1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2013 by Delphix. All rights reserved.
  24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
  25  */
  26 
  27 #include <sys/zfs_context.h>
  28 #include <sys/fm/fs/zfs.h>
  29 #include <sys/spa.h>
  30 #include <sys/txg.h>
  31 #include <sys/spa_impl.h>
  32 #include <sys/vdev_impl.h>
  33 #include <sys/zio_impl.h>
  34 #include <sys/zio_compress.h>
  35 #include <sys/zio_checksum.h>
  36 #include <sys/dmu_objset.h>
  37 #include <sys/arc.h>
  38 #include <sys/ddt.h>
  39 
  40 /*
  41  * ==========================================================================
  42  * I/O priority table
  43  * ==========================================================================
  44  */
  45 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
  46         0,      /* ZIO_PRIORITY_NOW             */
  47         0,      /* ZIO_PRIORITY_SYNC_READ       */
  48         0,      /* ZIO_PRIORITY_SYNC_WRITE      */
  49         0,      /* ZIO_PRIORITY_LOG_WRITE       */
  50         1,      /* ZIO_PRIORITY_CACHE_FILL      */
  51         1,      /* ZIO_PRIORITY_AGG             */
  52         4,      /* ZIO_PRIORITY_FREE            */
  53         4,      /* ZIO_PRIORITY_ASYNC_WRITE     */
  54         6,      /* ZIO_PRIORITY_ASYNC_READ      */
  55         10,     /* ZIO_PRIORITY_RESILVER        */
  56         20,     /* ZIO_PRIORITY_SCRUB           */
  57         2,      /* ZIO_PRIORITY_DDT_PREFETCH    */
  58 };
  59 
  60 /*
  61  * ==========================================================================
  62  * I/O type descriptions
  63  * ==========================================================================
  64  */
  65 char *zio_type_name[ZIO_TYPES] = {
  66         "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
  67         "zio_ioctl"
  68 };
  69 
  70 /*
  71  * ==========================================================================
  72  * I/O kmem caches
  73  * ==========================================================================
  74  */
  75 kmem_cache_t *zio_cache;
  76 kmem_cache_t *zio_link_cache;
  77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
  78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
  79 
  80 #ifdef _KERNEL
  81 extern vmem_t *zio_alloc_arena;
  82 #endif
  83 extern int zfs_mg_alloc_failures;
  84 
  85 /*
  86  * The following actions directly effect the spa's sync-to-convergence logic.
  87  * The values below define the sync pass when we start performing the action.
  88  * Care should be taken when changing these values as they directly impact
  89  * spa_sync() performance. Tuning these values may introduce subtle performance
  90  * pathologies and should only be done in the context of performance analysis.
  91  * These tunables will eventually be removed and replaced with #defines once
  92  * enough analysis has been done to determine optimal values.
  93  *
  94  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
  95  * regular blocks are not deferred.
  96  */
  97 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
  98 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
  99 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
 100 
 101 /*
 102  * An allocating zio is one that either currently has the DVA allocate
 103  * stage set or will have it later in its lifetime.
 104  */
 105 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
 106 
 107 boolean_t       zio_requeue_io_start_cut_in_line = B_TRUE;
 108 
 109 #ifdef ZFS_DEBUG
 110 int zio_buf_debug_limit = 16384;
 111 #else
 112 int zio_buf_debug_limit = 0;
 113 #endif
 114 
 115 void
 116 zio_init(void)
 117 {
 118         size_t c;
 119         vmem_t *data_alloc_arena = NULL;
 120 
 121 #ifdef _KERNEL
 122         data_alloc_arena = zio_alloc_arena;
 123 #endif
 124         zio_cache = kmem_cache_create("zio_cache",
 125             sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 126         zio_link_cache = kmem_cache_create("zio_link_cache",
 127             sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 128 
 129         /*
 130          * For small buffers, we want a cache for each multiple of
 131          * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
 132          * for each quarter-power of 2.  For large buffers, we want
 133          * a cache for each multiple of PAGESIZE.
 134          */
 135         for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
 136                 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
 137                 size_t p2 = size;
 138                 size_t align = 0;
 139                 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
 140 
 141                 while (p2 & (p2 - 1))
 142                         p2 &= p2 - 1;
 143 
 144 #ifndef _KERNEL
 145                 /*
 146                  * If we are using watchpoints, put each buffer on its own page,
 147                  * to eliminate the performance overhead of trapping to the
 148                  * kernel when modifying a non-watched buffer that shares the
 149                  * page with a watched buffer.
 150                  */
 151                 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
 152                         continue;
 153 #endif
 154                 if (size <= 4 * SPA_MINBLOCKSIZE) {
 155                         align = SPA_MINBLOCKSIZE;
 156                 } else if (IS_P2ALIGNED(size, PAGESIZE)) {
 157                         align = PAGESIZE;
 158                 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
 159                         align = p2 >> 2;
 160                 }
 161 
 162                 if (align != 0) {
 163                         char name[36];
 164                         (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
 165                         zio_buf_cache[c] = kmem_cache_create(name, size,
 166                             align, NULL, NULL, NULL, NULL, NULL, cflags);
 167 
 168                         /*
 169                          * Since zio_data bufs do not appear in crash dumps, we
 170                          * pass KMC_NOTOUCH so that no allocator metadata is
 171                          * stored with the buffers.
 172                          */
 173                         (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
 174                         zio_data_buf_cache[c] = kmem_cache_create(name, size,
 175                             align, NULL, NULL, NULL, NULL, data_alloc_arena,
 176                             cflags | KMC_NOTOUCH);
 177                 }
 178         }
 179 
 180         while (--c != 0) {
 181                 ASSERT(zio_buf_cache[c] != NULL);
 182                 if (zio_buf_cache[c - 1] == NULL)
 183                         zio_buf_cache[c - 1] = zio_buf_cache[c];
 184 
 185                 ASSERT(zio_data_buf_cache[c] != NULL);
 186                 if (zio_data_buf_cache[c - 1] == NULL)
 187                         zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
 188         }
 189 
 190         /*
 191          * The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs
 192          * to fail 3 times per txg or 8 failures, whichever is greater.
 193          */
 194         zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8);
 195 
 196         zio_inject_init();
 197 }
 198 
 199 void
 200 zio_fini(void)
 201 {
 202         size_t c;
 203         kmem_cache_t *last_cache = NULL;
 204         kmem_cache_t *last_data_cache = NULL;
 205 
 206         for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
 207                 if (zio_buf_cache[c] != last_cache) {
 208                         last_cache = zio_buf_cache[c];
 209                         kmem_cache_destroy(zio_buf_cache[c]);
 210                 }
 211                 zio_buf_cache[c] = NULL;
 212 
 213                 if (zio_data_buf_cache[c] != last_data_cache) {
 214                         last_data_cache = zio_data_buf_cache[c];
 215                         kmem_cache_destroy(zio_data_buf_cache[c]);
 216                 }
 217                 zio_data_buf_cache[c] = NULL;
 218         }
 219 
 220         kmem_cache_destroy(zio_link_cache);
 221         kmem_cache_destroy(zio_cache);
 222 
 223         zio_inject_fini();
 224 }
 225 
 226 /*
 227  * ==========================================================================
 228  * Allocate and free I/O buffers
 229  * ==========================================================================
 230  */
 231 
 232 /*
 233  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
 234  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
 235  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
 236  * excess / transient data in-core during a crashdump.
 237  */
 238 void *
 239 zio_buf_alloc(size_t size)
 240 {
 241         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 242 
 243         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 244 
 245         return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
 246 }
 247 
 248 /*
 249  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
 250  * crashdump if the kernel panics.  This exists so that we will limit the amount
 251  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
 252  * of kernel heap dumped to disk when the kernel panics)
 253  */
 254 void *
 255 zio_data_buf_alloc(size_t size)
 256 {
 257         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 258 
 259         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 260 
 261         return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
 262 }
 263 
 264 void
 265 zio_buf_free(void *buf, size_t size)
 266 {
 267         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 268 
 269         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 270 
 271         kmem_cache_free(zio_buf_cache[c], buf);
 272 }
 273 
 274 void
 275 zio_data_buf_free(void *buf, size_t size)
 276 {
 277         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 278 
 279         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 280 
 281         kmem_cache_free(zio_data_buf_cache[c], buf);
 282 }
 283 
 284 /*
 285  * ==========================================================================
 286  * Push and pop I/O transform buffers
 287  * ==========================================================================
 288  */
 289 static void
 290 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
 291         zio_transform_func_t *transform)
 292 {
 293         zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
 294 
 295         zt->zt_orig_data = zio->io_data;
 296         zt->zt_orig_size = zio->io_size;
 297         zt->zt_bufsize = bufsize;
 298         zt->zt_transform = transform;
 299 
 300         zt->zt_next = zio->io_transform_stack;
 301         zio->io_transform_stack = zt;
 302 
 303         zio->io_data = data;
 304         zio->io_size = size;
 305 }
 306 
 307 static void
 308 zio_pop_transforms(zio_t *zio)
 309 {
 310         zio_transform_t *zt;
 311 
 312         while ((zt = zio->io_transform_stack) != NULL) {
 313                 if (zt->zt_transform != NULL)
 314                         zt->zt_transform(zio,
 315                             zt->zt_orig_data, zt->zt_orig_size);
 316 
 317                 if (zt->zt_bufsize != 0)
 318                         zio_buf_free(zio->io_data, zt->zt_bufsize);
 319 
 320                 zio->io_data = zt->zt_orig_data;
 321                 zio->io_size = zt->zt_orig_size;
 322                 zio->io_transform_stack = zt->zt_next;
 323 
 324                 kmem_free(zt, sizeof (zio_transform_t));
 325         }
 326 }
 327 
 328 /*
 329  * ==========================================================================
 330  * I/O transform callbacks for subblocks and decompression
 331  * ==========================================================================
 332  */
 333 static void
 334 zio_subblock(zio_t *zio, void *data, uint64_t size)
 335 {
 336         ASSERT(zio->io_size > size);
 337 
 338         if (zio->io_type == ZIO_TYPE_READ)
 339                 bcopy(zio->io_data, data, size);
 340 }
 341 
 342 static void
 343 zio_decompress(zio_t *zio, void *data, uint64_t size)
 344 {
 345         if (zio->io_error == 0 &&
 346             zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
 347             zio->io_data, data, zio->io_size, size) != 0)
 348                 zio->io_error = SET_ERROR(EIO);
 349 }
 350 
 351 /*
 352  * ==========================================================================
 353  * I/O parent/child relationships and pipeline interlocks
 354  * ==========================================================================
 355  */
 356 /*
 357  * NOTE - Callers to zio_walk_parents() and zio_walk_children must
 358  *        continue calling these functions until they return NULL.
 359  *        Otherwise, the next caller will pick up the list walk in
 360  *        some indeterminate state.  (Otherwise every caller would
 361  *        have to pass in a cookie to keep the state represented by
 362  *        io_walk_link, which gets annoying.)
 363  */
 364 zio_t *
 365 zio_walk_parents(zio_t *cio)
 366 {
 367         zio_link_t *zl = cio->io_walk_link;
 368         list_t *pl = &cio->io_parent_list;
 369 
 370         zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
 371         cio->io_walk_link = zl;
 372 
 373         if (zl == NULL)
 374                 return (NULL);
 375 
 376         ASSERT(zl->zl_child == cio);
 377         return (zl->zl_parent);
 378 }
 379 
 380 zio_t *
 381 zio_walk_children(zio_t *pio)
 382 {
 383         zio_link_t *zl = pio->io_walk_link;
 384         list_t *cl = &pio->io_child_list;
 385 
 386         zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
 387         pio->io_walk_link = zl;
 388 
 389         if (zl == NULL)
 390                 return (NULL);
 391 
 392         ASSERT(zl->zl_parent == pio);
 393         return (zl->zl_child);
 394 }
 395 
 396 zio_t *
 397 zio_unique_parent(zio_t *cio)
 398 {
 399         zio_t *pio = zio_walk_parents(cio);
 400 
 401         VERIFY(zio_walk_parents(cio) == NULL);
 402         return (pio);
 403 }
 404 
 405 void
 406 zio_add_child(zio_t *pio, zio_t *cio)
 407 {
 408         zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
 409 
 410         /*
 411          * Logical I/Os can have logical, gang, or vdev children.
