Print this page
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/fs/zfs/zfs_znode.c
+++ new/usr/src/uts/common/fs/zfs/zfs_znode.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 24 */
25 25
26 26 /* Portions Copyright 2007 Jeremy Teo */
27 27
28 28 #ifdef _KERNEL
29 29 #include <sys/types.h>
30 30 #include <sys/param.h>
31 31 #include <sys/time.h>
32 32 #include <sys/systm.h>
33 33 #include <sys/sysmacros.h>
34 34 #include <sys/resource.h>
35 35 #include <sys/mntent.h>
36 36 #include <sys/mkdev.h>
37 37 #include <sys/u8_textprep.h>
38 38 #include <sys/dsl_dataset.h>
39 39 #include <sys/vfs.h>
40 40 #include <sys/vfs_opreg.h>
41 41 #include <sys/vnode.h>
42 42 #include <sys/file.h>
43 43 #include <sys/kmem.h>
44 44 #include <sys/errno.h>
45 45 #include <sys/unistd.h>
46 46 #include <sys/mode.h>
47 47 #include <sys/atomic.h>
48 48 #include <vm/pvn.h>
49 49 #include "fs/fs_subr.h"
50 50 #include <sys/zfs_dir.h>
51 51 #include <sys/zfs_acl.h>
52 52 #include <sys/zfs_ioctl.h>
53 53 #include <sys/zfs_rlock.h>
54 54 #include <sys/zfs_fuid.h>
55 55 #include <sys/dnode.h>
56 56 #include <sys/fs/zfs.h>
57 57 #include <sys/kidmap.h>
58 58 #endif /* _KERNEL */
59 59
60 60 #include <sys/dmu.h>
61 61 #include <sys/refcount.h>
62 62 #include <sys/stat.h>
63 63 #include <sys/zap.h>
64 64 #include <sys/zfs_znode.h>
65 65 #include <sys/sa.h>
66 66 #include <sys/zfs_sa.h>
67 67 #include <sys/zfs_stat.h>
68 68
69 69 #include "zfs_prop.h"
70 70 #include "zfs_comutil.h"
71 71
72 72 /*
73 73 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only
74 74 * turned on when DEBUG is also defined.
75 75 */
76 76 #ifdef DEBUG
77 77 #define ZNODE_STATS
78 78 #endif /* DEBUG */
79 79
80 80 #ifdef ZNODE_STATS
81 81 #define ZNODE_STAT_ADD(stat) ((stat)++)
82 82 #else
83 83 #define ZNODE_STAT_ADD(stat) /* nothing */
84 84 #endif /* ZNODE_STATS */
85 85
86 86 /*
87 87 * Functions needed for userland (ie: libzpool) are not put under
88 88 * #ifdef_KERNEL; the rest of the functions have dependencies
89 89 * (such as VFS logic) that will not compile easily in userland.
90 90 */
91 91 #ifdef _KERNEL
92 92 /*
93 93 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to
94 94 * be freed before it can be safely accessed.
95 95 */
96 96 krwlock_t zfsvfs_lock;
97 97
98 98 static kmem_cache_t *znode_cache = NULL;
99 99
100 100 /*ARGSUSED*/
101 101 static void
102 102 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr)
103 103 {
104 104 /*
105 105 * We should never drop all dbuf refs without first clearing
106 106 * the eviction callback.
107 107 */
108 108 panic("evicting znode %p\n", user_ptr);
109 109 }
110 110
111 111 /*ARGSUSED*/
112 112 static int
113 113 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
114 114 {
115 115 znode_t *zp = buf;
116 116
117 117 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
118 118
119 119 zp->z_vnode = vn_alloc(kmflags);
120 120 if (zp->z_vnode == NULL) {
121 121 return (-1);
122 122 }
123 123 ZTOV(zp)->v_data = zp;
124 124
125 125 list_link_init(&zp->z_link_node);
126 126
127 127 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
128 128 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
129 129 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL);
130 130 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
131 131
132 132 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
133 133 avl_create(&zp->z_range_avl, zfs_range_compare,
134 134 sizeof (rl_t), offsetof(rl_t, r_node));
135 135
136 136 zp->z_dirlocks = NULL;
137 137 zp->z_acl_cached = NULL;
138 138 zp->z_moved = 0;
139 139 return (0);
140 140 }
141 141
142 142 /*ARGSUSED*/
143 143 static void
144 144 zfs_znode_cache_destructor(void *buf, void *arg)
145 145 {
146 146 znode_t *zp = buf;
147 147
148 148 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
149 149 ASSERT(ZTOV(zp)->v_data == zp);
150 150 vn_free(ZTOV(zp));
151 151 ASSERT(!list_link_active(&zp->z_link_node));
152 152 mutex_destroy(&zp->z_lock);
153 153 rw_destroy(&zp->z_parent_lock);
154 154 rw_destroy(&zp->z_name_lock);
155 155 mutex_destroy(&zp->z_acl_lock);
156 156 avl_destroy(&zp->z_range_avl);
157 157 mutex_destroy(&zp->z_range_lock);
158 158
159 159 ASSERT(zp->z_dirlocks == NULL);
160 160 ASSERT(zp->z_acl_cached == NULL);
161 161 }
162 162
163 163 #ifdef ZNODE_STATS
164 164 static struct {
165 165 uint64_t zms_zfsvfs_invalid;
166 166 uint64_t zms_zfsvfs_recheck1;
167 167 uint64_t zms_zfsvfs_unmounted;
168 168 uint64_t zms_zfsvfs_recheck2;
169 169 uint64_t zms_obj_held;
170 170 uint64_t zms_vnode_locked;
171 171 uint64_t zms_not_only_dnlc;
172 172 } znode_move_stats;
173 173 #endif /* ZNODE_STATS */
174 174
175 175 static void
176 176 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp)
177 177 {
178 178 vnode_t *vp;
179 179
180 180 /* Copy fields. */
181 181 nzp->z_zfsvfs = ozp->z_zfsvfs;
182 182
183 183 /* Swap vnodes. */
184 184 vp = nzp->z_vnode;
185 185 nzp->z_vnode = ozp->z_vnode;
186 186 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */
187 187 ZTOV(ozp)->v_data = ozp;
188 188 ZTOV(nzp)->v_data = nzp;
189 189
190 190 nzp->z_id = ozp->z_id;
191 191 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */
192 192 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0);
193 193 nzp->z_unlinked = ozp->z_unlinked;
194 194 nzp->z_atime_dirty = ozp->z_atime_dirty;
195 195 nzp->z_zn_prefetch = ozp->z_zn_prefetch;
196 196 nzp->z_blksz = ozp->z_blksz;
197 197 nzp->z_seq = ozp->z_seq;
198 198 nzp->z_mapcnt = ozp->z_mapcnt;
199 199 nzp->z_gen = ozp->z_gen;
200 200 nzp->z_sync_cnt = ozp->z_sync_cnt;
201 201 nzp->z_is_sa = ozp->z_is_sa;
202 202 nzp->z_sa_hdl = ozp->z_sa_hdl;
203 203 bcopy(ozp->z_atime, nzp->z_atime, sizeof (uint64_t) * 2);
204 204 nzp->z_links = ozp->z_links;
205 205 nzp->z_size = ozp->z_size;
206 206 nzp->z_pflags = ozp->z_pflags;
207 207 nzp->z_uid = ozp->z_uid;
208 208 nzp->z_gid = ozp->z_gid;
209 209 nzp->z_mode = ozp->z_mode;
210 210
211 211 /*
212 212 * Since this is just an idle znode and kmem is already dealing with
213 213 * memory pressure, release any cached ACL.
214 214 */
215 215 if (ozp->z_acl_cached) {
216 216 zfs_acl_free(ozp->z_acl_cached);
217 217 ozp->z_acl_cached = NULL;
218 218 }
219 219
220 220 sa_set_userp(nzp->z_sa_hdl, nzp);
221 221
222 222 /*
223 223 * Invalidate the original znode by clearing fields that provide a
224 224 * pointer back to the znode. Set the low bit of the vfs pointer to
225 225 * ensure that zfs_znode_move() recognizes the znode as invalid in any
226 226 * subsequent callback.
227 227 */
228 228 ozp->z_sa_hdl = NULL;
229 229 POINTER_INVALIDATE(&ozp->z_zfsvfs);
230 230
231 231 /*
232 232 * Mark the znode.
233 233 */
234 234 nzp->z_moved = 1;
235 235 ozp->z_moved = (uint8_t)-1;
236 236 }
237 237
238 238 /*ARGSUSED*/
239 239 static kmem_cbrc_t
240 240 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg)
241 241 {
242 242 znode_t *ozp = buf, *nzp = newbuf;
243 243 zfsvfs_t *zfsvfs;
244 244 vnode_t *vp;
245 245
246 246 /*
247 247 * The znode is on the file system's list of known znodes if the vfs
248 248 * pointer is valid. We set the low bit of the vfs pointer when freeing
249 249 * the znode to invalidate it, and the memory patterns written by kmem
250 250 * (baddcafe and deadbeef) set at least one of the two low bits. A newly
251 251 * created znode sets the vfs pointer last of all to indicate that the
252 252 * znode is known and in a valid state to be moved by this function.
253 253 */
254 254 zfsvfs = ozp->z_zfsvfs;
255 255 if (!POINTER_IS_VALID(zfsvfs)) {
256 256 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid);
257 257 return (KMEM_CBRC_DONT_KNOW);
258 258 }
259 259
260 260 /*
261 261 * Close a small window in which it's possible that the filesystem could
262 262 * be unmounted and freed, and zfsvfs, though valid in the previous
263 263 * statement, could point to unrelated memory by the time we try to
264 264 * prevent the filesystem from being unmounted.
