 } 2118 2119 /* 2120 * Try to open all vdevs, loading each label in the process. 2121 */ 2122 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2123 error = vdev_open(rvd); 2124 spa_config_exit(spa, SCL_ALL, FTAG); 2125 if (error != 0) 2126 return (error); 2127 2128 /* 2129 * We need to validate the vdev labels against the configuration that 2130 * we have in hand, which is dependent on the setting of mosconfig. If 2131 * mosconfig is true then we're validating the vdev labels based on 2132 * that config. Otherwise, we're validating against the cached config 2133 * (zpool.cache) that was read when we loaded the zfs module, and then 2134 * later we will recursively call spa_load() and validate against 2135 * the vdev config. 2136 * 2137 * If we're assembling a new pool that's been split off from an 2138 * existing pool, the labels haven't yet been updated so we skip 2139 * validation for now. 2140 */ 2141 if (type != SPA_IMPORT_ASSEMBLE) { 2142 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2143 error = vdev_validate(rvd, mosconfig); 2144 spa_config_exit(spa, SCL_ALL, FTAG); 2145 2146 if (error != 0) 2147 return (error); 2148 2149 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2150 return (SET_ERROR(ENXIO)); 2151 } 2152 2153 /* 2154 * Find the best uberblock. 2155 */ 2156 vdev_uberblock_load(rvd, ub, &label); 2157 2158 /* 2159 * If we weren't able to find a single valid uberblock, return failure. 2160 */ 2161 if (ub->ub_txg == 0) { 2162 nvlist_free(label); 2163 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2164 } 2165 2166 /* 2167 * If the pool has an unsupported version we can't open it. 2168 */ 2169 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2170 nvlist_free(label); 2171 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2172 } 2173 2174 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2175 nvlist_t *features; 2176 2177 /* 2178 * If we weren't able to find what's necessary for reading the 2179 * MOS in the label, return failure. 2180 */ 2181 if (label == NULL || nvlist_lookup_nvlist(label, 2182 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2183 nvlist_free(label); 2184 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2185 ENXIO)); 2186 } 2187 2188 /* 2189 * Update our in-core representation with the definitive values 2190 * from the label. 2191 */ 2192 nvlist_free(spa->spa_label_features); 2193 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2194 } 2195 2196 nvlist_free(label); 2197 2198 /* 2199 * Look through entries in the label nvlist's features_for_read. If 2200 * there is a feature listed there which we don't understand then we 2201 * cannot open a pool. 2202 */ 2203 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2204 nvlist_t *unsup_feat; 2205 2206 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2207 0); 2208 2209 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2210 NULL); nvp != NULL; 2211 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2212 if (!zfeature_is_supported(nvpair_name(nvp))) { 2213 VERIFY(nvlist_add_string(unsup_feat, 2214 nvpair_name(nvp), "") == 0); 2215 } 2216 } 2217 2218 if (!nvlist_empty(unsup_feat)) { 2219 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2220 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2221 nvlist_free(unsup_feat); 2222 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2223 ENOTSUP)); 2224 } 2225 2226 nvlist_free(unsup_feat); 2227 } 2228 2229 /* 2230 * If the vdev guid sum doesn't match the uberblock, we have an 2231 * incomplete configuration. We first check to see if the pool 2232 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2233 * If it is, defer the vdev_guid_sum check till later so we 2234 * can handle missing vdevs. 2235 */ 2236 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2237 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2238 rvd->vdev_guid_sum != ub->ub_guid_sum) 2239 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2240 2241 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2242 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2243 spa_try_repair(spa, config); 2244 spa_config_exit(spa, SCL_ALL, FTAG); 2245 nvlist_free(spa->spa_config_splitting); 2246 spa->spa_config_splitting = NULL; 2247 } 2248 2249 /* 2250 * Initialize internal SPA structures. 2251 */ 2252 spa->spa_state = POOL_STATE_ACTIVE; 2253 spa->spa_ubsync = spa->spa_uberblock; 2254 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2255 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2256 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2257 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2258 spa->spa_claim_max_txg = spa->spa_first_txg; 2259 spa->spa_prev_software_version = ub->ub_software_version; 2260 2261 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2262 if (error) 2263 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2264 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2265 2266 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2267 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2268 2269 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2270 boolean_t missing_feat_read = B_FALSE; 2271 nvlist_t *unsup_feat, *enabled_feat; 2272 2273 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2274 &spa->spa_feat_for_read_obj) != 0) { 2275 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2276 } 2277 2278 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2279 &spa->spa_feat_for_write_obj) != 0) { 2280 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2281 } 2282 2283 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2284 &spa->spa_feat_desc_obj) != 0) { 2285 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2286 } 2287 2288 enabled_feat = fnvlist_alloc(); 2289 unsup_feat = fnvlist_alloc(); 2290 2291 if (!feature_is_supported(spa->spa_meta_objset, 2292 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj, 2293 unsup_feat, enabled_feat)) 2294 missing_feat_read = B_TRUE; 2295 2296 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2297 if (!feature_is_supported(spa->spa_meta_objset, 2298 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj, 2299 unsup_feat, enabled_feat)) { 2300 missing_feat_write = B_TRUE; 2301 } 2302 } 2303 2304 fnvlist_add_nvlist(spa->spa_load_info, 2305 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2306 2307 if (!nvlist_empty(unsup_feat)) { 2308 fnvlist_add_nvlist(spa->spa_load_info, 2309 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2310 } 2311 2312 fnvlist_free(enabled_feat); 2313 fnvlist_free(unsup_feat); 2314 2315 if (!missing_feat_read) { 2316 fnvlist_add_boolean(spa->spa_load_info, 2317 ZPOOL_CONFIG_CAN_RDONLY); 2318 } 2319 2320 /* 2321 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2322 * twofold: to determine whether the pool is available for 2323 * import in read-write mode and (if it is not) whether the 2324 * pool is available for import in read-only mode. If the pool 2325 * is available for import in read-write mode, it is displayed 2326 * as available in userland; if it is not available for import 2327 * in read-only mode, it is displayed as unavailable in 2328 * userland. If the pool is available for import in read-only 2329 * mode but not read-write mode, it is displayed as unavailable 2330 * in userland with a special note that the pool is actually 2331 * available for open in read-only mode. 2332 * 2333 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2334 * missing a feature for write, we must first determine whether 2335 * the pool can be opened read-only before returning to 2336 * userland in order to know whether to display the 2337 * abovementioned note. 2338 */ 2339 if (missing_feat_read || (missing_feat_write && 2340 spa_writeable(spa))) { 2341 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2342 ENOTSUP)); 2343 } 2344 } 2345 2346 spa->spa_is_initializing = B_TRUE; 2347 error = dsl_pool_open(spa->spa_dsl_pool); 2348 spa->spa_is_initializing = B_FALSE; 2349 if (error != 0) 2350 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2351 2352 if (!mosconfig) { 2353 uint64_t hostid; 2354 nvlist_t *policy = NULL, *nvconfig; 2355 2356 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2357 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2358 2359 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2360 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2361 char *hostname; 2362 unsigned long myhostid = 0; 2363 2364 VERIFY(nvlist_lookup_string(nvconfig, 2365 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2366 2367 #ifdef _KERNEL 2368 myhostid = zone_get_hostid(NULL); 2369 #else /* _KERNEL */ 2370 /* 2371 * We're emulating the system's hostid in userland, so 2372 * we can't use zone_get_hostid(). 2373 */ 2374 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2375 #endif /* _KERNEL */ 2376 if (hostid != 0 && myhostid != 0 && 2377 hostid != myhostid) { 2378 nvlist_free(nvconfig); 2379 cmn_err(CE_WARN, "pool '%s' could not be " 2380 "loaded as it was last accessed by " 2381 "another system (host: %s hostid: 0x%lx). " 2382 "See: http://illumos.org/msg/ZFS-8000-EY", 2383 spa_name(spa), hostname, 2384 (unsigned long)hostid); 2385 return (SET_ERROR(EBADF)); 2386 } 2387 } 2388 if (nvlist_lookup_nvlist(spa->spa_config, 2389 ZPOOL_REWIND_POLICY, &policy) == 0) 2390 VERIFY(nvlist_add_nvlist(nvconfig, 2391 ZPOOL_REWIND_POLICY, policy) == 0); 2392 2393 spa_config_set(spa, nvconfig); 2394 spa_unload(spa); 2395 spa_deactivate(spa); 2396 spa_activate(spa, orig_mode); 2397 2398 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2399 } 2400 2401 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2402 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2403 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2404 if (error != 0) 2405 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2406 2407 /* 2408 * Load the bit that tells us to use the new accounting function 2409 * (raid-z deflation). If we have an older pool, this will not 2410 * be present. 2411 */ 2412 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2413 if (error != 0 && error != ENOENT) 2414 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2415 2416 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2417 &spa->spa_creation_version); 2418 if (error != 0 && error != ENOENT) 2419 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2420 2421 /* 2422 * Load the persistent error log. If we have an older pool, this will 2423 * not be present. 2424 */ 2425 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2426 if (error != 0 && error != ENOENT) 2427 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2428 2429 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2430 &spa->spa_errlog_scrub); 2431 if (error != 0 && error != ENOENT) 2432 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2433 2434 /* 2435 * Load the history object. If we have an older pool, this 2436 * will not be present. 2437 */ 2438 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2439 if (error != 0 && error != ENOENT) 2440 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2441 2442 /* 2443 * If we're assembling the pool from the split-off vdevs of 2444 * an existing pool, we don't want to attach the spares & cache 2445 * devices. 2446 */ 2447 2448 /* 2449 * Load any hot spares for this pool. 2450 */ 2451 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2452 if (error != 0 && error != ENOENT) 2453 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2454 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2455 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2456 if (load_nvlist(spa, spa->spa_spares.sav_object, 2457 &spa->spa_spares.sav_config) != 0) 2458 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2459 2460 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2461 spa_load_spares(spa); 2462 spa_config_exit(spa, SCL_ALL, FTAG); 2463 } else if (error == 0) { 2464 spa->spa_spares.sav_sync = B_TRUE; 2465 } 2466 2467 /* 2468 * Load any level 2 ARC devices for this pool. 2469 */ 2470 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2471 &spa->spa_l2cache.sav_object); 2472 if (error != 0 && error != ENOENT) 2473 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2474 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2475 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2476 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2477 &spa->spa_l2cache.sav_config) != 0) 2478 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2479 2480 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2481 spa_load_l2cache(spa); 2482 spa_config_exit(spa, SCL_ALL, FTAG); 2483 } else if (error == 0) { 2484 spa->spa_l2cache.sav_sync = B_TRUE; 2485 } 2486 2487 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2488 2489 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2490 if (error && error != ENOENT) 2491 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2492 2493 if (error == 0) { 2494 uint64_t autoreplace; 2495 2496 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2497 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2498 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2499 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2500 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2501 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2502 &spa->spa_dedup_ditto); 2503 2504 spa->spa_autoreplace = (autoreplace != 0); 2505 } 2506 2507 /* 2508 * If the 'autoreplace' property is set, then post a resource notifying 2509 * the ZFS DE that it should not issue any faults for unopenable 2510 * devices. We also iterate over the vdevs, and post a sysevent for any 2511 * unopenable vdevs so that the normal autoreplace handler can take 2512 * over. 2513 */ 2514 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2515 spa_check_removed(spa->spa_root_vdev); 2516 /* 2517 * For the import case, this is done in spa_import(), because 2518 * at this point we're using the spare definitions from 2519 * the MOS config, not necessarily from the userland config. 2520 */ 2521 if (state != SPA_LOAD_IMPORT) { 2522 spa_aux_check_removed(&spa->spa_spares); 2523 spa_aux_check_removed(&spa->spa_l2cache); 2524 } 2525 } 2526 2527 /* 2528 * Load the vdev state for all toplevel vdevs. 2529 */ 2530 vdev_load(rvd); 2531 2532 /* 2533 * Propagate the leaf DTLs we just loaded all the way up the tree. 2534 */ 2535 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2536 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2537 spa_config_exit(spa, SCL_ALL, FTAG); 2538 2539 /* 2540 * Load the DDTs (dedup tables). 2541 */ 2542 error = ddt_load(spa); 2543 if (error != 0) 2544 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2545 2546 spa_update_dspace(spa); 2547 2548 /* 2549 * Validate the config, using the MOS config to fill in any 2550 * information which might be missing. If we fail to validate 2551 * the config then declare the pool unfit for use. If we're 2552 * assembling a pool from a split, the log is not transferred 2553 * over. 2554 */ 2555 if (type != SPA_IMPORT_ASSEMBLE) { 2556 nvlist_t *nvconfig; 2557 2558 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2559 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2560 2561 if (!spa_config_valid(spa, nvconfig)) { 2562 nvlist_free(nvconfig); 2563 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2564 ENXIO)); 2565 } 2566 nvlist_free(nvconfig); 2567 2568 /* 2569 * Now that we've validated the config, check the state of the 2570 * root vdev. If it can't be opened, it indicates one or 2571 * more toplevel vdevs are faulted. 2572 */ 2573 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2574 return (SET_ERROR(ENXIO)); 2575 2576 if (spa_check_logs(spa)) { 2577 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2578 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2579 } 2580 } 2581 2582 if (missing_feat_write) { 2583 ASSERT(state == SPA_LOAD_TRYIMPORT); 2584 2585 /* 2586 * At this point, we know that we can open the pool in 2587 * read-only mode but not read-write mode. We now have enough 2588 * information and can return to userland. 2589 */ 2590 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2591 } 2592 2593 /* 2594 * We've successfully opened the pool, verify that we're ready 2595 * to start pushing transactions. 