1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 */
25
26 /* Portions Copyright 2007 Jeremy Teo */
27 /* Portions Copyright 2010 Robert Milkowski */
28
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/time.h>
32 #include <sys/systm.h>
33 #include <sys/sysmacros.h>
34 #include <sys/resource.h>
35 #include <sys/vfs.h>
36 #include <sys/vfs_opreg.h>
37 #include <sys/vnode.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/kmem.h>
41 #include <sys/taskq.h>
42 #include <sys/uio.h>
43 #include <sys/vmsystm.h>
44 #include <sys/atomic.h>
45 #include <sys/vm.h>
46 #include <vm/seg_vn.h>
47 #include <vm/pvn.h>
48 #include <vm/as.h>
49 #include <vm/kpm.h>
50 #include <vm/seg_kpm.h>
51 #include <sys/mman.h>
52 #include <sys/pathname.h>
53 #include <sys/cmn_err.h>
54 #include <sys/errno.h>
55 #include <sys/unistd.h>
56 #include <sys/zfs_dir.h>
57 #include <sys/zfs_acl.h>
58 #include <sys/zfs_ioctl.h>
59 #include <sys/fs/zfs.h>
60 #include <sys/dmu.h>
61 #include <sys/dmu_objset.h>
62 #include <sys/spa.h>
63 #include <sys/txg.h>
64 #include <sys/dbuf.h>
65 #include <sys/zap.h>
66 #include <sys/sa.h>
67 #include <sys/dirent.h>
68 #include <sys/policy.h>
69 #include <sys/sunddi.h>
70 #include <sys/filio.h>
71 #include <sys/sid.h>
72 #include "fs/fs_subr.h"
73 #include <sys/zfs_ctldir.h>
74 #include <sys/zfs_fuid.h>
75 #include <sys/zfs_sa.h>
76 #include <sys/dnlc.h>
77 #include <sys/zfs_rlock.h>
78 #include <sys/extdirent.h>
79 #include <sys/kidmap.h>
80 #include <sys/cred.h>
81 #include <sys/attr.h>
82
83 /*
84 * Programming rules.
85 *
86 * Each vnode op performs some logical unit of work. To do this, the ZPL must
87 * properly lock its in-core state, create a DMU transaction, do the work,
88 * record this work in the intent log (ZIL), commit the DMU transaction,
89 * and wait for the intent log to commit if it is a synchronous operation.
90 * Moreover, the vnode ops must work in both normal and log replay context.
91 * The ordering of events is important to avoid deadlocks and references
92 * to freed memory. The example below illustrates the following Big Rules:
93 *
94 * (1) A check must be made in each zfs thread for a mounted file system.
95 * This is done avoiding races using ZFS_ENTER(zfsvfs).
96 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
97 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
98 * can return EIO from the calling function.
99 *
100 * (2) VN_RELE() should always be the last thing except for zil_commit()
101 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
102 * First, if it's the last reference, the vnode/znode
103 * can be freed, so the zp may point to freed memory. Second, the last
104 * reference will call zfs_zinactive(), which may induce a lot of work --
105 * pushing cached pages (which acquires range locks) and syncing out
106 * cached atime changes. Third, zfs_zinactive() may require a new tx,
107 * which could deadlock the system if you were already holding one.
108 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
109 *
110 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
111 * as they can span dmu_tx_assign() calls.
112 *
113 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign().
114 * This is critical because we don't want to block while holding locks.
115 * Note, in particular, that if a lock is sometimes acquired before
116 * the tx assigns, and sometimes after (e.g. z_lock), then failing to
117 * use a non-blocking assign can deadlock the system. The scenario:
118 *
119 * Thread A has grabbed a lock before calling dmu_tx_assign().
120 * Thread B is in an already-assigned tx, and blocks for this lock.
121 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
122 * forever, because the previous txg can't quiesce until B's tx commits.
123 *
124 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
125 * then drop all locks, call dmu_tx_wait(), and try again.
126 *
127 * (5) If the operation succeeded, generate the intent log entry for it
128 * before dropping locks. This ensures that the ordering of events
129 * in the intent log matches the order in which they actually occurred.
130 * During ZIL replay the zfs_log_* functions will update the sequence
131 * number to indicate the zil transaction has replayed.
132 *
133 * (6) At the end of each vnode op, the DMU tx must always commit,
134 * regardless of whether there were any errors.
135 *
136 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
137 * to ensure that synchronous semantics are provided when necessary.
138 *
139 * In general, this is how things should be ordered in each vnode op:
140 *
141 * ZFS_ENTER(zfsvfs); // exit if unmounted
142 * top:
143 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD())
144 * rw_enter(...); // grab any other locks you need
145 * tx = dmu_tx_create(...); // get DMU tx
146 * dmu_tx_hold_*(); // hold each object you might modify
147 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign
148 * if (error) {
149 * rw_exit(...); // drop locks
150 * zfs_dirent_unlock(dl); // unlock directory entry
151 * VN_RELE(...); // release held vnodes
152 * if (error == ERESTART) {
153 * dmu_tx_wait(tx);
154 * dmu_tx_abort(tx);
155 * goto top;
156 * }
157 * dmu_tx_abort(tx); // abort DMU tx
158 * ZFS_EXIT(zfsvfs); // finished in zfs
159 * return (error); // really out of space
160 * }
161 * error = do_real_work(); // do whatever this VOP does
162 * if (error == 0)
163 * zfs_log_*(...); // on success, make ZIL entry
164 * dmu_tx_commit(tx); // commit DMU tx -- error or not
165 * rw_exit(...); // drop locks
166 * zfs_dirent_unlock(dl); // unlock directory entry
167 * VN_RELE(...); // release held vnodes
168 * zil_commit(zilog, foid); // synchronous when necessary
169 * ZFS_EXIT(zfsvfs); // finished in zfs
170 * return (error); // done, report error
171 */
172
173 /* ARGSUSED */
174 static int
175 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
176 {
177 znode_t *zp = VTOZ(*vpp);
178 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
179
180 ZFS_ENTER(zfsvfs);
181 ZFS_VERIFY_ZP(zp);
182
183 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
184 ((flag & FAPPEND) == 0)) {
185 ZFS_EXIT(zfsvfs);
186 return (SET_ERROR(EPERM));
187 }
188
189 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
190 ZTOV(zp)->v_type == VREG &&
191 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
192 if (fs_vscan(*vpp, cr, 0) != 0) {
193 ZFS_EXIT(zfsvfs);
194 return (SET_ERROR(EACCES));
195 }
196 }
197
198 /* Keep a count of the synchronous opens in the znode */
199 if (flag & (FSYNC | FDSYNC))
200 atomic_inc_32(&zp->z_sync_cnt);
201
202 ZFS_EXIT(zfsvfs);
203 return (0);
204 }
205
206 /* ARGSUSED */
207 static int
208 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
209 caller_context_t *ct)
210 {
211 znode_t *zp = VTOZ(vp);
212 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
213
214 /*
215 * Clean up any locks held by this process on the vp.
216 */
217 cleanlocks(vp, ddi_get_pid(), 0);
218 cleanshares(vp, ddi_get_pid());
219
220 ZFS_ENTER(zfsvfs);
221 ZFS_VERIFY_ZP(zp);
222
223 /* Decrement the synchronous opens in the znode */
224 if ((flag & (FSYNC | FDSYNC)) && (count == 1))
225 atomic_dec_32(&zp->z_sync_cnt);
226
227 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
228 ZTOV(zp)->v_type == VREG &&
229 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
230 VERIFY(fs_vscan(vp, cr, 1) == 0);
231
232 ZFS_EXIT(zfsvfs);
233 return (0);
234 }
235
236 /*
237 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
238 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
239 */
240 static int
241 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
242 {
243 znode_t *zp = VTOZ(vp);
244 uint64_t noff = (uint64_t)*off; /* new offset */
245 uint64_t file_sz;
246 int error;
247 boolean_t hole;
248
249 file_sz = zp->z_size;
250 if (noff >= file_sz) {
251 return (SET_ERROR(ENXIO));
252 }
253
254 if (cmd == _FIO_SEEK_HOLE)
255 hole = B_TRUE;
256 else
257 hole = B_FALSE;
258
259 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
260
261 /* end of file? */
262 if ((error == ESRCH) || (noff > file_sz)) {
263 /*
264 * Handle the virtual hole at the end of file.
265 */
266 if (hole) {
267 *off = file_sz;
268 return (0);
269 }
270 return (SET_ERROR(ENXIO));
271 }
272
273 if (noff < *off)
274 return (error);
275 *off = noff;
276 return (error);
277 }
278
279 /* ARGSUSED */
280 static int
281 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
282 int *rvalp, caller_context_t *ct)
283 {
284 offset_t off;
285 int error;
286 zfsvfs_t *zfsvfs;
287 znode_t *zp;
288
289 switch (com) {
290 case _FIOFFS:
291 return (zfs_sync(vp->v_vfsp, 0, cred));
292
293 /*
294 * The following two ioctls are used by bfu. Faking out,
295 * necessary to avoid bfu errors.
296 */
297 case _FIOGDIO:
298 case _FIOSDIO:
299 return (0);
300
301 case _FIO_SEEK_DATA:
302 case _FIO_SEEK_HOLE:
303 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
304 return (SET_ERROR(EFAULT));
305
306 zp = VTOZ(vp);
307 zfsvfs = zp->z_zfsvfs;
308 ZFS_ENTER(zfsvfs);
309 ZFS_VERIFY_ZP(zp);
310
311 /* offset parameter is in/out */
312 error = zfs_holey(vp, com, &off);
313 ZFS_EXIT(zfsvfs);
314 if (error)
315 return (error);
316 if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
317 return (SET_ERROR(EFAULT));
318 return (0);
319 }
320 return (SET_ERROR(ENOTTY));
321 }
322
323 /*
324 * Utility functions to map and unmap a single physical page. These
325 * are used to manage the mappable copies of ZFS file data, and therefore
326 * do not update ref/mod bits.
327 */
328 caddr_t
329 zfs_map_page(page_t *pp, enum seg_rw rw)
330 {
331 if (kpm_enable)
332 return (hat_kpm_mapin(pp, 0));
333 ASSERT(rw == S_READ || rw == S_WRITE);
334 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
335 (caddr_t)-1));
336 }
337
338 void
339 zfs_unmap_page(page_t *pp, caddr_t addr)
340 {
341 if (kpm_enable) {
342 hat_kpm_mapout(pp, 0, addr);
343 } else {
344 ppmapout(addr);
345 }
346 }
347
348 /*
349 * When a file is memory mapped, we must keep the IO data synchronized
350 * between the DMU cache and the memory mapped pages. What this means:
351 *
352 * On Write: If we find a memory mapped page, we write to *both*
353 * the page and the dmu buffer.
354 */
355 static void
356 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
357 {
358 int64_t off;
359
360 off = start & PAGEOFFSET;
361 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
362 page_t *pp;
363 uint64_t nbytes = MIN(PAGESIZE - off, len);
364
365 if (pp = page_lookup(vp, start, SE_SHARED)) {
366 caddr_t va;
367
368 va = zfs_map_page(pp, S_WRITE);
369 (void) dmu_read(os, oid, start+off, nbytes, va+off,
370 DMU_READ_PREFETCH);
371 zfs_unmap_page(pp, va);
372 page_unlock(pp);
373 }
374 len -= nbytes;
375 off = 0;
376 }
377 }
378
379 /*
380 * When a file is memory mapped, we must keep the IO data synchronized
381 * between the DMU cache and the memory mapped pages. What this means:
382 *
383 * On Read: We "read" preferentially from memory mapped pages,
384 * else we default from the dmu buffer.
385 *
386 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
387 * the file is memory mapped.
388 */
389 static int
390 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
391 {
392 znode_t *zp = VTOZ(vp);
393 objset_t *os = zp->z_zfsvfs->z_os;
394 int64_t start, off;
395 int len = nbytes;
396 int error = 0;
397
398 start = uio->uio_loffset;
399 off = start & PAGEOFFSET;
400 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
401 page_t *pp;
402 uint64_t bytes = MIN(PAGESIZE - off, len);
403
404 if (pp = page_lookup(vp, start, SE_SHARED)) {
405 caddr_t va;
406
407 va = zfs_map_page(pp, S_READ);
408 error = uiomove(va + off, bytes, UIO_READ, uio);
409 zfs_unmap_page(pp, va);
410 page_unlock(pp);
411 } else {
412 error = dmu_read_uio(os, zp->z_id, uio, bytes);
413 }
414 len -= bytes;
415 off = 0;
416 if (error)
417 break;
418 }
419 return (error);
420 }
421
422 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
423
424 /*
425 * Read bytes from specified file into supplied buffer.
426 *
427 * IN: vp - vnode of file to be read from.
428 * uio - structure supplying read location, range info,
429 * and return buffer.
430 * ioflag - SYNC flags; used to provide FRSYNC semantics.
431 * cr - credentials of caller.
432 * ct - caller context
433 *
434 * OUT: uio - updated offset and range, buffer filled.
435 *
436 * RETURN: 0 if success
437 * error code if failure
438 *
439 * Side Effects:
440 * vp - atime updated if byte count > 0
441 */
442 /* ARGSUSED */
443 static int
444 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
445 {
446 znode_t *zp = VTOZ(vp);
447 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
448 objset_t *os;
449 ssize_t n, nbytes;
450 int error = 0;
451 rl_t *rl;
452 xuio_t *xuio = NULL;
453
454 ZFS_ENTER(zfsvfs);
455 ZFS_VERIFY_ZP(zp);
456 os = zfsvfs->z_os;
457
458 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
459 ZFS_EXIT(zfsvfs);
460 return (SET_ERROR(EACCES));
461 }
462
463 /*
464 * Validate file offset
465 */
466 if (uio->uio_loffset < (offset_t)0) {
467 ZFS_EXIT(zfsvfs);
468 return (SET_ERROR(EINVAL));
469 }
470
471 /*
472 * Fasttrack empty reads
473 */
474 if (uio->uio_resid == 0) {
475 ZFS_EXIT(zfsvfs);
476 return (0);
477 }
478
479 /*
480 * Check for mandatory locks
481 */
482 if (MANDMODE(zp->z_mode)) {
483 if (error = chklock(vp, FREAD,
484 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
485 ZFS_EXIT(zfsvfs);
486 return (error);
487 }
488 }
489
490 /*
491 * If we're in FRSYNC mode, sync out this znode before reading it.
492 */
493 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
494 zil_commit(zfsvfs->z_log, zp->z_id);
495
496 /*
497 * Lock the range against changes.
498 */
499 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
500
501 /*
502 * If we are reading past end-of-file we can skip
503 * to the end; but we might still need to set atime.
504 */
505 if (uio->uio_loffset >= zp->z_size) {
506 error = 0;
507 goto out;
508 }
509
510 ASSERT(uio->uio_loffset < zp->z_size);
511 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
512
513 if ((uio->uio_extflg == UIO_XUIO) &&
514 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
515 int nblk;
516 int blksz = zp->z_blksz;
517 uint64_t offset = uio->uio_loffset;
518
519 xuio = (xuio_t *)uio;
520 if ((ISP2(blksz))) {
521 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
522 blksz)) / blksz;
523 } else {
524 ASSERT(offset + n <= blksz);
525 nblk = 1;
526 }
527 (void) dmu_xuio_init(xuio, nblk);
528
529 if (vn_has_cached_data(vp)) {
530 /*
531 * For simplicity, we always allocate a full buffer
532 * even if we only expect to read a portion of a block.
533 */
534 while (--nblk >= 0) {
535 (void) dmu_xuio_add(xuio,
536 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
537 blksz), 0, blksz);
538 }
539 }
540 }
541
542 while (n > 0) {
543 nbytes = MIN(n, zfs_read_chunk_size -
544 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
545
546 if (vn_has_cached_data(vp))
547 error = mappedread(vp, nbytes, uio);
548 else
549 error = dmu_read_uio(os, zp->z_id, uio, nbytes);
550 if (error) {
551 /* convert checksum errors into IO errors */
552 if (error == ECKSUM)
553 error = SET_ERROR(EIO);
554 break;
555 }
556
557 n -= nbytes;
558 }
559 out:
560 zfs_range_unlock(rl);
561
562 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
563 ZFS_EXIT(zfsvfs);
564 return (error);
565 }
566
567 /*
568 * Write the bytes to a file.
569 *
570 * IN: vp - vnode of file to be written to.
571 * uio - structure supplying write location, range info,
572 * and data buffer.
573 * ioflag - FAPPEND flag set if in append mode.
574 * cr - credentials of caller.
575 * ct - caller context (NFS/CIFS fem monitor only)
576 *
577 * OUT: uio - updated offset and range.
578 *
579 * RETURN: 0 if success
580 * error code if failure
581 *
582 * Timestamps:
583 * vp - ctime|mtime updated if byte count > 0
584 */
585
586 /* ARGSUSED */
587 static int
588 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
589 {
590 znode_t *zp = VTOZ(vp);
591 rlim64_t limit = uio->uio_llimit;
592 ssize_t start_resid = uio->uio_resid;
593 ssize_t tx_bytes;
594 uint64_t end_size;
595 dmu_tx_t *tx;
596 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
597 zilog_t *zilog;
598 offset_t woff;
599 ssize_t n, nbytes;
600 rl_t *rl;
601 int max_blksz = zfsvfs->z_max_blksz;
602 int error = 0;
603 arc_buf_t *abuf;
604 iovec_t *aiov = NULL;
605 xuio_t *xuio = NULL;
606 int i_iov = 0;
607 int iovcnt = uio->uio_iovcnt;
608 iovec_t *iovp = uio->uio_iov;
609 int write_eof;
610 int count = 0;
611 sa_bulk_attr_t bulk[4];
612 uint64_t mtime[2], ctime[2];
613
614 /*
615 * Fasttrack empty write
616 */
617 n = start_resid;
618 if (n == 0)
619 return (0);
620
621 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
622 limit = MAXOFFSET_T;
623
624 ZFS_ENTER(zfsvfs);
625 ZFS_VERIFY_ZP(zp);
626
627 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
628 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
629 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
630 &zp->z_size, 8);
631 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
632 &zp->z_pflags, 8);
633
634 /*
635 * If immutable or not appending then return EPERM
636 */
637 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
638 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
639 (uio->uio_loffset < zp->z_size))) {
640 ZFS_EXIT(zfsvfs);
641 return (SET_ERROR(EPERM));
642 }
643
644 zilog = zfsvfs->z_log;
645
646 /*
647 * Validate file offset
648 */
649 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
650 if (woff < 0) {
651 ZFS_EXIT(zfsvfs);
652 return (SET_ERROR(EINVAL));
653 }
654
655 /*
656 * Check for mandatory locks before calling zfs_range_lock()
657 * in order to prevent a deadlock with locks set via fcntl().
658 */
659 if (MANDMODE((mode_t)zp->z_mode) &&
660 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
661 ZFS_EXIT(zfsvfs);
662 return (error);
663 }
664
665 /*
666 * Pre-fault the pages to ensure slow (eg NFS) pages
667 * don't hold up txg.
668 * Skip this if uio contains loaned arc_buf.