265 265 */
266 266 rw_enter(&zfsvfs_lock, RW_WRITER);
267 267 if (zfsvfs != ozp->z_zfsvfs) {
268 268 rw_exit(&zfsvfs_lock);
269 269 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1);
270 270 return (KMEM_CBRC_DONT_KNOW);
271 271 }
272 272
273 273 /*
274 274 * If the znode is still valid, then so is the file system. We know that
275 275 * no valid file system can be freed while we hold zfsvfs_lock, so we
276 276 * can safely ensure that the filesystem is not and will not be
277 277 * unmounted. The next statement is equivalent to ZFS_ENTER().
278 278 */
279 279 rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG);
280 280 if (zfsvfs->z_unmounted) {
281 281 ZFS_EXIT(zfsvfs);
282 282 rw_exit(&zfsvfs_lock);
283 283 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted);
284 284 return (KMEM_CBRC_DONT_KNOW);
285 285 }
286 286 rw_exit(&zfsvfs_lock);
287 287
288 288 mutex_enter(&zfsvfs->z_znodes_lock);
289 289 /*
290 290 * Recheck the vfs pointer in case the znode was removed just before
291 291 * acquiring the lock.
292 292 */
293 293 if (zfsvfs != ozp->z_zfsvfs) {
294 294 mutex_exit(&zfsvfs->z_znodes_lock);
295 295 ZFS_EXIT(zfsvfs);
296 296 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2);
297 297 return (KMEM_CBRC_DONT_KNOW);
298 298 }
299 299
300 300 /*
301 301 * At this point we know that as long as we hold z_znodes_lock, the
302 302 * znode cannot be freed and fields within the znode can be safely
303 303 * accessed. Now, prevent a race with zfs_zget().
304 304 */
305 305 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) {
306 306 mutex_exit(&zfsvfs->z_znodes_lock);
307 307 ZFS_EXIT(zfsvfs);
308 308 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held);
309 309 return (KMEM_CBRC_LATER);
310 310 }
311 311
312 312 vp = ZTOV(ozp);
313 313 if (mutex_tryenter(&vp->v_lock) == 0) {
314 314 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
315 315 mutex_exit(&zfsvfs->z_znodes_lock);
316 316 ZFS_EXIT(zfsvfs);
317 317 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked);
318 318 return (KMEM_CBRC_LATER);
319 319 }
320 320
321 321 /* Only move znodes that are referenced _only_ by the DNLC. */
322 322 if (vp->v_count != 1 || !vn_in_dnlc(vp)) {
323 323 mutex_exit(&vp->v_lock);
324 324 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
325 325 mutex_exit(&zfsvfs->z_znodes_lock);
326 326 ZFS_EXIT(zfsvfs);
327 327 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc);
328 328 return (KMEM_CBRC_LATER);
329 329 }
330 330
331 331 /*
332 332 * The znode is known and in a valid state to move. We're holding the
333 333 * locks needed to execute the critical section.
334 334 */
335 335 zfs_znode_move_impl(ozp, nzp);
336 336 mutex_exit(&vp->v_lock);
337 337 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
338 338
339 339 list_link_replace(&ozp->z_link_node, &nzp->z_link_node);
340 340 mutex_exit(&zfsvfs->z_znodes_lock);
341 341 ZFS_EXIT(zfsvfs);
342 342
343 343 return (KMEM_CBRC_YES);
344 344 }
345 345
346 346 void
347 347 zfs_znode_init(void)
348 348 {
349 349 /*
350 350 * Initialize zcache
351 351 */
352 352 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL);
353 353 ASSERT(znode_cache == NULL);
354 354 znode_cache = kmem_cache_create("zfs_znode_cache",
355 355 sizeof (znode_t), 0, zfs_znode_cache_constructor,
356 356 zfs_znode_cache_destructor, NULL, NULL, NULL, 0);
357 357 kmem_cache_set_move(znode_cache, zfs_znode_move);
358 358 }
359 359
360 360 void
361 361 zfs_znode_fini(void)
362 362 {
363 363 /*
364 364 * Cleanup vfs & vnode ops
365 365 */
366 366 zfs_remove_op_tables();
367 367
368 368 /*
369 369 * Cleanup zcache
370 370 */
371 371 if (znode_cache)
372 372 kmem_cache_destroy(znode_cache);
373 373 znode_cache = NULL;
374 374 rw_destroy(&zfsvfs_lock);
375 375 }
376 376
377 377 struct vnodeops *zfs_dvnodeops;
378 378 struct vnodeops *zfs_fvnodeops;
379 379 struct vnodeops *zfs_symvnodeops;
380 380 struct vnodeops *zfs_xdvnodeops;
381 381 struct vnodeops *zfs_evnodeops;
382 382 struct vnodeops *zfs_sharevnodeops;
383 383
384 384 void
385 385 zfs_remove_op_tables()
386 386 {
387 387 /*
388 388 * Remove vfs ops
389 389 */
390 390 ASSERT(zfsfstype);
391 391 (void) vfs_freevfsops_by_type(zfsfstype);
392 392 zfsfstype = 0;
393 393
394 394 /*
395 395 * Remove vnode ops
396 396 */
397 397 if (zfs_dvnodeops)
398 398 vn_freevnodeops(zfs_dvnodeops);
399 399 if (zfs_fvnodeops)
400 400 vn_freevnodeops(zfs_fvnodeops);
401 401 if (zfs_symvnodeops)
402 402 vn_freevnodeops(zfs_symvnodeops);
403 403 if (zfs_xdvnodeops)
404 404 vn_freevnodeops(zfs_xdvnodeops);
405 405 if (zfs_evnodeops)
406 406 vn_freevnodeops(zfs_evnodeops);
407 407 if (zfs_sharevnodeops)
408 408 vn_freevnodeops(zfs_sharevnodeops);
409 409
410 410 zfs_dvnodeops = NULL;
411 411 zfs_fvnodeops = NULL;
412 412 zfs_symvnodeops = NULL;
413 413 zfs_xdvnodeops = NULL;
414 414 zfs_evnodeops = NULL;
415 415 zfs_sharevnodeops = NULL;
416 416 }
417 417
418 418 extern const fs_operation_def_t zfs_dvnodeops_template[];
419 419 extern const fs_operation_def_t zfs_fvnodeops_template[];
420 420 extern const fs_operation_def_t zfs_xdvnodeops_template[];
421 421 extern const fs_operation_def_t zfs_symvnodeops_template[];
422 422 extern const fs_operation_def_t zfs_evnodeops_template[];
423 423 extern const fs_operation_def_t zfs_sharevnodeops_template[];
424 424
425 425 int
426 426 zfs_create_op_tables()
427 427 {
428 428 int error;
429 429
430 430 /*
431 431 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs()
432 432 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv).
433 433 * In this case we just return as the ops vectors are already set up.
434 434 */
435 435 if (zfs_dvnodeops)
436 436 return (0);
437 437
438 438 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template,
439 439 &zfs_dvnodeops);
440 440 if (error)
441 441 return (error);
442 442
443 443 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template,
444 444 &zfs_fvnodeops);
445 445 if (error)
446 446 return (error);
447 447
448 448 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template,
449 449 &zfs_symvnodeops);
450 450 if (error)
451 451 return (error);
452 452
453 453 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template,
454 454 &zfs_xdvnodeops);
455 455 if (error)
456 456 return (error);
457 457
458 458 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template,
459 459 &zfs_evnodeops);
460 460 if (error)
461 461 return (error);
462 462
463 463 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template,
464 464 &zfs_sharevnodeops);
465 465
466 466 return (error);
467 467 }
468 468
469 469 int
470 470 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
471 471 {
472 472 zfs_acl_ids_t acl_ids;
473 473 vattr_t vattr;
474 474 znode_t *sharezp;
475 475 vnode_t *vp;
476 476 znode_t *zp;
477 477 int error;
478 478
479 479 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
480 480 vattr.va_type = VDIR;
481 481 vattr.va_mode = S_IFDIR|0555;
482 482 vattr.va_uid = crgetuid(kcred);
483 483 vattr.va_gid = crgetgid(kcred);
484 484
485 485 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP);
486 486 ASSERT(!POINTER_IS_VALID(sharezp->z_zfsvfs));
487 487 sharezp->z_moved = 0;
488 488 sharezp->z_unlinked = 0;
489 489 sharezp->z_atime_dirty = 0;
490 490 sharezp->z_zfsvfs = zfsvfs;
491 491 sharezp->z_is_sa = zfsvfs->z_use_sa;
492 492
493 493 vp = ZTOV(sharezp);
494 494 vn_reinit(vp);
495 495 vp->v_type = VDIR;
496 496
497 497 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr,
498 498 kcred, NULL, &acl_ids));
499 499 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids);
500 500 ASSERT3P(zp, ==, sharezp);
501 501 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */
502 502 POINTER_INVALIDATE(&sharezp->z_zfsvfs);
503 503 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
504 504 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx);
505 505 zfsvfs->z_shares_dir = sharezp->z_id;
506 506
507 507 zfs_acl_ids_free(&acl_ids);
508 508 ZTOV(sharezp)->v_count = 0;
509 509 sa_handle_destroy(sharezp->z_sa_hdl);
510 510 kmem_cache_free(znode_cache, sharezp);
511 511
512 512 return (error);
513 513 }
514 514
515 515 /*
516 516 * define a couple of values we need available
517 517 * for both 64 and 32 bit environments.
518 518 */
519 519 #ifndef NBITSMINOR64
520 520 #define NBITSMINOR64 32
521 521 #endif
522 522 #ifndef MAXMAJ64
523 523 #define MAXMAJ64 0xffffffffUL
524 524 #endif
525 525 #ifndef MAXMIN64
526 526 #define MAXMIN64 0xffffffffUL
527 527 #endif
528 528
529 529 /*
530 530 * Create special expldev for ZFS private use.