2596 */ 2597 if (state != SPA_LOAD_TRYIMPORT) { 2598 if (error = spa_load_verify(spa)) 2599 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2600 error)); 2601 } 2602 2603 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2604 spa->spa_load_max_txg == UINT64_MAX)) { 2605 dmu_tx_t *tx; 2606 int need_update = B_FALSE; 2607 2608 ASSERT(state != SPA_LOAD_TRYIMPORT); 2609 2610 /* 2611 * Claim log blocks that haven't been committed yet. 2612 * This must all happen in a single txg. 2613 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2614 * invoked from zil_claim_log_block()'s i/o done callback. 2615 * Price of rollback is that we abandon the log. 2616 */ 2617 spa->spa_claiming = B_TRUE; 2618 2619 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2620 spa_first_txg(spa)); 2621 (void) dmu_objset_find(spa_name(spa), 2622 zil_claim, tx, DS_FIND_CHILDREN); 2623 dmu_tx_commit(tx); 2624 2625 spa->spa_claiming = B_FALSE; 2626 2627 spa_set_log_state(spa, SPA_LOG_GOOD); 2628 spa->spa_sync_on = B_TRUE; 2629 txg_sync_start(spa->spa_dsl_pool); 2630 2631 /* 2632 * Wait for all claims to sync. We sync up to the highest 2633 * claimed log block birth time so that claimed log blocks 2634 * don't appear to be from the future. spa_claim_max_txg 2635 * will have been set for us by either zil_check_log_chain() 2636 * (invoked from spa_check_logs()) or zil_claim() above. 2637 */ 2638 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2639 2640 /* 2641 * If the config cache is stale, or we have uninitialized 2642 * metaslabs (see spa_vdev_add()), then update the config. 2643 * 2644 * If this is a verbatim import, trust the current 2645 * in-core spa_config and update the disk labels. 2646 */ 2647 if (config_cache_txg != spa->spa_config_txg || 2648 state == SPA_LOAD_IMPORT || 2649 state == SPA_LOAD_RECOVER || 2650 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2651 need_update = B_TRUE; 2652 2653 for (int c = 0; c < rvd->vdev_children; c++) 2654 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2655 need_update = B_TRUE; 2656 2657 /* 2658 * Update the config cache asychronously in case we're the 2659 * root pool, in which case the config cache isn't writable yet. 2660 */ 2661 if (need_update) 2662 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2663 2664 /* 2665 * Check all DTLs to see if anything needs resilvering. 2666 */ 2667 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2668 vdev_resilver_needed(rvd, NULL, NULL)) 2669 spa_async_request(spa, SPA_ASYNC_RESILVER); 2670 2671 /* 2672 * Log the fact that we booted up (so that we can detect if 2673 * we rebooted in the middle of an operation). 2674 */ 2675 spa_history_log_version(spa, "open"); 2676 2677 /* 2678 * Delete any inconsistent datasets. 2679 */ 2680 (void) dmu_objset_find(spa_name(spa), 2681 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2682 2683 /* 2684 * Clean up any stale temporary dataset userrefs. 2685 */ 2686 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2687 } 2688 2689 return (0); 2690 } 2691 2692 static int 2693 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2694 { 2695 int mode = spa->spa_mode; 2696 2697 spa_unload(spa); 2698 spa_deactivate(spa); 2699 2700 spa->spa_load_max_txg--; 2701 2702 spa_activate(spa, mode); 2703 spa_async_suspend(spa); 2704 2705 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2706 } 2707 2708 /* 2709 * If spa_load() fails this function will try loading prior txg's. If 2710 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2711 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2712 * function will not rewind the pool and will return the same error as 2713 * spa_load(). 2714 */ 2715 static int 2716 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2717 uint64_t max_request, int rewind_flags) 2718 { 2719 nvlist_t *loadinfo = NULL; 2720 nvlist_t *config = NULL; 2721 int load_error, rewind_error; 2722 uint64_t safe_rewind_txg; 2723 uint64_t min_txg; 2724 2725 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2726 spa->spa_load_max_txg = spa->spa_load_txg; 2727 spa_set_log_state(spa, SPA_LOG_CLEAR); 2728 } else { 2729 spa->spa_load_max_txg = max_request; 2730 } 2731 2732 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2733 mosconfig); 2734 if (load_error == 0) 2735 return (0); 2736 2737 if (spa->spa_root_vdev != NULL) 2738 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2739 2740 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2741 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2742 2743 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2744 nvlist_free(config); 2745 return (load_error); 2746 } 2747 2748 if (state == SPA_LOAD_RECOVER) { 2749 /* Price of rolling back is discarding txgs, including log */ 2750 spa_set_log_state(spa, SPA_LOG_CLEAR); 2751 } else { 2752 /* 2753 * If we aren't rolling back save the load info from our first 2754 * import attempt so that we can restore it after attempting 2755 * to rewind. 2756 */ 2757 loadinfo = spa->spa_load_info; 2758 spa->spa_load_info = fnvlist_alloc(); 2759 } 2760 2761 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2762 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2763 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2764 TXG_INITIAL : safe_rewind_txg; 2765 2766 /* 2767 * Continue as long as we're finding errors, we're still within 2768 * the acceptable rewind range, and we're still finding uberblocks 2769 */ 2770 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2771 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2772 if (spa->spa_load_max_txg < safe_rewind_txg) 2773 spa->spa_extreme_rewind = B_TRUE; 2774 rewind_error = spa_load_retry(spa, state, mosconfig); 2775 } 2776 2777 spa->spa_extreme_rewind = B_FALSE; 2778 spa->spa_load_max_txg = UINT64_MAX; 2779 2780 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2781 spa_config_set(spa, config); 2782 2783 if (state == SPA_LOAD_RECOVER) { 2784 ASSERT3P(loadinfo, ==, NULL); 2785 return (rewind_error); 2786 } else { 2787 /* Store the rewind info as part of the initial load info */ 2788 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2789 spa->spa_load_info); 2790 2791 /* Restore the initial load info */ 2792 fnvlist_free(spa->spa_load_info); 2793 spa->spa_load_info = loadinfo; 2794 2795 return (load_error); 2796 } 2797 } 2798 2799 /* 2800 * Pool Open/Import 2801 * 2802 * The import case is identical to an open except that the configuration is sent 2803 * down from userland, instead of grabbed from the configuration cache. For the 2804 * case of an open, the pool configuration will exist in the 2805 * POOL_STATE_UNINITIALIZED state. 2806 * 2807 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2808 * the same time open the pool, without having to keep around the spa_t in some 2809 * ambiguous state. 2810 */ 2811 static int 2812 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2813 nvlist_t **config) 2814 { 2815 spa_t *spa; 2816 spa_load_state_t state = SPA_LOAD_OPEN; 2817 int error; 2818 int locked = B_FALSE; 2819 2820 *spapp = NULL; 2821 2822 /* 2823 * As disgusting as this is, we need to support recursive calls to this 2824 * function because dsl_dir_open() is called during spa_load(), and ends 2825 * up calling spa_open() again. The real fix is to figure out how to 2826 * avoid dsl_dir_open() calling this in the first place. 2827 */ 2828 if (mutex_owner(&spa_namespace_lock) != curthread) { 2829 mutex_enter(&spa_namespace_lock); 2830 locked = B_TRUE; 2831 } 2832 2833 if ((spa = spa_lookup(pool)) == NULL) { 2834 if (locked) 2835 mutex_exit(&spa_namespace_lock); 2836 return (SET_ERROR(ENOENT)); 2837 } 2838 2839 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2840 zpool_rewind_policy_t policy; 2841 2842 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2843 &policy); 2844 if (policy.zrp_request & ZPOOL_DO_REWIND) 2845 state = SPA_LOAD_RECOVER; 2846 2847 spa_activate(spa, spa_mode_global); 2848 2849 if (state != SPA_LOAD_RECOVER) 2850 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2851 2852 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2853 policy.zrp_request); 2854 2855 if (error == EBADF) { 2856 /* 2857 * If vdev_validate() returns failure (indicated by 2858 * EBADF), it indicates that one of the vdevs indicates 2859 * that the pool has been exported or destroyed. If 2860 * this is the case, the config cache is out of sync and 2861 * we should remove the pool from the namespace. 2862 */ 2863 spa_unload(spa); 2864 spa_deactivate(spa); 2865 spa_config_sync(spa, B_TRUE, B_TRUE); 2866 spa_remove(spa); 2867 if (locked) 2868 mutex_exit(&spa_namespace_lock); 2869 return (SET_ERROR(ENOENT)); 2870 } 2871 2872 if (error) { 2873 /* 2874 * We can't open the pool, but we still have useful 2875 * information: the state of each vdev after the 2876 * attempted vdev_open(). Return this to the user. 2877 */ 2878 if (config != NULL && spa->spa_config) { 2879 VERIFY(nvlist_dup(spa->spa_config, config, 2880 KM_SLEEP) == 0); 2881 VERIFY(nvlist_add_nvlist(*config, 2882 ZPOOL_CONFIG_LOAD_INFO, 2883 spa->spa_load_info) == 0); 2884 } 2885 spa_unload(spa); 2886 spa_deactivate(spa); 2887 spa->spa_last_open_failed = error; 2888 if (locked) 2889 mutex_exit(&spa_namespace_lock); 2890 *spapp = NULL; 2891 return (error); 2892 } 2893 } 2894 2895 spa_open_ref(spa, tag); 2896 2897 if (config != NULL) 2898 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2899 2900 /* 2901 * If we've recovered the pool, pass back any information we 2902 * gathered while doing the load. 2903 */ 2904 if (state == SPA_LOAD_RECOVER) { 2905 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 2906 spa->spa_load_info) == 0); 2907 } 2908 2909 if (locked) { 2910 spa->spa_last_open_failed = 0; 2911 spa->spa_last_ubsync_txg = 0; 2912 spa->spa_load_txg = 0; 2913 mutex_exit(&spa_namespace_lock); 2914 } 2915 2916 *spapp = spa; 2917 2918 return (0); 2919 } 2920 2921 int 2922 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2923 nvlist_t **config) 2924 { 2925 return (spa_open_common(name, spapp, tag, policy, config)); 2926 } 2927 2928 int 2929 spa_open(const char *name, spa_t **spapp, void *tag) 2930 { 2931 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2932 } 2933 2934 /* 2935 * Lookup the given spa_t, incrementing the inject count in the process, 2936 * preventing it from being exported or destroyed. 2937 */ 2938 spa_t * 2939 spa_inject_addref(char *name) 2940 { 2941 spa_t *spa; 2942 2943 mutex_enter(&spa_namespace_lock); 2944 if ((spa = spa_lookup(name)) == NULL) { 2945 mutex_exit(&spa_namespace_lock); 2946 return (NULL); 2947 } 2948 spa->spa_inject_ref++; 2949 mutex_exit(&spa_namespace_lock); 2950 2951 return (spa); 2952 } 2953 2954 void 2955 spa_inject_delref(spa_t *spa) 2956 { 2957 mutex_enter(&spa_namespace_lock); 2958 spa->spa_inject_ref--; 2959 mutex_exit(&spa_namespace_lock); 2960 } 2961 2962 /* 2963 * Add spares device information to the nvlist. 2964 */ 2965 static void 2966 spa_add_spares(spa_t *spa, nvlist_t *config) 2967 { 2968 nvlist_t **spares; 2969 uint_t i, nspares; 2970 nvlist_t *nvroot; 2971 uint64_t guid; 2972 vdev_stat_t *vs; 2973 uint_t vsc; 2974 uint64_t pool; 2975 2976 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2977 2978 if (spa->spa_spares.sav_count == 0) 2979 return; 2980 2981 VERIFY(nvlist_lookup_nvlist(config, 2982 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2983 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2984 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2985 if (nspares != 0) { 2986 VERIFY(nvlist_add_nvlist_array(nvroot, 2987 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2988 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2989 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2990 2991 /* 2992 * Go through and find any spares which have since been 2993 * repurposed as an active spare. If this is the case, update 2994 * their status appropriately. 2995 */ 2996 for (i = 0; i < nspares; i++) { 2997 VERIFY(nvlist_lookup_uint64(spares[i], 2998 ZPOOL_CONFIG_GUID, &guid) == 0); 2999 if (spa_spare_exists(guid, &pool, NULL) && 3000 pool != 0ULL) { 3001 VERIFY(nvlist_lookup_uint64_array( 3002 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3003 (uint64_t **)&vs, &vsc) == 0); 3004 vs->vs_state = VDEV_STATE_CANT_OPEN; 3005 vs->vs_aux = VDEV_AUX_SPARED; 3006 } 3007 } 3008 } 3009 } 3010 3011 /* 3012 * Add l2cache device information to the nvlist, including vdev stats. 3013 */ 3014 static void 3015 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3016 { 3017 nvlist_t **l2cache; 3018 uint_t i, j, nl2cache; 3019 nvlist_t *nvroot; 3020 uint64_t guid; 3021 vdev_t *vd; 3022 vdev_stat_t *vs; 3023 uint_t vsc; 3024 3025 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3026 3027 if (spa->spa_l2cache.sav_count == 0) 3028 return; 3029 3030 VERIFY(nvlist_lookup_nvlist(config, 3031 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3032 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3033 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3034 if (nl2cache != 0) { 3035 VERIFY(nvlist_add_nvlist_array(nvroot, 3036 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3037 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3038 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3039 3040 /* 3041 * Update level 2 cache device stats. 3042 */ 3043 3044 for (i = 0; i < nl2cache; i++) { 3045 VERIFY(nvlist_lookup_uint64(l2cache[i], 3046 ZPOOL_CONFIG_GUID, &guid) == 0); 3047 3048 vd = NULL; 3049 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3050 if (guid == 3051 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3052 vd = spa->spa_l2cache.sav_vdevs[j]; 3053 break; 3054 } 3055 } 3056 ASSERT(vd != NULL); 3057 3058 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3059 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3060 == 0); 3061 vdev_get_stats(vd, vs); 3062 } 3063 } 3064 } 3065 3066 static void 3067 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3068 { 3069 nvlist_t *features; 3070 zap_cursor_t zc; 3071 zap_attribute_t za; 3072 3073 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3074 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3075 3076 if (spa->spa_feat_for_read_obj != 0) { 3077 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3078 spa->spa_feat_for_read_obj); 3079 zap_cursor_retrieve(&zc, &za) == 0; 3080 zap_cursor_advance(&zc)) { 3081 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3082 za.za_num_integers == 1); 3083 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3084 za.za_first_integer)); 3085 } 3086 zap_cursor_fini(&zc); 3087 } 3088 3089 if (spa->spa_feat_for_write_obj != 0) { 3090 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3091 spa->spa_feat_for_write_obj); 3092 zap_cursor_retrieve(&zc, &za) == 0; 3093 zap_cursor_advance(&zc)) { 3094 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3095 za.za_num_integers == 1); 3096 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3097 za.za_first_integer)); 3098 } 3099 zap_cursor_fini(&zc); 3100 } 3101 3102 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3103 features) == 0); 3104 nvlist_free(features); 3105 } 3106 3107 int 3108 spa_get_stats(const char *name, nvlist_t **config, 3109 char *altroot, size_t buflen) 3110 { 3111 int error; 3112 spa_t *spa; 3113 3114 *config = NULL; 3115 error = spa_open_common(name, &spa, FTAG, NULL, config); 3116 3117 if (spa != NULL) { 3118 /* 3119 * This still leaves a window of inconsistency where the spares 3120 * or l2cache devices could change and the config would be 3121 * self-inconsistent. 3122 */ 3123 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3124 3125 if (*config != NULL) { 3126 uint64_t loadtimes[2]; 3127 3128 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3129 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3130 VERIFY(nvlist_add_uint64_array(*config, 3131 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3132 3133 VERIFY(nvlist_add_uint64(*config, 3134 ZPOOL_CONFIG_ERRCOUNT, 3135 spa_get_errlog_size(spa)) == 0); 3136 3137 if (spa_suspended(spa)) 3138 VERIFY(nvlist_add_uint64(*config, 3139 ZPOOL_CONFIG_SUSPENDED, 3140 spa->spa_failmode) == 0); 3141 3142 spa_add_spares(spa, *config); 3143 spa_add_l2cache(spa, *config); 3144 spa_add_feature_stats(spa, *config); 3145 } 3146 } 3147 3148 /* 3149 * We want to get the alternate root even for faulted pools, so we cheat 3150 * and call spa_lookup() directly. 