1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  25  * Copyright (c) 2013 by Delphix. All rights reserved.
  26  */
  27 
  28 #include <sys/zfs_context.h>
  29 #include <sys/fm/fs/zfs.h>
  30 #include <sys/spa.h>
  31 #include <sys/spa_impl.h>
  32 #include <sys/dmu.h>
  33 #include <sys/dmu_tx.h>
  34 #include <sys/vdev_impl.h>
  35 #include <sys/uberblock_impl.h>
  36 #include <sys/metaslab.h>
  37 #include <sys/metaslab_impl.h>
  38 #include <sys/space_map.h>
  39 #include <sys/zio.h>
  40 #include <sys/zap.h>
  41 #include <sys/fs/zfs.h>
  42 #include <sys/arc.h>
  43 #include <sys/zil.h>
  44 #include <sys/dsl_scan.h>
  45 
  46 /*
  47  * Virtual device management.
  48  */
  49 
  50 static vdev_ops_t *vdev_ops_table[] = {
  51         &vdev_root_ops,
  52         &vdev_raidz_ops,
  53         &vdev_mirror_ops,
  54         &vdev_replacing_ops,
  55         &vdev_spare_ops,
  56         &vdev_disk_ops,
  57         &vdev_file_ops,
  58         &vdev_missing_ops,
  59         &vdev_hole_ops,
  60         NULL
  61 };
  62 
  63 /* maximum scrub/resilver I/O queue per leaf vdev */
  64 int zfs_scrub_limit = 10;
  65 
  66 /*
  67  * Given a vdev type, return the appropriate ops vector.
  68  */
  69 static vdev_ops_t *
  70 vdev_getops(const char *type)
  71 {
  72         vdev_ops_t *ops, **opspp;
  73 
  74         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
  75                 if (strcmp(ops->vdev_op_type, type) == 0)
  76                         break;
  77 
  78         return (ops);
  79 }
  80 
  81 /*
  82  * Default asize function: return the MAX of psize with the asize of
  83  * all children.  This is what's used by anything other than RAID-Z.
  84  */
  85 uint64_t
  86 vdev_default_asize(vdev_t *vd, uint64_t psize)
  87 {
  88         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
  89         uint64_t csize;
  90 
  91         for (int c = 0; c < vd->vdev_children; c++) {
  92                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
  93                 asize = MAX(asize, csize);
  94         }
  95 
  96         return (asize);
  97 }
  98 
  99 /*
 100  * Get the minimum allocatable size. We define the allocatable size as
 101  * the vdev's asize rounded to the nearest metaslab. This allows us to
 102  * replace or attach devices which don't have the same physical size but
 103  * can still satisfy the same number of allocations.
 104  */
 105 uint64_t
 106 vdev_get_min_asize(vdev_t *vd)
 107 {
 108         vdev_t *pvd = vd->vdev_parent;
 109 
 110         /*
 111          * If our parent is NULL (inactive spare or cache) or is the root,
 112          * just return our own asize.
 113          */
 114         if (pvd == NULL)
 115                 return (vd->vdev_asize);
 116 
 117         /*
 118          * The top-level vdev just returns the allocatable size rounded
 119          * to the nearest metaslab.
 120          */
 121         if (vd == vd->vdev_top)
 122                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
 123 
 124         /*
 125          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
 126          * so each child must provide at least 1/Nth of its asize.
 127          */
 128         if (pvd->vdev_ops == &vdev_raidz_ops)
 129                 return (pvd->vdev_min_asize / pvd->vdev_children);
 130 
 131         return (pvd->vdev_min_asize);
 132 }
 133 
 134 void
 135 vdev_set_min_asize(vdev_t *vd)
 136 {
 137         vd->vdev_min_asize = vdev_get_min_asize(vd);
 138 
 139         for (int c = 0; c < vd->vdev_children; c++)
 140                 vdev_set_min_asize(vd->vdev_child[c]);
 141 }
 142 
 143 vdev_t *
 144 vdev_lookup_top(spa_t *spa, uint64_t vdev)
 145 {
 146         vdev_t *rvd = spa->spa_root_vdev;
 147 
 148         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
 149 
 150         if (vdev < rvd->vdev_children) {
 151                 ASSERT(rvd->vdev_child[vdev] != NULL);
 152                 return (rvd->vdev_child[vdev]);
 153         }
 154 
 155         return (NULL);
 156 }
 157 
 158 vdev_t *
 159 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
 160 {
 161         vdev_t *mvd;
 162 
 163         if (vd->vdev_guid == guid)
 164                 return (vd);
 165 
 166         for (int c = 0; c < vd->vdev_children; c++)
 167                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
 168                     NULL)
 169                         return (mvd);
 170 
 171         return (NULL);
 172 }
 173 
 174 void
 175 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
 176 {
 177         size_t oldsize, newsize;
 178         uint64_t id = cvd->vdev_id;
 179         vdev_t **newchild;
 180 
 181         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 182         ASSERT(cvd->vdev_parent == NULL);
 183 
 184         cvd->vdev_parent = pvd;
 185 
 186         if (pvd == NULL)
 187                 return;
 188 
 189         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
 190 
 191         oldsize = pvd->vdev_children * sizeof (vdev_t *);
 192         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
 193         newsize = pvd->vdev_children * sizeof (vdev_t *);
 194 
 195         newchild = kmem_zalloc(newsize, KM_SLEEP);
 196         if (pvd->vdev_child != NULL) {
 197                 bcopy(pvd->vdev_child, newchild, oldsize);
 198                 kmem_free(pvd->vdev_child, oldsize);
 199         }
 200 
 201         pvd->vdev_child = newchild;
 202         pvd->vdev_child[id] = cvd;
 203 
 204         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
 205         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
 206 
 207         /*
 208          * Walk up all ancestors to update guid sum.
 209          */
 210         for (; pvd != NULL; pvd = pvd->vdev_parent)
 211                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
 212 }
 213 
 214 void
 215 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
 216 {
 217         int c;
 218         uint_t id = cvd->vdev_id;
 219 
 220         ASSERT(cvd->vdev_parent == pvd);
 221 
 222         if (pvd == NULL)
 223                 return;
 224 
 225         ASSERT(id < pvd->vdev_children);
 226         ASSERT(pvd->vdev_child[id] == cvd);
 227 
 228         pvd->vdev_child[id] = NULL;
 229         cvd->vdev_parent = NULL;
 230 
 231         for (c = 0; c < pvd->vdev_children; c++)
 232                 if (pvd->vdev_child[c])
 233                         break;
 234 
 235         if (c == pvd->vdev_children) {
 236                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
 237                 pvd->vdev_child = NULL;
 238                 pvd->vdev_children = 0;
 239         }
 240 
 241         /*
 242          * Walk up all ancestors to update guid sum.
 243          */
 244         for (; pvd != NULL; pvd = pvd->vdev_parent)
 245                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
 246 }
 247 
 248 /*
 249  * Remove any holes in the child array.
 250  */
 251 void
 252 vdev_compact_children(vdev_t *pvd)
 253 {
 254         vdev_t **newchild, *cvd;
 255         int oldc = pvd->vdev_children;
 256         int newc;
 257 
 258         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 259 
 260         for (int c = newc = 0; c < oldc; c++)
 261                 if (pvd->vdev_child[c])
 262                         newc++;
 263 
 264         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
 265 
 266         for (int c = newc = 0; c < oldc; c++) {
 267                 if ((cvd = pvd->vdev_child[c]) != NULL) {
 268                         newchild[newc] = cvd;
 269                         cvd->vdev_id = newc++;
 270                 }
 271         }
 272 
 273         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
 274         pvd->vdev_child = newchild;
 275         pvd->vdev_children = newc;
 276 }
 277 
 278 /*
 279  * Allocate and minimally initialize a vdev_t.
 280  */
 281 vdev_t *
 282 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
 283 {
 284         vdev_t *vd;
 285 
 286         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
 287 
 288         if (spa->spa_root_vdev == NULL) {
 289                 ASSERT(ops == &vdev_root_ops);
 290                 spa->spa_root_vdev = vd;
 291                 spa->spa_load_guid = spa_generate_guid(NULL);
 292         }
 293 
 294         if (guid == 0 && ops != &vdev_hole_ops) {
 295                 if (spa->spa_root_vdev == vd) {
 296                         /*
 297                          * The root vdev's guid will also be the pool guid,
 298                          * which must be unique among all pools.
 299                          */
 300                         guid = spa_generate_guid(NULL);
 301                 } else {
 302                         /*
 303                          * Any other vdev's guid must be unique within the pool.
 304                          */
 305                         guid = spa_generate_guid(spa);
 306                 }
 307                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
 308         }
 309 
 310         vd->vdev_spa = spa;
 311         vd->vdev_id = id;
 312         vd->vdev_guid = guid;
 313         vd->vdev_guid_sum = guid;
 314         vd->vdev_ops = ops;
 315         vd->vdev_state = VDEV_STATE_CLOSED;
 316         vd->vdev_ishole = (ops == &vdev_hole_ops);
 317 
 318         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
 319         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
 320         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
 321         for (int t = 0; t < DTL_TYPES; t++) {
 322                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
 323                     &vd->vdev_dtl_lock);
 324         }
 325         txg_list_create(&vd->vdev_ms_list,
 326             offsetof(struct metaslab, ms_txg_node));
 327         txg_list_create(&vd->vdev_dtl_list,
 328             offsetof(struct vdev, vdev_dtl_node));
 329         vd->vdev_stat.vs_timestamp = gethrtime();
 330         vdev_queue_init(vd);
 331         vdev_cache_init(vd);
 332 
 333         return (vd);
 334 }
 335 
 336 /*
 337  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
 338  * creating a new vdev or loading an existing one - the behavior is slightly
 339  * different for each case.
 340  */
 341 int
 342 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
 343     int alloctype)
 344 {
 345         vdev_ops_t *ops;
 346         char *type;
 347         uint64_t guid = 0, islog, nparity;
 348         vdev_t *vd;
 349 
 350         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 351 
 352         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
 353                 return (SET_ERROR(EINVAL));
 354 
 355         if ((ops = vdev_getops(type)) == NULL)
 356                 return (SET_ERROR(EINVAL));
 357 
 358         /*
 359          * If this is a load, get the vdev guid from the nvlist.
 360          * Otherwise, vdev_alloc_common() will generate one for us.
 361          */
 362         if (alloctype == VDEV_ALLOC_LOAD) {
 363                 uint64_t label_id;
 364 
 365                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
 366                     label_id != id)
 367                         return (SET_ERROR(EINVAL));
 368 
 369                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 370                         return (SET_ERROR(EINVAL));
 371         } else if (alloctype == VDEV_ALLOC_SPARE) {
 372                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 373                         return (SET_ERROR(EINVAL));
 374         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
 375                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 376                         return (SET_ERROR(EINVAL));
 377         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
 378                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 379                         return (SET_ERROR(EINVAL));
 380         }
 381 
 382         /*
 383          * The first allocated vdev must be of type 'root'.
 384          */
 385         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
 386                 return (SET_ERROR(EINVAL));
 387 
 388         /*
 389          * Determine whether we're a log vdev.
 390          */
 391         islog = 0;
 392         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
 393         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
 394                 return (SET_ERROR(ENOTSUP));
 395 
 396         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
 397                 return (SET_ERROR(ENOTSUP));
 398 
 399         /*
 400          * Set the nparity property for RAID-Z vdevs.
 401          */
 402         nparity = -1ULL;
 403         if (ops == &vdev_raidz_ops) {
 404                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
 405                     &nparity) == 0) {
 406                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
 407                                 return (SET_ERROR(EINVAL));
 408                         /*
 409                          * Previous versions could only support 1 or 2 parity
 410                          * device.
 411                          */
 412                         if (nparity > 1 &&
 413                             spa_version(spa) < SPA_VERSION_RAIDZ2)
 414                                 return (SET_ERROR(ENOTSUP));
 415                         if (nparity > 2 &&
 416                             spa_version(spa) < SPA_VERSION_RAIDZ3)
 417                                 return (SET_ERROR(ENOTSUP));
 418                 } else {
 419                         /*
 420                          * We require the parity to be specified for SPAs that
 421                          * support multiple parity levels.
 422                          */
 423                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
 424                                 return (SET_ERROR(EINVAL));
 425                         /*
 426                          * Otherwise, we default to 1 parity device for RAID-Z.