669 */
670 if ((uio->uio_extflg == UIO_XUIO) &&
671 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
672 xuio = (xuio_t *)uio;
673 else
674 uio_prefaultpages(MIN(n, max_blksz), uio);
675
676 /*
677 * If in append mode, set the io offset pointer to eof.
678 */
679 if (ioflag & FAPPEND) {
680 /*
681 * Obtain an appending range lock to guarantee file append
682 * semantics. We reset the write offset once we have the lock.
683 */
684 rl = zfs_range_lock(zp, 0, n, RL_APPEND);
685 woff = rl->r_off;
686 if (rl->r_len == UINT64_MAX) {
687 /*
688 * We overlocked the file because this write will cause
689 * the file block size to increase.
690 * Note that zp_size cannot change with this lock held.
691 */
692 woff = zp->z_size;
693 }
694 uio->uio_loffset = woff;
695 } else {
696 /*
697 * Note that if the file block size will change as a result of
698 * this write, then this range lock will lock the entire file
699 * so that we can re-write the block safely.
700 */
701 rl = zfs_range_lock(zp, woff, n, RL_WRITER);
702 }
703
704 if (woff >= limit) {
705 zfs_range_unlock(rl);
706 ZFS_EXIT(zfsvfs);
707 return (SET_ERROR(EFBIG));
708 }
709
710 if ((woff + n) > limit || woff > (limit - n))
711 n = limit - woff;
712
713 /* Will this write extend the file length? */
714 write_eof = (woff + n > zp->z_size);
715
716 end_size = MAX(zp->z_size, woff + n);
717
718 /*
719 * Write the file in reasonable size chunks. Each chunk is written
720 * in a separate transaction; this keeps the intent log records small
721 * and allows us to do more fine-grained space accounting.
722 */
723 while (n > 0) {
724 abuf = NULL;
725 woff = uio->uio_loffset;
726 again:
727 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
728 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
729 if (abuf != NULL)
730 dmu_return_arcbuf(abuf);
731 error = SET_ERROR(EDQUOT);
732 break;
733 }
734
735 if (xuio && abuf == NULL) {
736 ASSERT(i_iov < iovcnt);
737 aiov = &iovp[i_iov];
738 abuf = dmu_xuio_arcbuf(xuio, i_iov);
739 dmu_xuio_clear(xuio, i_iov);
740 DTRACE_PROBE3(zfs_cp_write, int, i_iov,
741 iovec_t *, aiov, arc_buf_t *, abuf);
742 ASSERT((aiov->iov_base == abuf->b_data) ||
743 ((char *)aiov->iov_base - (char *)abuf->b_data +
744 aiov->iov_len == arc_buf_size(abuf)));
745 i_iov++;
746 } else if (abuf == NULL && n >= max_blksz &&
747 woff >= zp->z_size &&
748 P2PHASE(woff, max_blksz) == 0 &&
749 zp->z_blksz == max_blksz) {
750 /*
751 * This write covers a full block. "Borrow" a buffer
752 * from the dmu so that we can fill it before we enter
753 * a transaction. This avoids the possibility of
754 * holding up the transaction if the data copy hangs
755 * up on a pagefault (e.g., from an NFS server mapping).
756 */
757 size_t cbytes;
758
759 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
760 max_blksz);
761 ASSERT(abuf != NULL);
762 ASSERT(arc_buf_size(abuf) == max_blksz);
763 if (error = uiocopy(abuf->b_data, max_blksz,
764 UIO_WRITE, uio, &cbytes)) {
765 dmu_return_arcbuf(abuf);
766 break;
767 }
768 ASSERT(cbytes == max_blksz);
769 }
770
771 /*
772 * Start a transaction.
773 */
774 tx = dmu_tx_create(zfsvfs->z_os);
775 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
776 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
777 zfs_sa_upgrade_txholds(tx, zp);
778 error = dmu_tx_assign(tx, TXG_NOWAIT);
779 if (error) {
780 if (error == ERESTART) {
781 dmu_tx_wait(tx);
782 dmu_tx_abort(tx);
783 goto again;
784 }
785 dmu_tx_abort(tx);
786 if (abuf != NULL)
787 dmu_return_arcbuf(abuf);
788 break;
789 }
790
791 /*
792 * If zfs_range_lock() over-locked we grow the blocksize
793 * and then reduce the lock range. This will only happen
794 * on the first iteration since zfs_range_reduce() will
795 * shrink down r_len to the appropriate size.
796 */
797 if (rl->r_len == UINT64_MAX) {
798 uint64_t new_blksz;
799
800 if (zp->z_blksz > max_blksz) {
801 ASSERT(!ISP2(zp->z_blksz));
802 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
803 } else {
804 new_blksz = MIN(end_size, max_blksz);
805 }
806 zfs_grow_blocksize(zp, new_blksz, tx);
807 zfs_range_reduce(rl, woff, n);
808 }
809
810 /*
811 * XXX - should we really limit each write to z_max_blksz?
812 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
813 */
814 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
815
816 if (abuf == NULL) {
817 tx_bytes = uio->uio_resid;
818 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
819 uio, nbytes, tx);
820 tx_bytes -= uio->uio_resid;
821 } else {
822 tx_bytes = nbytes;
823 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
824 /*
825 * If this is not a full block write, but we are
826 * extending the file past EOF and this data starts
827 * block-aligned, use assign_arcbuf(). Otherwise,
828 * write via dmu_write().
829 */
830 if (tx_bytes < max_blksz && (!write_eof ||
831 aiov->iov_base != abuf->b_data)) {
832 ASSERT(xuio);
833 dmu_write(zfsvfs->z_os, zp->z_id, woff,
834 aiov->iov_len, aiov->iov_base, tx);
835 dmu_return_arcbuf(abuf);
836 xuio_stat_wbuf_copied();
837 } else {
838 ASSERT(xuio || tx_bytes == max_blksz);
839 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
840 woff, abuf, tx);
841 }
842 ASSERT(tx_bytes <= uio->uio_resid);
843 uioskip(uio, tx_bytes);
844 }
845 if (tx_bytes && vn_has_cached_data(vp)) {
846 update_pages(vp, woff,
847 tx_bytes, zfsvfs->z_os, zp->z_id);
848 }
849
850 /*
851 * If we made no progress, we're done. If we made even
852 * partial progress, update the znode and ZIL accordingly.
853 */
854 if (tx_bytes == 0) {
855 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
856 (void *)&zp->z_size, sizeof (uint64_t), tx);
857 dmu_tx_commit(tx);
858 ASSERT(error != 0);
859 break;
860 }
861
862 /*
863 * Clear Set-UID/Set-GID bits on successful write if not
864 * privileged and at least one of the excute bits is set.
865 *
866 * It would be nice to to this after all writes have
867 * been done, but that would still expose the ISUID/ISGID
868 * to another app after the partial write is committed.
869 *
870 * Note: we don't call zfs_fuid_map_id() here because
871 * user 0 is not an ephemeral uid.
872 */
873 mutex_enter(&zp->z_acl_lock);
874 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
875 (S_IXUSR >> 6))) != 0 &&
876 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
877 secpolicy_vnode_setid_retain(cr,
878 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
879 uint64_t newmode;
880 zp->z_mode &= ~(S_ISUID | S_ISGID);
881 newmode = zp->z_mode;
882 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
883 (void *)&newmode, sizeof (uint64_t), tx);
884 }
885 mutex_exit(&zp->z_acl_lock);
886
887 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
888 B_TRUE);
889
890 /*
891 * Update the file size (zp_size) if it has changed;
892 * account for possible concurrent updates.
893 */
894 while ((end_size = zp->z_size) < uio->uio_loffset) {
895 (void) atomic_cas_64(&zp->z_size, end_size,
896 uio->uio_loffset);
897 ASSERT(error == 0);
898 }
899 /*
900 * If we are replaying and eof is non zero then force
901 * the file size to the specified eof. Note, there's no
902 * concurrency during replay.
903 */
904 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
905 zp->z_size = zfsvfs->z_replay_eof;
906
907 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
908
909 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
910 dmu_tx_commit(tx);
911
912 if (error != 0)
913 break;
914 ASSERT(tx_bytes == nbytes);
915 n -= nbytes;
916
917 if (!xuio && n > 0)
918 uio_prefaultpages(MIN(n, max_blksz), uio);
919 }
920
921 zfs_range_unlock(rl);
922
923 /*
924 * If we're in replay mode, or we made no progress, return error.
925 * Otherwise, it's at least a partial write, so it's successful.
926 */
927 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
928 ZFS_EXIT(zfsvfs);
929 return (error);
930 }
931
932 if (ioflag & (FSYNC | FDSYNC) ||
933 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
934 zil_commit(zilog, zp->z_id);
935
936 ZFS_EXIT(zfsvfs);
937 return (0);
938 }
939
940 void
941 zfs_get_done(zgd_t *zgd, int error)
942 {
943 znode_t *zp = zgd->zgd_private;
944 objset_t *os = zp->z_zfsvfs->z_os;
945
946 if (zgd->zgd_db)
947 dmu_buf_rele(zgd->zgd_db, zgd);
948
949 zfs_range_unlock(zgd->zgd_rl);
950
951 /*
952 * Release the vnode asynchronously as we currently have the
953 * txg stopped from syncing.
954 */
955 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
956
957 if (error == 0 && zgd->zgd_bp)
958 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
959
960 kmem_free(zgd, sizeof (zgd_t));
961 }
962
963 #ifdef DEBUG
964 static int zil_fault_io = 0;
965 #endif
966
967 /*
968 * Get data to generate a TX_WRITE intent log record.
969 */
970 int
971 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
972 {
973 zfsvfs_t *zfsvfs = arg;
974 objset_t *os = zfsvfs->z_os;
975 znode_t *zp;
976 uint64_t object = lr->lr_foid;
977 uint64_t offset = lr->lr_offset;
978 uint64_t size = lr->lr_length;
979 blkptr_t *bp = &lr->lr_blkptr;
980 dmu_buf_t *db;
981 zgd_t *zgd;
982 int error = 0;
983
984 ASSERT(zio != NULL);
985 ASSERT(size != 0);
986
987 /*
988 * Nothing to do if the file has been removed
989 */
990 if (zfs_zget(zfsvfs, object, &zp) != 0)
991 return (SET_ERROR(ENOENT));
992 if (zp->z_unlinked) {
993 /*
994 * Release the vnode asynchronously as we currently have the
995 * txg stopped from syncing.
996 */
997 VN_RELE_ASYNC(ZTOV(zp),
998 dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
999 return (SET_ERROR(ENOENT));
1000 }
1001
1002 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1003 zgd->zgd_zilog = zfsvfs->z_log;
1004 zgd->zgd_private = zp;
1005
1006 /*
1007 * Write records come in two flavors: immediate and indirect.
1008 * For small writes it's cheaper to store the data with the
1009 * log record (immediate); for large writes it's cheaper to
1010 * sync the data and get a pointer to it (indirect) so that
1011 * we don't have to write the data twice.
1012 */
1013 if (buf != NULL) { /* immediate write */
1014 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1015 /* test for truncation needs to be done while range locked */
1016 if (offset >= zp->z_size) {
1017 error = SET_ERROR(ENOENT);
1018 } else {
1019 error = dmu_read(os, object, offset, size, buf,
1020 DMU_READ_NO_PREFETCH);
1021 }
1022 ASSERT(error == 0 || error == ENOENT);
1023 } else { /* indirect write */
1024 /*
1025 * Have to lock the whole block to ensure when it's
1026 * written out and it's checksum is being calculated
1027 * that no one can change the data. We need to re-check
1028 * blocksize after we get the lock in case it's changed!
1029 */
1030 for (;;) {
1031 uint64_t blkoff;
1032 size = zp->z_blksz;
1033 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1034 offset -= blkoff;
1035 zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1036 RL_READER);
1037 if (zp->z_blksz == size)
1038 break;
1039 offset += blkoff;
1040 zfs_range_unlock(zgd->zgd_rl);
1041 }
1042 /* test for truncation needs to be done while range locked */
1043 if (lr->lr_offset >= zp->z_size)
1044 error = SET_ERROR(ENOENT);
1045 #ifdef DEBUG
1046 if (zil_fault_io) {
1047 error = SET_ERROR(EIO);
1048 zil_fault_io = 0;
1049 }
1050 #endif
1051 if (error == 0)
1052 error = dmu_buf_hold(os, object, offset, zgd, &db,
1053 DMU_READ_NO_PREFETCH);
1054
1055 if (error == 0) {
1056 blkptr_t *obp = dmu_buf_get_blkptr(db);
1057 if (obp) {
1058 ASSERT(BP_IS_HOLE(bp));
1059 *bp = *obp;
1060 }
1061
1062 zgd->zgd_db = db;
1063 zgd->zgd_bp = bp;
1064
1065 ASSERT(db->db_offset == offset);
1066 ASSERT(db->db_size == size);
1067
1068 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1069 zfs_get_done, zgd);
1070 ASSERT(error || lr->lr_length <= zp->z_blksz);
1071
1072 /*
1073 * On success, we need to wait for the write I/O
1074 * initiated by dmu_sync() to complete before we can
1075 * release this dbuf. We will finish everything up
1076 * in the zfs_get_done() callback.
1077 */
1078 if (error == 0)
1079 return (0);
1080
1081 if (error == EALREADY) {
1082 lr->lr_common.lrc_txtype = TX_WRITE2;
1083 error = 0;
1084 }
1085 }
1086 }
1087
1088 zfs_get_done(zgd, error);
1089
1090 return (error);
1091 }
1092
1093 /*ARGSUSED*/
1094 static int
1095 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1096 caller_context_t *ct)
1097 {
1098 znode_t *zp = VTOZ(vp);
1099 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1100 int error;
1101
1102 ZFS_ENTER(zfsvfs);
1103 ZFS_VERIFY_ZP(zp);
1104
1105 if (flag & V_ACE_MASK)
1106 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1107 else
1108 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1109
1110 ZFS_EXIT(zfsvfs);
1111 return (error);
1112 }
1113
1114 /*
1115 * If vnode is for a device return a specfs vnode instead.
1116 */
1117 static int
1118 specvp_check(vnode_t **vpp, cred_t *cr)
1119 {
1120 int error = 0;
1121
1122 if (IS_DEVVP(*vpp)) {
1123 struct vnode *svp;
1124
1125 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1126 VN_RELE(*vpp);
1127 if (svp == NULL)
1128 error = SET_ERROR(ENOSYS);
1129 *vpp = svp;
1130 }
1131 return (error);
1132 }
1133
1134
1135 /*
1136 * Lookup an entry in a directory, or an extended attribute directory.
1137 * If it exists, return a held vnode reference for it.
1138 *
1139 * IN: dvp - vnode of directory to search.
1140 * nm - name of entry to lookup.
1141 * pnp - full pathname to lookup [UNUSED].
1142 * flags - LOOKUP_XATTR set if looking for an attribute.
1143 * rdir - root directory vnode [UNUSED].
1144 * cr - credentials of caller.
1145 * ct - caller context
1146 * direntflags - directory lookup flags
1147 * realpnp - returned pathname.
1148 *
1149 * OUT: vpp - vnode of located entry, NULL if not found.
1150 *
1151 * RETURN: 0 if success
1152 * error code if failure
1153 *
1154 * Timestamps:
1155 * NA
1156 */
1157 /* ARGSUSED */
1158 static int
1159 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1160 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1161 int *direntflags, pathname_t *realpnp)
1162 {
1163 znode_t *zdp = VTOZ(dvp);
1164 zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1165 int error = 0;
1166
1167 /* fast path */
1168 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1169
1170 if (dvp->v_type != VDIR) {
1171 return (SET_ERROR(ENOTDIR));
1172 } else if (zdp->z_sa_hdl == NULL) {
1173 return (SET_ERROR(EIO));
1174 }
1175
1176 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1177 error = zfs_fastaccesschk_execute(zdp, cr);
1178 if (!error) {
1179 *vpp = dvp;
1180 VN_HOLD(*vpp);
1181 return (0);
1182 }
1183 return (error);
1184 } else {
1185 vnode_t *tvp = dnlc_lookup(dvp, nm);
1186
1187 if (tvp) {
1188 error = zfs_fastaccesschk_execute(zdp, cr);
1189 if (error) {
1190 VN_RELE(tvp);
1191 return (error);
1192 }
1193 if (tvp == DNLC_NO_VNODE) {
1194 VN_RELE(tvp);
1195 return (SET_ERROR(ENOENT));
1196 } else {
1197 *vpp = tvp;
1198 return (specvp_check(vpp, cr));
1199 }
1200 }
1201 }
1202 }
1203
1204 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1205
1206 ZFS_ENTER(zfsvfs);
1207 ZFS_VERIFY_ZP(zdp);
1208
1209 *vpp = NULL;
1210
1211 if (flags & LOOKUP_XATTR) {
1212 /*
1213 * If the xattr property is off, refuse the lookup request.
1214 */
1215 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1216 ZFS_EXIT(zfsvfs);
1217 return (SET_ERROR(EINVAL));
1218 }
1219
1220 /*
1221 * We don't allow recursive attributes..
1222 * Maybe someday we will.
1223 */
1224 if (zdp->z_pflags & ZFS_XATTR) {
1225 ZFS_EXIT(zfsvfs);
1226 return (SET_ERROR(EINVAL));
1227 }
1228
1229 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1230 ZFS_EXIT(zfsvfs);
1231 return (error);
1232 }
1233
1234 /*
1235 * Do we have permission to get into attribute directory?
1236 */
1237
1238 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1239 B_FALSE, cr)) {
1240 VN_RELE(*vpp);
1241 *vpp = NULL;
1242 }
1243
1244 ZFS_EXIT(zfsvfs);
1245 return (error);
1246 }
1247
1248 if (dvp->v_type != VDIR) {
1249 ZFS_EXIT(zfsvfs);
1250 return (SET_ERROR(ENOTDIR));
1251 }
1252
1253 /*
1254 * Check accessibility of directory.
1255 */
1256
1257 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1258 ZFS_EXIT(zfsvfs);
1259 return (error);
1260 }
1261
1262 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1263 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1264 ZFS_EXIT(zfsvfs);
1265 return (SET_ERROR(EILSEQ));
1266 }
1267
1268 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1269 if (error == 0)
1270 error = specvp_check(vpp, cr);
1271
1272 ZFS_EXIT(zfsvfs);
1273 return (error);
1274 }
1275
1276 /*
1277 * Attempt to create a new entry in a directory. If the entry
1278 * already exists, truncate the file if permissible, else return
1279 * an error. Return the vp of the created or trunc'd file.
1280 *
1281 * IN: dvp - vnode of directory to put new file entry in.
1282 * name - name of new file entry.
1283 * vap - attributes of new file.
1284 * excl - flag indicating exclusive or non-exclusive mode.
1285 * mode - mode to open file with.
1286 * cr - credentials of caller.
1287 * flag - large file flag [UNUSED].
1288 * ct - caller context
1289 * vsecp - ACL to be set
1290 *
1291 * OUT: vpp - vnode of created or trunc'd entry.