3151 */ 3152 if (altroot) { 3153 if (spa == NULL) { 3154 mutex_enter(&spa_namespace_lock); 3155 spa = spa_lookup(name); 3156 if (spa) 3157 spa_altroot(spa, altroot, buflen); 3158 else 3159 altroot[0] = '\0'; 3160 spa = NULL; 3161 mutex_exit(&spa_namespace_lock); 3162 } else { 3163 spa_altroot(spa, altroot, buflen); 3164 } 3165 } 3166 3167 if (spa != NULL) { 3168 spa_config_exit(spa, SCL_CONFIG, FTAG); 3169 spa_close(spa, FTAG); 3170 } 3171 3172 return (error); 3173 } 3174 3175 /* 3176 * Validate that the auxiliary device array is well formed. We must have an 3177 * array of nvlists, each which describes a valid leaf vdev. If this is an 3178 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3179 * specified, as long as they are well-formed. 3180 */ 3181 static int 3182 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3183 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3184 vdev_labeltype_t label) 3185 { 3186 nvlist_t **dev; 3187 uint_t i, ndev; 3188 vdev_t *vd; 3189 int error; 3190 3191 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3192 3193 /* 3194 * It's acceptable to have no devs specified. 3195 */ 3196 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3197 return (0); 3198 3199 if (ndev == 0) 3200 return (SET_ERROR(EINVAL)); 3201 3202 /* 3203 * Make sure the pool is formatted with a version that supports this 3204 * device type. 3205 */ 3206 if (spa_version(spa) < version) 3207 return (SET_ERROR(ENOTSUP)); 3208 3209 /* 3210 * Set the pending device list so we correctly handle device in-use 3211 * checking. 3212 */ 3213 sav->sav_pending = dev; 3214 sav->sav_npending = ndev; 3215 3216 for (i = 0; i < ndev; i++) { 3217 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3218 mode)) != 0) 3219 goto out; 3220 3221 if (!vd->vdev_ops->vdev_op_leaf) { 3222 vdev_free(vd); 3223 error = SET_ERROR(EINVAL); 3224 goto out; 3225 } 3226 3227 /* 3228 * The L2ARC currently only supports disk devices in 3229 * kernel context. For user-level testing, we allow it. 3230 */ 3231 #ifdef _KERNEL 3232 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3233 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3234 error = SET_ERROR(ENOTBLK); 3235 vdev_free(vd); 3236 goto out; 3237 } 3238 #endif 3239 vd->vdev_top = vd; 3240 3241 if ((error = vdev_open(vd)) == 0 && 3242 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3243 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3244 vd->vdev_guid) == 0); 3245 } 3246 3247 vdev_free(vd); 3248 3249 if (error && 3250 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3251 goto out; 3252 else 3253 error = 0; 3254 } 3255 3256 out: 3257 sav->sav_pending = NULL; 3258 sav->sav_npending = 0; 3259 return (error); 3260 } 3261 3262 static int 3263 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3264 { 3265 int error; 3266 3267 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3268 3269 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3270 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3271 VDEV_LABEL_SPARE)) != 0) { 3272 return (error); 3273 } 3274 3275 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3276 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3277 VDEV_LABEL_L2CACHE)); 3278 } 3279 3280 static void 3281 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3282 const char *config) 3283 { 3284 int i; 3285 3286 if (sav->sav_config != NULL) { 3287 nvlist_t **olddevs; 3288 uint_t oldndevs; 3289 nvlist_t **newdevs; 3290 3291 /* 3292 * Generate new dev list by concatentating with the 3293 * current dev list. 3294 */ 3295 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3296 &olddevs, &oldndevs) == 0); 3297 3298 newdevs = kmem_alloc(sizeof (void *) * 3299 (ndevs + oldndevs), KM_SLEEP); 3300 for (i = 0; i < oldndevs; i++) 3301 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3302 KM_SLEEP) == 0); 3303 for (i = 0; i < ndevs; i++) 3304 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3305 KM_SLEEP) == 0); 3306 3307 VERIFY(nvlist_remove(sav->sav_config, config, 3308 DATA_TYPE_NVLIST_ARRAY) == 0); 3309 3310 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3311 config, newdevs, ndevs + oldndevs) == 0); 3312 for (i = 0; i < oldndevs + ndevs; i++) 3313 nvlist_free(newdevs[i]); 3314 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3315 } else { 3316 /* 3317 * Generate a new dev list. 3318 */ 3319 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3320 KM_SLEEP) == 0); 3321 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3322 devs, ndevs) == 0); 3323 } 3324 } 3325 3326 /* 3327 * Stop and drop level 2 ARC devices 3328 */ 3329 void 3330 spa_l2cache_drop(spa_t *spa) 3331 { 3332 vdev_t *vd; 3333 int i; 3334 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3335 3336 for (i = 0; i < sav->sav_count; i++) { 3337 uint64_t pool; 3338 3339 vd = sav->sav_vdevs[i]; 3340 ASSERT(vd != NULL); 3341 3342 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3343 pool != 0ULL && l2arc_vdev_present(vd)) 3344 l2arc_remove_vdev(vd); 3345 } 3346 } 3347 3348 /* 3349 * Pool Creation 3350 */ 3351 int 3352 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3353 nvlist_t *zplprops) 3354 { 3355 spa_t *spa; 3356 char *altroot = NULL; 3357 vdev_t *rvd; 3358 dsl_pool_t *dp; 3359 dmu_tx_t *tx; 3360 int error = 0; 3361 uint64_t txg = TXG_INITIAL; 3362 nvlist_t **spares, **l2cache; 3363 uint_t nspares, nl2cache; 3364 uint64_t version, obj; 3365 boolean_t has_features; 3366 3367 /* 3368 * If this pool already exists, return failure. 3369 */ 3370 mutex_enter(&spa_namespace_lock); 3371 if (spa_lookup(pool) != NULL) { 3372 mutex_exit(&spa_namespace_lock); 3373 return (SET_ERROR(EEXIST)); 3374 } 3375 3376 /* 3377 * Allocate a new spa_t structure. 3378 */ 3379 (void) nvlist_lookup_string(props, 3380 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3381 spa = spa_add(pool, NULL, altroot); 3382 spa_activate(spa, spa_mode_global); 3383 3384 if (props && (error = spa_prop_validate(spa, props))) { 3385 spa_deactivate(spa); 3386 spa_remove(spa); 3387 mutex_exit(&spa_namespace_lock); 3388 return (error); 3389 } 3390 3391 has_features = B_FALSE; 3392 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3393 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3394 if (zpool_prop_feature(nvpair_name(elem))) 3395 has_features = B_TRUE; 3396 } 3397 3398 if (has_features || nvlist_lookup_uint64(props, 3399 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3400 version = SPA_VERSION; 3401 } 3402 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3403 3404 spa->spa_first_txg = txg; 3405 spa->spa_uberblock.ub_txg = txg - 1; 3406 spa->spa_uberblock.ub_version = version; 3407 spa->spa_ubsync = spa->spa_uberblock; 3408 3409 /* 3410 * Create "The Godfather" zio to hold all async IOs 3411 */ 3412 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 3413 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 3414 3415 /* 3416 * Create the root vdev. 3417 */ 3418 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3419 3420 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3421 3422 ASSERT(error != 0 || rvd != NULL); 3423 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3424 3425 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3426 error = SET_ERROR(EINVAL); 3427 3428 if (error == 0 && 3429 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3430 (error = spa_validate_aux(spa, nvroot, txg, 3431 VDEV_ALLOC_ADD)) == 0) { 3432 for (int c = 0; c < rvd->vdev_children; c++) { 3433 vdev_metaslab_set_size(rvd->vdev_child[c]); 3434 vdev_expand(rvd->vdev_child[c], txg); 3435 } 3436 } 3437 3438 spa_config_exit(spa, SCL_ALL, FTAG); 3439 3440 if (error != 0) { 3441 spa_unload(spa); 3442 spa_deactivate(spa); 3443 spa_remove(spa); 3444 mutex_exit(&spa_namespace_lock); 3445 return (error); 3446 } 3447 3448 /* 3449 * Get the list of spares, if specified. 3450 */ 3451 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3452 &spares, &nspares) == 0) { 3453 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3454 KM_SLEEP) == 0); 3455 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3456 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3457 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3458 spa_load_spares(spa); 3459 spa_config_exit(spa, SCL_ALL, FTAG); 3460 spa->spa_spares.sav_sync = B_TRUE; 3461 } 3462 3463 /* 3464 * Get the list of level 2 cache devices, if specified. 3465 */ 3466 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3467 &l2cache, &nl2cache) == 0) { 3468 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3469 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3470 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3471 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3472 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3473 spa_load_l2cache(spa); 3474 spa_config_exit(spa, SCL_ALL, FTAG); 3475 spa->spa_l2cache.sav_sync = B_TRUE; 3476 } 3477 3478 spa->spa_is_initializing = B_TRUE; 3479 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3480 spa->spa_meta_objset = dp->dp_meta_objset; 3481 spa->spa_is_initializing = B_FALSE; 3482 3483 /* 3484 * Create DDTs (dedup tables). 3485 */ 3486 ddt_create(spa); 3487 3488 spa_update_dspace(spa); 3489 3490 tx = dmu_tx_create_assigned(dp, txg); 3491 3492 /* 3493 * Create the pool config object. 3494 */ 3495 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3496 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3497 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3498 3499 if (zap_add(spa->spa_meta_objset, 3500 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3501 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3502 cmn_err(CE_PANIC, "failed to add pool config"); 3503 } 3504 3505 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3506 spa_feature_create_zap_objects(spa, tx); 3507 3508 if (zap_add(spa->spa_meta_objset, 3509 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3510 sizeof (uint64_t), 1, &version, tx) != 0) { 3511 cmn_err(CE_PANIC, "failed to add pool version"); 3512 } 3513 3514 /* Newly created pools with the right version are always deflated. */ 3515 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3516 spa->spa_deflate = TRUE; 3517 if (zap_add(spa->spa_meta_objset, 3518 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3519 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3520 cmn_err(CE_PANIC, "failed to add deflate"); 3521 } 3522 } 3523 3524 /* 3525 * Create the deferred-free bpobj. Turn off compression 3526 * because sync-to-convergence takes longer if the blocksize 3527 * keeps changing. 3528 */ 3529 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3530 dmu_object_set_compress(spa->spa_meta_objset, obj, 3531 ZIO_COMPRESS_OFF, tx); 3532 if (zap_add(spa->spa_meta_objset, 3533 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3534 sizeof (uint64_t), 1, &obj, tx) != 0) { 3535 cmn_err(CE_PANIC, "failed to add bpobj"); 3536 } 3537 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3538 spa->spa_meta_objset, obj)); 3539 3540 /* 3541 * Create the pool's history object. 3542 */ 3543 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3544 spa_history_create_obj(spa, tx); 3545 3546 /* 3547 * Set pool properties. 3548 */ 3549 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3550 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3551 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3552 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3553 3554 if (props != NULL) { 3555 spa_configfile_set(spa, props, B_FALSE); 3556 spa_sync_props(props, tx); 3557 } 3558 3559 dmu_tx_commit(tx); 3560 3561 spa->spa_sync_on = B_TRUE; 3562 txg_sync_start(spa->spa_dsl_pool); 3563 3564 /* 3565 * We explicitly wait for the first transaction to complete so that our 3566 * bean counters are appropriately updated. 3567 */ 3568 txg_wait_synced(spa->spa_dsl_pool, txg); 3569 3570 spa_config_sync(spa, B_FALSE, B_TRUE); 3571 3572 spa_history_log_version(spa, "create"); 3573 3574 spa->spa_minref = refcount_count(&spa->spa_refcount); 3575 3576 mutex_exit(&spa_namespace_lock); 3577 3578 return (0); 3579 } 3580 3581 #ifdef _KERNEL 3582 /* 3583 * Get the root pool information from the root disk, then import the root pool 3584 * during the system boot up time. 3585 */ 3586 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3587 3588 static nvlist_t * 3589 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3590 { 3591 nvlist_t *config; 3592 nvlist_t *nvtop, *nvroot; 3593 uint64_t pgid; 3594 3595 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3596 return (NULL); 3597 3598 /* 3599 * Add this top-level vdev to the child array. 3600 */ 3601 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3602 &nvtop) == 0); 3603 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3604 &pgid) == 0); 3605 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3606 3607 /* 3608 * Put this pool's top-level vdevs into a root vdev. 3609 */ 3610 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3611 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3612 VDEV_TYPE_ROOT) == 0); 3613 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3614 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3615 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3616 &nvtop, 1) == 0); 3617 3618 /* 3619 * Replace the existing vdev_tree with the new root vdev in 3620 * this pool's configuration (remove the old, add the new). 3621 */ 3622 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3623 nvlist_free(nvroot); 3624 return (config); 3625 } 3626 3627 /* 3628 * Walk the vdev tree and see if we can find a device with "better" 3629 * configuration. A configuration is "better" if the label on that 3630 * device has a more recent txg. 3631 */ 3632 static void 3633 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3634 { 3635 for (int c = 0; c < vd->vdev_children; c++) 3636 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3637 3638 if (vd->vdev_ops->vdev_op_leaf) { 3639 nvlist_t *label; 3640 uint64_t label_txg; 3641 3642 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3643 &label) != 0) 3644 return; 3645 3646 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3647 &label_txg) == 0); 3648 3649 /* 3650 * Do we have a better boot device? 3651 */ 3652 if (label_txg > *txg) { 3653 *txg = label_txg; 3654 *avd = vd; 3655 } 3656 nvlist_free(label); 3657 } 3658 } 3659 3660 /* 3661 * Import a root pool. 3662 * 3663 * For x86. devpath_list will consist of devid and/or physpath name of 3664 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3665 * The GRUB "findroot" command will return the vdev we should boot. 3666 * 3667 * For Sparc, devpath_list consists the physpath name of the booting device 3668 * no matter the rootpool is a single device pool or a mirrored pool. 3669 * e.g. 3670 * "/pci@1f,0/ide@d/disk@0,0:a" 3671 */ 3672 int 3673 spa_import_rootpool(char *devpath, char *devid) 3674 { 3675 spa_t *spa; 3676 vdev_t *rvd, *bvd, *avd = NULL; 3677 nvlist_t *config, *nvtop; 3678 uint64_t guid, txg; 3679 char *pname; 3680 int error; 3681 3682 /* 3683 * Read the label from the boot device and generate a configuration. 3684 */ 3685 config = spa_generate_rootconf(devpath, devid, &guid); 3686 #if defined(_OBP) && defined(_KERNEL) 3687 if (config == NULL) { 3688 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3689 /* iscsi boot */ 3690 get_iscsi_bootpath_phy(devpath); 3691 config = spa_generate_rootconf(devpath, devid, &guid); 3692 } 3693 } 3694 #endif 3695 if (config == NULL) { 3696 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3697 devpath); 3698 return (SET_ERROR(EIO)); 3699 } 3700 3701 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3702 &pname) == 0); 3703 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3704 3705 mutex_enter(&spa_namespace_lock); 3706 if ((spa = spa_lookup(pname)) != NULL) { 3707 /* 3708 * Remove the existing root pool from the namespace so that we 3709 * can replace it with the correct config we just read in. 3710 */ 3711 spa_remove(spa); 3712 } 3713 3714 spa = spa_add(pname, config, NULL); 3715 spa->spa_is_root = B_TRUE; 3716 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3717 3718 /* 3719 * Build up a vdev tree based on the boot device's label config. 3720 */ 3721 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3722 &nvtop) == 0); 3723 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3724 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3725 VDEV_ALLOC_ROOTPOOL); 3726 spa_config_exit(spa, SCL_ALL, FTAG); 3727 if (error) { 3728 mutex_exit(&spa_namespace_lock); 3729 nvlist_free(config); 3730 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3731 pname); 3732 return (error); 3733 } 3734 3735 /* 3736 * Get the boot vdev. 3737 */ 3738 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3739 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3740 (u_longlong_t)guid); 3741 error = SET_ERROR(ENOENT); 3742 goto out; 3743 } 3744 3745 /* 3746 * Determine if there is a better boot device. 