1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 */ 26 27 /* 28 * DVA-based Adjustable Replacement Cache 29 * 30 * While much of the theory of operation used here is 31 * based on the self-tuning, low overhead replacement cache 32 * presented by Megiddo and Modha at FAST 2003, there are some 33 * significant differences: 34 * 35 * 1. The Megiddo and Modha model assumes any page is evictable. 36 * Pages in its cache cannot be "locked" into memory. This makes 37 * the eviction algorithm simple: evict the last page in the list. 38 * This also make the performance characteristics easy to reason 39 * about. Our cache is not so simple. At any given moment, some 40 * subset of the blocks in the cache are un-evictable because we 41 * have handed out a reference to them. Blocks are only evictable 42 * when there are no external references active. This makes 43 * eviction far more problematic: we choose to evict the evictable 44 * blocks that are the "lowest" in the list. 45 * 46 * There are times when it is not possible to evict the requested 47 * space. In these circumstances we are unable to adjust the cache 48 * size. To prevent the cache growing unbounded at these times we 49 * implement a "cache throttle" that slows the flow of new data 50 * into the cache until we can make space available. 51 * 52 * 2. The Megiddo and Modha model assumes a fixed cache size. 53 * Pages are evicted when the cache is full and there is a cache 54 * miss. Our model has a variable sized cache. It grows with 55 * high use, but also tries to react to memory pressure from the 56 * operating system: decreasing its size when system memory is 57 * tight. 58 * 59 * 3. The Megiddo and Modha model assumes a fixed page size. All 60 * elements of the cache are therefor exactly the same size. So 61 * when adjusting the cache size following a cache miss, its simply 62 * a matter of choosing a single page to evict. In our model, we 63 * have variable sized cache blocks (rangeing from 512 bytes to 64 * 128K bytes). We therefor choose a set of blocks to evict to make 65 * space for a cache miss that approximates as closely as possible 66 * the space used by the new block. 67 * 68 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 69 * by N. Megiddo & D. Modha, FAST 2003 70 */ 71 72 /* 73 * The locking model: 74 * 75 * A new reference to a cache buffer can be obtained in two 76 * ways: 1) via a hash table lookup using the DVA as a key, 77 * or 2) via one of the ARC lists. The arc_read() interface 78 * uses method 1, while the internal arc algorithms for 79 * adjusting the cache use method 2. We therefor provide two 80 * types of locks: 1) the hash table lock array, and 2) the 81 * arc list locks. 82 * 83 * Buffers do not have their own mutexes, rather they rely on the 84 * hash table mutexes for the bulk of their protection (i.e. most 85 * fields in the arc_buf_hdr_t are protected by these mutexes). 86 * 87 * buf_hash_find() returns the appropriate mutex (held) when it 88 * locates the requested buffer in the hash table. It returns 89 * NULL for the mutex if the buffer was not in the table. 90 * 91 * buf_hash_remove() expects the appropriate hash mutex to be 92 * already held before it is invoked. 93 * 94 * Each arc state also has a mutex which is used to protect the 95 * buffer list associated with the state. When attempting to 96 * obtain a hash table lock while holding an arc list lock you 97 * must use: mutex_tryenter() to avoid deadlock. Also note that 98 * the active state mutex must be held before the ghost state mutex. 99 * 100 * Arc buffers may have an associated eviction callback function. 101 * This function will be invoked prior to removing the buffer (e.g. 102 * in arc_do_user_evicts()). Note however that the data associated 103 * with the buffer may be evicted prior to the callback. The callback 104 * must be made with *no locks held* (to prevent deadlock). Additionally, 105 * the users of callbacks must ensure that their private data is 106 * protected from simultaneous callbacks from arc_buf_evict() 107 * and arc_do_user_evicts(). 108 * 109 * Note that the majority of the performance stats are manipulated 110 * with atomic operations. 111 * 112 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 113 * 114 * - L2ARC buflist creation 115 * - L2ARC buflist eviction 116 * - L2ARC write completion, which walks L2ARC buflists 117 * - ARC header destruction, as it removes from L2ARC buflists 118 * - ARC header release, as it removes from L2ARC buflists 119 */ 120 121 #include <sys/spa.h> 122 #include <sys/zio.h> 123 #include <sys/zfs_context.h> 124 #include <sys/arc.h> 125 #include <sys/refcount.h> 126 #include <sys/vdev.h> 127 #include <sys/vdev_impl.h> 128 #ifdef _KERNEL 129 #include <sys/vmsystm.h> 130 #include <vm/anon.h> 131 #include <sys/fs/swapnode.h> 132 #include <sys/dnlc.h> 133 #endif 134 #include <sys/callb.h> 135 #include <sys/kstat.h> 136 #include <zfs_fletcher.h> 137 138 #ifndef _KERNEL 139 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 140 boolean_t arc_watch = B_FALSE; 141 int arc_procfd; 142 #endif 143 144 static kmutex_t arc_reclaim_thr_lock; 145 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 146 static uint8_t arc_thread_exit; 147 148 extern int zfs_write_limit_shift; 149 extern uint64_t zfs_write_limit_max; 150 extern kmutex_t zfs_write_limit_lock; 151 152 #define ARC_REDUCE_DNLC_PERCENT 3 153 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 154 155 typedef enum arc_reclaim_strategy { 156 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 157 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 158 } arc_reclaim_strategy_t; 159 160 /* number of seconds before growing cache again */ 161 static int arc_grow_retry = 60; 162 163 /* shift of arc_c for calculating both min and max arc_p */ 164 static int arc_p_min_shift = 4; 165 166 /* log2(fraction of arc to reclaim) */ 167 static int arc_shrink_shift = 5; 168 169 /* 170 * minimum lifespan of a prefetch block in clock ticks 171 * (initialized in arc_init()) 172 */ 173 static int arc_min_prefetch_lifespan; 174 175 static int arc_dead; 176 177 /* 178 * The arc has filled available memory and has now warmed up. 179 */ 180 static boolean_t arc_warm; 181 182 /* 183 * These tunables are for performance analysis. 184 */ 185 uint64_t zfs_arc_max; 186 uint64_t zfs_arc_min; 187 uint64_t zfs_arc_meta_limit = 0; 188 int zfs_arc_grow_retry = 0; 189 int zfs_arc_shrink_shift = 0; 190 int zfs_arc_p_min_shift = 0; 191 int zfs_disable_dup_eviction = 0; 192 193 /* 194 * Note that buffers can be in one of 6 states: 195 * ARC_anon - anonymous (discussed below) 196 * ARC_mru - recently used, currently cached 197 * ARC_mru_ghost - recentely used, no longer in cache 198 * ARC_mfu - frequently used, currently cached 199 * ARC_mfu_ghost - frequently used, no longer in cache 200 * ARC_l2c_only - exists in L2ARC but not other states 201 * When there are no active references to the buffer, they are 202 * are linked onto a list in one of these arc states. These are 203 * the only buffers that can be evicted or deleted. Within each 204 * state there are multiple lists, one for meta-data and one for 205 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 206 * etc.) is tracked separately so that it can be managed more 207 * explicitly: favored over data, limited explicitly. 208 * 209 * Anonymous buffers are buffers that are not associated with 210 * a DVA. These are buffers that hold dirty block copies 211 * before they are written to stable storage. By definition, 212 * they are "ref'd" and are considered part of arc_mru 213 * that cannot be freed. Generally, they will aquire a DVA 214 * as they are written and migrate onto the arc_mru list. 215 * 216 * The ARC_l2c_only state is for buffers that are in the second 217 * level ARC but no longer in any of the ARC_m* lists. The second 218 * level ARC itself may also contain buffers that are in any of 219 * the ARC_m* states - meaning that a buffer can exist in two 220 * places. The reason for the ARC_l2c_only state is to keep the 221 * buffer header in the hash table, so that reads that hit the 222 * second level ARC benefit from these fast lookups. 223 */ 224 225 typedef struct arc_state { 226 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 227 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 228 uint64_t arcs_size; /* total amount of data in this state */ 229 kmutex_t arcs_mtx; 230 } arc_state_t; 231 232 /* The 6 states: */ 233 static arc_state_t ARC_anon; 234 static arc_state_t ARC_mru; 235 static arc_state_t ARC_mru_ghost; 236 static arc_state_t ARC_mfu; 237 static arc_state_t ARC_mfu_ghost; 238 static arc_state_t ARC_l2c_only; 239 240 typedef struct arc_stats { 241 kstat_named_t arcstat_hits; 242 kstat_named_t arcstat_misses; 243 kstat_named_t arcstat_demand_data_hits; 244 kstat_named_t arcstat_demand_data_misses; 245 kstat_named_t arcstat_demand_metadata_hits; 246 kstat_named_t arcstat_demand_metadata_misses; 247 kstat_named_t arcstat_prefetch_data_hits; 248 kstat_named_t arcstat_prefetch_data_misses; 249 kstat_named_t arcstat_prefetch_metadata_hits; 250 kstat_named_t arcstat_prefetch_metadata_misses; 251 kstat_named_t arcstat_mru_hits; 252 kstat_named_t arcstat_mru_ghost_hits; 253 kstat_named_t arcstat_mfu_hits; 254 kstat_named_t arcstat_mfu_ghost_hits; 255 kstat_named_t arcstat_deleted; 256 kstat_named_t arcstat_recycle_miss; 257 /* 258 * Number of buffers that could not be evicted because the hash lock 259 * was held by another thread. The lock may not necessarily be held 260 * by something using the same buffer, since hash locks are shared 261 * by multiple buffers. 262 */ 263 kstat_named_t arcstat_mutex_miss; 264 /* 265 * Number of buffers skipped because they have I/O in progress, are 266 * indrect prefetch buffers that have not lived long enough, or are 267 * not from the spa we're trying to evict from. 268 */ 269 kstat_named_t arcstat_evict_skip; 270 kstat_named_t arcstat_evict_l2_cached; 271 kstat_named_t arcstat_evict_l2_eligible; 272 kstat_named_t arcstat_evict_l2_ineligible; 273 kstat_named_t arcstat_hash_elements; 274 kstat_named_t arcstat_hash_elements_max; 275 kstat_named_t arcstat_hash_collisions; 276 kstat_named_t arcstat_hash_chains; 277 kstat_named_t arcstat_hash_chain_max; 278 kstat_named_t arcstat_p; 279 kstat_named_t arcstat_c; 280 kstat_named_t arcstat_c_min; 281 kstat_named_t arcstat_c_max; 282 kstat_named_t arcstat_size; 283 kstat_named_t arcstat_hdr_size; 284 kstat_named_t arcstat_data_size; 285 kstat_named_t arcstat_other_size; 286 kstat_named_t arcstat_l2_hits; 287 kstat_named_t arcstat_l2_misses; 288 kstat_named_t arcstat_l2_feeds; 289 kstat_named_t arcstat_l2_rw_clash; 290 kstat_named_t arcstat_l2_read_bytes; 291 kstat_named_t arcstat_l2_write_bytes; 292 kstat_named_t arcstat_l2_writes_sent; 293 kstat_named_t arcstat_l2_writes_done; 294 kstat_named_t arcstat_l2_writes_error; 295 kstat_named_t arcstat_l2_writes_hdr_miss; 296 kstat_named_t arcstat_l2_evict_lock_retry; 297 kstat_named_t arcstat_l2_evict_reading; 298 kstat_named_t arcstat_l2_free_on_write; 299 kstat_named_t arcstat_l2_abort_lowmem; 300 kstat_named_t arcstat_l2_cksum_bad; 301 kstat_named_t arcstat_l2_io_error; 302 kstat_named_t arcstat_l2_size; 303 kstat_named_t arcstat_l2_hdr_size; 304 kstat_named_t arcstat_memory_throttle_count; 305 kstat_named_t arcstat_duplicate_buffers; 306 kstat_named_t arcstat_duplicate_buffers_size; 307 kstat_named_t arcstat_duplicate_reads; 308 kstat_named_t arcstat_meta_used; 309 kstat_named_t arcstat_meta_limit; 310 kstat_named_t arcstat_meta_max; 311 } arc_stats_t; 312 313 static arc_stats_t arc_stats = { 314 { "hits", KSTAT_DATA_UINT64 }, 315 { "misses", KSTAT_DATA_UINT64 }, 316 { "demand_data_hits", KSTAT_DATA_UINT64 }, 317 { "demand_data_misses", KSTAT_DATA_UINT64 }, 318 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 319 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 320 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 321 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 322 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 323 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 324 { "mru_hits", KSTAT_DATA_UINT64 }, 325 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 326 { "mfu_hits", KSTAT_DATA_UINT64 }, 327 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 328 { "deleted", KSTAT_DATA_UINT64 }, 329 { "recycle_miss", KSTAT_DATA_UINT64 }, 330 { "mutex_miss", KSTAT_DATA_UINT64 }, 331 { "evict_skip", KSTAT_DATA_UINT64 }, 332 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 333 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 334 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 335 { "hash_elements", KSTAT_DATA_UINT64 }, 336 { "hash_elements_max", KSTAT_DATA_UINT64 }, 337 { "hash_collisions", KSTAT_DATA_UINT64 }, 338 { "hash_chains", KSTAT_DATA_UINT64 }, 339 { "hash_chain_max", KSTAT_DATA_UINT64 }, 340 { "p", KSTAT_DATA_UINT64 }, 341 { "c", KSTAT_DATA_UINT64 }, 342 { "c_min", KSTAT_DATA_UINT64 }, 343 { "c_max", KSTAT_DATA_UINT64 }, 344 { "size", KSTAT_DATA_UINT64 }, 345 { "hdr_size", KSTAT_DATA_UINT64 }, 346 { "data_size", KSTAT_DATA_UINT64 }, 347 { "other_size", KSTAT_DATA_UINT64 }, 348 { "l2_hits", KSTAT_DATA_UINT64 }, 349 { "l2_misses", KSTAT_DATA_UINT64 }, 350 { "l2_feeds", KSTAT_DATA_UINT64 }, 351 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 352 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 353 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 354 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 355 { "l2_writes_done", KSTAT_DATA_UINT64 }, 356 { "l2_writes_error", KSTAT_DATA_UINT64 }, 357 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 358 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 359 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 360 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 361 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 362 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 363 { "l2_io_error", KSTAT_DATA_UINT64 }, 364 { "l2_size", KSTAT_DATA_UINT64 }, 365 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 366 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 367 { "duplicate_buffers", KSTAT_DATA_UINT64 }, 368 { "duplicate_buffers_size", KSTAT_DATA_UINT64 }, 369 { "duplicate_reads", KSTAT_DATA_UINT64 }, 370 { "arc_meta_used", KSTAT_DATA_UINT64 }, 371 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 372 { "arc_meta_max", KSTAT_DATA_UINT64 } 373 }; 374 375 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 376 377 #define ARCSTAT_INCR(stat, val) \ 378 atomic_add_64(&arc_stats.stat.value.ui64, (val)); 379 380 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 381 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 382 383 #define ARCSTAT_MAX(stat, val) { \ 384 uint64_t m; \ 385 while ((val) > (m = arc_stats.stat.value.ui64) && \ 386 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 387 continue; \ 388 } 389 390 #define ARCSTAT_MAXSTAT(stat) \ 391 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 392 393 /* 394 * We define a macro to allow ARC hits/misses to be easily broken down by 395 * two separate conditions, giving a total of four different subtypes for 396 * each of hits and misses (so eight statistics total). 397 */ 398 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 399 if (cond1) { \ 400 if (cond2) { \ 401 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 402 } else { \ 403 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 404 } \ 405 } else { \ 406 if (cond2) { \ 407 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 408 } else { \ 409 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 410 } \ 411 } 412 413 kstat_t *arc_ksp; 414 static arc_state_t *arc_anon; 415 static arc_state_t *arc_mru; 416 static arc_state_t *arc_mru_ghost; 417 static arc_state_t *arc_mfu; 418 static arc_state_t *arc_mfu_ghost; 419 static arc_state_t *arc_l2c_only; 420 421 /* 422 * There are several ARC variables that are critical to export as kstats -- 423 * but we don't want to have to grovel around in the kstat whenever we wish to 424 * manipulate them. For these variables, we therefore define them to be in 425 * terms of the statistic variable. This assures that we are not introducing 426 * the possibility of inconsistency by having shadow copies of the variables, 427 * while still allowing the code to be readable. 