1292 *
1293 * RETURN: 0 if success
1294 * error code if failure
1295 *
1296 * Timestamps:
1297 * dvp - ctime|mtime updated if new entry created
1298 * vp - ctime|mtime always, atime if new
1299 */
1300
1301 /* ARGSUSED */
1302 static int
1303 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1304 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1305 vsecattr_t *vsecp)
1306 {
1307 znode_t *zp, *dzp = VTOZ(dvp);
1308 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1309 zilog_t *zilog;
1310 objset_t *os;
1311 zfs_dirlock_t *dl;
1312 dmu_tx_t *tx;
1313 int error;
1314 ksid_t *ksid;
1315 uid_t uid;
1316 gid_t gid = crgetgid(cr);
1317 zfs_acl_ids_t acl_ids;
1318 boolean_t fuid_dirtied;
1319 boolean_t have_acl = B_FALSE;
1320
1321 /*
1322 * If we have an ephemeral id, ACL, or XVATTR then
1323 * make sure file system is at proper version
1324 */
1325
1326 ksid = crgetsid(cr, KSID_OWNER);
1327 if (ksid)
1328 uid = ksid_getid(ksid);
1329 else
1330 uid = crgetuid(cr);
1331
1332 if (zfsvfs->z_use_fuids == B_FALSE &&
1333 (vsecp || (vap->va_mask & AT_XVATTR) ||
1334 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1335 return (SET_ERROR(EINVAL));
1336
1337 ZFS_ENTER(zfsvfs);
1338 ZFS_VERIFY_ZP(dzp);
1339 os = zfsvfs->z_os;
1340 zilog = zfsvfs->z_log;
1341
1342 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1343 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1344 ZFS_EXIT(zfsvfs);
1345 return (SET_ERROR(EILSEQ));
1346 }
1347
1348 if (vap->va_mask & AT_XVATTR) {
1349 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1350 crgetuid(cr), cr, vap->va_type)) != 0) {
1351 ZFS_EXIT(zfsvfs);
1352 return (error);
1353 }
1354 }
1355 top:
1356 *vpp = NULL;
1357
1358 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1359 vap->va_mode &= ~VSVTX;
1360
1361 if (*name == '\0') {
1362 /*
1363 * Null component name refers to the directory itself.
1364 */
1365 VN_HOLD(dvp);
1366 zp = dzp;
1367 dl = NULL;
1368 error = 0;
1369 } else {
1370 /* possible VN_HOLD(zp) */
1371 int zflg = 0;
1372
1373 if (flag & FIGNORECASE)
1374 zflg |= ZCILOOK;
1375
1376 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1377 NULL, NULL);
1378 if (error) {
1379 if (have_acl)
1380 zfs_acl_ids_free(&acl_ids);
1381 if (strcmp(name, "..") == 0)
1382 error = SET_ERROR(EISDIR);
1383 ZFS_EXIT(zfsvfs);
1384 return (error);
1385 }
1386 }
1387
1388 if (zp == NULL) {
1389 uint64_t txtype;
1390
1391 /*
1392 * Create a new file object and update the directory
1393 * to reference it.
1394 */
1395 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1396 if (have_acl)
1397 zfs_acl_ids_free(&acl_ids);
1398 goto out;
1399 }
1400
1401 /*
1402 * We only support the creation of regular files in
1403 * extended attribute directories.
1404 */
1405
1406 if ((dzp->z_pflags & ZFS_XATTR) &&
1407 (vap->va_type != VREG)) {
1408 if (have_acl)
1409 zfs_acl_ids_free(&acl_ids);
1410 error = SET_ERROR(EINVAL);
1411 goto out;
1412 }
1413
1414 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1415 cr, vsecp, &acl_ids)) != 0)
1416 goto out;
1417 have_acl = B_TRUE;
1418
1419 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1420 zfs_acl_ids_free(&acl_ids);
1421 error = SET_ERROR(EDQUOT);
1422 goto out;
1423 }
1424
1425 tx = dmu_tx_create(os);
1426
1427 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1428 ZFS_SA_BASE_ATTR_SIZE);
1429
1430 fuid_dirtied = zfsvfs->z_fuid_dirty;
1431 if (fuid_dirtied)
1432 zfs_fuid_txhold(zfsvfs, tx);
1433 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1434 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1435 if (!zfsvfs->z_use_sa &&
1436 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1437 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1438 0, acl_ids.z_aclp->z_acl_bytes);
1439 }
1440 error = dmu_tx_assign(tx, TXG_NOWAIT);
1441 if (error) {
1442 zfs_dirent_unlock(dl);
1443 if (error == ERESTART) {
1444 dmu_tx_wait(tx);
1445 dmu_tx_abort(tx);
1446 goto top;
1447 }
1448 zfs_acl_ids_free(&acl_ids);
1449 dmu_tx_abort(tx);
1450 ZFS_EXIT(zfsvfs);
1451 return (error);
1452 }
1453 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1454
1455 if (fuid_dirtied)
1456 zfs_fuid_sync(zfsvfs, tx);
1457
1458 (void) zfs_link_create(dl, zp, tx, ZNEW);
1459 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1460 if (flag & FIGNORECASE)
1461 txtype |= TX_CI;
1462 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1463 vsecp, acl_ids.z_fuidp, vap);
1464 zfs_acl_ids_free(&acl_ids);
1465 dmu_tx_commit(tx);
1466 } else {
1467 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1468
1469 if (have_acl)
1470 zfs_acl_ids_free(&acl_ids);
1471 have_acl = B_FALSE;
1472
1473 /*
1474 * A directory entry already exists for this name.
1475 */
1476 /*
1477 * Can't truncate an existing file if in exclusive mode.
1478 */
1479 if (excl == EXCL) {
1480 error = SET_ERROR(EEXIST);
1481 goto out;
1482 }
1483 /*
1484 * Can't open a directory for writing.
1485 */
1486 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1487 error = SET_ERROR(EISDIR);
1488 goto out;
1489 }
1490 /*
1491 * Verify requested access to file.
1492 */
1493 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1494 goto out;
1495 }
1496
1497 mutex_enter(&dzp->z_lock);
1498 dzp->z_seq++;
1499 mutex_exit(&dzp->z_lock);
1500
1501 /*
1502 * Truncate regular files if requested.
1503 */
1504 if ((ZTOV(zp)->v_type == VREG) &&
1505 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1506 /* we can't hold any locks when calling zfs_freesp() */
1507 zfs_dirent_unlock(dl);
1508 dl = NULL;
1509 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1510 if (error == 0) {
1511 vnevent_create(ZTOV(zp), ct);
1512 }
1513 }
1514 }
1515 out:
1516
1517 if (dl)
1518 zfs_dirent_unlock(dl);
1519
1520 if (error) {
1521 if (zp)
1522 VN_RELE(ZTOV(zp));
1523 } else {
1524 *vpp = ZTOV(zp);
1525 error = specvp_check(vpp, cr);
1526 }
1527
1528 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1529 zil_commit(zilog, 0);
1530
1531 ZFS_EXIT(zfsvfs);
1532 return (error);
1533 }
1534
1535 /*
1536 * Remove an entry from a directory.
1537 *
1538 * IN: dvp - vnode of directory to remove entry from.
1539 * name - name of entry to remove.
1540 * cr - credentials of caller.
1541 * ct - caller context
1542 * flags - case flags
1543 *
1544 * RETURN: 0 if success
1545 * error code if failure
1546 *
1547 * Timestamps:
1548 * dvp - ctime|mtime
1549 * vp - ctime (if nlink > 0)
1550 */
1551
1552 uint64_t null_xattr = 0;
1553
1554 /*ARGSUSED*/
1555 static int
1556 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1557 int flags)
1558 {
1559 znode_t *zp, *dzp = VTOZ(dvp);
1560 znode_t *xzp;
1561 vnode_t *vp;
1562 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1563 zilog_t *zilog;
1564 uint64_t acl_obj, xattr_obj;
1565 uint64_t xattr_obj_unlinked = 0;
1566 uint64_t obj = 0;
1567 zfs_dirlock_t *dl;
1568 dmu_tx_t *tx;
1569 boolean_t may_delete_now, delete_now = FALSE;
1570 boolean_t unlinked, toobig = FALSE;
1571 uint64_t txtype;
1572 pathname_t *realnmp = NULL;
1573 pathname_t realnm;
1574 int error;
1575 int zflg = ZEXISTS;
1576
1577 ZFS_ENTER(zfsvfs);
1578 ZFS_VERIFY_ZP(dzp);
1579 zilog = zfsvfs->z_log;
1580
1581 if (flags & FIGNORECASE) {
1582 zflg |= ZCILOOK;
1583 pn_alloc(&realnm);
1584 realnmp = &realnm;
1585 }
1586
1587 top:
1588 xattr_obj = 0;
1589 xzp = NULL;
1590 /*
1591 * Attempt to lock directory; fail if entry doesn't exist.
1592 */
1593 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1594 NULL, realnmp)) {
1595 if (realnmp)
1596 pn_free(realnmp);
1597 ZFS_EXIT(zfsvfs);
1598 return (error);
1599 }
1600
1601 vp = ZTOV(zp);
1602
1603 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1604 goto out;
1605 }
1606
1607 /*
1608 * Need to use rmdir for removing directories.
1609 */
1610 if (vp->v_type == VDIR) {
1611 error = SET_ERROR(EPERM);
1612 goto out;
1613 }
1614
1615 vnevent_remove(vp, dvp, name, ct);
1616
1617 if (realnmp)
1618 dnlc_remove(dvp, realnmp->pn_buf);
1619 else
1620 dnlc_remove(dvp, name);
1621
1622 mutex_enter(&vp->v_lock);
1623 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1624 mutex_exit(&vp->v_lock);
1625
1626 /*
1627 * We may delete the znode now, or we may put it in the unlinked set;
1628 * it depends on whether we're the last link, and on whether there are
1629 * other holds on the vnode. So we dmu_tx_hold() the right things to
1630 * allow for either case.
1631 */
1632 obj = zp->z_id;
1633 tx = dmu_tx_create(zfsvfs->z_os);
1634 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1635 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1636 zfs_sa_upgrade_txholds(tx, zp);
1637 zfs_sa_upgrade_txholds(tx, dzp);
1638 if (may_delete_now) {
1639 toobig =
1640 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1641 /* if the file is too big, only hold_free a token amount */
1642 dmu_tx_hold_free(tx, zp->z_id, 0,
1643 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1644 }
1645
1646 /* are there any extended attributes? */
1647 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1648 &xattr_obj, sizeof (xattr_obj));
1649 if (error == 0 && xattr_obj) {
1650 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1651 ASSERT0(error);
1652 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1653 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1654 }
1655
1656 mutex_enter(&zp->z_lock);
1657 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1658 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1659 mutex_exit(&zp->z_lock);
1660
1661 /* charge as an update -- would be nice not to charge at all */
1662 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1663
1664 error = dmu_tx_assign(tx, TXG_NOWAIT);
1665 if (error) {
1666 zfs_dirent_unlock(dl);
1667 VN_RELE(vp);
1668 if (xzp)
1669 VN_RELE(ZTOV(xzp));
1670 if (error == ERESTART) {
1671 dmu_tx_wait(tx);
1672 dmu_tx_abort(tx);
1673 goto top;
1674 }
1675 if (realnmp)
1676 pn_free(realnmp);
1677 dmu_tx_abort(tx);
1678 ZFS_EXIT(zfsvfs);
1679 return (error);
1680 }
1681
1682 /*
1683 * Remove the directory entry.
1684 */
1685 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1686
1687 if (error) {
1688 dmu_tx_commit(tx);
1689 goto out;
1690 }
1691
1692 if (unlinked) {
1693
1694 /*
1695 * Hold z_lock so that we can make sure that the ACL obj
1696 * hasn't changed. Could have been deleted due to
1697 * zfs_sa_upgrade().
1698 */
1699 mutex_enter(&zp->z_lock);
1700 mutex_enter(&vp->v_lock);
1701 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1702 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1703 delete_now = may_delete_now && !toobig &&
1704 vp->v_count == 1 && !vn_has_cached_data(vp) &&
1705 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1706 acl_obj;
1707 mutex_exit(&vp->v_lock);
1708 }
1709
1710 if (delete_now) {
1711 if (xattr_obj_unlinked) {
1712 ASSERT3U(xzp->z_links, ==, 2);
1713 mutex_enter(&xzp->z_lock);
1714 xzp->z_unlinked = 1;
1715 xzp->z_links = 0;
1716 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1717 &xzp->z_links, sizeof (xzp->z_links), tx);
1718 ASSERT3U(error, ==, 0);
1719 mutex_exit(&xzp->z_lock);
1720 zfs_unlinked_add(xzp, tx);
1721
1722 if (zp->z_is_sa)
1723 error = sa_remove(zp->z_sa_hdl,
1724 SA_ZPL_XATTR(zfsvfs), tx);
1725 else
1726 error = sa_update(zp->z_sa_hdl,
1727 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1728 sizeof (uint64_t), tx);
1729 ASSERT0(error);
1730 }
1731 mutex_enter(&vp->v_lock);
1732 vp->v_count--;
1733 ASSERT0(vp->v_count);
1734 mutex_exit(&vp->v_lock);
1735 mutex_exit(&zp->z_lock);
1736 zfs_znode_delete(zp, tx);
1737 } else if (unlinked) {
1738 mutex_exit(&zp->z_lock);
1739 zfs_unlinked_add(zp, tx);
1740 }
1741
1742 txtype = TX_REMOVE;
1743 if (flags & FIGNORECASE)
1744 txtype |= TX_CI;
1745 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1746
1747 dmu_tx_commit(tx);
1748 out:
1749 if (realnmp)
1750 pn_free(realnmp);
1751
1752 zfs_dirent_unlock(dl);
1753
1754 if (!delete_now)
1755 VN_RELE(vp);
1756 if (xzp)
1757 VN_RELE(ZTOV(xzp));
1758
1759 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1760 zil_commit(zilog, 0);
1761
1762 ZFS_EXIT(zfsvfs);
1763 return (error);
1764 }
1765
1766 /*
1767 * Create a new directory and insert it into dvp using the name
1768 * provided. Return a pointer to the inserted directory.
1769 *
1770 * IN: dvp - vnode of directory to add subdir to.
1771 * dirname - name of new directory.
1772 * vap - attributes of new directory.
1773 * cr - credentials of caller.
1774 * ct - caller context
1775 * vsecp - ACL to be set
1776 *
1777 * OUT: vpp - vnode of created directory.
1778 *
1779 * RETURN: 0 if success
1780 * error code if failure
1781 *
1782 * Timestamps:
1783 * dvp - ctime|mtime updated
1784 * vp - ctime|mtime|atime updated
1785 */
1786 /*ARGSUSED*/
1787 static int
1788 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1789 caller_context_t *ct, int flags, vsecattr_t *vsecp)
1790 {
1791 znode_t *zp, *dzp = VTOZ(dvp);
1792 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1793 zilog_t *zilog;
1794 zfs_dirlock_t *dl;
1795 uint64_t txtype;
1796 dmu_tx_t *tx;
1797 int error;
1798 int zf = ZNEW;
1799 ksid_t *ksid;
1800 uid_t uid;
1801 gid_t gid = crgetgid(cr);
1802 zfs_acl_ids_t acl_ids;
1803 boolean_t fuid_dirtied;
1804
1805 ASSERT(vap->va_type == VDIR);
1806
1807 /*
1808 * If we have an ephemeral id, ACL, or XVATTR then
1809 * make sure file system is at proper version
1810 */
1811
1812 ksid = crgetsid(cr, KSID_OWNER);
1813 if (ksid)
1814 uid = ksid_getid(ksid);
1815 else
1816 uid = crgetuid(cr);
1817 if (zfsvfs->z_use_fuids == B_FALSE &&
1818 (vsecp || (vap->va_mask & AT_XVATTR) ||
1819 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1820 return (SET_ERROR(EINVAL));
1821
1822 ZFS_ENTER(zfsvfs);
1823 ZFS_VERIFY_ZP(dzp);
1824 zilog = zfsvfs->z_log;
1825
1826 if (dzp->z_pflags & ZFS_XATTR) {
1827 ZFS_EXIT(zfsvfs);
1828 return (SET_ERROR(EINVAL));
1829 }
1830
1831 if (zfsvfs->z_utf8 && u8_validate(dirname,
1832 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1833 ZFS_EXIT(zfsvfs);
1834 return (SET_ERROR(EILSEQ));
1835 }
1836 if (flags & FIGNORECASE)
1837 zf |= ZCILOOK;
1838
1839 if (vap->va_mask & AT_XVATTR) {
1840 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1841 crgetuid(cr), cr, vap->va_type)) != 0) {
1842 ZFS_EXIT(zfsvfs);
1843 return (error);
1844 }
1845 }
1846
1847 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1848 vsecp, &acl_ids)) != 0) {
1849 ZFS_EXIT(zfsvfs);
1850 return (error);
1851 }
1852 /*
1853 * First make sure the new directory doesn't exist.
1854 *
1855 * Existence is checked first to make sure we don't return
1856 * EACCES instead of EEXIST which can cause some applications
1857 * to fail.
1858 */
1859 top:
1860 *vpp = NULL;
1861
1862 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1863 NULL, NULL)) {
1864 zfs_acl_ids_free(&acl_ids);
1865 ZFS_EXIT(zfsvfs);
1866 return (error);
1867 }
1868
1869 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1870 zfs_acl_ids_free(&acl_ids);
1871 zfs_dirent_unlock(dl);
1872 ZFS_EXIT(zfsvfs);
1873 return (error);
1874 }
1875
1876 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1877 zfs_acl_ids_free(&acl_ids);
1878 zfs_dirent_unlock(dl);
1879 ZFS_EXIT(zfsvfs);
1880 return (SET_ERROR(EDQUOT));
1881 }
1882
1883 /*
1884 * Add a new entry to the directory.
1885 */
1886 tx = dmu_tx_create(zfsvfs->z_os);
1887 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1888 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1889 fuid_dirtied = zfsvfs->z_fuid_dirty;
1890 if (fuid_dirtied)
1891 zfs_fuid_txhold(zfsvfs, tx);
1892 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1893 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1894 acl_ids.z_aclp->z_acl_bytes);
1895 }
1896
1897 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1898 ZFS_SA_BASE_ATTR_SIZE);
1899
1900 error = dmu_tx_assign(tx, TXG_NOWAIT);
1901 if (error) {
1902 zfs_dirent_unlock(dl);
1903 if (error == ERESTART) {
1904 dmu_tx_wait(tx);
1905 dmu_tx_abort(tx);
1906 goto top;
1907 }
1908 zfs_acl_ids_free(&acl_ids);
1909 dmu_tx_abort(tx);
1910 ZFS_EXIT(zfsvfs);
1911 return (error);
1912 }
1913
1914 /*
1915 * Create new node.
1916 */
1917 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1918
1919 if (fuid_dirtied)
1920 zfs_fuid_sync(zfsvfs, tx);
1921
1922 /*
1923 * Now put new name in parent dir.
1924 */
1925 (void) zfs_link_create(dl, zp, tx, ZNEW);
1926
1927 *vpp = ZTOV(zp);
1928
1929 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1930 if (flags & FIGNORECASE)
1931 txtype |= TX_CI;
1932 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1933 acl_ids.z_fuidp, vap);
1934
1935 zfs_acl_ids_free(&acl_ids);
1936
1937 dmu_tx_commit(tx);
1938
1939 zfs_dirent_unlock(dl);
1940
1941 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1942 zil_commit(zilog, 0);
1943
1944 ZFS_EXIT(zfsvfs);
1945 return (0);
1946 }
1947
1948 /*
1949 * Remove a directory subdir entry. If the current working
1950 * directory is the same as the subdir to be removed, the
1951 * remove will fail.