531 531 * Can't use standard expldev since it doesn't do
532 532 * what we want. The standard expldev() takes a
533 533 * dev32_t in LP64 and expands it to a long dev_t.
534 534 * We need an interface that takes a dev32_t in ILP32
535 535 * and expands it to a long dev_t.
536 536 */
537 537 static uint64_t
538 538 zfs_expldev(dev_t dev)
539 539 {
540 540 #ifndef _LP64
541 541 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32;
542 542 return (((uint64_t)major << NBITSMINOR64) |
543 543 ((minor_t)dev & MAXMIN32));
544 544 #else
545 545 return (dev);
546 546 #endif
547 547 }
548 548
549 549 /*
550 550 * Special cmpldev for ZFS private use.
551 551 * Can't use standard cmpldev since it takes
552 552 * a long dev_t and compresses it to dev32_t in
553 553 * LP64. We need to do a compaction of a long dev_t
554 554 * to a dev32_t in ILP32.
555 555 */
556 556 dev_t
557 557 zfs_cmpldev(uint64_t dev)
558 558 {
559 559 #ifndef _LP64
560 560 minor_t minor = (minor_t)dev & MAXMIN64;
561 561 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64;
562 562
563 563 if (major > MAXMAJ32 || minor > MAXMIN32)
564 564 return (NODEV32);
565 565
566 566 return (((dev32_t)major << NBITSMINOR32) | minor);
567 567 #else
568 568 return (dev);
569 569 #endif
570 570 }
571 571
572 572 static void
573 573 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp,
574 574 dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl)
575 575 {
576 576 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs));
577 577 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id)));
578 578
579 579 mutex_enter(&zp->z_lock);
580 580
581 581 ASSERT(zp->z_sa_hdl == NULL);
582 582 ASSERT(zp->z_acl_cached == NULL);
583 583 if (sa_hdl == NULL) {
584 584 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp,
585 585 SA_HDL_SHARED, &zp->z_sa_hdl));
586 586 } else {
587 587 zp->z_sa_hdl = sa_hdl;
588 588 sa_set_userp(sa_hdl, zp);
589 589 }
590 590
591 591 zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE;
592 592
593 593 /*
594 594 * Slap on VROOT if we are the root znode
595 595 */
596 596 if (zp->z_id == zfsvfs->z_root)
597 597 ZTOV(zp)->v_flag |= VROOT;
598 598
599 599 mutex_exit(&zp->z_lock);
600 600 vn_exists(ZTOV(zp));
601 601 }
602 602
603 603 void
604 604 zfs_znode_dmu_fini(znode_t *zp)
605 605 {
606 606 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) ||
607 607 zp->z_unlinked ||
608 608 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock));
609 609
610 610 sa_handle_destroy(zp->z_sa_hdl);
611 611 zp->z_sa_hdl = NULL;
612 612 }
613 613
614 614 /*
615 615 * Construct a new znode/vnode and intialize.
616 616 *
617 617 * This does not do a call to dmu_set_user() that is
618 618 * up to the caller to do, in case you don't want to
619 619 * return the znode
620 620 */
621 621 static znode_t *
622 622 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz,
623 623 dmu_object_type_t obj_type, sa_handle_t *hdl)
624 624 {
625 625 znode_t *zp;
626 626 vnode_t *vp;
627 627 uint64_t mode;
628 628 uint64_t parent;
629 629 sa_bulk_attr_t bulk[9];
630 630 int count = 0;
631 631
632 632 zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
633 633
634 634 ASSERT(zp->z_dirlocks == NULL);
635 635 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
636 636 zp->z_moved = 0;
637 637
638 638 /*
639 639 * Defer setting z_zfsvfs until the znode is ready to be a candidate for
640 640 * the zfs_znode_move() callback.
641 641 */
642 642 zp->z_sa_hdl = NULL;
643 643 zp->z_unlinked = 0;
644 644 zp->z_atime_dirty = 0;
645 645 zp->z_mapcnt = 0;
646 646 zp->z_id = db->db_object;
647 647 zp->z_blksz = blksz;
648 648 zp->z_seq = 0x7A4653;
649 649 zp->z_sync_cnt = 0;
650 650
651 651 vp = ZTOV(zp);
652 652 vn_reinit(vp);
653 653
654 654 zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl);
655 655
656 656 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
657 657 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8);
658 658 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
659 659 &zp->z_size, 8);
660 660 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
661 661 &zp->z_links, 8);
662 662 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
663 663 &zp->z_pflags, 8);
664 664 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8);
665 665 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
666 666 &zp->z_atime, 16);
667 667 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
668 668 &zp->z_uid, 8);
669 669 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
670 670 &zp->z_gid, 8);
671 671
672 672 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) {
673 673 if (hdl == NULL)
674 674 sa_handle_destroy(zp->z_sa_hdl);
675 675 kmem_cache_free(znode_cache, zp);
676 676 return (NULL);
677 677 }
678 678
679 679 zp->z_mode = mode;
680 680 vp->v_vfsp = zfsvfs->z_parent->z_vfs;
681 681
682 682 vp->v_type = IFTOVT((mode_t)mode);
683 683
684 684 switch (vp->v_type) {
685 685 case VDIR:
686 686 if (zp->z_pflags & ZFS_XATTR) {
687 687 vn_setops(vp, zfs_xdvnodeops);
688 688 vp->v_flag |= V_XATTRDIR;
689 689 } else {
690 690 vn_setops(vp, zfs_dvnodeops);
691 691 }
692 692 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
693 693 break;
694 694 case VBLK:
695 695 case VCHR:
696 696 {
697 697 uint64_t rdev;
698 698 VERIFY(sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zfsvfs),
699 699 &rdev, sizeof (rdev)) == 0);
700 700
701 701 vp->v_rdev = zfs_cmpldev(rdev);
702 702 }
703 703 /*FALLTHROUGH*/
704 704 case VFIFO:
705 705 case VSOCK:
706 706 case VDOOR:
707 707 vn_setops(vp, zfs_fvnodeops);
708 708 break;
709 709 case VREG:
710 710 vp->v_flag |= VMODSORT;
711 711 if (parent == zfsvfs->z_shares_dir) {
712 712 ASSERT(zp->z_uid == 0 && zp->z_gid == 0);
713 713 vn_setops(vp, zfs_sharevnodeops);
714 714 } else {
715 715 vn_setops(vp, zfs_fvnodeops);
716 716 }
717 717 break;
718 718 case VLNK:
719 719 vn_setops(vp, zfs_symvnodeops);
720 720 break;
721 721 default:
722 722 vn_setops(vp, zfs_evnodeops);
723 723 break;
724 724 }
725 725
726 726 mutex_enter(&zfsvfs->z_znodes_lock);
727 727 list_insert_tail(&zfsvfs->z_all_znodes, zp);
728 728 membar_producer();
729 729 /*
730 730 * Everything else must be valid before assigning z_zfsvfs makes the
731 731 * znode eligible for zfs_znode_move().
732 732 */
733 733 zp->z_zfsvfs = zfsvfs;
734 734 mutex_exit(&zfsvfs->z_znodes_lock);
735 735
736 736 VFS_HOLD(zfsvfs->z_vfs);
737 737 return (zp);
738 738 }
739 739
740 740 static uint64_t empty_xattr;
741 741 static uint64_t pad[4];
742 742 static zfs_acl_phys_t acl_phys;
743 743 /*
744 744 * Create a new DMU object to hold a zfs znode.
745 745 *
746 746 * IN: dzp - parent directory for new znode
747 747 * vap - file attributes for new znode
748 748 * tx - dmu transaction id for zap operations
749 749 * cr - credentials of caller
750 750 * flag - flags:
751 751 * IS_ROOT_NODE - new object will be root
752 752 * IS_XATTR - new object is an attribute
753 753 * bonuslen - length of bonus buffer
754 754 * setaclp - File/Dir initial ACL
755 755 * fuidp - Tracks fuid allocation.
756 756 *
757 757 * OUT: zpp - allocated znode
758 758 *
759 759 */
760 760 void
761 761 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
762 762 uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids)
763 763 {
764 764 uint64_t crtime[2], atime[2], mtime[2], ctime[2];
765 765 uint64_t mode, size, links, parent, pflags;
766 766 uint64_t dzp_pflags = 0;
767 767 uint64_t rdev = 0;
768 768 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
769 769 dmu_buf_t *db;
770 770 timestruc_t now;
771 771 uint64_t gen, obj;
772 772 int err;
773 773 int bonuslen;
774 774 sa_handle_t *sa_hdl;
775 775 dmu_object_type_t obj_type;
776 776 sa_bulk_attr_t sa_attrs[ZPL_END];
777 777 int cnt = 0;
778 778 zfs_acl_locator_cb_t locate = { 0 };
779 779
780 780 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
781 781
782 782 if (zfsvfs->z_replay) {
783 783 obj = vap->va_nodeid;
784 784 now = vap->va_ctime; /* see zfs_replay_create() */
785 785 gen = vap->va_nblocks; /* ditto */
786 786 } else {
787 787 obj = 0;
788 788 gethrestime(&now);
789 789 gen = dmu_tx_get_txg(tx);
790 790 }
791 791
792 792 obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE;
793 793 bonuslen = (obj_type == DMU_OT_SA) ?
794 794 DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE;
795 795
796 796 /*
797 797 * Create a new DMU object.
798 798 */
799 799 /*
800 800 * There's currently no mechanism for pre-reading the blocks that will
801 801 * be needed to allocate a new object, so we accept the small chance
802 802 * that there will be an i/o error and we will fail one of the
803 803 * assertions below.