3747 */ 3748 avd = bvd; 3749 spa_alt_rootvdev(rvd, &avd, &txg); 3750 if (avd != bvd) { 3751 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3752 "try booting from '%s'", avd->vdev_path); 3753 error = SET_ERROR(EINVAL); 3754 goto out; 3755 } 3756 3757 /* 3758 * If the boot device is part of a spare vdev then ensure that 3759 * we're booting off the active spare. 3760 */ 3761 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3762 !bvd->vdev_isspare) { 3763 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3764 "try booting from '%s'", 3765 bvd->vdev_parent-> 3766 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3767 error = SET_ERROR(EINVAL); 3768 goto out; 3769 } 3770 3771 error = 0; 3772 out: 3773 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3774 vdev_free(rvd); 3775 spa_config_exit(spa, SCL_ALL, FTAG); 3776 mutex_exit(&spa_namespace_lock); 3777 3778 nvlist_free(config); 3779 return (error); 3780 } 3781 3782 #endif 3783 3784 /* 3785 * Import a non-root pool into the system. 3786 */ 3787 int 3788 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3789 { 3790 spa_t *spa; 3791 char *altroot = NULL; 3792 spa_load_state_t state = SPA_LOAD_IMPORT; 3793 zpool_rewind_policy_t policy; 3794 uint64_t mode = spa_mode_global; 3795 uint64_t readonly = B_FALSE; 3796 int error; 3797 nvlist_t *nvroot; 3798 nvlist_t **spares, **l2cache; 3799 uint_t nspares, nl2cache; 3800 3801 /* 3802 * If a pool with this name exists, return failure. 3803 */ 3804 mutex_enter(&spa_namespace_lock); 3805 if (spa_lookup(pool) != NULL) { 3806 mutex_exit(&spa_namespace_lock); 3807 return (SET_ERROR(EEXIST)); 3808 } 3809 3810 /* 3811 * Create and initialize the spa structure. 3812 */ 3813 (void) nvlist_lookup_string(props, 3814 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3815 (void) nvlist_lookup_uint64(props, 3816 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3817 if (readonly) 3818 mode = FREAD; 3819 spa = spa_add(pool, config, altroot); 3820 spa->spa_import_flags = flags; 3821 3822 /* 3823 * Verbatim import - Take a pool and insert it into the namespace 3824 * as if it had been loaded at boot. 3825 */ 3826 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3827 if (props != NULL) 3828 spa_configfile_set(spa, props, B_FALSE); 3829 3830 spa_config_sync(spa, B_FALSE, B_TRUE); 3831 3832 mutex_exit(&spa_namespace_lock); 3833 spa_history_log_version(spa, "import"); 3834 3835 return (0); 3836 } 3837 3838 spa_activate(spa, mode); 3839 3840 /* 3841 * Don't start async tasks until we know everything is healthy. 3842 */ 3843 spa_async_suspend(spa); 3844 3845 zpool_get_rewind_policy(config, &policy); 3846 if (policy.zrp_request & ZPOOL_DO_REWIND) 3847 state = SPA_LOAD_RECOVER; 3848 3849 /* 3850 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3851 * because the user-supplied config is actually the one to trust when 3852 * doing an import. 3853 */ 3854 if (state != SPA_LOAD_RECOVER) 3855 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3856 3857 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3858 policy.zrp_request); 3859 3860 /* 3861 * Propagate anything learned while loading the pool and pass it 3862 * back to caller (i.e. rewind info, missing devices, etc). 3863 */ 3864 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3865 spa->spa_load_info) == 0); 3866 3867 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3868 /* 3869 * Toss any existing sparelist, as it doesn't have any validity 3870 * anymore, and conflicts with spa_has_spare(). 3871 */ 3872 if (spa->spa_spares.sav_config) { 3873 nvlist_free(spa->spa_spares.sav_config); 3874 spa->spa_spares.sav_config = NULL; 3875 spa_load_spares(spa); 3876 } 3877 if (spa->spa_l2cache.sav_config) { 3878 nvlist_free(spa->spa_l2cache.sav_config); 3879 spa->spa_l2cache.sav_config = NULL; 3880 spa_load_l2cache(spa); 3881 } 3882 3883 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3884 &nvroot) == 0); 3885 if (error == 0) 3886 error = spa_validate_aux(spa, nvroot, -1ULL, 3887 VDEV_ALLOC_SPARE); 3888 if (error == 0) 3889 error = spa_validate_aux(spa, nvroot, -1ULL, 3890 VDEV_ALLOC_L2CACHE); 3891 spa_config_exit(spa, SCL_ALL, FTAG); 3892 3893 if (props != NULL) 3894 spa_configfile_set(spa, props, B_FALSE); 3895 3896 if (error != 0 || (props && spa_writeable(spa) && 3897 (error = spa_prop_set(spa, props)))) { 3898 spa_unload(spa); 3899 spa_deactivate(spa); 3900 spa_remove(spa); 3901 mutex_exit(&spa_namespace_lock); 3902 return (error); 3903 } 3904 3905 spa_async_resume(spa); 3906 3907 /* 3908 * Override any spares and level 2 cache devices as specified by 3909 * the user, as these may have correct device names/devids, etc. 3910 */ 3911 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3912 &spares, &nspares) == 0) { 3913 if (spa->spa_spares.sav_config) 3914 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3915 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3916 else 3917 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3918 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3919 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3920 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3921 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3922 spa_load_spares(spa); 3923 spa_config_exit(spa, SCL_ALL, FTAG); 3924 spa->spa_spares.sav_sync = B_TRUE; 3925 } 3926 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3927 &l2cache, &nl2cache) == 0) { 3928 if (spa->spa_l2cache.sav_config) 3929 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3930 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3931 else 3932 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3933 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3934 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3935 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3936 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3937 spa_load_l2cache(spa); 3938 spa_config_exit(spa, SCL_ALL, FTAG); 3939 spa->spa_l2cache.sav_sync = B_TRUE; 3940 } 3941 3942 /* 3943 * Check for any removed devices. 3944 */ 3945 if (spa->spa_autoreplace) { 3946 spa_aux_check_removed(&spa->spa_spares); 3947 spa_aux_check_removed(&spa->spa_l2cache); 3948 } 3949 3950 if (spa_writeable(spa)) { 3951 /* 3952 * Update the config cache to include the newly-imported pool. 3953 */ 3954 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3955 } 3956 3957 /* 3958 * It's possible that the pool was expanded while it was exported. 3959 * We kick off an async task to handle this for us. 3960 */ 3961 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3962 3963 mutex_exit(&spa_namespace_lock); 3964 spa_history_log_version(spa, "import"); 3965 3966 return (0); 3967 } 3968 3969 nvlist_t * 3970 spa_tryimport(nvlist_t *tryconfig) 3971 { 3972 nvlist_t *config = NULL; 3973 char *poolname; 3974 spa_t *spa; 3975 uint64_t state; 3976 int error; 3977 3978 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3979 return (NULL); 3980 3981 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3982 return (NULL); 3983 3984 /* 3985 * Create and initialize the spa structure. 3986 */ 3987 mutex_enter(&spa_namespace_lock); 3988 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 3989 spa_activate(spa, FREAD); 3990 3991 /* 3992 * Pass off the heavy lifting to spa_load(). 3993 * Pass TRUE for mosconfig because the user-supplied config 3994 * is actually the one to trust when doing an import. 3995 */ 3996 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 3997 3998 /* 3999 * If 'tryconfig' was at least parsable, return the current config. 4000 */ 4001 if (spa->spa_root_vdev != NULL) { 4002 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4003 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4004 poolname) == 0); 4005 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4006 state) == 0); 4007 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4008 spa->spa_uberblock.ub_timestamp) == 0); 4009 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4010 spa->spa_load_info) == 0); 4011 4012 /* 4013 * If the bootfs property exists on this pool then we 4014 * copy it out so that external consumers can tell which 4015 * pools are bootable. 4016 */ 4017 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4018 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4019 4020 /* 4021 * We have to play games with the name since the 4022 * pool was opened as TRYIMPORT_NAME. 4023 */ 4024 if (dsl_dsobj_to_dsname(spa_name(spa), 4025 spa->spa_bootfs, tmpname) == 0) { 4026 char *cp; 4027 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4028 4029 cp = strchr(tmpname, '/'); 4030 if (cp == NULL) { 4031 (void) strlcpy(dsname, tmpname, 4032 MAXPATHLEN); 4033 } else { 4034 (void) snprintf(dsname, MAXPATHLEN, 4035 "%s/%s", poolname, ++cp); 4036 } 4037 VERIFY(nvlist_add_string(config, 4038 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4039 kmem_free(dsname, MAXPATHLEN); 4040 } 4041 kmem_free(tmpname, MAXPATHLEN); 4042 } 4043 4044 /* 4045 * Add the list of hot spares and level 2 cache devices. 4046 */ 4047 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4048 spa_add_spares(spa, config); 4049 spa_add_l2cache(spa, config); 4050 spa_config_exit(spa, SCL_CONFIG, FTAG); 4051 } 4052 4053 spa_unload(spa); 4054 spa_deactivate(spa); 4055 spa_remove(spa); 4056 mutex_exit(&spa_namespace_lock); 4057 4058 return (config); 4059 } 4060 4061 /* 4062 * Pool export/destroy 4063 * 4064 * The act of destroying or exporting a pool is very simple. We make sure there 4065 * is no more pending I/O and any references to the pool are gone. Then, we 4066 * update the pool state and sync all the labels to disk, removing the 4067 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4068 * we don't sync the labels or remove the configuration cache. 4069 */ 4070 static int 4071 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4072 boolean_t force, boolean_t hardforce) 4073 { 4074 spa_t *spa; 4075 4076 if (oldconfig) 4077 *oldconfig = NULL; 4078 4079 if (!(spa_mode_global & FWRITE)) 4080 return (SET_ERROR(EROFS)); 4081 4082 mutex_enter(&spa_namespace_lock); 4083 if ((spa = spa_lookup(pool)) == NULL) { 4084 mutex_exit(&spa_namespace_lock); 4085 return (SET_ERROR(ENOENT)); 4086 } 4087 4088 /* 4089 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4090 * reacquire the namespace lock, and see if we can export. 4091 */ 4092 spa_open_ref(spa, FTAG); 4093 mutex_exit(&spa_namespace_lock); 4094 spa_async_suspend(spa); 4095 mutex_enter(&spa_namespace_lock); 4096 spa_close(spa, FTAG); 4097 4098 /* 4099 * The pool will be in core if it's openable, 4100 * in which case we can modify its state. 4101 */ 4102 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4103 /* 4104 * Objsets may be open only because they're dirty, so we 4105 * have to force it to sync before checking spa_refcnt. 4106 */ 4107 txg_wait_synced(spa->spa_dsl_pool, 0); 4108 4109 /* 4110 * A pool cannot be exported or destroyed if there are active 4111 * references. If we are resetting a pool, allow references by 4112 * fault injection handlers. 4113 */ 4114 if (!spa_refcount_zero(spa) || 4115 (spa->spa_inject_ref != 0 && 4116 new_state != POOL_STATE_UNINITIALIZED)) { 4117 spa_async_resume(spa); 4118 mutex_exit(&spa_namespace_lock); 4119 return (SET_ERROR(EBUSY)); 4120 } 4121 4122 /* 4123 * A pool cannot be exported if it has an active shared spare. 4124 * This is to prevent other pools stealing the active spare 4125 * from an exported pool. At user's own will, such pool can 4126 * be forcedly exported. 4127 */ 4128 if (!force && new_state == POOL_STATE_EXPORTED && 4129 spa_has_active_shared_spare(spa)) { 4130 spa_async_resume(spa); 4131 mutex_exit(&spa_namespace_lock); 4132 return (SET_ERROR(EXDEV)); 4133 } 4134 4135 /* 4136 * We want this to be reflected on every label, 4137 * so mark them all dirty. spa_unload() will do the 4138 * final sync that pushes these changes out. 4139 */ 4140 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4141 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4142 spa->spa_state = new_state; 4143 spa->spa_final_txg = spa_last_synced_txg(spa) + 4144 TXG_DEFER_SIZE + 1; 4145 vdev_config_dirty(spa->spa_root_vdev); 4146 spa_config_exit(spa, SCL_ALL, FTAG); 4147 } 4148 } 4149 4150 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4151 4152 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4153 spa_unload(spa); 4154 spa_deactivate(spa); 4155 } 4156 4157 if (oldconfig && spa->spa_config) 4158 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4159 4160 if (new_state != POOL_STATE_UNINITIALIZED) { 4161 if (!hardforce) 4162 spa_config_sync(spa, B_TRUE, B_TRUE); 4163 spa_remove(spa); 4164 } 4165 mutex_exit(&spa_namespace_lock); 4166 4167 return (0); 4168 } 4169 4170 /* 4171 * Destroy a storage pool. 4172 */ 4173 int 4174 spa_destroy(char *pool) 4175 { 4176 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4177 B_FALSE, B_FALSE)); 4178 } 4179 4180 /* 4181 * Export a storage pool. 4182 */ 4183 int 4184 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4185 boolean_t hardforce) 4186 { 4187 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4188 force, hardforce)); 4189 } 4190 4191 /* 4192 * Similar to spa_export(), this unloads the spa_t without actually removing it 4193 * from the namespace in any way. 4194 */ 4195 int 4196 spa_reset(char *pool) 4197 { 4198 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4199 B_FALSE, B_FALSE)); 4200 } 4201 4202 /* 4203 * ========================================================================== 4204 * Device manipulation 4205 * ========================================================================== 4206 */ 4207 4208 /* 4209 * Add a device to a storage pool. 4210 */ 4211 int 4212 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4213 { 4214 uint64_t txg, id; 4215 int error; 4216 vdev_t *rvd = spa->spa_root_vdev; 4217 vdev_t *vd, *tvd; 4218 nvlist_t **spares, **l2cache; 4219 uint_t nspares, nl2cache; 4220 4221 ASSERT(spa_writeable(spa)); 4222 4223 txg = spa_vdev_enter(spa); 4224 4225 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4226 VDEV_ALLOC_ADD)) != 0) 4227 return (spa_vdev_exit(spa, NULL, txg, error)); 4228 4229 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4230 4231 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4232 &nspares) != 0) 4233 nspares = 0; 4234 4235 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4236 &nl2cache) != 0) 4237 nl2cache = 0; 4238 4239 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4240 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4241 4242 if (vd->vdev_children != 0 && 4243 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4244 return (spa_vdev_exit(spa, vd, txg, error)); 4245 4246 /* 4247 * We must validate the spares and l2cache devices after checking the 4248 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4249 */ 4250 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4251 return (spa_vdev_exit(spa, vd, txg, error)); 4252 4253 /* 4254 * Transfer each new top-level vdev from vd to rvd. 4255 */ 4256 for (int c = 0; c < vd->vdev_children; c++) { 4257 4258 /* 4259 * Set the vdev id to the first hole, if one exists. 4260 */ 4261 for (id = 0; id < rvd->vdev_children; id++) { 4262 if (rvd->vdev_child[id]->vdev_ishole) { 4263 vdev_free(rvd->vdev_child[id]); 4264 break; 4265 } 4266 } 4267 tvd = vd->vdev_child[c]; 4268 vdev_remove_child(vd, tvd); 4269 tvd->vdev_id = id; 4270 vdev_add_child(rvd, tvd); 4271 vdev_config_dirty(tvd); 4272 } 4273 4274 if (nspares != 0) { 4275 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4276 ZPOOL_CONFIG_SPARES); 4277 spa_load_spares(spa); 4278 spa->spa_spares.sav_sync = B_TRUE; 4279 } 4280 4281 if (nl2cache != 0) { 4282 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4283 ZPOOL_CONFIG_L2CACHE); 4284 spa_load_l2cache(spa); 4285 spa->spa_l2cache.sav_sync = B_TRUE; 4286 } 4287 4288 /* 4289 * We have to be careful when adding new vdevs to an existing pool. 4290 * If other threads start allocating from these vdevs before we 4291 * sync the config cache, and we lose power, then upon reboot we may 4292 * fail to open the pool because there are DVAs that the config cache 4293 * can't translate. Therefore, we first add the vdevs without 4294 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4295 * and then let spa_config_update() initialize the new metaslabs. 