1952 *
1953 * IN: dvp - vnode of directory to remove from.
1954 * name - name of directory to be removed.
1955 * cwd - vnode of current working directory.
1956 * cr - credentials of caller.
1957 * ct - caller context
1958 * flags - case flags
1959 *
1960 * RETURN: 0 if success
1961 * error code if failure
1962 *
1963 * Timestamps:
1964 * dvp - ctime|mtime updated
1965 */
1966 /*ARGSUSED*/
1967 static int
1968 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
1969 caller_context_t *ct, int flags)
1970 {
1971 znode_t *dzp = VTOZ(dvp);
1972 znode_t *zp;
1973 vnode_t *vp;
1974 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1975 zilog_t *zilog;
1976 zfs_dirlock_t *dl;
1977 dmu_tx_t *tx;
1978 int error;
1979 int zflg = ZEXISTS;
1980
1981 ZFS_ENTER(zfsvfs);
1982 ZFS_VERIFY_ZP(dzp);
1983 zilog = zfsvfs->z_log;
1984
1985 if (flags & FIGNORECASE)
1986 zflg |= ZCILOOK;
1987 top:
1988 zp = NULL;
1989
1990 /*
1991 * Attempt to lock directory; fail if entry doesn't exist.
1992 */
1993 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1994 NULL, NULL)) {
1995 ZFS_EXIT(zfsvfs);
1996 return (error);
1997 }
1998
1999 vp = ZTOV(zp);
2000
2001 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2002 goto out;
2003 }
2004
2005 if (vp->v_type != VDIR) {
2006 error = SET_ERROR(ENOTDIR);
2007 goto out;
2008 }
2009
2010 if (vp == cwd) {
2011 error = SET_ERROR(EINVAL);
2012 goto out;
2013 }
2014
2015 vnevent_rmdir(vp, dvp, name, ct);
2016
2017 /*
2018 * Grab a lock on the directory to make sure that noone is
2019 * trying to add (or lookup) entries while we are removing it.
2020 */
2021 rw_enter(&zp->z_name_lock, RW_WRITER);
2022
2023 /*
2024 * Grab a lock on the parent pointer to make sure we play well
2025 * with the treewalk and directory rename code.
2026 */
2027 rw_enter(&zp->z_parent_lock, RW_WRITER);
2028
2029 tx = dmu_tx_create(zfsvfs->z_os);
2030 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2031 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2032 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2033 zfs_sa_upgrade_txholds(tx, zp);
2034 zfs_sa_upgrade_txholds(tx, dzp);
2035 error = dmu_tx_assign(tx, TXG_NOWAIT);
2036 if (error) {
2037 rw_exit(&zp->z_parent_lock);
2038 rw_exit(&zp->z_name_lock);
2039 zfs_dirent_unlock(dl);
2040 VN_RELE(vp);
2041 if (error == ERESTART) {
2042 dmu_tx_wait(tx);
2043 dmu_tx_abort(tx);
2044 goto top;
2045 }
2046 dmu_tx_abort(tx);
2047 ZFS_EXIT(zfsvfs);
2048 return (error);
2049 }
2050
2051 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2052
2053 if (error == 0) {
2054 uint64_t txtype = TX_RMDIR;
2055 if (flags & FIGNORECASE)
2056 txtype |= TX_CI;
2057 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2058 }
2059
2060 dmu_tx_commit(tx);
2061
2062 rw_exit(&zp->z_parent_lock);
2063 rw_exit(&zp->z_name_lock);
2064 out:
2065 zfs_dirent_unlock(dl);
2066
2067 VN_RELE(vp);
2068
2069 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2070 zil_commit(zilog, 0);
2071
2072 ZFS_EXIT(zfsvfs);
2073 return (error);
2074 }
2075
2076 /*
2077 * Read as many directory entries as will fit into the provided
2078 * buffer from the given directory cursor position (specified in
2079 * the uio structure.
2080 *
2081 * IN: vp - vnode of directory to read.
2082 * uio - structure supplying read location, range info,
2083 * and return buffer.
2084 * cr - credentials of caller.
2085 * ct - caller context
2086 * flags - case flags
2087 *
2088 * OUT: uio - updated offset and range, buffer filled.
2089 * eofp - set to true if end-of-file detected.
2090 *
2091 * RETURN: 0 if success
2092 * error code if failure
2093 *
2094 * Timestamps:
2095 * vp - atime updated
2096 *
2097 * Note that the low 4 bits of the cookie returned by zap is always zero.
2098 * This allows us to use the low range for "special" directory entries:
2099 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2100 * we use the offset 2 for the '.zfs' directory.
2101 */
2102 /* ARGSUSED */
2103 static int
2104 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2105 caller_context_t *ct, int flags)
2106 {
2107 znode_t *zp = VTOZ(vp);
2108 iovec_t *iovp;
2109 edirent_t *eodp;
2110 dirent64_t *odp;
2111 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2112 objset_t *os;
2113 caddr_t outbuf;
2114 size_t bufsize;
2115 zap_cursor_t zc;
2116 zap_attribute_t zap;
2117 uint_t bytes_wanted;
2118 uint64_t offset; /* must be unsigned; checks for < 1 */
2119 uint64_t parent;
2120 int local_eof;
2121 int outcount;
2122 int error;
2123 uint8_t prefetch;
2124 boolean_t check_sysattrs;
2125
2126 ZFS_ENTER(zfsvfs);
2127 ZFS_VERIFY_ZP(zp);
2128
2129 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2130 &parent, sizeof (parent))) != 0) {
2131 ZFS_EXIT(zfsvfs);
2132 return (error);
2133 }
2134
2135 /*
2136 * If we are not given an eof variable,
2137 * use a local one.
2138 */
2139 if (eofp == NULL)
2140 eofp = &local_eof;
2141
2142 /*
2143 * Check for valid iov_len.
2144 */
2145 if (uio->uio_iov->iov_len <= 0) {
2146 ZFS_EXIT(zfsvfs);
2147 return (SET_ERROR(EINVAL));
2148 }
2149
2150 /*
2151 * Quit if directory has been removed (posix)
2152 */
2153 if ((*eofp = zp->z_unlinked) != 0) {
2154 ZFS_EXIT(zfsvfs);
2155 return (0);
2156 }
2157
2158 error = 0;
2159 os = zfsvfs->z_os;
2160 offset = uio->uio_loffset;
2161 prefetch = zp->z_zn_prefetch;
2162
2163 /*
2164 * Initialize the iterator cursor.
2165 */
2166 if (offset <= 3) {
2167 /*
2168 * Start iteration from the beginning of the directory.
2169 */
2170 zap_cursor_init(&zc, os, zp->z_id);
2171 } else {
2172 /*
2173 * The offset is a serialized cursor.
2174 */
2175 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2176 }
2177
2178 /*
2179 * Get space to change directory entries into fs independent format.
2180 */
2181 iovp = uio->uio_iov;
2182 bytes_wanted = iovp->iov_len;
2183 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2184 bufsize = bytes_wanted;
2185 outbuf = kmem_alloc(bufsize, KM_SLEEP);
2186 odp = (struct dirent64 *)outbuf;
2187 } else {
2188 bufsize = bytes_wanted;
2189 outbuf = NULL;
2190 odp = (struct dirent64 *)iovp->iov_base;
2191 }
2192 eodp = (struct edirent *)odp;
2193
2194 /*
2195 * If this VFS supports the system attribute view interface; and
2196 * we're looking at an extended attribute directory; and we care
2197 * about normalization conflicts on this vfs; then we must check
2198 * for normalization conflicts with the sysattr name space.
2199 */
2200 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2201 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2202 (flags & V_RDDIR_ENTFLAGS);
2203
2204 /*
2205 * Transform to file-system independent format
2206 */
2207 outcount = 0;
2208 while (outcount < bytes_wanted) {
2209 ino64_t objnum;
2210 ushort_t reclen;
2211 off64_t *next = NULL;
2212
2213 /*
2214 * Special case `.', `..', and `.zfs'.
2215 */
2216 if (offset == 0) {
2217 (void) strcpy(zap.za_name, ".");
2218 zap.za_normalization_conflict = 0;
2219 objnum = zp->z_id;
2220 } else if (offset == 1) {
2221 (void) strcpy(zap.za_name, "..");
2222 zap.za_normalization_conflict = 0;
2223 objnum = parent;
2224 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2225 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2226 zap.za_normalization_conflict = 0;
2227 objnum = ZFSCTL_INO_ROOT;
2228 } else {
2229 /*
2230 * Grab next entry.
2231 */
2232 if (error = zap_cursor_retrieve(&zc, &zap)) {
2233 if ((*eofp = (error == ENOENT)) != 0)
2234 break;
2235 else
2236 goto update;
2237 }
2238
2239 if (zap.za_integer_length != 8 ||
2240 zap.za_num_integers != 1) {
2241 cmn_err(CE_WARN, "zap_readdir: bad directory "
2242 "entry, obj = %lld, offset = %lld\n",
2243 (u_longlong_t)zp->z_id,
2244 (u_longlong_t)offset);
2245 error = SET_ERROR(ENXIO);
2246 goto update;
2247 }
2248
2249 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2250 /*
2251 * MacOS X can extract the object type here such as:
2252 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2253 */
2254
2255 if (check_sysattrs && !zap.za_normalization_conflict) {
2256 zap.za_normalization_conflict =
2257 xattr_sysattr_casechk(zap.za_name);
2258 }
2259 }
2260
2261 if (flags & V_RDDIR_ACCFILTER) {
2262 /*
2263 * If we have no access at all, don't include
2264 * this entry in the returned information
2265 */
2266 znode_t *ezp;
2267 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2268 goto skip_entry;
2269 if (!zfs_has_access(ezp, cr)) {
2270 VN_RELE(ZTOV(ezp));
2271 goto skip_entry;
2272 }
2273 VN_RELE(ZTOV(ezp));
2274 }
2275
2276 if (flags & V_RDDIR_ENTFLAGS)
2277 reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2278 else
2279 reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2280
2281 /*
2282 * Will this entry fit in the buffer?
2283 */
2284 if (outcount + reclen > bufsize) {
2285 /*
2286 * Did we manage to fit anything in the buffer?
2287 */
2288 if (!outcount) {
2289 error = SET_ERROR(EINVAL);
2290 goto update;
2291 }
2292 break;
2293 }
2294 if (flags & V_RDDIR_ENTFLAGS) {
2295 /*
2296 * Add extended flag entry:
2297 */
2298 eodp->ed_ino = objnum;
2299 eodp->ed_reclen = reclen;
2300 /* NOTE: ed_off is the offset for the *next* entry */
2301 next = &(eodp->ed_off);
2302 eodp->ed_eflags = zap.za_normalization_conflict ?
2303 ED_CASE_CONFLICT : 0;
2304 (void) strncpy(eodp->ed_name, zap.za_name,
2305 EDIRENT_NAMELEN(reclen));
2306 eodp = (edirent_t *)((intptr_t)eodp + reclen);
2307 } else {
2308 /*
2309 * Add normal entry:
2310 */
2311 odp->d_ino = objnum;
2312 odp->d_reclen = reclen;
2313 /* NOTE: d_off is the offset for the *next* entry */
2314 next = &(odp->d_off);
2315 (void) strncpy(odp->d_name, zap.za_name,
2316 DIRENT64_NAMELEN(reclen));
2317 odp = (dirent64_t *)((intptr_t)odp + reclen);
2318 }
2319 outcount += reclen;
2320
2321 ASSERT(outcount <= bufsize);
2322
2323 /* Prefetch znode */
2324 if (prefetch)
2325 dmu_prefetch(os, objnum, 0, 0);
2326
2327 skip_entry:
2328 /*
2329 * Move to the next entry, fill in the previous offset.
2330 */
2331 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2332 zap_cursor_advance(&zc);
2333 offset = zap_cursor_serialize(&zc);
2334 } else {
2335 offset += 1;
2336 }
2337 if (next)
2338 *next = offset;
2339 }
2340 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2341
2342 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2343 iovp->iov_base += outcount;
2344 iovp->iov_len -= outcount;
2345 uio->uio_resid -= outcount;
2346 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2347 /*
2348 * Reset the pointer.
2349 */
2350 offset = uio->uio_loffset;
2351 }
2352
2353 update:
2354 zap_cursor_fini(&zc);
2355 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2356 kmem_free(outbuf, bufsize);
2357
2358 if (error == ENOENT)
2359 error = 0;
2360
2361 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2362
2363 uio->uio_loffset = offset;
2364 ZFS_EXIT(zfsvfs);
2365 return (error);
2366 }
2367
2368 ulong_t zfs_fsync_sync_cnt = 4;
2369
2370 static int
2371 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2372 {
2373 znode_t *zp = VTOZ(vp);
2374 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2375
2376 /*
2377 * Regardless of whether this is required for standards conformance,
2378 * this is the logical behavior when fsync() is called on a file with
2379 * dirty pages. We use B_ASYNC since the ZIL transactions are already
2380 * going to be pushed out as part of the zil_commit().
2381 */
2382 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2383 (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2384 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2385
2386 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2387
2388 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2389 ZFS_ENTER(zfsvfs);
2390 ZFS_VERIFY_ZP(zp);
2391 zil_commit(zfsvfs->z_log, zp->z_id);
2392 ZFS_EXIT(zfsvfs);
2393 }
2394 return (0);
2395 }
2396
2397
2398 /*
2399 * Get the requested file attributes and place them in the provided
2400 * vattr structure.
2401 *
2402 * IN: vp - vnode of file.
2403 * vap - va_mask identifies requested attributes.
2404 * If AT_XVATTR set, then optional attrs are requested
2405 * flags - ATTR_NOACLCHECK (CIFS server context)
2406 * cr - credentials of caller.
2407 * ct - caller context
2408 *
2409 * OUT: vap - attribute values.
2410 *
2411 * RETURN: 0 (always succeeds)
2412 */
2413 /* ARGSUSED */
2414 static int
2415 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2416 caller_context_t *ct)
2417 {
2418 znode_t *zp = VTOZ(vp);
2419 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2420 int error = 0;
2421 uint64_t links;
2422 uint64_t mtime[2], ctime[2];
2423 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2424 xoptattr_t *xoap = NULL;
2425 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2426 sa_bulk_attr_t bulk[2];
2427 int count = 0;
2428
2429 ZFS_ENTER(zfsvfs);
2430 ZFS_VERIFY_ZP(zp);
2431
2432 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2433
2434 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2435 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2436
2437 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2438 ZFS_EXIT(zfsvfs);
2439 return (error);
2440 }
2441
2442 /*
2443 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2444 * Also, if we are the owner don't bother, since owner should
2445 * always be allowed to read basic attributes of file.
2446 */
2447 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2448 (vap->va_uid != crgetuid(cr))) {
2449 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2450 skipaclchk, cr)) {
2451 ZFS_EXIT(zfsvfs);
2452 return (error);
2453 }
2454 }
2455
2456 /*
2457 * Return all attributes. It's cheaper to provide the answer
2458 * than to determine whether we were asked the question.
2459 */
2460
2461 mutex_enter(&zp->z_lock);
2462 vap->va_type = vp->v_type;
2463 vap->va_mode = zp->z_mode & MODEMASK;
2464 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2465 vap->va_nodeid = zp->z_id;
2466 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2467 links = zp->z_links + 1;
2468 else
2469 links = zp->z_links;
2470 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */
2471 vap->va_size = zp->z_size;
2472 vap->va_rdev = vp->v_rdev;
2473 vap->va_seq = zp->z_seq;
2474
2475 /*
2476 * Add in any requested optional attributes and the create time.
2477 * Also set the corresponding bits in the returned attribute bitmap.
2478 */
2479 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2480 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2481 xoap->xoa_archive =
2482 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2483 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2484 }
2485
2486 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2487 xoap->xoa_readonly =
2488 ((zp->z_pflags & ZFS_READONLY) != 0);
2489 XVA_SET_RTN(xvap, XAT_READONLY);
2490 }
2491
2492 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2493 xoap->xoa_system =
2494 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2495 XVA_SET_RTN(xvap, XAT_SYSTEM);
2496 }
2497
2498 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2499 xoap->xoa_hidden =
2500 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2501 XVA_SET_RTN(xvap, XAT_HIDDEN);
2502 }
2503
2504 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2505 xoap->xoa_nounlink =
2506 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2507 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2508 }
2509
2510 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2511 xoap->xoa_immutable =
2512 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2513 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2514 }
2515
2516 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2517 xoap->xoa_appendonly =
2518 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2519 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2520 }
2521
2522 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2523 xoap->xoa_nodump =
2524 ((zp->z_pflags & ZFS_NODUMP) != 0);
2525 XVA_SET_RTN(xvap, XAT_NODUMP);
2526 }
2527
2528 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2529 xoap->xoa_opaque =
2530 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2531 XVA_SET_RTN(xvap, XAT_OPAQUE);
2532 }
2533
2534 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2535 xoap->xoa_av_quarantined =
2536 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2537 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2538 }
2539
2540 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2541 xoap->xoa_av_modified =
2542 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2543 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2544 }
2545
2546 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2547 vp->v_type == VREG) {
2548 zfs_sa_get_scanstamp(zp, xvap);
2549 }
2550
2551 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2552 uint64_t times[2];
2553
2554 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2555 times, sizeof (times));
2556 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2557 XVA_SET_RTN(xvap, XAT_CREATETIME);
2558 }
2559
2560 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2561 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2562 XVA_SET_RTN(xvap, XAT_REPARSE);
2563 }
2564 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2565 xoap->xoa_generation = zp->z_gen;
2566 XVA_SET_RTN(xvap, XAT_GEN);
2567 }
2568
2569 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2570 xoap->xoa_offline =
2571 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2572 XVA_SET_RTN(xvap, XAT_OFFLINE);
2573 }
2574
2575 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2576 xoap->xoa_sparse =
2577 ((zp->z_pflags & ZFS_SPARSE) != 0);
2578 XVA_SET_RTN(xvap, XAT_SPARSE);
2579 }
2580 }
2581
2582 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2583 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2584 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2585
2586 mutex_exit(&zp->z_lock);
2587
2588 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2589
2590 if (zp->z_blksz == 0) {
2591 /*
2592 * Block size hasn't been set; suggest maximal I/O transfers.
2593 */
2594 vap->va_blksize = zfsvfs->z_max_blksz;
2595 }
2596
2597 ZFS_EXIT(zfsvfs);
2598 return (0);
2599 }
2600
2601 /*
2602 * Set the file attributes to the values contained in the
2603 * vattr structure.
2604 *
2605 * IN: vp - vnode of file to be modified.
2606 * vap - new attribute values.
2607 * If AT_XVATTR set, then optional attrs are being set
2608 * flags - ATTR_UTIME set if non-default time values provided.
2609 * - ATTR_NOACLCHECK (CIFS context only).
2610 * cr - credentials of caller.
2611 * ct - caller context
2612 *
2613 * RETURN: 0 if success
2614 * error code if failure
2615 *
2616 * Timestamps:
2617 * vp - ctime updated, mtime updated if size changed.