 427                          */
 428                         nparity = 1;
 429                 }
 430         } else {
 431                 nparity = 0;
 432         }
 433         ASSERT(nparity != -1ULL);
 434 
 435         vd = vdev_alloc_common(spa, id, guid, ops);
 436 
 437         vd->vdev_islog = islog;
 438         vd->vdev_nparity = nparity;
 439 
 440         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
 441                 vd->vdev_path = spa_strdup(vd->vdev_path);
 442         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
 443                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
 444         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
 445             &vd->vdev_physpath) == 0)
 446                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
 447         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
 448                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
 449 
 450         /*
 451          * Set the whole_disk property.  If it's not specified, leave the value
 452          * as -1.
 453          */
 454         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
 455             &vd->vdev_wholedisk) != 0)
 456                 vd->vdev_wholedisk = -1ULL;
 457 
 458         /*
 459          * Look for the 'not present' flag.  This will only be set if the device
 460          * was not present at the time of import.
 461          */
 462         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
 463             &vd->vdev_not_present);
 464 
 465         /*
 466          * Get the alignment requirement.
 467          */
 468         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
 469 
 470         /*
 471          * Retrieve the vdev creation time.
 472          */
 473         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
 474             &vd->vdev_crtxg);
 475 
 476         /*
 477          * If we're a top-level vdev, try to load the allocation parameters.
 478          */
 479         if (parent && !parent->vdev_parent &&
 480             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
 481                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
 482                     &vd->vdev_ms_array);
 483                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
 484                     &vd->vdev_ms_shift);
 485                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
 486                     &vd->vdev_asize);
 487                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
 488                     &vd->vdev_removing);
 489         }
 490 
 491         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
 492                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
 493                     alloctype == VDEV_ALLOC_ADD ||
 494                     alloctype == VDEV_ALLOC_SPLIT ||
 495                     alloctype == VDEV_ALLOC_ROOTPOOL);
 496                 vd->vdev_mg = metaslab_group_create(islog ?
 497                     spa_log_class(spa) : spa_normal_class(spa), vd);
 498         }
 499 
 500         /*
 501          * If we're a leaf vdev, try to load the DTL object and other state.
 502          */
 503         if (vd->vdev_ops->vdev_op_leaf &&
 504             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
 505             alloctype == VDEV_ALLOC_ROOTPOOL)) {
 506                 if (alloctype == VDEV_ALLOC_LOAD) {
 507                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
 508                             &vd->vdev_dtl_smo.smo_object);
 509                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
 510                             &vd->vdev_unspare);
 511                 }
 512 
 513                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
 514                         uint64_t spare = 0;
 515 
 516                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
 517                             &spare) == 0 && spare)
 518                                 spa_spare_add(vd);
 519                 }
 520 
 521                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
 522                     &vd->vdev_offline);
 523 
 524                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
 525                     &vd->vdev_resilvering);
 526 
 527                 /*
 528                  * When importing a pool, we want to ignore the persistent fault
 529                  * state, as the diagnosis made on another system may not be
 530                  * valid in the current context.  Local vdevs will
 531                  * remain in the faulted state.
 532                  */
 533                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
 534                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
 535                             &vd->vdev_faulted);
 536                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
 537                             &vd->vdev_degraded);
 538                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
 539                             &vd->vdev_removed);
 540 
 541                         if (vd->vdev_faulted || vd->vdev_degraded) {
 542                                 char *aux;
 543 
 544                                 vd->vdev_label_aux =
 545                                     VDEV_AUX_ERR_EXCEEDED;
 546                                 if (nvlist_lookup_string(nv,
 547                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
 548                                     strcmp(aux, "external") == 0)
 549                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
 550                         }
 551                 }
 552         }
 553 
 554         /*
 555          * Add ourselves to the parent's list of children.
 556          */
 557         vdev_add_child(parent, vd);
 558 
 559         *vdp = vd;
 560 
 561         return (0);
 562 }
 563 
 564 void
 565 vdev_free(vdev_t *vd)
 566 {
 567         spa_t *spa = vd->vdev_spa;
 568 
 569         /*
 570          * vdev_free() implies closing the vdev first.  This is simpler than
 571          * trying to ensure complicated semantics for all callers.
 572          */
 573         vdev_close(vd);
 574 
 575         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
 576         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
 577 
 578         /*
 579          * Free all children.
 580          */
 581         for (int c = 0; c < vd->vdev_children; c++)
 582                 vdev_free(vd->vdev_child[c]);
 583 
 584         ASSERT(vd->vdev_child == NULL);
 585         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
 586 
 587         /*
 588          * Discard allocation state.
 589          */
 590         if (vd->vdev_mg != NULL) {
 591                 vdev_metaslab_fini(vd);
 592                 metaslab_group_destroy(vd->vdev_mg);
 593         }
 594 
 595         ASSERT0(vd->vdev_stat.vs_space);
 596         ASSERT0(vd->vdev_stat.vs_dspace);
 597         ASSERT0(vd->vdev_stat.vs_alloc);
 598 
 599         /*
 600          * Remove this vdev from its parent's child list.
 601          */
 602         vdev_remove_child(vd->vdev_parent, vd);
 603 
 604         ASSERT(vd->vdev_parent == NULL);
 605 
 606         /*
 607          * Clean up vdev structure.
 608          */
 609         vdev_queue_fini(vd);
 610         vdev_cache_fini(vd);
 611 
 612         if (vd->vdev_path)
 613                 spa_strfree(vd->vdev_path);
 614         if (vd->vdev_devid)
 615                 spa_strfree(vd->vdev_devid);
 616         if (vd->vdev_physpath)
 617                 spa_strfree(vd->vdev_physpath);
 618         if (vd->vdev_fru)
 619                 spa_strfree(vd->vdev_fru);
 620 
 621         if (vd->vdev_isspare)
 622                 spa_spare_remove(vd);
 623         if (vd->vdev_isl2cache)
 624                 spa_l2cache_remove(vd);
 625 
 626         txg_list_destroy(&vd->vdev_ms_list);
 627         txg_list_destroy(&vd->vdev_dtl_list);
 628 
 629         mutex_enter(&vd->vdev_dtl_lock);
 630         for (int t = 0; t < DTL_TYPES; t++) {
 631                 space_map_unload(&vd->vdev_dtl[t]);
 632                 space_map_destroy(&vd->vdev_dtl[t]);
 633         }
 634         mutex_exit(&vd->vdev_dtl_lock);
 635 
 636         mutex_destroy(&vd->vdev_dtl_lock);
 637         mutex_destroy(&vd->vdev_stat_lock);
 638         mutex_destroy(&vd->vdev_probe_lock);
 639 
 640         if (vd == spa->spa_root_vdev)
 641                 spa->spa_root_vdev = NULL;
 642 
 643         kmem_free(vd, sizeof (vdev_t));
 644 }
 645 
 646 /*
 647  * Transfer top-level vdev state from svd to tvd.
 648  */
 649 static void
 650 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
 651 {
 652         spa_t *spa = svd->vdev_spa;
 653         metaslab_t *msp;
 654         vdev_t *vd;
 655         int t;
 656 
 657         ASSERT(tvd == tvd->vdev_top);
 658 
 659         tvd->vdev_ms_array = svd->vdev_ms_array;
 660         tvd->vdev_ms_shift = svd->vdev_ms_shift;
 661         tvd->vdev_ms_count = svd->vdev_ms_count;
 662 
 663         svd->vdev_ms_array = 0;
 664         svd->vdev_ms_shift = 0;
 665         svd->vdev_ms_count = 0;
 666 
 667         if (tvd->vdev_mg)
 668                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
 669         tvd->vdev_mg = svd->vdev_mg;
 670         tvd->vdev_ms = svd->vdev_ms;
 671 
 672         svd->vdev_mg = NULL;
 673         svd->vdev_ms = NULL;
 674 
 675         if (tvd->vdev_mg != NULL)
 676                 tvd->vdev_mg->mg_vd = tvd;
 677 
 678         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
 679         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
 680         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
 681 
 682         svd->vdev_stat.vs_alloc = 0;
 683         svd->vdev_stat.vs_space = 0;
 684         svd->vdev_stat.vs_dspace = 0;
 685 
 686         for (t = 0; t < TXG_SIZE; t++) {
 687                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
 688                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
 689                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
 690                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
 691                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
 692                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
 693         }
 694 
 695         if (list_link_active(&svd->vdev_config_dirty_node)) {
 696                 vdev_config_clean(svd);
 697                 vdev_config_dirty(tvd);
 698         }
 699 
 700         if (list_link_active(&svd->vdev_state_dirty_node)) {
 701                 vdev_state_clean(svd);
 702                 vdev_state_dirty(tvd);
 703         }
 704 
 705         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
 706         svd->vdev_deflate_ratio = 0;
 707 
 708         tvd->vdev_islog = svd->vdev_islog;
 709         svd->vdev_islog = 0;
 710 }
 711 
 712 static void
 713 vdev_top_update(vdev_t *tvd, vdev_t *vd)
 714 {
 715         if (vd == NULL)
 716                 return;
 717 
 718         vd->vdev_top = tvd;
 719 
 720         for (int c = 0; c < vd->vdev_children; c++)
 721                 vdev_top_update(tvd, vd->vdev_child[c]);
 722 }
 723 
 724 /*
 725  * Add a mirror/replacing vdev above an existing vdev.
 726  */
 727 vdev_t *
 728 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
 729 {
 730         spa_t *spa = cvd->vdev_spa;
 731         vdev_t *pvd = cvd->vdev_parent;
 732         vdev_t *mvd;
 733 
 734         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 735 
 736         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
 737 
 738         mvd->vdev_asize = cvd->vdev_asize;
 739         mvd->vdev_min_asize = cvd->vdev_min_asize;
 740         mvd->vdev_max_asize = cvd->vdev_max_asize;
 741         mvd->vdev_ashift = cvd->vdev_ashift;
 742         mvd->vdev_state = cvd->vdev_state;
 743         mvd->vdev_crtxg = cvd->vdev_crtxg;
 744 
 745         vdev_remove_child(pvd, cvd);
 746         vdev_add_child(pvd, mvd);
 747         cvd->vdev_id = mvd->vdev_children;
 748         vdev_add_child(mvd, cvd);
 749         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
 750 
 751         if (mvd == mvd->vdev_top)
 752                 vdev_top_transfer(cvd, mvd);
 753 
 754         return (mvd);
 755 }
 756 
 757 /*
 758  * Remove a 1-way mirror/replacing vdev from the tree.
 759  */
 760 void
 761 vdev_remove_parent(vdev_t *cvd)
 762 {
 763         vdev_t *mvd = cvd->vdev_parent;
 764         vdev_t *pvd = mvd->vdev_parent;
 765 
 766         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 767 
 768         ASSERT(mvd->vdev_children == 1);
 769         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
 770             mvd->vdev_ops == &vdev_replacing_ops ||
 771             mvd->vdev_ops == &vdev_spare_ops);
 772         cvd->vdev_ashift = mvd->vdev_ashift;
 773 
 774         vdev_remove_child(mvd, cvd);
 775         vdev_remove_child(pvd, mvd);
 776 
 777         /*
 778          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
 779          * Otherwise, we could have detached an offline device, and when we
 780          * go to import the pool we'll think we have two top-level vdevs,
 781          * instead of a different version of the same top-level vdev.
 782          */
 783         if (mvd->vdev_top == mvd) {
 784                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
 785                 cvd->vdev_orig_guid = cvd->vdev_guid;
 786                 cvd->vdev_guid += guid_delta;
 787                 cvd->vdev_guid_sum += guid_delta;
 788         }
 789         cvd->vdev_id = mvd->vdev_id;
 790         vdev_add_child(pvd, cvd);
 791         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
 792 
 793         if (cvd == cvd->vdev_top)
 794                 vdev_top_transfer(mvd, cvd);
 795 
 796         ASSERT(mvd->vdev_children == 0);
 797         vdev_free(mvd);
 798 }
 799 
 800 int
 801 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
 802 {
 803         spa_t *spa = vd->vdev_spa;
 804         objset_t *mos = spa->spa_meta_objset;
 805         uint64_t m;
 806         uint64_t oldc = vd->vdev_ms_count;
 807         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
 808         metaslab_t **mspp;
 809         int error;
 810 
 811         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
 812 
 813         /*
 814          * This vdev is not being allocated from yet or is a hole.
 815          */
 816         if (vd->vdev_ms_shift == 0)
 817                 return (0);
 818 
 819         ASSERT(!vd->vdev_ishole);
 820 
 821         /*
 822          * Compute the raidz-deflation ratio.  Note, we hard-code
 823          * in 128k (1 << 17) because it is the current "typical" blocksize.