428 */ 429 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 430 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 431 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 432 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 433 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 434 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 435 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */ 436 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 437 438 static int arc_no_grow; /* Don't try to grow cache size */ 439 static uint64_t arc_tempreserve; 440 static uint64_t arc_loaned_bytes; 441 442 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 443 444 typedef struct arc_callback arc_callback_t; 445 446 struct arc_callback { 447 void *acb_private; 448 arc_done_func_t *acb_done; 449 arc_buf_t *acb_buf; 450 zio_t *acb_zio_dummy; 451 arc_callback_t *acb_next; 452 }; 453 454 typedef struct arc_write_callback arc_write_callback_t; 455 456 struct arc_write_callback { 457 void *awcb_private; 458 arc_done_func_t *awcb_ready; 459 arc_done_func_t *awcb_done; 460 arc_buf_t *awcb_buf; 461 }; 462 463 struct arc_buf_hdr { 464 /* protected by hash lock */ 465 dva_t b_dva; 466 uint64_t b_birth; 467 uint64_t b_cksum0; 468 469 kmutex_t b_freeze_lock; 470 zio_cksum_t *b_freeze_cksum; 471 void *b_thawed; 472 473 arc_buf_hdr_t *b_hash_next; 474 arc_buf_t *b_buf; 475 uint32_t b_flags; 476 uint32_t b_datacnt; 477 478 arc_callback_t *b_acb; 479 kcondvar_t b_cv; 480 481 /* immutable */ 482 arc_buf_contents_t b_type; 483 uint64_t b_size; 484 uint64_t b_spa; 485 486 /* protected by arc state mutex */ 487 arc_state_t *b_state; 488 list_node_t b_arc_node; 489 490 /* updated atomically */ 491 clock_t b_arc_access; 492 493 /* self protecting */ 494 refcount_t b_refcnt; 495 496 l2arc_buf_hdr_t *b_l2hdr; 497 list_node_t b_l2node; 498 }; 499 500 static arc_buf_t *arc_eviction_list; 501 static kmutex_t arc_eviction_mtx; 502 static arc_buf_hdr_t arc_eviction_hdr; 503 static void arc_get_data_buf(arc_buf_t *buf); 504 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 505 static int arc_evict_needed(arc_buf_contents_t type); 506 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes); 507 static void arc_buf_watch(arc_buf_t *buf); 508 509 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab); 510 511 #define GHOST_STATE(state) \ 512 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 513 (state) == arc_l2c_only) 514 515 /* 516 * Private ARC flags. These flags are private ARC only flags that will show up 517 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 518 * be passed in as arc_flags in things like arc_read. However, these flags 519 * should never be passed and should only be set by ARC code. When adding new 520 * public flags, make sure not to smash the private ones. 521 */ 522 523 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 524 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 525 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 526 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 527 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 528 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 529 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 530 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 531 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 532 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 533 534 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 535 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 536 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 537 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH) 538 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 539 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 540 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 541 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 542 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 543 (hdr)->b_l2hdr != NULL) 544 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 545 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 546 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 547 548 /* 549 * Other sizes 550 */ 551 552 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 553 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 554 555 /* 556 * Hash table routines 557 */ 558 559 #define HT_LOCK_PAD 64 560 561 struct ht_lock { 562 kmutex_t ht_lock; 563 #ifdef _KERNEL 564 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 565 #endif 566 }; 567 568 #define BUF_LOCKS 256 569 typedef struct buf_hash_table { 570 uint64_t ht_mask; 571 arc_buf_hdr_t **ht_table; 572 struct ht_lock ht_locks[BUF_LOCKS]; 573 } buf_hash_table_t; 574 575 static buf_hash_table_t buf_hash_table; 576 577 #define BUF_HASH_INDEX(spa, dva, birth) \ 578 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 579 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 580 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 581 #define HDR_LOCK(hdr) \ 582 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 583 584 uint64_t zfs_crc64_table[256]; 585 586 /* 587 * Level 2 ARC 588 */ 589 590 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 591 #define L2ARC_HEADROOM 2 /* num of writes */ 592 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 593 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 594 595 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 596 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 597 598 /* 599 * L2ARC Performance Tunables 600 */ 601 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 602 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 603 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 604 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 605 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 606 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 607 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 608 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 609 610 /* 611 * L2ARC Internals 612 */ 613 typedef struct l2arc_dev { 614 vdev_t *l2ad_vdev; /* vdev */ 615 spa_t *l2ad_spa; /* spa */ 616 uint64_t l2ad_hand; /* next write location */ 617 uint64_t l2ad_write; /* desired write size, bytes */ 618 uint64_t l2ad_boost; /* warmup write boost, bytes */ 619 uint64_t l2ad_start; /* first addr on device */ 620 uint64_t l2ad_end; /* last addr on device */ 621 uint64_t l2ad_evict; /* last addr eviction reached */ 622 boolean_t l2ad_first; /* first sweep through */ 623 boolean_t l2ad_writing; /* currently writing */ 624 list_t *l2ad_buflist; /* buffer list */ 625 list_node_t l2ad_node; /* device list node */ 626 } l2arc_dev_t; 627 628 static list_t L2ARC_dev_list; /* device list */ 629 static list_t *l2arc_dev_list; /* device list pointer */ 630 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 631 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 632 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 633 static list_t L2ARC_free_on_write; /* free after write buf list */ 634 static list_t *l2arc_free_on_write; /* free after write list ptr */ 635 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 636 static uint64_t l2arc_ndev; /* number of devices */ 637 638 typedef struct l2arc_read_callback { 639 arc_buf_t *l2rcb_buf; /* read buffer */ 640 spa_t *l2rcb_spa; /* spa */ 641 blkptr_t l2rcb_bp; /* original blkptr */ 642 zbookmark_t l2rcb_zb; /* original bookmark */ 643 int l2rcb_flags; /* original flags */ 644 } l2arc_read_callback_t; 645 646 typedef struct l2arc_write_callback { 647 l2arc_dev_t *l2wcb_dev; /* device info */ 648 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 649 } l2arc_write_callback_t; 650 651 struct l2arc_buf_hdr { 652 /* protected by arc_buf_hdr mutex */ 653 l2arc_dev_t *b_dev; /* L2ARC device */ 654 uint64_t b_daddr; /* disk address, offset byte */ 655 }; 656 657 typedef struct l2arc_data_free { 658 /* protected by l2arc_free_on_write_mtx */ 659 void *l2df_data; 660 size_t l2df_size; 661 void (*l2df_func)(void *, size_t); 662 list_node_t l2df_list_node; 663 } l2arc_data_free_t; 664 665 static kmutex_t l2arc_feed_thr_lock; 666 static kcondvar_t l2arc_feed_thr_cv; 667 static uint8_t l2arc_thread_exit; 668 669 static void l2arc_read_done(zio_t *zio); 670 static void l2arc_hdr_stat_add(void); 671 static void l2arc_hdr_stat_remove(void); 672 673 static uint64_t 674 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 675 { 676 uint8_t *vdva = (uint8_t *)dva; 677 uint64_t crc = -1ULL; 678 int i; 679 680 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 681 682 for (i = 0; i < sizeof (dva_t); i++) 683 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 684 685 crc ^= (spa>>8) ^ birth; 686 687 return (crc); 688 } 689 690 #define BUF_EMPTY(buf) \ 691 ((buf)->b_dva.dva_word[0] == 0 && \ 692 (buf)->b_dva.dva_word[1] == 0 && \ 693 (buf)->b_birth == 0) 694 695 #define BUF_EQUAL(spa, dva, birth, buf) \ 696 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 697 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 698 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 699 700 static void 701 buf_discard_identity(arc_buf_hdr_t *hdr) 702 { 703 hdr->b_dva.dva_word[0] = 0; 704 hdr->b_dva.dva_word[1] = 0; 705 hdr->b_birth = 0; 706 hdr->b_cksum0 = 0; 707 } 708 709 static arc_buf_hdr_t * 710 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp) 711 { 712 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 713 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 714 arc_buf_hdr_t *buf; 715 716 mutex_enter(hash_lock); 717 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 718 buf = buf->b_hash_next) { 719 if (BUF_EQUAL(spa, dva, birth, buf)) { 720 *lockp = hash_lock; 721 return (buf); 722 } 723 } 724 mutex_exit(hash_lock); 725 *lockp = NULL; 726 return (NULL); 727 } 728 729 /* 730 * Insert an entry into the hash table. If there is already an element 731 * equal to elem in the hash table, then the already existing element 732 * will be returned and the new element will not be inserted. 733 * Otherwise returns NULL. 734 */ 735 static arc_buf_hdr_t * 736 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 737 { 738 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 739 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 740 arc_buf_hdr_t *fbuf; 741 uint32_t i; 742 743 ASSERT(!HDR_IN_HASH_TABLE(buf)); 744 *lockp = hash_lock; 745 mutex_enter(hash_lock); 746 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 747 fbuf = fbuf->b_hash_next, i++) { 748 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 749 return (fbuf); 750 } 751 752 buf->b_hash_next = buf_hash_table.ht_table[idx]; 753 buf_hash_table.ht_table[idx] = buf; 754 buf->b_flags |= ARC_IN_HASH_TABLE; 755 756 /* collect some hash table performance data */ 757 if (i > 0) { 758 ARCSTAT_BUMP(arcstat_hash_collisions); 759 if (i == 1) 760 ARCSTAT_BUMP(arcstat_hash_chains); 761 762 ARCSTAT_MAX(arcstat_hash_chain_max, i); 763 } 764 765 ARCSTAT_BUMP(arcstat_hash_elements); 766 ARCSTAT_MAXSTAT(arcstat_hash_elements); 767 768 return (NULL); 769 } 770 771 static void 772 buf_hash_remove(arc_buf_hdr_t *buf) 773 { 774 arc_buf_hdr_t *fbuf, **bufp; 775 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 776 777 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 778 ASSERT(HDR_IN_HASH_TABLE(buf)); 779 780 bufp = &buf_hash_table.ht_table[idx]; 781 while ((fbuf = *bufp) != buf) { 782 ASSERT(fbuf != NULL); 783 bufp = &fbuf->b_hash_next; 784 } 785 *bufp = buf->b_hash_next; 786 buf->b_hash_next = NULL; 787 buf->b_flags &= ~ARC_IN_HASH_TABLE; 788 789 /* collect some hash table performance data */ 790 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 791 792 if (buf_hash_table.ht_table[idx] && 793 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 794 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 795 } 796 797 /* 798 * Global data structures and functions for the buf kmem cache. 799 */ 800 static kmem_cache_t *hdr_cache; 801 static kmem_cache_t *buf_cache; 802 803 static void 804 buf_fini(void) 805 { 806 int i; 807 808 kmem_free(buf_hash_table.ht_table, 809 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 810 for (i = 0; i < BUF_LOCKS; i++) 811 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 812 kmem_cache_destroy(hdr_cache); 813 kmem_cache_destroy(buf_cache); 814 } 815 816 /* 817 * Constructor callback - called when the cache is empty 818 * and a new buf is requested. 819 */ 820 /* ARGSUSED */ 821 static int 822 hdr_cons(void *vbuf, void *unused, int kmflag) 823 { 824 arc_buf_hdr_t *buf = vbuf; 825 826 bzero(buf, sizeof (arc_buf_hdr_t)); 827 refcount_create(&buf->b_refcnt); 828 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 829 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 830 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 831 832 return (0); 833 } 834 835 /* ARGSUSED */ 836 static int 837 buf_cons(void *vbuf, void *unused, int kmflag) 838 { 839 arc_buf_t *buf = vbuf; 840 841 bzero(buf, sizeof (arc_buf_t)); 842 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 843 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 844 845 return (0); 846 } 847 848 /* 849 * Destructor callback - called when a cached buf is 850 * no longer required. 851 */ 852 /* ARGSUSED */ 853 static void 854 hdr_dest(void *vbuf, void *unused) 855 { 856 arc_buf_hdr_t *buf = vbuf; 857 858 ASSERT(BUF_EMPTY(buf)); 859 refcount_destroy(&buf->b_refcnt); 860 cv_destroy(&buf->b_cv); 861 mutex_destroy(&buf->b_freeze_lock); 862 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 863 } 864 865 /* ARGSUSED */ 866 static void 867 buf_dest(void *vbuf, void *unused) 868 { 869 arc_buf_t *buf = vbuf; 870 871 mutex_destroy(&buf->b_evict_lock); 872 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 873 } 874 875 /* 876 * Reclaim callback -- invoked when memory is low. 877 */ 878 /* ARGSUSED */ 879 static void 880 hdr_recl(void *unused) 881 { 882 dprintf("hdr_recl called\n"); 883 /* 884 * umem calls the reclaim func when we destroy the buf cache, 885 * which is after we do arc_fini(). 886 */ 887 if (!arc_dead) 888 cv_signal(&arc_reclaim_thr_cv); 889 } 890 891 static void 892 buf_init(void) 893 { 894 uint64_t *ct; 895 uint64_t hsize = 1ULL << 12; 896 int i, j; 897 898 /* 899 * The hash table is big enough to fill all of physical memory 900 * with an average 64K block size. The table will take up 901 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 902 */ 903 while (hsize * 65536 < physmem * PAGESIZE) 904 hsize <<= 1; 905 retry: 906 buf_hash_table.ht_mask = hsize - 1; 907 buf_hash_table.ht_table = 908 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 909 if (buf_hash_table.ht_table == NULL) { 910 ASSERT(hsize > (1ULL << 8)); 911 hsize >>= 1; 912 goto retry; 913 } 914 915 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 916 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 917 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 918 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 919 920 for (i = 0; i < 256; i++) 921 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 922 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 923 924 for (i = 0; i < BUF_LOCKS; i++) { 925 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 926 NULL, MUTEX_DEFAULT, NULL); 927 } 928 } 929 930 #define ARC_MINTIME (hz>>4) /* 62 ms */ 931 932 static void 933 arc_cksum_verify(arc_buf_t *buf) 934 { 935 zio_cksum_t zc; 936 937 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 938 return; 939 940 mutex_enter(&buf->b_hdr->b_freeze_lock); 941 if (buf->b_hdr->b_freeze_cksum == NULL || 942 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 943 mutex_exit(&buf->b_hdr->b_freeze_lock); 944 return; 945 } 946 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 947 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 948 panic("buffer modified while frozen!"); 949 mutex_exit(&buf->b_hdr->b_freeze_lock); 950 } 951 952 static int 953 arc_cksum_equal(arc_buf_t *buf) 954 { 955 zio_cksum_t zc; 956 int equal; 957 958 mutex_enter(&buf->b_hdr->b_freeze_lock); 959 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 960 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 961 mutex_exit(&buf->b_hdr->b_freeze_lock); 962 963 return (equal); 964 } 965 966 static void 967 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 968 { 969 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 970 return; 971 972 mutex_enter(&buf->b_hdr->b_freeze_lock); 973 if (buf->b_hdr->b_freeze_cksum != NULL) { 974 mutex_exit(&buf->b_hdr->b_freeze_lock); 975 return; 976 } 977 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 978 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 979 buf->b_hdr->b_freeze_cksum); 980 mutex_exit(&buf->b_hdr->b_freeze_lock); 981 arc_buf_watch(buf); 982 } 983 984 #ifndef _KERNEL 985 typedef struct procctl { 986 long cmd; 987 prwatch_t prwatch; 988 } procctl_t; 989 #endif 990 991 /* ARGSUSED */ 992 static void 993 arc_buf_unwatch(arc_buf_t *buf) 994 { 995 #ifndef _KERNEL 996 if (arc_watch) { 997 int result; 998 procctl_t ctl; 999 ctl.cmd = PCWATCH; 1000 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1001 ctl.prwatch.pr_size = 0; 1002 ctl.prwatch.pr_wflags = 0; 1003 result = write(arc_procfd, &ctl, sizeof (ctl)); 1004 ASSERT3U(result, ==, sizeof (ctl)); 1005 } 1006 #endif 1007 } 1008 1009 /* ARGSUSED */ 1010 static void 1011 arc_buf_watch(arc_buf_t *buf) 1012 { 1013 #ifndef _KERNEL 1014 if (arc_watch) { 1015 int result; 1016 procctl_t ctl; 1017 ctl.cmd = PCWATCH; 1018 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1019 ctl.prwatch.pr_size = buf->b_hdr->b_size; 1020 ctl.prwatch.pr_wflags = WA_WRITE; 1021 result = write(arc_procfd, &ctl, sizeof (ctl)); 1022 ASSERT3U(result, ==, sizeof (ctl)); 1023 } 1024 #endif 1025 } 1026 1027 void 1028 arc_buf_thaw(arc_buf_t *buf) 1029 { 1030 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1031 if (buf->b_hdr->b_state != arc_anon) 1032 panic("modifying non-anon buffer!"); 1033 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 1034 panic("modifying buffer while i/o in progress!"); 1035 arc_cksum_verify(buf); 1036 } 1037 1038 mutex_enter(&buf->b_hdr->b_freeze_lock); 1039 if (buf->b_hdr->b_freeze_cksum != NULL) { 1040 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1041 buf->b_hdr->b_freeze_cksum = NULL; 1042 } 1043 1044 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1045 if (buf->b_hdr->b_thawed) 1046 kmem_free(buf->b_hdr->b_thawed, 1); 1047 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP); 1048 } 1049 1050 mutex_exit(&buf->b_hdr->b_freeze_lock); 1051 1052 arc_buf_unwatch(buf); 1053 } 1054 1055 void 1056 arc_buf_freeze(arc_buf_t *buf) 1057 { 1058 kmutex_t *hash_lock; 1059 1060 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1061 return; 1062 1063 hash_lock = HDR_LOCK(buf->b_hdr); 1064 mutex_enter(hash_lock); 1065 1066 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 1067 buf->b_hdr->b_state == arc_anon); 1068 arc_cksum_compute(buf, B_FALSE); 1069 mutex_exit(hash_lock); 1070 1071 } 1072 1073 static void 1074 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1075 { 1076 ASSERT(MUTEX_HELD(hash_lock)); 1077 1078 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 1079 (ab->b_state != arc_anon)) { 1080 uint64_t delta = ab->b_size * ab->b_datacnt; 1081 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 1082 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 1083 1084 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 1085 mutex_enter(&ab->b_state->arcs_mtx); 1086 ASSERT(list_link_active(&ab->b_arc_node)); 1087 list_remove(list, ab); 1088 if (GHOST_STATE(ab->b_state)) { 1089 ASSERT0(ab->b_datacnt); 1090 ASSERT3P(ab->b_buf, ==, NULL); 1091 delta = ab->b_size; 1092 } 1093 ASSERT(delta > 0); 1094 ASSERT3U(*size, >=, delta); 1095 atomic_add_64(size, -delta); 1096 mutex_exit(&ab->b_state->arcs_mtx); 1097 /* remove the prefetch flag if we get a reference */ 1098 if (ab->b_flags & ARC_PREFETCH) 1099 ab->b_flags &= ~ARC_PREFETCH; 1100 } 1101 } 1102 1103 static int 1104 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1105 { 1106 int cnt; 1107 arc_state_t *state = ab->b_state; 1108 1109 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1110 ASSERT(!GHOST_STATE(state)); 1111 1112 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 1113 (state != arc_anon)) { 1114 uint64_t *size = &state->arcs_lsize[ab->b_type]; 1115 1116 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1117 mutex_enter(&state->arcs_mtx); 1118 ASSERT(!list_link_active(&ab->b_arc_node)); 1119 list_insert_head(&state->arcs_list[ab->b_type], ab); 1120 ASSERT(ab->b_datacnt > 0); 1121 atomic_add_64(size, ab->b_size * ab->b_datacnt); 1122 mutex_exit(&state->arcs_mtx); 1123 } 1124 return (cnt); 1125 } 1126 1127 /* 1128 * Move the supplied buffer to the indicated state. The mutex 1129 * for the buffer must be held by the caller. 