2618 */
2619 /* ARGSUSED */
2620 static int
2621 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2622 caller_context_t *ct)
2623 {
2624 znode_t *zp = VTOZ(vp);
2625 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2626 zilog_t *zilog;
2627 dmu_tx_t *tx;
2628 vattr_t oldva;
2629 xvattr_t tmpxvattr;
2630 uint_t mask = vap->va_mask;
2631 uint_t saved_mask = 0;
2632 int trim_mask = 0;
2633 uint64_t new_mode;
2634 uint64_t new_uid, new_gid;
2635 uint64_t xattr_obj;
2636 uint64_t mtime[2], ctime[2];
2637 znode_t *attrzp;
2638 int need_policy = FALSE;
2639 int err, err2;
2640 zfs_fuid_info_t *fuidp = NULL;
2641 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2642 xoptattr_t *xoap;
2643 zfs_acl_t *aclp;
2644 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2645 boolean_t fuid_dirtied = B_FALSE;
2646 sa_bulk_attr_t bulk[7], xattr_bulk[7];
2647 int count = 0, xattr_count = 0;
2648
2649 if (mask == 0)
2650 return (0);
2651
2652 if (mask & AT_NOSET)
2653 return (SET_ERROR(EINVAL));
2654
2655 ZFS_ENTER(zfsvfs);
2656 ZFS_VERIFY_ZP(zp);
2657
2658 zilog = zfsvfs->z_log;
2659
2660 /*
2661 * Make sure that if we have ephemeral uid/gid or xvattr specified
2662 * that file system is at proper version level
2663 */
2664
2665 if (zfsvfs->z_use_fuids == B_FALSE &&
2666 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2667 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2668 (mask & AT_XVATTR))) {
2669 ZFS_EXIT(zfsvfs);
2670 return (SET_ERROR(EINVAL));
2671 }
2672
2673 if (mask & AT_SIZE && vp->v_type == VDIR) {
2674 ZFS_EXIT(zfsvfs);
2675 return (SET_ERROR(EISDIR));
2676 }
2677
2678 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2679 ZFS_EXIT(zfsvfs);
2680 return (SET_ERROR(EINVAL));
2681 }
2682
2683 /*
2684 * If this is an xvattr_t, then get a pointer to the structure of
2685 * optional attributes. If this is NULL, then we have a vattr_t.
2686 */
2687 xoap = xva_getxoptattr(xvap);
2688
2689 xva_init(&tmpxvattr);
2690
2691 /*
2692 * Immutable files can only alter immutable bit and atime
2693 */
2694 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2695 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2696 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2697 ZFS_EXIT(zfsvfs);
2698 return (SET_ERROR(EPERM));
2699 }
2700
2701 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2702 ZFS_EXIT(zfsvfs);
2703 return (SET_ERROR(EPERM));
2704 }
2705
2706 /*
2707 * Verify timestamps doesn't overflow 32 bits.
2708 * ZFS can handle large timestamps, but 32bit syscalls can't
2709 * handle times greater than 2039. This check should be removed
2710 * once large timestamps are fully supported.
2711 */
2712 if (mask & (AT_ATIME | AT_MTIME)) {
2713 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2714 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2715 ZFS_EXIT(zfsvfs);
2716 return (SET_ERROR(EOVERFLOW));
2717 }
2718 }
2719
2720 top:
2721 attrzp = NULL;
2722 aclp = NULL;
2723
2724 /* Can this be moved to before the top label? */
2725 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2726 ZFS_EXIT(zfsvfs);
2727 return (SET_ERROR(EROFS));
2728 }
2729
2730 /*
2731 * First validate permissions
2732 */
2733
2734 if (mask & AT_SIZE) {
2735 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2736 if (err) {
2737 ZFS_EXIT(zfsvfs);
2738 return (err);
2739 }
2740 /*
2741 * XXX - Note, we are not providing any open
2742 * mode flags here (like FNDELAY), so we may
2743 * block if there are locks present... this
2744 * should be addressed in openat().
2745 */
2746 /* XXX - would it be OK to generate a log record here? */
2747 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2748 if (err) {
2749 ZFS_EXIT(zfsvfs);
2750 return (err);
2751 }
2752 }
2753
2754 if (mask & (AT_ATIME|AT_MTIME) ||
2755 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2756 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2757 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2758 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2759 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2760 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2761 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2762 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2763 skipaclchk, cr);
2764 }
2765
2766 if (mask & (AT_UID|AT_GID)) {
2767 int idmask = (mask & (AT_UID|AT_GID));
2768 int take_owner;
2769 int take_group;
2770
2771 /*
2772 * NOTE: even if a new mode is being set,
2773 * we may clear S_ISUID/S_ISGID bits.
2774 */
2775
2776 if (!(mask & AT_MODE))
2777 vap->va_mode = zp->z_mode;
2778
2779 /*
2780 * Take ownership or chgrp to group we are a member of
2781 */
2782
2783 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2784 take_group = (mask & AT_GID) &&
2785 zfs_groupmember(zfsvfs, vap->va_gid, cr);
2786
2787 /*
2788 * If both AT_UID and AT_GID are set then take_owner and
2789 * take_group must both be set in order to allow taking
2790 * ownership.
2791 *
2792 * Otherwise, send the check through secpolicy_vnode_setattr()
2793 *
2794 */
2795
2796 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2797 ((idmask == AT_UID) && take_owner) ||
2798 ((idmask == AT_GID) && take_group)) {
2799 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2800 skipaclchk, cr) == 0) {
2801 /*
2802 * Remove setuid/setgid for non-privileged users
2803 */
2804 secpolicy_setid_clear(vap, cr);
2805 trim_mask = (mask & (AT_UID|AT_GID));
2806 } else {
2807 need_policy = TRUE;
2808 }
2809 } else {
2810 need_policy = TRUE;
2811 }
2812 }
2813
2814 mutex_enter(&zp->z_lock);
2815 oldva.va_mode = zp->z_mode;
2816 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2817 if (mask & AT_XVATTR) {
2818 /*
2819 * Update xvattr mask to include only those attributes
2820 * that are actually changing.
2821 *
2822 * the bits will be restored prior to actually setting
2823 * the attributes so the caller thinks they were set.
2824 */
2825 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2826 if (xoap->xoa_appendonly !=
2827 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2828 need_policy = TRUE;
2829 } else {
2830 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2831 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2832 }
2833 }
2834
2835 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2836 if (xoap->xoa_nounlink !=
2837 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2838 need_policy = TRUE;
2839 } else {
2840 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2841 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2842 }
2843 }
2844
2845 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2846 if (xoap->xoa_immutable !=
2847 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2848 need_policy = TRUE;
2849 } else {
2850 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2851 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2852 }
2853 }
2854
2855 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2856 if (xoap->xoa_nodump !=
2857 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2858 need_policy = TRUE;
2859 } else {
2860 XVA_CLR_REQ(xvap, XAT_NODUMP);
2861 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2862 }
2863 }
2864
2865 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2866 if (xoap->xoa_av_modified !=
2867 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2868 need_policy = TRUE;
2869 } else {
2870 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2871 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2872 }
2873 }
2874
2875 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2876 if ((vp->v_type != VREG &&
2877 xoap->xoa_av_quarantined) ||
2878 xoap->xoa_av_quarantined !=
2879 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2880 need_policy = TRUE;
2881 } else {
2882 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2883 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2884 }
2885 }
2886
2887 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2888 mutex_exit(&zp->z_lock);
2889 ZFS_EXIT(zfsvfs);
2890 return (SET_ERROR(EPERM));
2891 }
2892
2893 if (need_policy == FALSE &&
2894 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2895 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2896 need_policy = TRUE;
2897 }
2898 }
2899
2900 mutex_exit(&zp->z_lock);
2901
2902 if (mask & AT_MODE) {
2903 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2904 err = secpolicy_setid_setsticky_clear(vp, vap,
2905 &oldva, cr);
2906 if (err) {
2907 ZFS_EXIT(zfsvfs);
2908 return (err);
2909 }
2910 trim_mask |= AT_MODE;
2911 } else {
2912 need_policy = TRUE;
2913 }
2914 }
2915
2916 if (need_policy) {
2917 /*
2918 * If trim_mask is set then take ownership
2919 * has been granted or write_acl is present and user
2920 * has the ability to modify mode. In that case remove
2921 * UID|GID and or MODE from mask so that
2922 * secpolicy_vnode_setattr() doesn't revoke it.
2923 */
2924
2925 if (trim_mask) {
2926 saved_mask = vap->va_mask;
2927 vap->va_mask &= ~trim_mask;
2928 }
2929 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2930 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2931 if (err) {
2932 ZFS_EXIT(zfsvfs);
2933 return (err);
2934 }
2935
2936 if (trim_mask)
2937 vap->va_mask |= saved_mask;
2938 }
2939
2940 /*
2941 * secpolicy_vnode_setattr, or take ownership may have
2942 * changed va_mask
2943 */
2944 mask = vap->va_mask;
2945
2946 if ((mask & (AT_UID | AT_GID))) {
2947 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2948 &xattr_obj, sizeof (xattr_obj));
2949
2950 if (err == 0 && xattr_obj) {
2951 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
2952 if (err)
2953 goto out2;
2954 }
2955 if (mask & AT_UID) {
2956 new_uid = zfs_fuid_create(zfsvfs,
2957 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2958 if (new_uid != zp->z_uid &&
2959 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
2960 if (attrzp)
2961 VN_RELE(ZTOV(attrzp));
2962 err = SET_ERROR(EDQUOT);
2963 goto out2;
2964 }
2965 }
2966
2967 if (mask & AT_GID) {
2968 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
2969 cr, ZFS_GROUP, &fuidp);
2970 if (new_gid != zp->z_gid &&
2971 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
2972 if (attrzp)
2973 VN_RELE(ZTOV(attrzp));
2974 err = SET_ERROR(EDQUOT);
2975 goto out2;
2976 }
2977 }
2978 }
2979 tx = dmu_tx_create(zfsvfs->z_os);
2980
2981 if (mask & AT_MODE) {
2982 uint64_t pmode = zp->z_mode;
2983 uint64_t acl_obj;
2984 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2985
2986 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
2987 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
2988 err = SET_ERROR(EPERM);
2989 goto out;
2990 }
2991
2992 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
2993 goto out;
2994
2995 mutex_enter(&zp->z_lock);
2996 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2997 /*
2998 * Are we upgrading ACL from old V0 format
2999 * to V1 format?
3000 */
3001 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3002 zfs_znode_acl_version(zp) ==
3003 ZFS_ACL_VERSION_INITIAL) {
3004 dmu_tx_hold_free(tx, acl_obj, 0,
3005 DMU_OBJECT_END);
3006 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3007 0, aclp->z_acl_bytes);
3008 } else {
3009 dmu_tx_hold_write(tx, acl_obj, 0,
3010 aclp->z_acl_bytes);
3011 }
3012 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3013 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3014 0, aclp->z_acl_bytes);
3015 }
3016 mutex_exit(&zp->z_lock);
3017 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3018 } else {
3019 if ((mask & AT_XVATTR) &&
3020 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3021 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3022 else
3023 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3024 }
3025
3026 if (attrzp) {
3027 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3028 }
3029
3030 fuid_dirtied = zfsvfs->z_fuid_dirty;
3031 if (fuid_dirtied)
3032 zfs_fuid_txhold(zfsvfs, tx);
3033
3034 zfs_sa_upgrade_txholds(tx, zp);
3035
3036 err = dmu_tx_assign(tx, TXG_NOWAIT);
3037 if (err) {
3038 if (err == ERESTART)
3039 dmu_tx_wait(tx);
3040 goto out;
3041 }
3042
3043 count = 0;
3044 /*
3045 * Set each attribute requested.
3046 * We group settings according to the locks they need to acquire.
3047 *
3048 * Note: you cannot set ctime directly, although it will be
3049 * updated as a side-effect of calling this function.
3050 */
3051
3052
3053 if (mask & (AT_UID|AT_GID|AT_MODE))
3054 mutex_enter(&zp->z_acl_lock);
3055 mutex_enter(&zp->z_lock);
3056
3057 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3058 &zp->z_pflags, sizeof (zp->z_pflags));
3059
3060 if (attrzp) {
3061 if (mask & (AT_UID|AT_GID|AT_MODE))
3062 mutex_enter(&attrzp->z_acl_lock);
3063 mutex_enter(&attrzp->z_lock);
3064 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3065 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3066 sizeof (attrzp->z_pflags));
3067 }
3068
3069 if (mask & (AT_UID|AT_GID)) {
3070
3071 if (mask & AT_UID) {
3072 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3073 &new_uid, sizeof (new_uid));
3074 zp->z_uid = new_uid;
3075 if (attrzp) {
3076 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3077 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3078 sizeof (new_uid));
3079 attrzp->z_uid = new_uid;
3080 }
3081 }
3082
3083 if (mask & AT_GID) {
3084 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3085 NULL, &new_gid, sizeof (new_gid));
3086 zp->z_gid = new_gid;
3087 if (attrzp) {
3088 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3089 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3090 sizeof (new_gid));
3091 attrzp->z_gid = new_gid;
3092 }
3093 }
3094 if (!(mask & AT_MODE)) {
3095 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3096 NULL, &new_mode, sizeof (new_mode));
3097 new_mode = zp->z_mode;
3098 }
3099 err = zfs_acl_chown_setattr(zp);
3100 ASSERT(err == 0);
3101 if (attrzp) {
3102 err = zfs_acl_chown_setattr(attrzp);
3103 ASSERT(err == 0);
3104 }
3105 }
3106
3107 if (mask & AT_MODE) {
3108 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3109 &new_mode, sizeof (new_mode));
3110 zp->z_mode = new_mode;
3111 ASSERT3U((uintptr_t)aclp, !=, NULL);
3112 err = zfs_aclset_common(zp, aclp, cr, tx);
3113 ASSERT0(err);
3114 if (zp->z_acl_cached)
3115 zfs_acl_free(zp->z_acl_cached);
3116 zp->z_acl_cached = aclp;
3117 aclp = NULL;
3118 }
3119
3120
3121 if (mask & AT_ATIME) {
3122 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3123 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3124 &zp->z_atime, sizeof (zp->z_atime));
3125 }
3126
3127 if (mask & AT_MTIME) {
3128 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3129 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3130 mtime, sizeof (mtime));
3131 }
3132
3133 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3134 if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3135 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3136 NULL, mtime, sizeof (mtime));
3137 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3138 &ctime, sizeof (ctime));
3139 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3140 B_TRUE);
3141 } else if (mask != 0) {
3142 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3143 &ctime, sizeof (ctime));
3144 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3145 B_TRUE);
3146 if (attrzp) {
3147 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3148 SA_ZPL_CTIME(zfsvfs), NULL,
3149 &ctime, sizeof (ctime));
3150 zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3151 mtime, ctime, B_TRUE);
3152 }
3153 }
3154 /*
3155 * Do this after setting timestamps to prevent timestamp
3156 * update from toggling bit
3157 */
3158
3159 if (xoap && (mask & AT_XVATTR)) {
3160
3161 /*
3162 * restore trimmed off masks
3163 * so that return masks can be set for caller.
3164 */
3165
3166 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3167 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3168 }
3169 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3170 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3171 }
3172 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3173 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3174 }
3175 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3176 XVA_SET_REQ(xvap, XAT_NODUMP);
3177 }
3178 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3179 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3180 }
3181 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3182 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3183 }
3184
3185 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3186 ASSERT(vp->v_type == VREG);
3187
3188 zfs_xvattr_set(zp, xvap, tx);
3189 }
3190
3191 if (fuid_dirtied)
3192 zfs_fuid_sync(zfsvfs, tx);
3193
3194 if (mask != 0)
3195 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3196
3197 mutex_exit(&zp->z_lock);
3198 if (mask & (AT_UID|AT_GID|AT_MODE))
3199 mutex_exit(&zp->z_acl_lock);
3200
3201 if (attrzp) {
3202 if (mask & (AT_UID|AT_GID|AT_MODE))
3203 mutex_exit(&attrzp->z_acl_lock);
3204 mutex_exit(&attrzp->z_lock);
3205 }
3206 out:
3207 if (err == 0 && attrzp) {
3208 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3209 xattr_count, tx);
3210 ASSERT(err2 == 0);
3211 }
3212
3213 if (attrzp)
3214 VN_RELE(ZTOV(attrzp));
3215 if (aclp)
3216 zfs_acl_free(aclp);
3217
3218 if (fuidp) {
3219 zfs_fuid_info_free(fuidp);
3220 fuidp = NULL;
3221 }
3222
3223 if (err) {
3224 dmu_tx_abort(tx);
3225 if (err == ERESTART)
3226 goto top;
3227 } else {
3228 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3229 dmu_tx_commit(tx);
3230 }
3231
3232 out2:
3233 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3234 zil_commit(zilog, 0);
3235
3236 ZFS_EXIT(zfsvfs);
3237 return (err);
3238 }
3239
3240 typedef struct zfs_zlock {
3241 krwlock_t *zl_rwlock; /* lock we acquired */
3242 znode_t *zl_znode; /* znode we held */
3243 struct zfs_zlock *zl_next; /* next in list */
3244 } zfs_zlock_t;
3245
3246 /*
3247 * Drop locks and release vnodes that were held by zfs_rename_lock().
3248 */
3249 static void
3250 zfs_rename_unlock(zfs_zlock_t **zlpp)
3251 {
3252 zfs_zlock_t *zl;
3253
3254 while ((zl = *zlpp) != NULL) {
3255 if (zl->zl_znode != NULL)
3256 VN_RELE(ZTOV(zl->zl_znode));
3257 rw_exit(zl->zl_rwlock);
3258 *zlpp = zl->zl_next;
3259 kmem_free(zl, sizeof (*zl));
3260 }
3261 }
3262
3263 /*
3264 * Search back through the directory tree, using the ".." entries.
3265 * Lock each directory in the chain to prevent concurrent renames.
3266 * Fail any attempt to move a directory into one of its own descendants.
3267 * XXX - z_parent_lock can overlap with map or grow locks
3268 */
3269 static int
3270 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3271 {
3272 zfs_zlock_t *zl;
3273 znode_t *zp = tdzp;
3274 uint64_t rootid = zp->z_zfsvfs->z_root;
3275 uint64_t oidp = zp->z_id;
3276 krwlock_t *rwlp = &szp->z_parent_lock;
3277 krw_t rw = RW_WRITER;
3278
3279 /*
3280 * First pass write-locks szp and compares to zp->z_id.
3281 * Later passes read-lock zp and compare to zp->z_parent.
3282 */
3283 do {
3284 if (!rw_tryenter(rwlp, rw)) {
3285 /*
3286 * Another thread is renaming in this path.
3287 * Note that if we are a WRITER, we don't have any
3288 * parent_locks held yet.