4296 * 4297 * spa_load() checks for added-but-not-initialized vdevs, so that 4298 * if we lose power at any point in this sequence, the remaining 4299 * steps will be completed the next time we load the pool. 4300 */ 4301 (void) spa_vdev_exit(spa, vd, txg, 0); 4302 4303 mutex_enter(&spa_namespace_lock); 4304 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4305 mutex_exit(&spa_namespace_lock); 4306 4307 return (0); 4308 } 4309 4310 /* 4311 * Attach a device to a mirror. The arguments are the path to any device 4312 * in the mirror, and the nvroot for the new device. If the path specifies 4313 * a device that is not mirrored, we automatically insert the mirror vdev. 4314 * 4315 * If 'replacing' is specified, the new device is intended to replace the 4316 * existing device; in this case the two devices are made into their own 4317 * mirror using the 'replacing' vdev, which is functionally identical to 4318 * the mirror vdev (it actually reuses all the same ops) but has a few 4319 * extra rules: you can't attach to it after it's been created, and upon 4320 * completion of resilvering, the first disk (the one being replaced) 4321 * is automatically detached. 4322 */ 4323 int 4324 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4325 { 4326 uint64_t txg, dtl_max_txg; 4327 vdev_t *rvd = spa->spa_root_vdev; 4328 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4329 vdev_ops_t *pvops; 4330 char *oldvdpath, *newvdpath; 4331 int newvd_isspare; 4332 int error; 4333 4334 ASSERT(spa_writeable(spa)); 4335 4336 txg = spa_vdev_enter(spa); 4337 4338 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4339 4340 if (oldvd == NULL) 4341 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4342 4343 if (!oldvd->vdev_ops->vdev_op_leaf) 4344 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4345 4346 pvd = oldvd->vdev_parent; 4347 4348 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4349 VDEV_ALLOC_ATTACH)) != 0) 4350 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4351 4352 if (newrootvd->vdev_children != 1) 4353 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4354 4355 newvd = newrootvd->vdev_child[0]; 4356 4357 if (!newvd->vdev_ops->vdev_op_leaf) 4358 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4359 4360 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4361 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4362 4363 /* 4364 * Spares can't replace logs 4365 */ 4366 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4367 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4368 4369 if (!replacing) { 4370 /* 4371 * For attach, the only allowable parent is a mirror or the root 4372 * vdev. 4373 */ 4374 if (pvd->vdev_ops != &vdev_mirror_ops && 4375 pvd->vdev_ops != &vdev_root_ops) 4376 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4377 4378 pvops = &vdev_mirror_ops; 4379 } else { 4380 /* 4381 * Active hot spares can only be replaced by inactive hot 4382 * spares. 4383 */ 4384 if (pvd->vdev_ops == &vdev_spare_ops && 4385 oldvd->vdev_isspare && 4386 !spa_has_spare(spa, newvd->vdev_guid)) 4387 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4388 4389 /* 4390 * If the source is a hot spare, and the parent isn't already a 4391 * spare, then we want to create a new hot spare. Otherwise, we 4392 * want to create a replacing vdev. The user is not allowed to 4393 * attach to a spared vdev child unless the 'isspare' state is 4394 * the same (spare replaces spare, non-spare replaces 4395 * non-spare). 4396 */ 4397 if (pvd->vdev_ops == &vdev_replacing_ops && 4398 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4399 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4400 } else if (pvd->vdev_ops == &vdev_spare_ops && 4401 newvd->vdev_isspare != oldvd->vdev_isspare) { 4402 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4403 } 4404 4405 if (newvd->vdev_isspare) 4406 pvops = &vdev_spare_ops; 4407 else 4408 pvops = &vdev_replacing_ops; 4409 } 4410 4411 /* 4412 * Make sure the new device is big enough. 4413 */ 4414 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4415 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4416 4417 /* 4418 * The new device cannot have a higher alignment requirement 4419 * than the top-level vdev. 4420 */ 4421 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4422 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4423 4424 /* 4425 * If this is an in-place replacement, update oldvd's path and devid 4426 * to make it distinguishable from newvd, and unopenable from now on. 4427 */ 4428 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4429 spa_strfree(oldvd->vdev_path); 4430 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4431 KM_SLEEP); 4432 (void) sprintf(oldvd->vdev_path, "%s/%s", 4433 newvd->vdev_path, "old"); 4434 if (oldvd->vdev_devid != NULL) { 4435 spa_strfree(oldvd->vdev_devid); 4436 oldvd->vdev_devid = NULL; 4437 } 4438 } 4439 4440 /* mark the device being resilvered */ 4441 newvd->vdev_resilvering = B_TRUE; 4442 4443 /* 4444 * If the parent is not a mirror, or if we're replacing, insert the new 4445 * mirror/replacing/spare vdev above oldvd. 4446 */ 4447 if (pvd->vdev_ops != pvops) 4448 pvd = vdev_add_parent(oldvd, pvops); 4449 4450 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4451 ASSERT(pvd->vdev_ops == pvops); 4452 ASSERT(oldvd->vdev_parent == pvd); 4453 4454 /* 4455 * Extract the new device from its root and add it to pvd. 4456 */ 4457 vdev_remove_child(newrootvd, newvd); 4458 newvd->vdev_id = pvd->vdev_children; 4459 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4460 vdev_add_child(pvd, newvd); 4461 4462 tvd = newvd->vdev_top; 4463 ASSERT(pvd->vdev_top == tvd); 4464 ASSERT(tvd->vdev_parent == rvd); 4465 4466 vdev_config_dirty(tvd); 4467 4468 /* 4469 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4470 * for any dmu_sync-ed blocks. It will propagate upward when 4471 * spa_vdev_exit() calls vdev_dtl_reassess(). 4472 */ 4473 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4474 4475 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4476 dtl_max_txg - TXG_INITIAL); 4477 4478 if (newvd->vdev_isspare) { 4479 spa_spare_activate(newvd); 4480 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4481 } 4482 4483 oldvdpath = spa_strdup(oldvd->vdev_path); 4484 newvdpath = spa_strdup(newvd->vdev_path); 4485 newvd_isspare = newvd->vdev_isspare; 4486 4487 /* 4488 * Mark newvd's DTL dirty in this txg. 4489 */ 4490 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4491 4492 /* 4493 * Restart the resilver 4494 */ 4495 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4496 4497 /* 4498 * Commit the config 4499 */ 4500 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4501 4502 spa_history_log_internal(spa, "vdev attach", NULL, 4503 "%s vdev=%s %s vdev=%s", 4504 replacing && newvd_isspare ? "spare in" : 4505 replacing ? "replace" : "attach", newvdpath, 4506 replacing ? "for" : "to", oldvdpath); 4507 4508 spa_strfree(oldvdpath); 4509 spa_strfree(newvdpath); 4510 4511 if (spa->spa_bootfs) 4512 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4513 4514 return (0); 4515 } 4516 4517 /* 4518 * Detach a device from a mirror or replacing vdev. 4519 * If 'replace_done' is specified, only detach if the parent 4520 * is a replacing vdev. 4521 */ 4522 int 4523 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4524 { 4525 uint64_t txg; 4526 int error; 4527 vdev_t *rvd = spa->spa_root_vdev; 4528 vdev_t *vd, *pvd, *cvd, *tvd; 4529 boolean_t unspare = B_FALSE; 4530 uint64_t unspare_guid = 0; 4531 char *vdpath; 4532 4533 ASSERT(spa_writeable(spa)); 4534 4535 txg = spa_vdev_enter(spa); 4536 4537 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4538 4539 if (vd == NULL) 4540 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4541 4542 if (!vd->vdev_ops->vdev_op_leaf) 4543 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4544 4545 pvd = vd->vdev_parent; 4546 4547 /* 4548 * If the parent/child relationship is not as expected, don't do it. 4549 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4550 * vdev that's replacing B with C. The user's intent in replacing 4551 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4552 * the replace by detaching C, the expected behavior is to end up 4553 * M(A,B). But suppose that right after deciding to detach C, 4554 * the replacement of B completes. We would have M(A,C), and then 4555 * ask to detach C, which would leave us with just A -- not what 4556 * the user wanted. To prevent this, we make sure that the 4557 * parent/child relationship hasn't changed -- in this example, 4558 * that C's parent is still the replacing vdev R. 4559 */ 4560 if (pvd->vdev_guid != pguid && pguid != 0) 4561 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4562 4563 /* 4564 * Only 'replacing' or 'spare' vdevs can be replaced. 4565 */ 4566 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4567 pvd->vdev_ops != &vdev_spare_ops) 4568 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4569 4570 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4571 spa_version(spa) >= SPA_VERSION_SPARES); 4572 4573 /* 4574 * Only mirror, replacing, and spare vdevs support detach. 4575 */ 4576 if (pvd->vdev_ops != &vdev_replacing_ops && 4577 pvd->vdev_ops != &vdev_mirror_ops && 4578 pvd->vdev_ops != &vdev_spare_ops) 4579 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4580 4581 /* 4582 * If this device has the only valid copy of some data, 4583 * we cannot safely detach it. 4584 */ 4585 if (vdev_dtl_required(vd)) 4586 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4587 4588 ASSERT(pvd->vdev_children >= 2); 4589 4590 /* 4591 * If we are detaching the second disk from a replacing vdev, then 4592 * check to see if we changed the original vdev's path to have "/old" 4593 * at the end in spa_vdev_attach(). If so, undo that change now. 4594 */ 4595 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4596 vd->vdev_path != NULL) { 4597 size_t len = strlen(vd->vdev_path); 4598 4599 for (int c = 0; c < pvd->vdev_children; c++) { 4600 cvd = pvd->vdev_child[c]; 4601 4602 if (cvd == vd || cvd->vdev_path == NULL) 4603 continue; 4604 4605 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4606 strcmp(cvd->vdev_path + len, "/old") == 0) { 4607 spa_strfree(cvd->vdev_path); 4608 cvd->vdev_path = spa_strdup(vd->vdev_path); 4609 break; 4610 } 4611 } 4612 } 4613 4614 /* 4615 * If we are detaching the original disk from a spare, then it implies 4616 * that the spare should become a real disk, and be removed from the 4617 * active spare list for the pool. 4618 */ 4619 if (pvd->vdev_ops == &vdev_spare_ops && 4620 vd->vdev_id == 0 && 4621 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4622 unspare = B_TRUE; 4623 4624 /* 4625 * Erase the disk labels so the disk can be used for other things. 4626 * This must be done after all other error cases are handled, 4627 * but before we disembowel vd (so we can still do I/O to it). 4628 * But if we can't do it, don't treat the error as fatal -- 4629 * it may be that the unwritability of the disk is the reason 4630 * it's being detached! 4631 */ 4632 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4633 4634 /* 4635 * Remove vd from its parent and compact the parent's children. 4636 */ 4637 vdev_remove_child(pvd, vd); 4638 vdev_compact_children(pvd); 4639 4640 /* 4641 * Remember one of the remaining children so we can get tvd below. 4642 */ 4643 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4644 4645 /* 4646 * If we need to remove the remaining child from the list of hot spares, 4647 * do it now, marking the vdev as no longer a spare in the process. 4648 * We must do this before vdev_remove_parent(), because that can 4649 * change the GUID if it creates a new toplevel GUID. For a similar 4650 * reason, we must remove the spare now, in the same txg as the detach; 4651 * otherwise someone could attach a new sibling, change the GUID, and 4652 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4653 */ 4654 if (unspare) { 4655 ASSERT(cvd->vdev_isspare); 4656 spa_spare_remove(cvd); 4657 unspare_guid = cvd->vdev_guid; 4658 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4659 cvd->vdev_unspare = B_TRUE; 4660 } 4661 4662 /* 4663 * If the parent mirror/replacing vdev only has one child, 4664 * the parent is no longer needed. Remove it from the tree. 4665 */ 4666 if (pvd->vdev_children == 1) { 4667 if (pvd->vdev_ops == &vdev_spare_ops) 4668 cvd->vdev_unspare = B_FALSE; 4669 vdev_remove_parent(cvd); 4670 cvd->vdev_resilvering = B_FALSE; 4671 } 4672 4673 4674 /* 4675 * We don't set tvd until now because the parent we just removed 4676 * may have been the previous top-level vdev. 4677 */ 4678 tvd = cvd->vdev_top; 4679 ASSERT(tvd->vdev_parent == rvd); 4680 4681 /* 4682 * Reevaluate the parent vdev state. 4683 */ 4684 vdev_propagate_state(cvd); 4685 4686 /* 4687 * If the 'autoexpand' property is set on the pool then automatically 4688 * try to expand the size of the pool. For example if the device we 4689 * just detached was smaller than the others, it may be possible to 4690 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4691 * first so that we can obtain the updated sizes of the leaf vdevs. 4692 */ 4693 if (spa->spa_autoexpand) { 4694 vdev_reopen(tvd); 4695 vdev_expand(tvd, txg); 4696 } 4697 4698 vdev_config_dirty(tvd); 4699 4700 /* 4701 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4702 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4703 * But first make sure we're not on any *other* txg's DTL list, to 4704 * prevent vd from being accessed after it's freed. 4705 */ 4706 vdpath = spa_strdup(vd->vdev_path); 4707 for (int t = 0; t < TXG_SIZE; t++) 4708 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4709 vd->vdev_detached = B_TRUE; 4710 vdev_dirty(tvd, VDD_DTL, vd, txg); 4711 4712 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4713 4714 /* hang on to the spa before we release the lock */ 4715 spa_open_ref(spa, FTAG); 4716 4717 error = spa_vdev_exit(spa, vd, txg, 0); 4718 4719 spa_history_log_internal(spa, "detach", NULL, 4720 "vdev=%s", vdpath); 4721 spa_strfree(vdpath); 4722 4723 /* 4724 * If this was the removal of the original device in a hot spare vdev, 4725 * then we want to go through and remove the device from the hot spare 4726 * list of every other pool. 4727 */ 4728 if (unspare) { 4729 spa_t *altspa = NULL; 4730 4731 mutex_enter(&spa_namespace_lock); 4732 while ((altspa = spa_next(altspa)) != NULL) { 4733 if (altspa->spa_state != POOL_STATE_ACTIVE || 4734 altspa == spa) 4735 continue; 4736 4737 spa_open_ref(altspa, FTAG); 4738 mutex_exit(&spa_namespace_lock); 4739 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4740 mutex_enter(&spa_namespace_lock); 4741 spa_close(altspa, FTAG); 4742 } 4743 mutex_exit(&spa_namespace_lock); 4744 4745 /* search the rest of the vdevs for spares to remove */ 4746 spa_vdev_resilver_done(spa); 4747 } 4748 4749 /* all done with the spa; OK to release */ 4750 mutex_enter(&spa_namespace_lock); 4751 spa_close(spa, FTAG); 4752 mutex_exit(&spa_namespace_lock); 4753 4754 return (error); 4755 } 4756 4757 /* 4758 * Split a set of devices from their mirrors, and create a new pool from them. 4759 */ 4760 int 4761 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4762 nvlist_t *props, boolean_t exp) 4763 { 4764 int error = 0; 4765 uint64_t txg, *glist; 4766 spa_t *newspa; 4767 uint_t c, children, lastlog; 4768 nvlist_t **child, *nvl, *tmp; 4769 dmu_tx_t *tx; 4770 char *altroot = NULL; 4771 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4772 boolean_t activate_slog; 4773 4774 ASSERT(spa_writeable(spa)); 4775 4776 txg = spa_vdev_enter(spa); 4777 4778 /* clear the log and flush everything up to now */ 4779 activate_slog = spa_passivate_log(spa); 4780 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4781 error = spa_offline_log(spa); 4782 txg = spa_vdev_config_enter(spa); 4783 4784 if (activate_slog) 4785 spa_activate_log(spa); 4786 4787 if (error != 0) 4788 return (spa_vdev_exit(spa, NULL, txg, error)); 4789 4790 /* check new spa name before going any further */ 4791 if (spa_lookup(newname) != NULL) 4792 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4793 4794 /* 4795 * scan through all the children to ensure they're all