 824          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
 825          * or we will inconsistently account for existing bp's.
 826          */
 827         vd->vdev_deflate_ratio = (1 << 17) /
 828             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
 829 
 830         ASSERT(oldc <= newc);
 831 
 832         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
 833 
 834         if (oldc != 0) {
 835                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
 836                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
 837         }
 838 
 839         vd->vdev_ms = mspp;
 840         vd->vdev_ms_count = newc;
 841 
 842         for (m = oldc; m < newc; m++) {
 843                 space_map_obj_t smo = { 0, 0, 0 };
 844                 if (txg == 0) {
 845                         uint64_t object = 0;
 846                         error = dmu_read(mos, vd->vdev_ms_array,
 847                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
 848                             DMU_READ_PREFETCH);
 849                         if (error)
 850                                 return (error);
 851                         if (object != 0) {
 852                                 dmu_buf_t *db;
 853                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
 854                                 if (error)
 855                                         return (error);
 856                                 ASSERT3U(db->db_size, >=, sizeof (smo));
 857                                 bcopy(db->db_data, &smo, sizeof (smo));
 858                                 ASSERT3U(smo.smo_object, ==, object);
 859                                 dmu_buf_rele(db, FTAG);
 860                         }
 861                 }
 862                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
 863                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
 864         }
 865 
 866         if (txg == 0)
 867                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
 868 
 869         /*
 870          * If the vdev is being removed we don't activate
 871          * the metaslabs since we want to ensure that no new
 872          * allocations are performed on this device.
 873          */
 874         if (oldc == 0 && !vd->vdev_removing)
 875                 metaslab_group_activate(vd->vdev_mg);
 876 
 877         if (txg == 0)
 878                 spa_config_exit(spa, SCL_ALLOC, FTAG);
 879 
 880         return (0);
 881 }
 882 
 883 void
 884 vdev_metaslab_fini(vdev_t *vd)
 885 {
 886         uint64_t m;
 887         uint64_t count = vd->vdev_ms_count;
 888 
 889         if (vd->vdev_ms != NULL) {
 890                 metaslab_group_passivate(vd->vdev_mg);
 891                 for (m = 0; m < count; m++)
 892                         if (vd->vdev_ms[m] != NULL)
 893                                 metaslab_fini(vd->vdev_ms[m]);
 894                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
 895                 vd->vdev_ms = NULL;
 896         }
 897 }
 898 
 899 typedef struct vdev_probe_stats {
 900         boolean_t       vps_readable;
 901         boolean_t       vps_writeable;
 902         int             vps_flags;
 903 } vdev_probe_stats_t;
 904 
 905 static void
 906 vdev_probe_done(zio_t *zio)
 907 {
 908         spa_t *spa = zio->io_spa;
 909         vdev_t *vd = zio->io_vd;
 910         vdev_probe_stats_t *vps = zio->io_private;
 911 
 912         ASSERT(vd->vdev_probe_zio != NULL);
 913 
 914         if (zio->io_type == ZIO_TYPE_READ) {
 915                 if (zio->io_error == 0)
 916                         vps->vps_readable = 1;
 917                 if (zio->io_error == 0 && spa_writeable(spa)) {
 918                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
 919                             zio->io_offset, zio->io_size, zio->io_data,
 920                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
 921                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
 922                 } else {
 923                         zio_buf_free(zio->io_data, zio->io_size);
 924                 }
 925         } else if (zio->io_type == ZIO_TYPE_WRITE) {
 926                 if (zio->io_error == 0)
 927                         vps->vps_writeable = 1;
 928                 zio_buf_free(zio->io_data, zio->io_size);
 929         } else if (zio->io_type == ZIO_TYPE_NULL) {
 930                 zio_t *pio;
 931 
 932                 vd->vdev_cant_read |= !vps->vps_readable;
 933                 vd->vdev_cant_write |= !vps->vps_writeable;
 934 
 935                 if (vdev_readable(vd) &&
 936                     (vdev_writeable(vd) || !spa_writeable(spa))) {
 937                         zio->io_error = 0;
 938                 } else {
 939                         ASSERT(zio->io_error != 0);
 940                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
 941                             spa, vd, NULL, 0, 0);
 942                         zio->io_error = SET_ERROR(ENXIO);
 943                 }
 944 
 945                 mutex_enter(&vd->vdev_probe_lock);
 946                 ASSERT(vd->vdev_probe_zio == zio);
 947                 vd->vdev_probe_zio = NULL;
 948                 mutex_exit(&vd->vdev_probe_lock);
 949 
 950                 while ((pio = zio_walk_parents(zio)) != NULL)
 951                         if (!vdev_accessible(vd, pio))
 952                                 pio->io_error = SET_ERROR(ENXIO);
 953 
 954                 kmem_free(vps, sizeof (*vps));
 955         }
 956 }
 957 
 958 /*
 959  * Determine whether this device is accessible.
 960  *
 961  * Read and write to several known locations: the pad regions of each
 962  * vdev label but the first, which we leave alone in case it contains
 963  * a VTOC.
 964  */
 965 zio_t *
 966 vdev_probe(vdev_t *vd, zio_t *zio)
 967 {
 968         spa_t *spa = vd->vdev_spa;
 969         vdev_probe_stats_t *vps = NULL;
 970         zio_t *pio;
 971 
 972         ASSERT(vd->vdev_ops->vdev_op_leaf);
 973 
 974         /*
 975          * Don't probe the probe.
 976          */
 977         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
 978                 return (NULL);
 979 
 980         /*
 981          * To prevent 'probe storms' when a device fails, we create
 982          * just one probe i/o at a time.  All zios that want to probe
 983          * this vdev will become parents of the probe io.
 984          */
 985         mutex_enter(&vd->vdev_probe_lock);
 986 
 987         if ((pio = vd->vdev_probe_zio) == NULL) {
 988                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
 989 
 990                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
 991                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
 992                     ZIO_FLAG_TRYHARD;
 993 
 994                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
 995                         /*
 996                          * vdev_cant_read and vdev_cant_write can only
 997                          * transition from TRUE to FALSE when we have the
 998                          * SCL_ZIO lock as writer; otherwise they can only
 999                          * transition from FALSE to TRUE.  This ensures that
1000                          * any zio looking at these values can assume that
1001                          * failures persist for the life of the I/O.  That's
1002                          * important because when a device has intermittent
1003                          * connectivity problems, we want to ensure that
1004                          * they're ascribed to the device (ENXIO) and not
1005                          * the zio (EIO).
1006                          *
1007                          * Since we hold SCL_ZIO as writer here, clear both
1008                          * values so the probe can reevaluate from first
1009                          * principles.
1010                          */
1011                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1012                         vd->vdev_cant_read = B_FALSE;
1013                         vd->vdev_cant_write = B_FALSE;
1014                 }
1015 
1016                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1017                     vdev_probe_done, vps,
1018                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1019 
1020                 /*
1021                  * We can't change the vdev state in this context, so we
1022                  * kick off an async task to do it on our behalf.
1023                  */
1024                 if (zio != NULL) {
1025                         vd->vdev_probe_wanted = B_TRUE;
1026                         spa_async_request(spa, SPA_ASYNC_PROBE);
1027                 }
1028         }
1029 
1030         if (zio != NULL)
1031                 zio_add_child(zio, pio);
1032 
1033         mutex_exit(&vd->vdev_probe_lock);
1034 
1035         if (vps == NULL) {
1036                 ASSERT(zio != NULL);
1037                 return (NULL);
1038         }
1039 
1040         for (int l = 1; l < VDEV_LABELS; l++) {
1041                 zio_nowait(zio_read_phys(pio, vd,
1042                     vdev_label_offset(vd->vdev_psize, l,
1043                     offsetof(vdev_label_t, vl_pad2)),
1044                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1045                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1046                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1047         }
1048 
1049         if (zio == NULL)
1050                 return (pio);
1051 
1052         zio_nowait(pio);
1053         return (NULL);
1054 }
1055 
1056 static void
1057 vdev_open_child(void *arg)
1058 {
1059         vdev_t *vd = arg;
1060 
1061         vd->vdev_open_thread = curthread;
1062         vd->vdev_open_error = vdev_open(vd);
1063         vd->vdev_open_thread = NULL;
1064 }
1065 
1066 boolean_t
1067 vdev_uses_zvols(vdev_t *vd)
1068 {
1069         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1070             strlen(ZVOL_DIR)) == 0)
1071                 return (B_TRUE);
1072         for (int c = 0; c < vd->vdev_children; c++)
1073                 if (vdev_uses_zvols(vd->vdev_child[c]))
1074                         return (B_TRUE);
1075         return (B_FALSE);
1076 }
1077 
1078 void
1079 vdev_open_children(vdev_t *vd)
1080 {
1081         taskq_t *tq;
1082         int children = vd->vdev_children;
1083 
1084         /*
1085          * in order to handle pools on top of zvols, do the opens
1086          * in a single thread so that the same thread holds the
1087          * spa_namespace_lock
1088          */
1089         if (vdev_uses_zvols(vd)) {
1090                 for (int c = 0; c < children; c++)
1091                         vd->vdev_child[c]->vdev_open_error =
1092                             vdev_open(vd->vdev_child[c]);
1093                 return;
1094         }
1095         tq = taskq_create("vdev_open", children, minclsyspri,
1096             children, children, TASKQ_PREPOPULATE);
1097 
1098         for (int c = 0; c < children; c++)
1099                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1100                     TQ_SLEEP) != NULL);
1101 
1102         taskq_destroy(tq);
1103 }
1104 
1105 /*
1106  * Prepare a virtual device for access.
1107  */
1108 int
1109 vdev_open(vdev_t *vd)
1110 {
1111         spa_t *spa = vd->vdev_spa;
1112         int error;
1113         uint64_t osize = 0;
1114         uint64_t max_osize = 0;
1115         uint64_t asize, max_asize, psize;
1116         uint64_t ashift = 0;
1117 
1118         ASSERT(vd->vdev_open_thread == curthread ||
1119             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1120         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1121             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1122             vd->vdev_state == VDEV_STATE_OFFLINE);
1123 
1124         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1125         vd->vdev_cant_read = B_FALSE;
1126         vd->vdev_cant_write = B_FALSE;
1127         vd->vdev_min_asize = vdev_get_min_asize(vd);
1128 
1129         /*
1130          * If this vdev is not removed, check its fault status.  If it's
1131          * faulted, bail out of the open.
1132          */
1133         if (!vd->vdev_removed && vd->vdev_faulted) {
1134                 ASSERT(vd->vdev_children == 0);
1135                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1136                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1137                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1138                     vd->vdev_label_aux);
1139                 return (SET_ERROR(ENXIO));
1140         } else if (vd->vdev_offline) {
1141                 ASSERT(vd->vdev_children == 0);
1142                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1143                 return (SET_ERROR(ENXIO));
1144         }
1145 
1146         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1147 
1148         /*
1149          * Reset the vdev_reopening flag so that we actually close
1150          * the vdev on error.
1151          */
1152         vd->vdev_reopening = B_FALSE;
1153         if (zio_injection_enabled && error == 0)
1154                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1155 
1156         if (error) {
1157                 if (vd->vdev_removed &&
1158                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1159                         vd->vdev_removed = B_FALSE;
1160 
1161                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1162                     vd->vdev_stat.vs_aux);
1163                 return (error);
1164         }
1165 
1166         vd->vdev_removed = B_FALSE;
1167 
1168         /*
1169          * Recheck the faulted flag now that we have confirmed that
1170          * the vdev is accessible.  If we're faulted, bail.
1171          */
1172         if (vd->vdev_faulted) {
1173                 ASSERT(vd->vdev_children == 0);
1174                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1175                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1176                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1177                     vd->vdev_label_aux);
1178                 return (SET_ERROR(ENXIO));
1179         }
1180 
1181         if (vd->vdev_degraded) {
1182                 ASSERT(vd->vdev_children == 0);
1183                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1184                     VDEV_AUX_ERR_EXCEEDED);
1185         } else {
1186                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1187         }
1188 
1189         /*
1190          * For hole or missing vdevs we just return success.
