1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 */
25
26 /* Portions Copyright 2007 Jeremy Teo */
27
28 #ifdef _KERNEL
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/time.h>
32 #include <sys/systm.h>
33 #include <sys/sysmacros.h>
34 #include <sys/resource.h>
35 #include <sys/mntent.h>
36 #include <sys/mkdev.h>
37 #include <sys/u8_textprep.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/vfs.h>
40 #include <sys/vfs_opreg.h>
41 #include <sys/vnode.h>
42 #include <sys/file.h>
43 #include <sys/kmem.h>
44 #include <sys/errno.h>
45 #include <sys/unistd.h>
46 #include <sys/mode.h>
47 #include <sys/atomic.h>
48 #include <vm/pvn.h>
49 #include "fs/fs_subr.h"
50 #include <sys/zfs_dir.h>
51 #include <sys/zfs_acl.h>
52 #include <sys/zfs_ioctl.h>
53 #include <sys/zfs_rlock.h>
54 #include <sys/zfs_fuid.h>
55 #include <sys/dnode.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/kidmap.h>
58 #endif /* _KERNEL */
59
60 #include <sys/dmu.h>
61 #include <sys/refcount.h>
62 #include <sys/stat.h>
63 #include <sys/zap.h>
64 #include <sys/zfs_znode.h>
65 #include <sys/sa.h>
66 #include <sys/zfs_sa.h>
67 #include <sys/zfs_stat.h>
68
69 #include "zfs_prop.h"
70 #include "zfs_comutil.h"
71
72 /*
73 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only
74 * turned on when DEBUG is also defined.
75 */
76 #ifdef DEBUG
77 #define ZNODE_STATS
78 #endif /* DEBUG */
79
80 #ifdef ZNODE_STATS
81 #define ZNODE_STAT_ADD(stat) ((stat)++)
82 #else
83 #define ZNODE_STAT_ADD(stat) /* nothing */
84 #endif /* ZNODE_STATS */
85
86 /*
87 * Functions needed for userland (ie: libzpool) are not put under
88 * #ifdef_KERNEL; the rest of the functions have dependencies
89 * (such as VFS logic) that will not compile easily in userland.
90 */
91 #ifdef _KERNEL
92 /*
93 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to
94 * be freed before it can be safely accessed.
95 */
96 krwlock_t zfsvfs_lock;
97
98 static kmem_cache_t *znode_cache = NULL;
99
100 /*ARGSUSED*/
101 static void
102 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr)
103 {
104 /*
105 * We should never drop all dbuf refs without first clearing
106 * the eviction callback.
107 */
108 panic("evicting znode %p\n", user_ptr);
109 }
110
111 /*ARGSUSED*/
112 static int
113 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
114 {
115 znode_t *zp = buf;
116
117 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
118
119 zp->z_vnode = vn_alloc(kmflags);
120 if (zp->z_vnode == NULL) {
121 return (-1);
122 }
123 ZTOV(zp)->v_data = zp;
124
125 list_link_init(&zp->z_link_node);
126
127 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
128 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
129 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL);
130 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
131
132 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
133 avl_create(&zp->z_range_avl, zfs_range_compare,
134 sizeof (rl_t), offsetof(rl_t, r_node));
135
136 zp->z_dirlocks = NULL;
137 zp->z_acl_cached = NULL;
138 zp->z_moved = 0;
139 return (0);
140 }
141
142 /*ARGSUSED*/
143 static void
144 zfs_znode_cache_destructor(void *buf, void *arg)
145 {
146 znode_t *zp = buf;
147
148 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
149 ASSERT(ZTOV(zp)->v_data == zp);
150 vn_free(ZTOV(zp));
151 ASSERT(!list_link_active(&zp->z_link_node));
152 mutex_destroy(&zp->z_lock);
153 rw_destroy(&zp->z_parent_lock);
154 rw_destroy(&zp->z_name_lock);
155 mutex_destroy(&zp->z_acl_lock);
156 avl_destroy(&zp->z_range_avl);
157 mutex_destroy(&zp->z_range_lock);
158
159 ASSERT(zp->z_dirlocks == NULL);
160 ASSERT(zp->z_acl_cached == NULL);
161 }
162
163 #ifdef ZNODE_STATS
164 static struct {
165 uint64_t zms_zfsvfs_invalid;
166 uint64_t zms_zfsvfs_recheck1;
167 uint64_t zms_zfsvfs_unmounted;
168 uint64_t zms_zfsvfs_recheck2;
169 uint64_t zms_obj_held;
170 uint64_t zms_vnode_locked;
171 uint64_t zms_not_only_dnlc;
172 } znode_move_stats;
173 #endif /* ZNODE_STATS */
174
175 static void
176 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp)
177 {
178 vnode_t *vp;
179
180 /* Copy fields. */
181 nzp->z_zfsvfs = ozp->z_zfsvfs;
182
183 /* Swap vnodes. */
184 vp = nzp->z_vnode;
185 nzp->z_vnode = ozp->z_vnode;
186 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */
187 ZTOV(ozp)->v_data = ozp;
188 ZTOV(nzp)->v_data = nzp;
189
190 nzp->z_id = ozp->z_id;
191 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */
192 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0);
193 nzp->z_unlinked = ozp->z_unlinked;
194 nzp->z_atime_dirty = ozp->z_atime_dirty;
195 nzp->z_zn_prefetch = ozp->z_zn_prefetch;
196 nzp->z_blksz = ozp->z_blksz;
197 nzp->z_seq = ozp->z_seq;
198 nzp->z_mapcnt = ozp->z_mapcnt;
199 nzp->z_gen = ozp->z_gen;
200 nzp->z_sync_cnt = ozp->z_sync_cnt;
201 nzp->z_is_sa = ozp->z_is_sa;
202 nzp->z_sa_hdl = ozp->z_sa_hdl;
203 bcopy(ozp->z_atime, nzp->z_atime, sizeof (uint64_t) * 2);
204 nzp->z_links = ozp->z_links;
205 nzp->z_size = ozp->z_size;
206 nzp->z_pflags = ozp->z_pflags;
207 nzp->z_uid = ozp->z_uid;
208 nzp->z_gid = ozp->z_gid;
209 nzp->z_mode = ozp->z_mode;
210
211 /*
212 * Since this is just an idle znode and kmem is already dealing with
213 * memory pressure, release any cached ACL.
214 */
215 if (ozp->z_acl_cached) {
216 zfs_acl_free(ozp->z_acl_cached);
217 ozp->z_acl_cached = NULL;
218 }
219
220 sa_set_userp(nzp->z_sa_hdl, nzp);
221
222 /*
223 * Invalidate the original znode by clearing fields that provide a
224 * pointer back to the znode. Set the low bit of the vfs pointer to
225 * ensure that zfs_znode_move() recognizes the znode as invalid in any
226 * subsequent callback.
227 */
228 ozp->z_sa_hdl = NULL;
229 POINTER_INVALIDATE(&ozp->z_zfsvfs);
230
231 /*
232 * Mark the znode.
233 */
234 nzp->z_moved = 1;
235 ozp->z_moved = (uint8_t)-1;
236 }
237
238 /*ARGSUSED*/
239 static kmem_cbrc_t
240 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg)
241 {
242 znode_t *ozp = buf, *nzp = newbuf;
243 zfsvfs_t *zfsvfs;
244 vnode_t *vp;
245
246 /*
247 * The znode is on the file system's list of known znodes if the vfs
248 * pointer is valid. We set the low bit of the vfs pointer when freeing
249 * the znode to invalidate it, and the memory patterns written by kmem
250 * (baddcafe and deadbeef) set at least one of the two low bits. A newly
251 * created znode sets the vfs pointer last of all to indicate that the
252 * znode is known and in a valid state to be moved by this function.
253 */
254 zfsvfs = ozp->z_zfsvfs;
255 if (!POINTER_IS_VALID(zfsvfs)) {
256 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid);
257 return (KMEM_CBRC_DONT_KNOW);
258 }
259
260 /*
261 * Close a small window in which it's possible that the filesystem could
262 * be unmounted and freed, and zfsvfs, though valid in the previous
263 * statement, could point to unrelated memory by the time we try to
264 * prevent the filesystem from being unmounted.