 412          * Gang I/Os can have gang or vdev children.
 413          * Vdev I/Os can only have vdev children.
 414          * The following ASSERT captures all of these constraints.
 415          */
 416         ASSERT(cio->io_child_type <= pio->io_child_type);
 417 
 418         zl->zl_parent = pio;
 419         zl->zl_child = cio;
 420 
 421         mutex_enter(&cio->io_lock);
 422         mutex_enter(&pio->io_lock);
 423 
 424         ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
 425 
 426         for (int w = 0; w < ZIO_WAIT_TYPES; w++)
 427                 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
 428 
 429         list_insert_head(&pio->io_child_list, zl);
 430         list_insert_head(&cio->io_parent_list, zl);
 431 
 432         pio->io_child_count++;
 433         cio->io_parent_count++;
 434 
 435         mutex_exit(&pio->io_lock);
 436         mutex_exit(&cio->io_lock);
 437 }
 438 
 439 static void
 440 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
 441 {
 442         ASSERT(zl->zl_parent == pio);
 443         ASSERT(zl->zl_child == cio);
 444 
 445         mutex_enter(&cio->io_lock);
 446         mutex_enter(&pio->io_lock);
 447 
 448         list_remove(&pio->io_child_list, zl);
 449         list_remove(&cio->io_parent_list, zl);
 450 
 451         pio->io_child_count--;
 452         cio->io_parent_count--;
 453 
 454         mutex_exit(&pio->io_lock);
 455         mutex_exit(&cio->io_lock);
 456 
 457         kmem_cache_free(zio_link_cache, zl);
 458 }
 459 
 460 static boolean_t
 461 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
 462 {
 463         uint64_t *countp = &zio->io_children[child][wait];
 464         boolean_t waiting = B_FALSE;
 465 
 466         mutex_enter(&zio->io_lock);
 467         ASSERT(zio->io_stall == NULL);
 468         if (*countp != 0) {
 469                 zio->io_stage >>= 1;
 470                 zio->io_stall = countp;
 471                 waiting = B_TRUE;
 472         }
 473         mutex_exit(&zio->io_lock);
 474 
 475         return (waiting);
 476 }
 477 
 478 static void
 479 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
 480 {
 481         uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
 482         int *errorp = &pio->io_child_error[zio->io_child_type];
 483 
 484         mutex_enter(&pio->io_lock);
 485         if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
 486                 *errorp = zio_worst_error(*errorp, zio->io_error);
 487         pio->io_reexecute |= zio->io_reexecute;
 488         ASSERT3U(*countp, >, 0);
 489         if (--*countp == 0 && pio->io_stall == countp) {
 490                 pio->io_stall = NULL;
 491                 mutex_exit(&pio->io_lock);
 492                 zio_execute(pio);
 493         } else {
 494                 mutex_exit(&pio->io_lock);
 495         }
 496 }
 497 
 498 static void
 499 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
 500 {
 501         if (zio->io_child_error[c] != 0 && zio->io_error == 0)
 502                 zio->io_error = zio->io_child_error[c];
 503 }
 504 
 505 /*
 506  * ==========================================================================
 507  * Create the various types of I/O (read, write, free, etc)
 508  * ==========================================================================
 509  */
 510 static zio_t *
 511 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
 512     void *data, uint64_t size, zio_done_func_t *done, void *private,
 513     zio_type_t type, int priority, enum zio_flag flags,
 514     vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
 515     enum zio_stage stage, enum zio_stage pipeline)
 516 {
 517         zio_t *zio;
 518 
 519         ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
 520         ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
 521         ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
 522 
 523         ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
 524         ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
 525         ASSERT(vd || stage == ZIO_STAGE_OPEN);
 526 
 527         zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
 528         bzero(zio, sizeof (zio_t));
 529 
 530         mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
 531         cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
 532 
 533         list_create(&zio->io_parent_list, sizeof (zio_link_t),
 534             offsetof(zio_link_t, zl_parent_node));
 535         list_create(&zio->io_child_list, sizeof (zio_link_t),
 536             offsetof(zio_link_t, zl_child_node));
 537 
 538         if (vd != NULL)
 539                 zio->io_child_type = ZIO_CHILD_VDEV;
 540         else if (flags & ZIO_FLAG_GANG_CHILD)
 541                 zio->io_child_type = ZIO_CHILD_GANG;
 542         else if (flags & ZIO_FLAG_DDT_CHILD)
 543                 zio->io_child_type = ZIO_CHILD_DDT;
 544         else
 545                 zio->io_child_type = ZIO_CHILD_LOGICAL;
 546 
 547         if (bp != NULL) {
 548                 zio->io_bp = (blkptr_t *)bp;
 549                 zio->io_bp_copy = *bp;
 550                 zio->io_bp_orig = *bp;
 551                 if (type != ZIO_TYPE_WRITE ||
 552                     zio->io_child_type == ZIO_CHILD_DDT)
 553                         zio->io_bp = &zio->io_bp_copy;        /* so caller can free */
 554                 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
 555                         zio->io_logical = zio;
 556                 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
 557                         pipeline |= ZIO_GANG_STAGES;
 558         }
 559 
 560         zio->io_spa = spa;
 561         zio->io_txg = txg;
 562         zio->io_done = done;
 563         zio->io_private = private;
 564         zio->io_type = type;
 565         zio->io_priority = priority;
 566         zio->io_vd = vd;
 567         zio->io_offset = offset;
 568         zio->io_orig_data = zio->io_data = data;
 569         zio->io_orig_size = zio->io_size = size;
 570         zio->io_orig_flags = zio->io_flags = flags;
 571         zio->io_orig_stage = zio->io_stage = stage;
 572         zio->io_orig_pipeline = zio->io_pipeline = pipeline;
 573 
 574         zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
 575         zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
 576 
 577         if (zb != NULL)
 578                 zio->io_bookmark = *zb;
 579 
 580         if (pio != NULL) {
 581                 if (zio->io_logical == NULL)
 582                         zio->io_logical = pio->io_logical;
 583                 if (zio->io_child_type == ZIO_CHILD_GANG)
 584                         zio->io_gang_leader = pio->io_gang_leader;
 585                 zio_add_child(pio, zio);
 586         }
 587 
 588         return (zio);
 589 }
 590 
 591 static void
 592 zio_destroy(zio_t *zio)
 593 {
 594         list_destroy(&zio->io_parent_list);
 595         list_destroy(&zio->io_child_list);
 596         mutex_destroy(&zio->io_lock);
 597         cv_destroy(&zio->io_cv);
 598         kmem_cache_free(zio_cache, zio);
 599 }
 600 
 601 zio_t *
 602 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
 603     void *private, enum zio_flag flags)
 604 {
 605         zio_t *zio;
 606 
 607         zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
 608             ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
 609             ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
 610 
 611         return (zio);
 612 }
 613 
 614 zio_t *
 615 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
 616 {
 617         return (zio_null(NULL, spa, NULL, done, private, flags));
 618 }
 619 
 620 zio_t *
 621 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
 622     void *data, uint64_t size, zio_done_func_t *done, void *private,
 623     int priority, enum zio_flag flags, const zbookmark_t *zb)
 624 {
 625         zio_t *zio;
 626 
 627         zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
 628             data, size, done, private,
 629             ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
 630             ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
 631             ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
 632 
 633         return (zio);
 634 }
 635 
 636 zio_t *
 637 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
 638     void *data, uint64_t size, const zio_prop_t *zp,
 639     zio_done_func_t *ready, zio_done_func_t *done, void *private,
 640     int priority, enum zio_flag flags, const zbookmark_t *zb)
 641 {
 642         zio_t *zio;
 643 
 644         ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
 645             zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
 646             zp->zp_compress >= ZIO_COMPRESS_OFF &&
 647             zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
 648             DMU_OT_IS_VALID(zp->zp_type) &&
 649             zp->zp_level < 32 &&
 650             zp->zp_copies > 0 &&
 651             zp->zp_copies <= spa_max_replication(spa));
 652 
 653         zio = zio_create(pio, spa, txg, bp, data, size, done, private,
 654             ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
 655             ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
 656             ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
 657 
 658         zio->io_ready = ready;
 659         zio->io_prop = *zp;
 660 
 661         return (zio);
 662 }
 663 
 664 zio_t *
 665 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
 666     uint64_t size, zio_done_func_t *done, void *private, int priority,
 667     enum zio_flag flags, zbookmark_t *zb)
 668 {
 669         zio_t *zio;
 670 
 671         zio = zio_create(pio, spa, txg, bp, data, size, done, private,
 672             ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
 673             ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
 674 
 675         return (zio);
 676 }
 677 
 678 void
 679 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
 680 {
 681         ASSERT(zio->io_type == ZIO_TYPE_WRITE);
 682         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
 683         ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
 684         ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
 685 
 686         /*
 687          * We must reset the io_prop to match the values that existed
 688          * when the bp was first written by dmu_sync() keeping in mind
 689          * that nopwrite and dedup are mutually exclusive.
 690          */
 691         zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
 692         zio->io_prop.zp_nopwrite = nopwrite;
 693         zio->io_prop.zp_copies = copies;
 694         zio->io_bp_override = bp;
 695 }
 696 
 697 void
 698 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
 699 {
 700         metaslab_check_free(spa, bp);
 701         bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
 702 }
 703 
 704 zio_t *
 705 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
 706     enum zio_flag flags)
 707 {
 708         zio_t *zio;
 709 
 710         dprintf_bp(bp, "freeing in txg %llu, pass %u",
 711             (longlong_t)txg, spa->spa_sync_pass);
 712 
 713         ASSERT(!BP_IS_HOLE(bp));
 714         ASSERT(spa_syncing_txg(spa) == txg);
 715         ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
 716 
 717         metaslab_check_free(spa, bp);
 718 
 719         zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
 720             NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
 721             NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE);
 722 
 723         return (zio);
 724 }
 725 
 726 zio_t *
 727 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
 728     zio_done_func_t *done, void *private, enum zio_flag flags)
 729 {
 730         zio_t *zio;
 731 
 732         /*
 733          * A claim is an allocation of a specific block.  Claims are needed
 734          * to support immediate writes in the intent log.  The issue is that
 735          * immediate writes contain committed data, but in a txg that was
 736          * *not* committed.  Upon opening the pool after an unclean shutdown,
 737          * the intent log claims all blocks that contain immediate write data
 738          * so that the SPA knows they're in use.
 739          *
 740          * All claims *must* be resolved in the first txg -- before the SPA
 741          * starts allocating blocks -- so that nothing is allocated twice.
 742          * If txg == 0 we just verify that the block is claimable.
 743          */
 744         ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
 745         ASSERT(txg == spa_first_txg(spa) || txg == 0);
 746         ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));       /* zdb(1M) */
 747 
 748         zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
 749             done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
 750             NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
 751 
 752         return (zio);
 753 }
 754 
 755 zio_t *
 756 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
 757     zio_done_func_t *done, void *private, int priority, enum zio_flag flags)
 758 {
 759         zio_t *zio;
 760         int c;
 761 
 762         if (vd->vdev_children == 0) {
 763                 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
 764                     ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL,
 765                     ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
 766 
 767                 zio->io_cmd = cmd;
 768         } else {
 769                 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
 770 
 771                 for (c = 0; c < vd->vdev_children; c++)
 772                         zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
 773                             done, private, priority, flags));
 774         }
 775 
 776         return (zio);
 777 }
 778 
 779 zio_t *
 780 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
 781     void *data, int checksum, zio_done_func_t *done, void *private,
 782     int priority, enum zio_flag flags, boolean_t labels)
 783 {
 784         zio_t *zio;
 785 
 786         ASSERT(vd->vdev_children == 0);
 787         ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
 788             offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
 789         ASSERT3U(offset + size, <=, vd->vdev_psize);
 790 
 791         zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
 792             ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
 793             ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
 794 
 795         zio->io_prop.zp_checksum = checksum;
 796 
 797         return (zio);
 798 }
 799 
 800 zio_t *
 801 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
 802     void *data, int checksum, zio_done_func_t *done, void *private,
 803     int priority, enum zio_flag flags, boolean_t labels)
 804 {
 805         zio_t *zio;
 806 
 807         ASSERT(vd->vdev_children == 0);
 808         ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
 809             offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
 810         ASSERT3U(offset + size, <=, vd->vdev_psize);
 811 
 812         zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
 813             ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
 814             ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
 815 
 816         zio->io_prop.zp_checksum = checksum;
 817 
 818         if (zio_checksum_table[checksum].ci_eck) {
 819                 /*
 820                  * zec checksums are necessarily destructive -- they modify
 821                  * the end of the write buffer to hold the verifier/checksum.