804 804 */
805 805 if (vap->va_type == VDIR) {
806 806 if (zfsvfs->z_replay) {
807 807 err = zap_create_claim_norm(zfsvfs->z_os, obj,
808 808 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
809 809 obj_type, bonuslen, tx);
810 810 ASSERT0(err);
811 811 } else {
812 812 obj = zap_create_norm(zfsvfs->z_os,
813 813 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
814 814 obj_type, bonuslen, tx);
815 815 }
816 816 } else {
817 817 if (zfsvfs->z_replay) {
818 818 err = dmu_object_claim(zfsvfs->z_os, obj,
819 819 DMU_OT_PLAIN_FILE_CONTENTS, 0,
820 820 obj_type, bonuslen, tx);
821 821 ASSERT0(err);
822 822 } else {
823 823 obj = dmu_object_alloc(zfsvfs->z_os,
824 824 DMU_OT_PLAIN_FILE_CONTENTS, 0,
825 825 obj_type, bonuslen, tx);
826 826 }
827 827 }
828 828
829 829 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
830 830 VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db));
831 831
832 832 /*
833 833 * If this is the root, fix up the half-initialized parent pointer
834 834 * to reference the just-allocated physical data area.
835 835 */
836 836 if (flag & IS_ROOT_NODE) {
837 837 dzp->z_id = obj;
838 838 } else {
839 839 dzp_pflags = dzp->z_pflags;
840 840 }
841 841
842 842 /*
843 843 * If parent is an xattr, so am I.
844 844 */
845 845 if (dzp_pflags & ZFS_XATTR) {
846 846 flag |= IS_XATTR;
847 847 }
848 848
849 849 if (zfsvfs->z_use_fuids)
850 850 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
851 851 else
852 852 pflags = 0;
853 853
854 854 if (vap->va_type == VDIR) {
855 855 size = 2; /* contents ("." and "..") */
856 856 links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
857 857 } else {
858 858 size = links = 0;
859 859 }
860 860
861 861 if (vap->va_type == VBLK || vap->va_type == VCHR) {
862 862 rdev = zfs_expldev(vap->va_rdev);
863 863 }
864 864
865 865 parent = dzp->z_id;
866 866 mode = acl_ids->z_mode;
867 867 if (flag & IS_XATTR)
868 868 pflags |= ZFS_XATTR;
869 869
870 870 /*
871 871 * No execs denied will be deterimed when zfs_mode_compute() is called.
872 872 */
873 873 pflags |= acl_ids->z_aclp->z_hints &
874 874 (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT|
875 875 ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED);
876 876
877 877 ZFS_TIME_ENCODE(&now, crtime);
878 878 ZFS_TIME_ENCODE(&now, ctime);
879 879
880 880 if (vap->va_mask & AT_ATIME) {
881 881 ZFS_TIME_ENCODE(&vap->va_atime, atime);
882 882 } else {
883 883 ZFS_TIME_ENCODE(&now, atime);
884 884 }
885 885
886 886 if (vap->va_mask & AT_MTIME) {
887 887 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
888 888 } else {
889 889 ZFS_TIME_ENCODE(&now, mtime);
890 890 }
891 891
892 892 /* Now add in all of the "SA" attributes */
893 893 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED,
894 894 &sa_hdl));
895 895
896 896 /*
897 897 * Setup the array of attributes to be replaced/set on the new file
898 898 *
899 899 * order for DMU_OT_ZNODE is critical since it needs to be constructed
900 900 * in the old znode_phys_t format. Don't change this ordering
901 901 */
902 902
903 903 if (obj_type == DMU_OT_ZNODE) {
904 904 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
905 905 NULL, &atime, 16);
906 906 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
907 907 NULL, &mtime, 16);
908 908 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
909 909 NULL, &ctime, 16);
910 910 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
911 911 NULL, &crtime, 16);
912 912 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
913 913 NULL, &gen, 8);
914 914 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
915 915 NULL, &mode, 8);
916 916 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
917 917 NULL, &size, 8);
918 918 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
919 919 NULL, &parent, 8);
920 920 } else {
921 921 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
922 922 NULL, &mode, 8);
923 923 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
924 924 NULL, &size, 8);
925 925 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
926 926 NULL, &gen, 8);
927 927 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
928 928 &acl_ids->z_fuid, 8);
929 929 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
930 930 &acl_ids->z_fgid, 8);
931 931 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
932 932 NULL, &parent, 8);
933 933 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
934 934 NULL, &pflags, 8);
935 935 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
936 936 NULL, &atime, 16);
937 937 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
938 938 NULL, &mtime, 16);
939 939 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
940 940 NULL, &ctime, 16);
941 941 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
942 942 NULL, &crtime, 16);
943 943 }
944 944
945 945 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
946 946
947 947 if (obj_type == DMU_OT_ZNODE) {
948 948 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL,
949 949 &empty_xattr, 8);
950 950 }
951 951 if (obj_type == DMU_OT_ZNODE ||
952 952 (vap->va_type == VBLK || vap->va_type == VCHR)) {
953 953 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs),
954 954 NULL, &rdev, 8);
955 955
956 956 }
957 957 if (obj_type == DMU_OT_ZNODE) {
958 958 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
959 959 NULL, &pflags, 8);
960 960 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
961 961 &acl_ids->z_fuid, 8);
962 962 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
963 963 &acl_ids->z_fgid, 8);
964 964 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad,
965 965 sizeof (uint64_t) * 4);
966 966 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
967 967 &acl_phys, sizeof (zfs_acl_phys_t));
968 968 } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) {
969 969 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL,
970 970 &acl_ids->z_aclp->z_acl_count, 8);
971 971 locate.cb_aclp = acl_ids->z_aclp;
972 972 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs),
973 973 zfs_acl_data_locator, &locate,
974 974 acl_ids->z_aclp->z_acl_bytes);
975 975 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags,
976 976 acl_ids->z_fuid, acl_ids->z_fgid);
977 977 }
978 978
979 979 VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0);
980 980
981 981 if (!(flag & IS_ROOT_NODE)) {
982 982 *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl);
983 983 ASSERT(*zpp != NULL);
984 984 } else {
985 985 /*
986 986 * If we are creating the root node, the "parent" we
987 987 * passed in is the znode for the root.
988 988 */
989 989 *zpp = dzp;
990 990
991 991 (*zpp)->z_sa_hdl = sa_hdl;
992 992 }
993 993
994 994 (*zpp)->z_pflags = pflags;
995 995 (*zpp)->z_mode = mode;
996 996
997 997 if (vap->va_mask & AT_XVATTR)
998 998 zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx);
↓ open down ↓ |
998 lines elided |
↑ open up ↑ |
999 999
1000 1000 if (obj_type == DMU_OT_ZNODE ||
1001 1001 acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) {
1002 1002 err = zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx);
1003 1003 ASSERT0(err);
1004 1004 }
1005 1005 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1006 1006 }
1007 1007
1008 1008 /*
1009 - * zfs_xvattr_set only updates the in-core attributes
1010 - * it is assumed the caller will be doing an sa_bulk_update
1011 - * to push the changes out
1009 + * Update in-core attributes. It is assumed the caller will be doing an
1010 + * sa_bulk_update to push the changes out.
1012 1011 */
1013 1012 void
1014 1013 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx)
1015 1014 {
1016 1015 xoptattr_t *xoap;
1017 1016
1018 1017 xoap = xva_getxoptattr(xvap);
1019 1018 ASSERT(xoap);
1020 1019
1021 1020 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
1022 1021 uint64_t times[2];
1023 1022 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times);
1024 1023 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs),
1025 1024 ×, sizeof (times), tx);
1026 1025 XVA_SET_RTN(xvap, XAT_CREATETIME);
1027 1026 }
1028 1027 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
1029 1028 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly,
1030 1029 zp->z_pflags, tx);
1031 1030 XVA_SET_RTN(xvap, XAT_READONLY);
1032 1031 }
1033 1032 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
1034 1033 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden,
1035 1034 zp->z_pflags, tx);
1036 1035 XVA_SET_RTN(xvap, XAT_HIDDEN);
1037 1036 }
1038 1037 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
1039 1038 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system,
1040 1039 zp->z_pflags, tx);
1041 1040 XVA_SET_RTN(xvap, XAT_SYSTEM);
1042 1041 }
1043 1042 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
1044 1043 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive,
1045 1044 zp->z_pflags, tx);
1046 1045 XVA_SET_RTN(xvap, XAT_ARCHIVE);
1047 1046 }
1048 1047 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
1049 1048 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable,
1050 1049 zp->z_pflags, tx);
1051 1050 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
1052 1051 }
1053 1052 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
1054 1053 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink,
1055 1054 zp->z_pflags, tx);
1056 1055 XVA_SET_RTN(xvap, XAT_NOUNLINK);
1057 1056 }
1058 1057 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
1059 1058 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly,
1060 1059 zp->z_pflags, tx);
1061 1060 XVA_SET_RTN(xvap, XAT_APPENDONLY);
1062 1061 }
1063 1062 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
1064 1063 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump,
1065 1064 zp->z_pflags, tx);
1066 1065 XVA_SET_RTN(xvap, XAT_NODUMP);
1067 1066 }
1068 1067 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
1069 1068 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque,
1070 1069 zp->z_pflags, tx);
1071 1070 XVA_SET_RTN(xvap, XAT_OPAQUE);
1072 1071 }
1073 1072 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
1074 1073 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
1075 1074 xoap->xoa_av_quarantined, zp->z_pflags, tx);
1076 1075 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
1077 1076 }
1078 1077 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
1079 1078 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified,
1080 1079 zp->z_pflags, tx);
1081 1080 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
1082 1081 }
1083 1082 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
1084 1083 zfs_sa_set_scanstamp(zp, xvap, tx);
1085 1084 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
1086 1085 }
1087 1086 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
1088 1087 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse,
1089 1088 zp->z_pflags, tx);
1090 1089 XVA_SET_RTN(xvap, XAT_REPARSE);
1091 1090 }
1092 1091 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
1093 1092 ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline,
1094 1093 zp->z_pflags, tx);
1095 1094 XVA_SET_RTN(xvap, XAT_OFFLINE);
1096 1095 }
1097 1096 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
1098 1097 ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse,
1099 1098 zp->z_pflags, tx);
1100 1099 XVA_SET_RTN(xvap, XAT_SPARSE);
1101 1100 }
1102 1101 }
1103 1102
1104 1103 int
1105 1104 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
1106 1105 {
1107 1106 dmu_object_info_t doi;
1108 1107 dmu_buf_t *db;
1109 1108 znode_t *zp;
1110 1109 int err;
1111 1110 sa_handle_t *hdl;
1112 1111
1113 1112 *zpp = NULL;
1114 1113
1115 1114 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
1116 1115
1117 1116 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1118 1117 if (err) {
1119 1118 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1120 1119 return (err);
1121 1120 }
1122 1121
1123 1122 dmu_object_info_from_db(db, &doi);
1124 1123 if (doi.doi_bonus_type != DMU_OT_SA &&
1125 1124 (doi.doi_bonus_type != DMU_OT_ZNODE ||
1126 1125 (doi.doi_bonus_type == DMU_OT_ZNODE &&
1127 1126 doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1128 1127 sa_buf_rele(db, NULL);
1129 1128 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1130 1129 return (SET_ERROR(EINVAL));
1131 1130 }
1132 1131
1133 1132 hdl = dmu_buf_get_user(db);
1134 1133 if (hdl != NULL) {
1135 1134 zp = sa_get_userdata(hdl);
1136 1135
1137 1136
1138 1137 /*
1139 1138 * Since "SA" does immediate eviction we
1140 1139 * should never find a sa handle that doesn't
1141 1140 * know about the znode.