265 */
266 rw_enter(&zfsvfs_lock, RW_WRITER);
267 if (zfsvfs != ozp->z_zfsvfs) {
268 rw_exit(&zfsvfs_lock);
269 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1);
270 return (KMEM_CBRC_DONT_KNOW);
271 }
272
273 /*
274 * If the znode is still valid, then so is the file system. We know that
275 * no valid file system can be freed while we hold zfsvfs_lock, so we
276 * can safely ensure that the filesystem is not and will not be
277 * unmounted. The next statement is equivalent to ZFS_ENTER().
278 */
279 rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG);
280 if (zfsvfs->z_unmounted) {
281 ZFS_EXIT(zfsvfs);
282 rw_exit(&zfsvfs_lock);
283 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted);
284 return (KMEM_CBRC_DONT_KNOW);
285 }
286 rw_exit(&zfsvfs_lock);
287
288 mutex_enter(&zfsvfs->z_znodes_lock);
289 /*
290 * Recheck the vfs pointer in case the znode was removed just before
291 * acquiring the lock.
292 */
293 if (zfsvfs != ozp->z_zfsvfs) {
294 mutex_exit(&zfsvfs->z_znodes_lock);
295 ZFS_EXIT(zfsvfs);
296 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2);
297 return (KMEM_CBRC_DONT_KNOW);
298 }
299
300 /*
301 * At this point we know that as long as we hold z_znodes_lock, the
302 * znode cannot be freed and fields within the znode can be safely
303 * accessed. Now, prevent a race with zfs_zget().
304 */
305 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) {
306 mutex_exit(&zfsvfs->z_znodes_lock);
307 ZFS_EXIT(zfsvfs);
308 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held);
309 return (KMEM_CBRC_LATER);
310 }
311
312 vp = ZTOV(ozp);
313 if (mutex_tryenter(&vp->v_lock) == 0) {
314 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
315 mutex_exit(&zfsvfs->z_znodes_lock);
316 ZFS_EXIT(zfsvfs);
317 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked);
318 return (KMEM_CBRC_LATER);
319 }
320
321 /* Only move znodes that are referenced _only_ by the DNLC. */
322 if (vp->v_count != 1 || !vn_in_dnlc(vp)) {
323 mutex_exit(&vp->v_lock);
324 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
325 mutex_exit(&zfsvfs->z_znodes_lock);
326 ZFS_EXIT(zfsvfs);
327 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc);
328 return (KMEM_CBRC_LATER);
329 }
330
331 /*
332 * The znode is known and in a valid state to move. We're holding the
333 * locks needed to execute the critical section.
334 */
335 zfs_znode_move_impl(ozp, nzp);
336 mutex_exit(&vp->v_lock);
337 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
338
339 list_link_replace(&ozp->z_link_node, &nzp->z_link_node);
340 mutex_exit(&zfsvfs->z_znodes_lock);
341 ZFS_EXIT(zfsvfs);
342
343 return (KMEM_CBRC_YES);
344 }
345
346 void
347 zfs_znode_init(void)
348 {
349 /*
350 * Initialize zcache
351 */
352 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL);
353 ASSERT(znode_cache == NULL);
354 znode_cache = kmem_cache_create("zfs_znode_cache",
355 sizeof (znode_t), 0, zfs_znode_cache_constructor,
356 zfs_znode_cache_destructor, NULL, NULL, NULL, 0);
357 kmem_cache_set_move(znode_cache, zfs_znode_move);
358 }
359
360 void
361 zfs_znode_fini(void)
362 {
363 /*
364 * Cleanup vfs & vnode ops
365 */
366 zfs_remove_op_tables();
367
368 /*
369 * Cleanup zcache
370 */
371 if (znode_cache)
372 kmem_cache_destroy(znode_cache);
373 znode_cache = NULL;
374 rw_destroy(&zfsvfs_lock);
375 }
376
377 struct vnodeops *zfs_dvnodeops;
378 struct vnodeops *zfs_fvnodeops;
379 struct vnodeops *zfs_symvnodeops;
380 struct vnodeops *zfs_xdvnodeops;
381 struct vnodeops *zfs_evnodeops;
382 struct vnodeops *zfs_sharevnodeops;
383
384 void
385 zfs_remove_op_tables()
386 {
387 /*
388 * Remove vfs ops
389 */
390 ASSERT(zfsfstype);
391 (void) vfs_freevfsops_by_type(zfsfstype);
392 zfsfstype = 0;
393
394 /*
395 * Remove vnode ops
396 */
397 if (zfs_dvnodeops)
398 vn_freevnodeops(zfs_dvnodeops);
399 if (zfs_fvnodeops)
400 vn_freevnodeops(zfs_fvnodeops);
401 if (zfs_symvnodeops)
402 vn_freevnodeops(zfs_symvnodeops);
403 if (zfs_xdvnodeops)
404 vn_freevnodeops(zfs_xdvnodeops);
405 if (zfs_evnodeops)
406 vn_freevnodeops(zfs_evnodeops);
407 if (zfs_sharevnodeops)
408 vn_freevnodeops(zfs_sharevnodeops);
409
410 zfs_dvnodeops = NULL;
411 zfs_fvnodeops = NULL;
412 zfs_symvnodeops = NULL;
413 zfs_xdvnodeops = NULL;
414 zfs_evnodeops = NULL;
415 zfs_sharevnodeops = NULL;
416 }
417
418 extern const fs_operation_def_t zfs_dvnodeops_template[];
419 extern const fs_operation_def_t zfs_fvnodeops_template[];
420 extern const fs_operation_def_t zfs_xdvnodeops_template[];
421 extern const fs_operation_def_t zfs_symvnodeops_template[];
422 extern const fs_operation_def_t zfs_evnodeops_template[];
423 extern const fs_operation_def_t zfs_sharevnodeops_template[];
424
425 int
426 zfs_create_op_tables()
427 {
428 int error;
429
430 /*
431 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs()
432 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv).
433 * In this case we just return as the ops vectors are already set up.
434 */
435 if (zfs_dvnodeops)
436 return (0);
437
438 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template,
439 &zfs_dvnodeops);
440 if (error)
441 return (error);
442
443 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template,
444 &zfs_fvnodeops);
445 if (error)
446 return (error);
447
448 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template,
449 &zfs_symvnodeops);
450 if (error)
451 return (error);
452
453 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template,
454 &zfs_xdvnodeops);
455 if (error)
456 return (error);
457
458 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template,
459 &zfs_evnodeops);
460 if (error)
461 return (error);
462
463 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template,
464 &zfs_sharevnodeops);
465
466 return (error);
467 }
468
469 int
470 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
471 {
472 zfs_acl_ids_t acl_ids;
473 vattr_t vattr;
474 znode_t *sharezp;
475 vnode_t *vp;
476 znode_t *zp;
477 int error;
478
479 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
480 vattr.va_type = VDIR;
481 vattr.va_mode = S_IFDIR|0555;
482 vattr.va_uid = crgetuid(kcred);
483 vattr.va_gid = crgetgid(kcred);
484
485 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP);
486 ASSERT(!POINTER_IS_VALID(sharezp->z_zfsvfs));
487 sharezp->z_moved = 0;
488 sharezp->z_unlinked = 0;
489 sharezp->z_atime_dirty = 0;
490 sharezp->z_zfsvfs = zfsvfs;
491 sharezp->z_is_sa = zfsvfs->z_use_sa;
492
493 vp = ZTOV(sharezp);
494 vn_reinit(vp);
495 vp->v_type = VDIR;
496
497 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr,
498 kcred, NULL, &acl_ids));
499 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids);
500 ASSERT3P(zp, ==, sharezp);
501 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */
502 POINTER_INVALIDATE(&sharezp->z_zfsvfs);
503 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
504 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx);
505 zfsvfs->z_shares_dir = sharezp->z_id;
506
507 zfs_acl_ids_free(&acl_ids);
508 ZTOV(sharezp)->v_count = 0;
509 sa_handle_destroy(sharezp->z_sa_hdl);
510 kmem_cache_free(znode_cache, sharezp);
511
512 return (error);
513 }
514
515 /*
516 * define a couple of values we need available
517 * for both 64 and 32 bit environments.