 822                  * Therefore, we must make a local copy in case the data is
 823                  * being written to multiple places in parallel.
 824                  */
 825                 void *wbuf = zio_buf_alloc(size);
 826                 bcopy(data, wbuf, size);
 827                 zio_push_transform(zio, wbuf, size, size, NULL);
 828         }
 829 
 830         return (zio);
 831 }
 832 
 833 /*
 834  * Create a child I/O to do some work for us.
 835  */
 836 zio_t *
 837 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
 838         void *data, uint64_t size, int type, int priority, enum zio_flag flags,
 839         zio_done_func_t *done, void *private)
 840 {
 841         enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
 842         zio_t *zio;
 843 
 844         ASSERT(vd->vdev_parent ==
 845             (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
 846 
 847         if (type == ZIO_TYPE_READ && bp != NULL) {
 848                 /*
 849                  * If we have the bp, then the child should perform the
 850                  * checksum and the parent need not.  This pushes error
 851                  * detection as close to the leaves as possible and
 852                  * eliminates redundant checksums in the interior nodes.
 853                  */
 854                 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
 855                 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
 856         }
 857 
 858         if (vd->vdev_children == 0)
 859                 offset += VDEV_LABEL_START_SIZE;
 860 
 861         flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
 862 
 863         /*
 864          * If we've decided to do a repair, the write is not speculative --
 865          * even if the original read was.
 866          */
 867         if (flags & ZIO_FLAG_IO_REPAIR)
 868                 flags &= ~ZIO_FLAG_SPECULATIVE;
 869 
 870         zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
 871             done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
 872             ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
 873 
 874         return (zio);
 875 }
 876 
 877 zio_t *
 878 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
 879         int type, int priority, enum zio_flag flags,
 880         zio_done_func_t *done, void *private)
 881 {
 882         zio_t *zio;
 883 
 884         ASSERT(vd->vdev_ops->vdev_op_leaf);
 885 
 886         zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
 887             data, size, done, private, type, priority,
 888             flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
 889             vd, offset, NULL,
 890             ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
 891 
 892         return (zio);
 893 }
 894 
 895 void
 896 zio_flush(zio_t *zio, vdev_t *vd)
 897 {
 898         zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
 899             NULL, NULL, ZIO_PRIORITY_NOW,
 900             ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
 901 }
 902 
 903 void
 904 zio_shrink(zio_t *zio, uint64_t size)
 905 {
 906         ASSERT(zio->io_executor == NULL);
 907         ASSERT(zio->io_orig_size == zio->io_size);
 908         ASSERT(size <= zio->io_size);
 909 
 910         /*
 911          * We don't shrink for raidz because of problems with the
 912          * reconstruction when reading back less than the block size.
 913          * Note, BP_IS_RAIDZ() assumes no compression.
 914          */
 915         ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
 916         if (!BP_IS_RAIDZ(zio->io_bp))
 917                 zio->io_orig_size = zio->io_size = size;
 918 }
 919 
 920 /*
 921  * ==========================================================================
 922  * Prepare to read and write logical blocks
 923  * ==========================================================================
 924  */
 925 
 926 static int
 927 zio_read_bp_init(zio_t *zio)
 928 {
 929         blkptr_t *bp = zio->io_bp;
 930 
 931         if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
 932             zio->io_child_type == ZIO_CHILD_LOGICAL &&
 933             !(zio->io_flags & ZIO_FLAG_RAW)) {
 934                 uint64_t psize = BP_GET_PSIZE(bp);
 935                 void *cbuf = zio_buf_alloc(psize);
 936 
 937                 zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
 938         }
 939 
 940         if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
 941                 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
 942 
 943         if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
 944                 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
 945 
 946         if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
 947                 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
 948 
 949         return (ZIO_PIPELINE_CONTINUE);
 950 }
 951 
 952 static int
 953 zio_write_bp_init(zio_t *zio)
 954 {
 955         spa_t *spa = zio->io_spa;
 956         zio_prop_t *zp = &zio->io_prop;
 957         enum zio_compress compress = zp->zp_compress;
 958         blkptr_t *bp = zio->io_bp;
 959         uint64_t lsize = zio->io_size;
 960         uint64_t psize = lsize;
 961         int pass = 1;
 962 
 963         /*
 964          * If our children haven't all reached the ready stage,
 965          * wait for them and then repeat this pipeline stage.
 966          */
 967         if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
 968             zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
 969                 return (ZIO_PIPELINE_STOP);
 970 
 971         if (!IO_IS_ALLOCATING(zio))
 972                 return (ZIO_PIPELINE_CONTINUE);
 973 
 974         ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
 975 
 976         if (zio->io_bp_override) {
 977                 ASSERT(bp->blk_birth != zio->io_txg);
 978                 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
 979 
 980                 *bp = *zio->io_bp_override;
 981                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
 982 
 983                 /*
 984                  * If we've been overridden and nopwrite is set then
 985                  * set the flag accordingly to indicate that a nopwrite
 986                  * has already occurred.
 987                  */
 988                 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
 989                         ASSERT(!zp->zp_dedup);
 990                         zio->io_flags |= ZIO_FLAG_NOPWRITE;
 991                         return (ZIO_PIPELINE_CONTINUE);
 992                 }
 993 
 994                 ASSERT(!zp->zp_nopwrite);
 995 
 996                 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
 997                         return (ZIO_PIPELINE_CONTINUE);
 998 
 999                 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1000                     zp->zp_dedup_verify);
1001 
1002                 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1003                         BP_SET_DEDUP(bp, 1);
1004                         zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1005                         return (ZIO_PIPELINE_CONTINUE);
1006                 }
1007                 zio->io_bp_override = NULL;
1008                 BP_ZERO(bp);
1009         }
1010 
1011         if (bp->blk_birth == zio->io_txg) {
1012                 /*
1013                  * We're rewriting an existing block, which means we're
1014                  * working on behalf of spa_sync().  For spa_sync() to
1015                  * converge, it must eventually be the case that we don't
1016                  * have to allocate new blocks.  But compression changes
1017                  * the blocksize, which forces a reallocate, and makes
1018                  * convergence take longer.  Therefore, after the first
1019                  * few passes, stop compressing to ensure convergence.
1020                  */
1021                 pass = spa_sync_pass(spa);
1022 
1023                 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1024                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1025                 ASSERT(!BP_GET_DEDUP(bp));
1026 
1027                 if (pass >= zfs_sync_pass_dont_compress)
1028                         compress = ZIO_COMPRESS_OFF;
1029 
1030                 /* Make sure someone doesn't change their mind on overwrites */
1031                 ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
1032                     spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1033         }
1034 
1035         if (compress != ZIO_COMPRESS_OFF) {
1036                 void *cbuf = zio_buf_alloc(lsize);
1037                 psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1038                 if (psize == 0 || psize == lsize) {
1039                         compress = ZIO_COMPRESS_OFF;
1040                         zio_buf_free(cbuf, lsize);
1041                 } else {
1042                         ASSERT(psize < lsize);
1043                         zio_push_transform(zio, cbuf, psize, lsize, NULL);
1044                 }
1045         }
1046 
1047         /*
1048          * The final pass of spa_sync() must be all rewrites, but the first
1049          * few passes offer a trade-off: allocating blocks defers convergence,
1050          * but newly allocated blocks are sequential, so they can be written
1051          * to disk faster.  Therefore, we allow the first few passes of
1052          * spa_sync() to allocate new blocks, but force rewrites after that.
1053          * There should only be a handful of blocks after pass 1 in any case.
1054          */
1055         if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
1056             pass >= zfs_sync_pass_rewrite) {
1057                 ASSERT(psize != 0);
1058                 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1059                 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1060                 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1061         } else {
1062                 BP_ZERO(bp);
1063                 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1064         }
1065 
1066         if (psize == 0) {
1067                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1068         } else {
1069                 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1070                 BP_SET_LSIZE(bp, lsize);
1071                 BP_SET_PSIZE(bp, psize);
1072                 BP_SET_COMPRESS(bp, compress);
1073                 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1074                 BP_SET_TYPE(bp, zp->zp_type);
1075                 BP_SET_LEVEL(bp, zp->zp_level);
1076                 BP_SET_DEDUP(bp, zp->zp_dedup);
1077                 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1078                 if (zp->zp_dedup) {
1079                         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1080                         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1081                         zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1082                 }
1083                 if (zp->zp_nopwrite) {
1084                         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1085                         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1086                         zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1087                 }
1088         }
1089 
1090         return (ZIO_PIPELINE_CONTINUE);
1091 }
1092 
1093 static int
1094 zio_free_bp_init(zio_t *zio)
1095 {
1096         blkptr_t *bp = zio->io_bp;
1097 
1098         if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1099                 if (BP_GET_DEDUP(bp))
1100                         zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1101         }
1102 
1103         return (ZIO_PIPELINE_CONTINUE);
1104 }
1105 
1106 /*
1107  * ==========================================================================
1108  * Execute the I/O pipeline
1109  * ==========================================================================
1110  */
1111 
1112 static void
1113 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1114 {
1115         spa_t *spa = zio->io_spa;
1116         zio_type_t t = zio->io_type;
1117         int flags = (cutinline ? TQ_FRONT : 0);
1118 
1119         /*
1120          * If we're a config writer or a probe, the normal issue and
1121          * interrupt threads may all be blocked waiting for the config lock.
1122          * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1123          */
1124         if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1125                 t = ZIO_TYPE_NULL;
1126 
1127         /*
1128          * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1129          */
1130         if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1131                 t = ZIO_TYPE_NULL;
1132 
1133         /*
1134          * If this is a high priority I/O, then use the high priority taskq if
1135          * available.
1136          */
1137         if (zio->io_priority == ZIO_PRIORITY_NOW &&
1138             spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1139                 q++;
1140 
1141         ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1142 
1143         /*
1144          * NB: We are assuming that the zio can only be dispatched
1145          * to a single taskq at a time.  It would be a grievous error
1146          * to dispatch the zio to another taskq at the same time.
1147          */
1148         ASSERT(zio->io_tqent.tqent_next == NULL);
1149         spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1150             flags, &zio->io_tqent);
1151 }
1152 
1153 static boolean_t
1154 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1155 {
1156         kthread_t *executor = zio->io_executor;
1157         spa_t *spa = zio->io_spa;
1158 
1159         for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1160                 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1161                 uint_t i;
1162                 for (i = 0; i < tqs->stqs_count; i++) {
1163                         if (taskq_member(tqs->stqs_taskq[i], executor))
1164                                 return (B_TRUE);
1165                 }
1166         }
1167 
1168         return (B_FALSE);
1169 }
1170 
1171 static int
1172 zio_issue_async(zio_t *zio)
1173 {
1174         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1175 
1176         return (ZIO_PIPELINE_STOP);
1177 }
1178 
1179 void
1180 zio_interrupt(zio_t *zio)
1181 {
1182         zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1183 }
1184 
1185 /*
1186  * Execute the I/O pipeline until one of the following occurs:
1187  *
1188  *      (1) the I/O completes
1189  *      (2) the pipeline stalls waiting for dependent child I/Os
1190  *      (3) the I/O issues, so we're waiting for an I/O completion interrupt
1191  *      (4) the I/O is delegated by vdev-level caching or aggregation
1192  *      (5) the I/O is deferred due to vdev-level queueing
1193  *      (6) the I/O is handed off to another thread.
1194  *
1195  * In all cases, the pipeline stops whenever there's no CPU work; it never
1196  * burns a thread in cv_wait().
1197  *
1198  * There's no locking on io_stage because there's no legitimate way
1199  * for multiple threads to be attempting to process the same I/O.