1191          */
1192         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1193                 return (0);
1194 
1195         for (int c = 0; c < vd->vdev_children; c++) {
1196                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1197                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1198                             VDEV_AUX_NONE);
1199                         break;
1200                 }
1201         }
1202 
1203         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1204         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1205 
1206         if (vd->vdev_children == 0) {
1207                 if (osize < SPA_MINDEVSIZE) {
1208                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1209                             VDEV_AUX_TOO_SMALL);
1210                         return (SET_ERROR(EOVERFLOW));
1211                 }
1212                 psize = osize;
1213                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1214                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1215                     VDEV_LABEL_END_SIZE);
1216         } else {
1217                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1218                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1219                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1220                             VDEV_AUX_TOO_SMALL);
1221                         return (SET_ERROR(EOVERFLOW));
1222                 }
1223                 psize = 0;
1224                 asize = osize;
1225                 max_asize = max_osize;
1226         }
1227 
1228         vd->vdev_psize = psize;
1229 
1230         /*
1231          * Make sure the allocatable size hasn't shrunk.
1232          */
1233         if (asize < vd->vdev_min_asize) {
1234                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1235                     VDEV_AUX_BAD_LABEL);
1236                 return (SET_ERROR(EINVAL));
1237         }
1238 
1239         if (vd->vdev_asize == 0) {
1240                 /*
1241                  * This is the first-ever open, so use the computed values.
1242                  * For testing purposes, a higher ashift can be requested.
1243                  */
1244                 vd->vdev_asize = asize;
1245                 vd->vdev_max_asize = max_asize;
1246                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1247         } else {
1248                 /*
1249                  * Detect if the alignment requirement has increased.
1250                  * We don't want to make the pool unavailable, just
1251                  * issue a warning instead.
1252                  */
1253                 if (ashift > vd->vdev_top->vdev_ashift &&
1254                     vd->vdev_ops->vdev_op_leaf) {
1255                         cmn_err(CE_WARN,
1256                             "Disk, '%s', has a block alignment that is "
1257                             "larger than the pool's alignment\n",
1258                             vd->vdev_path);
1259                 }
1260                 vd->vdev_max_asize = max_asize;
1261         }
1262 
1263         /*
1264          * If all children are healthy and the asize has increased,
1265          * then we've experienced dynamic LUN growth.  If automatic
1266          * expansion is enabled then use the additional space.
1267          */
1268         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1269             (vd->vdev_expanding || spa->spa_autoexpand))
1270                 vd->vdev_asize = asize;
1271 
1272         vdev_set_min_asize(vd);
1273 
1274         /*
1275          * Ensure we can issue some IO before declaring the
1276          * vdev open for business.
1277          */
1278         if (vd->vdev_ops->vdev_op_leaf &&
1279             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1280                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1281                     VDEV_AUX_ERR_EXCEEDED);
1282                 return (error);
1283         }
1284 
1285         /*
1286          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1287          * resilver.  But don't do this if we are doing a reopen for a scrub,
1288          * since this would just restart the scrub we are already doing.
1289          */
1290         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1291             vdev_resilver_needed(vd, NULL, NULL))
1292                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1293 
1294         return (0);
1295 }
1296 
1297 /*
1298  * Called once the vdevs are all opened, this routine validates the label
1299  * contents.  This needs to be done before vdev_load() so that we don't
1300  * inadvertently do repair I/Os to the wrong device.
1301  *
1302  * If 'strict' is false ignore the spa guid check. This is necessary because
1303  * if the machine crashed during a re-guid the new guid might have been written
1304  * to all of the vdev labels, but not the cached config. The strict check
1305  * will be performed when the pool is opened again using the mos config.
1306  *
1307  * This function will only return failure if one of the vdevs indicates that it
1308  * has since been destroyed or exported.  This is only possible if
1309  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1310  * will be updated but the function will return 0.
1311  */
1312 int
1313 vdev_validate(vdev_t *vd, boolean_t strict)
1314 {
1315         spa_t *spa = vd->vdev_spa;
1316         nvlist_t *label;
1317         uint64_t guid = 0, top_guid;
1318         uint64_t state;
1319 
1320         for (int c = 0; c < vd->vdev_children; c++)
1321                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1322                         return (SET_ERROR(EBADF));
1323 
1324         /*
1325          * If the device has already failed, or was marked offline, don't do
1326          * any further validation.  Otherwise, label I/O will fail and we will
1327          * overwrite the previous state.
1328          */
1329         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1330                 uint64_t aux_guid = 0;
1331                 nvlist_t *nvl;
1332                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1333                     spa_last_synced_txg(spa) : -1ULL;
1334 
1335                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1336                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1337                             VDEV_AUX_BAD_LABEL);
1338                         return (0);
1339                 }
1340 
1341                 /*
1342                  * Determine if this vdev has been split off into another
1343                  * pool.  If so, then refuse to open it.
1344                  */
1345                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1346                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1347                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1348                             VDEV_AUX_SPLIT_POOL);
1349                         nvlist_free(label);
1350                         return (0);
1351                 }
1352 
1353                 if (strict && (nvlist_lookup_uint64(label,
1354                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1355                     guid != spa_guid(spa))) {
1356                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1357                             VDEV_AUX_CORRUPT_DATA);
1358                         nvlist_free(label);
1359                         return (0);
1360                 }
1361 
1362                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1363                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1364                     &aux_guid) != 0)
1365                         aux_guid = 0;
1366 
1367                 /*
1368                  * If this vdev just became a top-level vdev because its
1369                  * sibling was detached, it will have adopted the parent's
1370                  * vdev guid -- but the label may or may not be on disk yet.
1371                  * Fortunately, either version of the label will have the
1372                  * same top guid, so if we're a top-level vdev, we can
1373                  * safely compare to that instead.
1374                  *
1375                  * If we split this vdev off instead, then we also check the
1376                  * original pool's guid.  We don't want to consider the vdev
1377                  * corrupt if it is partway through a split operation.
1378                  */
1379                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1380                     &guid) != 0 ||
1381                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1382                     &top_guid) != 0 ||
1383                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1384                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1385                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1386                             VDEV_AUX_CORRUPT_DATA);
1387                         nvlist_free(label);
1388                         return (0);
1389                 }
1390 
1391                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1392                     &state) != 0) {
1393                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1394                             VDEV_AUX_CORRUPT_DATA);
1395                         nvlist_free(label);
1396                         return (0);
1397                 }
1398 
1399                 nvlist_free(label);
1400 
1401                 /*
1402                  * If this is a verbatim import, no need to check the
1403                  * state of the pool.
1404                  */
1405                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1406                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1407                     state != POOL_STATE_ACTIVE)
1408                         return (SET_ERROR(EBADF));
1409 
1410                 /*
1411                  * If we were able to open and validate a vdev that was
1412                  * previously marked permanently unavailable, clear that state
1413                  * now.
1414                  */
1415                 if (vd->vdev_not_present)
1416                         vd->vdev_not_present = 0;
1417         }
1418 
1419         return (0);
1420 }
1421 
1422 /*
1423  * Close a virtual device.
1424  */
1425 void
1426 vdev_close(vdev_t *vd)
1427 {
1428         spa_t *spa = vd->vdev_spa;
1429         vdev_t *pvd = vd->vdev_parent;
1430 
1431         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1432 
1433         /*
1434          * If our parent is reopening, then we are as well, unless we are
1435          * going offline.
1436          */
1437         if (pvd != NULL && pvd->vdev_reopening)
1438                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1439 
1440         vd->vdev_ops->vdev_op_close(vd);
1441 
1442         vdev_cache_purge(vd);
1443 
1444         /*
1445          * We record the previous state before we close it, so that if we are
1446          * doing a reopen(), we don't generate FMA ereports if we notice that
1447          * it's still faulted.
1448          */
1449         vd->vdev_prevstate = vd->vdev_state;
1450 
1451         if (vd->vdev_offline)
1452                 vd->vdev_state = VDEV_STATE_OFFLINE;
1453         else
1454                 vd->vdev_state = VDEV_STATE_CLOSED;
1455         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1456 }
1457 
1458 void
1459 vdev_hold(vdev_t *vd)
1460 {
1461         spa_t *spa = vd->vdev_spa;
1462 
1463         ASSERT(spa_is_root(spa));
1464         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1465                 return;
1466 
1467         for (int c = 0; c < vd->vdev_children; c++)
1468                 vdev_hold(vd->vdev_child[c]);
1469 
1470         if (vd->vdev_ops->vdev_op_leaf)
1471                 vd->vdev_ops->vdev_op_hold(vd);
1472 }
1473 
1474 void
1475 vdev_rele(vdev_t *vd)
1476 {
1477         spa_t *spa = vd->vdev_spa;
1478 
1479         ASSERT(spa_is_root(spa));
1480         for (int c = 0; c < vd->vdev_children; c++)
1481                 vdev_rele(vd->vdev_child[c]);
1482 
1483         if (vd->vdev_ops->vdev_op_leaf)
1484                 vd->vdev_ops->vdev_op_rele(vd);
1485 }
1486 
1487 /*
1488  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1489  * reopen leaf vdevs which had previously been opened as they might deadlock
1490  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1491  * If the leaf has never been opened then open it, as usual.
1492  */
1493 void
1494 vdev_reopen(vdev_t *vd)
1495 {
1496         spa_t *spa = vd->vdev_spa;
1497 
1498         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1499 
1500         /* set the reopening flag unless we're taking the vdev offline */
1501         vd->vdev_reopening = !vd->vdev_offline;
1502         vdev_close(vd);
1503         (void) vdev_open(vd);
1504 
1505         /*
1506          * Call vdev_validate() here to make sure we have the same device.
1507          * Otherwise, a device with an invalid label could be successfully
1508          * opened in response to vdev_reopen().
1509          */
1510         if (vd->vdev_aux) {
1511                 (void) vdev_validate_aux(vd);
1512                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1513                     vd->vdev_aux == &spa->spa_l2cache &&
1514                     !l2arc_vdev_present(vd))
1515                         l2arc_add_vdev(spa, vd);
1516         } else {
1517                 (void) vdev_validate(vd, B_TRUE);
1518         }
1519 
1520         /*
1521          * Reassess parent vdev's health.
1522          */
1523         vdev_propagate_state(vd);
1524 }
1525 
1526 int
1527 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1528 {
1529         int error;
1530 
1531         /*
1532          * Normally, partial opens (e.g. of a mirror) are allowed.
1533          * For a create, however, we want to fail the request if
1534          * there are any components we can't open.
1535          */
1536         error = vdev_open(vd);
1537 
1538         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1539                 vdev_close(vd);
1540                 return (error ? error : ENXIO);
1541         }
1542 
1543         /*
1544          * Recursively initialize all labels.
1545          */
1546         if ((error = vdev_label_init(vd, txg, isreplacing ?
1547             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1548                 vdev_close(vd);
1549                 return (error);
1550         }
1551 
1552         return (0);
1553 }
1554 
1555 void
1556 vdev_metaslab_set_size(vdev_t *vd)
1557 {
1558         /*
1559          * Aim for roughly 200 metaslabs per vdev.
1560          */
1561         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1562         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1563 }
1564 
1565 void
1566 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1567 {
1568         ASSERT(vd == vd->vdev_top);
1569         ASSERT(!vd->vdev_ishole);
1570         ASSERT(ISP2(flags));
1571         ASSERT(spa_writeable(vd->vdev_spa));
1572 
1573         if (flags & VDD_METASLAB)
1574                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1575 
1576         if (flags & VDD_DTL)
1577                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1578 
1579         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1580 }
1581 
1582 /*
1583  * DTLs.
1584  *
1585  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1586  * the vdev has less than perfect replication.  There are four kinds of DTL:
1587  *
1588  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1589  *
1590  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1591  *
1592  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1593  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1594  *      txgs that was scrubbed.
1595  *
1596  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1597  *      persistent errors or just some device being offline.
1598  *      Unlike the other three, the DTL_OUTAGE map is not generally
1599  *      maintained; it's only computed when needed, typically to
1600  *      determine whether a device can be detached.
1601  *
1602  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1603  * either has the data or it doesn't.
1604  *
1605  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1606  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1607  * if any child is less than fully replicated, then so is its parent.
1608  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1609  * comprising only those txgs which appear in 'maxfaults' or more children;
1610  * those are the txgs we don't have enough replication to read.  For example,
1611  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1612  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1613  * two child DTL_MISSING maps.
1614  *
1615  * It should be clear from the above that to compute the DTLs and outage maps
1616  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1617  * Therefore, that is all we keep on disk.  When loading the pool, or after
1618  * a configuration change, we generate all other DTLs from first principles.