518 */
519 #ifndef NBITSMINOR64
520 #define NBITSMINOR64 32
521 #endif
522 #ifndef MAXMAJ64
523 #define MAXMAJ64 0xffffffffUL
524 #endif
525 #ifndef MAXMIN64
526 #define MAXMIN64 0xffffffffUL
527 #endif
528
529 /*
530 * Create special expldev for ZFS private use.
531 * Can't use standard expldev since it doesn't do
532 * what we want. The standard expldev() takes a
533 * dev32_t in LP64 and expands it to a long dev_t.
534 * We need an interface that takes a dev32_t in ILP32
535 * and expands it to a long dev_t.
536 */
537 static uint64_t
538 zfs_expldev(dev_t dev)
539 {
540 #ifndef _LP64
541 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32;
542 return (((uint64_t)major << NBITSMINOR64) |
543 ((minor_t)dev & MAXMIN32));
544 #else
545 return (dev);
546 #endif
547 }
548
549 /*
550 * Special cmpldev for ZFS private use.
551 * Can't use standard cmpldev since it takes
552 * a long dev_t and compresses it to dev32_t in
553 * LP64. We need to do a compaction of a long dev_t
554 * to a dev32_t in ILP32.
555 */
556 dev_t
557 zfs_cmpldev(uint64_t dev)
558 {
559 #ifndef _LP64
560 minor_t minor = (minor_t)dev & MAXMIN64;
561 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64;
562
563 if (major > MAXMAJ32 || minor > MAXMIN32)
564 return (NODEV32);
565
566 return (((dev32_t)major << NBITSMINOR32) | minor);
567 #else
568 return (dev);
569 #endif
570 }
571
572 static void
573 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp,
574 dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl)
575 {
576 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs));
577 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id)));
578
579 mutex_enter(&zp->z_lock);
580
581 ASSERT(zp->z_sa_hdl == NULL);
582 ASSERT(zp->z_acl_cached == NULL);
583 if (sa_hdl == NULL) {
584 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp,
585 SA_HDL_SHARED, &zp->z_sa_hdl));
586 } else {
587 zp->z_sa_hdl = sa_hdl;
588 sa_set_userp(sa_hdl, zp);
589 }
590
591 zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE;
592
593 /*
594 * Slap on VROOT if we are the root znode
595 */
596 if (zp->z_id == zfsvfs->z_root)
597 ZTOV(zp)->v_flag |= VROOT;
598
599 mutex_exit(&zp->z_lock);
600 vn_exists(ZTOV(zp));
601 }
602
603 void
604 zfs_znode_dmu_fini(znode_t *zp)
605 {
606 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) ||
607 zp->z_unlinked ||
608 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock));
609
610 sa_handle_destroy(zp->z_sa_hdl);
611 zp->z_sa_hdl = NULL;
612 }
613
614 /*
615 * Construct a new znode/vnode and intialize.
616 *
617 * This does not do a call to dmu_set_user() that is
618 * up to the caller to do, in case you don't want to
619 * return the znode
620 */
621 static znode_t *
622 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz,
623 dmu_object_type_t obj_type, sa_handle_t *hdl)
624 {
625 znode_t *zp;
626 vnode_t *vp;
627 uint64_t mode;
628 uint64_t parent;
629 sa_bulk_attr_t bulk[9];
630 int count = 0;
631
632 zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
633
634 ASSERT(zp->z_dirlocks == NULL);
635 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
636 zp->z_moved = 0;
637
638 /*
639 * Defer setting z_zfsvfs until the znode is ready to be a candidate for
640 * the zfs_znode_move() callback.
641 */
642 zp->z_sa_hdl = NULL;
643 zp->z_unlinked = 0;
644 zp->z_atime_dirty = 0;
645 zp->z_mapcnt = 0;
646 zp->z_id = db->db_object;
647 zp->z_blksz = blksz;
648 zp->z_seq = 0x7A4653;
649 zp->z_sync_cnt = 0;
650
651 vp = ZTOV(zp);
652 vn_reinit(vp);
653
654 zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl);
655
656 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
657 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8);
658 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
659 &zp->z_size, 8);
660 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
661 &zp->z_links, 8);
662 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
663 &zp->z_pflags, 8);
664 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8);
665 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
666 &zp->z_atime, 16);
667 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
668 &zp->z_uid, 8);
669 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
670 &zp->z_gid, 8);
671
672 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) {
673 if (hdl == NULL)
674 sa_handle_destroy(zp->z_sa_hdl);
675 kmem_cache_free(znode_cache, zp);
676 return (NULL);
677 }
678
679 zp->z_mode = mode;
680 vp->v_vfsp = zfsvfs->z_parent->z_vfs;
681
682 vp->v_type = IFTOVT((mode_t)mode);
683
684 switch (vp->v_type) {
685 case VDIR:
686 if (zp->z_pflags & ZFS_XATTR) {
687 vn_setops(vp, zfs_xdvnodeops);
688 vp->v_flag |= V_XATTRDIR;
689 } else {
690 vn_setops(vp, zfs_dvnodeops);
691 }
692 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
693 break;
694 case VBLK:
695 case VCHR:
696 {
697 uint64_t rdev;
698 VERIFY(sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zfsvfs),
699 &rdev, sizeof (rdev)) == 0);
700
701 vp->v_rdev = zfs_cmpldev(rdev);
702 }
703 /*FALLTHROUGH*/
704 case VFIFO:
705 case VSOCK:
706 case VDOOR:
707 vn_setops(vp, zfs_fvnodeops);
708 break;
709 case VREG:
710 vp->v_flag |= VMODSORT;
711 if (parent == zfsvfs->z_shares_dir) {
712 ASSERT(zp->z_uid == 0 && zp->z_gid == 0);
713 vn_setops(vp, zfs_sharevnodeops);
714 } else {
715 vn_setops(vp, zfs_fvnodeops);
716 }
717 break;
718 case VLNK:
719 vn_setops(vp, zfs_symvnodeops);
720 break;
721 default:
722 vn_setops(vp, zfs_evnodeops);
723 break;
724 }
725
726 mutex_enter(&zfsvfs->z_znodes_lock);
727 list_insert_tail(&zfsvfs->z_all_znodes, zp);
728 membar_producer();
729 /*
730 * Everything else must be valid before assigning z_zfsvfs makes the
731 * znode eligible for zfs_znode_move().
732 */
733 zp->z_zfsvfs = zfsvfs;
734 mutex_exit(&zfsvfs->z_znodes_lock);
735
736 VFS_HOLD(zfsvfs->z_vfs);
737 return (zp);
738 }
739
740 static uint64_t empty_xattr;
741 static uint64_t pad[4];
742 static zfs_acl_phys_t acl_phys;
743 /*
744 * Create a new DMU object to hold a zfs znode.
745 *
746 * IN: dzp - parent directory for new znode
747 * vap - file attributes for new znode
748 * tx - dmu transaction id for zap operations
749 * cr - credentials of caller
750 * flag - flags:
751 * IS_ROOT_NODE - new object will be root
752 * IS_XATTR - new object is an attribute
753 * bonuslen - length of bonus buffer
754 * setaclp - File/Dir initial ACL
755 * fuidp - Tracks fuid allocation.