1200  */
1201 static zio_pipe_stage_t *zio_pipeline[];
1202 
1203 void
1204 zio_execute(zio_t *zio)
1205 {
1206         zio->io_executor = curthread;
1207 
1208         while (zio->io_stage < ZIO_STAGE_DONE) {
1209                 enum zio_stage pipeline = zio->io_pipeline;
1210                 enum zio_stage stage = zio->io_stage;
1211                 int rv;
1212 
1213                 ASSERT(!MUTEX_HELD(&zio->io_lock));
1214                 ASSERT(ISP2(stage));
1215                 ASSERT(zio->io_stall == NULL);
1216 
1217                 do {
1218                         stage <<= 1;
1219                 } while ((stage & pipeline) == 0);
1220 
1221                 ASSERT(stage <= ZIO_STAGE_DONE);
1222 
1223                 /*
1224                  * If we are in interrupt context and this pipeline stage
1225                  * will grab a config lock that is held across I/O,
1226                  * or may wait for an I/O that needs an interrupt thread
1227                  * to complete, issue async to avoid deadlock.
1228                  *
1229                  * For VDEV_IO_START, we cut in line so that the io will
1230                  * be sent to disk promptly.
1231                  */
1232                 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1233                     zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1234                         boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1235                             zio_requeue_io_start_cut_in_line : B_FALSE;
1236                         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1237                         return;
1238                 }
1239 
1240                 zio->io_stage = stage;
1241                 rv = zio_pipeline[highbit(stage) - 1](zio);
1242 
1243                 if (rv == ZIO_PIPELINE_STOP)
1244                         return;
1245 
1246                 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1247         }
1248 }
1249 
1250 /*
1251  * ==========================================================================
1252  * Initiate I/O, either sync or async
1253  * ==========================================================================
1254  */
1255 int
1256 zio_wait(zio_t *zio)
1257 {
1258         int error;
1259 
1260         ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1261         ASSERT(zio->io_executor == NULL);
1262 
1263         zio->io_waiter = curthread;
1264 
1265         zio_execute(zio);
1266 
1267         mutex_enter(&zio->io_lock);
1268         while (zio->io_executor != NULL)
1269                 cv_wait(&zio->io_cv, &zio->io_lock);
1270         mutex_exit(&zio->io_lock);
1271 
1272         error = zio->io_error;
1273         zio_destroy(zio);
1274 
1275         return (error);
1276 }
1277 
1278 void
1279 zio_nowait(zio_t *zio)
1280 {
1281         ASSERT(zio->io_executor == NULL);
1282 
1283         if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1284             zio_unique_parent(zio) == NULL) {
1285                 /*
1286                  * This is a logical async I/O with no parent to wait for it.
1287                  * We add it to the spa_async_root_zio "Godfather" I/O which
1288                  * will ensure they complete prior to unloading the pool.
1289                  */
1290                 spa_t *spa = zio->io_spa;
1291 
1292                 zio_add_child(spa->spa_async_zio_root, zio);
1293         }
1294 
1295         zio_execute(zio);
1296 }
1297 
1298 /*
1299  * ==========================================================================
1300  * Reexecute or suspend/resume failed I/O
1301  * ==========================================================================
1302  */
1303 
1304 static void
1305 zio_reexecute(zio_t *pio)
1306 {
1307         zio_t *cio, *cio_next;
1308 
1309         ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1310         ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1311         ASSERT(pio->io_gang_leader == NULL);
1312         ASSERT(pio->io_gang_tree == NULL);
1313 
1314         pio->io_flags = pio->io_orig_flags;
1315         pio->io_stage = pio->io_orig_stage;
1316         pio->io_pipeline = pio->io_orig_pipeline;
1317         pio->io_reexecute = 0;
1318         pio->io_flags |= ZIO_FLAG_REEXECUTED;
1319         pio->io_error = 0;
1320         for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1321                 pio->io_state[w] = 0;
1322         for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1323                 pio->io_child_error[c] = 0;
1324 
1325         if (IO_IS_ALLOCATING(pio))
1326                 BP_ZERO(pio->io_bp);
1327 
1328         /*
1329          * As we reexecute pio's children, new children could be created.
1330          * New children go to the head of pio's io_child_list, however,
1331          * so we will (correctly) not reexecute them.  The key is that
1332          * the remainder of pio's io_child_list, from 'cio_next' onward,
1333          * cannot be affected by any side effects of reexecuting 'cio'.
1334          */
1335         for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1336                 cio_next = zio_walk_children(pio);
1337                 mutex_enter(&pio->io_lock);
1338                 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1339                         pio->io_children[cio->io_child_type][w]++;
1340                 mutex_exit(&pio->io_lock);
1341                 zio_reexecute(cio);
1342         }
1343 
1344         /*
1345          * Now that all children have been reexecuted, execute the parent.
1346          * We don't reexecute "The Godfather" I/O here as it's the
1347          * responsibility of the caller to wait on him.
1348          */
1349         if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1350                 zio_execute(pio);
1351 }
1352 
1353 void
1354 zio_suspend(spa_t *spa, zio_t *zio)
1355 {
1356         if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1357                 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1358                     "failure and the failure mode property for this pool "
1359                     "is set to panic.", spa_name(spa));
1360 
1361         zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1362 
1363         mutex_enter(&spa->spa_suspend_lock);
1364 
1365         if (spa->spa_suspend_zio_root == NULL)
1366                 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1367                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1368                     ZIO_FLAG_GODFATHER);
1369 
1370         spa->spa_suspended = B_TRUE;
1371 
1372         if (zio != NULL) {
1373                 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1374                 ASSERT(zio != spa->spa_suspend_zio_root);
1375                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1376                 ASSERT(zio_unique_parent(zio) == NULL);
1377                 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1378                 zio_add_child(spa->spa_suspend_zio_root, zio);
1379         }
1380 
1381         mutex_exit(&spa->spa_suspend_lock);
1382 }
1383 
1384 int
1385 zio_resume(spa_t *spa)
1386 {
1387         zio_t *pio;
1388 
1389         /*
1390          * Reexecute all previously suspended i/o.
1391          */
1392         mutex_enter(&spa->spa_suspend_lock);
1393         spa->spa_suspended = B_FALSE;
1394         cv_broadcast(&spa->spa_suspend_cv);
1395         pio = spa->spa_suspend_zio_root;
1396         spa->spa_suspend_zio_root = NULL;
1397         mutex_exit(&spa->spa_suspend_lock);
1398 
1399         if (pio == NULL)
1400                 return (0);
1401 
1402         zio_reexecute(pio);
1403         return (zio_wait(pio));
1404 }
1405 
1406 void
1407 zio_resume_wait(spa_t *spa)
1408 {
1409         mutex_enter(&spa->spa_suspend_lock);
1410         while (spa_suspended(spa))
1411                 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1412         mutex_exit(&spa->spa_suspend_lock);
1413 }
1414 
1415 /*
1416  * ==========================================================================
1417  * Gang blocks.
1418  *
1419  * A gang block is a collection of small blocks that looks to the DMU
1420  * like one large block.  When zio_dva_allocate() cannot find a block
1421  * of the requested size, due to either severe fragmentation or the pool
1422  * being nearly full, it calls zio_write_gang_block() to construct the
1423  * block from smaller fragments.
1424  *
1425  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1426  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1427  * an indirect block: it's an array of block pointers.  It consumes
1428  * only one sector and hence is allocatable regardless of fragmentation.
1429  * The gang header's bps point to its gang members, which hold the data.
1430  *
1431  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1432  * as the verifier to ensure uniqueness of the SHA256 checksum.
1433  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1434  * not the gang header.  This ensures that data block signatures (needed for
1435  * deduplication) are independent of how the block is physically stored.
1436  *
1437  * Gang blocks can be nested: a gang member may itself be a gang block.
1438  * Thus every gang block is a tree in which root and all interior nodes are
1439  * gang headers, and the leaves are normal blocks that contain user data.
1440  * The root of the gang tree is called the gang leader.
1441  *
1442  * To perform any operation (read, rewrite, free, claim) on a gang block,
1443  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1444  * in the io_gang_tree field of the original logical i/o by recursively
1445  * reading the gang leader and all gang headers below it.  This yields
1446  * an in-core tree containing the contents of every gang header and the
1447  * bps for every constituent of the gang block.
1448  *
1449  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1450  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1451  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1452  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1453  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1454  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1455  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1456  * of the gang header plus zio_checksum_compute() of the data to update the
1457  * gang header's blk_cksum as described above.
1458  *
1459  * The two-phase assemble/issue model solves the problem of partial failure --
1460  * what if you'd freed part of a gang block but then couldn't read the
1461  * gang header for another part?  Assembling the entire gang tree first
1462  * ensures that all the necessary gang header I/O has succeeded before
1463  * starting the actual work of free, claim, or write.  Once the gang tree
1464  * is assembled, free and claim are in-memory operations that cannot fail.
1465  *
1466  * In the event that a gang write fails, zio_dva_unallocate() walks the
1467  * gang tree to immediately free (i.e. insert back into the space map)
1468  * everything we've allocated.  This ensures that we don't get ENOSPC
1469  * errors during repeated suspend/resume cycles due to a flaky device.
1470  *
1471  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1472  * the gang tree, we won't modify the block, so we can safely defer the free
1473  * (knowing that the block is still intact).  If we *can* assemble the gang
1474  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1475  * each constituent bp and we can allocate a new block on the next sync pass.
1476  *
1477  * In all cases, the gang tree allows complete recovery from partial failure.
1478  * ==========================================================================
1479  */
1480 
1481 static zio_t *
1482 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1483 {
1484         if (gn != NULL)
1485                 return (pio);
1486 
1487         return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1488             NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1489             &pio->io_bookmark));
1490 }
1491 
1492 zio_t *
1493 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1494 {
1495         zio_t *zio;
1496 
1497         if (gn != NULL) {
1498                 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1499                     gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1500                     ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1501                 /*
1502                  * As we rewrite each gang header, the pipeline will compute
1503                  * a new gang block header checksum for it; but no one will
1504                  * compute a new data checksum, so we do that here.  The one
1505                  * exception is the gang leader: the pipeline already computed
1506                  * its data checksum because that stage precedes gang assembly.
1507                  * (Presently, nothing actually uses interior data checksums;
1508                  * this is just good hygiene.)
1509                  */
1510                 if (gn != pio->io_gang_leader->io_gang_tree) {
1511                         zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1512                             data, BP_GET_PSIZE(bp));
1513                 }
1514                 /*
1515                  * If we are here to damage data for testing purposes,
1516                  * leave the GBH alone so that we can detect the damage.
1517                  */
1518                 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1519                         zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1520         } else {
1521                 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1522                     data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1523                     ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1524         }
1525 
1526         return (zio);
1527 }
1528 
1529 /* ARGSUSED */
1530 zio_t *
1531 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1532 {
1533         return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1534             ZIO_GANG_CHILD_FLAGS(pio)));
1535 }
1536 
1537 /* ARGSUSED */
1538 zio_t *
1539 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1540 {
1541         return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1542             NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1543 }
1544 
1545 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1546         NULL,
1547         zio_read_gang,
1548         zio_rewrite_gang,
1549         zio_free_gang,
1550         zio_claim_gang,
1551         NULL
1552 };
1553 
1554 static void zio_gang_tree_assemble_done(zio_t *zio);
1555 
1556 static zio_gang_node_t *
1557 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1558 {
1559         zio_gang_node_t *gn;
1560 
1561         ASSERT(*gnpp == NULL);
1562 
1563         gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1564         gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1565         *gnpp = gn;
1566 
1567         return (gn);
1568 }
1569 
1570 static void
1571 zio_gang_node_free(zio_gang_node_t **gnpp)
1572 {
1573         zio_gang_node_t *gn = *gnpp;
1574 
1575         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1576                 ASSERT(gn->gn_child[g] == NULL);
1577 
1578         zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1579         kmem_free(gn, sizeof (*gn));
1580         *gnpp = NULL;
1581 }
1582 
1583 static void
1584 zio_gang_tree_free(zio_gang_node_t **gnpp)
1585 {
1586         zio_gang_node_t *gn = *gnpp;
1587 
1588         if (gn == NULL)
1589                 return;
1590 
1591         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1592                 zio_gang_tree_free(&gn->gn_child[g]);
1593 
1594         zio_gang_node_free(gnpp);
1595 }
1596 
1597 static void
1598 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1599 {
1600         zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1601 
1602         ASSERT(gio->io_gang_leader == gio);
1603         ASSERT(BP_IS_GANG(bp));
1604 
1605         zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1606             SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1607             gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1608 }
1609 
1610 static void
1611 zio_gang_tree_assemble_done(zio_t *zio)
1612 {
1613         zio_t *gio = zio->io_gang_leader;
1614         zio_gang_node_t *gn = zio->io_private;
1615         blkptr_t *bp = zio->io_bp;
1616 
1617         ASSERT(gio == zio_unique_parent(zio));
1618         ASSERT(zio->io_child_count == 0);
1619 
1620         if (zio->io_error)
1621                 return;
1622 
1623         if (BP_SHOULD_BYTESWAP(bp))
1624                 byteswap_uint64_array(zio->io_data, zio->io_size);
1625 
1626         ASSERT(zio->io_data == gn->gn_gbh);
1627         ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1628         ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1629 
1630         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1631                 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1632                 if (!BP_IS_GANG(gbp))
1633                         continue;
1634                 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1635         }
1636 }
1637 
1638 static void
1639 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1640 {
1641         zio_t *gio = pio->io_gang_leader;
1642         zio_t *zio;
1643 
1644         ASSERT(BP_IS_GANG(bp) == !!gn);
1645         ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1646         ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1647 
1648         /*
1649          * If you're a gang header, your data is in gn->gn_gbh.