mirrors 4796 */ 4797 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4798 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4799 &children) != 0) 4800 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4801 4802 /* first, check to ensure we've got the right child count */ 4803 rvd = spa->spa_root_vdev; 4804 lastlog = 0; 4805 for (c = 0; c < rvd->vdev_children; c++) { 4806 vdev_t *vd = rvd->vdev_child[c]; 4807 4808 /* don't count the holes & logs as children */ 4809 if (vd->vdev_islog || vd->vdev_ishole) { 4810 if (lastlog == 0) 4811 lastlog = c; 4812 continue; 4813 } 4814 4815 lastlog = 0; 4816 } 4817 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4818 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4819 4820 /* next, ensure no spare or cache devices are part of the split */ 4821 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4822 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4823 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4824 4825 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4826 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4827 4828 /* then, loop over each vdev and validate it */ 4829 for (c = 0; c < children; c++) { 4830 uint64_t is_hole = 0; 4831 4832 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4833 &is_hole); 4834 4835 if (is_hole != 0) { 4836 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4837 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4838 continue; 4839 } else { 4840 error = SET_ERROR(EINVAL); 4841 break; 4842 } 4843 } 4844 4845 /* which disk is going to be split? */ 4846 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4847 &glist[c]) != 0) { 4848 error = SET_ERROR(EINVAL); 4849 break; 4850 } 4851 4852 /* look it up in the spa */ 4853 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4854 if (vml[c] == NULL) { 4855 error = SET_ERROR(ENODEV); 4856 break; 4857 } 4858 4859 /* make sure there's nothing stopping the split */ 4860 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4861 vml[c]->vdev_islog || 4862 vml[c]->vdev_ishole || 4863 vml[c]->vdev_isspare || 4864 vml[c]->vdev_isl2cache || 4865 !vdev_writeable(vml[c]) || 4866 vml[c]->vdev_children != 0 || 4867 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4868 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4869 error = SET_ERROR(EINVAL); 4870 break; 4871 } 4872 4873 if (vdev_dtl_required(vml[c])) { 4874 error = SET_ERROR(EBUSY); 4875 break; 4876 } 4877 4878 /* we need certain info from the top level */ 4879 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4880 vml[c]->vdev_top->vdev_ms_array) == 0); 4881 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4882 vml[c]->vdev_top->vdev_ms_shift) == 0); 4883 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4884 vml[c]->vdev_top->vdev_asize) == 0); 4885 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4886 vml[c]->vdev_top->vdev_ashift) == 0); 4887 } 4888 4889 if (error != 0) { 4890 kmem_free(vml, children * sizeof (vdev_t *)); 4891 kmem_free(glist, children * sizeof (uint64_t)); 4892 return (spa_vdev_exit(spa, NULL, txg, error)); 4893 } 4894 4895 /* stop writers from using the disks */ 4896 for (c = 0; c < children; c++) { 4897 if (vml[c] != NULL) 4898 vml[c]->vdev_offline = B_TRUE; 4899 } 4900 vdev_reopen(spa->spa_root_vdev); 4901 4902 /* 4903 * Temporarily record the splitting vdevs in the spa config. This 4904 * will disappear once the config is regenerated. 4905 */ 4906 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4907 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4908 glist, children) == 0); 4909 kmem_free(glist, children * sizeof (uint64_t)); 4910 4911 mutex_enter(&spa->spa_props_lock); 4912 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4913 nvl) == 0); 4914 mutex_exit(&spa->spa_props_lock); 4915 spa->spa_config_splitting = nvl; 4916 vdev_config_dirty(spa->spa_root_vdev); 4917 4918 /* configure and create the new pool */ 4919 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4920 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4921 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4922 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4923 spa_version(spa)) == 0); 4924 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4925 spa->spa_config_txg) == 0); 4926 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4927 spa_generate_guid(NULL)) == 0); 4928 (void) nvlist_lookup_string(props, 4929 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4930 4931 /* add the new pool to the namespace */ 4932 newspa = spa_add(newname, config, altroot); 4933 newspa->spa_config_txg = spa->spa_config_txg; 4934 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4935 4936 /* release the spa config lock, retaining the namespace lock */ 4937 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4938 4939 if (zio_injection_enabled) 4940 zio_handle_panic_injection(spa, FTAG, 1); 4941 4942 spa_activate(newspa, spa_mode_global); 4943 spa_async_suspend(newspa); 4944 4945 /* create the new pool from the disks of the original pool */ 4946 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4947 if (error) 4948 goto out; 4949 4950 /* if that worked, generate a real config for the new pool */ 4951 if (newspa->spa_root_vdev != NULL) { 4952 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4953 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4954 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4955 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4956 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4957 B_TRUE)); 4958 } 4959 4960 /* set the props */ 4961 if (props != NULL) { 4962 spa_configfile_set(newspa, props, B_FALSE); 4963 error = spa_prop_set(newspa, props); 4964 if (error) 4965 goto out; 4966 } 4967 4968 /* flush everything */ 4969 txg = spa_vdev_config_enter(newspa); 4970 vdev_config_dirty(newspa->spa_root_vdev); 4971 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 4972 4973 if (zio_injection_enabled) 4974 zio_handle_panic_injection(spa, FTAG, 2); 4975 4976 spa_async_resume(newspa); 4977 4978 /* finally, update the original pool's config */ 4979 txg = spa_vdev_config_enter(spa); 4980 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 4981 error = dmu_tx_assign(tx, TXG_WAIT); 4982 if (error != 0) 4983 dmu_tx_abort(tx); 4984 for (c = 0; c < children; c++) { 4985 if (vml[c] != NULL) { 4986 vdev_split(vml[c]); 4987 if (error == 0) 4988 spa_history_log_internal(spa, "detach", tx, 4989 "vdev=%s", vml[c]->vdev_path); 4990 vdev_free(vml[c]); 4991 } 4992 } 4993 vdev_config_dirty(spa->spa_root_vdev); 4994 spa->spa_config_splitting = NULL; 4995 nvlist_free(nvl); 4996 if (error == 0) 4997 dmu_tx_commit(tx); 4998 (void) spa_vdev_exit(spa, NULL, txg, 0); 4999 5000 if (zio_injection_enabled) 5001 zio_handle_panic_injection(spa, FTAG, 3); 5002 5003 /* split is complete; log a history record */ 5004 spa_history_log_internal(newspa, "split", NULL, 5005 "from pool %s", spa_name(spa)); 5006 5007 kmem_free(vml, children * sizeof (vdev_t *)); 5008 5009 /* if we're not going to mount the filesystems in userland, export */ 5010 if (exp) 5011 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5012 B_FALSE, B_FALSE); 5013 5014 return (error); 5015 5016 out: 5017 spa_unload(newspa); 5018 spa_deactivate(newspa); 5019 spa_remove(newspa); 5020 5021 txg = spa_vdev_config_enter(spa); 5022 5023 /* re-online all offlined disks */ 5024 for (c = 0; c < children; c++) { 5025 if (vml[c] != NULL) 5026 vml[c]->vdev_offline = B_FALSE; 5027 } 5028 vdev_reopen(spa->spa_root_vdev); 5029 5030 nvlist_free(spa->spa_config_splitting); 5031 spa->spa_config_splitting = NULL; 5032 (void) spa_vdev_exit(spa, NULL, txg, error); 5033 5034 kmem_free(vml, children * sizeof (vdev_t *)); 5035 return (error); 5036 } 5037 5038 static nvlist_t * 5039 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5040 { 5041 for (int i = 0; i < count; i++) { 5042 uint64_t guid; 5043 5044 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5045 &guid) == 0); 5046 5047 if (guid == target_guid) 5048 return (nvpp[i]); 5049 } 5050 5051 return (NULL); 5052 } 5053 5054 static void 5055 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5056 nvlist_t *dev_to_remove) 5057 { 5058 nvlist_t **newdev = NULL; 5059 5060 if (count > 1) 5061 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5062 5063 for (int i = 0, j = 0; i < count; i++) { 5064 if (dev[i] == dev_to_remove) 5065 continue; 5066 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5067 } 5068 5069 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5070 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5071 5072 for (int i = 0; i < count - 1; i++) 5073 nvlist_free(newdev[i]); 5074 5075 if (count > 1) 5076 kmem_free(newdev, (count - 1) * sizeof (void *)); 5077 } 5078 5079 /* 5080 * Evacuate the device. 5081 */ 5082 static int 5083 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5084 { 5085 uint64_t txg; 5086 int error = 0; 5087 5088 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5089 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5090 ASSERT(vd == vd->vdev_top); 5091 5092 /* 5093 * Evacuate the device. We don't hold the config lock as writer 5094 * since we need to do I/O but we do keep the 5095 * spa_namespace_lock held. Once this completes the device 5096 * should no longer have any blocks allocated on it. 5097 */ 5098 if (vd->vdev_islog) { 5099 if (vd->vdev_stat.vs_alloc != 0) 5100 error = spa_offline_log(spa); 5101 } else { 5102 error = SET_ERROR(ENOTSUP); 5103 } 5104 5105 if (error) 5106 return (error); 5107 5108 /* 5109 * The evacuation succeeded. Remove any remaining MOS metadata 5110 * associated with this vdev, and wait for these changes to sync. 5111 */ 5112 ASSERT0(vd->vdev_stat.vs_alloc); 5113 txg = spa_vdev_config_enter(spa); 5114 vd->vdev_removing = B_TRUE; 5115 vdev_dirty(vd, 0, NULL, txg); 5116 vdev_config_dirty(vd); 5117 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5118 5119 return (0); 5120 } 5121 5122 /* 5123 * Complete the removal by cleaning up the namespace. 5124 */ 5125 static void 5126 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5127 { 5128 vdev_t *rvd = spa->spa_root_vdev; 5129 uint64_t id = vd->vdev_id; 5130 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5131 5132 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5133 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5134 ASSERT(vd == vd->vdev_top); 5135 5136 /* 5137 * Only remove any devices which are empty. 5138 */ 5139 if (vd->vdev_stat.vs_alloc != 0) 5140 return; 5141 5142 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5143 5144 if (list_link_active(&vd->vdev_state_dirty_node)) 5145 vdev_state_clean(vd); 5146 if (list_link_active(&vd->vdev_config_dirty_node)) 5147 vdev_config_clean(vd); 5148 5149 vdev_free(vd); 5150 5151 if (last_vdev) { 5152 vdev_compact_children(rvd); 5153 } else { 5154 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5155 vdev_add_child(rvd, vd); 5156 } 5157 vdev_config_dirty(rvd); 5158 5159 /* 5160 * Reassess the health of our root vdev. 5161 */ 5162 vdev_reopen(rvd); 5163 } 5164 5165 /* 5166 * Remove a device from the pool - 5167 * 5168 * Removing a device from the vdev namespace requires several steps 5169 * and can take a significant amount of time. As a result we use 5170 * the spa_vdev_config_[enter/exit] functions which allow us to 5171 * grab and release the spa_config_lock while still holding the namespace 5172 * lock. During each step the configuration is synced out. 5173 */ 5174 5175 /* 5176 * Remove a device from the pool. Currently, this supports removing only hot 5177 * spares, slogs, and level 2 ARC devices. 5178 */ 5179 int 5180 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5181 { 5182 vdev_t *vd; 5183 metaslab_group_t *mg; 5184 nvlist_t **spares, **l2cache, *nv; 5185 uint64_t txg = 0; 5186 uint_t nspares, nl2cache; 5187 int error = 0; 5188 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5189 5190 ASSERT(spa_writeable(spa)); 5191 5192 if (!locked) 5193 txg = spa_vdev_enter(spa); 5194 5195 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5196 5197 if (spa->spa_spares.sav_vdevs != NULL && 5198 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5199 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5200 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5201 /* 5202 * Only remove the hot spare if it's not currently in use 5203 * in this pool. 5204 */ 5205 if (vd == NULL || unspare) { 5206 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5207 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5208 spa_load_spares(spa); 5209 spa->spa_spares.sav_sync = B_TRUE; 5210 } else { 5211 error = SET_ERROR(EBUSY); 5212 } 5213 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5214 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5215 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5216 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5217 /* 5218 * Cache devices can always be removed. 5219 */ 5220 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5221 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5222 spa_load_l2cache(spa); 5223 spa->spa_l2cache.sav_sync = B_TRUE; 5224 } else if (vd != NULL && vd->vdev_islog) { 5225 ASSERT(!locked); 5226 ASSERT(vd == vd->vdev_top); 5227 5228 /* 5229 * XXX - Once we have bp-rewrite this should 5230 * become the common case. 5231 */ 5232 5233 mg = vd->vdev_mg; 5234 5235 /* 5236 * Stop allocating from this vdev. 5237 */ 5238 metaslab_group_passivate(mg); 5239 5240 /* 5241 * Wait for the youngest allocations and frees to sync, 5242 * and then wait for the deferral of those frees to finish. 5243 */ 5244 spa_vdev_config_exit(spa, NULL, 5245 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5246 5247 /* 5248 * Attempt to evacuate the vdev. 5249 */ 5250 error = spa_vdev_remove_evacuate(spa, vd); 5251 5252 txg = spa_vdev_config_enter(spa); 5253 5254 /* 5255 * If we couldn't evacuate the vdev, unwind. 5256 */ 5257 if (error) { 5258 metaslab_group_activate(mg); 5259 return (spa_vdev_exit(spa, NULL, txg, error)); 5260 } 5261 5262 /* 5263 * Clean up the vdev namespace. 5264 */ 5265 spa_vdev_remove_from_namespace(spa, vd); 5266 5267 } else if (vd != NULL) { 5268 /* 5269 * Normal vdevs cannot be removed (yet). 