756 *
757 * OUT: zpp - allocated znode
758 *
759 */
760 void
761 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
762 uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids)
763 {
764 uint64_t crtime[2], atime[2], mtime[2], ctime[2];
765 uint64_t mode, size, links, parent, pflags;
766 uint64_t dzp_pflags = 0;
767 uint64_t rdev = 0;
768 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
769 dmu_buf_t *db;
770 timestruc_t now;
771 uint64_t gen, obj;
772 int err;
773 int bonuslen;
774 sa_handle_t *sa_hdl;
775 dmu_object_type_t obj_type;
776 sa_bulk_attr_t sa_attrs[ZPL_END];
777 int cnt = 0;
778 zfs_acl_locator_cb_t locate = { 0 };
779
780 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
781
782 if (zfsvfs->z_replay) {
783 obj = vap->va_nodeid;
784 now = vap->va_ctime; /* see zfs_replay_create() */
785 gen = vap->va_nblocks; /* ditto */
786 } else {
787 obj = 0;
788 gethrestime(&now);
789 gen = dmu_tx_get_txg(tx);
790 }
791
792 obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE;
793 bonuslen = (obj_type == DMU_OT_SA) ?
794 DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE;
795
796 /*
797 * Create a new DMU object.
798 */
799 /*
800 * There's currently no mechanism for pre-reading the blocks that will
801 * be needed to allocate a new object, so we accept the small chance
802 * that there will be an i/o error and we will fail one of the
803 * assertions below.
804 */
805 if (vap->va_type == VDIR) {
806 if (zfsvfs->z_replay) {
807 err = zap_create_claim_norm(zfsvfs->z_os, obj,
808 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
809 obj_type, bonuslen, tx);
810 ASSERT0(err);
811 } else {
812 obj = zap_create_norm(zfsvfs->z_os,
813 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
814 obj_type, bonuslen, tx);
815 }
816 } else {
817 if (zfsvfs->z_replay) {
818 err = dmu_object_claim(zfsvfs->z_os, obj,
819 DMU_OT_PLAIN_FILE_CONTENTS, 0,
820 obj_type, bonuslen, tx);
821 ASSERT0(err);
822 } else {
823 obj = dmu_object_alloc(zfsvfs->z_os,
824 DMU_OT_PLAIN_FILE_CONTENTS, 0,
825 obj_type, bonuslen, tx);
826 }
827 }
828
829 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
830 VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db));
831
832 /*
833 * If this is the root, fix up the half-initialized parent pointer
834 * to reference the just-allocated physical data area.
835 */
836 if (flag & IS_ROOT_NODE) {
837 dzp->z_id = obj;
838 } else {
839 dzp_pflags = dzp->z_pflags;
840 }
841
842 /*
843 * If parent is an xattr, so am I.
844 */
845 if (dzp_pflags & ZFS_XATTR) {
846 flag |= IS_XATTR;
847 }
848
849 if (zfsvfs->z_use_fuids)
850 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
851 else
852 pflags = 0;
853
854 if (vap->va_type == VDIR) {
855 size = 2; /* contents ("." and "..") */
856 links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
857 } else {
858 size = links = 0;
859 }
860
861 if (vap->va_type == VBLK || vap->va_type == VCHR) {
862 rdev = zfs_expldev(vap->va_rdev);
863 }
864
865 parent = dzp->z_id;
866 mode = acl_ids->z_mode;
867 if (flag & IS_XATTR)
868 pflags |= ZFS_XATTR;
869
870 /*
871 * No execs denied will be deterimed when zfs_mode_compute() is called.
872 */
873 pflags |= acl_ids->z_aclp->z_hints &
874 (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT|
875 ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED);
876
877 ZFS_TIME_ENCODE(&now, crtime);
878 ZFS_TIME_ENCODE(&now, ctime);
879
880 if (vap->va_mask & AT_ATIME) {
881 ZFS_TIME_ENCODE(&vap->va_atime, atime);
882 } else {
883 ZFS_TIME_ENCODE(&now, atime);
884 }
885
886 if (vap->va_mask & AT_MTIME) {
887 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
888 } else {
889 ZFS_TIME_ENCODE(&now, mtime);
890 }
891
892 /* Now add in all of the "SA" attributes */
893 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED,
894 &sa_hdl));
895
896 /*
897 * Setup the array of attributes to be replaced/set on the new file
898 *
899 * order for DMU_OT_ZNODE is critical since it needs to be constructed
900 * in the old znode_phys_t format. Don't change this ordering
901 */
902
903 if (obj_type == DMU_OT_ZNODE) {
904 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
905 NULL, &atime, 16);
906 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
907 NULL, &mtime, 16);
908 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
909 NULL, &ctime, 16);
910 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
911 NULL, &crtime, 16);
912 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
913 NULL, &gen, 8);
914 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
915 NULL, &mode, 8);
916 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
917 NULL, &size, 8);
918 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
919 NULL, &parent, 8);
920 } else {
921 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
922 NULL, &mode, 8);
923 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
924 NULL, &size, 8);
925 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
926 NULL, &gen, 8);
927 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
928 &acl_ids->z_fuid, 8);
929 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
930 &acl_ids->z_fgid, 8);
931 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
932 NULL, &parent, 8);
933 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
934 NULL, &pflags, 8);
935 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
936 NULL, &atime, 16);
937 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
938 NULL, &mtime, 16);
939 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
940 NULL, &ctime, 16);
941 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
942 NULL, &crtime, 16);
943 }
944
945 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
946
947 if (obj_type == DMU_OT_ZNODE) {
948 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL,
949 &empty_xattr, 8);
950 }
951 if (obj_type == DMU_OT_ZNODE ||
952 (vap->va_type == VBLK || vap->va_type == VCHR)) {
953 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs),
954 NULL, &rdev, 8);
955
956 }
957 if (obj_type == DMU_OT_ZNODE) {
958 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
959 NULL, &pflags, 8);
960 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
961 &acl_ids->z_fuid, 8);
962 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
963 &acl_ids->z_fgid, 8);
964 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad,
965 sizeof (uint64_t) * 4);
966 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
967 &acl_phys, sizeof (zfs_acl_phys_t));
968 } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) {
969 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL,
970 &acl_ids->z_aclp->z_acl_count, 8);
971 locate.cb_aclp = acl_ids->z_aclp;
972 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs),
973 zfs_acl_data_locator, &locate,
974 acl_ids->z_aclp->z_acl_bytes);
975 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags,
976 acl_ids->z_fuid, acl_ids->z_fgid);
977 }
978
979 VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0);
980
981 if (!(flag & IS_ROOT_NODE)) {
982 *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl);
983 ASSERT(*zpp != NULL);
984 } else {
985 /*
986 * If we are creating the root node, the "parent" we
987 * passed in is the znode for the root.