1650          * If you're a gang member, your data is in 'data' and gn == NULL.
1651          */
1652         zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1653 
1654         if (gn != NULL) {
1655                 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1656 
1657                 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1658                         blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1659                         if (BP_IS_HOLE(gbp))
1660                                 continue;
1661                         zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1662                         data = (char *)data + BP_GET_PSIZE(gbp);
1663                 }
1664         }
1665 
1666         if (gn == gio->io_gang_tree)
1667                 ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1668 
1669         if (zio != pio)
1670                 zio_nowait(zio);
1671 }
1672 
1673 static int
1674 zio_gang_assemble(zio_t *zio)
1675 {
1676         blkptr_t *bp = zio->io_bp;
1677 
1678         ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1679         ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1680 
1681         zio->io_gang_leader = zio;
1682 
1683         zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1684 
1685         return (ZIO_PIPELINE_CONTINUE);
1686 }
1687 
1688 static int
1689 zio_gang_issue(zio_t *zio)
1690 {
1691         blkptr_t *bp = zio->io_bp;
1692 
1693         if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1694                 return (ZIO_PIPELINE_STOP);
1695 
1696         ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1697         ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1698 
1699         if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1700                 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1701         else
1702                 zio_gang_tree_free(&zio->io_gang_tree);
1703 
1704         zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1705 
1706         return (ZIO_PIPELINE_CONTINUE);
1707 }
1708 
1709 static void
1710 zio_write_gang_member_ready(zio_t *zio)
1711 {
1712         zio_t *pio = zio_unique_parent(zio);
1713         zio_t *gio = zio->io_gang_leader;
1714         dva_t *cdva = zio->io_bp->blk_dva;
1715         dva_t *pdva = pio->io_bp->blk_dva;
1716         uint64_t asize;
1717 
1718         if (BP_IS_HOLE(zio->io_bp))
1719                 return;
1720 
1721         ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1722 
1723         ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1724         ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1725         ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1726         ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1727         ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1728 
1729         mutex_enter(&pio->io_lock);
1730         for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1731                 ASSERT(DVA_GET_GANG(&pdva[d]));
1732                 asize = DVA_GET_ASIZE(&pdva[d]);
1733                 asize += DVA_GET_ASIZE(&cdva[d]);
1734                 DVA_SET_ASIZE(&pdva[d], asize);
1735         }
1736         mutex_exit(&pio->io_lock);
1737 }
1738 
1739 static int
1740 zio_write_gang_block(zio_t *pio)
1741 {
1742         spa_t *spa = pio->io_spa;
1743         blkptr_t *bp = pio->io_bp;
1744         zio_t *gio = pio->io_gang_leader;
1745         zio_t *zio;
1746         zio_gang_node_t *gn, **gnpp;
1747         zio_gbh_phys_t *gbh;
1748         uint64_t txg = pio->io_txg;
1749         uint64_t resid = pio->io_size;
1750         uint64_t lsize;
1751         int copies = gio->io_prop.zp_copies;
1752         int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1753         zio_prop_t zp;
1754         int error;
1755 
1756         error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1757             bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1758             METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1759         if (error) {
1760                 pio->io_error = error;
1761                 return (ZIO_PIPELINE_CONTINUE);
1762         }
1763 
1764         if (pio == gio) {
1765                 gnpp = &gio->io_gang_tree;
1766         } else {
1767                 gnpp = pio->io_private;
1768                 ASSERT(pio->io_ready == zio_write_gang_member_ready);
1769         }
1770 
1771         gn = zio_gang_node_alloc(gnpp);
1772         gbh = gn->gn_gbh;
1773         bzero(gbh, SPA_GANGBLOCKSIZE);
1774 
1775         /*
1776          * Create the gang header.
1777          */
1778         zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1779             pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1780 
1781         /*
1782          * Create and nowait the gang children.
1783          */
1784         for (int g = 0; resid != 0; resid -= lsize, g++) {
1785                 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1786                     SPA_MINBLOCKSIZE);
1787                 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1788 
1789                 zp.zp_checksum = gio->io_prop.zp_checksum;
1790                 zp.zp_compress = ZIO_COMPRESS_OFF;
1791                 zp.zp_type = DMU_OT_NONE;
1792                 zp.zp_level = 0;
1793                 zp.zp_copies = gio->io_prop.zp_copies;
1794                 zp.zp_dedup = B_FALSE;
1795                 zp.zp_dedup_verify = B_FALSE;
1796                 zp.zp_nopwrite = B_FALSE;
1797 
1798                 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1799                     (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1800                     zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1801                     pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1802                     &pio->io_bookmark));
1803         }
1804 
1805         /*
1806          * Set pio's pipeline to just wait for zio to finish.
1807          */
1808         pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1809 
1810         zio_nowait(zio);
1811 
1812         return (ZIO_PIPELINE_CONTINUE);
1813 }
1814 
1815 /*
1816  * The zio_nop_write stage in the pipeline determines if allocating
1817  * a new bp is necessary.  By leveraging a cryptographically secure checksum,
1818  * such as SHA256, we can compare the checksums of the new data and the old
1819  * to determine if allocating a new block is required.  The nopwrite
1820  * feature can handle writes in either syncing or open context (i.e. zil
1821  * writes) and as a result is mutually exclusive with dedup.
1822  */
1823 static int
1824 zio_nop_write(zio_t *zio)
1825 {
1826         blkptr_t *bp = zio->io_bp;
1827         blkptr_t *bp_orig = &zio->io_bp_orig;
1828         zio_prop_t *zp = &zio->io_prop;
1829 
1830         ASSERT(BP_GET_LEVEL(bp) == 0);
1831         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1832         ASSERT(zp->zp_nopwrite);
1833         ASSERT(!zp->zp_dedup);
1834         ASSERT(zio->io_bp_override == NULL);
1835         ASSERT(IO_IS_ALLOCATING(zio));
1836 
1837         /*
1838          * Check to see if the original bp and the new bp have matching
1839          * characteristics (i.e. same checksum, compression algorithms, etc).
1840          * If they don't then just continue with the pipeline which will
1841          * allocate a new bp.
1842          */
1843         if (BP_IS_HOLE(bp_orig) ||
1844             !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
1845             BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
1846             BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
1847             BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
1848             zp->zp_copies != BP_GET_NDVAS(bp_orig))
1849                 return (ZIO_PIPELINE_CONTINUE);
1850 
1851         /*
1852          * If the checksums match then reset the pipeline so that we
1853          * avoid allocating a new bp and issuing any I/O.
1854          */
1855         if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
1856                 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
1857                 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
1858                 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
1859                 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
1860                 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
1861                     sizeof (uint64_t)) == 0);
1862 
1863                 *bp = *bp_orig;
1864                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1865                 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1866         }
1867 
1868         return (ZIO_PIPELINE_CONTINUE);
1869 }
1870 
1871 /*
1872  * ==========================================================================
1873  * Dedup
1874  * ==========================================================================
1875  */
1876 static void
1877 zio_ddt_child_read_done(zio_t *zio)
1878 {
1879         blkptr_t *bp = zio->io_bp;
1880         ddt_entry_t *dde = zio->io_private;
1881         ddt_phys_t *ddp;
1882         zio_t *pio = zio_unique_parent(zio);
1883 
1884         mutex_enter(&pio->io_lock);
1885         ddp = ddt_phys_select(dde, bp);
1886         if (zio->io_error == 0)
1887                 ddt_phys_clear(ddp);    /* this ddp doesn't need repair */
1888         if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1889                 dde->dde_repair_data = zio->io_data;
1890         else
1891                 zio_buf_free(zio->io_data, zio->io_size);
1892         mutex_exit(&pio->io_lock);
1893 }
1894 
1895 static int
1896 zio_ddt_read_start(zio_t *zio)
1897 {
1898         blkptr_t *bp = zio->io_bp;
1899 
1900         ASSERT(BP_GET_DEDUP(bp));
1901         ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1902         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1903 
1904         if (zio->io_child_error[ZIO_CHILD_DDT]) {
1905                 ddt_t *ddt = ddt_select(zio->io_spa, bp);
1906                 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
1907                 ddt_phys_t *ddp = dde->dde_phys;
1908                 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
1909                 blkptr_t blk;
1910 
1911                 ASSERT(zio->io_vsd == NULL);
1912                 zio->io_vsd = dde;
1913 
1914                 if (ddp_self == NULL)
1915                         return (ZIO_PIPELINE_CONTINUE);
1916 
1917                 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1918                         if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
1919                                 continue;
1920                         ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
1921                             &blk);
1922                         zio_nowait(zio_read(zio, zio->io_spa, &blk,
1923                             zio_buf_alloc(zio->io_size), zio->io_size,
1924                             zio_ddt_child_read_done, dde, zio->io_priority,
1925                             ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
1926                             &zio->io_bookmark));
1927                 }
1928                 return (ZIO_PIPELINE_CONTINUE);
1929         }
1930 
1931         zio_nowait(zio_read(zio, zio->io_spa, bp,
1932             zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
1933             ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
1934 
1935         return (ZIO_PIPELINE_CONTINUE);
1936 }
1937 
1938 static int
1939 zio_ddt_read_done(zio_t *zio)
1940 {
1941         blkptr_t *bp = zio->io_bp;
1942 
1943         if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
1944                 return (ZIO_PIPELINE_STOP);
1945 
1946         ASSERT(BP_GET_DEDUP(bp));
1947         ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1948         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1949 
1950         if (zio->io_child_error[ZIO_CHILD_DDT]) {
1951                 ddt_t *ddt = ddt_select(zio->io_spa, bp);
1952                 ddt_entry_t *dde = zio->io_vsd;
1953                 if (ddt == NULL) {
1954                         ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
1955                         return (ZIO_PIPELINE_CONTINUE);
1956                 }
1957                 if (dde == NULL) {
1958                         zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
1959                         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1960                         return (ZIO_PIPELINE_STOP);
1961                 }
1962                 if (dde->dde_repair_data != NULL) {
1963                         bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
1964                         zio->io_child_error[ZIO_CHILD_DDT] = 0;
1965                 }
1966                 ddt_repair_done(ddt, dde);
1967                 zio->io_vsd = NULL;
1968         }
1969 
1970         ASSERT(zio->io_vsd == NULL);
1971 
1972         return (ZIO_PIPELINE_CONTINUE);
1973 }
1974 
1975 static boolean_t
1976 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
1977 {
1978         spa_t *spa = zio->io_spa;
1979 
1980         /*
1981          * Note: we compare the original data, not the transformed data,
1982          * because when zio->io_bp is an override bp, we will not have
1983          * pushed the I/O transforms.  That's an important optimization
1984          * because otherwise we'd compress/encrypt all dmu_sync() data twice.