1142 1141 */
1143 1142
1144 1143 ASSERT3P(zp, !=, NULL);
1145 1144
1146 1145 mutex_enter(&zp->z_lock);
1147 1146 ASSERT3U(zp->z_id, ==, obj_num);
1148 1147 if (zp->z_unlinked) {
1149 1148 err = SET_ERROR(ENOENT);
1150 1149 } else {
1151 1150 VN_HOLD(ZTOV(zp));
1152 1151 *zpp = zp;
1153 1152 err = 0;
1154 1153 }
1155 1154 sa_buf_rele(db, NULL);
1156 1155 mutex_exit(&zp->z_lock);
1157 1156 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1158 1157 return (err);
1159 1158 }
1160 1159
1161 1160 /*
1162 1161 * Not found create new znode/vnode
1163 1162 * but only if file exists.
1164 1163 *
1165 1164 * There is a small window where zfs_vget() could
1166 1165 * find this object while a file create is still in
1167 1166 * progress. This is checked for in zfs_znode_alloc()
1168 1167 *
1169 1168 * if zfs_znode_alloc() fails it will drop the hold on the
1170 1169 * bonus buffer.
1171 1170 */
1172 1171 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size,
1173 1172 doi.doi_bonus_type, NULL);
1174 1173 if (zp == NULL) {
1175 1174 err = SET_ERROR(ENOENT);
1176 1175 } else {
1177 1176 *zpp = zp;
1178 1177 }
1179 1178 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1180 1179 return (err);
1181 1180 }
1182 1181
1183 1182 int
1184 1183 zfs_rezget(znode_t *zp)
1185 1184 {
1186 1185 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1187 1186 dmu_object_info_t doi;
1188 1187 dmu_buf_t *db;
1189 1188 uint64_t obj_num = zp->z_id;
1190 1189 uint64_t mode;
1191 1190 sa_bulk_attr_t bulk[8];
1192 1191 int err;
1193 1192 int count = 0;
1194 1193 uint64_t gen;
1195 1194
1196 1195 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
1197 1196
1198 1197 mutex_enter(&zp->z_acl_lock);
1199 1198 if (zp->z_acl_cached) {
1200 1199 zfs_acl_free(zp->z_acl_cached);
1201 1200 zp->z_acl_cached = NULL;
1202 1201 }
1203 1202
1204 1203 mutex_exit(&zp->z_acl_lock);
1205 1204 ASSERT(zp->z_sa_hdl == NULL);
1206 1205 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1207 1206 if (err) {
1208 1207 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1209 1208 return (err);
1210 1209 }
1211 1210
1212 1211 dmu_object_info_from_db(db, &doi);
1213 1212 if (doi.doi_bonus_type != DMU_OT_SA &&
1214 1213 (doi.doi_bonus_type != DMU_OT_ZNODE ||
1215 1214 (doi.doi_bonus_type == DMU_OT_ZNODE &&
1216 1215 doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1217 1216 sa_buf_rele(db, NULL);
1218 1217 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1219 1218 return (SET_ERROR(EINVAL));
1220 1219 }
1221 1220
1222 1221 zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL);
1223 1222
1224 1223 /* reload cached values */
1225 1224 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL,
1226 1225 &gen, sizeof (gen));
1227 1226 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1228 1227 &zp->z_size, sizeof (zp->z_size));
1229 1228 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
1230 1229 &zp->z_links, sizeof (zp->z_links));
1231 1230 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
1232 1231 &zp->z_pflags, sizeof (zp->z_pflags));
1233 1232 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
1234 1233 &zp->z_atime, sizeof (zp->z_atime));
1235 1234 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1236 1235 &zp->z_uid, sizeof (zp->z_uid));
1237 1236 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1238 1237 &zp->z_gid, sizeof (zp->z_gid));
1239 1238 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
1240 1239 &mode, sizeof (mode));
1241 1240
1242 1241 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) {
1243 1242 zfs_znode_dmu_fini(zp);
1244 1243 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1245 1244 return (SET_ERROR(EIO));
1246 1245 }
1247 1246
1248 1247 zp->z_mode = mode;
1249 1248
1250 1249 if (gen != zp->z_gen) {
1251 1250 zfs_znode_dmu_fini(zp);
1252 1251 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1253 1252 return (SET_ERROR(EIO));
1254 1253 }
1255 1254
1256 1255 zp->z_unlinked = (zp->z_links == 0);
1257 1256 zp->z_blksz = doi.doi_data_block_size;
1258 1257
1259 1258 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1260 1259
1261 1260 return (0);
1262 1261 }
1263 1262
1264 1263 void
1265 1264 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1266 1265 {
1267 1266 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1268 1267 objset_t *os = zfsvfs->z_os;
1269 1268 uint64_t obj = zp->z_id;
1270 1269 uint64_t acl_obj = zfs_external_acl(zp);
1271 1270
1272 1271 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
1273 1272 if (acl_obj) {
1274 1273 VERIFY(!zp->z_is_sa);
1275 1274 VERIFY(0 == dmu_object_free(os, acl_obj, tx));
1276 1275 }
1277 1276 VERIFY(0 == dmu_object_free(os, obj, tx));
1278 1277 zfs_znode_dmu_fini(zp);
1279 1278 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1280 1279 zfs_znode_free(zp);
1281 1280 }
1282 1281
1283 1282 void
1284 1283 zfs_zinactive(znode_t *zp)
1285 1284 {
1286 1285 vnode_t *vp = ZTOV(zp);
1287 1286 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1288 1287 uint64_t z_id = zp->z_id;
1289 1288
1290 1289 ASSERT(zp->z_sa_hdl);
1291 1290
1292 1291 /*
1293 1292 * Don't allow a zfs_zget() while were trying to release this znode
1294 1293 */
1295 1294 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
1296 1295
1297 1296 mutex_enter(&zp->z_lock);
1298 1297 mutex_enter(&vp->v_lock);
1299 1298 vp->v_count--;
1300 1299 if (vp->v_count > 0 || vn_has_cached_data(vp)) {
1301 1300 /*
1302 1301 * If the hold count is greater than zero, somebody has
1303 1302 * obtained a new reference on this znode while we were
1304 1303 * processing it here, so we are done. If we still have
1305 1304 * mapped pages then we are also done, since we don't
1306 1305 * want to inactivate the znode until the pages get pushed.
1307 1306 *
1308 1307 * XXX - if vn_has_cached_data(vp) is true, but count == 0,
1309 1308 * this seems like it would leave the znode hanging with
1310 1309 * no chance to go inactive...
1311 1310 */
1312 1311 mutex_exit(&vp->v_lock);
1313 1312 mutex_exit(&zp->z_lock);
1314 1313 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1315 1314 return;
1316 1315 }
1317 1316 mutex_exit(&vp->v_lock);
1318 1317
1319 1318 /*
1320 1319 * If this was the last reference to a file with no links,
1321 1320 * remove the file from the file system.