3289 */
3290 if (rw == RW_READER && zp->z_id > szp->z_id) {
3291 /*
3292 * Drop our locks and restart
3293 */
3294 zfs_rename_unlock(&zl);
3295 *zlpp = NULL;
3296 zp = tdzp;
3297 oidp = zp->z_id;
3298 rwlp = &szp->z_parent_lock;
3299 rw = RW_WRITER;
3300 continue;
3301 } else {
3302 /*
3303 * Wait for other thread to drop its locks
3304 */
3305 rw_enter(rwlp, rw);
3306 }
3307 }
3308
3309 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3310 zl->zl_rwlock = rwlp;
3311 zl->zl_znode = NULL;
3312 zl->zl_next = *zlpp;
3313 *zlpp = zl;
3314
3315 if (oidp == szp->z_id) /* We're a descendant of szp */
3316 return (SET_ERROR(EINVAL));
3317
3318 if (oidp == rootid) /* We've hit the top */
3319 return (0);
3320
3321 if (rw == RW_READER) { /* i.e. not the first pass */
3322 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3323 if (error)
3324 return (error);
3325 zl->zl_znode = zp;
3326 }
3327 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3328 &oidp, sizeof (oidp));
3329 rwlp = &zp->z_parent_lock;
3330 rw = RW_READER;
3331
3332 } while (zp->z_id != sdzp->z_id);
3333
3334 return (0);
3335 }
3336
3337 /*
3338 * Move an entry from the provided source directory to the target
3339 * directory. Change the entry name as indicated.
3340 *
3341 * IN: sdvp - Source directory containing the "old entry".
3342 * snm - Old entry name.
3343 * tdvp - Target directory to contain the "new entry".
3344 * tnm - New entry name.
3345 * cr - credentials of caller.
3346 * ct - caller context
3347 * flags - case flags
3348 *
3349 * RETURN: 0 if success
3350 * error code if failure
3351 *
3352 * Timestamps:
3353 * sdvp,tdvp - ctime|mtime updated
3354 */
3355 /*ARGSUSED*/
3356 static int
3357 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3358 caller_context_t *ct, int flags)
3359 {
3360 znode_t *tdzp, *szp, *tzp;
3361 znode_t *sdzp = VTOZ(sdvp);
3362 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs;
3363 zilog_t *zilog;
3364 vnode_t *realvp;
3365 zfs_dirlock_t *sdl, *tdl;
3366 dmu_tx_t *tx;
3367 zfs_zlock_t *zl;
3368 int cmp, serr, terr;
3369 int error = 0;
3370 int zflg = 0;
3371
3372 ZFS_ENTER(zfsvfs);
3373 ZFS_VERIFY_ZP(sdzp);
3374 zilog = zfsvfs->z_log;
3375
3376 /*
3377 * Make sure we have the real vp for the target directory.
3378 */
3379 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3380 tdvp = realvp;
3381
3382 if (tdvp->v_vfsp != sdvp->v_vfsp || zfsctl_is_node(tdvp)) {
3383 ZFS_EXIT(zfsvfs);
3384 return (SET_ERROR(EXDEV));
3385 }
3386
3387 tdzp = VTOZ(tdvp);
3388 ZFS_VERIFY_ZP(tdzp);
3389 if (zfsvfs->z_utf8 && u8_validate(tnm,
3390 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3391 ZFS_EXIT(zfsvfs);
3392 return (SET_ERROR(EILSEQ));
3393 }
3394
3395 if (flags & FIGNORECASE)
3396 zflg |= ZCILOOK;
3397
3398 top:
3399 szp = NULL;
3400 tzp = NULL;
3401 zl = NULL;
3402
3403 /*
3404 * This is to prevent the creation of links into attribute space
3405 * by renaming a linked file into/outof an attribute directory.
3406 * See the comment in zfs_link() for why this is considered bad.
3407 */
3408 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3409 ZFS_EXIT(zfsvfs);
3410 return (SET_ERROR(EINVAL));
3411 }
3412
3413 /*
3414 * Lock source and target directory entries. To prevent deadlock,
3415 * a lock ordering must be defined. We lock the directory with
3416 * the smallest object id first, or if it's a tie, the one with
3417 * the lexically first name.
3418 */
3419 if (sdzp->z_id < tdzp->z_id) {
3420 cmp = -1;
3421 } else if (sdzp->z_id > tdzp->z_id) {
3422 cmp = 1;
3423 } else {
3424 /*
3425 * First compare the two name arguments without
3426 * considering any case folding.
3427 */
3428 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3429
3430 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3431 ASSERT(error == 0 || !zfsvfs->z_utf8);
3432 if (cmp == 0) {
3433 /*
3434 * POSIX: "If the old argument and the new argument
3435 * both refer to links to the same existing file,
3436 * the rename() function shall return successfully
3437 * and perform no other action."
3438 */
3439 ZFS_EXIT(zfsvfs);
3440 return (0);
3441 }
3442 /*
3443 * If the file system is case-folding, then we may
3444 * have some more checking to do. A case-folding file
3445 * system is either supporting mixed case sensitivity
3446 * access or is completely case-insensitive. Note
3447 * that the file system is always case preserving.
3448 *
3449 * In mixed sensitivity mode case sensitive behavior
3450 * is the default. FIGNORECASE must be used to
3451 * explicitly request case insensitive behavior.
3452 *
3453 * If the source and target names provided differ only
3454 * by case (e.g., a request to rename 'tim' to 'Tim'),
3455 * we will treat this as a special case in the
3456 * case-insensitive mode: as long as the source name
3457 * is an exact match, we will allow this to proceed as
3458 * a name-change request.
3459 */
3460 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3461 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3462 flags & FIGNORECASE)) &&
3463 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3464 &error) == 0) {
3465 /*
3466 * case preserving rename request, require exact
3467 * name matches
3468 */
3469 zflg |= ZCIEXACT;
3470 zflg &= ~ZCILOOK;
3471 }
3472 }
3473
3474 /*
3475 * If the source and destination directories are the same, we should
3476 * grab the z_name_lock of that directory only once.
3477 */
3478 if (sdzp == tdzp) {
3479 zflg |= ZHAVELOCK;
3480 rw_enter(&sdzp->z_name_lock, RW_READER);
3481 }
3482
3483 if (cmp < 0) {
3484 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3485 ZEXISTS | zflg, NULL, NULL);
3486 terr = zfs_dirent_lock(&tdl,
3487 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3488 } else {
3489 terr = zfs_dirent_lock(&tdl,
3490 tdzp, tnm, &tzp, zflg, NULL, NULL);
3491 serr = zfs_dirent_lock(&sdl,
3492 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3493 NULL, NULL);
3494 }
3495
3496 if (serr) {
3497 /*
3498 * Source entry invalid or not there.
3499 */
3500 if (!terr) {
3501 zfs_dirent_unlock(tdl);
3502 if (tzp)
3503 VN_RELE(ZTOV(tzp));
3504 }
3505
3506 if (sdzp == tdzp)
3507 rw_exit(&sdzp->z_name_lock);
3508
3509 if (strcmp(snm, "..") == 0)
3510 serr = SET_ERROR(EINVAL);
3511 ZFS_EXIT(zfsvfs);
3512 return (serr);
3513 }
3514 if (terr) {
3515 zfs_dirent_unlock(sdl);
3516 VN_RELE(ZTOV(szp));
3517
3518 if (sdzp == tdzp)
3519 rw_exit(&sdzp->z_name_lock);
3520
3521 if (strcmp(tnm, "..") == 0)
3522 terr = SET_ERROR(EINVAL);
3523 ZFS_EXIT(zfsvfs);
3524 return (terr);
3525 }
3526
3527 /*
3528 * Must have write access at the source to remove the old entry
3529 * and write access at the target to create the new entry.
3530 * Note that if target and source are the same, this can be
3531 * done in a single check.
3532 */
3533
3534 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3535 goto out;
3536
3537 if (ZTOV(szp)->v_type == VDIR) {
3538 /*
3539 * Check to make sure rename is valid.
3540 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3541 */
3542 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3543 goto out;
3544 }
3545
3546 /*
3547 * Does target exist?
3548 */
3549 if (tzp) {
3550 /*
3551 * Source and target must be the same type.
3552 */
3553 if (ZTOV(szp)->v_type == VDIR) {
3554 if (ZTOV(tzp)->v_type != VDIR) {
3555 error = SET_ERROR(ENOTDIR);
3556 goto out;
3557 }
3558 } else {
3559 if (ZTOV(tzp)->v_type == VDIR) {
3560 error = SET_ERROR(EISDIR);
3561 goto out;
3562 }
3563 }
3564 /*
3565 * POSIX dictates that when the source and target
3566 * entries refer to the same file object, rename
3567 * must do nothing and exit without error.
3568 */
3569 if (szp->z_id == tzp->z_id) {
3570 error = 0;
3571 goto out;
3572 }
3573 }
3574
3575 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3576 if (tzp)
3577 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3578
3579 /*
3580 * notify the target directory if it is not the same
3581 * as source directory.
3582 */
3583 if (tdvp != sdvp) {
3584 vnevent_rename_dest_dir(tdvp, ct);
3585 }
3586
3587 tx = dmu_tx_create(zfsvfs->z_os);
3588 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3589 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3590 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3591 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3592 if (sdzp != tdzp) {
3593 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3594 zfs_sa_upgrade_txholds(tx, tdzp);
3595 }
3596 if (tzp) {
3597 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3598 zfs_sa_upgrade_txholds(tx, tzp);
3599 }
3600
3601 zfs_sa_upgrade_txholds(tx, szp);
3602 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3603 error = dmu_tx_assign(tx, TXG_NOWAIT);
3604 if (error) {
3605 if (zl != NULL)
3606 zfs_rename_unlock(&zl);
3607 zfs_dirent_unlock(sdl);
3608 zfs_dirent_unlock(tdl);
3609
3610 if (sdzp == tdzp)
3611 rw_exit(&sdzp->z_name_lock);
3612
3613 VN_RELE(ZTOV(szp));
3614 if (tzp)
3615 VN_RELE(ZTOV(tzp));
3616 if (error == ERESTART) {
3617 dmu_tx_wait(tx);
3618 dmu_tx_abort(tx);
3619 goto top;
3620 }
3621 dmu_tx_abort(tx);
3622 ZFS_EXIT(zfsvfs);
3623 return (error);
3624 }
3625
3626 if (tzp) /* Attempt to remove the existing target */
3627 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3628
3629 if (error == 0) {
3630 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3631 if (error == 0) {
3632 szp->z_pflags |= ZFS_AV_MODIFIED;
3633
3634 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3635 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3636 ASSERT0(error);
3637
3638 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3639 if (error == 0) {
3640 zfs_log_rename(zilog, tx, TX_RENAME |
3641 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3642 sdl->dl_name, tdzp, tdl->dl_name, szp);
3643
3644 /*
3645 * Update path information for the target vnode
3646 */
3647 vn_renamepath(tdvp, ZTOV(szp), tnm,
3648 strlen(tnm));
3649 } else {
3650 /*
3651 * At this point, we have successfully created
3652 * the target name, but have failed to remove
3653 * the source name. Since the create was done
3654 * with the ZRENAMING flag, there are
3655 * complications; for one, the link count is
3656 * wrong. The easiest way to deal with this
3657 * is to remove the newly created target, and
3658 * return the original error. This must
3659 * succeed; fortunately, it is very unlikely to
3660 * fail, since we just created it.
3661 */
3662 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3663 ZRENAMING, NULL), ==, 0);
3664 }
3665 }
3666 }
3667
3668 dmu_tx_commit(tx);
3669 out:
3670 if (zl != NULL)
3671 zfs_rename_unlock(&zl);
3672
3673 zfs_dirent_unlock(sdl);
3674 zfs_dirent_unlock(tdl);
3675
3676 if (sdzp == tdzp)
3677 rw_exit(&sdzp->z_name_lock);
3678
3679
3680 VN_RELE(ZTOV(szp));
3681 if (tzp)
3682 VN_RELE(ZTOV(tzp));
3683
3684 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3685 zil_commit(zilog, 0);
3686
3687 ZFS_EXIT(zfsvfs);
3688 return (error);
3689 }
3690
3691 /*
3692 * Insert the indicated symbolic reference entry into the directory.
3693 *
3694 * IN: dvp - Directory to contain new symbolic link.
3695 * link - Name for new symlink entry.
3696 * vap - Attributes of new entry.
3697 * target - Target path of new symlink.
3698 * cr - credentials of caller.
3699 * ct - caller context
3700 * flags - case flags
3701 *
3702 * RETURN: 0 if success
3703 * error code if failure
3704 *
3705 * Timestamps:
3706 * dvp - ctime|mtime updated
3707 */
3708 /*ARGSUSED*/
3709 static int
3710 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3711 caller_context_t *ct, int flags)
3712 {
3713 znode_t *zp, *dzp = VTOZ(dvp);
3714 zfs_dirlock_t *dl;
3715 dmu_tx_t *tx;
3716 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3717 zilog_t *zilog;
3718 uint64_t len = strlen(link);
3719 int error;
3720 int zflg = ZNEW;
3721 zfs_acl_ids_t acl_ids;
3722 boolean_t fuid_dirtied;
3723 uint64_t txtype = TX_SYMLINK;
3724
3725 ASSERT(vap->va_type == VLNK);
3726
3727 ZFS_ENTER(zfsvfs);
3728 ZFS_VERIFY_ZP(dzp);
3729 zilog = zfsvfs->z_log;
3730
3731 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3732 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3733 ZFS_EXIT(zfsvfs);
3734 return (SET_ERROR(EILSEQ));
3735 }
3736 if (flags & FIGNORECASE)
3737 zflg |= ZCILOOK;
3738
3739 if (len > MAXPATHLEN) {
3740 ZFS_EXIT(zfsvfs);
3741 return (SET_ERROR(ENAMETOOLONG));
3742 }
3743
3744 if ((error = zfs_acl_ids_create(dzp, 0,
3745 vap, cr, NULL, &acl_ids)) != 0) {
3746 ZFS_EXIT(zfsvfs);
3747 return (error);
3748 }
3749 top:
3750 /*
3751 * Attempt to lock directory; fail if entry already exists.
3752 */
3753 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3754 if (error) {
3755 zfs_acl_ids_free(&acl_ids);
3756 ZFS_EXIT(zfsvfs);
3757 return (error);
3758 }
3759
3760 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3761 zfs_acl_ids_free(&acl_ids);
3762 zfs_dirent_unlock(dl);
3763 ZFS_EXIT(zfsvfs);
3764 return (error);
3765 }
3766
3767 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3768 zfs_acl_ids_free(&acl_ids);
3769 zfs_dirent_unlock(dl);
3770 ZFS_EXIT(zfsvfs);
3771 return (SET_ERROR(EDQUOT));
3772 }
3773 tx = dmu_tx_create(zfsvfs->z_os);
3774 fuid_dirtied = zfsvfs->z_fuid_dirty;
3775 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3776 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3777 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3778 ZFS_SA_BASE_ATTR_SIZE + len);
3779 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3780 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3781 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3782 acl_ids.z_aclp->z_acl_bytes);
3783 }
3784 if (fuid_dirtied)
3785 zfs_fuid_txhold(zfsvfs, tx);
3786 error = dmu_tx_assign(tx, TXG_NOWAIT);
3787 if (error) {
3788 zfs_dirent_unlock(dl);
3789 if (error == ERESTART) {
3790 dmu_tx_wait(tx);
3791 dmu_tx_abort(tx);
3792 goto top;
3793 }
3794 zfs_acl_ids_free(&acl_ids);
3795 dmu_tx_abort(tx);
3796 ZFS_EXIT(zfsvfs);
3797 return (error);
3798 }
3799
3800 /*
3801 * Create a new object for the symlink.
3802 * for version 4 ZPL datsets the symlink will be an SA attribute
3803 */
3804 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3805
3806 if (fuid_dirtied)
3807 zfs_fuid_sync(zfsvfs, tx);
3808
3809 mutex_enter(&zp->z_lock);
3810 if (zp->z_is_sa)
3811 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3812 link, len, tx);
3813 else
3814 zfs_sa_symlink(zp, link, len, tx);
3815 mutex_exit(&zp->z_lock);
3816
3817 zp->z_size = len;
3818 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3819 &zp->z_size, sizeof (zp->z_size), tx);
3820 /*
3821 * Insert the new object into the directory.
3822 */
3823 (void) zfs_link_create(dl, zp, tx, ZNEW);
3824
3825 if (flags & FIGNORECASE)
3826 txtype |= TX_CI;
3827 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3828
3829 zfs_acl_ids_free(&acl_ids);
3830
3831 dmu_tx_commit(tx);
3832
3833 zfs_dirent_unlock(dl);
3834
3835 VN_RELE(ZTOV(zp));
3836
3837 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3838 zil_commit(zilog, 0);
3839
3840 ZFS_EXIT(zfsvfs);
3841 return (error);
3842 }
3843
3844 /*
3845 * Return, in the buffer contained in the provided uio structure,
3846 * the symbolic path referred to by vp.
3847 *
3848 * IN: vp - vnode of symbolic link.
3849 * uoip - structure to contain the link path.
3850 * cr - credentials of caller.
3851 * ct - caller context
3852 *
3853 * OUT: uio - structure to contain the link path.
3854 *
3855 * RETURN: 0 if success
3856 * error code if failure
3857 *
3858 * Timestamps:
3859 * vp - atime updated
3860 */
3861 /* ARGSUSED */
3862 static int
3863 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3864 {
3865 znode_t *zp = VTOZ(vp);
3866 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3867 int error;
3868
3869 ZFS_ENTER(zfsvfs);
3870 ZFS_VERIFY_ZP(zp);
3871
3872 mutex_enter(&zp->z_lock);
3873 if (zp->z_is_sa)
3874 error = sa_lookup_uio(zp->z_sa_hdl,
3875 SA_ZPL_SYMLINK(zfsvfs), uio);
3876 else
3877 error = zfs_sa_readlink(zp, uio);
3878 mutex_exit(&zp->z_lock);
3879
3880 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3881
3882 ZFS_EXIT(zfsvfs);
3883 return (error);
3884 }
3885
3886 /*
3887 * Insert a new entry into directory tdvp referencing svp.
3888 *
3889 * IN: tdvp - Directory to contain new entry.
3890 * svp - vnode of new entry.
3891 * name - name of new entry.
3892 * cr - credentials of caller.
3893 * ct - caller context
3894 *
3895 * RETURN: 0 if success
3896 * error code if failure
3897 *
3898 * Timestamps:
3899 * tdvp - ctime|mtime updated
3900 * svp - ctime updated
3901 */
3902 /* ARGSUSED */
3903 static int
3904 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3905 caller_context_t *ct, int flags)
3906 {
3907 znode_t *dzp = VTOZ(tdvp);
3908 znode_t *tzp, *szp;
3909 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3910 zilog_t *zilog;
3911 zfs_dirlock_t *dl;
3912 dmu_tx_t *tx;
3913 vnode_t *realvp;
3914 int error;
3915 int zf = ZNEW;
3916 uint64_t parent;
3917 uid_t owner;
3918
3919 ASSERT(tdvp->v_type == VDIR);
3920
3921 ZFS_ENTER(zfsvfs);
3922 ZFS_VERIFY_ZP(dzp);
3923 zilog = zfsvfs->z_log;
3924
3925 if (VOP_REALVP(svp, &realvp, ct) == 0)
3926 svp = realvp;
3927
3928 /*
3929 * POSIX dictates that we return EPERM here.
3930 * Better choices include ENOTSUP or EISDIR.