1985          */
1986         for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1987                 zio_t *lio = dde->dde_lead_zio[p];
1988 
1989                 if (lio != NULL) {
1990                         return (lio->io_orig_size != zio->io_orig_size ||
1991                             bcmp(zio->io_orig_data, lio->io_orig_data,
1992                             zio->io_orig_size) != 0);
1993                 }
1994         }
1995 
1996         for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1997                 ddt_phys_t *ddp = &dde->dde_phys[p];
1998 
1999                 if (ddp->ddp_phys_birth != 0) {
2000                         arc_buf_t *abuf = NULL;
2001                         uint32_t aflags = ARC_WAIT;
2002                         blkptr_t blk = *zio->io_bp;
2003                         int error;
2004 
2005                         ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2006 
2007                         ddt_exit(ddt);
2008 
2009                         error = arc_read(NULL, spa, &blk,
2010                             arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2011                             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2012                             &aflags, &zio->io_bookmark);
2013 
2014                         if (error == 0) {
2015                                 if (arc_buf_size(abuf) != zio->io_orig_size ||
2016                                     bcmp(abuf->b_data, zio->io_orig_data,
2017                                     zio->io_orig_size) != 0)
2018                                         error = SET_ERROR(EEXIST);
2019                                 VERIFY(arc_buf_remove_ref(abuf, &abuf));
2020                         }
2021 
2022                         ddt_enter(ddt);
2023                         return (error != 0);
2024                 }
2025         }
2026 
2027         return (B_FALSE);
2028 }
2029 
2030 static void
2031 zio_ddt_child_write_ready(zio_t *zio)
2032 {
2033         int p = zio->io_prop.zp_copies;
2034         ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2035         ddt_entry_t *dde = zio->io_private;
2036         ddt_phys_t *ddp = &dde->dde_phys[p];
2037         zio_t *pio;
2038 
2039         if (zio->io_error)
2040                 return;
2041 
2042         ddt_enter(ddt);
2043 
2044         ASSERT(dde->dde_lead_zio[p] == zio);
2045 
2046         ddt_phys_fill(ddp, zio->io_bp);
2047 
2048         while ((pio = zio_walk_parents(zio)) != NULL)
2049                 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2050 
2051         ddt_exit(ddt);
2052 }
2053 
2054 static void
2055 zio_ddt_child_write_done(zio_t *zio)
2056 {
2057         int p = zio->io_prop.zp_copies;
2058         ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2059         ddt_entry_t *dde = zio->io_private;
2060         ddt_phys_t *ddp = &dde->dde_phys[p];
2061 
2062         ddt_enter(ddt);
2063 
2064         ASSERT(ddp->ddp_refcnt == 0);
2065         ASSERT(dde->dde_lead_zio[p] == zio);
2066         dde->dde_lead_zio[p] = NULL;
2067 
2068         if (zio->io_error == 0) {
2069                 while (zio_walk_parents(zio) != NULL)
2070                         ddt_phys_addref(ddp);
2071         } else {
2072                 ddt_phys_clear(ddp);
2073         }
2074 
2075         ddt_exit(ddt);
2076 }
2077 
2078 static void
2079 zio_ddt_ditto_write_done(zio_t *zio)
2080 {
2081         int p = DDT_PHYS_DITTO;
2082         zio_prop_t *zp = &zio->io_prop;
2083         blkptr_t *bp = zio->io_bp;
2084         ddt_t *ddt = ddt_select(zio->io_spa, bp);
2085         ddt_entry_t *dde = zio->io_private;
2086         ddt_phys_t *ddp = &dde->dde_phys[p];
2087         ddt_key_t *ddk = &dde->dde_key;
2088 
2089         ddt_enter(ddt);
2090 
2091         ASSERT(ddp->ddp_refcnt == 0);
2092         ASSERT(dde->dde_lead_zio[p] == zio);
2093         dde->dde_lead_zio[p] = NULL;
2094 
2095         if (zio->io_error == 0) {
2096                 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2097                 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2098                 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2099                 if (ddp->ddp_phys_birth != 0)
2100                         ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2101                 ddt_phys_fill(ddp, bp);
2102         }
2103 
2104         ddt_exit(ddt);
2105 }
2106 
2107 static int
2108 zio_ddt_write(zio_t *zio)
2109 {
2110         spa_t *spa = zio->io_spa;
2111         blkptr_t *bp = zio->io_bp;
2112         uint64_t txg = zio->io_txg;
2113         zio_prop_t *zp = &zio->io_prop;
2114         int p = zp->zp_copies;
2115         int ditto_copies;
2116         zio_t *cio = NULL;
2117         zio_t *dio = NULL;
2118         ddt_t *ddt = ddt_select(spa, bp);
2119         ddt_entry_t *dde;
2120         ddt_phys_t *ddp;
2121 
2122         ASSERT(BP_GET_DEDUP(bp));
2123         ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2124         ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2125 
2126         ddt_enter(ddt);
2127         dde = ddt_lookup(ddt, bp, B_TRUE);
2128         ddp = &dde->dde_phys[p];
2129 
2130         if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2131                 /*
2132                  * If we're using a weak checksum, upgrade to a strong checksum
2133                  * and try again.  If we're already using a strong checksum,
2134                  * we can't resolve it, so just convert to an ordinary write.
2135                  * (And automatically e-mail a paper to Nature?)
2136                  */
2137                 if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2138                         zp->zp_checksum = spa_dedup_checksum(spa);
2139                         zio_pop_transforms(zio);
2140                         zio->io_stage = ZIO_STAGE_OPEN;
2141                         BP_ZERO(bp);
2142                 } else {
2143                         zp->zp_dedup = B_FALSE;
2144                 }
2145                 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2146                 ddt_exit(ddt);
2147                 return (ZIO_PIPELINE_CONTINUE);
2148         }
2149 
2150         ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2151         ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2152 
2153         if (ditto_copies > ddt_ditto_copies_present(dde) &&
2154             dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2155                 zio_prop_t czp = *zp;
2156 
2157                 czp.zp_copies = ditto_copies;
2158 
2159                 /*
2160                  * If we arrived here with an override bp, we won't have run
2161                  * the transform stack, so we won't have the data we need to
2162                  * generate a child i/o.  So, toss the override bp and restart.
2163                  * This is safe, because using the override bp is just an
2164                  * optimization; and it's rare, so the cost doesn't matter.
2165                  */
2166                 if (zio->io_bp_override) {
2167                         zio_pop_transforms(zio);
2168                         zio->io_stage = ZIO_STAGE_OPEN;
2169                         zio->io_pipeline = ZIO_WRITE_PIPELINE;
2170                         zio->io_bp_override = NULL;
2171                         BP_ZERO(bp);
2172                         ddt_exit(ddt);
2173                         return (ZIO_PIPELINE_CONTINUE);
2174                 }
2175 
2176                 dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2177                     zio->io_orig_size, &czp, NULL,
2178                     zio_ddt_ditto_write_done, dde, zio->io_priority,
2179                     ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2180 
2181                 zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2182                 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2183         }
2184 
2185         if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2186                 if (ddp->ddp_phys_birth != 0)
2187                         ddt_bp_fill(ddp, bp, txg);
2188                 if (dde->dde_lead_zio[p] != NULL)
2189                         zio_add_child(zio, dde->dde_lead_zio[p]);
2190                 else
2191                         ddt_phys_addref(ddp);
2192         } else if (zio->io_bp_override) {
2193                 ASSERT(bp->blk_birth == txg);
2194                 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2195                 ddt_phys_fill(ddp, bp);
2196                 ddt_phys_addref(ddp);
2197         } else {
2198                 cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2199                     zio->io_orig_size, zp, zio_ddt_child_write_ready,
2200                     zio_ddt_child_write_done, dde, zio->io_priority,
2201                     ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2202 
2203                 zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2204                 dde->dde_lead_zio[p] = cio;
2205         }
2206 
2207         ddt_exit(ddt);
2208 
2209         if (cio)
2210                 zio_nowait(cio);
2211         if (dio)
2212                 zio_nowait(dio);
2213 
2214         return (ZIO_PIPELINE_CONTINUE);
2215 }
2216 
2217 ddt_entry_t *freedde; /* for debugging */
2218 
2219 static int
2220 zio_ddt_free(zio_t *zio)
2221 {
2222         spa_t *spa = zio->io_spa;
2223         blkptr_t *bp = zio->io_bp;
2224         ddt_t *ddt = ddt_select(spa, bp);
2225         ddt_entry_t *dde;
2226         ddt_phys_t *ddp;
2227 
2228         ASSERT(BP_GET_DEDUP(bp));
2229         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2230 
2231         ddt_enter(ddt);
2232         freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2233         ddp = ddt_phys_select(dde, bp);
2234         ddt_phys_decref(ddp);
2235         ddt_exit(ddt);
2236 
2237         return (ZIO_PIPELINE_CONTINUE);
2238 }
2239 
2240 /*
2241  * ==========================================================================
2242  * Allocate and free blocks
2243  * ==========================================================================
2244  */
2245 static int
2246 zio_dva_allocate(zio_t *zio)
2247 {
2248         spa_t *spa = zio->io_spa;
2249         metaslab_class_t *mc = spa_normal_class(spa);
2250         blkptr_t *bp = zio->io_bp;
2251         int error;
2252         int flags = 0;
2253 
2254         if (zio->io_gang_leader == NULL) {
2255                 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2256                 zio->io_gang_leader = zio;
2257         }
2258 
2259         ASSERT(BP_IS_HOLE(bp));
2260         ASSERT0(BP_GET_NDVAS(bp));
2261         ASSERT3U(zio->io_prop.zp_copies, >, 0);
2262         ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2263         ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2264 
2265         /*
2266          * The dump device does not support gang blocks so allocation on
2267          * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2268          * the "fast" gang feature.
2269          */
2270         flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2271         flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2272             METASLAB_GANG_CHILD : 0;
2273         error = metaslab_alloc(spa, mc, zio->io_size, bp,
2274             zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2275 
2276         if (error) {
2277                 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2278                     "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2279                     error);
2280                 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2281                         return (zio_write_gang_block(zio));
2282                 zio->io_error = error;
2283         }
2284 
2285         return (ZIO_PIPELINE_CONTINUE);
2286 }
2287 
2288 static int
2289 zio_dva_free(zio_t *zio)
2290 {
2291         metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2292 
2293         return (ZIO_PIPELINE_CONTINUE);
2294 }
2295 
2296 static int
2297 zio_dva_claim(zio_t *zio)
2298 {
2299         int error;
2300 
2301         error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2302         if (error)
2303                 zio->io_error = error;
2304 
2305         return (ZIO_PIPELINE_CONTINUE);
2306 }
2307 
2308 /*
2309  * Undo an allocation.  This is used by zio_done() when an I/O fails
2310  * and we want to give back the block we just allocated.
2311  * This handles both normal blocks and gang blocks.
2312  */
2313 static void
2314 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2315 {
2316         ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2317         ASSERT(zio->io_bp_override == NULL);
2318 
2319         if (!BP_IS_HOLE(bp))
2320                 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2321 
2322         if (gn != NULL) {
2323                 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2324                         zio_dva_unallocate(zio, gn->gn_child[g],
2325                             &gn->gn_gbh->zg_blkptr[g]);
2326                 }
2327         }
2328 }
2329 
2330 /*
2331  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2332  */
2333 int
2334 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2335     uint64_t size, boolean_t use_slog)
2336 {
2337         int error = 1;
2338 
2339         ASSERT(txg > spa_syncing_txg(spa));
2340 
2341         /*
2342          * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2343          * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2344          * when allocating them.
2345          */
2346         if (use_slog) {
2347                 error = metaslab_alloc(spa, spa_log_class(spa), size,
2348                     new_bp, 1, txg, old_bp,
2349                     METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2350         }
2351 
2352         if (error) {
2353                 error = metaslab_alloc(spa, spa_normal_class(spa), size,
2354                     new_bp, 1, txg, old_bp,
2355                     METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2356         }
2357 
2358         if (error == 0) {
2359                 BP_SET_LSIZE(new_bp, size);
2360                 BP_SET_PSIZE(new_bp, size);
2361                 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2362                 BP_SET_CHECKSUM(new_bp,
2363                     spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2364                     ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2365                 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2366                 BP_SET_LEVEL(new_bp, 0);
2367                 BP_SET_DEDUP(new_bp, 0);
2368                 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2369         }
2370 
2371         return (error);
2372 }
2373 
2374 /*
2375  * Free an intent log block.
2376  */
2377 void
2378 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2379 {
2380         ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2381         ASSERT(!BP_IS_GANG(bp));
2382 
2383         zio_free(spa, txg, bp);
2384 }
2385 
2386 /*
2387  * ==========================================================================
2388  * Read and write to physical devices
2389  * ==========================================================================
2390  */
2391 static int
2392 zio_vdev_io_start(zio_t *zio)
2393 {
2394         vdev_t *vd = zio->io_vd;
2395         uint64_t align;
2396         spa_t *spa = zio->io_spa;
2397 
2398         ASSERT(zio->io_error == 0);
2399         ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2400 
2401         if (vd == NULL) {
2402                 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2403                         spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2404 
2405                 /*
2406                  * The mirror_ops handle multiple DVAs in a single BP.