1619  */
1620 void
1621 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1622 {
1623         space_map_t *sm = &vd->vdev_dtl[t];
1624 
1625         ASSERT(t < DTL_TYPES);
1626         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1627         ASSERT(spa_writeable(vd->vdev_spa));
1628 
1629         mutex_enter(sm->sm_lock);
1630         if (!space_map_contains(sm, txg, size))
1631                 space_map_add(sm, txg, size);
1632         mutex_exit(sm->sm_lock);
1633 }
1634 
1635 boolean_t
1636 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1637 {
1638         space_map_t *sm = &vd->vdev_dtl[t];
1639         boolean_t dirty = B_FALSE;
1640 
1641         ASSERT(t < DTL_TYPES);
1642         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1643 
1644         mutex_enter(sm->sm_lock);
1645         if (sm->sm_space != 0)
1646                 dirty = space_map_contains(sm, txg, size);
1647         mutex_exit(sm->sm_lock);
1648 
1649         return (dirty);
1650 }
1651 
1652 boolean_t
1653 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1654 {
1655         space_map_t *sm = &vd->vdev_dtl[t];
1656         boolean_t empty;
1657 
1658         mutex_enter(sm->sm_lock);
1659         empty = (sm->sm_space == 0);
1660         mutex_exit(sm->sm_lock);
1661 
1662         return (empty);
1663 }
1664 
1665 /*
1666  * Reassess DTLs after a config change or scrub completion.
1667  */
1668 void
1669 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1670 {
1671         spa_t *spa = vd->vdev_spa;
1672         avl_tree_t reftree;
1673         int minref;
1674 
1675         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1676 
1677         for (int c = 0; c < vd->vdev_children; c++)
1678                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1679                     scrub_txg, scrub_done);
1680 
1681         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1682                 return;
1683 
1684         if (vd->vdev_ops->vdev_op_leaf) {
1685                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1686 
1687                 mutex_enter(&vd->vdev_dtl_lock);
1688                 if (scrub_txg != 0 &&
1689                     (spa->spa_scrub_started ||
1690                     (scn && scn->scn_phys.scn_errors == 0))) {
1691                         /*
1692                          * We completed a scrub up to scrub_txg.  If we
1693                          * did it without rebooting, then the scrub dtl
1694                          * will be valid, so excise the old region and
1695                          * fold in the scrub dtl.  Otherwise, leave the
1696                          * dtl as-is if there was an error.
1697                          *
1698                          * There's little trick here: to excise the beginning
1699                          * of the DTL_MISSING map, we put it into a reference
1700                          * tree and then add a segment with refcnt -1 that
1701                          * covers the range [0, scrub_txg).  This means
1702                          * that each txg in that range has refcnt -1 or 0.
1703                          * We then add DTL_SCRUB with a refcnt of 2, so that
1704                          * entries in the range [0, scrub_txg) will have a
1705                          * positive refcnt -- either 1 or 2.  We then convert
1706                          * the reference tree into the new DTL_MISSING map.
1707                          */
1708                         space_map_ref_create(&reftree);
1709                         space_map_ref_add_map(&reftree,
1710                             &vd->vdev_dtl[DTL_MISSING], 1);
1711                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1712                         space_map_ref_add_map(&reftree,
1713                             &vd->vdev_dtl[DTL_SCRUB], 2);
1714                         space_map_ref_generate_map(&reftree,
1715                             &vd->vdev_dtl[DTL_MISSING], 1);
1716                         space_map_ref_destroy(&reftree);
1717                 }
1718                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1719                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1720                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1721                 if (scrub_done)
1722                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1723                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1724                 if (!vdev_readable(vd))
1725                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1726                 else
1727                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1728                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1729                 mutex_exit(&vd->vdev_dtl_lock);
1730 
1731                 if (txg != 0)
1732                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1733                 return;
1734         }
1735 
1736         mutex_enter(&vd->vdev_dtl_lock);
1737         for (int t = 0; t < DTL_TYPES; t++) {
1738                 /* account for child's outage in parent's missing map */
1739                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1740                 if (t == DTL_SCRUB)
1741                         continue;                       /* leaf vdevs only */
1742                 if (t == DTL_PARTIAL)
1743                         minref = 1;                     /* i.e. non-zero */
1744                 else if (vd->vdev_nparity != 0)
1745                         minref = vd->vdev_nparity + 1;       /* RAID-Z */
1746                 else
1747                         minref = vd->vdev_children;  /* any kind of mirror */
1748                 space_map_ref_create(&reftree);
1749                 for (int c = 0; c < vd->vdev_children; c++) {
1750                         vdev_t *cvd = vd->vdev_child[c];
1751                         mutex_enter(&cvd->vdev_dtl_lock);
1752                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1753                         mutex_exit(&cvd->vdev_dtl_lock);
1754                 }
1755                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1756                 space_map_ref_destroy(&reftree);
1757         }
1758         mutex_exit(&vd->vdev_dtl_lock);
1759 }
1760 
1761 static int
1762 vdev_dtl_load(vdev_t *vd)
1763 {
1764         spa_t *spa = vd->vdev_spa;
1765         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1766         objset_t *mos = spa->spa_meta_objset;
1767         dmu_buf_t *db;
1768         int error;
1769 
1770         ASSERT(vd->vdev_children == 0);
1771 
1772         if (smo->smo_object == 0)
1773                 return (0);
1774 
1775         ASSERT(!vd->vdev_ishole);
1776 
1777         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1778                 return (error);
1779 
1780         ASSERT3U(db->db_size, >=, sizeof (*smo));
1781         bcopy(db->db_data, smo, sizeof (*smo));
1782         dmu_buf_rele(db, FTAG);
1783 
1784         mutex_enter(&vd->vdev_dtl_lock);
1785         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1786             NULL, SM_ALLOC, smo, mos);
1787         mutex_exit(&vd->vdev_dtl_lock);
1788 
1789         return (error);
1790 }
1791 
1792 void
1793 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1794 {
1795         spa_t *spa = vd->vdev_spa;
1796         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1797         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1798         objset_t *mos = spa->spa_meta_objset;
1799         space_map_t smsync;
1800         kmutex_t smlock;
1801         dmu_buf_t *db;
1802         dmu_tx_t *tx;
1803 
1804         ASSERT(!vd->vdev_ishole);
1805 
1806         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1807 
1808         if (vd->vdev_detached) {
1809                 if (smo->smo_object != 0) {
1810                         int err = dmu_object_free(mos, smo->smo_object, tx);
1811                         ASSERT0(err);
1812                         smo->smo_object = 0;
1813                 }
1814                 dmu_tx_commit(tx);
1815                 return;
1816         }
1817 
1818         if (smo->smo_object == 0) {
1819                 ASSERT(smo->smo_objsize == 0);
1820                 ASSERT(smo->smo_alloc == 0);
1821                 smo->smo_object = dmu_object_alloc(mos,
1822                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1823                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1824                 ASSERT(smo->smo_object != 0);
1825                 vdev_config_dirty(vd->vdev_top);
1826         }
1827 
1828         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1829 
1830         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1831             &smlock);
1832 
1833         mutex_enter(&smlock);
1834 
1835         mutex_enter(&vd->vdev_dtl_lock);
1836         space_map_walk(sm, space_map_add, &smsync);
1837         mutex_exit(&vd->vdev_dtl_lock);
1838 
1839         space_map_truncate(smo, mos, tx);
1840         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1841         space_map_vacate(&smsync, NULL, NULL);
1842 
1843         space_map_destroy(&smsync);
1844 
1845         mutex_exit(&smlock);
1846         mutex_destroy(&smlock);
1847 
1848         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1849         dmu_buf_will_dirty(db, tx);
1850         ASSERT3U(db->db_size, >=, sizeof (*smo));
1851         bcopy(smo, db->db_data, sizeof (*smo));
1852         dmu_buf_rele(db, FTAG);
1853 
1854         dmu_tx_commit(tx);
1855 }
1856 
1857 /*
1858  * Determine whether the specified vdev can be offlined/detached/removed
1859  * without losing data.
1860  */
1861 boolean_t
1862 vdev_dtl_required(vdev_t *vd)
1863 {
1864         spa_t *spa = vd->vdev_spa;
1865         vdev_t *tvd = vd->vdev_top;
1866         uint8_t cant_read = vd->vdev_cant_read;
1867         boolean_t required;
1868 
1869         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1870 
1871         if (vd == spa->spa_root_vdev || vd == tvd)
1872                 return (B_TRUE);
1873 
1874         /*
1875          * Temporarily mark the device as unreadable, and then determine
1876          * whether this results in any DTL outages in the top-level vdev.
1877          * If not, we can safely offline/detach/remove the device.
1878          */
1879         vd->vdev_cant_read = B_TRUE;
1880         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1881         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1882         vd->vdev_cant_read = cant_read;
1883         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1884 
1885         if (!required && zio_injection_enabled)
1886                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1887 
1888         return (required);
1889 }
1890 
1891 /*
1892  * Determine if resilver is needed, and if so the txg range.
1893  */
1894 boolean_t
1895 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1896 {
1897         boolean_t needed = B_FALSE;
1898         uint64_t thismin = UINT64_MAX;
1899         uint64_t thismax = 0;
1900 
1901         if (vd->vdev_children == 0) {
1902                 mutex_enter(&vd->vdev_dtl_lock);
1903                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1904                     vdev_writeable(vd)) {
1905                         space_seg_t *ss;
1906 
1907                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1908                         thismin = ss->ss_start - 1;
1909                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1910                         thismax = ss->ss_end;
1911                         needed = B_TRUE;
1912                 }
1913                 mutex_exit(&vd->vdev_dtl_lock);
1914         } else {
1915                 for (int c = 0; c < vd->vdev_children; c++) {
1916                         vdev_t *cvd = vd->vdev_child[c];
1917                         uint64_t cmin, cmax;
1918 
1919                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1920                                 thismin = MIN(thismin, cmin);
1921                                 thismax = MAX(thismax, cmax);
1922                                 needed = B_TRUE;
1923                         }
1924                 }
1925         }
1926 
1927         if (needed && minp) {
1928                 *minp = thismin;
1929                 *maxp = thismax;
1930         }
1931         return (needed);
1932 }
1933 
1934 void
1935 vdev_load(vdev_t *vd)
1936 {
1937         /*
1938          * Recursively load all children.
1939          */
1940         for (int c = 0; c < vd->vdev_children; c++)
1941                 vdev_load(vd->vdev_child[c]);
1942 
1943         /*
1944          * If this is a top-level vdev, initialize its metaslabs.
1945          */
1946         if (vd == vd->vdev_top && !vd->vdev_ishole &&
1947             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1948             vdev_metaslab_init(vd, 0) != 0))
1949                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1950                     VDEV_AUX_CORRUPT_DATA);
1951 
1952         /*
1953          * If this is a leaf vdev, load its DTL.
1954          */
1955         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1956                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1957                     VDEV_AUX_CORRUPT_DATA);
1958 }
1959 
1960 /*
1961  * The special vdev case is used for hot spares and l2cache devices.  Its
1962  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1963  * we make sure that we can open the underlying device, then try to read the
1964  * label, and make sure that the label is sane and that it hasn't been
1965  * repurposed to another pool.
1966  */
1967 int
1968 vdev_validate_aux(vdev_t *vd)
1969 {
1970         nvlist_t *label;
1971         uint64_t guid, version;
1972         uint64_t state;
1973 
1974         if (!vdev_readable(vd))
1975                 return (0);
1976 
1977         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
1978                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1979                     VDEV_AUX_CORRUPT_DATA);
1980                 return (-1);
1981         }
1982 
1983         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1984             !SPA_VERSION_IS_SUPPORTED(version) ||
1985             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1986             guid != vd->vdev_guid ||
1987             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1988                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1989                     VDEV_AUX_CORRUPT_DATA);
1990                 nvlist_free(label);
1991                 return (-1);
1992         }
1993 
1994         /*
1995          * We don't actually check the pool state here.  If it's in fact in
1996          * use by another pool, we update this fact on the fly when requested.