5270 */ 5271 error = SET_ERROR(ENOTSUP); 5272 } else { 5273 /* 5274 * There is no vdev of any kind with the specified guid. 5275 */ 5276 error = SET_ERROR(ENOENT); 5277 } 5278 5279 if (!locked) 5280 return (spa_vdev_exit(spa, NULL, txg, error)); 5281 5282 return (error); 5283 } 5284 5285 /* 5286 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5287 * current spared, so we can detach it. 5288 */ 5289 static vdev_t * 5290 spa_vdev_resilver_done_hunt(vdev_t *vd) 5291 { 5292 vdev_t *newvd, *oldvd; 5293 5294 for (int c = 0; c < vd->vdev_children; c++) { 5295 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5296 if (oldvd != NULL) 5297 return (oldvd); 5298 } 5299 5300 /* 5301 * Check for a completed replacement. We always consider the first 5302 * vdev in the list to be the oldest vdev, and the last one to be 5303 * the newest (see spa_vdev_attach() for how that works). In 5304 * the case where the newest vdev is faulted, we will not automatically 5305 * remove it after a resilver completes. This is OK as it will require 5306 * user intervention to determine which disk the admin wishes to keep. 5307 */ 5308 if (vd->vdev_ops == &vdev_replacing_ops) { 5309 ASSERT(vd->vdev_children > 1); 5310 5311 newvd = vd->vdev_child[vd->vdev_children - 1]; 5312 oldvd = vd->vdev_child[0]; 5313 5314 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5315 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5316 !vdev_dtl_required(oldvd)) 5317 return (oldvd); 5318 } 5319 5320 /* 5321 * Check for a completed resilver with the 'unspare' flag set. 5322 */ 5323 if (vd->vdev_ops == &vdev_spare_ops) { 5324 vdev_t *first = vd->vdev_child[0]; 5325 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5326 5327 if (last->vdev_unspare) { 5328 oldvd = first; 5329 newvd = last; 5330 } else if (first->vdev_unspare) { 5331 oldvd = last; 5332 newvd = first; 5333 } else { 5334 oldvd = NULL; 5335 } 5336 5337 if (oldvd != NULL && 5338 vdev_dtl_empty(newvd, DTL_MISSING) && 5339 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5340 !vdev_dtl_required(oldvd)) 5341 return (oldvd); 5342 5343 /* 5344 * If there are more than two spares attached to a disk, 5345 * and those spares are not required, then we want to 5346 * attempt to free them up now so that they can be used 5347 * by other pools. Once we're back down to a single 5348 * disk+spare, we stop removing them. 5349 */ 5350 if (vd->vdev_children > 2) { 5351 newvd = vd->vdev_child[1]; 5352 5353 if (newvd->vdev_isspare && last->vdev_isspare && 5354 vdev_dtl_empty(last, DTL_MISSING) && 5355 vdev_dtl_empty(last, DTL_OUTAGE) && 5356 !vdev_dtl_required(newvd)) 5357 return (newvd); 5358 } 5359 } 5360 5361 return (NULL); 5362 } 5363 5364 static void 5365 spa_vdev_resilver_done(spa_t *spa) 5366 { 5367 vdev_t *vd, *pvd, *ppvd; 5368 uint64_t guid, sguid, pguid, ppguid; 5369 5370 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5371 5372 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5373 pvd = vd->vdev_parent; 5374 ppvd = pvd->vdev_parent; 5375 guid = vd->vdev_guid; 5376 pguid = pvd->vdev_guid; 5377 ppguid = ppvd->vdev_guid; 5378 sguid = 0; 5379 /* 5380 * If we have just finished replacing a hot spared device, then 5381 * we need to detach the parent's first child (the original hot 5382 * spare) as well. 5383 */ 5384 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5385 ppvd->vdev_children == 2) { 5386 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5387 sguid = ppvd->vdev_child[1]->vdev_guid; 5388 } 5389 spa_config_exit(spa, SCL_ALL, FTAG); 5390 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5391 return; 5392 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5393 return; 5394 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5395 } 5396 5397 spa_config_exit(spa, SCL_ALL, FTAG); 5398 } 5399 5400 /* 5401 * Update the stored path or FRU for this vdev. 5402 */ 5403 int 5404 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5405 boolean_t ispath) 5406 { 5407 vdev_t *vd; 5408 boolean_t sync = B_FALSE; 5409 5410 ASSERT(spa_writeable(spa)); 5411 5412 spa_vdev_state_enter(spa, SCL_ALL); 5413 5414 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5415 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5416 5417 if (!vd->vdev_ops->vdev_op_leaf) 5418 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5419 5420 if (ispath) { 5421 if (strcmp(value, vd->vdev_path) != 0) { 5422 spa_strfree(vd->vdev_path); 5423 vd->vdev_path = spa_strdup(value); 5424 sync = B_TRUE; 5425 } 5426 } else { 5427 if (vd->vdev_fru == NULL) { 5428 vd->vdev_fru = spa_strdup(value); 5429 sync = B_TRUE; 5430 } else if (strcmp(value, vd->vdev_fru) != 0) { 5431 spa_strfree(vd->vdev_fru); 5432 vd->vdev_fru = spa_strdup(value); 5433 sync = B_TRUE; 5434 } 5435 } 5436 5437 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5438 } 5439 5440 int 5441 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5442 { 5443 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5444 } 5445 5446 int 5447 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5448 { 5449 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5450 } 5451 5452 /* 5453 * ========================================================================== 5454 * SPA Scanning 5455 * ========================================================================== 5456 */ 5457 5458 int 5459 spa_scan_stop(spa_t *spa) 5460 { 5461 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5462 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5463 return (SET_ERROR(EBUSY)); 5464 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5465 } 5466 5467 int 5468 spa_scan(spa_t *spa, pool_scan_func_t func) 5469 { 5470 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5471 5472 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5473 return (SET_ERROR(ENOTSUP)); 5474 5475 /* 5476 * If a resilver was requested, but there is no DTL on a 5477 * writeable leaf device, we have nothing to do. 5478 */ 5479 if (func == POOL_SCAN_RESILVER && 5480 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5481 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5482 return (0); 5483 } 5484 5485 return (dsl_scan(spa->spa_dsl_pool, func)); 5486 } 5487 5488 /* 5489 * ========================================================================== 5490 * SPA async task processing 5491 * ========================================================================== 5492 */ 5493 5494 static void 5495 spa_async_remove(spa_t *spa, vdev_t *vd) 5496 { 5497 if (vd->vdev_remove_wanted) { 5498 vd->vdev_remove_wanted = B_FALSE; 5499 vd->vdev_delayed_close = B_FALSE; 5500 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5501 5502 /* 5503 * We want to clear the stats, but we don't want to do a full 5504 * vdev_clear() as that will cause us to throw away 5505 * degraded/faulted state as well as attempt to reopen the 5506 * device, all of which is a waste. 5507 */ 5508 vd->vdev_stat.vs_read_errors = 0; 5509 vd->vdev_stat.vs_write_errors = 0; 5510 vd->vdev_stat.vs_checksum_errors = 0; 5511 5512 vdev_state_dirty(vd->vdev_top); 5513 } 5514 5515 for (int c = 0; c < vd->vdev_children; c++) 5516 spa_async_remove(spa, vd->vdev_child[c]); 5517 } 5518 5519 static void 5520 spa_async_probe(spa_t *spa, vdev_t *vd) 5521 { 5522 if (vd->vdev_probe_wanted) { 5523 vd->vdev_probe_wanted = B_FALSE; 5524 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5525 } 5526 5527 for (int c = 0; c < vd->vdev_children; c++) 5528 spa_async_probe(spa, vd->vdev_child[c]); 5529 } 5530 5531 static void 5532 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5533 { 5534 sysevent_id_t eid; 5535 nvlist_t *attr; 5536 char *physpath; 5537 5538 if (!spa->spa_autoexpand) 5539 return; 5540 5541 for (int c = 0; c < vd->vdev_children; c++) { 5542 vdev_t *cvd = vd->vdev_child[c]; 5543 spa_async_autoexpand(spa, cvd); 5544 } 5545 5546 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5547 return; 5548 5549 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5550 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5551 5552 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5553 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5554 5555 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5556 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5557 5558 nvlist_free(attr); 5559 kmem_free(physpath, MAXPATHLEN); 5560 } 5561 5562 static void 5563 spa_async_thread(spa_t *spa) 5564 { 5565 int tasks; 5566 5567 ASSERT(spa->spa_sync_on); 5568 5569 mutex_enter(&spa->spa_async_lock); 5570 tasks = spa->spa_async_tasks; 5571 spa->spa_async_tasks = 0; 5572 mutex_exit(&spa->spa_async_lock); 5573 5574 /* 5575 * See if the config needs to be updated. 5576 */ 5577 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5578 uint64_t old_space, new_space; 5579 5580 mutex_enter(&spa_namespace_lock); 5581 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5582 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5583 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5584 mutex_exit(&spa_namespace_lock); 5585 5586 /* 5587 * If the pool grew as a result of the config update, 5588 * then log an internal history event. 5589 */ 5590 if (new_space != old_space) { 5591 spa_history_log_internal(spa, "vdev online", NULL, 5592 "pool '%s' size: %llu(+%llu)", 5593 spa_name(spa), new_space, new_space - old_space); 5594 } 5595 } 5596 5597 /* 5598 * See if any devices need to be marked REMOVED. 5599 */ 5600 if (tasks & SPA_ASYNC_REMOVE) { 5601 spa_vdev_state_enter(spa, SCL_NONE); 5602 spa_async_remove(spa, spa->spa_root_vdev); 5603 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5604 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5605 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5606 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5607 (void) spa_vdev_state_exit(spa, NULL, 0); 5608 } 5609 5610 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5611 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5612 spa_async_autoexpand(spa, spa->spa_root_vdev); 5613 spa_config_exit(spa, SCL_CONFIG, FTAG); 5614 } 5615 5616 /* 5617 * See if any devices need to be probed. 5618 */ 5619 if (tasks & SPA_ASYNC_PROBE) { 5620 spa_vdev_state_enter(spa, SCL_NONE); 5621 spa_async_probe(spa, spa->spa_root_vdev); 5622 (void) spa_vdev_state_exit(spa, NULL, 0); 5623 } 5624 5625 /* 5626 * If any devices are done replacing, detach them. 5627 */ 5628 if (tasks & SPA_ASYNC_RESILVER_DONE) 5629 spa_vdev_resilver_done(spa); 5630 5631 /* 5632 * Kick off a resilver. 5633 */ 5634 if (tasks & SPA_ASYNC_RESILVER) 5635 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5636 5637 /* 5638 * Let the world know that we're done. 5639 */ 5640 mutex_enter(&spa->spa_async_lock); 5641 spa->spa_async_thread = NULL; 5642 cv_broadcast(&spa->spa_async_cv); 5643 mutex_exit(&spa->spa_async_lock); 5644 thread_exit(); 5645 } 5646 5647 void 5648 spa_async_suspend(spa_t *spa) 5649 { 5650 mutex_enter(&spa->spa_async_lock); 5651 spa->spa_async_suspended++; 5652 while (spa->spa_async_thread != NULL) 5653 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5654 mutex_exit(&spa->spa_async_lock); 5655 } 5656 5657 void 5658 spa_async_resume(spa_t *spa) 5659 { 5660 mutex_enter(&spa->spa_async_lock); 5661 ASSERT(spa->spa_async_suspended != 0); 5662 spa->spa_async_suspended--; 5663 mutex_exit(&spa->spa_async_lock); 5664 } 5665 5666 static void 5667 spa_async_dispatch(spa_t *spa) 5668 { 5669 mutex_enter(&spa->spa_async_lock); 5670 if (spa->spa_async_tasks && !spa->spa_async_suspended && 5671 spa->spa_async_thread == NULL && 5672 rootdir != NULL && !vn_is_readonly(rootdir)) 5673 spa->spa_async_thread = thread_create(NULL, 0, 5674 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5675 mutex_exit(&spa->spa_async_lock); 5676 } 5677 5678 void 5679 spa_async_request(spa_t *spa, int task) 5680 { 5681 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5682 mutex_enter(&spa->spa_async_lock); 5683 spa->spa_async_tasks |= task; 5684 mutex_exit(&spa->spa_async_lock); 5685 } 5686 5687 /* 5688 * ========================================================================== 5689 * SPA syncing routines 5690 * ========================================================================== 5691 */ 5692 5693 static int 5694 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5695 { 5696 bpobj_t *bpo = arg; 5697 bpobj_enqueue(bpo, bp, tx); 5698 return (0); 5699 } 5700 5701 static int 5702 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5703 { 5704 zio_t *zio = arg; 5705 5706 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5707 zio->io_flags)); 5708 return (0); 5709 } 5710 5711 static void 5712 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5713 { 5714 char *packed = NULL; 5715 size_t bufsize; 5716 size_t nvsize = 0; 5717 dmu_buf_t *db; 5718 5719 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5720 5721 /* 5722 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5723 * information. This avoids the dbuf_will_dirty() path and 5724 * saves us a pre-read to get data we don't actually care about. 5725 */ 5726 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5727 packed = kmem_alloc(bufsize, KM_SLEEP); 5728 5729 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5730 KM_SLEEP) == 0); 5731 bzero(packed + nvsize, bufsize - nvsize); 5732 5733 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5734 5735 kmem_free(packed, bufsize); 5736 5737 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5738 dmu_buf_will_dirty(db, tx); 5739 *(uint64_t *)db->db_data = nvsize; 5740 dmu_buf_rele(db, FTAG); 5741 } 5742 5743 static void 5744 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5745 const char *config, const char *entry) 5746 { 5747 nvlist_t *nvroot; 5748 nvlist_t **list; 5749 int i; 5750 5751 if (!sav->sav_sync) 5752 return; 5753 5754 /* 5755 * Update the MOS nvlist describing the list of available devices. 5756 * spa_validate_aux() will have already made sure this nvlist is 5757 * valid and the vdevs are labeled appropriately. 5758 */ 5759 if (sav->sav_object == 0) { 5760 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5761 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5762 sizeof (uint64_t), tx); 5763 VERIFY(zap_update(spa->spa_meta_objset, 5764 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5765 &sav->sav_object, tx) == 0); 5766 } 5767 5768 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5769 if (sav->sav_count == 0) { 5770 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5771 } else { 5772 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5773 for (i = 0; i < sav->sav_count; i++) 5774 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5775 B_FALSE, VDEV_CONFIG_L2CACHE); 5776 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5777 sav->sav_count) == 0); 5778 for (i = 0; i < sav->sav_count; i++) 5779 nvlist_free(list[i]); 5780 kmem_free(list, sav->sav_count * sizeof (void *)); 5781 } 5782 5783 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5784 nvlist_free(nvroot); 5785 5786 sav->sav_sync = B_FALSE; 5787 } 5788 5789 static void 5790 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5791 { 5792 nvlist_t *config; 5793 5794 if (list_is_empty(&spa->spa_config_dirty_list)) 5795 return; 5796 5797 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5798 5799 config = spa_config_generate(spa, spa->spa_root_vdev, 5800 dmu_tx_get_txg(tx), B_FALSE); 5801 5802 /* 5803 * If we're upgrading the spa version then make sure that 5804 * the config object gets updated with the correct version. 5805 */ 5806 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 5807 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5808 spa->spa_uberblock.ub_version); 5809 5810 spa_config_exit(spa, SCL_STATE, FTAG); 5811 5812 if (spa->spa_config_syncing) 5813 nvlist_free(spa->spa_config_syncing); 5814 spa->spa_config_syncing = config; 5815 5816 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5817 } 5818 5819 static void 5820 spa_sync_version(void *arg, dmu_tx_t *tx) 5821 { 5822 uint64_t *versionp = arg; 5823 uint64_t version = *versionp; 5824 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5825 5826 /* 5827 * Setting the version is special cased when first creating the pool. 5828 */ 5829 ASSERT(tx->tx_txg != TXG_INITIAL); 5830 5831 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5832 ASSERT(version >= spa_version(spa)); 5833 5834 spa->spa_uberblock.ub_version = version; 5835 vdev_config_dirty(spa->spa_root_vdev); 5836 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 5837 } 5838 5839 /* 5840 * Set zpool properties. 5841 */ 5842 static void 5843 spa_sync_props(void *arg, dmu_tx_t *tx) 5844 { 5845 nvlist_t *nvp = arg; 5846 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5847 objset_t *mos = spa->spa_meta_objset; 5848 nvpair_t *elem = NULL; 5849 5850 mutex_enter(&spa->spa_props_lock); 5851 5852 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5853 uint64_t intval; 5854 char *strval, *fname; 5855 zpool_prop_t prop; 5856 const char *propname; 5857 zprop_type_t proptype; 5858 zfeature_info_t *feature; 5859 5860 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5861 case ZPROP_INVAL: 5862 /* 5863 * We checked this earlier in spa_prop_validate(). 5864 */ 5865 ASSERT(zpool_prop_feature(nvpair_name(elem))); 5866 5867 fname = strchr(nvpair_name(elem), '@') + 1; 5868 VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature)); 5869 5870 spa_feature_enable(spa, feature, tx); 5871 spa_history_log_internal(spa, "set", tx, 5872 "%s=enabled", nvpair_name(elem)); 5873 break; 5874 5875 case ZPOOL_PROP_VERSION: 5876 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5877 /* 5878 * The version is synced seperatly before other 5879 * properties and should be correct by now. 5880 */ 5881 ASSERT3U(spa_version(spa), >=, intval); 5882 break; 5883 5884 case ZPOOL_PROP_ALTROOT: 5885 /* 5886 * 'altroot' is a non-persistent property. It should 5887 * have been set temporarily at creation or import time. 5888 */ 5889 ASSERT(spa->spa_root != NULL); 5890 break; 5891 5892 case ZPOOL_PROP_READONLY: 5893 case ZPOOL_PROP_CACHEFILE: 5894 /* 5895 * 'readonly' and 'cachefile' are also non-persisitent 5896 * properties. 5897 */ 5898 break; 5899 case ZPOOL_PROP_COMMENT: 5900 VERIFY(nvpair_value_string(elem, &strval) == 0); 5901 if (spa->spa_comment != NULL) 5902 spa_strfree(spa->spa_comment); 5903 spa->spa_comment = spa_strdup(strval); 5904 /* 5905 * We need to dirty the configuration on all the vdevs 5906 * so that their labels get updated. It's unnecessary 5907 * to do this for pool creation since the vdev's 5908 * configuratoin has already been dirtied. 