988 */
989 *zpp = dzp;
990
991 (*zpp)->z_sa_hdl = sa_hdl;
992 }
993
994 (*zpp)->z_pflags = pflags;
995 (*zpp)->z_mode = mode;
996
997 if (vap->va_mask & AT_XVATTR)
998 zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx);
999
1000 if (obj_type == DMU_OT_ZNODE ||
1001 acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) {
1002 err = zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx);
1003 ASSERT0(err);
1004 }
1005 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1006 }
1007
1008 /*
1009 * zfs_xvattr_set only updates the in-core attributes
1010 * it is assumed the caller will be doing an sa_bulk_update
1011 * to push the changes out
1012 */
1013 void
1014 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx)
1015 {
1016 xoptattr_t *xoap;
1017
1018 xoap = xva_getxoptattr(xvap);
1019 ASSERT(xoap);
1020
1021 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
1022 uint64_t times[2];
1023 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times);
1024 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs),
1025 ×, sizeof (times), tx);
1026 XVA_SET_RTN(xvap, XAT_CREATETIME);
1027 }
1028 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
1029 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly,
1030 zp->z_pflags, tx);
1031 XVA_SET_RTN(xvap, XAT_READONLY);
1032 }
1033 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
1034 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden,
1035 zp->z_pflags, tx);
1036 XVA_SET_RTN(xvap, XAT_HIDDEN);
1037 }
1038 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
1039 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system,
1040 zp->z_pflags, tx);
1041 XVA_SET_RTN(xvap, XAT_SYSTEM);
1042 }
1043 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
1044 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive,
1045 zp->z_pflags, tx);
1046 XVA_SET_RTN(xvap, XAT_ARCHIVE);
1047 }
1048 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
1049 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable,
1050 zp->z_pflags, tx);
1051 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
1052 }
1053 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
1054 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink,
1055 zp->z_pflags, tx);
1056 XVA_SET_RTN(xvap, XAT_NOUNLINK);
1057 }
1058 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
1059 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly,
1060 zp->z_pflags, tx);
1061 XVA_SET_RTN(xvap, XAT_APPENDONLY);
1062 }
1063 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
1064 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump,
1065 zp->z_pflags, tx);
1066 XVA_SET_RTN(xvap, XAT_NODUMP);
1067 }
1068 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
1069 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque,
1070 zp->z_pflags, tx);
1071 XVA_SET_RTN(xvap, XAT_OPAQUE);
1072 }
1073 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
1074 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
1075 xoap->xoa_av_quarantined, zp->z_pflags, tx);
1076 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
1077 }
1078 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
1079 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified,
1080 zp->z_pflags, tx);
1081 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
1082 }
1083 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
1084 zfs_sa_set_scanstamp(zp, xvap, tx);
1085 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
1086 }
1087 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
1088 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse,
1089 zp->z_pflags, tx);
1090 XVA_SET_RTN(xvap, XAT_REPARSE);
1091 }
1092 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
1093 ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline,
1094 zp->z_pflags, tx);
1095 XVA_SET_RTN(xvap, XAT_OFFLINE);
1096 }
1097 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
1098 ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse,
1099 zp->z_pflags, tx);
1100 XVA_SET_RTN(xvap, XAT_SPARSE);
1101 }
1102 }
1103
1104 int
1105 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
1106 {
1107 dmu_object_info_t doi;
1108 dmu_buf_t *db;
1109 znode_t *zp;
1110 int err;
1111 sa_handle_t *hdl;
1112
1113 *zpp = NULL;
1114
1115 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
1116
1117 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1118 if (err) {
1119 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1120 return (err);
1121 }
1122
1123 dmu_object_info_from_db(db, &doi);
1124 if (doi.doi_bonus_type != DMU_OT_SA &&
1125 (doi.doi_bonus_type != DMU_OT_ZNODE ||
1126 (doi.doi_bonus_type == DMU_OT_ZNODE &&
1127 doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1128 sa_buf_rele(db, NULL);
1129 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1130 return (SET_ERROR(EINVAL));
1131 }
1132
1133 hdl = dmu_buf_get_user(db);
1134 if (hdl != NULL) {
1135 zp = sa_get_userdata(hdl);
1136
1137
1138 /*
1139 * Since "SA" does immediate eviction we
1140 * should never find a sa handle that doesn't
1141 * know about the znode.
1142 */
1143
1144 ASSERT3P(zp, !=, NULL);
1145
1146 mutex_enter(&zp->z_lock);
1147 ASSERT3U(zp->z_id, ==, obj_num);
1148 if (zp->z_unlinked) {
1149 err = SET_ERROR(ENOENT);
1150 } else {
1151 VN_HOLD(ZTOV(zp));
1152 *zpp = zp;
1153 err = 0;
1154 }
1155 sa_buf_rele(db, NULL);
1156 mutex_exit(&zp->z_lock);
1157 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1158 return (err);
1159 }
1160
1161 /*
1162 * Not found create new znode/vnode
1163 * but only if file exists.
1164 *
1165 * There is a small window where zfs_vget() could
1166 * find this object while a file create is still in
1167 * progress. This is checked for in zfs_znode_alloc()
1168 *
1169 * if zfs_znode_alloc() fails it will drop the hold on the
1170 * bonus buffer.
1171 */
1172 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size,
1173 doi.doi_bonus_type, NULL);
1174 if (zp == NULL) {
1175 err = SET_ERROR(ENOENT);
1176 } else {
1177 *zpp = zp;
1178 }
1179 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1180 return (err);
1181 }
1182
1183 int
1184 zfs_rezget(znode_t *zp)
1185 {
1186 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1187 dmu_object_info_t doi;
1188 dmu_buf_t *db;
1189 uint64_t obj_num = zp->z_id;
1190 uint64_t mode;
1191 sa_bulk_attr_t bulk[8];
1192 int err;
1193 int count = 0;
1194 uint64_t gen;
1195
1196 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
1197
1198 mutex_enter(&zp->z_acl_lock);
1199 if (zp->z_acl_cached) {
1200 zfs_acl_free(zp->z_acl_cached);
1201 zp->z_acl_cached = NULL;
1202 }
1203
1204 mutex_exit(&zp->z_acl_lock);
1205 ASSERT(zp->z_sa_hdl == NULL);
1206 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1207 if (err) {
1208 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1209 return (err);
1210 }
1211
1212 dmu_object_info_from_db(db, &doi);
1213 if (doi.doi_bonus_type != DMU_OT_SA &&
1214 (doi.doi_bonus_type != DMU_OT_ZNODE ||
1215 (doi.doi_bonus_type == DMU_OT_ZNODE &&
1216 doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1217 sa_buf_rele(db, NULL);
1218 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1219 return (SET_ERROR(EINVAL));
1220 }
1221
1222 zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL);
1223
1224 /* reload cached values */
1225 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL,
1226 &gen, sizeof (gen));
1227 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1228 &zp->z_size, sizeof (zp->z_size));
1229 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
1230 &zp->z_links, sizeof (zp->z_links));
1231 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
1232 &zp->z_pflags, sizeof (zp->z_pflags));
1233 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
1234 &zp->z_atime, sizeof (zp->z_atime));
1235 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1236 &zp->z_uid, sizeof (zp->z_uid));
1237 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1238 &zp->z_gid, sizeof (zp->z_gid));
1239 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
1240 &mode, sizeof (mode));
1241
1242 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) {
1243 zfs_znode_dmu_fini(zp);
1244 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1245 return (SET_ERROR(EIO));
1246 }
1247
1248 zp->z_mode = mode;
1249
1250 if (gen != zp->z_gen) {
1251 zfs_znode_dmu_fini(zp);
1252 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1253 return (SET_ERROR(EIO));
1254 }
1255
1256 zp->z_unlinked = (zp->z_links == 0);
1257 zp->z_blksz = doi.doi_data_block_size;
1258
1259 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1260
1261 return (0);
1262 }
1263
1264 void
1265 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1266 {
1267 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1268 objset_t *os = zfsvfs->z_os;
1269 uint64_t obj = zp->z_id;
1270 uint64_t acl_obj = zfs_external_acl(zp);
1271
1272 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
1273 if (acl_obj) {
1274 VERIFY(!zp->z_is_sa);
1275 VERIFY(0 == dmu_object_free(os, acl_obj, tx));
1276 }
1277 VERIFY(0 == dmu_object_free(os, obj, tx));
1278 zfs_znode_dmu_fini(zp);
1279 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1280 zfs_znode_free(zp);
1281 }
1282
1283 void
1284 zfs_zinactive(znode_t *zp)
1285 {
1286 vnode_t *vp = ZTOV(zp);
1287 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1288 uint64_t z_id = zp->z_id;
1289
1290 ASSERT(zp->z_sa_hdl);
1291
1292 /*
1293 * Don't allow a zfs_zget() while were trying to release this znode
1294 */
1295 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
1296
1297 mutex_enter(&zp->z_lock);
1298 mutex_enter(&vp->v_lock);
1299 vp->v_count--;
1300 if (vp->v_count > 0 || vn_has_cached_data(vp)) {
1301 /*
1302 * If the hold count is greater than zero, somebody has
1303 * obtained a new reference on this znode while we were
1304 * processing it here, so we are done. If we still have
1305 * mapped pages then we are also done, since we don't
1306 * want to inactivate the znode until the pages get pushed.
1307 *
1308 * XXX - if vn_has_cached_data(vp) is true, but count == 0,
1309 * this seems like it would leave the znode hanging with
1310 * no chance to go inactive...