1997          */
1998         nvlist_free(label);
1999         return (0);
2000 }
2001 
2002 void
2003 vdev_remove(vdev_t *vd, uint64_t txg)
2004 {
2005         spa_t *spa = vd->vdev_spa;
2006         objset_t *mos = spa->spa_meta_objset;
2007         dmu_tx_t *tx;
2008 
2009         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2010 
2011         if (vd->vdev_dtl_smo.smo_object) {
2012                 ASSERT0(vd->vdev_dtl_smo.smo_alloc);
2013                 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2014                 vd->vdev_dtl_smo.smo_object = 0;
2015         }
2016 
2017         if (vd->vdev_ms != NULL) {
2018                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2019                         metaslab_t *msp = vd->vdev_ms[m];
2020 
2021                         if (msp == NULL || msp->ms_smo.smo_object == 0)
2022                                 continue;
2023 
2024                         ASSERT0(msp->ms_smo.smo_alloc);
2025                         (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2026                         msp->ms_smo.smo_object = 0;
2027                 }
2028         }
2029 
2030         if (vd->vdev_ms_array) {
2031                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2032                 vd->vdev_ms_array = 0;
2033                 vd->vdev_ms_shift = 0;
2034         }
2035         dmu_tx_commit(tx);
2036 }
2037 
2038 void
2039 vdev_sync_done(vdev_t *vd, uint64_t txg)
2040 {
2041         metaslab_t *msp;
2042         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2043 
2044         ASSERT(!vd->vdev_ishole);
2045 
2046         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2047                 metaslab_sync_done(msp, txg);
2048 
2049         if (reassess)
2050                 metaslab_sync_reassess(vd->vdev_mg);
2051 }
2052 
2053 void
2054 vdev_sync(vdev_t *vd, uint64_t txg)
2055 {
2056         spa_t *spa = vd->vdev_spa;
2057         vdev_t *lvd;
2058         metaslab_t *msp;
2059         dmu_tx_t *tx;
2060 
2061         ASSERT(!vd->vdev_ishole);
2062 
2063         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2064                 ASSERT(vd == vd->vdev_top);
2065                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2066                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2067                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2068                 ASSERT(vd->vdev_ms_array != 0);
2069                 vdev_config_dirty(vd);
2070                 dmu_tx_commit(tx);
2071         }
2072 
2073         /*
2074          * Remove the metadata associated with this vdev once it's empty.
2075          */
2076         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2077                 vdev_remove(vd, txg);
2078 
2079         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2080                 metaslab_sync(msp, txg);
2081                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2082         }
2083 
2084         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2085                 vdev_dtl_sync(lvd, txg);
2086 
2087         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2088 }
2089 
2090 uint64_t
2091 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2092 {
2093         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2094 }
2095 
2096 /*
2097  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2098  * not be opened, and no I/O is attempted.
2099  */
2100 int
2101 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2102 {
2103         vdev_t *vd, *tvd;
2104 
2105         spa_vdev_state_enter(spa, SCL_NONE);
2106 
2107         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2108                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2109 
2110         if (!vd->vdev_ops->vdev_op_leaf)
2111                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2112 
2113         tvd = vd->vdev_top;
2114 
2115         /*
2116          * We don't directly use the aux state here, but if we do a
2117          * vdev_reopen(), we need this value to be present to remember why we
2118          * were faulted.
2119          */
2120         vd->vdev_label_aux = aux;
2121 
2122         /*
2123          * Faulted state takes precedence over degraded.
2124          */
2125         vd->vdev_delayed_close = B_FALSE;
2126         vd->vdev_faulted = 1ULL;
2127         vd->vdev_degraded = 0ULL;
2128         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2129 
2130         /*
2131          * If this device has the only valid copy of the data, then
2132          * back off and simply mark the vdev as degraded instead.
2133          */
2134         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2135                 vd->vdev_degraded = 1ULL;
2136                 vd->vdev_faulted = 0ULL;
2137 
2138                 /*
2139                  * If we reopen the device and it's not dead, only then do we
2140                  * mark it degraded.
2141                  */
2142                 vdev_reopen(tvd);
2143 
2144                 if (vdev_readable(vd))
2145                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2146         }
2147 
2148         return (spa_vdev_state_exit(spa, vd, 0));
2149 }
2150 
2151 /*
2152  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2153  * user that something is wrong.  The vdev continues to operate as normal as far
2154  * as I/O is concerned.
2155  */
2156 int
2157 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2158 {
2159         vdev_t *vd;
2160 
2161         spa_vdev_state_enter(spa, SCL_NONE);
2162 
2163         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2164                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2165 
2166         if (!vd->vdev_ops->vdev_op_leaf)
2167                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2168 
2169         /*
2170          * If the vdev is already faulted, then don't do anything.
2171          */
2172         if (vd->vdev_faulted || vd->vdev_degraded)
2173                 return (spa_vdev_state_exit(spa, NULL, 0));
2174 
2175         vd->vdev_degraded = 1ULL;
2176         if (!vdev_is_dead(vd))
2177                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2178                     aux);
2179 
2180         return (spa_vdev_state_exit(spa, vd, 0));
2181 }
2182 
2183 /*
2184  * Online the given vdev.
2185  *
2186  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2187  * spare device should be detached when the device finishes resilvering.
2188  * Second, the online should be treated like a 'test' online case, so no FMA
2189  * events are generated if the device fails to open.
2190  */
2191 int
2192 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2193 {
2194         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2195 
2196         spa_vdev_state_enter(spa, SCL_NONE);
2197 
2198         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2199                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2200 
2201         if (!vd->vdev_ops->vdev_op_leaf)
2202                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2203 
2204         tvd = vd->vdev_top;
2205         vd->vdev_offline = B_FALSE;
2206         vd->vdev_tmpoffline = B_FALSE;
2207         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2208         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2209 
2210         /* XXX - L2ARC 1.0 does not support expansion */
2211         if (!vd->vdev_aux) {
2212                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2213                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2214         }
2215 
2216         vdev_reopen(tvd);
2217         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2218 
2219         if (!vd->vdev_aux) {
2220                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2221                         pvd->vdev_expanding = B_FALSE;
2222         }
2223 
2224         if (newstate)
2225                 *newstate = vd->vdev_state;
2226         if ((flags & ZFS_ONLINE_UNSPARE) &&
2227             !vdev_is_dead(vd) && vd->vdev_parent &&
2228             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2229             vd->vdev_parent->vdev_child[0] == vd)
2230                 vd->vdev_unspare = B_TRUE;
2231 
2232         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2233 
2234                 /* XXX - L2ARC 1.0 does not support expansion */
2235                 if (vd->vdev_aux)
2236                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2237                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2238         }
2239         return (spa_vdev_state_exit(spa, vd, 0));
2240 }
2241 
2242 static int
2243 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2244 {
2245         vdev_t *vd, *tvd;
2246         int error = 0;
2247         uint64_t generation;
2248         metaslab_group_t *mg;
2249 
2250 top:
2251         spa_vdev_state_enter(spa, SCL_ALLOC);
2252 
2253         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2254                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2255 
2256         if (!vd->vdev_ops->vdev_op_leaf)
2257                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2258 
2259         tvd = vd->vdev_top;
2260         mg = tvd->vdev_mg;
2261         generation = spa->spa_config_generation + 1;
2262 
2263         /*
2264          * If the device isn't already offline, try to offline it.
2265          */
2266         if (!vd->vdev_offline) {
2267                 /*
2268                  * If this device has the only valid copy of some data,
2269                  * don't allow it to be offlined. Log devices are always
2270                  * expendable.
2271                  */
2272                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2273                     vdev_dtl_required(vd))
2274                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2275 
2276                 /*
2277                  * If the top-level is a slog and it has had allocations
2278                  * then proceed.  We check that the vdev's metaslab group
2279                  * is not NULL since it's possible that we may have just
2280                  * added this vdev but not yet initialized its metaslabs.
2281                  */
2282                 if (tvd->vdev_islog && mg != NULL) {
2283                         /*
2284                          * Prevent any future allocations.
2285                          */
2286                         metaslab_group_passivate(mg);
2287                         (void) spa_vdev_state_exit(spa, vd, 0);
2288 
2289                         error = spa_offline_log(spa);
2290 
2291                         spa_vdev_state_enter(spa, SCL_ALLOC);
2292 
2293                         /*
2294                          * Check to see if the config has changed.
2295                          */
2296                         if (error || generation != spa->spa_config_generation) {
2297                                 metaslab_group_activate(mg);
2298                                 if (error)
2299                                         return (spa_vdev_state_exit(spa,
2300                                             vd, error));
2301                                 (void) spa_vdev_state_exit(spa, vd, 0);
2302                                 goto top;
2303                         }
2304                         ASSERT0(tvd->vdev_stat.vs_alloc);
2305                 }
2306 
2307                 /*
2308                  * Offline this device and reopen its top-level vdev.
2309                  * If the top-level vdev is a log device then just offline
2310                  * it. Otherwise, if this action results in the top-level
2311                  * vdev becoming unusable, undo it and fail the request.
2312                  */
2313                 vd->vdev_offline = B_TRUE;
2314                 vdev_reopen(tvd);
2315 
2316                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2317                     vdev_is_dead(tvd)) {
2318                         vd->vdev_offline = B_FALSE;
2319                         vdev_reopen(tvd);
2320                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2321                 }
2322 
2323                 /*
2324                  * Add the device back into the metaslab rotor so that
2325                  * once we online the device it's open for business.
2326                  */
2327                 if (tvd->vdev_islog && mg != NULL)
2328                         metaslab_group_activate(mg);
2329         }
2330 
2331         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2332 
2333         return (spa_vdev_state_exit(spa, vd, 0));
2334 }
2335 
2336 int
2337 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2338 {
2339         int error;
2340 
2341         mutex_enter(&spa->spa_vdev_top_lock);
2342         error = vdev_offline_locked(spa, guid, flags);
2343         mutex_exit(&spa->spa_vdev_top_lock);
2344 
2345         return (error);
2346 }
2347 
2348 /*
2349  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2350  * vdev_offline(), we assume the spa config is locked.  We also clear all
2351  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2352  */
2353 void
2354 vdev_clear(spa_t *spa, vdev_t *vd)
2355 {
2356         vdev_t *rvd = spa->spa_root_vdev;
2357 
2358         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2359 
2360         if (vd == NULL)
2361                 vd = rvd;
2362 
2363         vd->vdev_stat.vs_read_errors = 0;
2364         vd->vdev_stat.vs_write_errors = 0;
2365         vd->vdev_stat.vs_checksum_errors = 0;
2366 
2367         for (int c = 0; c < vd->vdev_children; c++)
2368                 vdev_clear(spa, vd->vdev_child[c]);
2369 
2370         /*
2371          * If we're in the FAULTED state or have experienced failed I/O, then
2372          * clear the persistent state and attempt to reopen the device.  We
2373          * also mark the vdev config dirty, so that the new faulted state is
2374          * written out to disk.
2375          */
2376         if (vd->vdev_faulted || vd->vdev_degraded ||
2377             !vdev_readable(vd) || !vdev_writeable(vd)) {
2378 
2379                 /*
2380                  * When reopening in reponse to a clear event, it may be due to
2381                  * a fmadm repair request.  In this case, if the device is
2382                  * still broken, we want to still post the ereport again.
2383                  */
2384                 vd->vdev_forcefault = B_TRUE;
2385 
2386                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2387                 vd->vdev_cant_read = B_FALSE;
2388                 vd->vdev_cant_write = B_FALSE;
2389 
2390                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2391 
2392                 vd->vdev_forcefault = B_FALSE;
2393 
2394                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2395                         vdev_state_dirty(vd->vdev_top);
2396 
2397                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2398                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2399 
2400                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2401         }
2402 
2403         /*
2404          * When clearing a FMA-diagnosed fault, we always want to
2405          * unspare the device, as we assume that the original spare was
2406          * done in response to the FMA fault.
2407          */
2408         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2409             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2410             vd->vdev_parent->vdev_child[0] == vd)
2411                 vd->vdev_unspare = B_TRUE;
2412 }
2413 
2414 boolean_t
2415 vdev_is_dead(vdev_t *vd)
2416 {
2417         /*
2418          * Holes and missing devices are always considered "dead".
2419          * This simplifies the code since we don't have to check for
2420          * these types of devices in the various code paths.
2421          * Instead we rely on the fact that we skip over dead devices
2422          * before issuing I/O to them.
2423          */
2424         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2425             vd->vdev_ops == &vdev_missing_ops);
2426 }
2427 
2428 boolean_t
2429 vdev_readable(vdev_t *vd)
2430 {
2431         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2432 }
2433 
2434 boolean_t
2435 vdev_writeable(vdev_t *vd)
2436 {
2437         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2438 }
2439 
2440 boolean_t
2441 vdev_allocatable(vdev_t *vd)
2442 {
2443         uint64_t state = vd->vdev_state;
2444 
2445         /*
2446          * We currently allow allocations from vdevs which may be in the
2447          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2448          * fails to reopen then we'll catch it later when we're holding
2449          * the proper locks.  Note that we have to get the vdev state
2450          * in a local variable because although it changes atomically,
2451          * we're asking two separate questions about it.