5909 */ 5910 if (tx->tx_txg != TXG_INITIAL) 5911 vdev_config_dirty(spa->spa_root_vdev); 5912 spa_history_log_internal(spa, "set", tx, 5913 "%s=%s", nvpair_name(elem), strval); 5914 break; 5915 default: 5916 /* 5917 * Set pool property values in the poolprops mos object. 5918 */ 5919 if (spa->spa_pool_props_object == 0) { 5920 spa->spa_pool_props_object = 5921 zap_create_link(mos, DMU_OT_POOL_PROPS, 5922 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 5923 tx); 5924 } 5925 5926 /* normalize the property name */ 5927 propname = zpool_prop_to_name(prop); 5928 proptype = zpool_prop_get_type(prop); 5929 5930 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5931 ASSERT(proptype == PROP_TYPE_STRING); 5932 VERIFY(nvpair_value_string(elem, &strval) == 0); 5933 VERIFY(zap_update(mos, 5934 spa->spa_pool_props_object, propname, 5935 1, strlen(strval) + 1, strval, tx) == 0); 5936 spa_history_log_internal(spa, "set", tx, 5937 "%s=%s", nvpair_name(elem), strval); 5938 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5939 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5940 5941 if (proptype == PROP_TYPE_INDEX) { 5942 const char *unused; 5943 VERIFY(zpool_prop_index_to_string( 5944 prop, intval, &unused) == 0); 5945 } 5946 VERIFY(zap_update(mos, 5947 spa->spa_pool_props_object, propname, 5948 8, 1, &intval, tx) == 0); 5949 spa_history_log_internal(spa, "set", tx, 5950 "%s=%lld", nvpair_name(elem), intval); 5951 } else { 5952 ASSERT(0); /* not allowed */ 5953 } 5954 5955 switch (prop) { 5956 case ZPOOL_PROP_DELEGATION: 5957 spa->spa_delegation = intval; 5958 break; 5959 case ZPOOL_PROP_BOOTFS: 5960 spa->spa_bootfs = intval; 5961 break; 5962 case ZPOOL_PROP_FAILUREMODE: 5963 spa->spa_failmode = intval; 5964 break; 5965 case ZPOOL_PROP_AUTOEXPAND: 5966 spa->spa_autoexpand = intval; 5967 if (tx->tx_txg != TXG_INITIAL) 5968 spa_async_request(spa, 5969 SPA_ASYNC_AUTOEXPAND); 5970 break; 5971 case ZPOOL_PROP_DEDUPDITTO: 5972 spa->spa_dedup_ditto = intval; 5973 break; 5974 default: 5975 break; 5976 } 5977 } 5978 5979 } 5980 5981 mutex_exit(&spa->spa_props_lock); 5982 } 5983 5984 /* 5985 * Perform one-time upgrade on-disk changes. spa_version() does not 5986 * reflect the new version this txg, so there must be no changes this 5987 * txg to anything that the upgrade code depends on after it executes. 5988 * Therefore this must be called after dsl_pool_sync() does the sync 5989 * tasks. 5990 */ 5991 static void 5992 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 5993 { 5994 dsl_pool_t *dp = spa->spa_dsl_pool; 5995 5996 ASSERT(spa->spa_sync_pass == 1); 5997 5998 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 5999 6000 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6001 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6002 dsl_pool_create_origin(dp, tx); 6003 6004 /* Keeping the origin open increases spa_minref */ 6005 spa->spa_minref += 3; 6006 } 6007 6008 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6009 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6010 dsl_pool_upgrade_clones(dp, tx); 6011 } 6012 6013 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6014 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6015 dsl_pool_upgrade_dir_clones(dp, tx); 6016 6017 /* Keeping the freedir open increases spa_minref */ 6018 spa->spa_minref += 3; 6019 } 6020 6021 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6022 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6023 spa_feature_create_zap_objects(spa, tx); 6024 } 6025 rrw_exit(&dp->dp_config_rwlock, FTAG); 6026 } 6027 6028 /* 6029 * Sync the specified transaction group. New blocks may be dirtied as 6030 * part of the process, so we iterate until it converges. 6031 */ 6032 void 6033 spa_sync(spa_t *spa, uint64_t txg) 6034 { 6035 dsl_pool_t *dp = spa->spa_dsl_pool; 6036 objset_t *mos = spa->spa_meta_objset; 6037 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj; 6038 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6039 vdev_t *rvd = spa->spa_root_vdev; 6040 vdev_t *vd; 6041 dmu_tx_t *tx; 6042 int error; 6043 6044 VERIFY(spa_writeable(spa)); 6045 6046 /* 6047 * Lock out configuration changes. 6048 */ 6049 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6050 6051 spa->spa_syncing_txg = txg; 6052 spa->spa_sync_pass = 0; 6053 6054 /* 6055 * If there are any pending vdev state changes, convert them 6056 * into config changes that go out with this transaction group. 6057 */ 6058 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6059 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6060 /* 6061 * We need the write lock here because, for aux vdevs, 6062 * calling vdev_config_dirty() modifies sav_config. 6063 * This is ugly and will become unnecessary when we 6064 * eliminate the aux vdev wart by integrating all vdevs 6065 * into the root vdev tree. 6066 */ 6067 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6068 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6069 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6070 vdev_state_clean(vd); 6071 vdev_config_dirty(vd); 6072 } 6073 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6074 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6075 } 6076 spa_config_exit(spa, SCL_STATE, FTAG); 6077 6078 tx = dmu_tx_create_assigned(dp, txg); 6079 6080 spa->spa_sync_starttime = gethrtime(); 6081 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6082 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6083 6084 /* 6085 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6086 * set spa_deflate if we have no raid-z vdevs. 6087 */ 6088 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6089 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6090 int i; 6091 6092 for (i = 0; i < rvd->vdev_children; i++) { 6093 vd = rvd->vdev_child[i]; 6094 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6095 break; 6096 } 6097 if (i == rvd->vdev_children) { 6098 spa->spa_deflate = TRUE; 6099 VERIFY(0 == zap_add(spa->spa_meta_objset, 6100 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6101 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6102 } 6103 } 6104 6105 /* 6106 * If anything has changed in this txg, or if someone is waiting 6107 * for this txg to sync (eg, spa_vdev_remove()), push the 6108 * deferred frees from the previous txg. If not, leave them 6109 * alone so that we don't generate work on an otherwise idle 6110 * system. 6111 */ 6112 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 6113 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 6114 !txg_list_empty(&dp->dp_sync_tasks, txg) || 6115 ((dsl_scan_active(dp->dp_scan) || 6116 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 6117 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6118 VERIFY3U(bpobj_iterate(defer_bpo, 6119 spa_free_sync_cb, zio, tx), ==, 0); 6120 VERIFY0(zio_wait(zio)); 6121 } 6122 6123 /* 6124 * Iterate to convergence. 6125 */ 6126 do { 6127 int pass = ++spa->spa_sync_pass; 6128 6129 spa_sync_config_object(spa, tx); 6130 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6131 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6132 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6133 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6134 spa_errlog_sync(spa, txg); 6135 dsl_pool_sync(dp, txg); 6136 6137 if (pass < zfs_sync_pass_deferred_free) { 6138 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6139 bplist_iterate(free_bpl, spa_free_sync_cb, 6140 zio, tx); 6141 VERIFY(zio_wait(zio) == 0); 6142 } else { 6143 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6144 defer_bpo, tx); 6145 } 6146 6147 ddt_sync(spa, txg); 6148 dsl_scan_sync(dp, tx); 6149 6150 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6151 vdev_sync(vd, txg); 6152 6153 if (pass == 1) 6154 spa_sync_upgrades(spa, tx); 6155 6156 } while (dmu_objset_is_dirty(mos, txg)); 6157 6158 /* 6159 * Rewrite the vdev configuration (which includes the uberblock) 6160 * to commit the transaction group. 6161 * 6162 * If there are no dirty vdevs, we sync the uberblock to a few 6163 * random top-level vdevs that are known to be visible in the 6164 * config cache (see spa_vdev_add() for a complete description). 6165 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6166 */ 6167 for (;;) { 6168 /* 6169 * We hold SCL_STATE to prevent vdev open/close/etc. 6170 * while we're attempting to write the vdev labels. 6171 */ 6172 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6173 6174 if (list_is_empty(&spa->spa_config_dirty_list)) { 6175 vdev_t *svd[SPA_DVAS_PER_BP]; 6176 int svdcount = 0; 6177 int children = rvd->vdev_children; 6178 int c0 = spa_get_random(children); 6179 6180 for (int c = 0; c < children; c++) { 6181 vd = rvd->vdev_child[(c0 + c) % children]; 6182 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6183 continue; 6184 svd[svdcount++] = vd; 6185 if (svdcount == SPA_DVAS_PER_BP) 6186 break; 6187 } 6188 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6189 if (error != 0) 6190 error = vdev_config_sync(svd, svdcount, txg, 6191 B_TRUE); 6192 } else { 6193 error = vdev_config_sync(rvd->vdev_child, 6194 rvd->vdev_children, txg, B_FALSE); 6195 if (error != 0) 6196 error = vdev_config_sync(rvd->vdev_child, 6197 rvd->vdev_children, txg, B_TRUE); 6198 } 6199 6200 if (error == 0) 6201 spa->spa_last_synced_guid = rvd->vdev_guid; 6202 6203 spa_config_exit(spa, SCL_STATE, FTAG); 6204 6205 if (error == 0) 6206 break; 6207 zio_suspend(spa, NULL); 6208 zio_resume_wait(spa); 6209 } 6210 dmu_tx_commit(tx); 6211 6212 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6213 6214 /* 6215 * Clear the dirty config list. 6216 */ 6217 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6218 vdev_config_clean(vd); 6219 6220 /* 6221 * Now that the new config has synced transactionally, 6222 * let it become visible to the config cache. 6223 */ 6224 if (spa->spa_config_syncing != NULL) { 6225 spa_config_set(spa, spa->spa_config_syncing); 6226 spa->spa_config_txg = txg; 6227 spa->spa_config_syncing = NULL; 6228 } 6229 6230 spa->spa_ubsync = spa->spa_uberblock; 6231 6232 dsl_pool_sync_done(dp, txg); 6233 6234 /* 6235 * Update usable space statistics. 6236 */ 6237 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6238 vdev_sync_done(vd, txg); 6239 6240 spa_update_dspace(spa); 6241 6242 /* 6243 * It had better be the case that we didn't dirty anything 6244 * since vdev_config_sync(). 6245 */ 6246 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6247 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6248 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6249 6250 spa->spa_sync_pass = 0; 6251 6252 spa_config_exit(spa, SCL_CONFIG, FTAG); 6253 6254 spa_handle_ignored_writes(spa); 6255 6256 /* 6257 * If any async tasks have been requested, kick them off. 6258 */ 6259 spa_async_dispatch(spa); 6260 } 6261 6262 /* 6263 * Sync all pools. We don't want to hold the namespace lock across these 6264 * operations, so we take a reference on the spa_t and drop the lock during the 6265 * sync. 6266 */ 6267 void 6268 spa_sync_allpools(void) 6269 { 6270 spa_t *spa = NULL; 6271 mutex_enter(&spa_namespace_lock); 6272 while ((spa = spa_next(spa)) != NULL) { 6273 if (spa_state(spa) != POOL_STATE_ACTIVE || 6274 !spa_writeable(spa) || spa_suspended(spa)) 6275 continue; 6276 spa_open_ref(spa, FTAG); 6277 mutex_exit(&spa_namespace_lock); 6278 txg_wait_synced(spa_get_dsl(spa), 0); 6279 mutex_enter(&spa_namespace_lock); 6280 spa_close(spa, FTAG); 6281 } 6282 mutex_exit(&spa_namespace_lock); 6283 } 6284 6285 /* 6286 * ========================================================================== 6287 * Miscellaneous routines 6288 * ========================================================================== 6289 */ 6290 6291 /* 6292 * Remove all pools in the system. 6293 */ 6294 void 6295 spa_evict_all(void) 6296 { 6297 spa_t *spa; 6298 6299 /* 6300 * Remove all cached state. All pools should be closed now, 6301 * so every spa in the AVL tree should be unreferenced. 6302 */ 6303 mutex_enter(&spa_namespace_lock); 6304 while ((spa = spa_next(NULL)) != NULL) { 6305 /* 6306 * Stop async tasks. The async thread may need to detach 6307 * a device that's been replaced, which requires grabbing 6308 * spa_namespace_lock, so we must drop it here. 6309 */ 6310 spa_open_ref(spa, FTAG); 6311 mutex_exit(&spa_namespace_lock); 6312 spa_async_suspend(spa); 6313 mutex_enter(&spa_namespace_lock); 6314 spa_close(spa, FTAG); 6315 6316 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6317 spa_unload(spa); 6318 spa_deactivate(spa); 6319 } 6320 spa_remove(spa); 6321 } 6322 mutex_exit(&spa_namespace_lock); 6323 } 6324 6325 vdev_t * 6326 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6327 { 6328 vdev_t *vd; 6329 int i; 6330 6331 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6332 return (vd); 6333 6334 if (aux) { 6335 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6336 vd = spa->spa_l2cache.sav_vdevs[i]; 6337 if (vd->vdev_guid == guid) 6338 return (vd); 6339 } 6340 6341 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6342 vd = spa->spa_spares.sav_vdevs[i]; 6343 if (vd->vdev_guid == guid) 6344 return (vd); 6345 } 6346 } 6347 6348 return (NULL); 6349 } 6350 6351 void 6352 spa_upgrade(spa_t *spa, uint64_t version) 6353 { 6354 ASSERT(spa_writeable(spa)); 6355 6356 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6357 6358 /* 6359 * This should only be called for a non-faulted pool, and since a 6360 * future version would result in an unopenable pool, this shouldn't be 6361 * possible. 6362 */ 6363 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6364 ASSERT(version >= spa->spa_uberblock.ub_version); 6365 6366 spa->spa_uberblock.ub_version = version; 6367 vdev_config_dirty(spa->spa_root_vdev); 6368 6369 spa_config_exit(spa, SCL_ALL, FTAG); 6370 6371 txg_wait_synced(spa_get_dsl(spa), 0); 6372 } 6373 6374 boolean_t 6375 spa_has_spare(spa_t *spa, uint64_t guid) 6376 { 6377 int i; 6378 uint64_t spareguid; 6379 spa_aux_vdev_t *sav = &spa->spa_spares; 6380 6381 for (i = 0; i < sav->sav_count; i++) 6382 if (sav->sav_vdevs[i]->vdev_guid == guid) 6383 return (B_TRUE); 6384 6385 for (i = 0; i < sav->sav_npending; i++) { 6386 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6387 &spareguid) == 0 && spareguid == guid) 6388 return (B_TRUE); 6389 } 6390 6391 return (B_FALSE); 6392 } 6393 6394 /* 6395 * Check if a pool has an active shared spare device. 6396 * Note: reference count of an active spare is 2, as a spare and as a replace 6397 */ 6398 static boolean_t 6399 spa_has_active_shared_spare(spa_t *spa) 6400 { 6401 int i, refcnt; 6402 uint64_t pool; 6403 spa_aux_vdev_t *sav = &spa->spa_spares; 6404 6405 for (i = 0; i < sav->sav_count; i++) { 6406 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6407 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6408 refcnt > 2) 6409 return (B_TRUE); 6410 } 6411 6412 return (B_FALSE); 6413 } 6414 6415 /* 6416 * Post a sysevent corresponding to the given event. The 'name' must be one of 6417 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6418 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6419 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6420 * or zdb as real changes. 6421 */ 6422 void 6423 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6424 { 6425 #ifdef _KERNEL 6426 sysevent_t *ev; 6427 sysevent_attr_list_t *attr = NULL; 6428 sysevent_value_t value; 6429 sysevent_id_t eid; 6430 6431 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6432 SE_SLEEP); 6433 6434 value.value_type = SE_DATA_TYPE_STRING; 6435 value.value.sv_string = spa_name(spa); 6436 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6437 goto done; 6438 6439 value.value_type = SE_DATA_TYPE_UINT64; 6440 value.value.sv_uint64 = spa_guid(spa); 6441 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6442 goto done; 6443 6444 if (vd) { 6445 value.value_type = SE_DATA_TYPE_UINT64; 6446 value.value.sv_uint64 = vd->vdev_guid; 6447 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6448 SE_SLEEP) != 0) 6449 goto done; 6450 6451 if (vd->vdev_path) { 6452 value.value_type = SE_DATA_TYPE_STRING; 6453 value.value.sv_string = vd->vdev_path; 6454 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6455 &value, SE_SLEEP) != 0) 6456 goto done; 6457 } 6458 } 6459 6460 if (sysevent_attach_attributes(ev, attr) != 0) 6461 goto done; 6462 attr = NULL; 6463 6464 (void) log_sysevent(ev, SE_SLEEP, &eid); 6465 6466 done: 6467 if (attr) 6468 sysevent_free_attr(attr); 6469 sysevent_free(ev); 6470 #endif 6471 }