1322 1321 */
1323 1322 if (zp->z_unlinked) {
1324 1323 mutex_exit(&zp->z_lock);
1325 1324 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1326 1325 zfs_rmnode(zp);
1327 1326 return;
1328 1327 }
1329 1328
1330 1329 mutex_exit(&zp->z_lock);
1331 1330 zfs_znode_dmu_fini(zp);
1332 1331 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1333 1332 zfs_znode_free(zp);
1334 1333 }
1335 1334
1336 1335 void
1337 1336 zfs_znode_free(znode_t *zp)
1338 1337 {
1339 1338 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1340 1339
1341 1340 vn_invalid(ZTOV(zp));
1342 1341
1343 1342 ASSERT(ZTOV(zp)->v_count == 0);
1344 1343
1345 1344 mutex_enter(&zfsvfs->z_znodes_lock);
1346 1345 POINTER_INVALIDATE(&zp->z_zfsvfs);
1347 1346 list_remove(&zfsvfs->z_all_znodes, zp);
1348 1347 mutex_exit(&zfsvfs->z_znodes_lock);
1349 1348
1350 1349 if (zp->z_acl_cached) {
1351 1350 zfs_acl_free(zp->z_acl_cached);
1352 1351 zp->z_acl_cached = NULL;
1353 1352 }
1354 1353
1355 1354 kmem_cache_free(znode_cache, zp);
1356 1355
1357 1356 VFS_RELE(zfsvfs->z_vfs);
1358 1357 }
1359 1358
1360 1359 void
1361 1360 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2],
1362 1361 uint64_t ctime[2], boolean_t have_tx)
1363 1362 {
1364 1363 timestruc_t now;
1365 1364
1366 1365 gethrestime(&now);
1367 1366
1368 1367 if (have_tx) { /* will sa_bulk_update happen really soon? */
1369 1368 zp->z_atime_dirty = 0;
1370 1369 zp->z_seq++;
1371 1370 } else {
1372 1371 zp->z_atime_dirty = 1;
1373 1372 }
1374 1373
1375 1374 if (flag & AT_ATIME) {
1376 1375 ZFS_TIME_ENCODE(&now, zp->z_atime);
1377 1376 }
1378 1377
1379 1378 if (flag & AT_MTIME) {
1380 1379 ZFS_TIME_ENCODE(&now, mtime);
1381 1380 if (zp->z_zfsvfs->z_use_fuids) {
1382 1381 zp->z_pflags |= (ZFS_ARCHIVE |
1383 1382 ZFS_AV_MODIFIED);
1384 1383 }
1385 1384 }
1386 1385
1387 1386 if (flag & AT_CTIME) {
1388 1387 ZFS_TIME_ENCODE(&now, ctime);
1389 1388 if (zp->z_zfsvfs->z_use_fuids)
1390 1389 zp->z_pflags |= ZFS_ARCHIVE;
1391 1390 }
1392 1391 }
1393 1392
1394 1393 /*
1395 1394 * Grow the block size for a file.
1396 1395 *
1397 1396 * IN: zp - znode of file to free data in.
1398 1397 * size - requested block size
1399 1398 * tx - open transaction.
1400 1399 *
1401 1400 * NOTE: this function assumes that the znode is write locked.
1402 1401 */
1403 1402 void
1404 1403 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1405 1404 {
1406 1405 int error;
1407 1406 u_longlong_t dummy;
1408 1407
1409 1408 if (size <= zp->z_blksz)
1410 1409 return;
1411 1410 /*
1412 1411 * If the file size is already greater than the current blocksize,
1413 1412 * we will not grow. If there is more than one block in a file,
1414 1413 * the blocksize cannot change.
1415 1414 */
1416 1415 if (zp->z_blksz && zp->z_size > zp->z_blksz)
1417 1416 return;
1418 1417
1419 1418 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
1420 1419 size, 0, tx);
1421 1420
1422 1421 if (error == ENOTSUP)
1423 1422 return;
1424 1423 ASSERT0(error);
1425 1424
1426 1425 /* What blocksize did we actually get? */
1427 1426 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy);
1428 1427 }
1429 1428
1430 1429 /*
1431 1430 * This is a dummy interface used when pvn_vplist_dirty() should *not*
1432 1431 * be calling back into the fs for a putpage(). E.g.: when truncating
1433 1432 * a file, the pages being "thrown away* don't need to be written out.
1434 1433 */
1435 1434 /* ARGSUSED */
1436 1435 static int
1437 1436 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
1438 1437 int flags, cred_t *cr)
1439 1438 {
↓ open down ↓ |
418 lines elided |
↑ open up ↑ |
1440 1439 ASSERT(0);
1441 1440 return (0);
1442 1441 }
1443 1442
1444 1443 /*
1445 1444 * Increase the file length
1446 1445 *
1447 1446 * IN: zp - znode of file to free data in.
1448 1447 * end - new end-of-file
1449 1448 *
1450 - * RETURN: 0 if success
1451 - * error code if failure
1449 + * RETURN: 0 on success, error code on failure
1452 1450 */
1453 1451 static int
1454 1452 zfs_extend(znode_t *zp, uint64_t end)
1455 1453 {
1456 1454 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1457 1455 dmu_tx_t *tx;
1458 1456 rl_t *rl;
1459 1457 uint64_t newblksz;
1460 1458 int error;
1461 1459
1462 1460 /*
1463 1461 * We will change zp_size, lock the whole file.
1464 1462 */
1465 1463 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1466 1464
1467 1465 /*
1468 1466 * Nothing to do if file already at desired length.
1469 1467 */
1470 1468 if (end <= zp->z_size) {
1471 1469 zfs_range_unlock(rl);
1472 1470 return (0);
1473 1471 }
1474 1472 top:
1475 1473 tx = dmu_tx_create(zfsvfs->z_os);
1476 1474 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1477 1475 zfs_sa_upgrade_txholds(tx, zp);
1478 1476 if (end > zp->z_blksz &&
1479 1477 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1480 1478 /*
1481 1479 * We are growing the file past the current block size.
1482 1480 */
1483 1481 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
1484 1482 ASSERT(!ISP2(zp->z_blksz));
1485 1483 newblksz = MIN(end, SPA_MAXBLOCKSIZE);
1486 1484 } else {
1487 1485 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
1488 1486 }
1489 1487 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1490 1488 } else {
1491 1489 newblksz = 0;
1492 1490 }
1493 1491
1494 1492 error = dmu_tx_assign(tx, TXG_NOWAIT);
1495 1493 if (error) {
1496 1494 if (error == ERESTART) {
1497 1495 dmu_tx_wait(tx);
1498 1496 dmu_tx_abort(tx);
1499 1497 goto top;
1500 1498 }
1501 1499 dmu_tx_abort(tx);
1502 1500 zfs_range_unlock(rl);
1503 1501 return (error);
1504 1502 }
1505 1503
1506 1504 if (newblksz)
1507 1505 zfs_grow_blocksize(zp, newblksz, tx);
1508 1506
1509 1507 zp->z_size = end;
1510 1508
1511 1509 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs),
1512 1510 &zp->z_size, sizeof (zp->z_size), tx));
1513 1511
1514 1512 zfs_range_unlock(rl);
1515 1513
1516 1514 dmu_tx_commit(tx);
1517 1515
↓ open down ↓ |
56 lines elided |
↑ open up ↑ |
1518 1516 return (0);
1519 1517 }
1520 1518
1521 1519 /*
1522 1520 * Free space in a file.
1523 1521 *
1524 1522 * IN: zp - znode of file to free data in.
1525 1523 * off - start of section to free.
1526 1524 * len - length of section to free.
1527 1525 *
1528 - * RETURN: 0 if success
1529 - * error code if failure
1526 + * RETURN: 0 on success, error code on failure
1530 1527 */
1531 1528 static int
1532 1529 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1533 1530 {
1534 1531 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1535 1532 rl_t *rl;
1536 1533 int error;
1537 1534
1538 1535 /*
1539 1536 * Lock the range being freed.
1540 1537 */
1541 1538 rl = zfs_range_lock(zp, off, len, RL_WRITER);
1542 1539
1543 1540 /*
1544 1541 * Nothing to do if file already at desired length.
1545 1542 */
1546 1543 if (off >= zp->z_size) {
1547 1544 zfs_range_unlock(rl);
1548 1545 return (0);
1549 1546 }
1550 1547
1551 1548 if (off + len > zp->z_size)
1552 1549 len = zp->z_size - off;
1553 1550
1554 1551 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1555 1552
1556 1553 zfs_range_unlock(rl);
↓ open down ↓ |
17 lines elided |
↑ open up ↑ |
1557 1554
1558 1555 return (error);
1559 1556 }
1560 1557
1561 1558 /*
1562 1559 * Truncate a file
1563 1560 *
1564 1561 * IN: zp - znode of file to free data in.
1565 1562 * end - new end-of-file.
1566 1563 *
1567 - * RETURN: 0 if success
1568 - * error code if failure
1564 + * RETURN: 0 on success, error code on failure
1569 1565 */
1570 1566 static int
1571 1567 zfs_trunc(znode_t *zp, uint64_t end)
1572 1568 {
1573 1569 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1574 1570 vnode_t *vp = ZTOV(zp);
1575 1571 dmu_tx_t *tx;
1576 1572 rl_t *rl;
1577 1573 int error;
1578 1574 sa_bulk_attr_t bulk[2];
1579 1575 int count = 0;
1580 1576
1581 1577 /*
1582 1578 * We will change zp_size, lock the whole file.
1583 1579 */
1584 1580 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1585 1581
1586 1582 /*
1587 1583 * Nothing to do if file already at desired length.
1588 1584 */
1589 1585 if (end >= zp->z_size) {
1590 1586 zfs_range_unlock(rl);
1591 1587 return (0);
1592 1588 }
1593 1589
1594 1590 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1);
1595 1591 if (error) {
1596 1592 zfs_range_unlock(rl);
1597 1593 return (error);
1598 1594 }
1599 1595 top:
1600 1596 tx = dmu_tx_create(zfsvfs->z_os);
1601 1597 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1602 1598 zfs_sa_upgrade_txholds(tx, zp);
1603 1599 error = dmu_tx_assign(tx, TXG_NOWAIT);
1604 1600 if (error) {
1605 1601 if (error == ERESTART) {
1606 1602 dmu_tx_wait(tx);
1607 1603 dmu_tx_abort(tx);
1608 1604 goto top;
1609 1605 }
1610 1606 dmu_tx_abort(tx);
1611 1607 zfs_range_unlock(rl);
1612 1608 return (error);
1613 1609 }
1614 1610
1615 1611 zp->z_size = end;
1616 1612 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
1617 1613 NULL, &zp->z_size, sizeof (zp->z_size));
1618 1614
1619 1615 if (end == 0) {
1620 1616 zp->z_pflags &= ~ZFS_SPARSE;
1621 1617 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1622 1618 NULL, &zp->z_pflags, 8);
1623 1619 }
1624 1620 VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0);
1625 1621
1626 1622 dmu_tx_commit(tx);
1627 1623
1628 1624 /*
1629 1625 * Clear any mapped pages in the truncated region. This has to
1630 1626 * happen outside of the transaction to avoid the possibility of
1631 1627 * a deadlock with someone trying to push a page that we are
1632 1628 * about to invalidate.