3931 */
3932 if (svp->v_type == VDIR) {
3933 ZFS_EXIT(zfsvfs);
3934 return (SET_ERROR(EPERM));
3935 }
3936
3937 if (svp->v_vfsp != tdvp->v_vfsp || zfsctl_is_node(svp)) {
3938 ZFS_EXIT(zfsvfs);
3939 return (SET_ERROR(EXDEV));
3940 }
3941
3942 szp = VTOZ(svp);
3943 ZFS_VERIFY_ZP(szp);
3944
3945 /* Prevent links to .zfs/shares files */
3946
3947 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3948 &parent, sizeof (uint64_t))) != 0) {
3949 ZFS_EXIT(zfsvfs);
3950 return (error);
3951 }
3952 if (parent == zfsvfs->z_shares_dir) {
3953 ZFS_EXIT(zfsvfs);
3954 return (SET_ERROR(EPERM));
3955 }
3956
3957 if (zfsvfs->z_utf8 && u8_validate(name,
3958 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3959 ZFS_EXIT(zfsvfs);
3960 return (SET_ERROR(EILSEQ));
3961 }
3962 if (flags & FIGNORECASE)
3963 zf |= ZCILOOK;
3964
3965 /*
3966 * We do not support links between attributes and non-attributes
3967 * because of the potential security risk of creating links
3968 * into "normal" file space in order to circumvent restrictions
3969 * imposed in attribute space.
3970 */
3971 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
3972 ZFS_EXIT(zfsvfs);
3973 return (SET_ERROR(EINVAL));
3974 }
3975
3976
3977 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
3978 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3979 ZFS_EXIT(zfsvfs);
3980 return (SET_ERROR(EPERM));
3981 }
3982
3983 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3984 ZFS_EXIT(zfsvfs);
3985 return (error);
3986 }
3987
3988 top:
3989 /*
3990 * Attempt to lock directory; fail if entry already exists.
3991 */
3992 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
3993 if (error) {
3994 ZFS_EXIT(zfsvfs);
3995 return (error);
3996 }
3997
3998 tx = dmu_tx_create(zfsvfs->z_os);
3999 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4000 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4001 zfs_sa_upgrade_txholds(tx, szp);
4002 zfs_sa_upgrade_txholds(tx, dzp);
4003 error = dmu_tx_assign(tx, TXG_NOWAIT);
4004 if (error) {
4005 zfs_dirent_unlock(dl);
4006 if (error == ERESTART) {
4007 dmu_tx_wait(tx);
4008 dmu_tx_abort(tx);
4009 goto top;
4010 }
4011 dmu_tx_abort(tx);
4012 ZFS_EXIT(zfsvfs);
4013 return (error);
4014 }
4015
4016 error = zfs_link_create(dl, szp, tx, 0);
4017
4018 if (error == 0) {
4019 uint64_t txtype = TX_LINK;
4020 if (flags & FIGNORECASE)
4021 txtype |= TX_CI;
4022 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4023 }
4024
4025 dmu_tx_commit(tx);
4026
4027 zfs_dirent_unlock(dl);
4028
4029 if (error == 0) {
4030 vnevent_link(svp, ct);
4031 }
4032
4033 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4034 zil_commit(zilog, 0);
4035
4036 ZFS_EXIT(zfsvfs);
4037 return (error);
4038 }
4039
4040 /*
4041 * zfs_null_putapage() is used when the file system has been force
4042 * unmounted. It just drops the pages.
4043 */
4044 /* ARGSUSED */
4045 static int
4046 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4047 size_t *lenp, int flags, cred_t *cr)
4048 {
4049 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4050 return (0);
4051 }
4052
4053 /*
4054 * Push a page out to disk, klustering if possible.
4055 *
4056 * IN: vp - file to push page to.
4057 * pp - page to push.
4058 * flags - additional flags.
4059 * cr - credentials of caller.
4060 *
4061 * OUT: offp - start of range pushed.
4062 * lenp - len of range pushed.
4063 *
4064 * RETURN: 0 if success
4065 * error code if failure
4066 *
4067 * NOTE: callers must have locked the page to be pushed. On
4068 * exit, the page (and all other pages in the kluster) must be
4069 * unlocked.
4070 */
4071 /* ARGSUSED */
4072 static int
4073 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4074 size_t *lenp, int flags, cred_t *cr)
4075 {
4076 znode_t *zp = VTOZ(vp);
4077 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4078 dmu_tx_t *tx;
4079 u_offset_t off, koff;
4080 size_t len, klen;
4081 int err;
4082
4083 off = pp->p_offset;
4084 len = PAGESIZE;
4085 /*
4086 * If our blocksize is bigger than the page size, try to kluster
4087 * multiple pages so that we write a full block (thus avoiding
4088 * a read-modify-write).
4089 */
4090 if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4091 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4092 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4093 ASSERT(koff <= zp->z_size);
4094 if (koff + klen > zp->z_size)
4095 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4096 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4097 }
4098 ASSERT3U(btop(len), ==, btopr(len));
4099
4100 /*
4101 * Can't push pages past end-of-file.
4102 */
4103 if (off >= zp->z_size) {
4104 /* ignore all pages */
4105 err = 0;
4106 goto out;
4107 } else if (off + len > zp->z_size) {
4108 int npages = btopr(zp->z_size - off);
4109 page_t *trunc;
4110
4111 page_list_break(&pp, &trunc, npages);
4112 /* ignore pages past end of file */
4113 if (trunc)
4114 pvn_write_done(trunc, flags);
4115 len = zp->z_size - off;
4116 }
4117
4118 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4119 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4120 err = SET_ERROR(EDQUOT);
4121 goto out;
4122 }
4123 top:
4124 tx = dmu_tx_create(zfsvfs->z_os);
4125 dmu_tx_hold_write(tx, zp->z_id, off, len);
4126
4127 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4128 zfs_sa_upgrade_txholds(tx, zp);
4129 err = dmu_tx_assign(tx, TXG_NOWAIT);
4130 if (err != 0) {
4131 if (err == ERESTART) {
4132 dmu_tx_wait(tx);
4133 dmu_tx_abort(tx);
4134 goto top;
4135 }
4136 dmu_tx_abort(tx);
4137 goto out;
4138 }
4139
4140 if (zp->z_blksz <= PAGESIZE) {
4141 caddr_t va = zfs_map_page(pp, S_READ);
4142 ASSERT3U(len, <=, PAGESIZE);
4143 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4144 zfs_unmap_page(pp, va);
4145 } else {
4146 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4147 }
4148
4149 if (err == 0) {
4150 uint64_t mtime[2], ctime[2];
4151 sa_bulk_attr_t bulk[3];
4152 int count = 0;
4153
4154 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4155 &mtime, 16);
4156 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4157 &ctime, 16);
4158 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4159 &zp->z_pflags, 8);
4160 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4161 B_TRUE);
4162 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4163 }
4164 dmu_tx_commit(tx);
4165
4166 out:
4167 pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4168 if (offp)
4169 *offp = off;
4170 if (lenp)
4171 *lenp = len;
4172
4173 return (err);
4174 }
4175
4176 /*
4177 * Copy the portion of the file indicated from pages into the file.
4178 * The pages are stored in a page list attached to the files vnode.
4179 *
4180 * IN: vp - vnode of file to push page data to.
4181 * off - position in file to put data.
4182 * len - amount of data to write.
4183 * flags - flags to control the operation.
4184 * cr - credentials of caller.
4185 * ct - caller context.
4186 *
4187 * RETURN: 0 if success
4188 * error code if failure
4189 *
4190 * Timestamps:
4191 * vp - ctime|mtime updated
4192 */
4193 /*ARGSUSED*/
4194 static int
4195 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4196 caller_context_t *ct)
4197 {
4198 znode_t *zp = VTOZ(vp);
4199 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4200 page_t *pp;
4201 size_t io_len;
4202 u_offset_t io_off;
4203 uint_t blksz;
4204 rl_t *rl;
4205 int error = 0;
4206
4207 ZFS_ENTER(zfsvfs);
4208 ZFS_VERIFY_ZP(zp);
4209
4210 /*
4211 * There's nothing to do if no data is cached.
4212 */
4213 if (!vn_has_cached_data(vp)) {
4214 ZFS_EXIT(zfsvfs);
4215 return (0);
4216 }
4217
4218 /*
4219 * Align this request to the file block size in case we kluster.
4220 * XXX - this can result in pretty aggresive locking, which can
4221 * impact simultanious read/write access. One option might be
4222 * to break up long requests (len == 0) into block-by-block
4223 * operations to get narrower locking.
4224 */
4225 blksz = zp->z_blksz;
4226 if (ISP2(blksz))
4227 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4228 else
4229 io_off = 0;
4230 if (len > 0 && ISP2(blksz))
4231 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4232 else
4233 io_len = 0;
4234
4235 if (io_len == 0) {
4236 /*
4237 * Search the entire vp list for pages >= io_off.
4238 */
4239 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4240 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4241 goto out;
4242 }
4243 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4244
4245 if (off > zp->z_size) {
4246 /* past end of file */
4247 zfs_range_unlock(rl);
4248 ZFS_EXIT(zfsvfs);
4249 return (0);
4250 }
4251
4252 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4253
4254 for (off = io_off; io_off < off + len; io_off += io_len) {
4255 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4256 pp = page_lookup(vp, io_off,
4257 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4258 } else {
4259 pp = page_lookup_nowait(vp, io_off,
4260 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4261 }
4262
4263 if (pp != NULL && pvn_getdirty(pp, flags)) {
4264 int err;
4265
4266 /*
4267 * Found a dirty page to push
4268 */
4269 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4270 if (err)
4271 error = err;
4272 } else {
4273 io_len = PAGESIZE;
4274 }
4275 }
4276 out:
4277 zfs_range_unlock(rl);
4278 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4279 zil_commit(zfsvfs->z_log, zp->z_id);
4280 ZFS_EXIT(zfsvfs);
4281 return (error);
4282 }
4283
4284 /*ARGSUSED*/
4285 void
4286 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4287 {
4288 znode_t *zp = VTOZ(vp);
4289 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4290 int error;
4291
4292 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4293 if (zp->z_sa_hdl == NULL) {
4294 /*
4295 * The fs has been unmounted, or we did a
4296 * suspend/resume and this file no longer exists.
4297 */
4298 if (vn_has_cached_data(vp)) {
4299 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4300 B_INVAL, cr);
4301 }
4302
4303 mutex_enter(&zp->z_lock);
4304 mutex_enter(&vp->v_lock);
4305 ASSERT(vp->v_count == 1);
4306 vp->v_count = 0;
4307 mutex_exit(&vp->v_lock);
4308 mutex_exit(&zp->z_lock);
4309 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4310 zfs_znode_free(zp);
4311 return;
4312 }
4313
4314 /*
4315 * Attempt to push any data in the page cache. If this fails
4316 * we will get kicked out later in zfs_zinactive().
4317 */
4318 if (vn_has_cached_data(vp)) {
4319 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4320 cr);
4321 }
4322
4323 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4324 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4325
4326 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4327 zfs_sa_upgrade_txholds(tx, zp);
4328 error = dmu_tx_assign(tx, TXG_WAIT);
4329 if (error) {
4330 dmu_tx_abort(tx);
4331 } else {
4332 mutex_enter(&zp->z_lock);
4333 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4334 (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4335 zp->z_atime_dirty = 0;
4336 mutex_exit(&zp->z_lock);
4337 dmu_tx_commit(tx);
4338 }
4339 }
4340
4341 zfs_zinactive(zp);
4342 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4343 }
4344
4345 /*
4346 * Bounds-check the seek operation.
4347 *
4348 * IN: vp - vnode seeking within
4349 * ooff - old file offset
4350 * noffp - pointer to new file offset
4351 * ct - caller context
4352 *
4353 * RETURN: 0 if success
4354 * EINVAL if new offset invalid
4355 */
4356 /* ARGSUSED */
4357 static int
4358 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4359 caller_context_t *ct)
4360 {
4361 if (vp->v_type == VDIR)
4362 return (0);
4363 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4364 }
4365
4366 /*
4367 * Pre-filter the generic locking function to trap attempts to place
4368 * a mandatory lock on a memory mapped file.
4369 */
4370 static int
4371 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4372 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4373 {
4374 znode_t *zp = VTOZ(vp);
4375 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4376
4377 ZFS_ENTER(zfsvfs);
4378 ZFS_VERIFY_ZP(zp);
4379
4380 /*
4381 * We are following the UFS semantics with respect to mapcnt
4382 * here: If we see that the file is mapped already, then we will
4383 * return an error, but we don't worry about races between this
4384 * function and zfs_map().
4385 */
4386 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4387 ZFS_EXIT(zfsvfs);
4388 return (SET_ERROR(EAGAIN));
4389 }
4390 ZFS_EXIT(zfsvfs);
4391 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4392 }
4393
4394 /*
4395 * If we can't find a page in the cache, we will create a new page
4396 * and fill it with file data. For efficiency, we may try to fill
4397 * multiple pages at once (klustering) to fill up the supplied page
4398 * list. Note that the pages to be filled are held with an exclusive
4399 * lock to prevent access by other threads while they are being filled.
4400 */
4401 static int
4402 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4403 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4404 {
4405 znode_t *zp = VTOZ(vp);
4406 page_t *pp, *cur_pp;
4407 objset_t *os = zp->z_zfsvfs->z_os;
4408 u_offset_t io_off, total;
4409 size_t io_len;
4410 int err;
4411
4412 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4413 /*
4414 * We only have a single page, don't bother klustering
4415 */
4416 io_off = off;
4417 io_len = PAGESIZE;
4418 pp = page_create_va(vp, io_off, io_len,
4419 PG_EXCL | PG_WAIT, seg, addr);
4420 } else {
4421 /*
4422 * Try to find enough pages to fill the page list
4423 */
4424 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4425 &io_len, off, plsz, 0);
4426 }
4427 if (pp == NULL) {
4428 /*
4429 * The page already exists, nothing to do here.
4430 */
4431 *pl = NULL;
4432 return (0);
4433 }
4434
4435 /*
4436 * Fill the pages in the kluster.
4437 */
4438 cur_pp = pp;
4439 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4440 caddr_t va;
4441
4442 ASSERT3U(io_off, ==, cur_pp->p_offset);
4443 va = zfs_map_page(cur_pp, S_WRITE);
4444 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4445 DMU_READ_PREFETCH);
4446 zfs_unmap_page(cur_pp, va);
4447 if (err) {
4448 /* On error, toss the entire kluster */
4449 pvn_read_done(pp, B_ERROR);
4450 /* convert checksum errors into IO errors */
4451 if (err == ECKSUM)
4452 err = SET_ERROR(EIO);
4453 return (err);
4454 }
4455 cur_pp = cur_pp->p_next;
4456 }
4457
4458 /*
4459 * Fill in the page list array from the kluster starting
4460 * from the desired offset `off'.
4461 * NOTE: the page list will always be null terminated.
4462 */
4463 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4464 ASSERT(pl == NULL || (*pl)->p_offset == off);
4465
4466 return (0);
4467 }
4468
4469 /*
4470 * Return pointers to the pages for the file region [off, off + len]
4471 * in the pl array. If plsz is greater than len, this function may
4472 * also return page pointers from after the specified region
4473 * (i.e. the region [off, off + plsz]). These additional pages are
4474 * only returned if they are already in the cache, or were created as
4475 * part of a klustered read.
4476 *
4477 * IN: vp - vnode of file to get data from.
4478 * off - position in file to get data from.
4479 * len - amount of data to retrieve.
4480 * plsz - length of provided page list.
4481 * seg - segment to obtain pages for.
4482 * addr - virtual address of fault.
4483 * rw - mode of created pages.
4484 * cr - credentials of caller.
4485 * ct - caller context.
4486 *
4487 * OUT: protp - protection mode of created pages.
4488 * pl - list of pages created.
4489 *
4490 * RETURN: 0 if success
4491 * error code if failure
4492 *
4493 * Timestamps:
4494 * vp - atime updated
4495 */
4496 /* ARGSUSED */
4497 static int
4498 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4499 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4500 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4501 {
4502 znode_t *zp = VTOZ(vp);
4503 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4504 page_t **pl0 = pl;
4505 int err = 0;
4506
4507 /* we do our own caching, faultahead is unnecessary */
4508 if (pl == NULL)
4509 return (0);
4510 else if (len > plsz)
4511 len = plsz;
4512 else
4513 len = P2ROUNDUP(len, PAGESIZE);
4514 ASSERT(plsz >= len);
4515
4516 ZFS_ENTER(zfsvfs);
4517 ZFS_VERIFY_ZP(zp);
4518
4519 if (protp)
4520 *protp = PROT_ALL;
4521
4522 /*
4523 * Loop through the requested range [off, off + len) looking
4524 * for pages. If we don't find a page, we will need to create
4525 * a new page and fill it with data from the file.
4526 */
4527 while (len > 0) {
4528 if (*pl = page_lookup(vp, off, SE_SHARED))
4529 *(pl+1) = NULL;
4530 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4531 goto out;
4532 while (*pl) {
4533 ASSERT3U((*pl)->p_offset, ==, off);
4534 off += PAGESIZE;
4535 addr += PAGESIZE;
4536 if (len > 0) {
4537 ASSERT3U(len, >=, PAGESIZE);
4538 len -= PAGESIZE;
4539 }
4540 ASSERT3U(plsz, >=, PAGESIZE);
4541 plsz -= PAGESIZE;
4542 pl++;
4543 }
4544 }
4545
4546 /*
4547 * Fill out the page array with any pages already in the cache.
4548 */
4549 while (plsz > 0 &&
4550 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4551 off += PAGESIZE;
4552 plsz -= PAGESIZE;
4553 }
4554 out:
4555 if (err) {
4556 /*
4557 * Release any pages we have previously locked.
4558 */
4559 while (pl > pl0)
4560 page_unlock(*--pl);
4561 } else {
4562 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4563 }
4564
4565 *pl = NULL;
4566
4567 ZFS_EXIT(zfsvfs);
4568 return (err);
4569 }
4570
4571 /*
4572 * Request a memory map for a section of a file. This code interacts
4573 * with common code and the VM system as follows:
4574 *
4575 * common code calls mmap(), which ends up in smmap_common()
4576 *
4577 * this calls VOP_MAP(), which takes you into (say) zfs
4578 *
4579 * zfs_map() calls as_map(), passing segvn_create() as the callback
4580 *
4581 * segvn_create() creates the new segment and calls VOP_ADDMAP()
4582 *
4583 * zfs_addmap() updates z_mapcnt
4584 */
4585 /*ARGSUSED*/
4586 static int
4587 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4588 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4589 caller_context_t *ct)
4590 {
4591 znode_t *zp = VTOZ(vp);
4592 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4593 segvn_crargs_t vn_a;
4594 int error;
4595
4596 ZFS_ENTER(zfsvfs);
4597 ZFS_VERIFY_ZP(zp);
4598
4599 if ((prot & PROT_WRITE) && (zp->z_pflags &
4600 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4601 ZFS_EXIT(zfsvfs);
4602 return (SET_ERROR(EPERM));
4603 }
4604
4605 if ((prot & (PROT_READ | PROT_EXEC)) &&
4606 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4607 ZFS_EXIT(zfsvfs);
4608 return (SET_ERROR(EACCES));
4609 }
4610
4611 if (vp->v_flag & VNOMAP) {
4612 ZFS_EXIT(zfsvfs);
4613 return (SET_ERROR(ENOSYS));
4614 }
4615
4616 if (off < 0 || len > MAXOFFSET_T - off) {
4617 ZFS_EXIT(zfsvfs);
4618 return (SET_ERROR(ENXIO));
4619 }
4620
4621 if (vp->v_type != VREG) {
4622 ZFS_EXIT(zfsvfs);
4623 return (SET_ERROR(ENODEV));
4624 }
4625
4626 /*
4627 * If file is locked, disallow mapping.