1311 */
1312 mutex_exit(&vp->v_lock);
1313 mutex_exit(&zp->z_lock);
1314 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1315 return;
1316 }
1317 mutex_exit(&vp->v_lock);
1318
1319 /*
1320 * If this was the last reference to a file with no links,
1321 * remove the file from the file system.
1322 */
1323 if (zp->z_unlinked) {
1324 mutex_exit(&zp->z_lock);
1325 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1326 zfs_rmnode(zp);
1327 return;
1328 }
1329
1330 mutex_exit(&zp->z_lock);
1331 zfs_znode_dmu_fini(zp);
1332 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1333 zfs_znode_free(zp);
1334 }
1335
1336 void
1337 zfs_znode_free(znode_t *zp)
1338 {
1339 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1340
1341 vn_invalid(ZTOV(zp));
1342
1343 ASSERT(ZTOV(zp)->v_count == 0);
1344
1345 mutex_enter(&zfsvfs->z_znodes_lock);
1346 POINTER_INVALIDATE(&zp->z_zfsvfs);
1347 list_remove(&zfsvfs->z_all_znodes, zp);
1348 mutex_exit(&zfsvfs->z_znodes_lock);
1349
1350 if (zp->z_acl_cached) {
1351 zfs_acl_free(zp->z_acl_cached);
1352 zp->z_acl_cached = NULL;
1353 }
1354
1355 kmem_cache_free(znode_cache, zp);
1356
1357 VFS_RELE(zfsvfs->z_vfs);
1358 }
1359
1360 void
1361 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2],
1362 uint64_t ctime[2], boolean_t have_tx)
1363 {
1364 timestruc_t now;
1365
1366 gethrestime(&now);
1367
1368 if (have_tx) { /* will sa_bulk_update happen really soon? */
1369 zp->z_atime_dirty = 0;
1370 zp->z_seq++;
1371 } else {
1372 zp->z_atime_dirty = 1;
1373 }
1374
1375 if (flag & AT_ATIME) {
1376 ZFS_TIME_ENCODE(&now, zp->z_atime);
1377 }
1378
1379 if (flag & AT_MTIME) {
1380 ZFS_TIME_ENCODE(&now, mtime);
1381 if (zp->z_zfsvfs->z_use_fuids) {
1382 zp->z_pflags |= (ZFS_ARCHIVE |
1383 ZFS_AV_MODIFIED);
1384 }
1385 }
1386
1387 if (flag & AT_CTIME) {
1388 ZFS_TIME_ENCODE(&now, ctime);
1389 if (zp->z_zfsvfs->z_use_fuids)
1390 zp->z_pflags |= ZFS_ARCHIVE;
1391 }
1392 }
1393
1394 /*
1395 * Grow the block size for a file.
1396 *
1397 * IN: zp - znode of file to free data in.
1398 * size - requested block size
1399 * tx - open transaction.
1400 *
1401 * NOTE: this function assumes that the znode is write locked.
1402 */
1403 void
1404 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1405 {
1406 int error;
1407 u_longlong_t dummy;
1408
1409 if (size <= zp->z_blksz)
1410 return;
1411 /*
1412 * If the file size is already greater than the current blocksize,
1413 * we will not grow. If there is more than one block in a file,
1414 * the blocksize cannot change.
1415 */
1416 if (zp->z_blksz && zp->z_size > zp->z_blksz)
1417 return;
1418
1419 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
1420 size, 0, tx);
1421
1422 if (error == ENOTSUP)
1423 return;
1424 ASSERT0(error);
1425
1426 /* What blocksize did we actually get? */
1427 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy);
1428 }
1429
1430 /*
1431 * This is a dummy interface used when pvn_vplist_dirty() should *not*
1432 * be calling back into the fs for a putpage(). E.g.: when truncating
1433 * a file, the pages being "thrown away* don't need to be written out.
1434 */
1435 /* ARGSUSED */
1436 static int
1437 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
1438 int flags, cred_t *cr)
1439 {
1440 ASSERT(0);
1441 return (0);
1442 }
1443
1444 /*
1445 * Increase the file length
1446 *
1447 * IN: zp - znode of file to free data in.
1448 * end - new end-of-file
1449 *
1450 * RETURN: 0 if success
1451 * error code if failure
1452 */
1453 static int
1454 zfs_extend(znode_t *zp, uint64_t end)
1455 {
1456 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1457 dmu_tx_t *tx;
1458 rl_t *rl;
1459 uint64_t newblksz;
1460 int error;
1461
1462 /*
1463 * We will change zp_size, lock the whole file.
1464 */
1465 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1466
1467 /*
1468 * Nothing to do if file already at desired length.
1469 */
1470 if (end <= zp->z_size) {
1471 zfs_range_unlock(rl);
1472 return (0);
1473 }
1474 top:
1475 tx = dmu_tx_create(zfsvfs->z_os);
1476 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1477 zfs_sa_upgrade_txholds(tx, zp);
1478 if (end > zp->z_blksz &&
1479 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1480 /*
1481 * We are growing the file past the current block size.
1482 */
1483 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
1484 ASSERT(!ISP2(zp->z_blksz));
1485 newblksz = MIN(end, SPA_MAXBLOCKSIZE);
1486 } else {
1487 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
1488 }
1489 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1490 } else {
1491 newblksz = 0;
1492 }
1493
1494 error = dmu_tx_assign(tx, TXG_NOWAIT);
1495 if (error) {
1496 if (error == ERESTART) {
1497 dmu_tx_wait(tx);
1498 dmu_tx_abort(tx);
1499 goto top;
1500 }
1501 dmu_tx_abort(tx);
1502 zfs_range_unlock(rl);
1503 return (error);
1504 }
1505
1506 if (newblksz)
1507 zfs_grow_blocksize(zp, newblksz, tx);
1508
1509 zp->z_size = end;
1510
1511 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs),
1512 &zp->z_size, sizeof (zp->z_size), tx));
1513
1514 zfs_range_unlock(rl);
1515
1516 dmu_tx_commit(tx);
1517
1518 return (0);
1519 }
1520
1521 /*
1522 * Free space in a file.
1523 *
1524 * IN: zp - znode of file to free data in.
1525 * off - start of section to free.
1526 * len - length of section to free.
1527 *
1528 * RETURN: 0 if success
1529 * error code if failure
1530 */
1531 static int
1532 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1533 {
1534 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1535 rl_t *rl;
1536 int error;
1537
1538 /*
1539 * Lock the range being freed.
1540 */
1541 rl = zfs_range_lock(zp, off, len, RL_WRITER);
1542
1543 /*
1544 * Nothing to do if file already at desired length.
1545 */
1546 if (off >= zp->z_size) {
1547 zfs_range_unlock(rl);
1548 return (0);
1549 }
1550
1551 if (off + len > zp->z_size)
1552 len = zp->z_size - off;
1553
1554 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1555
1556 zfs_range_unlock(rl);
1557
1558 return (error);
1559 }
1560
1561 /*
1562 * Truncate a file
1563 *
1564 * IN: zp - znode of file to free data in.
1565 * end - new end-of-file.
1566 *
1567 * RETURN: 0 if success
1568 * error code if failure
1569 */
1570 static int
1571 zfs_trunc(znode_t *zp, uint64_t end)
1572 {
1573 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1574 vnode_t *vp = ZTOV(zp);
1575 dmu_tx_t *tx;
1576 rl_t *rl;
1577 int error;
1578 sa_bulk_attr_t bulk[2];
1579 int count = 0;
1580
1581 /*
1582 * We will change zp_size, lock the whole file.
1583 */
1584 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1585
1586 /*
1587 * Nothing to do if file already at desired length.