2407                  */
2408                 return (vdev_mirror_ops.vdev_op_io_start(zio));
2409         }
2410 
2411         /*
2412          * We keep track of time-sensitive I/Os so that the scan thread
2413          * can quickly react to certain workloads.  In particular, we care
2414          * about non-scrubbing, top-level reads and writes with the following
2415          * characteristics:
2416          *      - synchronous writes of user data to non-slog devices
2417          *      - any reads of user data
2418          * When these conditions are met, adjust the timestamp of spa_last_io
2419          * which allows the scan thread to adjust its workload accordingly.
2420          */
2421         if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2422             vd == vd->vdev_top && !vd->vdev_islog &&
2423             zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2424             zio->io_txg != spa_syncing_txg(spa)) {
2425                 uint64_t old = spa->spa_last_io;
2426                 uint64_t new = ddi_get_lbolt64();
2427                 if (old != new)
2428                         (void) atomic_cas_64(&spa->spa_last_io, old, new);
2429         }
2430 
2431         align = 1ULL << vd->vdev_top->vdev_ashift;
2432 
2433         if (P2PHASE(zio->io_size, align) != 0) {
2434                 uint64_t asize = P2ROUNDUP(zio->io_size, align);
2435                 char *abuf = zio_buf_alloc(asize);
2436                 ASSERT(vd == vd->vdev_top);
2437                 if (zio->io_type == ZIO_TYPE_WRITE) {
2438                         bcopy(zio->io_data, abuf, zio->io_size);
2439                         bzero(abuf + zio->io_size, asize - zio->io_size);
2440                 }
2441                 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2442         }
2443 
2444         ASSERT(P2PHASE(zio->io_offset, align) == 0);
2445         ASSERT(P2PHASE(zio->io_size, align) == 0);
2446         VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2447 
2448         /*
2449          * If this is a repair I/O, and there's no self-healing involved --
2450          * that is, we're just resilvering what we expect to resilver --
2451          * then don't do the I/O unless zio's txg is actually in vd's DTL.
2452          * This prevents spurious resilvering with nested replication.
2453          * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2454          * A is out of date, we'll read from C+D, then use the data to
2455          * resilver A+B -- but we don't actually want to resilver B, just A.
2456          * The top-level mirror has no way to know this, so instead we just
2457          * discard unnecessary repairs as we work our way down the vdev tree.
2458          * The same logic applies to any form of nested replication:
2459          * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2460          */
2461         if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2462             !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2463             zio->io_txg != 0 &&      /* not a delegated i/o */
2464             !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2465                 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2466                 zio_vdev_io_bypass(zio);
2467                 return (ZIO_PIPELINE_CONTINUE);
2468         }
2469 
2470         if (vd->vdev_ops->vdev_op_leaf &&
2471             (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2472 
2473                 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2474                         return (ZIO_PIPELINE_CONTINUE);
2475 
2476                 if ((zio = vdev_queue_io(zio)) == NULL)
2477                         return (ZIO_PIPELINE_STOP);
2478 
2479                 if (!vdev_accessible(vd, zio)) {
2480                         zio->io_error = SET_ERROR(ENXIO);
2481                         zio_interrupt(zio);
2482                         return (ZIO_PIPELINE_STOP);
2483                 }
2484         }
2485 
2486         return (vd->vdev_ops->vdev_op_io_start(zio));
2487 }
2488 
2489 static int
2490 zio_vdev_io_done(zio_t *zio)
2491 {
2492         vdev_t *vd = zio->io_vd;
2493         vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2494         boolean_t unexpected_error = B_FALSE;
2495 
2496         if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2497                 return (ZIO_PIPELINE_STOP);
2498 
2499         ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2500 
2501         if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2502 
2503                 vdev_queue_io_done(zio);
2504 
2505                 if (zio->io_type == ZIO_TYPE_WRITE)
2506                         vdev_cache_write(zio);
2507 
2508                 if (zio_injection_enabled && zio->io_error == 0)
2509                         zio->io_error = zio_handle_device_injection(vd,
2510                             zio, EIO);
2511 
2512                 if (zio_injection_enabled && zio->io_error == 0)
2513                         zio->io_error = zio_handle_label_injection(zio, EIO);
2514 
2515                 if (zio->io_error) {
2516                         if (!vdev_accessible(vd, zio)) {
2517                                 zio->io_error = SET_ERROR(ENXIO);
2518                         } else {
2519                                 unexpected_error = B_TRUE;
2520                         }
2521                 }
2522         }
2523 
2524         ops->vdev_op_io_done(zio);
2525 
2526         if (unexpected_error)
2527                 VERIFY(vdev_probe(vd, zio) == NULL);
2528 
2529         return (ZIO_PIPELINE_CONTINUE);
2530 }
2531 
2532 /*
2533  * For non-raidz ZIOs, we can just copy aside the bad data read from the
2534  * disk, and use that to finish the checksum ereport later.
2535  */
2536 static void
2537 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2538     const void *good_buf)
2539 {
2540         /* no processing needed */
2541         zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2542 }
2543 
2544 /*ARGSUSED*/
2545 void
2546 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2547 {
2548         void *buf = zio_buf_alloc(zio->io_size);
2549 
2550         bcopy(zio->io_data, buf, zio->io_size);
2551 
2552         zcr->zcr_cbinfo = zio->io_size;
2553         zcr->zcr_cbdata = buf;
2554         zcr->zcr_finish = zio_vsd_default_cksum_finish;
2555         zcr->zcr_free = zio_buf_free;
2556 }
2557 
2558 static int
2559 zio_vdev_io_assess(zio_t *zio)
2560 {
2561         vdev_t *vd = zio->io_vd;
2562 
2563         if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2564                 return (ZIO_PIPELINE_STOP);
2565 
2566         if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2567                 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2568 
2569         if (zio->io_vsd != NULL) {
2570                 zio->io_vsd_ops->vsd_free(zio);
2571                 zio->io_vsd = NULL;
2572         }
2573 
2574         if (zio_injection_enabled && zio->io_error == 0)
2575                 zio->io_error = zio_handle_fault_injection(zio, EIO);
2576 
2577         /*
2578          * If the I/O failed, determine whether we should attempt to retry it.
2579          *
2580          * On retry, we cut in line in the issue queue, since we don't want
2581          * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2582          */
2583         if (zio->io_error && vd == NULL &&
2584             !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2585                 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));  /* not a leaf */
2586                 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));   /* not a leaf */
2587                 zio->io_error = 0;
2588                 zio->io_flags |= ZIO_FLAG_IO_RETRY |
2589                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2590                 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2591                 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2592                     zio_requeue_io_start_cut_in_line);
2593                 return (ZIO_PIPELINE_STOP);
2594         }
2595 
2596         /*
2597          * If we got an error on a leaf device, convert it to ENXIO
2598          * if the device is not accessible at all.
2599          */
2600         if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2601             !vdev_accessible(vd, zio))
2602                 zio->io_error = SET_ERROR(ENXIO);
2603 
2604         /*
2605          * If we can't write to an interior vdev (mirror or RAID-Z),
2606          * set vdev_cant_write so that we stop trying to allocate from it.
2607          */
2608         if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2609             vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2610                 vd->vdev_cant_write = B_TRUE;
2611         }
2612 
2613         if (zio->io_error)
2614                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2615 
2616         return (ZIO_PIPELINE_CONTINUE);
2617 }
2618 
2619 void
2620 zio_vdev_io_reissue(zio_t *zio)
2621 {
2622         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2623         ASSERT(zio->io_error == 0);
2624 
2625         zio->io_stage >>= 1;
2626 }
2627 
2628 void
2629 zio_vdev_io_redone(zio_t *zio)
2630 {
2631         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2632 
2633         zio->io_stage >>= 1;
2634 }
2635 
2636 void
2637 zio_vdev_io_bypass(zio_t *zio)
2638 {
2639         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2640         ASSERT(zio->io_error == 0);
2641 
2642         zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2643         zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2644 }
2645 
2646 /*
2647  * ==========================================================================
2648  * Generate and verify checksums
2649  * ==========================================================================
2650  */
2651 static int
2652 zio_checksum_generate(zio_t *zio)
2653 {
2654         blkptr_t *bp = zio->io_bp;
2655         enum zio_checksum checksum;
2656 
2657         if (bp == NULL) {
2658                 /*
2659                  * This is zio_write_phys().
2660                  * We're either generating a label checksum, or none at all.
2661                  */
2662                 checksum = zio->io_prop.zp_checksum;
2663 
2664                 if (checksum == ZIO_CHECKSUM_OFF)
2665                         return (ZIO_PIPELINE_CONTINUE);
2666 
2667                 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2668         } else {
2669                 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2670                         ASSERT(!IO_IS_ALLOCATING(zio));
2671                         checksum = ZIO_CHECKSUM_GANG_HEADER;
2672                 } else {
2673                         checksum = BP_GET_CHECKSUM(bp);
2674                 }
2675         }
2676 
2677         zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2678 
2679         return (ZIO_PIPELINE_CONTINUE);
2680 }
2681 
2682 static int
2683 zio_checksum_verify(zio_t *zio)
2684 {
2685         zio_bad_cksum_t info;
2686         blkptr_t *bp = zio->io_bp;
2687         int error;
2688 
2689         ASSERT(zio->io_vd != NULL);
2690 
2691         if (bp == NULL) {
2692                 /*
2693                  * This is zio_read_phys().
2694                  * We're either verifying a label checksum, or nothing at all.
2695                  */
2696                 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2697                         return (ZIO_PIPELINE_CONTINUE);
2698 
2699                 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2700         }
2701 
2702         if ((error = zio_checksum_error(zio, &info)) != 0) {
2703                 zio->io_error = error;
2704                 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2705                         zfs_ereport_start_checksum(zio->io_spa,
2706                             zio->io_vd, zio, zio->io_offset,
2707                             zio->io_size, NULL, &info);
2708                 }
2709         }
2710 
2711         return (ZIO_PIPELINE_CONTINUE);
2712 }
2713 
2714 /*
2715  * Called by RAID-Z to ensure we don't compute the checksum twice.
2716  */
2717 void
2718 zio_checksum_verified(zio_t *zio)
2719 {
2720         zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2721 }
2722 
2723 /*
2724  * ==========================================================================
2725  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2726  * An error of 0 indictes success.  ENXIO indicates whole-device failure,
2727  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2728  * indicate errors that are specific to one I/O, and most likely permanent.
2729  * Any other error is presumed to be worse because we weren't expecting it.
2730  * ==========================================================================
2731  */
2732 int
2733 zio_worst_error(int e1, int e2)
2734 {
2735         static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2736         int r1, r2;
2737 
2738         for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2739                 if (e1 == zio_error_rank[r1])
2740                         break;
2741 
2742         for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2743                 if (e2 == zio_error_rank[r2])
2744                         break;
2745 
2746         return (r1 > r2 ? e1 : e2);
2747 }
2748 
2749 /*
2750  * ==========================================================================
2751  * I/O completion
2752  * ==========================================================================
2753  */
2754 static int
2755 zio_ready(zio_t *zio)
2756 {
2757         blkptr_t *bp = zio->io_bp;
2758         zio_t *pio, *pio_next;
2759 
2760         if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2761             zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2762                 return (ZIO_PIPELINE_STOP);
2763 
2764         if (zio->io_ready) {
2765                 ASSERT(IO_IS_ALLOCATING(zio));
2766                 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
2767                     (zio->io_flags & ZIO_FLAG_NOPWRITE));
2768                 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2769 
2770                 zio->io_ready(zio);
2771         }
2772 
2773         if (bp != NULL && bp != &zio->io_bp_copy)
2774                 zio->io_bp_copy = *bp;
2775 
2776         if (zio->io_error)
2777                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2778 
2779         mutex_enter(&zio->io_lock);
2780         zio->io_state[ZIO_WAIT_READY] = 1;
2781         pio = zio_walk_parents(zio);
2782         mutex_exit(&zio->io_lock);
2783 
2784         /*
2785          * As we notify zio's parents, new parents could be added.