4628 */
4629 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4630 ZFS_EXIT(zfsvfs);
4631 return (SET_ERROR(EAGAIN));
4632 }
4633
4634 as_rangelock(as);
4635 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4636 if (error != 0) {
4637 as_rangeunlock(as);
4638 ZFS_EXIT(zfsvfs);
4639 return (error);
4640 }
4641
4642 vn_a.vp = vp;
4643 vn_a.offset = (u_offset_t)off;
4644 vn_a.type = flags & MAP_TYPE;
4645 vn_a.prot = prot;
4646 vn_a.maxprot = maxprot;
4647 vn_a.cred = cr;
4648 vn_a.amp = NULL;
4649 vn_a.flags = flags & ~MAP_TYPE;
4650 vn_a.szc = 0;
4651 vn_a.lgrp_mem_policy_flags = 0;
4652
4653 error = as_map(as, *addrp, len, segvn_create, &vn_a);
4654
4655 as_rangeunlock(as);
4656 ZFS_EXIT(zfsvfs);
4657 return (error);
4658 }
4659
4660 /* ARGSUSED */
4661 static int
4662 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4663 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4664 caller_context_t *ct)
4665 {
4666 uint64_t pages = btopr(len);
4667
4668 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4669 return (0);
4670 }
4671
4672 /*
4673 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4674 * more accurate mtime for the associated file. Since we don't have a way of
4675 * detecting when the data was actually modified, we have to resort to
4676 * heuristics. If an explicit msync() is done, then we mark the mtime when the
4677 * last page is pushed. The problem occurs when the msync() call is omitted,
4678 * which by far the most common case:
4679 *
4680 * open()
4681 * mmap()
4682 * <modify memory>
4683 * munmap()
4684 * close()
4685 * <time lapse>
4686 * putpage() via fsflush
4687 *
4688 * If we wait until fsflush to come along, we can have a modification time that
4689 * is some arbitrary point in the future. In order to prevent this in the
4690 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4691 * torn down.
4692 */
4693 /* ARGSUSED */
4694 static int
4695 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4696 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4697 caller_context_t *ct)
4698 {
4699 uint64_t pages = btopr(len);
4700
4701 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4702 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4703
4704 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4705 vn_has_cached_data(vp))
4706 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4707
4708 return (0);
4709 }
4710
4711 /*
4712 * Free or allocate space in a file. Currently, this function only
4713 * supports the `F_FREESP' command. However, this command is somewhat
4714 * misnamed, as its functionality includes the ability to allocate as
4715 * well as free space.
4716 *
4717 * IN: vp - vnode of file to free data in.
4718 * cmd - action to take (only F_FREESP supported).
4719 * bfp - section of file to free/alloc.
4720 * flag - current file open mode flags.
4721 * offset - current file offset.
4722 * cr - credentials of caller [UNUSED].
4723 * ct - caller context.
4724 *
4725 * RETURN: 0 if success
4726 * error code if failure
4727 *
4728 * Timestamps:
4729 * vp - ctime|mtime updated
4730 */
4731 /* ARGSUSED */
4732 static int
4733 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4734 offset_t offset, cred_t *cr, caller_context_t *ct)
4735 {
4736 znode_t *zp = VTOZ(vp);
4737 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4738 uint64_t off, len;
4739 int error;
4740
4741 ZFS_ENTER(zfsvfs);
4742 ZFS_VERIFY_ZP(zp);
4743
4744 if (cmd != F_FREESP) {
4745 ZFS_EXIT(zfsvfs);
4746 return (SET_ERROR(EINVAL));
4747 }
4748
4749 if (error = convoff(vp, bfp, 0, offset)) {
4750 ZFS_EXIT(zfsvfs);
4751 return (error);
4752 }
4753
4754 if (bfp->l_len < 0) {
4755 ZFS_EXIT(zfsvfs);
4756 return (SET_ERROR(EINVAL));
4757 }
4758
4759 off = bfp->l_start;
4760 len = bfp->l_len; /* 0 means from off to end of file */
4761
4762 error = zfs_freesp(zp, off, len, flag, TRUE);
4763
4764 ZFS_EXIT(zfsvfs);
4765 return (error);
4766 }
4767
4768 /*ARGSUSED*/
4769 static int
4770 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4771 {
4772 znode_t *zp = VTOZ(vp);
4773 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4774 uint32_t gen;
4775 uint64_t gen64;
4776 uint64_t object = zp->z_id;
4777 zfid_short_t *zfid;
4778 int size, i, error;
4779
4780 ZFS_ENTER(zfsvfs);
4781 ZFS_VERIFY_ZP(zp);
4782
4783 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4784 &gen64, sizeof (uint64_t))) != 0) {
4785 ZFS_EXIT(zfsvfs);
4786 return (error);
4787 }
4788
4789 gen = (uint32_t)gen64;
4790
4791 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4792 if (fidp->fid_len < size) {
4793 fidp->fid_len = size;
4794 ZFS_EXIT(zfsvfs);
4795 return (SET_ERROR(ENOSPC));
4796 }
4797
4798 zfid = (zfid_short_t *)fidp;
4799
4800 zfid->zf_len = size;
4801
4802 for (i = 0; i < sizeof (zfid->zf_object); i++)
4803 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4804
4805 /* Must have a non-zero generation number to distinguish from .zfs */
4806 if (gen == 0)
4807 gen = 1;
4808 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4809 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4810
4811 if (size == LONG_FID_LEN) {
4812 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
4813 zfid_long_t *zlfid;
4814
4815 zlfid = (zfid_long_t *)fidp;
4816
4817 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4818 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4819
4820 /* XXX - this should be the generation number for the objset */
4821 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4822 zlfid->zf_setgen[i] = 0;
4823 }
4824
4825 ZFS_EXIT(zfsvfs);
4826 return (0);
4827 }
4828
4829 static int
4830 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4831 caller_context_t *ct)
4832 {
4833 znode_t *zp, *xzp;
4834 zfsvfs_t *zfsvfs;
4835 zfs_dirlock_t *dl;
4836 int error;
4837
4838 switch (cmd) {
4839 case _PC_LINK_MAX:
4840 *valp = ULONG_MAX;
4841 return (0);
4842
4843 case _PC_FILESIZEBITS:
4844 *valp = 64;
4845 return (0);
4846
4847 case _PC_XATTR_EXISTS:
4848 zp = VTOZ(vp);
4849 zfsvfs = zp->z_zfsvfs;
4850 ZFS_ENTER(zfsvfs);
4851 ZFS_VERIFY_ZP(zp);
4852 *valp = 0;
4853 error = zfs_dirent_lock(&dl, zp, "", &xzp,
4854 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4855 if (error == 0) {
4856 zfs_dirent_unlock(dl);
4857 if (!zfs_dirempty(xzp))
4858 *valp = 1;
4859 VN_RELE(ZTOV(xzp));
4860 } else if (error == ENOENT) {
4861 /*
4862 * If there aren't extended attributes, it's the
4863 * same as having zero of them.
4864 */
4865 error = 0;
4866 }
4867 ZFS_EXIT(zfsvfs);
4868 return (error);
4869
4870 case _PC_SATTR_ENABLED:
4871 case _PC_SATTR_EXISTS:
4872 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4873 (vp->v_type == VREG || vp->v_type == VDIR);
4874 return (0);
4875
4876 case _PC_ACCESS_FILTERING:
4877 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4878 vp->v_type == VDIR;
4879 return (0);
4880
4881 case _PC_ACL_ENABLED:
4882 *valp = _ACL_ACE_ENABLED;
4883 return (0);
4884
4885 case _PC_MIN_HOLE_SIZE:
4886 *valp = (ulong_t)SPA_MINBLOCKSIZE;
4887 return (0);
4888
4889 case _PC_TIMESTAMP_RESOLUTION:
4890 /* nanosecond timestamp resolution */
4891 *valp = 1L;
4892 return (0);
4893
4894 default:
4895 return (fs_pathconf(vp, cmd, valp, cr, ct));
4896 }
4897 }
4898
4899 /*ARGSUSED*/
4900 static int
4901 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4902 caller_context_t *ct)
4903 {
4904 znode_t *zp = VTOZ(vp);
4905 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4906 int error;
4907 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4908
4909 ZFS_ENTER(zfsvfs);
4910 ZFS_VERIFY_ZP(zp);
4911 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4912 ZFS_EXIT(zfsvfs);
4913
4914 return (error);
4915 }
4916
4917 /*ARGSUSED*/
4918 static int
4919 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4920 caller_context_t *ct)
4921 {
4922 znode_t *zp = VTOZ(vp);
4923 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4924 int error;
4925 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4926 zilog_t *zilog = zfsvfs->z_log;
4927
4928 ZFS_ENTER(zfsvfs);
4929 ZFS_VERIFY_ZP(zp);
4930
4931 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4932
4933 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4934 zil_commit(zilog, 0);
4935
4936 ZFS_EXIT(zfsvfs);
4937 return (error);
4938 }
4939
4940 /*
4941 * Tunable, both must be a power of 2.
4942 *
4943 * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf
4944 * zcr_blksz_max: if set to less than the file block size, allow loaning out of
4945 * an arcbuf for a partial block read
4946 */
4947 int zcr_blksz_min = (1 << 10); /* 1K */
4948 int zcr_blksz_max = (1 << 17); /* 128K */
4949
4950 /*ARGSUSED*/
4951 static int
4952 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
4953 caller_context_t *ct)
4954 {
4955 znode_t *zp = VTOZ(vp);
4956 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4957 int max_blksz = zfsvfs->z_max_blksz;
4958 uio_t *uio = &xuio->xu_uio;
4959 ssize_t size = uio->uio_resid;
4960 offset_t offset = uio->uio_loffset;
4961 int blksz;
4962 int fullblk, i;
4963 arc_buf_t *abuf;
4964 ssize_t maxsize;
4965 int preamble, postamble;
4966
4967 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
4968 return (SET_ERROR(EINVAL));
4969
4970 ZFS_ENTER(zfsvfs);
4971 ZFS_VERIFY_ZP(zp);
4972 switch (ioflag) {
4973 case UIO_WRITE:
4974 /*
4975 * Loan out an arc_buf for write if write size is bigger than
4976 * max_blksz, and the file's block size is also max_blksz.
4977 */
4978 blksz = max_blksz;
4979 if (size < blksz || zp->z_blksz != blksz) {
4980 ZFS_EXIT(zfsvfs);
4981 return (SET_ERROR(EINVAL));
4982 }
4983 /*
4984 * Caller requests buffers for write before knowing where the
4985 * write offset might be (e.g. NFS TCP write).
4986 */
4987 if (offset == -1) {
4988 preamble = 0;
4989 } else {
4990 preamble = P2PHASE(offset, blksz);
4991 if (preamble) {
4992 preamble = blksz - preamble;
4993 size -= preamble;
4994 }
4995 }
4996
4997 postamble = P2PHASE(size, blksz);
4998 size -= postamble;
4999
5000 fullblk = size / blksz;
5001 (void) dmu_xuio_init(xuio,
5002 (preamble != 0) + fullblk + (postamble != 0));
5003 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5004 int, postamble, int,
5005 (preamble != 0) + fullblk + (postamble != 0));
5006
5007 /*
5008 * Have to fix iov base/len for partial buffers. They
5009 * currently represent full arc_buf's.
5010 */
5011 if (preamble) {
5012 /* data begins in the middle of the arc_buf */
5013 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5014 blksz);
5015 ASSERT(abuf);
5016 (void) dmu_xuio_add(xuio, abuf,
5017 blksz - preamble, preamble);
5018 }
5019
5020 for (i = 0; i < fullblk; i++) {
5021 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5022 blksz);
5023 ASSERT(abuf);
5024 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5025 }
5026
5027 if (postamble) {
5028 /* data ends in the middle of the arc_buf */
5029 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5030 blksz);
5031 ASSERT(abuf);
5032 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5033 }
5034 break;
5035 case UIO_READ:
5036 /*
5037 * Loan out an arc_buf for read if the read size is larger than
5038 * the current file block size. Block alignment is not
5039 * considered. Partial arc_buf will be loaned out for read.
5040 */
5041 blksz = zp->z_blksz;
5042 if (blksz < zcr_blksz_min)
5043 blksz = zcr_blksz_min;
5044 if (blksz > zcr_blksz_max)
5045 blksz = zcr_blksz_max;
5046 /* avoid potential complexity of dealing with it */
5047 if (blksz > max_blksz) {
5048 ZFS_EXIT(zfsvfs);
5049 return (SET_ERROR(EINVAL));
5050 }
5051
5052 maxsize = zp->z_size - uio->uio_loffset;
5053 if (size > maxsize)
5054 size = maxsize;
5055
5056 if (size < blksz || vn_has_cached_data(vp)) {
5057 ZFS_EXIT(zfsvfs);
5058 return (SET_ERROR(EINVAL));
5059 }
5060 break;
5061 default:
5062 ZFS_EXIT(zfsvfs);
5063 return (SET_ERROR(EINVAL));
5064 }
5065
5066 uio->uio_extflg = UIO_XUIO;
5067 XUIO_XUZC_RW(xuio) = ioflag;
5068 ZFS_EXIT(zfsvfs);
5069 return (0);
5070 }
5071
5072 /*ARGSUSED*/
5073 static int
5074 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5075 {
5076 int i;
5077 arc_buf_t *abuf;
5078 int ioflag = XUIO_XUZC_RW(xuio);
5079
5080 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5081
5082 i = dmu_xuio_cnt(xuio);
5083 while (i-- > 0) {
5084 abuf = dmu_xuio_arcbuf(xuio, i);
5085 /*
5086 * if abuf == NULL, it must be a write buffer
5087 * that has been returned in zfs_write().
5088 */
5089 if (abuf)
5090 dmu_return_arcbuf(abuf);
5091 ASSERT(abuf || ioflag == UIO_WRITE);
5092 }
5093
5094 dmu_xuio_fini(xuio);
5095 return (0);
5096 }
5097
5098 /*
5099 * Predeclare these here so that the compiler assumes that
5100 * this is an "old style" function declaration that does
5101 * not include arguments => we won't get type mismatch errors
5102 * in the initializations that follow.
5103 */
5104 static int zfs_inval();
5105 static int zfs_isdir();
5106
5107 static int
5108 zfs_inval()
5109 {
5110 return (SET_ERROR(EINVAL));
5111 }
5112
5113 static int
5114 zfs_isdir()
5115 {
5116 return (SET_ERROR(EISDIR));
5117 }
5118 /*
5119 * Directory vnode operations template
5120 */
5121 vnodeops_t *zfs_dvnodeops;
5122 const fs_operation_def_t zfs_dvnodeops_template[] = {
5123 VOPNAME_OPEN, { .vop_open = zfs_open },
5124 VOPNAME_CLOSE, { .vop_close = zfs_close },
5125 VOPNAME_READ, { .error = zfs_isdir },
5126 VOPNAME_WRITE, { .error = zfs_isdir },
5127 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5128 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5129 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5130 VOPNAME_ACCESS, { .vop_access = zfs_access },
5131 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5132 VOPNAME_CREATE, { .vop_create = zfs_create },
5133 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5134 VOPNAME_LINK, { .vop_link = zfs_link },
5135 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5136 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir },
5137 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5138 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5139 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink },
5140 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5141 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5142 VOPNAME_FID, { .vop_fid = zfs_fid },
5143 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5144 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5145 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5146 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5147 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5148 NULL, NULL
5149 };
5150
5151 /*
5152 * Regular file vnode operations template
5153 */
5154 vnodeops_t *zfs_fvnodeops;
5155 const fs_operation_def_t zfs_fvnodeops_template[] = {
5156 VOPNAME_OPEN, { .vop_open = zfs_open },
5157 VOPNAME_CLOSE, { .vop_close = zfs_close },
5158 VOPNAME_READ, { .vop_read = zfs_read },
5159 VOPNAME_WRITE, { .vop_write = zfs_write },
5160 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5161 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5162 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5163 VOPNAME_ACCESS, { .vop_access = zfs_access },
5164 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5165 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5166 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5167 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5168 VOPNAME_FID, { .vop_fid = zfs_fid },
5169 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5170 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock },
5171 VOPNAME_SPACE, { .vop_space = zfs_space },
5172 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage },
5173 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage },
5174 VOPNAME_MAP, { .vop_map = zfs_map },
5175 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap },
5176 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap },
5177 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5178 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5179 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5180 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5181 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf },
5182 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf },
5183 NULL, NULL
5184 };
5185
5186 /*
5187 * Symbolic link vnode operations template
5188 */
5189 vnodeops_t *zfs_symvnodeops;
5190 const fs_operation_def_t zfs_symvnodeops_template[] = {
5191 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5192 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5193 VOPNAME_ACCESS, { .vop_access = zfs_access },
5194 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5195 VOPNAME_READLINK, { .vop_readlink = zfs_readlink },
5196 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5197 VOPNAME_FID, { .vop_fid = zfs_fid },
5198 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5199 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5200 NULL, NULL
5201 };
5202
5203 /*
5204 * special share hidden files vnode operations template
5205 */
5206 vnodeops_t *zfs_sharevnodeops;
5207 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5208 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5209 VOPNAME_ACCESS, { .vop_access = zfs_access },
5210 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5211 VOPNAME_FID, { .vop_fid = zfs_fid },
5212 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5213 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5214 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5215 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5216 NULL, NULL
5217 };
5218
5219 /*
5220 * Extended attribute directory vnode operations template
5221 * This template is identical to the directory vnodes
5222 * operation template except for restricted operations:
5223 * VOP_MKDIR()
5224 * VOP_SYMLINK()
5225 * Note that there are other restrictions embedded in:
5226 * zfs_create() - restrict type to VREG
5227 * zfs_link() - no links into/out of attribute space
5228 * zfs_rename() - no moves into/out of attribute space
5229 */
5230 vnodeops_t *zfs_xdvnodeops;
5231 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5232 VOPNAME_OPEN, { .vop_open = zfs_open },
5233 VOPNAME_CLOSE, { .vop_close = zfs_close },
5234 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5235 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5236 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5237 VOPNAME_ACCESS, { .vop_access = zfs_access },
5238 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5239 VOPNAME_CREATE, { .vop_create = zfs_create },
5240 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5241 VOPNAME_LINK, { .vop_link = zfs_link },
5242 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5243 VOPNAME_MKDIR, { .error = zfs_inval },
5244 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5245 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5246 VOPNAME_SYMLINK, { .error = zfs_inval },
5247 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5248 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5249 VOPNAME_FID, { .vop_fid = zfs_fid },
5250 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5251 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5252 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5253 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5254 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5255 NULL, NULL
5256 };
5257
5258 /*
5259 * Error vnode operations template
5260 */
5261 vnodeops_t *zfs_evnodeops;
5262 const fs_operation_def_t zfs_evnodeops_template[] = {
5263 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5264 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5265 NULL, NULL
5266 };