2452          */
2453         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2454             !vd->vdev_cant_write && !vd->vdev_ishole);
2455 }
2456 
2457 boolean_t
2458 vdev_accessible(vdev_t *vd, zio_t *zio)
2459 {
2460         ASSERT(zio->io_vd == vd);
2461 
2462         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2463                 return (B_FALSE);
2464 
2465         if (zio->io_type == ZIO_TYPE_READ)
2466                 return (!vd->vdev_cant_read);
2467 
2468         if (zio->io_type == ZIO_TYPE_WRITE)
2469                 return (!vd->vdev_cant_write);
2470 
2471         return (B_TRUE);
2472 }
2473 
2474 /*
2475  * Get statistics for the given vdev.
2476  */
2477 void
2478 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2479 {
2480         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2481 
2482         mutex_enter(&vd->vdev_stat_lock);
2483         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2484         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2485         vs->vs_state = vd->vdev_state;
2486         vs->vs_rsize = vdev_get_min_asize(vd);
2487         if (vd->vdev_ops->vdev_op_leaf)
2488                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2489         vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2490         mutex_exit(&vd->vdev_stat_lock);
2491 
2492         /*
2493          * If we're getting stats on the root vdev, aggregate the I/O counts
2494          * over all top-level vdevs (i.e. the direct children of the root).
2495          */
2496         if (vd == rvd) {
2497                 for (int c = 0; c < rvd->vdev_children; c++) {
2498                         vdev_t *cvd = rvd->vdev_child[c];
2499                         vdev_stat_t *cvs = &cvd->vdev_stat;
2500 
2501                         mutex_enter(&vd->vdev_stat_lock);
2502                         for (int t = 0; t < ZIO_TYPES; t++) {
2503                                 vs->vs_ops[t] += cvs->vs_ops[t];
2504                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2505                         }
2506                         cvs->vs_scan_removing = cvd->vdev_removing;
2507                         mutex_exit(&vd->vdev_stat_lock);
2508                 }
2509         }
2510 }
2511 
2512 void
2513 vdev_clear_stats(vdev_t *vd)
2514 {
2515         mutex_enter(&vd->vdev_stat_lock);
2516         vd->vdev_stat.vs_space = 0;
2517         vd->vdev_stat.vs_dspace = 0;
2518         vd->vdev_stat.vs_alloc = 0;
2519         mutex_exit(&vd->vdev_stat_lock);
2520 }
2521 
2522 void
2523 vdev_scan_stat_init(vdev_t *vd)
2524 {
2525         vdev_stat_t *vs = &vd->vdev_stat;
2526 
2527         for (int c = 0; c < vd->vdev_children; c++)
2528                 vdev_scan_stat_init(vd->vdev_child[c]);
2529 
2530         mutex_enter(&vd->vdev_stat_lock);
2531         vs->vs_scan_processed = 0;
2532         mutex_exit(&vd->vdev_stat_lock);
2533 }
2534 
2535 void
2536 vdev_stat_update(zio_t *zio, uint64_t psize)
2537 {
2538         spa_t *spa = zio->io_spa;
2539         vdev_t *rvd = spa->spa_root_vdev;
2540         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2541         vdev_t *pvd;
2542         uint64_t txg = zio->io_txg;
2543         vdev_stat_t *vs = &vd->vdev_stat;
2544         zio_type_t type = zio->io_type;
2545         int flags = zio->io_flags;
2546 
2547         /*
2548          * If this i/o is a gang leader, it didn't do any actual work.
2549          */
2550         if (zio->io_gang_tree)
2551                 return;
2552 
2553         if (zio->io_error == 0) {
2554                 /*
2555                  * If this is a root i/o, don't count it -- we've already
2556                  * counted the top-level vdevs, and vdev_get_stats() will
2557                  * aggregate them when asked.  This reduces contention on
2558                  * the root vdev_stat_lock and implicitly handles blocks
2559                  * that compress away to holes, for which there is no i/o.
2560                  * (Holes never create vdev children, so all the counters
2561                  * remain zero, which is what we want.)
2562                  *
2563                  * Note: this only applies to successful i/o (io_error == 0)
2564                  * because unlike i/o counts, errors are not additive.
2565                  * When reading a ditto block, for example, failure of
2566                  * one top-level vdev does not imply a root-level error.
2567                  */
2568                 if (vd == rvd)
2569                         return;
2570 
2571                 ASSERT(vd == zio->io_vd);
2572 
2573                 if (flags & ZIO_FLAG_IO_BYPASS)
2574                         return;
2575 
2576                 mutex_enter(&vd->vdev_stat_lock);
2577 
2578                 if (flags & ZIO_FLAG_IO_REPAIR) {
2579                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2580                                 dsl_scan_phys_t *scn_phys =
2581                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2582                                 uint64_t *processed = &scn_phys->scn_processed;
2583 
2584                                 /* XXX cleanup? */
2585                                 if (vd->vdev_ops->vdev_op_leaf)
2586                                         atomic_add_64(processed, psize);
2587                                 vs->vs_scan_processed += psize;
2588                         }
2589 
2590                         if (flags & ZIO_FLAG_SELF_HEAL)
2591                                 vs->vs_self_healed += psize;
2592                 }
2593 
2594                 vs->vs_ops[type]++;
2595                 vs->vs_bytes[type] += psize;
2596 
2597                 mutex_exit(&vd->vdev_stat_lock);
2598                 return;
2599         }
2600 
2601         if (flags & ZIO_FLAG_SPECULATIVE)
2602                 return;
2603 
2604         /*
2605          * If this is an I/O error that is going to be retried, then ignore the
2606          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2607          * hard errors, when in reality they can happen for any number of
2608          * innocuous reasons (bus resets, MPxIO link failure, etc).
2609          */
2610         if (zio->io_error == EIO &&
2611             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2612                 return;
2613 
2614         /*
2615          * Intent logs writes won't propagate their error to the root
2616          * I/O so don't mark these types of failures as pool-level
2617          * errors.
2618          */
2619         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2620                 return;
2621 
2622         mutex_enter(&vd->vdev_stat_lock);
2623         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2624                 if (zio->io_error == ECKSUM)
2625                         vs->vs_checksum_errors++;
2626                 else
2627                         vs->vs_read_errors++;
2628         }
2629         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2630                 vs->vs_write_errors++;
2631         mutex_exit(&vd->vdev_stat_lock);
2632 
2633         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2634             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2635             (flags & ZIO_FLAG_SCAN_THREAD) ||
2636             spa->spa_claiming)) {
2637                 /*
2638                  * This is either a normal write (not a repair), or it's
2639                  * a repair induced by the scrub thread, or it's a repair
2640                  * made by zil_claim() during spa_load() in the first txg.
2641                  * In the normal case, we commit the DTL change in the same
2642                  * txg as the block was born.  In the scrub-induced repair
2643                  * case, we know that scrubs run in first-pass syncing context,
2644                  * so we commit the DTL change in spa_syncing_txg(spa).
2645                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2646                  *
2647                  * We currently do not make DTL entries for failed spontaneous
2648                  * self-healing writes triggered by normal (non-scrubbing)
2649                  * reads, because we have no transactional context in which to
2650                  * do so -- and it's not clear that it'd be desirable anyway.
2651                  */
2652                 if (vd->vdev_ops->vdev_op_leaf) {
2653                         uint64_t commit_txg = txg;
2654                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2655                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2656                                 ASSERT(spa_sync_pass(spa) == 1);
2657                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2658                                 commit_txg = spa_syncing_txg(spa);
2659                         } else if (spa->spa_claiming) {
2660                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2661                                 commit_txg = spa_first_txg(spa);
2662                         }
2663                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2664                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2665                                 return;
2666                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2667                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2668                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2669                 }
2670                 if (vd != rvd)
2671                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2672         }
2673 }
2674 
2675 /*
2676  * Update the in-core space usage stats for this vdev, its metaslab class,
2677  * and the root vdev.
2678  */
2679 void
2680 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2681     int64_t space_delta)
2682 {
2683         int64_t dspace_delta = space_delta;
2684         spa_t *spa = vd->vdev_spa;
2685         vdev_t *rvd = spa->spa_root_vdev;
2686         metaslab_group_t *mg = vd->vdev_mg;
2687         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2688 
2689         ASSERT(vd == vd->vdev_top);
2690 
2691         /*
2692          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2693          * factor.  We must calculate this here and not at the root vdev
2694          * because the root vdev's psize-to-asize is simply the max of its
2695          * childrens', thus not accurate enough for us.
2696          */
2697         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2698         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2699         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2700             vd->vdev_deflate_ratio;
2701 
2702         mutex_enter(&vd->vdev_stat_lock);
2703         vd->vdev_stat.vs_alloc += alloc_delta;
2704         vd->vdev_stat.vs_space += space_delta;
2705         vd->vdev_stat.vs_dspace += dspace_delta;
2706         mutex_exit(&vd->vdev_stat_lock);
2707 
2708         if (mc == spa_normal_class(spa)) {
2709                 mutex_enter(&rvd->vdev_stat_lock);
2710                 rvd->vdev_stat.vs_alloc += alloc_delta;
2711                 rvd->vdev_stat.vs_space += space_delta;
2712                 rvd->vdev_stat.vs_dspace += dspace_delta;
2713                 mutex_exit(&rvd->vdev_stat_lock);
2714         }
2715 
2716         if (mc != NULL) {
2717                 ASSERT(rvd == vd->vdev_parent);
2718                 ASSERT(vd->vdev_ms_count != 0);
2719 
2720                 metaslab_class_space_update(mc,
2721                     alloc_delta, defer_delta, space_delta, dspace_delta);
2722         }
2723 }
2724 
2725 /*
2726  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2727  * so that it will be written out next time the vdev configuration is synced.
2728  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2729  */
2730 void
2731 vdev_config_dirty(vdev_t *vd)
2732 {
2733         spa_t *spa = vd->vdev_spa;
2734         vdev_t *rvd = spa->spa_root_vdev;
2735         int c;
2736 
2737         ASSERT(spa_writeable(spa));
2738 
2739         /*
2740          * If this is an aux vdev (as with l2cache and spare devices), then we
2741          * update the vdev config manually and set the sync flag.
2742          */
2743         if (vd->vdev_aux != NULL) {
2744                 spa_aux_vdev_t *sav = vd->vdev_aux;
2745                 nvlist_t **aux;
2746                 uint_t naux;
2747 
2748                 for (c = 0; c < sav->sav_count; c++) {
2749                         if (sav->sav_vdevs[c] == vd)
2750                                 break;
2751                 }
2752 
2753                 if (c == sav->sav_count) {
2754                         /*
2755                          * We're being removed.  There's nothing more to do.
2756                          */
2757                         ASSERT(sav->sav_sync == B_TRUE);
2758                         return;
2759                 }
2760 
2761                 sav->sav_sync = B_TRUE;
2762 
2763                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2764                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2765                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2766                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2767                 }
2768 
2769                 ASSERT(c < naux);
2770 
2771                 /*
2772                  * Setting the nvlist in the middle if the array is a little
2773                  * sketchy, but it will work.
2774                  */
2775                 nvlist_free(aux[c]);
2776                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2777 
2778                 return;
2779         }
2780 
2781         /*
2782          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2783          * must either hold SCL_CONFIG as writer, or must be the sync thread
2784          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2785          * so this is sufficient to ensure mutual exclusion.
2786          */
2787         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2788             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2789             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2790 
2791         if (vd == rvd) {
2792                 for (c = 0; c < rvd->vdev_children; c++)
2793                         vdev_config_dirty(rvd->vdev_child[c]);
2794         } else {
2795                 ASSERT(vd == vd->vdev_top);
2796 
2797                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2798                     !vd->vdev_ishole)
2799                         list_insert_head(&spa->spa_config_dirty_list, vd);
2800         }
2801 }
2802 
2803 void
2804 vdev_config_clean(vdev_t *vd)
2805 {
2806         spa_t *spa = vd->vdev_spa;
2807 
2808         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2809             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2810             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2811 
2812         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2813         list_remove(&spa->spa_config_dirty_list, vd);
2814 }
2815 
2816 /*
2817  * Mark a top-level vdev's state as dirty, so that the next pass of
2818  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2819  * the state changes from larger config changes because they require
2820  * much less locking, and are often needed for administrative actions.
2821  */
2822 void
2823 vdev_state_dirty(vdev_t *vd)
2824 {
2825         spa_t *spa = vd->vdev_spa;
2826 
2827         ASSERT(spa_writeable(spa));
2828         ASSERT(vd == vd->vdev_top);
2829 
2830         /*
2831          * The state list is protected by the SCL_STATE lock.  The caller
2832          * must either hold SCL_STATE as writer, or must be the sync thread
2833          * (which holds SCL_STATE as reader).  There's only one sync thread,
2834          * so this is sufficient to ensure mutual exclusion.
2835          */
2836         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2837             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2838             spa_config_held(spa, SCL_STATE, RW_READER)));
2839 
2840         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2841                 list_insert_head(&spa->spa_state_dirty_list, vd);
2842 }
2843 
2844 void
2845 vdev_state_clean(vdev_t *vd)
2846 {
2847         spa_t *spa = vd->vdev_spa;
2848 
2849         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2850             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2851             spa_config_held(spa, SCL_STATE, RW_READER)));
2852 
2853         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2854         list_remove(&spa->spa_state_dirty_list, vd);
2855 }
2856 
2857 /*
2858  * Propagate vdev state up from children to parent.
2859  */
2860 void
2861 vdev_propagate_state(vdev_t *vd)
2862 {
2863         spa_t *spa = vd->vdev_spa;
2864         vdev_t *rvd = spa->spa_root_vdev;
2865         int degraded = 0, faulted = 0;
2866         int corrupted = 0;
2867         vdev_t *child;
2868 
2869         if (vd->vdev_children > 0) {
2870                 for (int c = 0; c < vd->vdev_children; c++) {
2871                         child = vd->vdev_child[c];
2872 
2873                         /*
2874                          * Don't factor holes into the decision.
2875                          */
2876                         if (child->vdev_ishole)
2877                                 continue;
2878 
2879                         if (!vdev_readable(child) ||
2880                             (!vdev_writeable(child) && spa_writeable(spa))) {
2881                                 /*
2882                                  * Root special: if there is a top-level log
2883                                  * device, treat the root vdev as if it were
2884                                  * degraded.
2885                                  */
2886                                 if (child->vdev_islog && vd == rvd)
2887                                         degraded++;
2888                                 else
2889                                         faulted++;
2890                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2891                                 degraded++;
2892                         }
2893 
2894                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2895                                 corrupted++;
2896                 }
2897 
2898                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2899 
2900                 /*
2901                  * Root special: if there is a top-level vdev that cannot be
2902                  * opened due to corrupted metadata, then propagate the root
2903                  * vdev's aux state as 'corrupt' rather than 'insufficient
2904                  * replicas'.
2905                  */
2906                 if (corrupted && vd == rvd &&
2907                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2908                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2909                             VDEV_AUX_CORRUPT_DATA);
2910         }
2911 
2912         if (vd->vdev_parent)
2913                 vdev_propagate_state(vd->vdev_parent);
2914 }
2915 
2916 /*
2917  * Set a vdev's state.  If this is during an open, we don't update the parent
2918  * state, because we're in the process of opening children depth-first.
2919  * Otherwise, we propagate the change to the parent.
2920  *
2921  * If this routine places a device in a faulted state, an appropriate ereport is
2922  * generated.
2923  */
2924 void
2925 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2926 {
2927         uint64_t save_state;
2928         spa_t *spa = vd->vdev_spa;
2929 
2930         if (state == vd->vdev_state) {
2931                 vd->vdev_stat.vs_aux = aux;
2932                 return;
2933         }
2934 
2935         save_state = vd->vdev_state;
2936 
2937         vd->vdev_state = state;
2938         vd->vdev_stat.vs_aux = aux;
2939 
2940         /*
2941          * If we are setting the vdev state to anything but an open state, then
2942          * always close the underlying device unless the device has requested
2943          * a delayed close (i.e. we're about to remove or fault the device).
2944          * Otherwise, we keep accessible but invalid devices open forever.
2945          * We don't call vdev_close() itself, because that implies some extra
2946          * checks (offline, etc) that we don't want here.  This is limited to
2947          * leaf devices, because otherwise closing the device will affect other
2948          * children.
2949          */
2950         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2951             vd->vdev_ops->vdev_op_leaf)
2952                 vd->vdev_ops->vdev_op_close(vd);
2953 
2954         /*
2955          * If we have brought this vdev back into service, we need
2956          * to notify fmd so that it can gracefully repair any outstanding
2957          * cases due to a missing device.  We do this in all cases, even those
2958          * that probably don't correlate to a repaired fault.  This is sure to
2959          * catch all cases, and we let the zfs-retire agent sort it out.  If
2960          * this is a transient state it's OK, as the retire agent will
2961          * double-check the state of the vdev before repairing it.
2962          */
2963         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2964             vd->vdev_prevstate != state)
2965                 zfs_post_state_change(spa, vd);
2966 
2967         if (vd->vdev_removed &&
2968             state == VDEV_STATE_CANT_OPEN &&
2969             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2970                 /*
2971                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2972                  * device was previously marked removed and someone attempted to
2973                  * reopen it.  If this failed due to a nonexistent device, then
2974                  * keep the device in the REMOVED state.  We also let this be if
2975                  * it is one of our special test online cases, which is only
2976                  * attempting to online the device and shouldn't generate an FMA
2977                  * fault.
2978                  */
2979                 vd->vdev_state = VDEV_STATE_REMOVED;
2980                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2981         } else if (state == VDEV_STATE_REMOVED) {
2982                 vd->vdev_removed = B_TRUE;
2983         } else if (state == VDEV_STATE_CANT_OPEN) {
2984                 /*
2985                  * If we fail to open a vdev during an import or recovery, we
2986                  * mark it as "not available", which signifies that it was
2987                  * never there to begin with.  Failure to open such a device
2988                  * is not considered an error.
2989                  */
2990                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2991                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2992                     vd->vdev_ops->vdev_op_leaf)
2993                         vd->vdev_not_present = 1;
2994 
2995                 /*
2996                  * Post the appropriate ereport.  If the 'prevstate' field is
2997                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
2998                  * that this is part of a vdev_reopen().  In this case, we don't
2999                  * want to post the ereport if the device was already in the
3000                  * CANT_OPEN state beforehand.
3001                  *
3002                  * If the 'checkremove' flag is set, then this is an attempt to
3003                  * online the device in response to an insertion event.  If we
3004                  * hit this case, then we have detected an insertion event for a
3005                  * faulted or offline device that wasn't in the removed state.
3006                  * In this scenario, we don't post an ereport because we are
3007                  * about to replace the device, or attempt an online with
3008                  * vdev_forcefault, which will generate the fault for us.
3009                  */
3010                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3011                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3012                     vd != spa->spa_root_vdev) {
3013                         const char *class;
3014 
3015                         switch (aux) {
3016                         case VDEV_AUX_OPEN_FAILED:
3017                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3018                                 break;
3019                         case VDEV_AUX_CORRUPT_DATA:
3020                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3021                                 break;
3022                         case VDEV_AUX_NO_REPLICAS:
3023                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3024                                 break;
3025                         case VDEV_AUX_BAD_GUID_SUM:
3026                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3027                                 break;
3028                         case VDEV_AUX_TOO_SMALL:
3029                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3030                                 break;
3031                         case VDEV_AUX_BAD_LABEL:
3032                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3033                                 break;
3034                         default:
3035                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3036                         }
3037 
3038                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3039                 }
3040 
3041                 /* Erase any notion of persistent removed state */
3042                 vd->vdev_removed = B_FALSE;
3043         } else {
3044                 vd->vdev_removed = B_FALSE;
3045         }
3046 
3047         if (!isopen && vd->vdev_parent)
3048                 vdev_propagate_state(vd->vdev_parent);
3049 }
3050 
3051 /*
3052  * Check the vdev configuration to ensure that it's capable of supporting
3053  * a root pool. Currently, we do not support RAID-Z or partial configuration.
3054  * In addition, only a single top-level vdev is allowed and none of the leaves
3055  * can be wholedisks.
3056  */
3057 boolean_t
3058 vdev_is_bootable(vdev_t *vd)
3059 {
3060         if (!vd->vdev_ops->vdev_op_leaf) {
3061                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3062 
3063                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3064                     vd->vdev_children > 1) {
3065                         return (B_FALSE);
3066                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3067                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3068                         return (B_FALSE);
3069                 }
3070         } else if (vd->vdev_wholedisk == 1) {
3071                 return (B_FALSE);
3072         }
3073 
3074         for (int c = 0; c < vd->vdev_children; c++) {
3075                 if (!vdev_is_bootable(vd->vdev_child[c]))
3076                         return (B_FALSE);
3077         }
3078         return (B_TRUE);
3079 }
3080 
3081 /*
3082  * Load the state from the original vdev tree (ovd) which
3083  * we've retrieved from the MOS config object. If the original
3084  * vdev was offline or faulted then we transfer that state to the
3085  * device in the current vdev tree (nvd).
3086  */
3087 void
3088 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3089 {
3090         spa_t *spa = nvd->vdev_spa;
3091 
3092         ASSERT(nvd->vdev_top->vdev_islog);
3093         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3094         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3095 
3096         for (int c = 0; c < nvd->vdev_children; c++)
3097                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3098 
3099         if (nvd->vdev_ops->vdev_op_leaf) {
3100                 /*
3101                  * Restore the persistent vdev state
3102                  */
3103                 nvd->vdev_offline = ovd->vdev_offline;
3104                 nvd->vdev_faulted = ovd->vdev_faulted;
3105                 nvd->vdev_degraded = ovd->vdev_degraded;
3106                 nvd->vdev_removed = ovd->vdev_removed;
3107         }
3108 }
3109 
3110 /*
3111  * Determine if a log device has valid content.  If the vdev was
3112  * removed or faulted in the MOS config then we know that
3113  * the content on the log device has already been written to the pool.
3114  */
3115 boolean_t
3116 vdev_log_state_valid(vdev_t *vd)
3117 {
3118         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3119             !vd->vdev_removed)
3120                 return (B_TRUE);
3121 
3122         for (int c = 0; c < vd->vdev_children; c++)
3123                 if (vdev_log_state_valid(vd->vdev_child[c]))
3124                         return (B_TRUE);
3125 
3126         return (B_FALSE);
3127 }
3128 
3129 /*
3130  * Expand a vdev if possible.
3131  */
3132 void
3133 vdev_expand(vdev_t *vd, uint64_t txg)
3134 {
3135         ASSERT(vd->vdev_top == vd);
3136         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3137 
3138         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3139                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3140                 vdev_config_dirty(vd);
3141         }
3142 }
3143 
3144 /*
3145  * Split a vdev.
3146  */
3147 void
3148 vdev_split(vdev_t *vd)
3149 {
3150         vdev_t *cvd, *pvd = vd->vdev_parent;
3151 
3152         vdev_remove_child(pvd, vd);
3153         vdev_compact_children(pvd);
3154 
3155         cvd = pvd->vdev_child[0];
3156         if (pvd->vdev_children == 1) {
3157                 vdev_remove_parent(cvd);
3158                 cvd->vdev_splitting = B_TRUE;
3159         }
3160         vdev_propagate_state(cvd);
3161 }
3162 
3163 void
3164 vdev_deadman(vdev_t *vd)
3165 {
3166         for (int c = 0; c < vd->vdev_children; c++) {
3167                 vdev_t *cvd = vd->vdev_child[c];
3168 
3169                 vdev_deadman(cvd);
3170         }
3171 
3172         if (vd->vdev_ops->vdev_op_leaf) {
3173                 vdev_queue_t *vq = &vd->vdev_queue;
3174 
3175                 mutex_enter(&vq->vq_lock);
3176                 if (avl_numnodes(&vq->vq_pending_tree) > 0) {
3177                         spa_t *spa = vd->vdev_spa;
3178                         zio_t *fio;
3179                         uint64_t delta;
3180 
3181                         /*
3182                          * Look at the head of all the pending queues,
3183                          * if any I/O has been outstanding for longer than
3184                          * the spa_deadman_synctime we panic the system.
3185                          */
3186                         fio = avl_first(&vq->vq_pending_tree);
3187                         delta = gethrtime() - fio->io_timestamp;
3188                         if (delta > spa_deadman_synctime(spa)) {
3189                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3190                                     "delta %lluns, last io %lluns",
3191                                     fio->io_timestamp, delta,
3192                                     vq->vq_io_complete_ts);
3193                                 fm_panic("I/O to pool '%s' appears to be "
3194                                     "hung.", spa_name(spa));
3195                         }
3196                 }
3197                 mutex_exit(&vq->vq_lock);
3198         }
3199 }