2786          * New parents go to the head of zio's io_parent_list, however,
2787          * so we will (correctly) not notify them.  The remainder of zio's
2788          * io_parent_list, from 'pio_next' onward, cannot change because
2789          * all parents must wait for us to be done before they can be done.
2790          */
2791         for (; pio != NULL; pio = pio_next) {
2792                 pio_next = zio_walk_parents(zio);
2793                 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2794         }
2795 
2796         if (zio->io_flags & ZIO_FLAG_NODATA) {
2797                 if (BP_IS_GANG(bp)) {
2798                         zio->io_flags &= ~ZIO_FLAG_NODATA;
2799                 } else {
2800                         ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2801                         zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2802                 }
2803         }
2804 
2805         if (zio_injection_enabled &&
2806             zio->io_spa->spa_syncing_txg == zio->io_txg)
2807                 zio_handle_ignored_writes(zio);
2808 
2809         return (ZIO_PIPELINE_CONTINUE);
2810 }
2811 
2812 static int
2813 zio_done(zio_t *zio)
2814 {
2815         spa_t *spa = zio->io_spa;
2816         zio_t *lio = zio->io_logical;
2817         blkptr_t *bp = zio->io_bp;
2818         vdev_t *vd = zio->io_vd;
2819         uint64_t psize = zio->io_size;
2820         zio_t *pio, *pio_next;
2821 
2822         /*
2823          * If our children haven't all completed,
2824          * wait for them and then repeat this pipeline stage.
2825          */
2826         if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2827             zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2828             zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2829             zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2830                 return (ZIO_PIPELINE_STOP);
2831 
2832         for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2833                 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2834                         ASSERT(zio->io_children[c][w] == 0);
2835 
2836         if (bp != NULL) {
2837                 ASSERT(bp->blk_pad[0] == 0);
2838                 ASSERT(bp->blk_pad[1] == 0);
2839                 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2840                     (bp == zio_unique_parent(zio)->io_bp));
2841                 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2842                     zio->io_bp_override == NULL &&
2843                     !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2844                         ASSERT(!BP_SHOULD_BYTESWAP(bp));
2845                         ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2846                         ASSERT(BP_COUNT_GANG(bp) == 0 ||
2847                             (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2848                 }
2849                 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
2850                         VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
2851         }
2852 
2853         /*
2854          * If there were child vdev/gang/ddt errors, they apply to us now.
2855          */
2856         zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2857         zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2858         zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2859 
2860         /*
2861          * If the I/O on the transformed data was successful, generate any
2862          * checksum reports now while we still have the transformed data.
2863          */
2864         if (zio->io_error == 0) {
2865                 while (zio->io_cksum_report != NULL) {
2866                         zio_cksum_report_t *zcr = zio->io_cksum_report;
2867                         uint64_t align = zcr->zcr_align;
2868                         uint64_t asize = P2ROUNDUP(psize, align);
2869                         char *abuf = zio->io_data;
2870 
2871                         if (asize != psize) {
2872                                 abuf = zio_buf_alloc(asize);
2873                                 bcopy(zio->io_data, abuf, psize);
2874                                 bzero(abuf + psize, asize - psize);
2875                         }
2876 
2877                         zio->io_cksum_report = zcr->zcr_next;
2878                         zcr->zcr_next = NULL;
2879                         zcr->zcr_finish(zcr, abuf);
2880                         zfs_ereport_free_checksum(zcr);
2881 
2882                         if (asize != psize)
2883                                 zio_buf_free(abuf, asize);
2884                 }
2885         }
2886 
2887         zio_pop_transforms(zio);        /* note: may set zio->io_error */
2888 
2889         vdev_stat_update(zio, psize);
2890 
2891         if (zio->io_error) {
2892                 /*
2893                  * If this I/O is attached to a particular vdev,
2894                  * generate an error message describing the I/O failure
2895                  * at the block level.  We ignore these errors if the
2896                  * device is currently unavailable.
2897                  */
2898                 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
2899                         zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
2900 
2901                 if ((zio->io_error == EIO || !(zio->io_flags &
2902                     (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
2903                     zio == lio) {
2904                         /*
2905                          * For logical I/O requests, tell the SPA to log the
2906                          * error and generate a logical data ereport.
2907                          */
2908                         spa_log_error(spa, zio);
2909                         zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
2910                             0, 0);
2911                 }
2912         }
2913 
2914         if (zio->io_error && zio == lio) {
2915                 /*
2916                  * Determine whether zio should be reexecuted.  This will
2917                  * propagate all the way to the root via zio_notify_parent().
2918                  */
2919                 ASSERT(vd == NULL && bp != NULL);
2920                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2921 
2922                 if (IO_IS_ALLOCATING(zio) &&
2923                     !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
2924                         if (zio->io_error != ENOSPC)
2925                                 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
2926                         else
2927                                 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2928                 }
2929 
2930                 if ((zio->io_type == ZIO_TYPE_READ ||
2931                     zio->io_type == ZIO_TYPE_FREE) &&
2932                     !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
2933                     zio->io_error == ENXIO &&
2934                     spa_load_state(spa) == SPA_LOAD_NONE &&
2935                     spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
2936                         zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2937 
2938                 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
2939                         zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2940 
2941                 /*
2942                  * Here is a possibly good place to attempt to do
2943                  * either combinatorial reconstruction or error correction
2944                  * based on checksums.  It also might be a good place
2945                  * to send out preliminary ereports before we suspend
2946                  * processing.
2947                  */
2948         }
2949 
2950         /*
2951          * If there were logical child errors, they apply to us now.
2952          * We defer this until now to avoid conflating logical child
2953          * errors with errors that happened to the zio itself when
2954          * updating vdev stats and reporting FMA events above.
2955          */
2956         zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
2957 
2958         if ((zio->io_error || zio->io_reexecute) &&
2959             IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
2960             !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
2961                 zio_dva_unallocate(zio, zio->io_gang_tree, bp);
2962 
2963         zio_gang_tree_free(&zio->io_gang_tree);
2964 
2965         /*
2966          * Godfather I/Os should never suspend.
2967          */
2968         if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
2969             (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
2970                 zio->io_reexecute = 0;
2971 
2972         if (zio->io_reexecute) {
2973                 /*
2974                  * This is a logical I/O that wants to reexecute.
2975                  *
2976                  * Reexecute is top-down.  When an i/o fails, if it's not
2977                  * the root, it simply notifies its parent and sticks around.
2978                  * The parent, seeing that it still has children in zio_done(),
2979                  * does the same.  This percolates all the way up to the root.
2980                  * The root i/o will reexecute or suspend the entire tree.
2981                  *
2982                  * This approach ensures that zio_reexecute() honors
2983                  * all the original i/o dependency relationships, e.g.
2984                  * parents not executing until children are ready.
2985                  */
2986                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2987 
2988                 zio->io_gang_leader = NULL;
2989 
2990                 mutex_enter(&zio->io_lock);
2991                 zio->io_state[ZIO_WAIT_DONE] = 1;
2992                 mutex_exit(&zio->io_lock);
2993 
2994                 /*
2995                  * "The Godfather" I/O monitors its children but is
2996                  * not a true parent to them. It will track them through
2997                  * the pipeline but severs its ties whenever they get into
2998                  * trouble (e.g. suspended). This allows "The Godfather"
2999                  * I/O to return status without blocking.
3000                  */
3001                 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3002                         zio_link_t *zl = zio->io_walk_link;
3003                         pio_next = zio_walk_parents(zio);
3004 
3005                         if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3006                             (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3007                                 zio_remove_child(pio, zio, zl);
3008                                 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3009                         }
3010                 }
3011 
3012                 if ((pio = zio_unique_parent(zio)) != NULL) {
3013                         /*
3014                          * We're not a root i/o, so there's nothing to do
3015                          * but notify our parent.  Don't propagate errors
3016                          * upward since we haven't permanently failed yet.
3017                          */
3018                         ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3019                         zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3020                         zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3021                 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3022                         /*
3023                          * We'd fail again if we reexecuted now, so suspend
3024                          * until conditions improve (e.g. device comes online).
3025                          */
3026                         zio_suspend(spa, zio);
3027                 } else {
3028                         /*
3029                          * Reexecution is potentially a huge amount of work.
3030                          * Hand it off to the otherwise-unused claim taskq.
3031                          */
3032                         ASSERT(zio->io_tqent.tqent_next == NULL);
3033                         spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3034                             ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3035                             0, &zio->io_tqent);
3036                 }
3037                 return (ZIO_PIPELINE_STOP);
3038         }
3039 
3040         ASSERT(zio->io_child_count == 0);
3041         ASSERT(zio->io_reexecute == 0);
3042         ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3043 
3044         /*
3045          * Report any checksum errors, since the I/O is complete.
3046          */
3047         while (zio->io_cksum_report != NULL) {
3048                 zio_cksum_report_t *zcr = zio->io_cksum_report;
3049                 zio->io_cksum_report = zcr->zcr_next;
3050                 zcr->zcr_next = NULL;
3051                 zcr->zcr_finish(zcr, NULL);
3052                 zfs_ereport_free_checksum(zcr);
3053         }
3054 
3055         /*
3056          * It is the responsibility of the done callback to ensure that this
3057          * particular zio is no longer discoverable for adoption, and as
3058          * such, cannot acquire any new parents.
3059          */
3060         if (zio->io_done)
3061                 zio->io_done(zio);
3062 
3063         mutex_enter(&zio->io_lock);
3064         zio->io_state[ZIO_WAIT_DONE] = 1;
3065         mutex_exit(&zio->io_lock);
3066 
3067         for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3068                 zio_link_t *zl = zio->io_walk_link;
3069                 pio_next = zio_walk_parents(zio);
3070                 zio_remove_child(pio, zio, zl);
3071                 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3072         }
3073 
3074         if (zio->io_waiter != NULL) {
3075                 mutex_enter(&zio->io_lock);
3076                 zio->io_executor = NULL;
3077                 cv_broadcast(&zio->io_cv);
3078                 mutex_exit(&zio->io_lock);
3079         } else {
3080                 zio_destroy(zio);
3081         }
3082 
3083         return (ZIO_PIPELINE_STOP);
3084 }
3085 
3086 /*
3087  * ==========================================================================
3088  * I/O pipeline definition
3089  * ==========================================================================
3090  */
3091 static zio_pipe_stage_t *zio_pipeline[] = {
3092         NULL,
3093         zio_read_bp_init,
3094         zio_free_bp_init,
3095         zio_issue_async,
3096         zio_write_bp_init,
3097         zio_checksum_generate,
3098         zio_nop_write,
3099         zio_ddt_read_start,
3100         zio_ddt_read_done,
3101         zio_ddt_write,
3102         zio_ddt_free,
3103         zio_gang_assemble,
3104         zio_gang_issue,
3105         zio_dva_allocate,
3106         zio_dva_free,
3107         zio_dva_claim,
3108         zio_ready,
3109         zio_vdev_io_start,
3110         zio_vdev_io_done,
3111         zio_vdev_io_assess,
3112         zio_checksum_verify,
3113         zio_done
3114 };
3115 
3116 /* dnp is the dnode for zb1->zb_object */
3117 boolean_t
3118 zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1,
3119     const zbookmark_t *zb2)
3120 {
3121         uint64_t zb1nextL0, zb2thisobj;
3122 
3123         ASSERT(zb1->zb_objset == zb2->zb_objset);
3124         ASSERT(zb2->zb_level == 0);
3125 
3126         /*
3127          * A bookmark in the deadlist is considered to be after
3128          * everything else.
3129          */
3130         if (zb2->zb_object == DMU_DEADLIST_OBJECT)
3131                 return (B_TRUE);
3132 
3133         /* The objset_phys_t isn't before anything. */
3134         if (dnp == NULL)
3135                 return (B_FALSE);
3136 
3137         zb1nextL0 = (zb1->zb_blkid + 1) <<
3138             ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3139 
3140         zb2thisobj = zb2->zb_object ? zb2->zb_object :
3141             zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3142 
3143         if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3144                 uint64_t nextobj = zb1nextL0 *
3145                     (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3146                 return (nextobj <= zb2thisobj);
3147         }
3148 
3149         if (zb1->zb_object < zb2thisobj)
3150                 return (B_TRUE);
3151         if (zb1->zb_object > zb2thisobj)
3152                 return (B_FALSE);
3153         if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3154                 return (B_FALSE);
3155         return (zb1nextL0 <= zb2->zb_blkid);
3156 }