1588 */
1589 if (end >= zp->z_size) {
1590 zfs_range_unlock(rl);
1591 return (0);
1592 }
1593
1594 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1);
1595 if (error) {
1596 zfs_range_unlock(rl);
1597 return (error);
1598 }
1599 top:
1600 tx = dmu_tx_create(zfsvfs->z_os);
1601 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1602 zfs_sa_upgrade_txholds(tx, zp);
1603 error = dmu_tx_assign(tx, TXG_NOWAIT);
1604 if (error) {
1605 if (error == ERESTART) {
1606 dmu_tx_wait(tx);
1607 dmu_tx_abort(tx);
1608 goto top;
1609 }
1610 dmu_tx_abort(tx);
1611 zfs_range_unlock(rl);
1612 return (error);
1613 }
1614
1615 zp->z_size = end;
1616 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
1617 NULL, &zp->z_size, sizeof (zp->z_size));
1618
1619 if (end == 0) {
1620 zp->z_pflags &= ~ZFS_SPARSE;
1621 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1622 NULL, &zp->z_pflags, 8);
1623 }
1624 VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0);
1625
1626 dmu_tx_commit(tx);
1627
1628 /*
1629 * Clear any mapped pages in the truncated region. This has to
1630 * happen outside of the transaction to avoid the possibility of
1631 * a deadlock with someone trying to push a page that we are
1632 * about to invalidate.
1633 */
1634 if (vn_has_cached_data(vp)) {
1635 page_t *pp;
1636 uint64_t start = end & PAGEMASK;
1637 int poff = end & PAGEOFFSET;
1638
1639 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) {
1640 /*
1641 * We need to zero a partial page.
1642 */
1643 pagezero(pp, poff, PAGESIZE - poff);
1644 start += PAGESIZE;
1645 page_unlock(pp);
1646 }
1647 error = pvn_vplist_dirty(vp, start, zfs_no_putpage,
1648 B_INVAL | B_TRUNC, NULL);
1649 ASSERT(error == 0);
1650 }
1651
1652 zfs_range_unlock(rl);
1653
1654 return (0);
1655 }
1656
1657 /*
1658 * Free space in a file
1659 *
1660 * IN: zp - znode of file to free data in.
1661 * off - start of range
1662 * len - end of range (0 => EOF)
1663 * flag - current file open mode flags.
1664 * log - TRUE if this action should be logged
1665 *
1666 * RETURN: 0 if success
1667 * error code if failure
1668 */
1669 int
1670 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1671 {
1672 vnode_t *vp = ZTOV(zp);
1673 dmu_tx_t *tx;
1674 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1675 zilog_t *zilog = zfsvfs->z_log;
1676 uint64_t mode;
1677 uint64_t mtime[2], ctime[2];
1678 sa_bulk_attr_t bulk[3];
1679 int count = 0;
1680 int error;
1681
1682 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode,
1683 sizeof (mode))) != 0)
1684 return (error);
1685
1686 if (off > zp->z_size) {
1687 error = zfs_extend(zp, off+len);
1688 if (error == 0 && log)
1689 goto log;
1690 else
1691 return (error);
1692 }
1693
1694 /*
1695 * Check for any locks in the region to be freed.
1696 */
1697
1698 if (MANDLOCK(vp, (mode_t)mode)) {
1699 uint64_t length = (len ? len : zp->z_size - off);
1700 if (error = chklock(vp, FWRITE, off, length, flag, NULL))
1701 return (error);
1702 }
1703
1704 if (len == 0) {
1705 error = zfs_trunc(zp, off);
1706 } else {
1707 if ((error = zfs_free_range(zp, off, len)) == 0 &&
1708 off + len > zp->z_size)
1709 error = zfs_extend(zp, off+len);
1710 }
1711 if (error || !log)
1712 return (error);
1713 log:
1714 tx = dmu_tx_create(zfsvfs->z_os);
1715 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1716 zfs_sa_upgrade_txholds(tx, zp);
1717 error = dmu_tx_assign(tx, TXG_NOWAIT);
1718 if (error) {
1719 if (error == ERESTART) {
1720 dmu_tx_wait(tx);
1721 dmu_tx_abort(tx);
1722 goto log;
1723 }
1724 dmu_tx_abort(tx);
1725 return (error);
1726 }
1727
1728 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16);
1729 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16);
1730 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1731 NULL, &zp->z_pflags, 8);
1732 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE);
1733 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1734 ASSERT(error == 0);
1735
1736 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1737
1738 dmu_tx_commit(tx);
1739 return (0);
1740 }
1741
1742 void
1743 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1744 {
1745 zfsvfs_t zfsvfs;
1746 uint64_t moid, obj, sa_obj, version;
1747 uint64_t sense = ZFS_CASE_SENSITIVE;
1748 uint64_t norm = 0;
1749 nvpair_t *elem;
1750 int error;
1751 int i;
1752 znode_t *rootzp = NULL;
1753 vnode_t *vp;
1754 vattr_t vattr;
1755 znode_t *zp;
1756 zfs_acl_ids_t acl_ids;
1757
1758 /*
1759 * First attempt to create master node.
1760 */
1761 /*
1762 * In an empty objset, there are no blocks to read and thus
1763 * there can be no i/o errors (which we assert below).
1764 */
1765 moid = MASTER_NODE_OBJ;
1766 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1767 DMU_OT_NONE, 0, tx);
1768 ASSERT(error == 0);
1769
1770 /*
1771 * Set starting attributes.
1772 */
1773 version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os)));
1774 elem = NULL;
1775 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1776 /* For the moment we expect all zpl props to be uint64_ts */
1777 uint64_t val;
1778 char *name;
1779
1780 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1781 VERIFY(nvpair_value_uint64(elem, &val) == 0);
1782 name = nvpair_name(elem);
1783 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1784 if (val < version)
1785 version = val;
1786 } else {
1787 error = zap_update(os, moid, name, 8, 1, &val, tx);
1788 }
1789 ASSERT(error == 0);
1790 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1791 norm = val;
1792 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1793 sense = val;
1794 }
1795 ASSERT(version != 0);
1796 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
1797
1798 /*
1799 * Create zap object used for SA attribute registration
1800 */
1801
1802 if (version >= ZPL_VERSION_SA) {
1803 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1804 DMU_OT_NONE, 0, tx);
1805 error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1806 ASSERT(error == 0);
1807 } else {
1808 sa_obj = 0;
1809 }
1810 /*
1811 * Create a delete queue.
1812 */
1813 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1814
1815 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
1816 ASSERT(error == 0);
1817
1818 /*
1819 * Create root znode. Create minimal znode/vnode/zfsvfs
1820 * to allow zfs_mknode to work.
1821 */
1822 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
1823 vattr.va_type = VDIR;
1824 vattr.va_mode = S_IFDIR|0755;
1825 vattr.va_uid = crgetuid(cr);
1826 vattr.va_gid = crgetgid(cr);
1827
1828 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1829 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs));
1830 rootzp->z_moved = 0;
1831 rootzp->z_unlinked = 0;
1832 rootzp->z_atime_dirty = 0;
1833 rootzp->z_is_sa = USE_SA(version, os);
1834
1835 vp = ZTOV(rootzp);
1836 vn_reinit(vp);
1837 vp->v_type = VDIR;
1838
1839 bzero(&zfsvfs, sizeof (zfsvfs_t));
1840
1841 zfsvfs.z_os = os;
1842 zfsvfs.z_parent = &zfsvfs;
1843 zfsvfs.z_version = version;
1844 zfsvfs.z_use_fuids = USE_FUIDS(version, os);
1845 zfsvfs.z_use_sa = USE_SA(version, os);
1846 zfsvfs.z_norm = norm;
1847
1848 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
1849 &zfsvfs.z_attr_table);
1850
1851 ASSERT(error == 0);
1852
1853 /*
1854 * Fold case on file systems that are always or sometimes case
1855 * insensitive.