1633 1629 */
1634 1630 if (vn_has_cached_data(vp)) {
1635 1631 page_t *pp;
1636 1632 uint64_t start = end & PAGEMASK;
1637 1633 int poff = end & PAGEOFFSET;
1638 1634
1639 1635 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) {
1640 1636 /*
1641 1637 * We need to zero a partial page.
1642 1638 */
1643 1639 pagezero(pp, poff, PAGESIZE - poff);
1644 1640 start += PAGESIZE;
1645 1641 page_unlock(pp);
1646 1642 }
1647 1643 error = pvn_vplist_dirty(vp, start, zfs_no_putpage,
1648 1644 B_INVAL | B_TRUNC, NULL);
1649 1645 ASSERT(error == 0);
1650 1646 }
1651 1647
1652 1648 zfs_range_unlock(rl);
1653 1649
1654 1650 return (0);
1655 1651 }
↓ open down ↓ |
77 lines elided |
↑ open up ↑ |
1656 1652
1657 1653 /*
1658 1654 * Free space in a file
1659 1655 *
1660 1656 * IN: zp - znode of file to free data in.
1661 1657 * off - start of range
1662 1658 * len - end of range (0 => EOF)
1663 1659 * flag - current file open mode flags.
1664 1660 * log - TRUE if this action should be logged
1665 1661 *
1666 - * RETURN: 0 if success
1667 - * error code if failure
1662 + * RETURN: 0 on success, error code on failure
1668 1663 */
1669 1664 int
1670 1665 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1671 1666 {
1672 1667 vnode_t *vp = ZTOV(zp);
1673 1668 dmu_tx_t *tx;
1674 1669 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1675 1670 zilog_t *zilog = zfsvfs->z_log;
1676 1671 uint64_t mode;
1677 1672 uint64_t mtime[2], ctime[2];
1678 1673 sa_bulk_attr_t bulk[3];
1679 1674 int count = 0;
1680 1675 int error;
1681 1676
1682 1677 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode,
1683 1678 sizeof (mode))) != 0)
1684 1679 return (error);
1685 1680
1686 1681 if (off > zp->z_size) {
1687 1682 error = zfs_extend(zp, off+len);
1688 1683 if (error == 0 && log)
1689 1684 goto log;
1690 1685 else
1691 1686 return (error);
1692 1687 }
1693 1688
1694 1689 /*
1695 1690 * Check for any locks in the region to be freed.
1696 1691 */
1697 1692
1698 1693 if (MANDLOCK(vp, (mode_t)mode)) {
1699 1694 uint64_t length = (len ? len : zp->z_size - off);
1700 1695 if (error = chklock(vp, FWRITE, off, length, flag, NULL))
1701 1696 return (error);
1702 1697 }
1703 1698
1704 1699 if (len == 0) {
1705 1700 error = zfs_trunc(zp, off);
1706 1701 } else {
1707 1702 if ((error = zfs_free_range(zp, off, len)) == 0 &&
1708 1703 off + len > zp->z_size)
1709 1704 error = zfs_extend(zp, off+len);
1710 1705 }
1711 1706 if (error || !log)
1712 1707 return (error);
1713 1708 log:
1714 1709 tx = dmu_tx_create(zfsvfs->z_os);
1715 1710 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1716 1711 zfs_sa_upgrade_txholds(tx, zp);
1717 1712 error = dmu_tx_assign(tx, TXG_NOWAIT);
1718 1713 if (error) {
1719 1714 if (error == ERESTART) {
1720 1715 dmu_tx_wait(tx);
1721 1716 dmu_tx_abort(tx);
1722 1717 goto log;
1723 1718 }
1724 1719 dmu_tx_abort(tx);
1725 1720 return (error);
1726 1721 }
1727 1722
1728 1723 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16);
1729 1724 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16);
1730 1725 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1731 1726 NULL, &zp->z_pflags, 8);
1732 1727 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE);
1733 1728 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1734 1729 ASSERT(error == 0);
1735 1730
1736 1731 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1737 1732
1738 1733 dmu_tx_commit(tx);
1739 1734 return (0);
1740 1735 }
1741 1736
1742 1737 void
1743 1738 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1744 1739 {
1745 1740 zfsvfs_t zfsvfs;
1746 1741 uint64_t moid, obj, sa_obj, version;
1747 1742 uint64_t sense = ZFS_CASE_SENSITIVE;
1748 1743 uint64_t norm = 0;
1749 1744 nvpair_t *elem;
1750 1745 int error;
1751 1746 int i;
1752 1747 znode_t *rootzp = NULL;
1753 1748 vnode_t *vp;
1754 1749 vattr_t vattr;
1755 1750 znode_t *zp;
1756 1751 zfs_acl_ids_t acl_ids;
1757 1752
1758 1753 /*
1759 1754 * First attempt to create master node.
1760 1755 */
1761 1756 /*
1762 1757 * In an empty objset, there are no blocks to read and thus
1763 1758 * there can be no i/o errors (which we assert below).
1764 1759 */
1765 1760 moid = MASTER_NODE_OBJ;
1766 1761 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1767 1762 DMU_OT_NONE, 0, tx);
1768 1763 ASSERT(error == 0);
1769 1764
1770 1765 /*
1771 1766 * Set starting attributes.
1772 1767 */
1773 1768 version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os)));
1774 1769 elem = NULL;
1775 1770 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1776 1771 /* For the moment we expect all zpl props to be uint64_ts */
1777 1772 uint64_t val;
1778 1773 char *name;
1779 1774
1780 1775 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1781 1776 VERIFY(nvpair_value_uint64(elem, &val) == 0);
1782 1777 name = nvpair_name(elem);
1783 1778 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1784 1779 if (val < version)
1785 1780 version = val;
1786 1781 } else {
1787 1782 error = zap_update(os, moid, name, 8, 1, &val, tx);
1788 1783 }
1789 1784 ASSERT(error == 0);
1790 1785 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1791 1786 norm = val;
1792 1787 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1793 1788 sense = val;
1794 1789 }
1795 1790 ASSERT(version != 0);
1796 1791 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
1797 1792
1798 1793 /*
1799 1794 * Create zap object used for SA attribute registration
1800 1795 */
1801 1796
1802 1797 if (version >= ZPL_VERSION_SA) {
1803 1798 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1804 1799 DMU_OT_NONE, 0, tx);
1805 1800 error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1806 1801 ASSERT(error == 0);
1807 1802 } else {
1808 1803 sa_obj = 0;
1809 1804 }
1810 1805 /*
1811 1806 * Create a delete queue.
1812 1807 */
1813 1808 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1814 1809
1815 1810 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
1816 1811 ASSERT(error == 0);
1817 1812
1818 1813 /*
1819 1814 * Create root znode. Create minimal znode/vnode/zfsvfs
1820 1815 * to allow zfs_mknode to work.
1821 1816 */
1822 1817 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
1823 1818 vattr.va_type = VDIR;
1824 1819 vattr.va_mode = S_IFDIR|0755;
1825 1820 vattr.va_uid = crgetuid(cr);
1826 1821 vattr.va_gid = crgetgid(cr);
1827 1822
1828 1823 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1829 1824 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs));
1830 1825 rootzp->z_moved = 0;
1831 1826 rootzp->z_unlinked = 0;
1832 1827 rootzp->z_atime_dirty = 0;
1833 1828 rootzp->z_is_sa = USE_SA(version, os);
1834 1829
1835 1830 vp = ZTOV(rootzp);
1836 1831 vn_reinit(vp);
1837 1832 vp->v_type = VDIR;
1838 1833
1839 1834 bzero(&zfsvfs, sizeof (zfsvfs_t));
1840 1835
1841 1836 zfsvfs.z_os = os;
1842 1837 zfsvfs.z_parent = &zfsvfs;
1843 1838 zfsvfs.z_version = version;
1844 1839 zfsvfs.z_use_fuids = USE_FUIDS(version, os);
1845 1840 zfsvfs.z_use_sa = USE_SA(version, os);
1846 1841 zfsvfs.z_norm = norm;
1847 1842
1848 1843 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
1849 1844 &zfsvfs.z_attr_table);
1850 1845
1851 1846 ASSERT(error == 0);
1852 1847
1853 1848 /*
1854 1849 * Fold case on file systems that are always or sometimes case
1855 1850 * insensitive.