1130 */ 1131 static void 1132 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 1133 { 1134 arc_state_t *old_state = ab->b_state; 1135 int64_t refcnt = refcount_count(&ab->b_refcnt); 1136 uint64_t from_delta, to_delta; 1137 1138 ASSERT(MUTEX_HELD(hash_lock)); 1139 ASSERT(new_state != old_state); 1140 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 1141 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 1142 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon); 1143 1144 from_delta = to_delta = ab->b_datacnt * ab->b_size; 1145 1146 /* 1147 * If this buffer is evictable, transfer it from the 1148 * old state list to the new state list. 1149 */ 1150 if (refcnt == 0) { 1151 if (old_state != arc_anon) { 1152 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1153 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1154 1155 if (use_mutex) 1156 mutex_enter(&old_state->arcs_mtx); 1157 1158 ASSERT(list_link_active(&ab->b_arc_node)); 1159 list_remove(&old_state->arcs_list[ab->b_type], ab); 1160 1161 /* 1162 * If prefetching out of the ghost cache, 1163 * we will have a non-zero datacnt. 1164 */ 1165 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1166 /* ghost elements have a ghost size */ 1167 ASSERT(ab->b_buf == NULL); 1168 from_delta = ab->b_size; 1169 } 1170 ASSERT3U(*size, >=, from_delta); 1171 atomic_add_64(size, -from_delta); 1172 1173 if (use_mutex) 1174 mutex_exit(&old_state->arcs_mtx); 1175 } 1176 if (new_state != arc_anon) { 1177 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1178 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1179 1180 if (use_mutex) 1181 mutex_enter(&new_state->arcs_mtx); 1182 1183 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1184 1185 /* ghost elements have a ghost size */ 1186 if (GHOST_STATE(new_state)) { 1187 ASSERT(ab->b_datacnt == 0); 1188 ASSERT(ab->b_buf == NULL); 1189 to_delta = ab->b_size; 1190 } 1191 atomic_add_64(size, to_delta); 1192 1193 if (use_mutex) 1194 mutex_exit(&new_state->arcs_mtx); 1195 } 1196 } 1197 1198 ASSERT(!BUF_EMPTY(ab)); 1199 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab)) 1200 buf_hash_remove(ab); 1201 1202 /* adjust state sizes */ 1203 if (to_delta) 1204 atomic_add_64(&new_state->arcs_size, to_delta); 1205 if (from_delta) { 1206 ASSERT3U(old_state->arcs_size, >=, from_delta); 1207 atomic_add_64(&old_state->arcs_size, -from_delta); 1208 } 1209 ab->b_state = new_state; 1210 1211 /* adjust l2arc hdr stats */ 1212 if (new_state == arc_l2c_only) 1213 l2arc_hdr_stat_add(); 1214 else if (old_state == arc_l2c_only) 1215 l2arc_hdr_stat_remove(); 1216 } 1217 1218 void 1219 arc_space_consume(uint64_t space, arc_space_type_t type) 1220 { 1221 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1222 1223 switch (type) { 1224 case ARC_SPACE_DATA: 1225 ARCSTAT_INCR(arcstat_data_size, space); 1226 break; 1227 case ARC_SPACE_OTHER: 1228 ARCSTAT_INCR(arcstat_other_size, space); 1229 break; 1230 case ARC_SPACE_HDRS: 1231 ARCSTAT_INCR(arcstat_hdr_size, space); 1232 break; 1233 case ARC_SPACE_L2HDRS: 1234 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1235 break; 1236 } 1237 1238 ARCSTAT_INCR(arcstat_meta_used, space); 1239 atomic_add_64(&arc_size, space); 1240 } 1241 1242 void 1243 arc_space_return(uint64_t space, arc_space_type_t type) 1244 { 1245 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1246 1247 switch (type) { 1248 case ARC_SPACE_DATA: 1249 ARCSTAT_INCR(arcstat_data_size, -space); 1250 break; 1251 case ARC_SPACE_OTHER: 1252 ARCSTAT_INCR(arcstat_other_size, -space); 1253 break; 1254 case ARC_SPACE_HDRS: 1255 ARCSTAT_INCR(arcstat_hdr_size, -space); 1256 break; 1257 case ARC_SPACE_L2HDRS: 1258 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1259 break; 1260 } 1261 1262 ASSERT(arc_meta_used >= space); 1263 if (arc_meta_max < arc_meta_used) 1264 arc_meta_max = arc_meta_used; 1265 ARCSTAT_INCR(arcstat_meta_used, -space); 1266 ASSERT(arc_size >= space); 1267 atomic_add_64(&arc_size, -space); 1268 } 1269 1270 void * 1271 arc_data_buf_alloc(uint64_t size) 1272 { 1273 if (arc_evict_needed(ARC_BUFC_DATA)) 1274 cv_signal(&arc_reclaim_thr_cv); 1275 atomic_add_64(&arc_size, size); 1276 return (zio_data_buf_alloc(size)); 1277 } 1278 1279 void 1280 arc_data_buf_free(void *buf, uint64_t size) 1281 { 1282 zio_data_buf_free(buf, size); 1283 ASSERT(arc_size >= size); 1284 atomic_add_64(&arc_size, -size); 1285 } 1286 1287 arc_buf_t * 1288 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1289 { 1290 arc_buf_hdr_t *hdr; 1291 arc_buf_t *buf; 1292 1293 ASSERT3U(size, >, 0); 1294 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1295 ASSERT(BUF_EMPTY(hdr)); 1296 hdr->b_size = size; 1297 hdr->b_type = type; 1298 hdr->b_spa = spa_load_guid(spa); 1299 hdr->b_state = arc_anon; 1300 hdr->b_arc_access = 0; 1301 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1302 buf->b_hdr = hdr; 1303 buf->b_data = NULL; 1304 buf->b_efunc = NULL; 1305 buf->b_private = NULL; 1306 buf->b_next = NULL; 1307 hdr->b_buf = buf; 1308 arc_get_data_buf(buf); 1309 hdr->b_datacnt = 1; 1310 hdr->b_flags = 0; 1311 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1312 (void) refcount_add(&hdr->b_refcnt, tag); 1313 1314 return (buf); 1315 } 1316 1317 static char *arc_onloan_tag = "onloan"; 1318 1319 /* 1320 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 1321 * flight data by arc_tempreserve_space() until they are "returned". Loaned 1322 * buffers must be returned to the arc before they can be used by the DMU or 1323 * freed. 1324 */ 1325 arc_buf_t * 1326 arc_loan_buf(spa_t *spa, int size) 1327 { 1328 arc_buf_t *buf; 1329 1330 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 1331 1332 atomic_add_64(&arc_loaned_bytes, size); 1333 return (buf); 1334 } 1335 1336 /* 1337 * Return a loaned arc buffer to the arc. 1338 */ 1339 void 1340 arc_return_buf(arc_buf_t *buf, void *tag) 1341 { 1342 arc_buf_hdr_t *hdr = buf->b_hdr; 1343 1344 ASSERT(buf->b_data != NULL); 1345 (void) refcount_add(&hdr->b_refcnt, tag); 1346 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag); 1347 1348 atomic_add_64(&arc_loaned_bytes, -hdr->b_size); 1349 } 1350 1351 /* Detach an arc_buf from a dbuf (tag) */ 1352 void 1353 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 1354 { 1355 arc_buf_hdr_t *hdr; 1356 1357 ASSERT(buf->b_data != NULL); 1358 hdr = buf->b_hdr; 1359 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag); 1360 (void) refcount_remove(&hdr->b_refcnt, tag); 1361 buf->b_efunc = NULL; 1362 buf->b_private = NULL; 1363 1364 atomic_add_64(&arc_loaned_bytes, hdr->b_size); 1365 } 1366 1367 static arc_buf_t * 1368 arc_buf_clone(arc_buf_t *from) 1369 { 1370 arc_buf_t *buf; 1371 arc_buf_hdr_t *hdr = from->b_hdr; 1372 uint64_t size = hdr->b_size; 1373 1374 ASSERT(hdr->b_state != arc_anon); 1375 1376 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1377 buf->b_hdr = hdr; 1378 buf->b_data = NULL; 1379 buf->b_efunc = NULL; 1380 buf->b_private = NULL; 1381 buf->b_next = hdr->b_buf; 1382 hdr->b_buf = buf; 1383 arc_get_data_buf(buf); 1384 bcopy(from->b_data, buf->b_data, size); 1385 1386 /* 1387 * This buffer already exists in the arc so create a duplicate 1388 * copy for the caller. If the buffer is associated with user data 1389 * then track the size and number of duplicates. These stats will be 1390 * updated as duplicate buffers are created and destroyed. 1391 */ 1392 if (hdr->b_type == ARC_BUFC_DATA) { 1393 ARCSTAT_BUMP(arcstat_duplicate_buffers); 1394 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size); 1395 } 1396 hdr->b_datacnt += 1; 1397 return (buf); 1398 } 1399 1400 void 1401 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1402 { 1403 arc_buf_hdr_t *hdr; 1404 kmutex_t *hash_lock; 1405 1406 /* 1407 * Check to see if this buffer is evicted. Callers 1408 * must verify b_data != NULL to know if the add_ref 1409 * was successful. 1410 */ 1411 mutex_enter(&buf->b_evict_lock); 1412 if (buf->b_data == NULL) { 1413 mutex_exit(&buf->b_evict_lock); 1414 return; 1415 } 1416 hash_lock = HDR_LOCK(buf->b_hdr); 1417 mutex_enter(hash_lock); 1418 hdr = buf->b_hdr; 1419 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1420 mutex_exit(&buf->b_evict_lock); 1421 1422 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1423 add_reference(hdr, hash_lock, tag); 1424 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1425 arc_access(hdr, hash_lock); 1426 mutex_exit(hash_lock); 1427 ARCSTAT_BUMP(arcstat_hits); 1428 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1429 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1430 data, metadata, hits); 1431 } 1432 1433 /* 1434 * Free the arc data buffer. If it is an l2arc write in progress, 1435 * the buffer is placed on l2arc_free_on_write to be freed later. 1436 */ 1437 static void 1438 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t)) 1439 { 1440 arc_buf_hdr_t *hdr = buf->b_hdr; 1441 1442 if (HDR_L2_WRITING(hdr)) { 1443 l2arc_data_free_t *df; 1444 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1445 df->l2df_data = buf->b_data; 1446 df->l2df_size = hdr->b_size; 1447 df->l2df_func = free_func; 1448 mutex_enter(&l2arc_free_on_write_mtx); 1449 list_insert_head(l2arc_free_on_write, df); 1450 mutex_exit(&l2arc_free_on_write_mtx); 1451 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1452 } else { 1453 free_func(buf->b_data, hdr->b_size); 1454 } 1455 } 1456 1457 static void 1458 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 1459 { 1460 arc_buf_t **bufp; 1461 1462 /* free up data associated with the buf */ 1463 if (buf->b_data) { 1464 arc_state_t *state = buf->b_hdr->b_state; 1465 uint64_t size = buf->b_hdr->b_size; 1466 arc_buf_contents_t type = buf->b_hdr->b_type; 1467 1468 arc_cksum_verify(buf); 1469 arc_buf_unwatch(buf); 1470 1471 if (!recycle) { 1472 if (type == ARC_BUFC_METADATA) { 1473 arc_buf_data_free(buf, zio_buf_free); 1474 arc_space_return(size, ARC_SPACE_DATA); 1475 } else { 1476 ASSERT(type == ARC_BUFC_DATA); 1477 arc_buf_data_free(buf, zio_data_buf_free); 1478 ARCSTAT_INCR(arcstat_data_size, -size); 1479 atomic_add_64(&arc_size, -size); 1480 } 1481 } 1482 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1483 uint64_t *cnt = &state->arcs_lsize[type]; 1484 1485 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1486 ASSERT(state != arc_anon); 1487 1488 ASSERT3U(*cnt, >=, size); 1489 atomic_add_64(cnt, -size); 1490 } 1491 ASSERT3U(state->arcs_size, >=, size); 1492 atomic_add_64(&state->arcs_size, -size); 1493 buf->b_data = NULL; 1494 1495 /* 1496 * If we're destroying a duplicate buffer make sure 1497 * that the appropriate statistics are updated. 1498 */ 1499 if (buf->b_hdr->b_datacnt > 1 && 1500 buf->b_hdr->b_type == ARC_BUFC_DATA) { 1501 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 1502 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size); 1503 } 1504 ASSERT(buf->b_hdr->b_datacnt > 0); 1505 buf->b_hdr->b_datacnt -= 1; 1506 } 1507 1508 /* only remove the buf if requested */ 1509 if (!all) 1510 return; 1511 1512 /* remove the buf from the hdr list */ 1513 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1514 continue; 1515 *bufp = buf->b_next; 1516 buf->b_next = NULL; 1517 1518 ASSERT(buf->b_efunc == NULL); 1519 1520 /* clean up the buf */ 1521 buf->b_hdr = NULL; 1522 kmem_cache_free(buf_cache, buf); 1523 } 1524 1525 static void 1526 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1527 { 1528 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1529 ASSERT3P(hdr->b_state, ==, arc_anon); 1530 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1531 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; 1532 1533 if (l2hdr != NULL) { 1534 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx); 1535 /* 1536 * To prevent arc_free() and l2arc_evict() from 1537 * attempting to free the same buffer at the same time, 1538 * a FREE_IN_PROGRESS flag is given to arc_free() to 1539 * give it priority. l2arc_evict() can't destroy this 1540 * header while we are waiting on l2arc_buflist_mtx. 1541 * 1542 * The hdr may be removed from l2ad_buflist before we 1543 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1544 */ 1545 if (!buflist_held) { 1546 mutex_enter(&l2arc_buflist_mtx); 1547 l2hdr = hdr->b_l2hdr; 1548 } 1549 1550 if (l2hdr != NULL) { 1551 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 1552 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1553 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 1554 if (hdr->b_state == arc_l2c_only) 1555 l2arc_hdr_stat_remove(); 1556 hdr->b_l2hdr = NULL; 1557 } 1558 1559 if (!buflist_held) 1560 mutex_exit(&l2arc_buflist_mtx); 1561 } 1562 1563 if (!BUF_EMPTY(hdr)) { 1564 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1565 buf_discard_identity(hdr); 1566 } 1567 while (hdr->b_buf) { 1568 arc_buf_t *buf = hdr->b_buf; 1569 1570 if (buf->b_efunc) { 1571 mutex_enter(&arc_eviction_mtx); 1572 mutex_enter(&buf->b_evict_lock); 1573 ASSERT(buf->b_hdr != NULL); 1574 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1575 hdr->b_buf = buf->b_next; 1576 buf->b_hdr = &arc_eviction_hdr; 1577 buf->b_next = arc_eviction_list; 1578 arc_eviction_list = buf; 1579 mutex_exit(&buf->b_evict_lock); 1580 mutex_exit(&arc_eviction_mtx); 1581 } else { 1582 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1583 } 1584 } 1585 if (hdr->b_freeze_cksum != NULL) { 1586 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1587 hdr->b_freeze_cksum = NULL; 1588 } 1589 if (hdr->b_thawed) { 1590 kmem_free(hdr->b_thawed, 1); 1591 hdr->b_thawed = NULL; 1592 } 1593 1594 ASSERT(!list_link_active(&hdr->b_arc_node)); 1595 ASSERT3P(hdr->b_hash_next, ==, NULL); 1596 ASSERT3P(hdr->b_acb, ==, NULL); 1597 kmem_cache_free(hdr_cache, hdr); 1598 } 1599 1600 void 1601 arc_buf_free(arc_buf_t *buf, void *tag) 1602 { 1603 arc_buf_hdr_t *hdr = buf->b_hdr; 1604 int hashed = hdr->b_state != arc_anon; 1605 1606 ASSERT(buf->b_efunc == NULL); 1607 ASSERT(buf->b_data != NULL); 1608 1609 if (hashed) { 1610 kmutex_t *hash_lock = HDR_LOCK(hdr); 1611 1612 mutex_enter(hash_lock); 1613 hdr = buf->b_hdr; 1614 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1615 1616 (void) remove_reference(hdr, hash_lock, tag); 1617 if (hdr->b_datacnt > 1) { 1618 arc_buf_destroy(buf, FALSE, TRUE); 1619 } else { 1620 ASSERT(buf == hdr->b_buf); 1621 ASSERT(buf->b_efunc == NULL); 1622 hdr->b_flags |= ARC_BUF_AVAILABLE; 1623 } 1624 mutex_exit(hash_lock); 1625 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1626 int destroy_hdr; 1627 /* 1628 * We are in the middle of an async write. Don't destroy 1629 * this buffer unless the write completes before we finish 1630 * decrementing the reference count. 1631 */ 1632 mutex_enter(&arc_eviction_mtx); 1633 (void) remove_reference(hdr, NULL, tag); 1634 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1635 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1636 mutex_exit(&arc_eviction_mtx); 1637 if (destroy_hdr) 1638 arc_hdr_destroy(hdr); 1639 } else { 1640 if (remove_reference(hdr, NULL, tag) > 0) 1641 arc_buf_destroy(buf, FALSE, TRUE); 1642 else 1643 arc_hdr_destroy(hdr); 1644 } 1645 } 1646 1647 boolean_t 1648 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1649 { 1650 arc_buf_hdr_t *hdr = buf->b_hdr; 1651 kmutex_t *hash_lock = HDR_LOCK(hdr); 1652 boolean_t no_callback = (buf->b_efunc == NULL); 1653 1654 if (hdr->b_state == arc_anon) { 1655 ASSERT(hdr->b_datacnt == 1); 1656 arc_buf_free(buf, tag); 1657 return (no_callback); 1658 } 1659 1660 mutex_enter(hash_lock); 1661 hdr = buf->b_hdr; 1662 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1663 ASSERT(hdr->b_state != arc_anon); 1664 ASSERT(buf->b_data != NULL); 1665 1666 (void) remove_reference(hdr, hash_lock, tag); 1667 if (hdr->b_datacnt > 1) { 1668 if (no_callback) 1669 arc_buf_destroy(buf, FALSE, TRUE); 1670 } else if (no_callback) { 1671 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1672 ASSERT(buf->b_efunc == NULL); 1673 hdr->b_flags |= ARC_BUF_AVAILABLE; 1674 } 1675 ASSERT(no_callback || hdr->b_datacnt > 1 || 1676 refcount_is_zero(&hdr->b_refcnt)); 1677 mutex_exit(hash_lock); 1678 return (no_callback); 1679 } 1680 1681 int 1682 arc_buf_size(arc_buf_t *buf) 1683 { 1684 return (buf->b_hdr->b_size); 1685 } 1686 1687 /* 1688 * Called from the DMU to determine if the current buffer should be 1689 * evicted. In order to ensure proper locking, the eviction must be initiated 1690 * from the DMU. Return true if the buffer is associated with user data and 1691 * duplicate buffers still exist. 1692 */ 1693 boolean_t 1694 arc_buf_eviction_needed(arc_buf_t *buf) 1695 { 1696 arc_buf_hdr_t *hdr; 1697 boolean_t evict_needed = B_FALSE; 1698 1699 if (zfs_disable_dup_eviction) 1700 return (B_FALSE); 1701 1702 mutex_enter(&buf->b_evict_lock); 1703 hdr = buf->b_hdr; 1704 if (hdr == NULL) { 1705 /* 1706 * We are in arc_do_user_evicts(); let that function 1707 * perform the eviction. 1708 */ 1709 ASSERT(buf->b_data == NULL); 1710 mutex_exit(&buf->b_evict_lock); 1711 return (B_FALSE); 1712 } else if (buf->b_data == NULL) { 1713 /* 1714 * We have already been added to the arc eviction list; 1715 * recommend eviction. 1716 */ 1717 ASSERT3P(hdr, ==, &arc_eviction_hdr); 1718 mutex_exit(&buf->b_evict_lock); 1719 return (B_TRUE); 1720 } 1721 1722 if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA) 1723 evict_needed = B_TRUE; 1724 1725 mutex_exit(&buf->b_evict_lock); 1726 return (evict_needed); 1727 } 1728 1729 /* 1730 * Evict buffers from list until we've removed the specified number of 1731 * bytes. Move the removed buffers to the appropriate evict state. 1732 * If the recycle flag is set, then attempt to "recycle" a buffer: 1733 * - look for a buffer to evict that is `bytes' long. 1734 * - return the data block from this buffer rather than freeing it. 1735 * This flag is used by callers that are trying to make space for a 1736 * new buffer in a full arc cache. 1737 * 1738 * This function makes a "best effort". It skips over any buffers 1739 * it can't get a hash_lock on, and so may not catch all candidates. 1740 * It may also return without evicting as much space as requested. 1741 */ 1742 static void * 1743 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, 1744 arc_buf_contents_t type) 1745 { 1746 arc_state_t *evicted_state; 1747 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1748 arc_buf_hdr_t *ab, *ab_prev = NULL; 1749 list_t *list = &state->arcs_list[type]; 1750 kmutex_t *hash_lock; 1751 boolean_t have_lock; 1752 void *stolen = NULL; 1753 1754 ASSERT(state == arc_mru || state == arc_mfu); 1755 1756 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1757 1758 mutex_enter(&state->arcs_mtx); 1759 mutex_enter(&evicted_state->arcs_mtx); 1760 1761 for (ab = list_tail(list); ab; ab = ab_prev) { 1762 ab_prev = list_prev(list, ab); 1763 /* prefetch buffers have a minimum lifespan */ 1764 if (HDR_IO_IN_PROGRESS(ab) || 1765 (spa && ab->b_spa != spa) || 1766 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1767 ddi_get_lbolt() - ab->b_arc_access < 1768 arc_min_prefetch_lifespan)) { 1769 skipped++; 1770 continue; 1771 } 1772 /* "lookahead" for better eviction candidate */ 1773 if (recycle && ab->b_size != bytes && 1774 ab_prev && ab_prev->b_size == bytes) 1775 continue; 1776 hash_lock = HDR_LOCK(ab); 1777 have_lock = MUTEX_HELD(hash_lock); 1778 if (have_lock || mutex_tryenter(hash_lock)) { 1779 ASSERT0(refcount_count(&ab->b_refcnt)); 1780 ASSERT(ab->b_datacnt > 0); 1781 while (ab->b_buf) { 1782 arc_buf_t *buf = ab->b_buf; 1783 if (!mutex_tryenter(&buf->b_evict_lock)) { 1784 missed += 1; 1785 break; 1786 } 1787 if (buf->b_data) { 1788 bytes_evicted += ab->b_size; 1789 if (recycle && ab->b_type == type && 1790 ab->b_size == bytes && 1791 !HDR_L2_WRITING(ab)) { 1792 stolen = buf->b_data; 1793 recycle = FALSE; 1794 } 1795 } 1796 if (buf->b_efunc) { 1797 mutex_enter(&arc_eviction_mtx); 1798 arc_buf_destroy(buf, 1799 buf->b_data == stolen, FALSE); 1800 ab->b_buf = buf->b_next; 1801 buf->b_hdr = &arc_eviction_hdr; 1802 buf->b_next = arc_eviction_list; 1803 arc_eviction_list = buf; 1804 mutex_exit(&arc_eviction_mtx); 1805 mutex_exit(&buf->b_evict_lock); 1806 } else { 1807 mutex_exit(&buf->b_evict_lock); 1808 arc_buf_destroy(buf, 1809 buf->b_data == stolen, TRUE); 1810 } 1811 } 1812 1813 if (ab->b_l2hdr) { 1814 ARCSTAT_INCR(arcstat_evict_l2_cached, 1815 ab->b_size); 1816 } else { 1817 if (l2arc_write_eligible(ab->b_spa, ab)) { 1818 ARCSTAT_INCR(arcstat_evict_l2_eligible, 1819 ab->b_size); 1820 } else { 1821 ARCSTAT_INCR( 1822 arcstat_evict_l2_ineligible, 1823 ab->b_size); 1824 } 1825 } 1826 1827 if (ab->b_datacnt == 0) { 1828 arc_change_state(evicted_state, ab, hash_lock); 1829 ASSERT(HDR_IN_HASH_TABLE(ab)); 1830 ab->b_flags |= ARC_IN_HASH_TABLE; 1831 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1832 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1833 } 1834 if (!have_lock) 1835 mutex_exit(hash_lock); 1836 if (bytes >= 0 && bytes_evicted >= bytes) 1837 break; 1838 } else { 1839 missed += 1; 1840 } 1841 } 1842 1843 mutex_exit(&evicted_state->arcs_mtx); 1844 mutex_exit(&state->arcs_mtx); 1845 1846 if (bytes_evicted < bytes) 1847 dprintf("only evicted %lld bytes from %x", 1848 (longlong_t)bytes_evicted, state); 1849 1850 if (skipped) 1851 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1852 1853 if (missed) 1854 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1855 1856 /* 1857 * We have just evicted some data into the ghost state, make 1858 * sure we also adjust the ghost state size if necessary. 1859 */ 1860 if (arc_no_grow && 1861 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) { 1862 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size + 1863 arc_mru_ghost->arcs_size - arc_c; 1864 1865 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) { 1866 int64_t todelete = 1867 MIN(arc_mru_ghost->arcs_lsize[type], mru_over); 1868 arc_evict_ghost(arc_mru_ghost, NULL, todelete); 1869 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) { 1870 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type], 1871 arc_mru_ghost->arcs_size + 1872 arc_mfu_ghost->arcs_size - arc_c); 1873 arc_evict_ghost(arc_mfu_ghost, NULL, todelete); 1874 } 1875 } 1876 1877 return (stolen); 1878 } 1879 1880 /* 1881 * Remove buffers from list until we've removed the specified number of 1882 * bytes. Destroy the buffers that are removed. 1883 */ 1884 static void 1885 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes) 1886 { 1887 arc_buf_hdr_t *ab, *ab_prev; 1888 arc_buf_hdr_t marker = { 0 }; 1889 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1890 kmutex_t *hash_lock; 1891 uint64_t bytes_deleted = 0; 1892 uint64_t bufs_skipped = 0; 1893 1894 ASSERT(GHOST_STATE(state)); 1895 top: 1896 mutex_enter(&state->arcs_mtx); 1897 for (ab = list_tail(list); ab; ab = ab_prev) { 1898 ab_prev = list_prev(list, ab); 1899 if (spa && ab->b_spa != spa) 1900 continue; 1901 1902 /* ignore markers */ 1903 if (ab->b_spa == 0) 1904 continue; 1905 1906 hash_lock = HDR_LOCK(ab); 1907 /* caller may be trying to modify this buffer, skip it */ 1908 if (MUTEX_HELD(hash_lock)) 1909 continue; 1910 if (mutex_tryenter(hash_lock)) { 1911 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1912 ASSERT(ab->b_buf == NULL); 1913 ARCSTAT_BUMP(arcstat_deleted); 1914 bytes_deleted += ab->b_size; 1915 1916 if (ab->b_l2hdr != NULL) { 1917 /* 1918 * This buffer is cached on the 2nd Level ARC; 1919 * don't destroy the header. 1920 */ 1921 arc_change_state(arc_l2c_only, ab, hash_lock); 1922 mutex_exit(hash_lock); 1923 } else { 1924 arc_change_state(arc_anon, ab, hash_lock); 1925 mutex_exit(hash_lock); 1926 arc_hdr_destroy(ab); 1927 } 1928 1929 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1930 if (bytes >= 0 && bytes_deleted >= bytes) 1931 break; 1932 } else if (bytes < 0) { 1933 /* 1934 * Insert a list marker and then wait for the 1935 * hash lock to become available. Once its 1936 * available, restart from where we left off. 1937 */ 1938 list_insert_after(list, ab, &marker); 1939 mutex_exit(&state->arcs_mtx); 1940 mutex_enter(hash_lock); 1941 mutex_exit(hash_lock); 1942 mutex_enter(&state->arcs_mtx); 1943 ab_prev = list_prev(list, &marker); 1944 list_remove(list, &marker); 1945 } else 1946 bufs_skipped += 1; 1947 } 1948 mutex_exit(&state->arcs_mtx); 1949 1950 if (list == &state->arcs_list[ARC_BUFC_DATA] && 1951 (bytes < 0 || bytes_deleted < bytes)) { 1952 list = &state->arcs_list[ARC_BUFC_METADATA]; 1953 goto top; 1954 } 1955 1956 if (bufs_skipped) { 1957 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 1958 ASSERT(bytes >= 0); 1959 } 1960 1961 if (bytes_deleted < bytes) 1962 dprintf("only deleted %lld bytes from %p", 1963 (longlong_t)bytes_deleted, state); 1964 } 1965 1966 static void 1967 arc_adjust(void) 1968 { 1969 int64_t adjustment, delta; 1970 1971 /* 1972 * Adjust MRU size 1973 */ 1974 1975 adjustment = MIN((int64_t)(arc_size - arc_c), 1976 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - 1977 arc_p)); 1978 1979 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 1980 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); 1981 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA); 1982 adjustment -= delta; 1983 } 1984 1985 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1986 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); 1987 (void) arc_evict(arc_mru, NULL, delta, FALSE, 1988 ARC_BUFC_METADATA); 1989 } 1990 1991 /* 1992 * Adjust MFU size 1993 */ 1994 1995 adjustment = arc_size - arc_c; 1996 1997 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 1998 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); 1999 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA); 2000 adjustment -= delta; 2001 } 2002 2003 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 2004 int64_t delta = MIN(adjustment, 2005 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); 2006 (void) arc_evict(arc_mfu, NULL, delta, FALSE, 2007 ARC_BUFC_METADATA); 2008 } 2009 2010 /* 2011 * Adjust ghost lists 2012 */ 2013 2014 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; 2015 2016 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { 2017 delta = MIN(arc_mru_ghost->arcs_size, adjustment); 2018 arc_evict_ghost(arc_mru_ghost, NULL, delta); 2019 } 2020 2021 adjustment = 2022 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; 2023 2024 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { 2025 delta = MIN(arc_mfu_ghost->arcs_size, adjustment); 2026 arc_evict_ghost(arc_mfu_ghost, NULL, delta); 2027 } 2028 } 2029 2030 static void 2031 arc_do_user_evicts(void) 2032 { 2033 mutex_enter(&arc_eviction_mtx); 2034 while (arc_eviction_list != NULL) { 2035 arc_buf_t *buf = arc_eviction_list; 2036 arc_eviction_list = buf->b_next; 2037 mutex_enter(&buf->b_evict_lock); 2038 buf->b_hdr = NULL; 2039 mutex_exit(&buf->b_evict_lock); 2040 mutex_exit(&arc_eviction_mtx); 2041 2042 if (buf->b_efunc != NULL) 2043 VERIFY(buf->b_efunc(buf) == 0); 2044 2045 buf->b_efunc = NULL; 2046 buf->b_private = NULL; 2047 kmem_cache_free(buf_cache, buf); 2048 mutex_enter(&arc_eviction_mtx); 2049 } 2050 mutex_exit(&arc_eviction_mtx); 2051 } 2052 2053 /* 2054 * Flush all *evictable* data from the cache for the given spa. 2055 * NOTE: this will not touch "active" (i.e. referenced) data. 2056 */ 2057 void 2058 arc_flush(spa_t *spa) 2059 { 2060 uint64_t guid = 0; 2061 2062 if (spa) 2063 guid = spa_load_guid(spa); 2064 2065 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 2066 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); 2067 if (spa) 2068 break; 2069 } 2070 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 2071 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); 2072 if (spa) 2073 break; 2074 } 2075 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 2076 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); 2077 if (spa) 2078 break; 2079 } 2080 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 2081 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); 2082 if (spa) 2083 break; 2084 } 2085 2086 arc_evict_ghost(arc_mru_ghost, guid, -1); 2087 arc_evict_ghost(arc_mfu_ghost, guid, -1); 2088 2089 mutex_enter(&arc_reclaim_thr_lock); 2090 arc_do_user_evicts(); 2091 mutex_exit(&arc_reclaim_thr_lock); 2092 ASSERT(spa || arc_eviction_list == NULL); 2093 } 2094 2095 void 2096 arc_shrink(void) 2097 { 2098 if (arc_c > arc_c_min) { 2099 uint64_t to_free; 2100 2101 #ifdef _KERNEL 2102 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 2103 #else 2104 to_free = arc_c >> arc_shrink_shift; 2105 #endif 2106 if (arc_c > arc_c_min + to_free) 2107 atomic_add_64(&arc_c, -to_free); 2108 else 2109 arc_c = arc_c_min; 2110 2111 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 2112 if (arc_c > arc_size) 2113 arc_c = MAX(arc_size, arc_c_min); 2114 if (arc_p > arc_c) 2115 arc_p = (arc_c >> 1); 2116 ASSERT(arc_c >= arc_c_min); 2117 ASSERT((int64_t)arc_p >= 0); 2118 } 2119 2120 if (arc_size > arc_c) 2121 arc_adjust(); 2122 } 2123 2124 /* 2125 * Determine if the system is under memory pressure and is asking 2126 * to reclaim memory. A return value of 1 indicates that the system 2127 * is under memory pressure and that the arc should adjust accordingly. 2128 */ 2129 static int 2130 arc_reclaim_needed(void) 2131 { 2132 uint64_t extra; 2133 2134 #ifdef _KERNEL 2135 2136 if (needfree) 2137 return (1); 2138 2139 /* 2140 * take 'desfree' extra pages, so we reclaim sooner, rather than later 2141 */ 2142 extra = desfree; 2143 2144 /* 2145 * check that we're out of range of the pageout scanner. It starts to 2146 * schedule paging if freemem is less than lotsfree and needfree. 2147 * lotsfree is the high-water mark for pageout, and needfree is the 2148 * number of needed free pages. We add extra pages here to make sure 2149 * the scanner doesn't start up while we're freeing memory. 2150 */ 2151 if (freemem < lotsfree + needfree + extra) 2152 return (1); 2153 2154 /* 2155 * check to make sure that swapfs has enough space so that anon 2156 * reservations can still succeed. anon_resvmem() checks that the 2157 * availrmem is greater than swapfs_minfree, and the number of reserved 2158 * swap pages. We also add a bit of extra here just to prevent 2159 * circumstances from getting really dire. 2160 */ 2161 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 2162 return (1); 2163 2164 #if defined(__i386) 2165 /* 2166 * If we're on an i386 platform, it's possible that we'll exhaust the 2167 * kernel heap space before we ever run out of available physical 2168 * memory. Most checks of the size of the heap_area compare against 2169 * tune.t_minarmem, which is the minimum available real memory that we 2170 * can have in the system. However, this is generally fixed at 25 pages 2171 * which is so low that it's useless. In this comparison, we seek to 2172 * calculate the total heap-size, and reclaim if more than 3/4ths of the 2173 * heap is allocated. (Or, in the calculation, if less than 1/4th is 2174 * free) 2175 */ 2176 if (vmem_size(heap_arena, VMEM_FREE) < 2177 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2)) 2178 return (1); 2179 #endif 2180 2181 /* 2182 * If zio data pages are being allocated out of a separate heap segment, 2183 * then enforce that the size of available vmem for this arena remains 2184 * above about 1/16th free. 2185 * 2186 * Note: The 1/16th arena free requirement was put in place 2187 * to aggressively evict memory from the arc in order to avoid 2188 * memory fragmentation issues. 2189 */ 2190 if (zio_arena != NULL && 2191 vmem_size(zio_arena, VMEM_FREE) < 2192 (vmem_size(zio_arena, VMEM_ALLOC) >> 4)) 2193 return (1); 2194 #else 2195 if (spa_get_random(100) == 0) 2196 return (1); 2197 #endif 2198 return (0); 2199 } 2200 2201 static void 2202 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 2203 { 2204 size_t i; 2205 kmem_cache_t *prev_cache = NULL; 2206 kmem_cache_t *prev_data_cache = NULL; 2207 extern kmem_cache_t *zio_buf_cache[]; 2208 extern kmem_cache_t *zio_data_buf_cache[]; 2209 2210 #ifdef _KERNEL 2211 if (arc_meta_used >= arc_meta_limit) { 2212 /* 2213 * We are exceeding our meta-data cache limit. 2214 * Purge some DNLC entries to release holds on meta-data. 2215 */ 2216 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 2217 } 2218 #if defined(__i386) 2219 /* 2220 * Reclaim unused memory from all kmem caches. 2221 */ 2222 kmem_reap(); 2223 #endif 2224 #endif 2225 2226 /* 2227 * An aggressive reclamation will shrink the cache size as well as 2228 * reap free buffers from the arc kmem caches. 2229 */ 2230 if (strat == ARC_RECLAIM_AGGR) 2231 arc_shrink(); 2232 2233 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 2234 if (zio_buf_cache[i] != prev_cache) { 2235 prev_cache = zio_buf_cache[i]; 2236 kmem_cache_reap_now(zio_buf_cache[i]); 2237 } 2238 if (zio_data_buf_cache[i] != prev_data_cache) { 2239 prev_data_cache = zio_data_buf_cache[i]; 2240 kmem_cache_reap_now(zio_data_buf_cache[i]); 2241 } 2242 } 2243 kmem_cache_reap_now(buf_cache); 2244 kmem_cache_reap_now(hdr_cache); 2245 2246 /* 2247 * Ask the vmem areana to reclaim unused memory from its 2248 * quantum caches. 2249 */ 2250 if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR) 2251 vmem_qcache_reap(zio_arena); 2252 } 2253 2254 static void 2255 arc_reclaim_thread(void) 2256 { 2257 clock_t growtime = 0; 2258 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 2259 callb_cpr_t cpr; 2260 2261 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 2262 2263 mutex_enter(&arc_reclaim_thr_lock); 2264 while (arc_thread_exit == 0) { 2265 if (arc_reclaim_needed()) { 2266 2267 if (arc_no_grow) { 2268 if (last_reclaim == ARC_RECLAIM_CONS) { 2269 last_reclaim = ARC_RECLAIM_AGGR; 2270 } else { 2271 last_reclaim = ARC_RECLAIM_CONS; 2272 } 2273 } else { 2274 arc_no_grow = TRUE; 2275 last_reclaim = ARC_RECLAIM_AGGR; 2276 membar_producer(); 2277 } 2278 2279 /* reset the growth delay for every reclaim */ 2280 growtime = ddi_get_lbolt() + (arc_grow_retry * hz); 2281 2282 arc_kmem_reap_now(last_reclaim); 2283 arc_warm = B_TRUE; 2284 2285 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) { 2286 arc_no_grow = FALSE; 2287 } 2288 2289 arc_adjust(); 2290 2291 if (arc_eviction_list != NULL) 2292 arc_do_user_evicts(); 2293 2294 /* block until needed, or one second, whichever is shorter */ 2295 CALLB_CPR_SAFE_BEGIN(&cpr); 2296 (void) cv_timedwait(&arc_reclaim_thr_cv, 2297 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz)); 2298 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 2299 } 2300 2301 arc_thread_exit = 0; 2302 cv_broadcast(&arc_reclaim_thr_cv); 2303 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 2304 thread_exit(); 2305 } 2306 2307 /* 2308 * Adapt arc info given the number of bytes we are trying to add and 2309 * the state that we are comming from. This function is only called 2310 * when we are adding new content to the cache. 2311 */ 2312 static void 2313 arc_adapt(int bytes, arc_state_t *state) 2314 { 2315 int mult; 2316 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 2317 2318 if (state == arc_l2c_only) 2319 return; 2320 2321 ASSERT(bytes > 0); 2322 /* 2323 * Adapt the target size of the MRU list: 2324 * - if we just hit in the MRU ghost list, then increase 2325 * the target size of the MRU list. 2326 * - if we just hit in the MFU ghost list, then increase 2327 * the target size of the MFU list by decreasing the 2328 * target size of the MRU list. 2329 */ 2330 if (state == arc_mru_ghost) { 2331 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2332 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2333 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 2334 2335 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 2336 } else if (state == arc_mfu_ghost) { 2337 uint64_t delta; 2338 2339 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2340 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2341 mult = MIN(mult, 10); 2342 2343 delta = MIN(bytes * mult, arc_p); 2344 arc_p = MAX(arc_p_min, arc_p - delta); 2345 } 2346 ASSERT((int64_t)arc_p >= 0); 2347 2348 if (arc_reclaim_needed()) { 2349 cv_signal(&arc_reclaim_thr_cv); 2350 return; 2351 } 2352 2353 if (arc_no_grow) 2354 return; 2355 2356 if (arc_c >= arc_c_max) 2357 return; 2358 2359 /* 2360 * If we're within (2 * maxblocksize) bytes of the target 2361 * cache size, increment the target cache size 2362 */ 2363 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2364 atomic_add_64(&arc_c, (int64_t)bytes); 2365 if (arc_c > arc_c_max) 2366 arc_c = arc_c_max; 2367 else if (state == arc_anon) 2368 atomic_add_64(&arc_p, (int64_t)bytes); 2369 if (arc_p > arc_c) 2370 arc_p = arc_c; 2371 } 2372 ASSERT((int64_t)arc_p >= 0); 2373 } 2374 2375 /* 2376 * Check if the cache has reached its limits and eviction is required 2377 * prior to insert. 2378 */ 2379 static int 2380 arc_evict_needed(arc_buf_contents_t type) 2381 { 2382 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2383 return (1); 2384 2385 if (arc_reclaim_needed()) 2386 return (1); 2387 2388 return (arc_size > arc_c); 2389 } 2390 2391 /* 2392 * The buffer, supplied as the first argument, needs a data block. 2393 * So, if we are at cache max, determine which cache should be victimized. 2394 * We have the following cases: 2395 * 2396 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2397 * In this situation if we're out of space, but the resident size of the MFU is 2398 * under the limit, victimize the MFU cache to satisfy this insertion request. 2399 * 2400 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2401 * Here, we've used up all of the available space for the MRU, so we need to 2402 * evict from our own cache instead. Evict from the set of resident MRU 2403 * entries. 2404 * 2405 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2406 * c minus p represents the MFU space in the cache, since p is the size of the 2407 * cache that is dedicated to the MRU. In this situation there's still space on 2408 * the MFU side, so the MRU side needs to be victimized. 2409 * 2410 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2411 * MFU's resident set is consuming more space than it has been allotted. In 2412 * this situation, we must victimize our own cache, the MFU, for this insertion. 2413 */ 2414 static void 2415 arc_get_data_buf(arc_buf_t *buf) 2416 { 2417 arc_state_t *state = buf->b_hdr->b_state; 2418 uint64_t size = buf->b_hdr->b_size; 2419 arc_buf_contents_t type = buf->b_hdr->b_type; 2420 2421 arc_adapt(size, state); 2422 2423 /* 2424 * We have not yet reached cache maximum size, 2425 * just allocate a new buffer. 2426 */ 2427 if (!arc_evict_needed(type)) { 2428 if (type == ARC_BUFC_METADATA) { 2429 buf->b_data = zio_buf_alloc(size); 2430 arc_space_consume(size, ARC_SPACE_DATA); 2431 } else { 2432 ASSERT(type == ARC_BUFC_DATA); 2433 buf->b_data = zio_data_buf_alloc(size); 2434 ARCSTAT_INCR(arcstat_data_size, size); 2435 atomic_add_64(&arc_size, size); 2436 } 2437 goto out; 2438 } 2439 2440 /* 2441 * If we are prefetching from the mfu ghost list, this buffer 2442 * will end up on the mru list; so steal space from there. 2443 */ 2444 if (state == arc_mfu_ghost) 2445 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2446 else if (state == arc_mru_ghost) 2447 state = arc_mru; 2448 2449 if (state == arc_mru || state == arc_anon) { 2450 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2451 state = (arc_mfu->arcs_lsize[type] >= size && 2452 arc_p > mru_used) ? arc_mfu : arc_mru; 2453 } else { 2454 /* MFU cases */ 2455 uint64_t mfu_space = arc_c - arc_p; 2456 state = (arc_mru->arcs_lsize[type] >= size && 2457 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2458 } 2459 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2460 if (type == ARC_BUFC_METADATA) { 2461 buf->b_data = zio_buf_alloc(size); 2462 arc_space_consume(size, ARC_SPACE_DATA); 2463 } else { 2464 ASSERT(type == ARC_BUFC_DATA); 2465 buf->b_data = zio_data_buf_alloc(size); 2466 ARCSTAT_INCR(arcstat_data_size, size); 2467 atomic_add_64(&arc_size, size); 2468 } 2469 ARCSTAT_BUMP(arcstat_recycle_miss); 2470 } 2471 ASSERT(buf->b_data != NULL); 2472 out: 2473 /* 2474 * Update the state size. Note that ghost states have a 2475 * "ghost size" and so don't need to be updated. 2476 */ 2477 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2478 arc_buf_hdr_t *hdr = buf->b_hdr; 2479 2480 atomic_add_64(&hdr->b_state->arcs_size, size); 2481 if (list_link_active(&hdr->b_arc_node)) { 2482 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2483 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2484 } 2485 /* 2486 * If we are growing the cache, and we are adding anonymous 2487 * data, and we have outgrown arc_p, update arc_p 2488 */ 2489 if (arc_size < arc_c && hdr->b_state == arc_anon && 2490 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2491 arc_p = MIN(arc_c, arc_p + size); 2492 } 2493 } 2494 2495 /* 2496 * This routine is called whenever a buffer is accessed. 2497 * NOTE: the hash lock is dropped in this function. 2498 */ 2499 static void 2500 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2501 { 2502 clock_t now; 2503 2504 ASSERT(MUTEX_HELD(hash_lock)); 2505 2506 if (buf->b_state == arc_anon) { 2507 /* 2508 * This buffer is not in the cache, and does not 2509 * appear in our "ghost" list. Add the new buffer 2510 * to the MRU state. 2511 */ 2512 2513 ASSERT(buf->b_arc_access == 0); 2514 buf->b_arc_access = ddi_get_lbolt(); 2515 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2516 arc_change_state(arc_mru, buf, hash_lock); 2517 2518 } else if (buf->b_state == arc_mru) { 2519 now = ddi_get_lbolt(); 2520 2521 /* 2522 * If this buffer is here because of a prefetch, then either: 2523 * - clear the flag if this is a "referencing" read 2524 * (any subsequent access will bump this into the MFU state). 2525 * or 2526 * - move the buffer to the head of the list if this is 2527 * another prefetch (to make it less likely to be evicted). 2528 */ 2529 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2530 if (refcount_count(&buf->b_refcnt) == 0) { 2531 ASSERT(list_link_active(&buf->b_arc_node)); 2532 } else { 2533 buf->b_flags &= ~ARC_PREFETCH; 2534 ARCSTAT_BUMP(arcstat_mru_hits); 2535 } 2536 buf->b_arc_access = now; 2537 return; 2538 } 2539 2540 /* 2541 * This buffer has been "accessed" only once so far, 2542 * but it is still in the cache. Move it to the MFU 2543 * state. 2544 */ 2545 if (now > buf->b_arc_access + ARC_MINTIME) { 2546 /* 2547 * More than 125ms have passed since we 2548 * instantiated this buffer. Move it to the 2549 * most frequently used state. 2550 */ 2551 buf->b_arc_access = now; 2552 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2553 arc_change_state(arc_mfu, buf, hash_lock); 2554 } 2555 ARCSTAT_BUMP(arcstat_mru_hits); 2556 } else if (buf->b_state == arc_mru_ghost) { 2557 arc_state_t *new_state; 2558 /* 2559 * This buffer has been "accessed" recently, but 2560 * was evicted from the cache. Move it to the 2561 * MFU state. 2562 */ 2563 2564 if (buf->b_flags & ARC_PREFETCH) { 2565 new_state = arc_mru; 2566 if (refcount_count(&buf->b_refcnt) > 0) 2567 buf->b_flags &= ~ARC_PREFETCH; 2568 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2569 } else { 2570 new_state = arc_mfu; 2571 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2572 } 2573 2574 buf->b_arc_access = ddi_get_lbolt(); 2575 arc_change_state(new_state, buf, hash_lock); 2576 2577 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2578 } else if (buf->b_state == arc_mfu) { 2579 /* 2580 * This buffer has been accessed more than once and is 2581 * still in the cache. Keep it in the MFU state. 2582 * 2583 * NOTE: an add_reference() that occurred when we did 2584 * the arc_read() will have kicked this off the list. 2585 * If it was a prefetch, we will explicitly move it to 2586 * the head of the list now. 2587 */ 2588 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2589 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2590 ASSERT(list_link_active(&buf->b_arc_node)); 2591 } 2592 ARCSTAT_BUMP(arcstat_mfu_hits); 2593 buf->b_arc_access = ddi_get_lbolt(); 2594 } else if (buf->b_state == arc_mfu_ghost) { 2595 arc_state_t *new_state = arc_mfu; 2596 /* 2597 * This buffer has been accessed more than once but has 2598 * been evicted from the cache. Move it back to the 2599 * MFU state. 2600 */ 2601 2602 if (buf->b_flags & ARC_PREFETCH) { 2603 /* 2604 * This is a prefetch access... 2605 * move this block back to the MRU state. 2606 */ 2607 ASSERT0(refcount_count(&buf->b_refcnt)); 2608 new_state = arc_mru; 2609 } 2610 2611 buf->b_arc_access = ddi_get_lbolt(); 2612 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2613 arc_change_state(new_state, buf, hash_lock); 2614 2615 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2616 } else if (buf->b_state == arc_l2c_only) { 2617 /* 2618 * This buffer is on the 2nd Level ARC. 2619 */ 2620 2621 buf->b_arc_access = ddi_get_lbolt(); 2622 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2623 arc_change_state(arc_mfu, buf, hash_lock); 2624 } else { 2625 ASSERT(!"invalid arc state"); 2626 } 2627 } 2628 2629 /* a generic arc_done_func_t which you can use */ 2630 /* ARGSUSED */ 2631 void 2632 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2633 { 2634 if (zio == NULL || zio->io_error == 0) 2635 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2636 VERIFY(arc_buf_remove_ref(buf, arg)); 2637 } 2638 2639 /* a generic arc_done_func_t */ 2640 void 2641 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2642 { 2643 arc_buf_t **bufp = arg; 2644 if (zio && zio->io_error) { 2645 VERIFY(arc_buf_remove_ref(buf, arg)); 2646 *bufp = NULL; 2647 } else { 2648 *bufp = buf; 2649 ASSERT(buf->b_data); 2650 } 2651 } 2652 2653 static void 2654 arc_read_done(zio_t *zio) 2655 { 2656 arc_buf_hdr_t *hdr, *found; 2657 arc_buf_t *buf; 2658 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2659 kmutex_t *hash_lock; 2660 arc_callback_t *callback_list, *acb; 2661 int freeable = FALSE; 2662 2663 buf = zio->io_private; 2664 hdr = buf->b_hdr; 2665 2666 /* 2667 * The hdr was inserted into hash-table and removed from lists 2668 * prior to starting I/O. We should find this header, since 2669 * it's in the hash table, and it should be legit since it's 2670 * not possible to evict it during the I/O. The only possible 2671 * reason for it not to be found is if we were freed during the 2672 * read. 2673 */ 2674 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth, 2675 &hash_lock); 2676 2677 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 2678 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2679 (found == hdr && HDR_L2_READING(hdr))); 2680 2681 hdr->b_flags &= ~ARC_L2_EVICTED; 2682 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2683 hdr->b_flags &= ~ARC_L2CACHE; 2684 2685 /* byteswap if necessary */ 2686 callback_list = hdr->b_acb; 2687 ASSERT(callback_list != NULL); 2688 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { 2689 dmu_object_byteswap_t bswap = 2690 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 2691 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2692 byteswap_uint64_array : 2693 dmu_ot_byteswap[bswap].ob_func; 2694 func(buf->b_data, hdr->b_size); 2695 } 2696 2697 arc_cksum_compute(buf, B_FALSE); 2698 arc_buf_watch(buf); 2699 2700 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) { 2701 /* 2702 * Only call arc_access on anonymous buffers. This is because 2703 * if we've issued an I/O for an evicted buffer, we've already 2704 * called arc_access (to prevent any simultaneous readers from 2705 * getting confused). 2706 */ 2707 arc_access(hdr, hash_lock); 2708 } 2709 2710 /* create copies of the data buffer for the callers */ 2711 abuf = buf; 2712 for (acb = callback_list; acb; acb = acb->acb_next) { 2713 if (acb->acb_done) { 2714 if (abuf == NULL) { 2715 ARCSTAT_BUMP(arcstat_duplicate_reads); 2716 abuf = arc_buf_clone(buf); 2717 } 2718 acb->acb_buf = abuf; 2719 abuf = NULL; 2720 } 2721 } 2722 hdr->b_acb = NULL; 2723 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2724 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2725 if (abuf == buf) { 2726 ASSERT(buf->b_efunc == NULL); 2727 ASSERT(hdr->b_datacnt == 1); 2728 hdr->b_flags |= ARC_BUF_AVAILABLE; 2729 } 2730 2731 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2732 2733 if (zio->io_error != 0) { 2734 hdr->b_flags |= ARC_IO_ERROR; 2735 if (hdr->b_state != arc_anon) 2736 arc_change_state(arc_anon, hdr, hash_lock); 2737 if (HDR_IN_HASH_TABLE(hdr)) 2738 buf_hash_remove(hdr); 2739 freeable = refcount_is_zero(&hdr->b_refcnt); 2740 } 2741 2742 /* 2743 * Broadcast before we drop the hash_lock to avoid the possibility 2744 * that the hdr (and hence the cv) might be freed before we get to 2745 * the cv_broadcast(). 2746 */ 2747 cv_broadcast(&hdr->b_cv); 2748 2749 if (hash_lock) { 2750 mutex_exit(hash_lock); 2751 } else { 2752 /* 2753 * This block was freed while we waited for the read to 2754 * complete. It has been removed from the hash table and 2755 * moved to the anonymous state (so that it won't show up 2756 * in the cache). 2757 */ 2758 ASSERT3P(hdr->b_state, ==, arc_anon); 2759 freeable = refcount_is_zero(&hdr->b_refcnt); 2760 } 2761 2762 /* execute each callback and free its structure */ 2763 while ((acb = callback_list) != NULL) { 2764 if (acb->acb_done) 2765 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2766 2767 if (acb->acb_zio_dummy != NULL) { 2768 acb->acb_zio_dummy->io_error = zio->io_error; 2769 zio_nowait(acb->acb_zio_dummy); 2770 } 2771 2772 callback_list = acb->acb_next; 2773 kmem_free(acb, sizeof (arc_callback_t)); 2774 } 2775 2776 if (freeable) 2777 arc_hdr_destroy(hdr); 2778 } 2779 2780 /* 2781 * "Read" the block at the specified DVA (in bp) via the 2782 * cache. If the block is found in the cache, invoke the provided 2783 * callback immediately and return. Note that the `zio' parameter 2784 * in the callback will be NULL in this case, since no IO was 2785 * required. If the block is not in the cache pass the read request 2786 * on to the spa with a substitute callback function, so that the 2787 * requested block will be added to the cache. 2788 * 2789 * If a read request arrives for a block that has a read in-progress, 2790 * either wait for the in-progress read to complete (and return the 2791 * results); or, if this is a read with a "done" func, add a record 2792 * to the read to invoke the "done" func when the read completes, 2793 * and return; or just return. 2794 * 2795 * arc_read_done() will invoke all the requested "done" functions 2796 * for readers of this block. 2797 */ 2798 int 2799 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, 2800 void *private, int priority, int zio_flags, uint32_t *arc_flags, 2801 const zbookmark_t *zb) 2802 { 2803 arc_buf_hdr_t *hdr; 2804 arc_buf_t *buf = NULL; 2805 kmutex_t *hash_lock; 2806 zio_t *rzio; 2807 uint64_t guid = spa_load_guid(spa); 2808 2809 top: 2810 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp), 2811 &hash_lock); 2812 if (hdr && hdr->b_datacnt > 0) { 2813 2814 *arc_flags |= ARC_CACHED; 2815 2816 if (HDR_IO_IN_PROGRESS(hdr)) { 2817 2818 if (*arc_flags & ARC_WAIT) { 2819 cv_wait(&hdr->b_cv, hash_lock); 2820 mutex_exit(hash_lock); 2821 goto top; 2822 } 2823 ASSERT(*arc_flags & ARC_NOWAIT); 2824 2825 if (done) { 2826 arc_callback_t *acb = NULL; 2827 2828 acb = kmem_zalloc(sizeof (arc_callback_t), 2829 KM_SLEEP); 2830 acb->acb_done = done; 2831 acb->acb_private = private; 2832 if (pio != NULL) 2833 acb->acb_zio_dummy = zio_null(pio, 2834 spa, NULL, NULL, NULL, zio_flags); 2835 2836 ASSERT(acb->acb_done != NULL); 2837 acb->acb_next = hdr->b_acb; 2838 hdr->b_acb = acb; 2839 add_reference(hdr, hash_lock, private); 2840 mutex_exit(hash_lock); 2841 return (0); 2842 } 2843 mutex_exit(hash_lock); 2844 return (0); 2845 } 2846 2847 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2848 2849 if (done) { 2850 add_reference(hdr, hash_lock, private); 2851 /* 2852 * If this block is already in use, create a new 2853 * copy of the data so that we will be guaranteed 2854 * that arc_release() will always succeed. 2855 */ 2856 buf = hdr->b_buf; 2857 ASSERT(buf); 2858 ASSERT(buf->b_data); 2859 if (HDR_BUF_AVAILABLE(hdr)) { 2860 ASSERT(buf->b_efunc == NULL); 2861 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2862 } else { 2863 buf = arc_buf_clone(buf); 2864 } 2865 2866 } else if (*arc_flags & ARC_PREFETCH && 2867 refcount_count(&hdr->b_refcnt) == 0) { 2868 hdr->b_flags |= ARC_PREFETCH; 2869 } 2870 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2871 arc_access(hdr, hash_lock); 2872 if (*arc_flags & ARC_L2CACHE) 2873 hdr->b_flags |= ARC_L2CACHE; 2874 mutex_exit(hash_lock); 2875 ARCSTAT_BUMP(arcstat_hits); 2876 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2877 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2878 data, metadata, hits); 2879 2880 if (done) 2881 done(NULL, buf, private); 2882 } else { 2883 uint64_t size = BP_GET_LSIZE(bp); 2884 arc_callback_t *acb; 2885 vdev_t *vd = NULL; 2886 uint64_t addr = 0; 2887 boolean_t devw = B_FALSE; 2888 2889 if (hdr == NULL) { 2890 /* this block is not in the cache */ 2891 arc_buf_hdr_t *exists; 2892 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 2893 buf = arc_buf_alloc(spa, size, private, type); 2894 hdr = buf->b_hdr; 2895 hdr->b_dva = *BP_IDENTITY(bp); 2896 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 2897 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 2898 exists = buf_hash_insert(hdr, &hash_lock); 2899 if (exists) { 2900 /* somebody beat us to the hash insert */ 2901 mutex_exit(hash_lock); 2902 buf_discard_identity(hdr); 2903 (void) arc_buf_remove_ref(buf, private); 2904 goto top; /* restart the IO request */ 2905 } 2906 /* if this is a prefetch, we don't have a reference */ 2907 if (*arc_flags & ARC_PREFETCH) { 2908 (void) remove_reference(hdr, hash_lock, 2909 private); 2910 hdr->b_flags |= ARC_PREFETCH; 2911 } 2912 if (*arc_flags & ARC_L2CACHE) 2913 hdr->b_flags |= ARC_L2CACHE; 2914 if (BP_GET_LEVEL(bp) > 0) 2915 hdr->b_flags |= ARC_INDIRECT; 2916 } else { 2917 /* this block is in the ghost cache */ 2918 ASSERT(GHOST_STATE(hdr->b_state)); 2919 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2920 ASSERT0(refcount_count(&hdr->b_refcnt)); 2921 ASSERT(hdr->b_buf == NULL); 2922 2923 /* if this is a prefetch, we don't have a reference */ 2924 if (*arc_flags & ARC_PREFETCH) 2925 hdr->b_flags |= ARC_PREFETCH; 2926 else 2927 add_reference(hdr, hash_lock, private); 2928 if (*arc_flags & ARC_L2CACHE) 2929 hdr->b_flags |= ARC_L2CACHE; 2930 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2931 buf->b_hdr = hdr; 2932 buf->b_data = NULL; 2933 buf->b_efunc = NULL; 2934 buf->b_private = NULL; 2935 buf->b_next = NULL; 2936 hdr->b_buf = buf; 2937 ASSERT(hdr->b_datacnt == 0); 2938 hdr->b_datacnt = 1; 2939 arc_get_data_buf(buf); 2940 arc_access(hdr, hash_lock); 2941 } 2942 2943 ASSERT(!GHOST_STATE(hdr->b_state)); 2944 2945 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2946 acb->acb_done = done; 2947 acb->acb_private = private; 2948 2949 ASSERT(hdr->b_acb == NULL); 2950 hdr->b_acb = acb; 2951 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2952 2953 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL && 2954 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 2955 devw = hdr->b_l2hdr->b_dev->l2ad_writing; 2956 addr = hdr->b_l2hdr->b_daddr; 2957 /* 2958 * Lock out device removal. 2959 */ 2960 if (vdev_is_dead(vd) || 2961 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 2962 vd = NULL; 2963 } 2964 2965 mutex_exit(hash_lock); 2966 2967 /* 2968 * At this point, we have a level 1 cache miss. Try again in 2969 * L2ARC if possible. 2970 */ 2971 ASSERT3U(hdr->b_size, ==, size); 2972 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 2973 uint64_t, size, zbookmark_t *, zb); 2974 ARCSTAT_BUMP(arcstat_misses); 2975 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2976 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2977 data, metadata, misses); 2978 2979 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 2980 /* 2981 * Read from the L2ARC if the following are true: 2982 * 1. The L2ARC vdev was previously cached. 2983 * 2. This buffer still has L2ARC metadata. 2984 * 3. This buffer isn't currently writing to the L2ARC. 2985 * 4. The L2ARC entry wasn't evicted, which may 2986 * also have invalidated the vdev. 2987 * 5. This isn't prefetch and l2arc_noprefetch is set. 2988 */ 2989 if (hdr->b_l2hdr != NULL && 2990 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 2991 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 2992 l2arc_read_callback_t *cb; 2993 2994 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 2995 ARCSTAT_BUMP(arcstat_l2_hits); 2996 2997 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 2998 KM_SLEEP); 2999 cb->l2rcb_buf = buf; 3000 cb->l2rcb_spa = spa; 3001 cb->l2rcb_bp = *bp; 3002 cb->l2rcb_zb = *zb; 3003 cb->l2rcb_flags = zio_flags; 3004 3005 ASSERT(addr >= VDEV_LABEL_START_SIZE && 3006 addr + size < vd->vdev_psize - 3007 VDEV_LABEL_END_SIZE); 3008 3009 /* 3010 * l2arc read. The SCL_L2ARC lock will be 3011 * released by l2arc_read_done(). 3012 */ 3013 rzio = zio_read_phys(pio, vd, addr, size, 3014 buf->b_data, ZIO_CHECKSUM_OFF, 3015 l2arc_read_done, cb, priority, zio_flags | 3016 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 3017 ZIO_FLAG_DONT_PROPAGATE | 3018 ZIO_FLAG_DONT_RETRY, B_FALSE); 3019 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 3020 zio_t *, rzio); 3021 ARCSTAT_INCR(arcstat_l2_read_bytes, size); 3022 3023 if (*arc_flags & ARC_NOWAIT) { 3024 zio_nowait(rzio); 3025 return (0); 3026 } 3027 3028 ASSERT(*arc_flags & ARC_WAIT); 3029 if (zio_wait(rzio) == 0) 3030 return (0); 3031 3032 /* l2arc read error; goto zio_read() */ 3033 } else { 3034 DTRACE_PROBE1(l2arc__miss, 3035 arc_buf_hdr_t *, hdr); 3036 ARCSTAT_BUMP(arcstat_l2_misses); 3037 if (HDR_L2_WRITING(hdr)) 3038 ARCSTAT_BUMP(arcstat_l2_rw_clash); 3039 spa_config_exit(spa, SCL_L2ARC, vd); 3040 } 3041 } else { 3042 if (vd != NULL) 3043 spa_config_exit(spa, SCL_L2ARC, vd); 3044 if (l2arc_ndev != 0) { 3045 DTRACE_PROBE1(l2arc__miss, 3046 arc_buf_hdr_t *, hdr); 3047 ARCSTAT_BUMP(arcstat_l2_misses); 3048 } 3049 } 3050 3051 rzio = zio_read(pio, spa, bp, buf->b_data, size, 3052 arc_read_done, buf, priority, zio_flags, zb); 3053 3054 if (*arc_flags & ARC_WAIT) 3055 return (zio_wait(rzio)); 3056 3057 ASSERT(*arc_flags & ARC_NOWAIT); 3058 zio_nowait(rzio); 3059 } 3060 return (0); 3061 } 3062 3063 void 3064 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 3065 { 3066 ASSERT(buf->b_hdr != NULL); 3067 ASSERT(buf->b_hdr->b_state != arc_anon); 3068 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 3069 ASSERT(buf->b_efunc == NULL); 3070 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); 3071 3072 buf->b_efunc = func; 3073 buf->b_private = private; 3074 } 3075 3076 /* 3077 * This is used by the DMU to let the ARC know that a buffer is 3078 * being evicted, so the ARC should clean up. If this arc buf 3079 * is not yet in the evicted state, it will be put there. 3080 */ 3081 int 3082 arc_buf_evict(arc_buf_t *buf) 3083 { 3084 arc_buf_hdr_t *hdr; 3085 kmutex_t *hash_lock; 3086 arc_buf_t **bufp; 3087 3088 mutex_enter(&buf->b_evict_lock); 3089 hdr = buf->b_hdr; 3090 if (hdr == NULL) { 3091 /* 3092 * We are in arc_do_user_evicts(). 3093 */ 3094 ASSERT(buf->b_data == NULL); 3095 mutex_exit(&buf->b_evict_lock); 3096 return (0); 3097 } else if (buf->b_data == NULL) { 3098 arc_buf_t copy = *buf; /* structure assignment */ 3099 /* 3100 * We are on the eviction list; process this buffer now 3101 * but let arc_do_user_evicts() do the reaping. 3102 */ 3103 buf->b_efunc = NULL; 3104 mutex_exit(&buf->b_evict_lock); 3105 VERIFY(copy.b_efunc(©) == 0); 3106 return (1); 3107 } 3108 hash_lock = HDR_LOCK(hdr); 3109 mutex_enter(hash_lock); 3110 hdr = buf->b_hdr; 3111 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3112 3113 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 3114 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 3115 3116 /* 3117 * Pull this buffer off of the hdr 3118 */ 3119 bufp = &hdr->b_buf; 3120 while (*bufp != buf) 3121 bufp = &(*bufp)->b_next; 3122 *bufp = buf->b_next; 3123 3124 ASSERT(buf->b_data != NULL); 3125 arc_buf_destroy(buf, FALSE, FALSE); 3126 3127 if (hdr->b_datacnt == 0) { 3128 arc_state_t *old_state = hdr->b_state; 3129 arc_state_t *evicted_state; 3130 3131 ASSERT(hdr->b_buf == NULL); 3132 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 3133 3134 evicted_state = 3135 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3136 3137 mutex_enter(&old_state->arcs_mtx); 3138 mutex_enter(&evicted_state->arcs_mtx); 3139 3140 arc_change_state(evicted_state, hdr, hash_lock); 3141 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3142 hdr->b_flags |= ARC_IN_HASH_TABLE; 3143 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 3144 3145 mutex_exit(&evicted_state->arcs_mtx); 3146 mutex_exit(&old_state->arcs_mtx); 3147 } 3148 mutex_exit(hash_lock); 3149 mutex_exit(&buf->b_evict_lock); 3150 3151 VERIFY(buf->b_efunc(buf) == 0); 3152 buf->b_efunc = NULL; 3153 buf->b_private = NULL; 3154 buf->b_hdr = NULL; 3155 buf->b_next = NULL; 3156 kmem_cache_free(buf_cache, buf); 3157 return (1); 3158 } 3159 3160 /* 3161 * Release this buffer from the cache, making it an anonymous buffer. This 3162 * must be done after a read and prior to modifying the buffer contents. 3163 * If the buffer has more than one reference, we must make 3164 * a new hdr for the buffer. 3165 */ 3166 void 3167 arc_release(arc_buf_t *buf, void *tag) 3168 { 3169 arc_buf_hdr_t *hdr; 3170 kmutex_t *hash_lock = NULL; 3171 l2arc_buf_hdr_t *l2hdr; 3172 uint64_t buf_size; 3173 3174 /* 3175 * It would be nice to assert that if it's DMU metadata (level > 3176 * 0 || it's the dnode file), then it must be syncing context. 3177 * But we don't know that information at this level. 3178 */ 3179 3180 mutex_enter(&buf->b_evict_lock); 3181 hdr = buf->b_hdr; 3182 3183 /* this buffer is not on any list */ 3184 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 3185 3186 if (hdr->b_state == arc_anon) { 3187 /* this buffer is already released */ 3188 ASSERT(buf->b_efunc == NULL); 3189 } else { 3190 hash_lock = HDR_LOCK(hdr); 3191 mutex_enter(hash_lock); 3192 hdr = buf->b_hdr; 3193 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3194 } 3195 3196 l2hdr = hdr->b_l2hdr; 3197 if (l2hdr) { 3198 mutex_enter(&l2arc_buflist_mtx); 3199 hdr->b_l2hdr = NULL; 3200 } 3201 buf_size = hdr->b_size; 3202 3203 /* 3204 * Do we have more than one buf? 3205 */ 3206 if (hdr->b_datacnt > 1) { 3207 arc_buf_hdr_t *nhdr; 3208 arc_buf_t **bufp; 3209 uint64_t blksz = hdr->b_size; 3210 uint64_t spa = hdr->b_spa; 3211 arc_buf_contents_t type = hdr->b_type; 3212 uint32_t flags = hdr->b_flags; 3213 3214 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 3215 /* 3216 * Pull the data off of this hdr and attach it to 3217 * a new anonymous hdr. 3218 */ 3219 (void) remove_reference(hdr, hash_lock, tag); 3220 bufp = &hdr->b_buf; 3221 while (*bufp != buf) 3222 bufp = &(*bufp)->b_next; 3223 *bufp = buf->b_next; 3224 buf->b_next = NULL; 3225 3226 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 3227 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 3228 if (refcount_is_zero(&hdr->b_refcnt)) { 3229 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 3230 ASSERT3U(*size, >=, hdr->b_size); 3231 atomic_add_64(size, -hdr->b_size); 3232 } 3233 3234 /* 3235 * We're releasing a duplicate user data buffer, update 3236 * our statistics accordingly. 3237 */ 3238 if (hdr->b_type == ARC_BUFC_DATA) { 3239 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 3240 ARCSTAT_INCR(arcstat_duplicate_buffers_size, 3241 -hdr->b_size); 3242 } 3243 hdr->b_datacnt -= 1; 3244 arc_cksum_verify(buf); 3245 arc_buf_unwatch(buf); 3246 3247 mutex_exit(hash_lock); 3248 3249 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 3250 nhdr->b_size = blksz; 3251 nhdr->b_spa = spa; 3252 nhdr->b_type = type; 3253 nhdr->b_buf = buf; 3254 nhdr->b_state = arc_anon; 3255 nhdr->b_arc_access = 0; 3256 nhdr->b_flags = flags & ARC_L2_WRITING; 3257 nhdr->b_l2hdr = NULL; 3258 nhdr->b_datacnt = 1; 3259 nhdr->b_freeze_cksum = NULL; 3260 (void) refcount_add(&nhdr->b_refcnt, tag); 3261 buf->b_hdr = nhdr; 3262 mutex_exit(&buf->b_evict_lock); 3263 atomic_add_64(&arc_anon->arcs_size, blksz); 3264 } else { 3265 mutex_exit(&buf->b_evict_lock); 3266 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 3267 ASSERT(!list_link_active(&hdr->b_arc_node)); 3268 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3269 if (hdr->b_state != arc_anon) 3270 arc_change_state(arc_anon, hdr, hash_lock); 3271 hdr->b_arc_access = 0; 3272 if (hash_lock) 3273 mutex_exit(hash_lock); 3274 3275 buf_discard_identity(hdr); 3276 arc_buf_thaw(buf); 3277 } 3278 buf->b_efunc = NULL; 3279 buf->b_private = NULL; 3280 3281 if (l2hdr) { 3282 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 3283 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 3284 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 3285 mutex_exit(&l2arc_buflist_mtx); 3286 } 3287 } 3288 3289 int 3290 arc_released(arc_buf_t *buf) 3291 { 3292 int released; 3293 3294 mutex_enter(&buf->b_evict_lock); 3295 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 3296 mutex_exit(&buf->b_evict_lock); 3297 return (released); 3298 } 3299 3300 int 3301 arc_has_callback(arc_buf_t *buf) 3302 { 3303 int callback; 3304 3305 mutex_enter(&buf->b_evict_lock); 3306 callback = (buf->b_efunc != NULL); 3307 mutex_exit(&buf->b_evict_lock); 3308 return (callback); 3309 } 3310 3311 #ifdef ZFS_DEBUG 3312 int 3313 arc_referenced(arc_buf_t *buf) 3314 { 3315 int referenced; 3316 3317 mutex_enter(&buf->b_evict_lock); 3318 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3319 mutex_exit(&buf->b_evict_lock); 3320 return (referenced); 3321 } 3322 #endif 3323 3324 static void 3325 arc_write_ready(zio_t *zio) 3326 { 3327 arc_write_callback_t *callback = zio->io_private; 3328 arc_buf_t *buf = callback->awcb_buf; 3329 arc_buf_hdr_t *hdr = buf->b_hdr; 3330 3331 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3332 callback->awcb_ready(zio, buf, callback->awcb_private); 3333 3334 /* 3335 * If the IO is already in progress, then this is a re-write 3336 * attempt, so we need to thaw and re-compute the cksum. 3337 * It is the responsibility of the callback to handle the 3338 * accounting for any re-write attempt. 3339 */ 3340 if (HDR_IO_IN_PROGRESS(hdr)) { 3341 mutex_enter(&hdr->b_freeze_lock); 3342 if (hdr->b_freeze_cksum != NULL) { 3343 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3344 hdr->b_freeze_cksum = NULL; 3345 } 3346 mutex_exit(&hdr->b_freeze_lock); 3347 } 3348 arc_cksum_compute(buf, B_FALSE); 3349 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3350 } 3351 3352 static void 3353 arc_write_done(zio_t *zio) 3354 { 3355 arc_write_callback_t *callback = zio->io_private; 3356 arc_buf_t *buf = callback->awcb_buf; 3357 arc_buf_hdr_t *hdr = buf->b_hdr; 3358 3359 ASSERT(hdr->b_acb == NULL); 3360 3361 if (zio->io_error == 0) { 3362 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3363 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 3364 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3365 } else { 3366 ASSERT(BUF_EMPTY(hdr)); 3367 } 3368 3369 /* 3370 * If the block to be written was all-zero, we may have 3371 * compressed it away. In this case no write was performed 3372 * so there will be no dva/birth/checksum. The buffer must 3373 * therefore remain anonymous (and uncached). 3374 */ 3375 if (!BUF_EMPTY(hdr)) { 3376 arc_buf_hdr_t *exists; 3377 kmutex_t *hash_lock; 3378 3379 ASSERT(zio->io_error == 0); 3380 3381 arc_cksum_verify(buf); 3382 3383 exists = buf_hash_insert(hdr, &hash_lock); 3384 if (exists) { 3385 /* 3386 * This can only happen if we overwrite for 3387 * sync-to-convergence, because we remove 3388 * buffers from the hash table when we arc_free(). 3389 */ 3390 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 3391 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3392 panic("bad overwrite, hdr=%p exists=%p", 3393 (void *)hdr, (void *)exists); 3394 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3395 arc_change_state(arc_anon, exists, hash_lock); 3396 mutex_exit(hash_lock); 3397 arc_hdr_destroy(exists); 3398 exists = buf_hash_insert(hdr, &hash_lock); 3399 ASSERT3P(exists, ==, NULL); 3400 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 3401 /* nopwrite */ 3402 ASSERT(zio->io_prop.zp_nopwrite); 3403 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3404 panic("bad nopwrite, hdr=%p exists=%p", 3405 (void *)hdr, (void *)exists); 3406 } else { 3407 /* Dedup */ 3408 ASSERT(hdr->b_datacnt == 1); 3409 ASSERT(hdr->b_state == arc_anon); 3410 ASSERT(BP_GET_DEDUP(zio->io_bp)); 3411 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 3412 } 3413 } 3414 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3415 /* if it's not anon, we are doing a scrub */ 3416 if (!exists && hdr->b_state == arc_anon) 3417 arc_access(hdr, hash_lock); 3418 mutex_exit(hash_lock); 3419 } else { 3420 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3421 } 3422 3423 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3424 callback->awcb_done(zio, buf, callback->awcb_private); 3425 3426 kmem_free(callback, sizeof (arc_write_callback_t)); 3427 } 3428 3429 zio_t * 3430 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 3431 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp, 3432 arc_done_func_t *ready, arc_done_func_t *done, void *private, 3433 int priority, int zio_flags, const zbookmark_t *zb) 3434 { 3435 arc_buf_hdr_t *hdr = buf->b_hdr; 3436 arc_write_callback_t *callback; 3437 zio_t *zio; 3438 3439 ASSERT(ready != NULL); 3440 ASSERT(done != NULL); 3441 ASSERT(!HDR_IO_ERROR(hdr)); 3442 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3443 ASSERT(hdr->b_acb == NULL); 3444 if (l2arc) 3445 hdr->b_flags |= ARC_L2CACHE; 3446 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3447 callback->awcb_ready = ready; 3448 callback->awcb_done = done; 3449 callback->awcb_private = private; 3450 callback->awcb_buf = buf; 3451 3452 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, 3453 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb); 3454 3455 return (zio); 3456 } 3457 3458 static int 3459 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg) 3460 { 3461 #ifdef _KERNEL 3462 uint64_t available_memory = ptob(freemem); 3463 static uint64_t page_load = 0; 3464 static uint64_t last_txg = 0; 3465 3466 #if defined(__i386) 3467 available_memory = 3468 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3469 #endif 3470 if (available_memory >= zfs_write_limit_max) 3471 return (0); 3472 3473 if (txg > last_txg) { 3474 last_txg = txg; 3475 page_load = 0; 3476 } 3477 /* 3478 * If we are in pageout, we know that memory is already tight, 3479 * the arc is already going to be evicting, so we just want to 3480 * continue to let page writes occur as quickly as possible. 3481 */ 3482 if (curproc == proc_pageout) { 3483 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3484 return (SET_ERROR(ERESTART)); 3485 /* Note: reserve is inflated, so we deflate */ 3486 page_load += reserve / 8; 3487 return (0); 3488 } else if (page_load > 0 && arc_reclaim_needed()) { 3489 /* memory is low, delay before restarting */ 3490 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3491 return (SET_ERROR(EAGAIN)); 3492 } 3493 page_load = 0; 3494 3495 if (arc_size > arc_c_min) { 3496 uint64_t evictable_memory = 3497 arc_mru->arcs_lsize[ARC_BUFC_DATA] + 3498 arc_mru->arcs_lsize[ARC_BUFC_METADATA] + 3499 arc_mfu->arcs_lsize[ARC_BUFC_DATA] + 3500 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]; 3501 available_memory += MIN(evictable_memory, arc_size - arc_c_min); 3502 } 3503 3504 if (inflight_data > available_memory / 4) { 3505 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3506 return (SET_ERROR(ERESTART)); 3507 } 3508 #endif 3509 return (0); 3510 } 3511 3512 void 3513 arc_tempreserve_clear(uint64_t reserve) 3514 { 3515 atomic_add_64(&arc_tempreserve, -reserve); 3516 ASSERT((int64_t)arc_tempreserve >= 0); 3517 } 3518 3519 int 3520 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3521 { 3522 int error; 3523 uint64_t anon_size; 3524 3525 #ifdef ZFS_DEBUG 3526 /* 3527 * Once in a while, fail for no reason. Everything should cope. 3528 */ 3529 if (spa_get_random(10000) == 0) { 3530 dprintf("forcing random failure\n"); 3531 return (SET_ERROR(ERESTART)); 3532 } 3533 #endif 3534 if (reserve > arc_c/4 && !arc_no_grow) 3535 arc_c = MIN(arc_c_max, reserve * 4); 3536 if (reserve > arc_c) 3537 return (SET_ERROR(ENOMEM)); 3538 3539 /* 3540 * Don't count loaned bufs as in flight dirty data to prevent long 3541 * network delays from blocking transactions that are ready to be 3542 * assigned to a txg. 3543 */ 3544 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0); 3545 3546 /* 3547 * Writes will, almost always, require additional memory allocations 3548 * in order to compress/encrypt/etc the data. We therefor need to 3549 * make sure that there is sufficient available memory for this. 3550 */ 3551 if (error = arc_memory_throttle(reserve, anon_size, txg)) 3552 return (error); 3553 3554 /* 3555 * Throttle writes when the amount of dirty data in the cache 3556 * gets too large. We try to keep the cache less than half full 3557 * of dirty blocks so that our sync times don't grow too large. 3558 * Note: if two requests come in concurrently, we might let them 3559 * both succeed, when one of them should fail. Not a huge deal. 3560 */ 3561 3562 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 3563 anon_size > arc_c / 4) { 3564 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3565 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3566 arc_tempreserve>>10, 3567 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3568 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3569 reserve>>10, arc_c>>10); 3570 return (SET_ERROR(ERESTART)); 3571 } 3572 atomic_add_64(&arc_tempreserve, reserve); 3573 return (0); 3574 } 3575 3576 void 3577 arc_init(void) 3578 { 3579 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3580 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3581 3582 /* Convert seconds to clock ticks */ 3583 arc_min_prefetch_lifespan = 1 * hz; 3584 3585 /* Start out with 1/8 of all memory */ 3586 arc_c = physmem * PAGESIZE / 8; 3587 3588 #ifdef _KERNEL 3589 /* 3590 * On architectures where the physical memory can be larger 3591 * than the addressable space (intel in 32-bit mode), we may 3592 * need to limit the cache to 1/8 of VM size. 3593 */ 3594 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3595 #endif 3596 3597 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3598 arc_c_min = MAX(arc_c / 4, 64<<20); 3599 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3600 if (arc_c * 8 >= 1<<30) 3601 arc_c_max = (arc_c * 8) - (1<<30); 3602 else 3603 arc_c_max = arc_c_min; 3604 arc_c_max = MAX(arc_c * 6, arc_c_max); 3605 3606 /* 3607 * Allow the tunables to override our calculations if they are 3608 * reasonable (ie. over 64MB) 3609 */ 3610 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3611 arc_c_max = zfs_arc_max; 3612 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3613 arc_c_min = zfs_arc_min; 3614 3615 arc_c = arc_c_max; 3616 arc_p = (arc_c >> 1); 3617 3618 /* limit meta-data to 1/4 of the arc capacity */ 3619 arc_meta_limit = arc_c_max / 4; 3620 3621 /* Allow the tunable to override if it is reasonable */ 3622 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3623 arc_meta_limit = zfs_arc_meta_limit; 3624 3625 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3626 arc_c_min = arc_meta_limit / 2; 3627 3628 if (zfs_arc_grow_retry > 0) 3629 arc_grow_retry = zfs_arc_grow_retry; 3630 3631 if (zfs_arc_shrink_shift > 0) 3632 arc_shrink_shift = zfs_arc_shrink_shift; 3633 3634 if (zfs_arc_p_min_shift > 0) 3635 arc_p_min_shift = zfs_arc_p_min_shift; 3636 3637 /* if kmem_flags are set, lets try to use less memory */ 3638 if (kmem_debugging()) 3639 arc_c = arc_c / 2; 3640 if (arc_c < arc_c_min) 3641 arc_c = arc_c_min; 3642 3643 arc_anon = &ARC_anon; 3644 arc_mru = &ARC_mru; 3645 arc_mru_ghost = &ARC_mru_ghost; 3646 arc_mfu = &ARC_mfu; 3647 arc_mfu_ghost = &ARC_mfu_ghost; 3648 arc_l2c_only = &ARC_l2c_only; 3649 arc_size = 0; 3650 3651 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3652 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3653 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3654 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3655 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3656 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3657 3658 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3659 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3660 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3661 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3662 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3663 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3664 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3665 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3666 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3667 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3668 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3669 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3670 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3671 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3672 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3673 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3674 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3675 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3676 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3677 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3678 3679 buf_init(); 3680 3681 arc_thread_exit = 0; 3682 arc_eviction_list = NULL; 3683 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3684 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3685 3686 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3687 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3688 3689 if (arc_ksp != NULL) { 3690 arc_ksp->ks_data = &arc_stats; 3691 kstat_install(arc_ksp); 3692 } 3693 3694 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3695 TS_RUN, minclsyspri); 3696 3697 arc_dead = FALSE; 3698 arc_warm = B_FALSE; 3699 3700 if (zfs_write_limit_max == 0) 3701 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift; 3702 else 3703 zfs_write_limit_shift = 0; 3704 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL); 3705 } 3706 3707 void 3708 arc_fini(void) 3709 { 3710 mutex_enter(&arc_reclaim_thr_lock); 3711 arc_thread_exit = 1; 3712 while (arc_thread_exit != 0) 3713 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3714 mutex_exit(&arc_reclaim_thr_lock); 3715 3716 arc_flush(NULL); 3717 3718 arc_dead = TRUE; 3719 3720 if (arc_ksp != NULL) { 3721 kstat_delete(arc_ksp); 3722 arc_ksp = NULL; 3723 } 3724 3725 mutex_destroy(&arc_eviction_mtx); 3726 mutex_destroy(&arc_reclaim_thr_lock); 3727 cv_destroy(&arc_reclaim_thr_cv); 3728 3729 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3730 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3731 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3732 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3733 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3734 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3735 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3736 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3737 3738 mutex_destroy(&arc_anon->arcs_mtx); 3739 mutex_destroy(&arc_mru->arcs_mtx); 3740 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3741 mutex_destroy(&arc_mfu->arcs_mtx); 3742 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3743 mutex_destroy(&arc_l2c_only->arcs_mtx); 3744 3745 mutex_destroy(&zfs_write_limit_lock); 3746 3747 buf_fini(); 3748 3749 ASSERT(arc_loaned_bytes == 0); 3750 } 3751 3752 /* 3753 * Level 2 ARC 3754 * 3755 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3756 * It uses dedicated storage devices to hold cached data, which are populated 3757 * using large infrequent writes. The main role of this cache is to boost 3758 * the performance of random read workloads. The intended L2ARC devices 3759 * include short-stroked disks, solid state disks, and other media with 3760 * substantially faster read latency than disk. 3761 * 3762 * +-----------------------+ 3763 * | ARC | 3764 * +-----------------------+ 3765 * | ^ ^ 3766 * | | | 3767 * l2arc_feed_thread() arc_read() 3768 * | | | 3769 * | l2arc read | 3770 * V | | 3771 * +---------------+ | 3772 * | L2ARC | | 3773 * +---------------+ | 3774 * | ^ | 3775 * l2arc_write() | | 3776 * | | | 3777 * V | | 3778 * +-------+ +-------+ 3779 * | vdev | | vdev | 3780 * | cache | | cache | 3781 * +-------+ +-------+ 3782 * +=========+ .-----. 3783 * : L2ARC : |-_____-| 3784 * : devices : | Disks | 3785 * +=========+ `-_____-' 3786 * 3787 * Read requests are satisfied from the following sources, in order: 3788 * 3789 * 1) ARC 3790 * 2) vdev cache of L2ARC devices 3791 * 3) L2ARC devices 3792 * 4) vdev cache of disks 3793 * 5) disks 3794 * 3795 * Some L2ARC device types exhibit extremely slow write performance. 3796 * To accommodate for this there are some significant differences between 3797 * the L2ARC and traditional cache design: 3798 * 3799 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3800 * the ARC behave as usual, freeing buffers and placing headers on ghost 3801 * lists. The ARC does not send buffers to the L2ARC during eviction as 3802 * this would add inflated write latencies for all ARC memory pressure. 3803 * 3804 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3805 * It does this by periodically scanning buffers from the eviction-end of 3806 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3807 * not already there. It scans until a headroom of buffers is satisfied, 3808 * which itself is a buffer for ARC eviction. The thread that does this is 3809 * l2arc_feed_thread(), illustrated below; example sizes are included to 3810 * provide a better sense of ratio than this diagram: 3811 * 3812 * head --> tail 3813 * +---------------------+----------+ 3814 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3815 * +---------------------+----------+ | o L2ARC eligible 3816 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3817 * +---------------------+----------+ | 3818 * 15.9 Gbytes ^ 32 Mbytes | 3819 * headroom | 3820 * l2arc_feed_thread() 3821 * | 3822 * l2arc write hand <--[oooo]--' 3823 * | 8 Mbyte 3824 * | write max 3825 * V 3826 * +==============================+ 3827 * L2ARC dev |####|#|###|###| |####| ... | 3828 * +==============================+ 3829 * 32 Gbytes 3830 * 3831 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 3832 * evicted, then the L2ARC has cached a buffer much sooner than it probably 3833 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 3834 * safe to say that this is an uncommon case, since buffers at the end of 3835 * the ARC lists have moved there due to inactivity. 3836 * 3837 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 3838 * then the L2ARC simply misses copying some buffers. This serves as a 3839 * pressure valve to prevent heavy read workloads from both stalling the ARC 3840 * with waits and clogging the L2ARC with writes. This also helps prevent 3841 * the potential for the L2ARC to churn if it attempts to cache content too 3842 * quickly, such as during backups of the entire pool. 3843 * 3844 * 5. After system boot and before the ARC has filled main memory, there are 3845 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 3846 * lists can remain mostly static. Instead of searching from tail of these 3847 * lists as pictured, the l2arc_feed_thread() will search from the list heads 3848 * for eligible buffers, greatly increasing its chance of finding them. 3849 * 3850 * The L2ARC device write speed is also boosted during this time so that 3851 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 3852 * there are no L2ARC reads, and no fear of degrading read performance 3853 * through increased writes. 3854 * 3855 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 3856 * the vdev queue can aggregate them into larger and fewer writes. Each 3857 * device is written to in a rotor fashion, sweeping writes through 3858 * available space then repeating. 3859 * 3860 * 7. The L2ARC does not store dirty content. It never needs to flush 3861 * write buffers back to disk based storage. 3862 * 3863 * 8. If an ARC buffer is written (and dirtied) which also exists in the 3864 * L2ARC, the now stale L2ARC buffer is immediately dropped. 3865 * 3866 * The performance of the L2ARC can be tweaked by a number of tunables, which 3867 * may be necessary for different workloads: 3868 * 3869 * l2arc_write_max max write bytes per interval 3870 * l2arc_write_boost extra write bytes during device warmup 3871 * l2arc_noprefetch skip caching prefetched buffers 3872 * l2arc_headroom number of max device writes to precache 3873 * l2arc_feed_secs seconds between L2ARC writing 3874 * 3875 * Tunables may be removed or added as future performance improvements are 3876 * integrated, and also may become zpool properties. 3877 * 3878 * There are three key functions that control how the L2ARC warms up: 3879 * 3880 * l2arc_write_eligible() check if a buffer is eligible to cache 3881 * l2arc_write_size() calculate how much to write 3882 * l2arc_write_interval() calculate sleep delay between writes 3883 * 3884 * These three functions determine what to write, how much, and how quickly 3885 * to send writes. 3886 */ 3887 3888 static boolean_t 3889 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab) 3890 { 3891 /* 3892 * A buffer is *not* eligible for the L2ARC if it: 3893 * 1. belongs to a different spa. 3894 * 2. is already cached on the L2ARC. 3895 * 3. has an I/O in progress (it may be an incomplete read). 3896 * 4. is flagged not eligible (zfs property). 3897 */ 3898 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL || 3899 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) 3900 return (B_FALSE); 3901 3902 return (B_TRUE); 3903 } 3904 3905 static uint64_t 3906 l2arc_write_size(l2arc_dev_t *dev) 3907 { 3908 uint64_t size; 3909 3910 size = dev->l2ad_write; 3911 3912 if (arc_warm == B_FALSE) 3913 size += dev->l2ad_boost; 3914 3915 return (size); 3916 3917 } 3918 3919 static clock_t 3920 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 3921 { 3922 clock_t interval, next, now; 3923 3924 /* 3925 * If the ARC lists are busy, increase our write rate; if the 3926 * lists are stale, idle back. This is achieved by checking 3927 * how much we previously wrote - if it was more than half of 3928 * what we wanted, schedule the next write much sooner. 3929 */ 3930 if (l2arc_feed_again && wrote > (wanted / 2)) 3931 interval = (hz * l2arc_feed_min_ms) / 1000; 3932 else 3933 interval = hz * l2arc_feed_secs; 3934 3935 now = ddi_get_lbolt(); 3936 next = MAX(now, MIN(now + interval, began + interval)); 3937 3938 return (next); 3939 } 3940 3941 static void 3942 l2arc_hdr_stat_add(void) 3943 { 3944 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 3945 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 3946 } 3947 3948 static void 3949 l2arc_hdr_stat_remove(void) 3950 { 3951 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 3952 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 3953 } 3954 3955 /* 3956 * Cycle through L2ARC devices. This is how L2ARC load balances. 3957 * If a device is returned, this also returns holding the spa config lock. 3958 */ 3959 static l2arc_dev_t * 3960 l2arc_dev_get_next(void) 3961 { 3962 l2arc_dev_t *first, *next = NULL; 3963 3964 /* 3965 * Lock out the removal of spas (spa_namespace_lock), then removal 3966 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 3967 * both locks will be dropped and a spa config lock held instead. 3968 */ 3969 mutex_enter(&spa_namespace_lock); 3970 mutex_enter(&l2arc_dev_mtx); 3971 3972 /* if there are no vdevs, there is nothing to do */ 3973 if (l2arc_ndev == 0) 3974 goto out; 3975 3976 first = NULL; 3977 next = l2arc_dev_last; 3978 do { 3979 /* loop around the list looking for a non-faulted vdev */ 3980 if (next == NULL) { 3981 next = list_head(l2arc_dev_list); 3982 } else { 3983 next = list_next(l2arc_dev_list, next); 3984 if (next == NULL) 3985 next = list_head(l2arc_dev_list); 3986 } 3987 3988 /* if we have come back to the start, bail out */ 3989 if (first == NULL) 3990 first = next; 3991 else if (next == first) 3992 break; 3993 3994 } while (vdev_is_dead(next->l2ad_vdev)); 3995 3996 /* if we were unable to find any usable vdevs, return NULL */ 3997 if (vdev_is_dead(next->l2ad_vdev)) 3998 next = NULL; 3999 4000 l2arc_dev_last = next; 4001 4002 out: 4003 mutex_exit(&l2arc_dev_mtx); 4004 4005 /* 4006 * Grab the config lock to prevent the 'next' device from being 4007 * removed while we are writing to it. 4008 */ 4009 if (next != NULL) 4010 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 4011 mutex_exit(&spa_namespace_lock); 4012 4013 return (next); 4014 } 4015 4016 /* 4017 * Free buffers that were tagged for destruction. 4018 */ 4019 static void 4020 l2arc_do_free_on_write() 4021 { 4022 list_t *buflist; 4023 l2arc_data_free_t *df, *df_prev; 4024 4025 mutex_enter(&l2arc_free_on_write_mtx); 4026 buflist = l2arc_free_on_write; 4027 4028 for (df = list_tail(buflist); df; df = df_prev) { 4029 df_prev = list_prev(buflist, df); 4030 ASSERT(df->l2df_data != NULL); 4031 ASSERT(df->l2df_func != NULL); 4032 df->l2df_func(df->l2df_data, df->l2df_size); 4033 list_remove(buflist, df); 4034 kmem_free(df, sizeof (l2arc_data_free_t)); 4035 } 4036 4037 mutex_exit(&l2arc_free_on_write_mtx); 4038 } 4039 4040 /* 4041 * A write to a cache device has completed. Update all headers to allow 4042 * reads from these buffers to begin. 4043 */ 4044 static void 4045 l2arc_write_done(zio_t *zio) 4046 { 4047 l2arc_write_callback_t *cb; 4048 l2arc_dev_t *dev; 4049 list_t *buflist; 4050 arc_buf_hdr_t *head, *ab, *ab_prev; 4051 l2arc_buf_hdr_t *abl2; 4052 kmutex_t *hash_lock; 4053 4054 cb = zio->io_private; 4055 ASSERT(cb != NULL); 4056 dev = cb->l2wcb_dev; 4057 ASSERT(dev != NULL); 4058 head = cb->l2wcb_head; 4059 ASSERT(head != NULL); 4060 buflist = dev->l2ad_buflist; 4061 ASSERT(buflist != NULL); 4062 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 4063 l2arc_write_callback_t *, cb); 4064 4065 if (zio->io_error != 0) 4066 ARCSTAT_BUMP(arcstat_l2_writes_error); 4067 4068 mutex_enter(&l2arc_buflist_mtx); 4069 4070 /* 4071 * All writes completed, or an error was hit. 4072 */ 4073 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 4074 ab_prev = list_prev(buflist, ab); 4075 4076 hash_lock = HDR_LOCK(ab); 4077 if (!mutex_tryenter(hash_lock)) { 4078 /* 4079 * This buffer misses out. It may be in a stage 4080 * of eviction. Its ARC_L2_WRITING flag will be 4081 * left set, denying reads to this buffer. 4082 */ 4083 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 4084 continue; 4085 } 4086 4087 if (zio->io_error != 0) { 4088 /* 4089 * Error - drop L2ARC entry. 4090 */ 4091 list_remove(buflist, ab); 4092 abl2 = ab->b_l2hdr; 4093 ab->b_l2hdr = NULL; 4094 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4095 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4096 } 4097 4098 /* 4099 * Allow ARC to begin reads to this L2ARC entry. 4100 */ 4101 ab->b_flags &= ~ARC_L2_WRITING; 4102 4103 mutex_exit(hash_lock); 4104 } 4105 4106 atomic_inc_64(&l2arc_writes_done); 4107 list_remove(buflist, head); 4108 kmem_cache_free(hdr_cache, head); 4109 mutex_exit(&l2arc_buflist_mtx); 4110 4111 l2arc_do_free_on_write(); 4112 4113 kmem_free(cb, sizeof (l2arc_write_callback_t)); 4114 } 4115 4116 /* 4117 * A read to a cache device completed. Validate buffer contents before 4118 * handing over to the regular ARC routines. 4119 */ 4120 static void 4121 l2arc_read_done(zio_t *zio) 4122 { 4123 l2arc_read_callback_t *cb; 4124 arc_buf_hdr_t *hdr; 4125 arc_buf_t *buf; 4126 kmutex_t *hash_lock; 4127 int equal; 4128 4129 ASSERT(zio->io_vd != NULL); 4130 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 4131 4132 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 4133 4134 cb = zio->io_private; 4135 ASSERT(cb != NULL); 4136 buf = cb->l2rcb_buf; 4137 ASSERT(buf != NULL); 4138 4139 hash_lock = HDR_LOCK(buf->b_hdr); 4140 mutex_enter(hash_lock); 4141 hdr = buf->b_hdr; 4142 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 4143 4144 /* 4145 * Check this survived the L2ARC journey. 4146 */ 4147 equal = arc_cksum_equal(buf); 4148 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 4149 mutex_exit(hash_lock); 4150 zio->io_private = buf; 4151 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 4152 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 4153 arc_read_done(zio); 4154 } else { 4155 mutex_exit(hash_lock); 4156 /* 4157 * Buffer didn't survive caching. Increment stats and 4158 * reissue to the original storage device. 4159 */ 4160 if (zio->io_error != 0) { 4161 ARCSTAT_BUMP(arcstat_l2_io_error); 4162 } else { 4163 zio->io_error = SET_ERROR(EIO); 4164 } 4165 if (!equal) 4166 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 4167 4168 /* 4169 * If there's no waiter, issue an async i/o to the primary 4170 * storage now. If there *is* a waiter, the caller must 4171 * issue the i/o in a context where it's OK to block. 4172 */ 4173 if (zio->io_waiter == NULL) { 4174 zio_t *pio = zio_unique_parent(zio); 4175 4176 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 4177 4178 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 4179 buf->b_data, zio->io_size, arc_read_done, buf, 4180 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 4181 } 4182 } 4183 4184 kmem_free(cb, sizeof (l2arc_read_callback_t)); 4185 } 4186 4187 /* 4188 * This is the list priority from which the L2ARC will search for pages to 4189 * cache. This is used within loops (0..3) to cycle through lists in the 4190 * desired order. This order can have a significant effect on cache 4191 * performance. 4192 * 4193 * Currently the metadata lists are hit first, MFU then MRU, followed by 4194 * the data lists. This function returns a locked list, and also returns 4195 * the lock pointer. 4196 */ 4197 static list_t * 4198 l2arc_list_locked(int list_num, kmutex_t **lock) 4199 { 4200 list_t *list = NULL; 4201 4202 ASSERT(list_num >= 0 && list_num <= 3); 4203 4204 switch (list_num) { 4205 case 0: 4206 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 4207 *lock = &arc_mfu->arcs_mtx; 4208 break; 4209 case 1: 4210 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 4211 *lock = &arc_mru->arcs_mtx; 4212 break; 4213 case 2: 4214 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 4215 *lock = &arc_mfu->arcs_mtx; 4216 break; 4217 case 3: 4218 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 4219 *lock = &arc_mru->arcs_mtx; 4220 break; 4221 } 4222 4223 ASSERT(!(MUTEX_HELD(*lock))); 4224 mutex_enter(*lock); 4225 return (list); 4226 } 4227 4228 /* 4229 * Evict buffers from the device write hand to the distance specified in 4230 * bytes. This distance may span populated buffers, it may span nothing. 4231 * This is clearing a region on the L2ARC device ready for writing. 4232 * If the 'all' boolean is set, every buffer is evicted. 4233 */ 4234 static void 4235 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4236 { 4237 list_t *buflist; 4238 l2arc_buf_hdr_t *abl2; 4239 arc_buf_hdr_t *ab, *ab_prev; 4240 kmutex_t *hash_lock; 4241 uint64_t taddr; 4242 4243 buflist = dev->l2ad_buflist; 4244 4245 if (buflist == NULL) 4246 return; 4247 4248 if (!all && dev->l2ad_first) { 4249 /* 4250 * This is the first sweep through the device. There is 4251 * nothing to evict. 4252 */ 4253 return; 4254 } 4255 4256 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4257 /* 4258 * When nearing the end of the device, evict to the end 4259 * before the device write hand jumps to the start. 4260 */ 4261 taddr = dev->l2ad_end; 4262 } else { 4263 taddr = dev->l2ad_hand + distance; 4264 } 4265 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4266 uint64_t, taddr, boolean_t, all); 4267 4268 top: 4269 mutex_enter(&l2arc_buflist_mtx); 4270 for (ab = list_tail(buflist); ab; ab = ab_prev) { 4271 ab_prev = list_prev(buflist, ab); 4272 4273 hash_lock = HDR_LOCK(ab); 4274 if (!mutex_tryenter(hash_lock)) { 4275 /* 4276 * Missed the hash lock. Retry. 4277 */ 4278 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4279 mutex_exit(&l2arc_buflist_mtx); 4280 mutex_enter(hash_lock); 4281 mutex_exit(hash_lock); 4282 goto top; 4283 } 4284 4285 if (HDR_L2_WRITE_HEAD(ab)) { 4286 /* 4287 * We hit a write head node. Leave it for 4288 * l2arc_write_done(). 4289 */ 4290 list_remove(buflist, ab); 4291 mutex_exit(hash_lock); 4292 continue; 4293 } 4294 4295 if (!all && ab->b_l2hdr != NULL && 4296 (ab->b_l2hdr->b_daddr > taddr || 4297 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4298 /* 4299 * We've evicted to the target address, 4300 * or the end of the device. 4301 */ 4302 mutex_exit(hash_lock); 4303 break; 4304 } 4305 4306 if (HDR_FREE_IN_PROGRESS(ab)) { 4307 /* 4308 * Already on the path to destruction. 4309 */ 4310 mutex_exit(hash_lock); 4311 continue; 4312 } 4313 4314 if (ab->b_state == arc_l2c_only) { 4315 ASSERT(!HDR_L2_READING(ab)); 4316 /* 4317 * This doesn't exist in the ARC. Destroy. 4318 * arc_hdr_destroy() will call list_remove() 4319 * and decrement arcstat_l2_size. 4320 */ 4321 arc_change_state(arc_anon, ab, hash_lock); 4322 arc_hdr_destroy(ab); 4323 } else { 4324 /* 4325 * Invalidate issued or about to be issued 4326 * reads, since we may be about to write 4327 * over this location. 4328 */ 4329 if (HDR_L2_READING(ab)) { 4330 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4331 ab->b_flags |= ARC_L2_EVICTED; 4332 } 4333 4334 /* 4335 * Tell ARC this no longer exists in L2ARC. 4336 */ 4337 if (ab->b_l2hdr != NULL) { 4338 abl2 = ab->b_l2hdr; 4339 ab->b_l2hdr = NULL; 4340 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4341 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4342 } 4343 list_remove(buflist, ab); 4344 4345 /* 4346 * This may have been leftover after a 4347 * failed write. 4348 */ 4349 ab->b_flags &= ~ARC_L2_WRITING; 4350 } 4351 mutex_exit(hash_lock); 4352 } 4353 mutex_exit(&l2arc_buflist_mtx); 4354 4355 vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0); 4356 dev->l2ad_evict = taddr; 4357 } 4358 4359 /* 4360 * Find and write ARC buffers to the L2ARC device. 4361 * 4362 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4363 * for reading until they have completed writing. 4364 */ 4365 static uint64_t 4366 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 4367 { 4368 arc_buf_hdr_t *ab, *ab_prev, *head; 4369 l2arc_buf_hdr_t *hdrl2; 4370 list_t *list; 4371 uint64_t passed_sz, write_sz, buf_sz, headroom; 4372 void *buf_data; 4373 kmutex_t *hash_lock, *list_lock; 4374 boolean_t have_lock, full; 4375 l2arc_write_callback_t *cb; 4376 zio_t *pio, *wzio; 4377 uint64_t guid = spa_load_guid(spa); 4378 4379 ASSERT(dev->l2ad_vdev != NULL); 4380 4381 pio = NULL; 4382 write_sz = 0; 4383 full = B_FALSE; 4384 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4385 head->b_flags |= ARC_L2_WRITE_HEAD; 4386 4387 /* 4388 * Copy buffers for L2ARC writing. 4389 */ 4390 mutex_enter(&l2arc_buflist_mtx); 4391 for (int try = 0; try <= 3; try++) { 4392 list = l2arc_list_locked(try, &list_lock); 4393 passed_sz = 0; 4394 4395 /* 4396 * L2ARC fast warmup. 4397 * 4398 * Until the ARC is warm and starts to evict, read from the 4399 * head of the ARC lists rather than the tail. 4400 */ 4401 headroom = target_sz * l2arc_headroom; 4402 if (arc_warm == B_FALSE) 4403 ab = list_head(list); 4404 else 4405 ab = list_tail(list); 4406 4407 for (; ab; ab = ab_prev) { 4408 if (arc_warm == B_FALSE) 4409 ab_prev = list_next(list, ab); 4410 else 4411 ab_prev = list_prev(list, ab); 4412 4413 hash_lock = HDR_LOCK(ab); 4414 have_lock = MUTEX_HELD(hash_lock); 4415 if (!have_lock && !mutex_tryenter(hash_lock)) { 4416 /* 4417 * Skip this buffer rather than waiting. 4418 */ 4419 continue; 4420 } 4421 4422 passed_sz += ab->b_size; 4423 if (passed_sz > headroom) { 4424 /* 4425 * Searched too far. 4426 */ 4427 mutex_exit(hash_lock); 4428 break; 4429 } 4430 4431 if (!l2arc_write_eligible(guid, ab)) { 4432 mutex_exit(hash_lock); 4433 continue; 4434 } 4435 4436 if ((write_sz + ab->b_size) > target_sz) { 4437 full = B_TRUE; 4438 mutex_exit(hash_lock); 4439 break; 4440 } 4441 4442 if (pio == NULL) { 4443 /* 4444 * Insert a dummy header on the buflist so 4445 * l2arc_write_done() can find where the 4446 * write buffers begin without searching. 4447 */ 4448 list_insert_head(dev->l2ad_buflist, head); 4449 4450 cb = kmem_alloc( 4451 sizeof (l2arc_write_callback_t), KM_SLEEP); 4452 cb->l2wcb_dev = dev; 4453 cb->l2wcb_head = head; 4454 pio = zio_root(spa, l2arc_write_done, cb, 4455 ZIO_FLAG_CANFAIL); 4456 } 4457 4458 /* 4459 * Create and add a new L2ARC header. 4460 */ 4461 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4462 hdrl2->b_dev = dev; 4463 hdrl2->b_daddr = dev->l2ad_hand; 4464 4465 ab->b_flags |= ARC_L2_WRITING; 4466 ab->b_l2hdr = hdrl2; 4467 list_insert_head(dev->l2ad_buflist, ab); 4468 buf_data = ab->b_buf->b_data; 4469 buf_sz = ab->b_size; 4470 4471 /* 4472 * Compute and store the buffer cksum before 4473 * writing. On debug the cksum is verified first. 4474 */ 4475 arc_cksum_verify(ab->b_buf); 4476 arc_cksum_compute(ab->b_buf, B_TRUE); 4477 4478 mutex_exit(hash_lock); 4479 4480 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4481 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4482 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4483 ZIO_FLAG_CANFAIL, B_FALSE); 4484 4485 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4486 zio_t *, wzio); 4487 (void) zio_nowait(wzio); 4488 4489 /* 4490 * Keep the clock hand suitably device-aligned. 4491 */ 4492 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4493 4494 write_sz += buf_sz; 4495 dev->l2ad_hand += buf_sz; 4496 } 4497 4498 mutex_exit(list_lock); 4499 4500 if (full == B_TRUE) 4501 break; 4502 } 4503 mutex_exit(&l2arc_buflist_mtx); 4504 4505 if (pio == NULL) { 4506 ASSERT0(write_sz); 4507 kmem_cache_free(hdr_cache, head); 4508 return (0); 4509 } 4510 4511 ASSERT3U(write_sz, <=, target_sz); 4512 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4513 ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz); 4514 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4515 vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0); 4516 4517 /* 4518 * Bump device hand to the device start if it is approaching the end. 4519 * l2arc_evict() will already have evicted ahead for this case. 4520 */ 4521 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4522 vdev_space_update(dev->l2ad_vdev, 4523 dev->l2ad_end - dev->l2ad_hand, 0, 0); 4524 dev->l2ad_hand = dev->l2ad_start; 4525 dev->l2ad_evict = dev->l2ad_start; 4526 dev->l2ad_first = B_FALSE; 4527 } 4528 4529 dev->l2ad_writing = B_TRUE; 4530 (void) zio_wait(pio); 4531 dev->l2ad_writing = B_FALSE; 4532 4533 return (write_sz); 4534 } 4535 4536 /* 4537 * This thread feeds the L2ARC at regular intervals. This is the beating 4538 * heart of the L2ARC. 4539 */ 4540 static void 4541 l2arc_feed_thread(void) 4542 { 4543 callb_cpr_t cpr; 4544 l2arc_dev_t *dev; 4545 spa_t *spa; 4546 uint64_t size, wrote; 4547 clock_t begin, next = ddi_get_lbolt(); 4548 4549 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 4550 4551 mutex_enter(&l2arc_feed_thr_lock); 4552 4553 while (l2arc_thread_exit == 0) { 4554 CALLB_CPR_SAFE_BEGIN(&cpr); 4555 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 4556 next); 4557 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 4558 next = ddi_get_lbolt() + hz; 4559 4560 /* 4561 * Quick check for L2ARC devices. 4562 */ 4563 mutex_enter(&l2arc_dev_mtx); 4564 if (l2arc_ndev == 0) { 4565 mutex_exit(&l2arc_dev_mtx); 4566 continue; 4567 } 4568 mutex_exit(&l2arc_dev_mtx); 4569 begin = ddi_get_lbolt(); 4570 4571 /* 4572 * This selects the next l2arc device to write to, and in 4573 * doing so the next spa to feed from: dev->l2ad_spa. This 4574 * will return NULL if there are now no l2arc devices or if 4575 * they are all faulted. 4576 * 4577 * If a device is returned, its spa's config lock is also 4578 * held to prevent device removal. l2arc_dev_get_next() 4579 * will grab and release l2arc_dev_mtx. 4580 */ 4581 if ((dev = l2arc_dev_get_next()) == NULL) 4582 continue; 4583 4584 spa = dev->l2ad_spa; 4585 ASSERT(spa != NULL); 4586 4587 /* 4588 * If the pool is read-only then force the feed thread to 4589 * sleep a little longer. 4590 */ 4591 if (!spa_writeable(spa)) { 4592 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 4593 spa_config_exit(spa, SCL_L2ARC, dev); 4594 continue; 4595 } 4596 4597 /* 4598 * Avoid contributing to memory pressure. 4599 */ 4600 if (arc_reclaim_needed()) { 4601 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 4602 spa_config_exit(spa, SCL_L2ARC, dev); 4603 continue; 4604 } 4605 4606 ARCSTAT_BUMP(arcstat_l2_feeds); 4607 4608 size = l2arc_write_size(dev); 4609 4610 /* 4611 * Evict L2ARC buffers that will be overwritten. 4612 */ 4613 l2arc_evict(dev, size, B_FALSE); 4614 4615 /* 4616 * Write ARC buffers. 4617 */ 4618 wrote = l2arc_write_buffers(spa, dev, size); 4619 4620 /* 4621 * Calculate interval between writes. 4622 */ 4623 next = l2arc_write_interval(begin, size, wrote); 4624 spa_config_exit(spa, SCL_L2ARC, dev); 4625 } 4626 4627 l2arc_thread_exit = 0; 4628 cv_broadcast(&l2arc_feed_thr_cv); 4629 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 4630 thread_exit(); 4631 } 4632 4633 boolean_t 4634 l2arc_vdev_present(vdev_t *vd) 4635 { 4636 l2arc_dev_t *dev; 4637 4638 mutex_enter(&l2arc_dev_mtx); 4639 for (dev = list_head(l2arc_dev_list); dev != NULL; 4640 dev = list_next(l2arc_dev_list, dev)) { 4641 if (dev->l2ad_vdev == vd) 4642 break; 4643 } 4644 mutex_exit(&l2arc_dev_mtx); 4645 4646 return (dev != NULL); 4647 } 4648 4649 /* 4650 * Add a vdev for use by the L2ARC. By this point the spa has already 4651 * validated the vdev and opened it. 4652 */ 4653 void 4654 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 4655 { 4656 l2arc_dev_t *adddev; 4657 4658 ASSERT(!l2arc_vdev_present(vd)); 4659 4660 /* 4661 * Create a new l2arc device entry. 4662 */ 4663 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 4664 adddev->l2ad_spa = spa; 4665 adddev->l2ad_vdev = vd; 4666 adddev->l2ad_write = l2arc_write_max; 4667 adddev->l2ad_boost = l2arc_write_boost; 4668 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 4669 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 4670 adddev->l2ad_hand = adddev->l2ad_start; 4671 adddev->l2ad_evict = adddev->l2ad_start; 4672 adddev->l2ad_first = B_TRUE; 4673 adddev->l2ad_writing = B_FALSE; 4674 ASSERT3U(adddev->l2ad_write, >, 0); 4675 4676 /* 4677 * This is a list of all ARC buffers that are still valid on the 4678 * device. 4679 */ 4680 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 4681 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 4682 offsetof(arc_buf_hdr_t, b_l2node)); 4683 4684 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 4685 4686 /* 4687 * Add device to global list 4688 */ 4689 mutex_enter(&l2arc_dev_mtx); 4690 list_insert_head(l2arc_dev_list, adddev); 4691 atomic_inc_64(&l2arc_ndev); 4692 mutex_exit(&l2arc_dev_mtx); 4693 } 4694 4695 /* 4696 * Remove a vdev from the L2ARC. 4697 */ 4698 void 4699 l2arc_remove_vdev(vdev_t *vd) 4700 { 4701 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 4702 4703 /* 4704 * Find the device by vdev 4705 */ 4706 mutex_enter(&l2arc_dev_mtx); 4707 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 4708 nextdev = list_next(l2arc_dev_list, dev); 4709 if (vd == dev->l2ad_vdev) { 4710 remdev = dev; 4711 break; 4712 } 4713 } 4714 ASSERT(remdev != NULL); 4715 4716 /* 4717 * Remove device from global list 4718 */ 4719 list_remove(l2arc_dev_list, remdev); 4720 l2arc_dev_last = NULL; /* may have been invalidated */ 4721 atomic_dec_64(&l2arc_ndev); 4722 mutex_exit(&l2arc_dev_mtx); 4723 4724 /* 4725 * Clear all buflists and ARC references. L2ARC device flush. 4726 */ 4727 l2arc_evict(remdev, 0, B_TRUE); 4728 list_destroy(remdev->l2ad_buflist); 4729 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 4730 kmem_free(remdev, sizeof (l2arc_dev_t)); 4731 } 4732 4733 void 4734 l2arc_init(void) 4735 { 4736 l2arc_thread_exit = 0; 4737 l2arc_ndev = 0; 4738 l2arc_writes_sent = 0; 4739 l2arc_writes_done = 0; 4740 4741 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 4742 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 4743 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 4744 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 4745 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 4746 4747 l2arc_dev_list = &L2ARC_dev_list; 4748 l2arc_free_on_write = &L2ARC_free_on_write; 4749 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 4750 offsetof(l2arc_dev_t, l2ad_node)); 4751 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 4752 offsetof(l2arc_data_free_t, l2df_list_node)); 4753 } 4754 4755 void 4756 l2arc_fini(void) 4757 { 4758 /* 4759 * This is called from dmu_fini(), which is called from spa_fini(); 4760 * Because of this, we can assume that all l2arc devices have 4761 * already been removed when the pools themselves were removed. 4762 */ 4763 4764 l2arc_do_free_on_write(); 4765 4766 mutex_destroy(&l2arc_feed_thr_lock); 4767 cv_destroy(&l2arc_feed_thr_cv); 4768 mutex_destroy(&l2arc_dev_mtx); 4769 mutex_destroy(&l2arc_buflist_mtx); 4770 mutex_destroy(&l2arc_free_on_write_mtx); 4771 4772 list_destroy(l2arc_dev_list); 4773 list_destroy(l2arc_free_on_write); 4774 } 4775 4776 void 4777 l2arc_start(void) 4778 { 4779 if (!(spa_mode_global & FWRITE)) 4780 return; 4781 4782 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 4783 TS_RUN, minclsyspri); 4784 } 4785 4786 void 4787 l2arc_stop(void) 4788 { 4789 if (!(spa_mode_global & FWRITE)) 4790 return; 4791 4792 mutex_enter(&l2arc_feed_thr_lock); 4793 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 4794 l2arc_thread_exit = 1; 4795 while (l2arc_thread_exit != 0) 4796 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 4797 mutex_exit(&l2arc_feed_thr_lock); 4798 }