1856 */
1857 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1858 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER;
1859
1860 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1861 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t),
1862 offsetof(znode_t, z_link_node));
1863
1864 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1865 mutex_init(&zfsvfs.z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1866
1867 rootzp->z_zfsvfs = &zfsvfs;
1868 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
1869 cr, NULL, &acl_ids));
1870 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids);
1871 ASSERT3P(zp, ==, rootzp);
1872 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */
1873 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1874 ASSERT(error == 0);
1875 zfs_acl_ids_free(&acl_ids);
1876 POINTER_INVALIDATE(&rootzp->z_zfsvfs);
1877
1878 ZTOV(rootzp)->v_count = 0;
1879 sa_handle_destroy(rootzp->z_sa_hdl);
1880 kmem_cache_free(znode_cache, rootzp);
1881
1882 /*
1883 * Create shares directory
1884 */
1885
1886 error = zfs_create_share_dir(&zfsvfs, tx);
1887
1888 ASSERT(error == 0);
1889
1890 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1891 mutex_destroy(&zfsvfs.z_hold_mtx[i]);
1892 }
1893
1894 #endif /* _KERNEL */
1895
1896 static int
1897 zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table)
1898 {
1899 uint64_t sa_obj = 0;
1900 int error;
1901
1902 error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj);
1903 if (error != 0 && error != ENOENT)
1904 return (error);
1905
1906 error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table);
1907 return (error);
1908 }
1909
1910 static int
1911 zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp,
1912 dmu_buf_t **db, void *tag)
1913 {
1914 dmu_object_info_t doi;
1915 int error;
1916
1917 if ((error = sa_buf_hold(osp, obj, tag, db)) != 0)
1918 return (error);
1919
1920 dmu_object_info_from_db(*db, &doi);
1921 if ((doi.doi_bonus_type != DMU_OT_SA &&
1922 doi.doi_bonus_type != DMU_OT_ZNODE) ||
1923 doi.doi_bonus_type == DMU_OT_ZNODE &&
1924 doi.doi_bonus_size < sizeof (znode_phys_t)) {
1925 sa_buf_rele(*db, tag);
1926 return (SET_ERROR(ENOTSUP));
1927 }
1928
1929 error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp);
1930 if (error != 0) {
1931 sa_buf_rele(*db, tag);
1932 return (error);
1933 }
1934
1935 return (0);
1936 }
1937
1938 void
1939 zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag)
1940 {
1941 sa_handle_destroy(hdl);
1942 sa_buf_rele(db, tag);
1943 }
1944
1945 /*
1946 * Given an object number, return its parent object number and whether
1947 * or not the object is an extended attribute directory.
1948 */
1949 static int
1950 zfs_obj_to_pobj(objset_t *osp, sa_handle_t *hdl, sa_attr_type_t *sa_table,
1951 uint64_t *pobjp, int *is_xattrdir)
1952 {
1953 uint64_t parent;
1954 uint64_t pflags;
1955 uint64_t mode;
1956 uint64_t parent_mode;
1957 sa_bulk_attr_t bulk[3];
1958 sa_handle_t *sa_hdl;
1959 dmu_buf_t *sa_db;
1960 int count = 0;
1961 int error;
1962
1963 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL,
1964 &parent, sizeof (parent));
1965 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL,
1966 &pflags, sizeof (pflags));
1967 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
1968 &mode, sizeof (mode));
1969
1970 if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0)
1971 return (error);
1972
1973 /*
1974 * When a link is removed its parent pointer is not changed and will
1975 * be invalid. There are two cases where a link is removed but the
1976 * file stays around, when it goes to the delete queue and when there
1977 * are additional links.
1978 */
1979 error = zfs_grab_sa_handle(osp, parent, &sa_hdl, &sa_db, FTAG);
1980 if (error != 0)
1981 return (error);
1982
1983 error = sa_lookup(sa_hdl, ZPL_MODE, &parent_mode, sizeof (parent_mode));
1984 zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
1985 if (error != 0)
1986 return (error);
1987
1988 *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode);
1989
1990 /*
1991 * Extended attributes can be applied to files, directories, etc.
1992 * Otherwise the parent must be a directory.
1993 */
1994 if (!*is_xattrdir && !S_ISDIR(parent_mode))
1995 return (SET_ERROR(EINVAL));
1996
1997 *pobjp = parent;
1998
1999 return (0);
2000 }
2001
2002 /*
2003 * Given an object number, return some zpl level statistics
2004 */
2005 static int
2006 zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table,
2007 zfs_stat_t *sb)
2008 {
2009 sa_bulk_attr_t bulk[4];
2010 int count = 0;
2011
2012 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
2013 &sb->zs_mode, sizeof (sb->zs_mode));
2014 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL,
2015 &sb->zs_gen, sizeof (sb->zs_gen));
2016 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL,
2017 &sb->zs_links, sizeof (sb->zs_links));
2018 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL,
2019 &sb->zs_ctime, sizeof (sb->zs_ctime));
2020
2021 return (sa_bulk_lookup(hdl, bulk, count));
2022 }
2023
2024 static int
2025 zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl,
2026 sa_attr_type_t *sa_table, char *buf, int len)
2027 {
2028 sa_handle_t *sa_hdl;
2029 sa_handle_t *prevhdl = NULL;
2030 dmu_buf_t *prevdb = NULL;
2031 dmu_buf_t *sa_db = NULL;
2032 char *path = buf + len - 1;
2033 int error;
2034
2035 *path = '\0';
2036 sa_hdl = hdl;
2037
2038 for (;;) {
2039 uint64_t pobj;
2040 char component[MAXNAMELEN + 2];
2041 size_t complen;
2042 int is_xattrdir;
2043
2044 if (prevdb)
2045 zfs_release_sa_handle(prevhdl, prevdb, FTAG);
2046
2047 if ((error = zfs_obj_to_pobj(osp, sa_hdl, sa_table, &pobj,
2048 &is_xattrdir)) != 0)
2049 break;
2050
2051 if (pobj == obj) {
2052 if (path[0] != '/')
2053 *--path = '/';
2054 break;
2055 }
2056
2057 component[0] = '/';
2058 if (is_xattrdir) {
2059 (void) sprintf(component + 1, "<xattrdir>");
2060 } else {
2061 error = zap_value_search(osp, pobj, obj,
2062 ZFS_DIRENT_OBJ(-1ULL), component + 1);
2063 if (error != 0)
2064 break;
2065 }
2066
2067 complen = strlen(component);
2068 path -= complen;
2069 ASSERT(path >= buf);
2070 bcopy(component, path, complen);
2071 obj = pobj;
2072
2073 if (sa_hdl != hdl) {
2074 prevhdl = sa_hdl;
2075 prevdb = sa_db;
2076 }
2077 error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG);
2078 if (error != 0) {
2079 sa_hdl = prevhdl;
2080 sa_db = prevdb;
2081 break;
2082 }
2083 }
2084
2085 if (sa_hdl != NULL && sa_hdl != hdl) {
2086 ASSERT(sa_db != NULL);
2087 zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
2088 }
2089
2090 if (error == 0)
2091 (void) memmove(buf, path, buf + len - path);
2092
2093 return (error);
2094 }
2095
2096 int
2097 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
2098 {
2099 sa_attr_type_t *sa_table;
2100 sa_handle_t *hdl;
2101 dmu_buf_t *db;
2102 int error;
2103
2104 error = zfs_sa_setup(osp, &sa_table);
2105 if (error != 0)
2106 return (error);
2107
2108 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
2109 if (error != 0)
2110 return (error);
2111
2112 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
2113
2114 zfs_release_sa_handle(hdl, db, FTAG);
2115 return (error);
2116 }
2117
2118 int
2119 zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb,
2120 char *buf, int len)
2121 {
2122 char *path = buf + len - 1;
2123 sa_attr_type_t *sa_table;
2124 sa_handle_t *hdl;
2125 dmu_buf_t *db;
2126 int error;
2127
2128 *path = '\0';
2129
2130 error = zfs_sa_setup(osp, &sa_table);
2131 if (error != 0)
2132 return (error);
2133
2134 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
2135 if (error != 0)
2136 return (error);
2137
2138 error = zfs_obj_to_stats_impl(hdl, sa_table, sb);
2139 if (error != 0) {
2140 zfs_release_sa_handle(hdl, db, FTAG);
2141 return (error);
2142 }
2143
2144 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
2145
2146 zfs_release_sa_handle(hdl, db, FTAG);
2147 return (error);
2148 }