1856 1851 */
1857 1852 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1858 1853 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER;
1859 1854
1860 1855 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1861 1856 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t),
1862 1857 offsetof(znode_t, z_link_node));
1863 1858
1864 1859 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1865 1860 mutex_init(&zfsvfs.z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1866 1861
1867 1862 rootzp->z_zfsvfs = &zfsvfs;
1868 1863 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
1869 1864 cr, NULL, &acl_ids));
1870 1865 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids);
1871 1866 ASSERT3P(zp, ==, rootzp);
1872 1867 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */
1873 1868 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1874 1869 ASSERT(error == 0);
1875 1870 zfs_acl_ids_free(&acl_ids);
1876 1871 POINTER_INVALIDATE(&rootzp->z_zfsvfs);
1877 1872
1878 1873 ZTOV(rootzp)->v_count = 0;
1879 1874 sa_handle_destroy(rootzp->z_sa_hdl);
1880 1875 kmem_cache_free(znode_cache, rootzp);
1881 1876
1882 1877 /*
1883 1878 * Create shares directory
1884 1879 */
1885 1880
1886 1881 error = zfs_create_share_dir(&zfsvfs, tx);
1887 1882
1888 1883 ASSERT(error == 0);
1889 1884
1890 1885 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1891 1886 mutex_destroy(&zfsvfs.z_hold_mtx[i]);
1892 1887 }
1893 1888
1894 1889 #endif /* _KERNEL */
1895 1890
1896 1891 static int
1897 1892 zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table)
1898 1893 {
1899 1894 uint64_t sa_obj = 0;
1900 1895 int error;
1901 1896
1902 1897 error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj);
1903 1898 if (error != 0 && error != ENOENT)
1904 1899 return (error);
1905 1900
1906 1901 error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table);
1907 1902 return (error);
1908 1903 }
1909 1904
1910 1905 static int
1911 1906 zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp,
1912 1907 dmu_buf_t **db, void *tag)
1913 1908 {
1914 1909 dmu_object_info_t doi;
1915 1910 int error;
1916 1911
1917 1912 if ((error = sa_buf_hold(osp, obj, tag, db)) != 0)
1918 1913 return (error);
1919 1914
1920 1915 dmu_object_info_from_db(*db, &doi);
1921 1916 if ((doi.doi_bonus_type != DMU_OT_SA &&
1922 1917 doi.doi_bonus_type != DMU_OT_ZNODE) ||
1923 1918 doi.doi_bonus_type == DMU_OT_ZNODE &&
1924 1919 doi.doi_bonus_size < sizeof (znode_phys_t)) {
1925 1920 sa_buf_rele(*db, tag);
1926 1921 return (SET_ERROR(ENOTSUP));
1927 1922 }
1928 1923
1929 1924 error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp);
1930 1925 if (error != 0) {
1931 1926 sa_buf_rele(*db, tag);
1932 1927 return (error);
1933 1928 }
1934 1929
1935 1930 return (0);
1936 1931 }
1937 1932
1938 1933 void
1939 1934 zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag)
1940 1935 {
1941 1936 sa_handle_destroy(hdl);
1942 1937 sa_buf_rele(db, tag);
1943 1938 }
1944 1939
1945 1940 /*
1946 1941 * Given an object number, return its parent object number and whether
1947 1942 * or not the object is an extended attribute directory.
1948 1943 */
1949 1944 static int
1950 1945 zfs_obj_to_pobj(objset_t *osp, sa_handle_t *hdl, sa_attr_type_t *sa_table,
1951 1946 uint64_t *pobjp, int *is_xattrdir)
1952 1947 {
1953 1948 uint64_t parent;
1954 1949 uint64_t pflags;
1955 1950 uint64_t mode;
1956 1951 uint64_t parent_mode;
1957 1952 sa_bulk_attr_t bulk[3];
1958 1953 sa_handle_t *sa_hdl;
1959 1954 dmu_buf_t *sa_db;
1960 1955 int count = 0;
1961 1956 int error;
1962 1957
1963 1958 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL,
1964 1959 &parent, sizeof (parent));
1965 1960 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL,
1966 1961 &pflags, sizeof (pflags));
1967 1962 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
1968 1963 &mode, sizeof (mode));
1969 1964
1970 1965 if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0)
1971 1966 return (error);
1972 1967
1973 1968 /*
1974 1969 * When a link is removed its parent pointer is not changed and will
1975 1970 * be invalid. There are two cases where a link is removed but the
1976 1971 * file stays around, when it goes to the delete queue and when there
1977 1972 * are additional links.
1978 1973 */
1979 1974 error = zfs_grab_sa_handle(osp, parent, &sa_hdl, &sa_db, FTAG);
1980 1975 if (error != 0)
1981 1976 return (error);
1982 1977
1983 1978 error = sa_lookup(sa_hdl, ZPL_MODE, &parent_mode, sizeof (parent_mode));
1984 1979 zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
1985 1980 if (error != 0)
1986 1981 return (error);
1987 1982
1988 1983 *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode);
1989 1984
1990 1985 /*
1991 1986 * Extended attributes can be applied to files, directories, etc.
1992 1987 * Otherwise the parent must be a directory.
1993 1988 */
1994 1989 if (!*is_xattrdir && !S_ISDIR(parent_mode))
1995 1990 return (SET_ERROR(EINVAL));
1996 1991
1997 1992 *pobjp = parent;
1998 1993
1999 1994 return (0);
2000 1995 }
2001 1996
2002 1997 /*
2003 1998 * Given an object number, return some zpl level statistics
2004 1999 */
2005 2000 static int
2006 2001 zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table,
2007 2002 zfs_stat_t *sb)
2008 2003 {
2009 2004 sa_bulk_attr_t bulk[4];
2010 2005 int count = 0;
2011 2006
2012 2007 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
2013 2008 &sb->zs_mode, sizeof (sb->zs_mode));
2014 2009 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL,
2015 2010 &sb->zs_gen, sizeof (sb->zs_gen));
2016 2011 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL,
2017 2012 &sb->zs_links, sizeof (sb->zs_links));
2018 2013 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL,
2019 2014 &sb->zs_ctime, sizeof (sb->zs_ctime));
2020 2015
2021 2016 return (sa_bulk_lookup(hdl, bulk, count));
2022 2017 }
2023 2018
2024 2019 static int
2025 2020 zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl,
2026 2021 sa_attr_type_t *sa_table, char *buf, int len)
2027 2022 {
2028 2023 sa_handle_t *sa_hdl;
2029 2024 sa_handle_t *prevhdl = NULL;
2030 2025 dmu_buf_t *prevdb = NULL;
2031 2026 dmu_buf_t *sa_db = NULL;
2032 2027 char *path = buf + len - 1;
2033 2028 int error;
2034 2029
2035 2030 *path = '\0';
2036 2031 sa_hdl = hdl;
2037 2032
2038 2033 for (;;) {
2039 2034 uint64_t pobj;
2040 2035 char component[MAXNAMELEN + 2];
2041 2036 size_t complen;
2042 2037 int is_xattrdir;
2043 2038
2044 2039 if (prevdb)
2045 2040 zfs_release_sa_handle(prevhdl, prevdb, FTAG);
2046 2041
2047 2042 if ((error = zfs_obj_to_pobj(osp, sa_hdl, sa_table, &pobj,
2048 2043 &is_xattrdir)) != 0)
2049 2044 break;
2050 2045
2051 2046 if (pobj == obj) {
2052 2047 if (path[0] != '/')
2053 2048 *--path = '/';
2054 2049 break;
2055 2050 }
2056 2051
2057 2052 component[0] = '/';
2058 2053 if (is_xattrdir) {
2059 2054 (void) sprintf(component + 1, "<xattrdir>");
2060 2055 } else {
2061 2056 error = zap_value_search(osp, pobj, obj,
2062 2057 ZFS_DIRENT_OBJ(-1ULL), component + 1);
2063 2058 if (error != 0)
2064 2059 break;
2065 2060 }
2066 2061
2067 2062 complen = strlen(component);
2068 2063 path -= complen;
2069 2064 ASSERT(path >= buf);
2070 2065 bcopy(component, path, complen);
2071 2066 obj = pobj;
2072 2067
2073 2068 if (sa_hdl != hdl) {
2074 2069 prevhdl = sa_hdl;
2075 2070 prevdb = sa_db;
2076 2071 }
2077 2072 error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG);
2078 2073 if (error != 0) {
2079 2074 sa_hdl = prevhdl;
2080 2075 sa_db = prevdb;
2081 2076 break;
2082 2077 }
2083 2078 }
2084 2079
2085 2080 if (sa_hdl != NULL && sa_hdl != hdl) {
2086 2081 ASSERT(sa_db != NULL);
2087 2082 zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
2088 2083 }
2089 2084
2090 2085 if (error == 0)
2091 2086 (void) memmove(buf, path, buf + len - path);
2092 2087
2093 2088 return (error);
2094 2089 }
2095 2090
2096 2091 int
2097 2092 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
2098 2093 {
2099 2094 sa_attr_type_t *sa_table;
2100 2095 sa_handle_t *hdl;
2101 2096 dmu_buf_t *db;
2102 2097 int error;
2103 2098
2104 2099 error = zfs_sa_setup(osp, &sa_table);
2105 2100 if (error != 0)
2106 2101 return (error);
2107 2102
2108 2103 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
2109 2104 if (error != 0)
2110 2105 return (error);
2111 2106
2112 2107 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
2113 2108
2114 2109 zfs_release_sa_handle(hdl, db, FTAG);
2115 2110 return (error);
2116 2111 }
2117 2112
2118 2113 int
2119 2114 zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb,
2120 2115 char *buf, int len)
2121 2116 {
2122 2117 char *path = buf + len - 1;
2123 2118 sa_attr_type_t *sa_table;
2124 2119 sa_handle_t *hdl;
2125 2120 dmu_buf_t *db;
2126 2121 int error;
2127 2122
2128 2123 *path = '\0';
2129 2124
2130 2125 error = zfs_sa_setup(osp, &sa_table);
2131 2126 if (error != 0)
2132 2127 return (error);
2133 2128
2134 2129 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
2135 2130 if (error != 0)
2136 2131 return (error);
2137 2132
2138 2133 error = zfs_obj_to_stats_impl(hdl, sa_table, sb);
2139 2134 if (error != 0) {
2140 2135 zfs_release_sa_handle(hdl, db, FTAG);
2141 2136 return (error);
2142 2137 }
2143 2138
2144 2139 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
2145 2140
2146 2141 zfs_release_sa_handle(hdl, db, FTAG);
2147 2142 return (error);
2148 2143 }
↓ open down ↓ |
471 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX