1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  25  * Copyright (c) 2013 by Delphix. All rights reserved.
  26  */
  27 
  28 #include <sys/zfs_context.h>
  29 #include <sys/fm/fs/zfs.h>
  30 #include <sys/spa.h>
  31 #include <sys/spa_impl.h>
  32 #include <sys/dmu.h>
  33 #include <sys/dmu_tx.h>
  34 #include <sys/vdev_impl.h>
  35 #include <sys/uberblock_impl.h>
  36 #include <sys/metaslab.h>
  37 #include <sys/metaslab_impl.h>
  38 #include <sys/space_map.h>
  39 #include <sys/zio.h>
  40 #include <sys/zap.h>
  41 #include <sys/fs/zfs.h>
  42 #include <sys/arc.h>
  43 #include <sys/zil.h>
  44 #include <sys/dsl_scan.h>
  45 
  46 /*
  47  * Virtual device management.
  48  */
  49 
  50 static vdev_ops_t *vdev_ops_table[] = {
  51         &vdev_root_ops,
  52         &vdev_raidz_ops,
  53         &vdev_mirror_ops,
  54         &vdev_replacing_ops,
  55         &vdev_spare_ops,
  56         &vdev_disk_ops,
  57         &vdev_file_ops,
  58         &vdev_missing_ops,
  59         &vdev_hole_ops,
  60         NULL
  61 };
  62 
  63 /* maximum scrub/resilver I/O queue per leaf vdev */
  64 int zfs_scrub_limit = 10;
  65 
  66 /*
  67  * Given a vdev type, return the appropriate ops vector.
  68  */
  69 static vdev_ops_t *
  70 vdev_getops(const char *type)
  71 {
  72         vdev_ops_t *ops, **opspp;
  73 
  74         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
  75                 if (strcmp(ops->vdev_op_type, type) == 0)
  76                         break;
  77 
  78         return (ops);
  79 }
  80 
  81 /*
  82  * Default asize function: return the MAX of psize with the asize of
  83  * all children.  This is what's used by anything other than RAID-Z.
  84  */
  85 uint64_t
  86 vdev_default_asize(vdev_t *vd, uint64_t psize)
  87 {
  88         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
  89         uint64_t csize;
  90 
  91         for (int c = 0; c < vd->vdev_children; c++) {
  92                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
  93                 asize = MAX(asize, csize);
  94         }
  95 
  96         return (asize);
  97 }
  98 
  99 /*
 100  * Get the minimum allocatable size. We define the allocatable size as
 101  * the vdev's asize rounded to the nearest metaslab. This allows us to
 102  * replace or attach devices which don't have the same physical size but
 103  * can still satisfy the same number of allocations.
 104  */
 105 uint64_t
 106 vdev_get_min_asize(vdev_t *vd)
 107 {
 108         vdev_t *pvd = vd->vdev_parent;
 109 
 110         /*
 111          * If our parent is NULL (inactive spare or cache) or is the root,
 112          * just return our own asize.
 113          */
 114         if (pvd == NULL)
 115                 return (vd->vdev_asize);
 116 
 117         /*
 118          * The top-level vdev just returns the allocatable size rounded
 119          * to the nearest metaslab.
 120          */
 121         if (vd == vd->vdev_top)
 122                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
 123 
 124         /*
 125          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
 126          * so each child must provide at least 1/Nth of its asize.
 127          */
 128         if (pvd->vdev_ops == &vdev_raidz_ops)
 129                 return (pvd->vdev_min_asize / pvd->vdev_children);
 130 
 131         return (pvd->vdev_min_asize);
 132 }
 133 
 134 void
 135 vdev_set_min_asize(vdev_t *vd)
 136 {
 137         vd->vdev_min_asize = vdev_get_min_asize(vd);
 138 
 139         for (int c = 0; c < vd->vdev_children; c++)
 140                 vdev_set_min_asize(vd->vdev_child[c]);
 141 }
 142 
 143 vdev_t *
 144 vdev_lookup_top(spa_t *spa, uint64_t vdev)
 145 {
 146         vdev_t *rvd = spa->spa_root_vdev;
 147 
 148         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
 149 
 150         if (vdev < rvd->vdev_children) {
 151                 ASSERT(rvd->vdev_child[vdev] != NULL);
 152                 return (rvd->vdev_child[vdev]);
 153         }
 154 
 155         return (NULL);
 156 }
 157 
 158 vdev_t *
 159 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
 160 {
 161         vdev_t *mvd;
 162 
 163         if (vd->vdev_guid == guid)
 164                 return (vd);
 165 
 166         for (int c = 0; c < vd->vdev_children; c++)
 167                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
 168                     NULL)
 169                         return (mvd);
 170 
 171         return (NULL);
 172 }
 173 
 174 void
 175 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
 176 {
 177         size_t oldsize, newsize;
 178         uint64_t id = cvd->vdev_id;
 179         vdev_t **newchild;
 180 
 181         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 182         ASSERT(cvd->vdev_parent == NULL);
 183 
 184         cvd->vdev_parent = pvd;
 185 
 186         if (pvd == NULL)
 187                 return;
 188 
 189         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
 190 
 191         oldsize = pvd->vdev_children * sizeof (vdev_t *);
 192         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
 193         newsize = pvd->vdev_children * sizeof (vdev_t *);
 194 
 195         newchild = kmem_zalloc(newsize, KM_SLEEP);
 196         if (pvd->vdev_child != NULL) {
 197                 bcopy(pvd->vdev_child, newchild, oldsize);
 198                 kmem_free(pvd->vdev_child, oldsize);
 199         }
 200 
 201         pvd->vdev_child = newchild;
 202         pvd->vdev_child[id] = cvd;
 203 
 204         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
 205         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
 206 
 207         /*
 208          * Walk up all ancestors to update guid sum.
 209          */
 210         for (; pvd != NULL; pvd = pvd->vdev_parent)
 211                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
 212 }
 213 
 214 void
 215 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
 216 {
 217         int c;
 218         uint_t id = cvd->vdev_id;
 219 
 220         ASSERT(cvd->vdev_parent == pvd);
 221 
 222         if (pvd == NULL)
 223                 return;
 224 
 225         ASSERT(id < pvd->vdev_children);
 226         ASSERT(pvd->vdev_child[id] == cvd);
 227 
 228         pvd->vdev_child[id] = NULL;
 229         cvd->vdev_parent = NULL;
 230 
 231         for (c = 0; c < pvd->vdev_children; c++)
 232                 if (pvd->vdev_child[c])
 233                         break;
 234 
 235         if (c == pvd->vdev_children) {
 236                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
 237                 pvd->vdev_child = NULL;
 238                 pvd->vdev_children = 0;
 239         }
 240 
 241         /*
 242          * Walk up all ancestors to update guid sum.
 243          */
 244         for (; pvd != NULL; pvd = pvd->vdev_parent)
 245                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
 246 }
 247 
 248 /*
 249  * Remove any holes in the child array.
 250  */
 251 void
 252 vdev_compact_children(vdev_t *pvd)
 253 {
 254         vdev_t **newchild, *cvd;
 255         int oldc = pvd->vdev_children;
 256         int newc;
 257 
 258         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 259 
 260         for (int c = newc = 0; c < oldc; c++)
 261                 if (pvd->vdev_child[c])
 262                         newc++;
 263 
 264         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
 265 
 266         for (int c = newc = 0; c < oldc; c++) {
 267                 if ((cvd = pvd->vdev_child[c]) != NULL) {
 268                         newchild[newc] = cvd;
 269                         cvd->vdev_id = newc++;
 270                 }
 271         }
 272 
 273         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
 274         pvd->vdev_child = newchild;
 275         pvd->vdev_children = newc;
 276 }
 277 
 278 /*
 279  * Allocate and minimally initialize a vdev_t.
 280  */
 281 vdev_t *
 282 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
 283 {
 284         vdev_t *vd;
 285 
 286         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
 287 
 288         if (spa->spa_root_vdev == NULL) {
 289                 ASSERT(ops == &vdev_root_ops);
 290                 spa->spa_root_vdev = vd;
 291                 spa->spa_load_guid = spa_generate_guid(NULL);
 292         }
 293 
 294         if (guid == 0 && ops != &vdev_hole_ops) {
 295                 if (spa->spa_root_vdev == vd) {
 296                         /*
 297                          * The root vdev's guid will also be the pool guid,
 298                          * which must be unique among all pools.
 299                          */
 300                         guid = spa_generate_guid(NULL);
 301                 } else {
 302                         /*
 303                          * Any other vdev's guid must be unique within the pool.
 304                          */
 305                         guid = spa_generate_guid(spa);
 306                 }
 307                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
 308         }
 309 
 310         vd->vdev_spa = spa;
 311         vd->vdev_id = id;
 312         vd->vdev_guid = guid;
 313         vd->vdev_guid_sum = guid;
 314         vd->vdev_ops = ops;
 315         vd->vdev_state = VDEV_STATE_CLOSED;
 316         vd->vdev_ishole = (ops == &vdev_hole_ops);
 317 
 318         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
 319         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
 320         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
 321         for (int t = 0; t < DTL_TYPES; t++) {
 322                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
 323                     &vd->vdev_dtl_lock);
 324         }
 325         txg_list_create(&vd->vdev_ms_list,
 326             offsetof(struct metaslab, ms_txg_node));
 327         txg_list_create(&vd->vdev_dtl_list,
 328             offsetof(struct vdev, vdev_dtl_node));
 329         vd->vdev_stat.vs_timestamp = gethrtime();
 330         vdev_queue_init(vd);
 331         vdev_cache_init(vd);
 332 
 333         return (vd);
 334 }
 335 
 336 /*
 337  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
 338  * creating a new vdev or loading an existing one - the behavior is slightly
 339  * different for each case.
 340  */
 341 int
 342 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
 343     int alloctype)
 344 {
 345         vdev_ops_t *ops;
 346         char *type;
 347         uint64_t guid = 0, islog, nparity;
 348         vdev_t *vd;
 349 
 350         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 351 
 352         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
 353                 return (SET_ERROR(EINVAL));
 354 
 355         if ((ops = vdev_getops(type)) == NULL)
 356                 return (SET_ERROR(EINVAL));
 357 
 358         /*
 359          * If this is a load, get the vdev guid from the nvlist.
 360          * Otherwise, vdev_alloc_common() will generate one for us.
 361          */
 362         if (alloctype == VDEV_ALLOC_LOAD) {
 363                 uint64_t label_id;
 364 
 365                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
 366                     label_id != id)
 367                         return (SET_ERROR(EINVAL));
 368 
 369                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 370                         return (SET_ERROR(EINVAL));
 371         } else if (alloctype == VDEV_ALLOC_SPARE) {
 372                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 373                         return (SET_ERROR(EINVAL));
 374         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
 375                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 376                         return (SET_ERROR(EINVAL));
 377         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
 378                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 379                         return (SET_ERROR(EINVAL));
 380         }
 381 
 382         /*
 383          * The first allocated vdev must be of type 'root'.
 384          */
 385         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
 386                 return (SET_ERROR(EINVAL));
 387 
 388         /*
 389          * Determine whether we're a log vdev.
 390          */
 391         islog = 0;
 392         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
 393         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
 394                 return (SET_ERROR(ENOTSUP));
 395 
 396         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
 397                 return (SET_ERROR(ENOTSUP));
 398 
 399         /*
 400          * Set the nparity property for RAID-Z vdevs.
 401          */
 402         nparity = -1ULL;
 403         if (ops == &vdev_raidz_ops) {
 404                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
 405                     &nparity) == 0) {
 406                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
 407                                 return (SET_ERROR(EINVAL));
 408                         /*
 409                          * Previous versions could only support 1 or 2 parity
 410                          * device.
 411                          */
 412                         if (nparity > 1 &&
 413                             spa_version(spa) < SPA_VERSION_RAIDZ2)
 414                                 return (SET_ERROR(ENOTSUP));
 415                         if (nparity > 2 &&
 416                             spa_version(spa) < SPA_VERSION_RAIDZ3)
 417                                 return (SET_ERROR(ENOTSUP));
 418                 } else {
 419                         /*
 420                          * We require the parity to be specified for SPAs that
 421                          * support multiple parity levels.
 422                          */
 423                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
 424                                 return (SET_ERROR(EINVAL));
 425                         /*
 426                          * Otherwise, we default to 1 parity device for RAID-Z.
 427                          */
 428                         nparity = 1;
 429                 }
 430         } else {
 431                 nparity = 0;
 432         }
 433         ASSERT(nparity != -1ULL);
 434 
 435         vd = vdev_alloc_common(spa, id, guid, ops);
 436 
 437         vd->vdev_islog = islog;
 438         vd->vdev_nparity = nparity;
 439 
 440         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
 441                 vd->vdev_path = spa_strdup(vd->vdev_path);
 442         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
 443                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
 444         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
 445             &vd->vdev_physpath) == 0)
 446                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
 447         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
 448                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
 449 
 450         /*
 451          * Set the whole_disk property.  If it's not specified, leave the value
 452          * as -1.
 453          */
 454         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
 455             &vd->vdev_wholedisk) != 0)
 456                 vd->vdev_wholedisk = -1ULL;
 457 
 458         /*
 459          * Look for the 'not present' flag.  This will only be set if the device
 460          * was not present at the time of import.
 461          */
 462         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
 463             &vd->vdev_not_present);
 464 
 465         /*
 466          * Get the alignment requirement.
 467          */
 468         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
 469 
 470         /*
 471          * Retrieve the vdev creation time.
 472          */
 473         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
 474             &vd->vdev_crtxg);
 475 
 476         /*
 477          * If we're a top-level vdev, try to load the allocation parameters.
 478          */
 479         if (parent && !parent->vdev_parent &&
 480             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
 481                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
 482                     &vd->vdev_ms_array);
 483                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
 484                     &vd->vdev_ms_shift);
 485                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
 486                     &vd->vdev_asize);
 487                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
 488                     &vd->vdev_removing);
 489         }
 490 
 491         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
 492                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
 493                     alloctype == VDEV_ALLOC_ADD ||
 494                     alloctype == VDEV_ALLOC_SPLIT ||
 495                     alloctype == VDEV_ALLOC_ROOTPOOL);
 496                 vd->vdev_mg = metaslab_group_create(islog ?
 497                     spa_log_class(spa) : spa_normal_class(spa), vd);
 498         }
 499 
 500         /*
 501          * If we're a leaf vdev, try to load the DTL object and other state.
 502          */
 503         if (vd->vdev_ops->vdev_op_leaf &&
 504             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
 505             alloctype == VDEV_ALLOC_ROOTPOOL)) {
 506                 if (alloctype == VDEV_ALLOC_LOAD) {
 507                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
 508                             &vd->vdev_dtl_smo.smo_object);
 509                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
 510                             &vd->vdev_unspare);
 511                 }
 512 
 513                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
 514                         uint64_t spare = 0;
 515 
 516                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
 517                             &spare) == 0 && spare)
 518                                 spa_spare_add(vd);
 519                 }
 520 
 521                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
 522                     &vd->vdev_offline);
 523 
 524                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
 525                     &vd->vdev_resilvering);
 526 
 527                 /*
 528                  * When importing a pool, we want to ignore the persistent fault
 529                  * state, as the diagnosis made on another system may not be
 530                  * valid in the current context.  Local vdevs will
 531                  * remain in the faulted state.
 532                  */
 533                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
 534                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
 535                             &vd->vdev_faulted);
 536                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
 537                             &vd->vdev_degraded);
 538                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
 539                             &vd->vdev_removed);
 540 
 541                         if (vd->vdev_faulted || vd->vdev_degraded) {
 542                                 char *aux;
 543 
 544                                 vd->vdev_label_aux =
 545                                     VDEV_AUX_ERR_EXCEEDED;
 546                                 if (nvlist_lookup_string(nv,
 547                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
 548                                     strcmp(aux, "external") == 0)
 549                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
 550                         }
 551                 }
 552         }
 553 
 554         /*
 555          * Add ourselves to the parent's list of children.
 556          */
 557         vdev_add_child(parent, vd);
 558 
 559         *vdp = vd;
 560 
 561         return (0);
 562 }
 563 
 564 void
 565 vdev_free(vdev_t *vd)
 566 {
 567         spa_t *spa = vd->vdev_spa;
 568 
 569         /*
 570          * vdev_free() implies closing the vdev first.  This is simpler than
 571          * trying to ensure complicated semantics for all callers.
 572          */
 573         vdev_close(vd);
 574 
 575         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
 576         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
 577 
 578         /*
 579          * Free all children.
 580          */
 581         for (int c = 0; c < vd->vdev_children; c++)
 582                 vdev_free(vd->vdev_child[c]);
 583 
 584         ASSERT(vd->vdev_child == NULL);
 585         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
 586 
 587         /*
 588          * Discard allocation state.
 589          */
 590         if (vd->vdev_mg != NULL) {
 591                 vdev_metaslab_fini(vd);
 592                 metaslab_group_destroy(vd->vdev_mg);
 593         }
 594 
 595         ASSERT0(vd->vdev_stat.vs_space);
 596         ASSERT0(vd->vdev_stat.vs_dspace);
 597         ASSERT0(vd->vdev_stat.vs_alloc);
 598 
 599         /*
 600          * Remove this vdev from its parent's child list.
 601          */
 602         vdev_remove_child(vd->vdev_parent, vd);
 603 
 604         ASSERT(vd->vdev_parent == NULL);
 605 
 606         /*
 607          * Clean up vdev structure.
 608          */
 609         vdev_queue_fini(vd);
 610         vdev_cache_fini(vd);
 611 
 612         if (vd->vdev_path)
 613                 spa_strfree(vd->vdev_path);
 614         if (vd->vdev_devid)
 615                 spa_strfree(vd->vdev_devid);
 616         if (vd->vdev_physpath)
 617                 spa_strfree(vd->vdev_physpath);
 618         if (vd->vdev_fru)
 619                 spa_strfree(vd->vdev_fru);
 620 
 621         if (vd->vdev_isspare)
 622                 spa_spare_remove(vd);
 623         if (vd->vdev_isl2cache)
 624                 spa_l2cache_remove(vd);
 625 
 626         txg_list_destroy(&vd->vdev_ms_list);
 627         txg_list_destroy(&vd->vdev_dtl_list);
 628 
 629         mutex_enter(&vd->vdev_dtl_lock);
 630         for (int t = 0; t < DTL_TYPES; t++) {
 631                 space_map_unload(&vd->vdev_dtl[t]);
 632                 space_map_destroy(&vd->vdev_dtl[t]);
 633         }
 634         mutex_exit(&vd->vdev_dtl_lock);
 635 
 636         mutex_destroy(&vd->vdev_dtl_lock);
 637         mutex_destroy(&vd->vdev_stat_lock);
 638         mutex_destroy(&vd->vdev_probe_lock);
 639 
 640         if (vd == spa->spa_root_vdev)
 641                 spa->spa_root_vdev = NULL;
 642 
 643         kmem_free(vd, sizeof (vdev_t));
 644 }
 645 
 646 /*
 647  * Transfer top-level vdev state from svd to tvd.
 648  */
 649 static void
 650 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
 651 {
 652         spa_t *spa = svd->vdev_spa;
 653         metaslab_t *msp;
 654         vdev_t *vd;
 655         int t;
 656 
 657         ASSERT(tvd == tvd->vdev_top);
 658 
 659         tvd->vdev_ms_array = svd->vdev_ms_array;
 660         tvd->vdev_ms_shift = svd->vdev_ms_shift;
 661         tvd->vdev_ms_count = svd->vdev_ms_count;
 662 
 663         svd->vdev_ms_array = 0;
 664         svd->vdev_ms_shift = 0;
 665         svd->vdev_ms_count = 0;
 666 
 667         if (tvd->vdev_mg)
 668                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
 669         tvd->vdev_mg = svd->vdev_mg;
 670         tvd->vdev_ms = svd->vdev_ms;
 671 
 672         svd->vdev_mg = NULL;
 673         svd->vdev_ms = NULL;
 674 
 675         if (tvd->vdev_mg != NULL)
 676                 tvd->vdev_mg->mg_vd = tvd;
 677 
 678         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
 679         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
 680         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
 681 
 682         svd->vdev_stat.vs_alloc = 0;
 683         svd->vdev_stat.vs_space = 0;
 684         svd->vdev_stat.vs_dspace = 0;
 685 
 686         for (t = 0; t < TXG_SIZE; t++) {
 687                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
 688                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
 689                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
 690                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
 691                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
 692                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
 693         }
 694 
 695         if (list_link_active(&svd->vdev_config_dirty_node)) {
 696                 vdev_config_clean(svd);
 697                 vdev_config_dirty(tvd);
 698         }
 699 
 700         if (list_link_active(&svd->vdev_state_dirty_node)) {
 701                 vdev_state_clean(svd);
 702                 vdev_state_dirty(tvd);
 703         }
 704 
 705         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
 706         svd->vdev_deflate_ratio = 0;
 707 
 708         tvd->vdev_islog = svd->vdev_islog;
 709         svd->vdev_islog = 0;
 710 }
 711 
 712 static void
 713 vdev_top_update(vdev_t *tvd, vdev_t *vd)
 714 {
 715         if (vd == NULL)
 716                 return;
 717 
 718         vd->vdev_top = tvd;
 719 
 720         for (int c = 0; c < vd->vdev_children; c++)
 721                 vdev_top_update(tvd, vd->vdev_child[c]);
 722 }
 723 
 724 /*
 725  * Add a mirror/replacing vdev above an existing vdev.
 726  */
 727 vdev_t *
 728 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
 729 {
 730         spa_t *spa = cvd->vdev_spa;
 731         vdev_t *pvd = cvd->vdev_parent;
 732         vdev_t *mvd;
 733 
 734         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 735 
 736         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
 737 
 738         mvd->vdev_asize = cvd->vdev_asize;
 739         mvd->vdev_min_asize = cvd->vdev_min_asize;
 740         mvd->vdev_max_asize = cvd->vdev_max_asize;
 741         mvd->vdev_ashift = cvd->vdev_ashift;
 742         mvd->vdev_state = cvd->vdev_state;
 743         mvd->vdev_crtxg = cvd->vdev_crtxg;
 744 
 745         vdev_remove_child(pvd, cvd);
 746         vdev_add_child(pvd, mvd);
 747         cvd->vdev_id = mvd->vdev_children;
 748         vdev_add_child(mvd, cvd);
 749         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
 750 
 751         if (mvd == mvd->vdev_top)
 752                 vdev_top_transfer(cvd, mvd);
 753 
 754         return (mvd);
 755 }
 756 
 757 /*
 758  * Remove a 1-way mirror/replacing vdev from the tree.
 759  */
 760 void
 761 vdev_remove_parent(vdev_t *cvd)
 762 {
 763         vdev_t *mvd = cvd->vdev_parent;
 764         vdev_t *pvd = mvd->vdev_parent;
 765 
 766         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 767 
 768         ASSERT(mvd->vdev_children == 1);
 769         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
 770             mvd->vdev_ops == &vdev_replacing_ops ||
 771             mvd->vdev_ops == &vdev_spare_ops);
 772         cvd->vdev_ashift = mvd->vdev_ashift;
 773 
 774         vdev_remove_child(mvd, cvd);
 775         vdev_remove_child(pvd, mvd);
 776 
 777         /*
 778          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
 779          * Otherwise, we could have detached an offline device, and when we
 780          * go to import the pool we'll think we have two top-level vdevs,
 781          * instead of a different version of the same top-level vdev.
 782          */
 783         if (mvd->vdev_top == mvd) {
 784                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
 785                 cvd->vdev_orig_guid = cvd->vdev_guid;
 786                 cvd->vdev_guid += guid_delta;
 787                 cvd->vdev_guid_sum += guid_delta;
 788         }
 789         cvd->vdev_id = mvd->vdev_id;
 790         vdev_add_child(pvd, cvd);
 791         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
 792 
 793         if (cvd == cvd->vdev_top)
 794                 vdev_top_transfer(mvd, cvd);
 795 
 796         ASSERT(mvd->vdev_children == 0);
 797         vdev_free(mvd);
 798 }
 799 
 800 int
 801 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
 802 {
 803         spa_t *spa = vd->vdev_spa;
 804         objset_t *mos = spa->spa_meta_objset;
 805         uint64_t m;
 806         uint64_t oldc = vd->vdev_ms_count;
 807         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
 808         metaslab_t **mspp;
 809         int error;
 810 
 811         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
 812 
 813         /*
 814          * This vdev is not being allocated from yet or is a hole.
 815          */
 816         if (vd->vdev_ms_shift == 0)
 817                 return (0);
 818 
 819         ASSERT(!vd->vdev_ishole);
 820 
 821         /*
 822          * Compute the raidz-deflation ratio.  Note, we hard-code
 823          * in 128k (1 << 17) because it is the current "typical" blocksize.
 824          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
 825          * or we will inconsistently account for existing bp's.
 826          */
 827         vd->vdev_deflate_ratio = (1 << 17) /
 828             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
 829 
 830         ASSERT(oldc <= newc);
 831 
 832         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
 833 
 834         if (oldc != 0) {
 835                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
 836                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
 837         }
 838 
 839         vd->vdev_ms = mspp;
 840         vd->vdev_ms_count = newc;
 841 
 842         for (m = oldc; m < newc; m++) {
 843                 space_map_obj_t smo = { 0, 0, 0 };
 844                 if (txg == 0) {
 845                         uint64_t object = 0;
 846                         error = dmu_read(mos, vd->vdev_ms_array,
 847                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
 848                             DMU_READ_PREFETCH);
 849                         if (error)
 850                                 return (error);
 851                         if (object != 0) {
 852                                 dmu_buf_t *db;
 853                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
 854                                 if (error)
 855                                         return (error);
 856                                 ASSERT3U(db->db_size, >=, sizeof (smo));
 857                                 bcopy(db->db_data, &smo, sizeof (smo));
 858                                 ASSERT3U(smo.smo_object, ==, object);
 859                                 dmu_buf_rele(db, FTAG);
 860                         }
 861                 }
 862                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
 863                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
 864         }
 865 
 866         if (txg == 0)
 867                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
 868 
 869         /*
 870          * If the vdev is being removed we don't activate
 871          * the metaslabs since we want to ensure that no new
 872          * allocations are performed on this device.
 873          */
 874         if (oldc == 0 && !vd->vdev_removing)
 875                 metaslab_group_activate(vd->vdev_mg);
 876 
 877         if (txg == 0)
 878                 spa_config_exit(spa, SCL_ALLOC, FTAG);
 879 
 880         return (0);
 881 }
 882 
 883 void
 884 vdev_metaslab_fini(vdev_t *vd)
 885 {
 886         uint64_t m;
 887         uint64_t count = vd->vdev_ms_count;
 888 
 889         if (vd->vdev_ms != NULL) {
 890                 metaslab_group_passivate(vd->vdev_mg);
 891                 for (m = 0; m < count; m++)
 892                         if (vd->vdev_ms[m] != NULL)
 893                                 metaslab_fini(vd->vdev_ms[m]);
 894                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
 895                 vd->vdev_ms = NULL;
 896         }
 897 }
 898 
 899 typedef struct vdev_probe_stats {
 900         boolean_t       vps_readable;
 901         boolean_t       vps_writeable;
 902         int             vps_flags;
 903 } vdev_probe_stats_t;
 904 
 905 static void
 906 vdev_probe_done(zio_t *zio)
 907 {
 908         spa_t *spa = zio->io_spa;
 909         vdev_t *vd = zio->io_vd;
 910         vdev_probe_stats_t *vps = zio->io_private;
 911 
 912         ASSERT(vd->vdev_probe_zio != NULL);
 913 
 914         if (zio->io_type == ZIO_TYPE_READ) {
 915                 if (zio->io_error == 0)
 916                         vps->vps_readable = 1;
 917                 if (zio->io_error == 0 && spa_writeable(spa)) {
 918                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
 919                             zio->io_offset, zio->io_size, zio->io_data,
 920                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
 921                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
 922                 } else {
 923                         zio_buf_free(zio->io_data, zio->io_size);
 924                 }
 925         } else if (zio->io_type == ZIO_TYPE_WRITE) {
 926                 if (zio->io_error == 0)
 927                         vps->vps_writeable = 1;
 928                 zio_buf_free(zio->io_data, zio->io_size);
 929         } else if (zio->io_type == ZIO_TYPE_NULL) {
 930                 zio_t *pio;
 931 
 932                 vd->vdev_cant_read |= !vps->vps_readable;
 933                 vd->vdev_cant_write |= !vps->vps_writeable;
 934 
 935                 if (vdev_readable(vd) &&
 936                     (vdev_writeable(vd) || !spa_writeable(spa))) {
 937                         zio->io_error = 0;
 938                 } else {
 939                         ASSERT(zio->io_error != 0);
 940                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
 941                             spa, vd, NULL, 0, 0);
 942                         zio->io_error = SET_ERROR(ENXIO);
 943                 }
 944 
 945                 mutex_enter(&vd->vdev_probe_lock);
 946                 ASSERT(vd->vdev_probe_zio == zio);
 947                 vd->vdev_probe_zio = NULL;
 948                 mutex_exit(&vd->vdev_probe_lock);
 949 
 950                 while ((pio = zio_walk_parents(zio)) != NULL)
 951                         if (!vdev_accessible(vd, pio))
 952                                 pio->io_error = SET_ERROR(ENXIO);
 953 
 954                 kmem_free(vps, sizeof (*vps));
 955         }
 956 }
 957 
 958 /*
 959  * Determine whether this device is accessible by reading and writing
 960  * to several known locations: the pad regions of each vdev label
 961  * but the first (which we leave alone in case it contains a VTOC).
 962  */
 963 zio_t *
 964 vdev_probe(vdev_t *vd, zio_t *zio)
 965 {
 966         spa_t *spa = vd->vdev_spa;
 967         vdev_probe_stats_t *vps = NULL;
 968         zio_t *pio;
 969 
 970         ASSERT(vd->vdev_ops->vdev_op_leaf);
 971 
 972         /*
 973          * Don't probe the probe.
 974          */
 975         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
 976                 return (NULL);
 977 
 978         /*
 979          * To prevent 'probe storms' when a device fails, we create
 980          * just one probe i/o at a time.  All zios that want to probe
 981          * this vdev will become parents of the probe io.
 982          */
 983         mutex_enter(&vd->vdev_probe_lock);
 984 
 985         if ((pio = vd->vdev_probe_zio) == NULL) {
 986                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
 987 
 988                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
 989                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
 990                     ZIO_FLAG_TRYHARD;
 991 
 992                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
 993                         /*
 994                          * vdev_cant_read and vdev_cant_write can only
 995                          * transition from TRUE to FALSE when we have the
 996                          * SCL_ZIO lock as writer; otherwise they can only
 997                          * transition from FALSE to TRUE.  This ensures that
 998                          * any zio looking at these values can assume that
 999                          * failures persist for the life of the I/O.  That's
1000                          * important because when a device has intermittent
1001                          * connectivity problems, we want to ensure that
1002                          * they're ascribed to the device (ENXIO) and not
1003                          * the zio (EIO).
1004                          *
1005                          * Since we hold SCL_ZIO as writer here, clear both
1006                          * values so the probe can reevaluate from first
1007                          * principles.
1008                          */
1009                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1010                         vd->vdev_cant_read = B_FALSE;
1011                         vd->vdev_cant_write = B_FALSE;
1012                 }
1013 
1014                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1015                     vdev_probe_done, vps,
1016                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1017 
1018                 /*
1019                  * We can't change the vdev state in this context, so we
1020                  * kick off an async task to do it on our behalf.
1021                  */
1022                 if (zio != NULL) {
1023                         vd->vdev_probe_wanted = B_TRUE;
1024                         spa_async_request(spa, SPA_ASYNC_PROBE);
1025                 }
1026         }
1027 
1028         if (zio != NULL)
1029                 zio_add_child(zio, pio);
1030 
1031         mutex_exit(&vd->vdev_probe_lock);
1032 
1033         if (vps == NULL) {
1034                 ASSERT(zio != NULL);
1035                 return (NULL);
1036         }
1037 
1038         for (int l = 1; l < VDEV_LABELS; l++) {
1039                 zio_nowait(zio_read_phys(pio, vd,
1040                     vdev_label_offset(vd->vdev_psize, l,
1041                     offsetof(vdev_label_t, vl_pad2)),
1042                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1043                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1044                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1045         }
1046 
1047         if (zio == NULL)
1048                 return (pio);
1049 
1050         zio_nowait(pio);
1051         return (NULL);
1052 }
1053 
1054 static void
1055 vdev_open_child(void *arg)
1056 {
1057         vdev_t *vd = arg;
1058 
1059         vd->vdev_open_thread = curthread;
1060         vd->vdev_open_error = vdev_open(vd);
1061         vd->vdev_open_thread = NULL;
1062 }
1063 
1064 boolean_t
1065 vdev_uses_zvols(vdev_t *vd)
1066 {
1067         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1068             strlen(ZVOL_DIR)) == 0)
1069                 return (B_TRUE);
1070         for (int c = 0; c < vd->vdev_children; c++)
1071                 if (vdev_uses_zvols(vd->vdev_child[c]))
1072                         return (B_TRUE);
1073         return (B_FALSE);
1074 }
1075 
1076 void
1077 vdev_open_children(vdev_t *vd)
1078 {
1079         taskq_t *tq;
1080         int children = vd->vdev_children;
1081 
1082         /*
1083          * in order to handle pools on top of zvols, do the opens
1084          * in a single thread so that the same thread holds the
1085          * spa_namespace_lock
1086          */
1087         if (vdev_uses_zvols(vd)) {
1088                 for (int c = 0; c < children; c++)
1089                         vd->vdev_child[c]->vdev_open_error =
1090                             vdev_open(vd->vdev_child[c]);
1091                 return;
1092         }
1093         tq = taskq_create("vdev_open", children, minclsyspri,
1094             children, children, TASKQ_PREPOPULATE);
1095 
1096         for (int c = 0; c < children; c++)
1097                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1098                     TQ_SLEEP) != NULL);
1099 
1100         taskq_destroy(tq);
1101 }
1102 
1103 /*
1104  * Prepare a virtual device for access.
1105  */
1106 int
1107 vdev_open(vdev_t *vd)
1108 {
1109         spa_t *spa = vd->vdev_spa;
1110         int error;
1111         uint64_t osize = 0;
1112         uint64_t max_osize = 0;
1113         uint64_t asize, max_asize, psize;
1114         uint64_t ashift = 0;
1115 
1116         ASSERT(vd->vdev_open_thread == curthread ||
1117             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1118         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1119             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1120             vd->vdev_state == VDEV_STATE_OFFLINE);
1121 
1122         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1123         vd->vdev_cant_read = B_FALSE;
1124         vd->vdev_cant_write = B_FALSE;
1125         vd->vdev_min_asize = vdev_get_min_asize(vd);
1126 
1127         /*
1128          * If this vdev is not removed, check its fault status.  If it's
1129          * faulted, bail out of the open.
1130          */
1131         if (!vd->vdev_removed && vd->vdev_faulted) {
1132                 ASSERT(vd->vdev_children == 0);
1133                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1134                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1135                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1136                     vd->vdev_label_aux);
1137                 return (SET_ERROR(ENXIO));
1138         } else if (vd->vdev_offline) {
1139                 ASSERT(vd->vdev_children == 0);
1140                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1141                 return (SET_ERROR(ENXIO));
1142         }
1143 
1144         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1145 
1146         /*
1147          * Reset the vdev_reopening flag so that we actually close
1148          * the vdev on error.
1149          */
1150         vd->vdev_reopening = B_FALSE;
1151         if (zio_injection_enabled && error == 0)
1152                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1153 
1154         if (error) {
1155                 if (vd->vdev_removed &&
1156                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1157                         vd->vdev_removed = B_FALSE;
1158 
1159                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1160                     vd->vdev_stat.vs_aux);
1161                 return (error);
1162         }
1163 
1164         vd->vdev_removed = B_FALSE;
1165 
1166         /*
1167          * Recheck the faulted flag now that we have confirmed that
1168          * the vdev is accessible.  If we're faulted, bail.
1169          */
1170         if (vd->vdev_faulted) {
1171                 ASSERT(vd->vdev_children == 0);
1172                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1173                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1174                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1175                     vd->vdev_label_aux);
1176                 return (SET_ERROR(ENXIO));
1177         }
1178 
1179         if (vd->vdev_degraded) {
1180                 ASSERT(vd->vdev_children == 0);
1181                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1182                     VDEV_AUX_ERR_EXCEEDED);
1183         } else {
1184                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1185         }
1186 
1187         /*
1188          * For hole or missing vdevs we just return success.
1189          */
1190         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1191                 return (0);
1192 
1193         for (int c = 0; c < vd->vdev_children; c++) {
1194                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1195                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1196                             VDEV_AUX_NONE);
1197                         break;
1198                 }
1199         }
1200 
1201         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1202         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1203 
1204         if (vd->vdev_children == 0) {
1205                 if (osize < SPA_MINDEVSIZE) {
1206                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1207                             VDEV_AUX_TOO_SMALL);
1208                         return (SET_ERROR(EOVERFLOW));
1209                 }
1210                 psize = osize;
1211                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1212                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1213                     VDEV_LABEL_END_SIZE);
1214         } else {
1215                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1216                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1217                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1218                             VDEV_AUX_TOO_SMALL);
1219                         return (SET_ERROR(EOVERFLOW));
1220                 }
1221                 psize = 0;
1222                 asize = osize;
1223                 max_asize = max_osize;
1224         }
1225 
1226         vd->vdev_psize = psize;
1227 
1228         /*
1229          * Make sure the allocatable size hasn't shrunk.
1230          */
1231         if (asize < vd->vdev_min_asize) {
1232                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1233                     VDEV_AUX_BAD_LABEL);
1234                 return (SET_ERROR(EINVAL));
1235         }
1236 
1237         if (vd->vdev_asize == 0) {
1238                 /*
1239                  * This is the first-ever open, so use the computed values.
1240                  * For testing purposes, a higher ashift can be requested.
1241                  */
1242                 vd->vdev_asize = asize;
1243                 vd->vdev_max_asize = max_asize;
1244                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1245         } else {
1246                 /*
1247                  * Detect if the alignment requirement has increased.
1248                  * We don't want to make the pool unavailable, just
1249                  * issue a warning instead.
1250                  */
1251                 if (ashift > vd->vdev_top->vdev_ashift &&
1252                     vd->vdev_ops->vdev_op_leaf) {
1253                         cmn_err(CE_WARN,
1254                             "Disk, '%s', has a block alignment that is "
1255                             "larger than the pool's alignment\n",
1256                             vd->vdev_path);
1257                 }
1258                 vd->vdev_max_asize = max_asize;
1259         }
1260 
1261         /*
1262          * If all children are healthy and the asize has increased,
1263          * then we've experienced dynamic LUN growth.  If automatic
1264          * expansion is enabled then use the additional space.
1265          */
1266         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1267             (vd->vdev_expanding || spa->spa_autoexpand))
1268                 vd->vdev_asize = asize;
1269 
1270         vdev_set_min_asize(vd);
1271 
1272         /*
1273          * Ensure we can issue some IO before declaring the
1274          * vdev open for business.
1275          */
1276         if (vd->vdev_ops->vdev_op_leaf &&
1277             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1278                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1279                     VDEV_AUX_ERR_EXCEEDED);
1280                 return (error);
1281         }
1282 
1283         /*
1284          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1285          * resilver.  But don't do this if we are doing a reopen for a scrub,
1286          * since this would just restart the scrub we are already doing.
1287          */
1288         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1289             vdev_resilver_needed(vd, NULL, NULL))
1290                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1291 
1292         return (0);
1293 }
1294 
1295 /*
1296  * Called once the vdevs are all opened, this routine validates the label
1297  * contents.  This needs to be done before vdev_load() so that we don't
1298  * inadvertently do repair I/Os to the wrong device.
1299  *
1300  * If 'strict' is false ignore the spa guid check. This is necessary because
1301  * if the machine crashed during a re-guid the new guid might have been written
1302  * to all of the vdev labels, but not the cached config. The strict check
1303  * will be performed when the pool is opened again using the mos config.
1304  *
1305  * This function will only return failure if one of the vdevs indicates that it
1306  * has since been destroyed or exported.  This is only possible if
1307  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1308  * will be updated but the function will return 0.
1309  */
1310 int
1311 vdev_validate(vdev_t *vd, boolean_t strict)
1312 {
1313         spa_t *spa = vd->vdev_spa;
1314         nvlist_t *label;
1315         uint64_t guid = 0, top_guid;
1316         uint64_t state;
1317 
1318         for (int c = 0; c < vd->vdev_children; c++)
1319                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1320                         return (SET_ERROR(EBADF));
1321 
1322         /*
1323          * If the device has already failed, or was marked offline, don't do
1324          * any further validation.  Otherwise, label I/O will fail and we will
1325          * overwrite the previous state.
1326          */
1327         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1328                 uint64_t aux_guid = 0;
1329                 nvlist_t *nvl;
1330                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1331                     spa_last_synced_txg(spa) : -1ULL;
1332 
1333                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1334                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1335                             VDEV_AUX_BAD_LABEL);
1336                         return (0);
1337                 }
1338 
1339                 /*
1340                  * Determine if this vdev has been split off into another
1341                  * pool.  If so, then refuse to open it.
1342                  */
1343                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1344                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1345                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1346                             VDEV_AUX_SPLIT_POOL);
1347                         nvlist_free(label);
1348                         return (0);
1349                 }
1350 
1351                 if (strict && (nvlist_lookup_uint64(label,
1352                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1353                     guid != spa_guid(spa))) {
1354                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1355                             VDEV_AUX_CORRUPT_DATA);
1356                         nvlist_free(label);
1357                         return (0);
1358                 }
1359 
1360                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1361                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1362                     &aux_guid) != 0)
1363                         aux_guid = 0;
1364 
1365                 /*
1366                  * If this vdev just became a top-level vdev because its
1367                  * sibling was detached, it will have adopted the parent's
1368                  * vdev guid -- but the label may or may not be on disk yet.
1369                  * Fortunately, either version of the label will have the
1370                  * same top guid, so if we're a top-level vdev, we can
1371                  * safely compare to that instead.
1372                  *
1373                  * If we split this vdev off instead, then we also check the
1374                  * original pool's guid.  We don't want to consider the vdev
1375                  * corrupt if it is partway through a split operation.
1376                  */
1377                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1378                     &guid) != 0 ||
1379                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1380                     &top_guid) != 0 ||
1381                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1382                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1383                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1384                             VDEV_AUX_CORRUPT_DATA);
1385                         nvlist_free(label);
1386                         return (0);
1387                 }
1388 
1389                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1390                     &state) != 0) {
1391                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1392                             VDEV_AUX_CORRUPT_DATA);
1393                         nvlist_free(label);
1394                         return (0);
1395                 }
1396 
1397                 nvlist_free(label);
1398 
1399                 /*
1400                  * If this is a verbatim import, no need to check the
1401                  * state of the pool.
1402                  */
1403                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1404                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1405                     state != POOL_STATE_ACTIVE)
1406                         return (SET_ERROR(EBADF));
1407 
1408                 /*
1409                  * If we were able to open and validate a vdev that was
1410                  * previously marked permanently unavailable, clear that state
1411                  * now.
1412                  */
1413                 if (vd->vdev_not_present)
1414                         vd->vdev_not_present = 0;
1415         }
1416 
1417         return (0);
1418 }
1419 
1420 /*
1421  * Close a virtual device.
1422  */
1423 void
1424 vdev_close(vdev_t *vd)
1425 {
1426         spa_t *spa = vd->vdev_spa;
1427         vdev_t *pvd = vd->vdev_parent;
1428 
1429         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1430 
1431         /*
1432          * If our parent is reopening, then we are as well, unless we are
1433          * going offline.
1434          */
1435         if (pvd != NULL && pvd->vdev_reopening)
1436                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1437 
1438         vd->vdev_ops->vdev_op_close(vd);
1439 
1440         vdev_cache_purge(vd);
1441 
1442         /*
1443          * We record the previous state before we close it, so that if we are
1444          * doing a reopen(), we don't generate FMA ereports if we notice that
1445          * it's still faulted.
1446          */
1447         vd->vdev_prevstate = vd->vdev_state;
1448 
1449         if (vd->vdev_offline)
1450                 vd->vdev_state = VDEV_STATE_OFFLINE;
1451         else
1452                 vd->vdev_state = VDEV_STATE_CLOSED;
1453         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1454 }
1455 
1456 void
1457 vdev_hold(vdev_t *vd)
1458 {
1459         spa_t *spa = vd->vdev_spa;
1460 
1461         ASSERT(spa_is_root(spa));
1462         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1463                 return;
1464 
1465         for (int c = 0; c < vd->vdev_children; c++)
1466                 vdev_hold(vd->vdev_child[c]);
1467 
1468         if (vd->vdev_ops->vdev_op_leaf)
1469                 vd->vdev_ops->vdev_op_hold(vd);
1470 }
1471 
1472 void
1473 vdev_rele(vdev_t *vd)
1474 {
1475         spa_t *spa = vd->vdev_spa;
1476 
1477         ASSERT(spa_is_root(spa));
1478         for (int c = 0; c < vd->vdev_children; c++)
1479                 vdev_rele(vd->vdev_child[c]);
1480 
1481         if (vd->vdev_ops->vdev_op_leaf)
1482                 vd->vdev_ops->vdev_op_rele(vd);
1483 }
1484 
1485 /*
1486  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1487  * reopen leaf vdevs which had previously been opened as they might deadlock
1488  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1489  * If the leaf has never been opened then open it, as usual.
1490  */
1491 void
1492 vdev_reopen(vdev_t *vd)
1493 {
1494         spa_t *spa = vd->vdev_spa;
1495 
1496         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1497 
1498         /* set the reopening flag unless we're taking the vdev offline */
1499         vd->vdev_reopening = !vd->vdev_offline;
1500         vdev_close(vd);
1501         (void) vdev_open(vd);
1502 
1503         /*
1504          * Call vdev_validate() here to make sure we have the same device.
1505          * Otherwise, a device with an invalid label could be successfully
1506          * opened in response to vdev_reopen().
1507          */
1508         if (vd->vdev_aux) {
1509                 (void) vdev_validate_aux(vd);
1510                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1511                     vd->vdev_aux == &spa->spa_l2cache &&
1512                     !l2arc_vdev_present(vd))
1513                         l2arc_add_vdev(spa, vd);
1514         } else {
1515                 (void) vdev_validate(vd, B_TRUE);
1516         }
1517 
1518         /*
1519          * Reassess parent vdev's health.
1520          */
1521         vdev_propagate_state(vd);
1522 }
1523 
1524 int
1525 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1526 {
1527         int error;
1528 
1529         /*
1530          * Normally, partial opens (e.g. of a mirror) are allowed.
1531          * For a create, however, we want to fail the request if
1532          * there are any components we can't open.
1533          */
1534         error = vdev_open(vd);
1535 
1536         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1537                 vdev_close(vd);
1538                 return (error ? error : ENXIO);
1539         }
1540 
1541         /*
1542          * Recursively initialize all labels.
1543          */
1544         if ((error = vdev_label_init(vd, txg, isreplacing ?
1545             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1546                 vdev_close(vd);
1547                 return (error);
1548         }
1549 
1550         return (0);
1551 }
1552 
1553 void
1554 vdev_metaslab_set_size(vdev_t *vd)
1555 {
1556         /*
1557          * Aim for roughly 200 metaslabs per vdev.
1558          */
1559         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1560         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1561 }
1562 
1563 void
1564 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1565 {
1566         ASSERT(vd == vd->vdev_top);
1567         ASSERT(!vd->vdev_ishole);
1568         ASSERT(ISP2(flags));
1569         ASSERT(spa_writeable(vd->vdev_spa));
1570 
1571         if (flags & VDD_METASLAB)
1572                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1573 
1574         if (flags & VDD_DTL)
1575                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1576 
1577         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1578 }
1579 
1580 /*
1581  * DTLs.
1582  *
1583  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1584  * the vdev has less than perfect replication.  There are four kinds of DTL:
1585  *
1586  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1587  *
1588  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1589  *
1590  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1591  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1592  *      txgs that was scrubbed.
1593  *
1594  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1595  *      persistent errors or just some device being offline.
1596  *      Unlike the other three, the DTL_OUTAGE map is not generally
1597  *      maintained; it's only computed when needed, typically to
1598  *      determine whether a device can be detached.
1599  *
1600  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1601  * either has the data or it doesn't.
1602  *
1603  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1604  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1605  * if any child is less than fully replicated, then so is its parent.
1606  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1607  * comprising only those txgs which appear in 'maxfaults' or more children;
1608  * those are the txgs we don't have enough replication to read.  For example,
1609  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1610  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1611  * two child DTL_MISSING maps.
1612  *
1613  * It should be clear from the above that to compute the DTLs and outage maps
1614  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1615  * Therefore, that is all we keep on disk.  When loading the pool, or after
1616  * a configuration change, we generate all other DTLs from first principles.
1617  */
1618 void
1619 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1620 {
1621         space_map_t *sm = &vd->vdev_dtl[t];
1622 
1623         ASSERT(t < DTL_TYPES);
1624         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1625         ASSERT(spa_writeable(vd->vdev_spa));
1626 
1627         mutex_enter(sm->sm_lock);
1628         if (!space_map_contains(sm, txg, size))
1629                 space_map_add(sm, txg, size);
1630         mutex_exit(sm->sm_lock);
1631 }
1632 
1633 boolean_t
1634 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1635 {
1636         space_map_t *sm = &vd->vdev_dtl[t];
1637         boolean_t dirty = B_FALSE;
1638 
1639         ASSERT(t < DTL_TYPES);
1640         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1641 
1642         mutex_enter(sm->sm_lock);
1643         if (sm->sm_space != 0)
1644                 dirty = space_map_contains(sm, txg, size);
1645         mutex_exit(sm->sm_lock);
1646 
1647         return (dirty);
1648 }
1649 
1650 boolean_t
1651 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1652 {
1653         space_map_t *sm = &vd->vdev_dtl[t];
1654         boolean_t empty;
1655 
1656         mutex_enter(sm->sm_lock);
1657         empty = (sm->sm_space == 0);
1658         mutex_exit(sm->sm_lock);
1659 
1660         return (empty);
1661 }
1662 
1663 /*
1664  * Reassess DTLs after a config change or scrub completion.
1665  */
1666 void
1667 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1668 {
1669         spa_t *spa = vd->vdev_spa;
1670         avl_tree_t reftree;
1671         int minref;
1672 
1673         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1674 
1675         for (int c = 0; c < vd->vdev_children; c++)
1676                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1677                     scrub_txg, scrub_done);
1678 
1679         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1680                 return;
1681 
1682         if (vd->vdev_ops->vdev_op_leaf) {
1683                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1684 
1685                 mutex_enter(&vd->vdev_dtl_lock);
1686                 if (scrub_txg != 0 &&
1687                     (spa->spa_scrub_started ||
1688                     (scn && scn->scn_phys.scn_errors == 0))) {
1689                         /*
1690                          * We completed a scrub up to scrub_txg.  If we
1691                          * did it without rebooting, then the scrub dtl
1692                          * will be valid, so excise the old region and
1693                          * fold in the scrub dtl.  Otherwise, leave the
1694                          * dtl as-is if there was an error.
1695                          *
1696                          * There's little trick here: to excise the beginning
1697                          * of the DTL_MISSING map, we put it into a reference
1698                          * tree and then add a segment with refcnt -1 that
1699                          * covers the range [0, scrub_txg).  This means
1700                          * that each txg in that range has refcnt -1 or 0.
1701                          * We then add DTL_SCRUB with a refcnt of 2, so that
1702                          * entries in the range [0, scrub_txg) will have a
1703                          * positive refcnt -- either 1 or 2.  We then convert
1704                          * the reference tree into the new DTL_MISSING map.
1705                          */
1706                         space_map_ref_create(&reftree);
1707                         space_map_ref_add_map(&reftree,
1708                             &vd->vdev_dtl[DTL_MISSING], 1);
1709                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1710                         space_map_ref_add_map(&reftree,
1711                             &vd->vdev_dtl[DTL_SCRUB], 2);
1712                         space_map_ref_generate_map(&reftree,
1713                             &vd->vdev_dtl[DTL_MISSING], 1);
1714                         space_map_ref_destroy(&reftree);
1715                 }
1716                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1717                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1718                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1719                 if (scrub_done)
1720                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1721                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1722                 if (!vdev_readable(vd))
1723                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1724                 else
1725                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1726                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1727                 mutex_exit(&vd->vdev_dtl_lock);
1728 
1729                 if (txg != 0)
1730                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1731                 return;
1732         }
1733 
1734         mutex_enter(&vd->vdev_dtl_lock);
1735         for (int t = 0; t < DTL_TYPES; t++) {
1736                 /* account for child's outage in parent's missing map */
1737                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1738                 if (t == DTL_SCRUB)
1739                         continue;                       /* leaf vdevs only */
1740                 if (t == DTL_PARTIAL)
1741                         minref = 1;                     /* i.e. non-zero */
1742                 else if (vd->vdev_nparity != 0)
1743                         minref = vd->vdev_nparity + 1;       /* RAID-Z */
1744                 else
1745                         minref = vd->vdev_children;  /* any kind of mirror */
1746                 space_map_ref_create(&reftree);
1747                 for (int c = 0; c < vd->vdev_children; c++) {
1748                         vdev_t *cvd = vd->vdev_child[c];
1749                         mutex_enter(&cvd->vdev_dtl_lock);
1750                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1751                         mutex_exit(&cvd->vdev_dtl_lock);
1752                 }
1753                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1754                 space_map_ref_destroy(&reftree);
1755         }
1756         mutex_exit(&vd->vdev_dtl_lock);
1757 }
1758 
1759 static int
1760 vdev_dtl_load(vdev_t *vd)
1761 {
1762         spa_t *spa = vd->vdev_spa;
1763         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1764         objset_t *mos = spa->spa_meta_objset;
1765         dmu_buf_t *db;
1766         int error;
1767 
1768         ASSERT(vd->vdev_children == 0);
1769 
1770         if (smo->smo_object == 0)
1771                 return (0);
1772 
1773         ASSERT(!vd->vdev_ishole);
1774 
1775         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1776                 return (error);
1777 
1778         ASSERT3U(db->db_size, >=, sizeof (*smo));
1779         bcopy(db->db_data, smo, sizeof (*smo));
1780         dmu_buf_rele(db, FTAG);
1781 
1782         mutex_enter(&vd->vdev_dtl_lock);
1783         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1784             NULL, SM_ALLOC, smo, mos);
1785         mutex_exit(&vd->vdev_dtl_lock);
1786 
1787         return (error);
1788 }
1789 
1790 void
1791 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1792 {
1793         spa_t *spa = vd->vdev_spa;
1794         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1795         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1796         objset_t *mos = spa->spa_meta_objset;
1797         space_map_t smsync;
1798         kmutex_t smlock;
1799         dmu_buf_t *db;
1800         dmu_tx_t *tx;
1801 
1802         ASSERT(!vd->vdev_ishole);
1803 
1804         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1805 
1806         if (vd->vdev_detached) {
1807                 if (smo->smo_object != 0) {
1808                         int err = dmu_object_free(mos, smo->smo_object, tx);
1809                         ASSERT0(err);
1810                         smo->smo_object = 0;
1811                 }
1812                 dmu_tx_commit(tx);
1813                 return;
1814         }
1815 
1816         if (smo->smo_object == 0) {
1817                 ASSERT(smo->smo_objsize == 0);
1818                 ASSERT(smo->smo_alloc == 0);
1819                 smo->smo_object = dmu_object_alloc(mos,
1820                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1821                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1822                 ASSERT(smo->smo_object != 0);
1823                 vdev_config_dirty(vd->vdev_top);
1824         }
1825 
1826         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1827 
1828         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1829             &smlock);
1830 
1831         mutex_enter(&smlock);
1832 
1833         mutex_enter(&vd->vdev_dtl_lock);
1834         space_map_walk(sm, space_map_add, &smsync);
1835         mutex_exit(&vd->vdev_dtl_lock);
1836 
1837         space_map_truncate(smo, mos, tx);
1838         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1839         space_map_vacate(&smsync, NULL, NULL);
1840 
1841         space_map_destroy(&smsync);
1842 
1843         mutex_exit(&smlock);
1844         mutex_destroy(&smlock);
1845 
1846         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1847         dmu_buf_will_dirty(db, tx);
1848         ASSERT3U(db->db_size, >=, sizeof (*smo));
1849         bcopy(smo, db->db_data, sizeof (*smo));
1850         dmu_buf_rele(db, FTAG);
1851 
1852         dmu_tx_commit(tx);
1853 }
1854 
1855 /*
1856  * Determine whether the specified vdev can be offlined/detached/removed
1857  * without losing data.
1858  */
1859 boolean_t
1860 vdev_dtl_required(vdev_t *vd)
1861 {
1862         spa_t *spa = vd->vdev_spa;
1863         vdev_t *tvd = vd->vdev_top;
1864         uint8_t cant_read = vd->vdev_cant_read;
1865         boolean_t required;
1866 
1867         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1868 
1869         if (vd == spa->spa_root_vdev || vd == tvd)
1870                 return (B_TRUE);
1871 
1872         /*
1873          * Temporarily mark the device as unreadable, and then determine
1874          * whether this results in any DTL outages in the top-level vdev.
1875          * If not, we can safely offline/detach/remove the device.
1876          */
1877         vd->vdev_cant_read = B_TRUE;
1878         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1879         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1880         vd->vdev_cant_read = cant_read;
1881         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1882 
1883         if (!required && zio_injection_enabled)
1884                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1885 
1886         return (required);
1887 }
1888 
1889 /*
1890  * Determine if resilver is needed, and if so the txg range.
1891  */
1892 boolean_t
1893 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1894 {
1895         boolean_t needed = B_FALSE;
1896         uint64_t thismin = UINT64_MAX;
1897         uint64_t thismax = 0;
1898 
1899         if (vd->vdev_children == 0) {
1900                 mutex_enter(&vd->vdev_dtl_lock);
1901                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1902                     vdev_writeable(vd)) {
1903                         space_seg_t *ss;
1904 
1905                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1906                         thismin = ss->ss_start - 1;
1907                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1908                         thismax = ss->ss_end;
1909                         needed = B_TRUE;
1910                 }
1911                 mutex_exit(&vd->vdev_dtl_lock);
1912         } else {
1913                 for (int c = 0; c < vd->vdev_children; c++) {
1914                         vdev_t *cvd = vd->vdev_child[c];
1915                         uint64_t cmin, cmax;
1916 
1917                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1918                                 thismin = MIN(thismin, cmin);
1919                                 thismax = MAX(thismax, cmax);
1920                                 needed = B_TRUE;
1921                         }
1922                 }
1923         }
1924 
1925         if (needed && minp) {
1926                 *minp = thismin;
1927                 *maxp = thismax;
1928         }
1929         return (needed);
1930 }
1931 
1932 void
1933 vdev_load(vdev_t *vd)
1934 {
1935         /*
1936          * Recursively load all children.
1937          */
1938         for (int c = 0; c < vd->vdev_children; c++)
1939                 vdev_load(vd->vdev_child[c]);
1940 
1941         /*
1942          * If this is a top-level vdev, initialize its metaslabs.
1943          */
1944         if (vd == vd->vdev_top && !vd->vdev_ishole &&
1945             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1946             vdev_metaslab_init(vd, 0) != 0))
1947                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1948                     VDEV_AUX_CORRUPT_DATA);
1949 
1950         /*
1951          * If this is a leaf vdev, load its DTL.
1952          */
1953         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1954                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1955                     VDEV_AUX_CORRUPT_DATA);
1956 }
1957 
1958 /*
1959  * The special vdev case is used for hot spares and l2cache devices.  Its
1960  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1961  * we make sure that we can open the underlying device, then try to read the
1962  * label, and make sure that the label is sane and that it hasn't been
1963  * repurposed to another pool.
1964  */
1965 int
1966 vdev_validate_aux(vdev_t *vd)
1967 {
1968         nvlist_t *label;
1969         uint64_t guid, version;
1970         uint64_t state;
1971 
1972         if (!vdev_readable(vd))
1973                 return (0);
1974 
1975         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
1976                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1977                     VDEV_AUX_CORRUPT_DATA);
1978                 return (-1);
1979         }
1980 
1981         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1982             !SPA_VERSION_IS_SUPPORTED(version) ||
1983             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1984             guid != vd->vdev_guid ||
1985             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1986                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1987                     VDEV_AUX_CORRUPT_DATA);
1988                 nvlist_free(label);
1989                 return (-1);
1990         }
1991 
1992         /*
1993          * We don't actually check the pool state here.  If it's in fact in
1994          * use by another pool, we update this fact on the fly when requested.
1995          */
1996         nvlist_free(label);
1997         return (0);
1998 }
1999 
2000 void
2001 vdev_remove(vdev_t *vd, uint64_t txg)
2002 {
2003         spa_t *spa = vd->vdev_spa;
2004         objset_t *mos = spa->spa_meta_objset;
2005         dmu_tx_t *tx;
2006 
2007         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2008 
2009         if (vd->vdev_dtl_smo.smo_object) {
2010                 ASSERT0(vd->vdev_dtl_smo.smo_alloc);
2011                 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2012                 vd->vdev_dtl_smo.smo_object = 0;
2013         }
2014 
2015         if (vd->vdev_ms != NULL) {
2016                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2017                         metaslab_t *msp = vd->vdev_ms[m];
2018 
2019                         if (msp == NULL || msp->ms_smo.smo_object == 0)
2020                                 continue;
2021 
2022                         ASSERT0(msp->ms_smo.smo_alloc);
2023                         (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2024                         msp->ms_smo.smo_object = 0;
2025                 }
2026         }
2027 
2028         if (vd->vdev_ms_array) {
2029                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2030                 vd->vdev_ms_array = 0;
2031                 vd->vdev_ms_shift = 0;
2032         }
2033         dmu_tx_commit(tx);
2034 }
2035 
2036 void
2037 vdev_sync_done(vdev_t *vd, uint64_t txg)
2038 {
2039         metaslab_t *msp;
2040         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2041 
2042         ASSERT(!vd->vdev_ishole);
2043 
2044         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2045                 metaslab_sync_done(msp, txg);
2046 
2047         if (reassess)
2048                 metaslab_sync_reassess(vd->vdev_mg);
2049 }
2050 
2051 void
2052 vdev_sync(vdev_t *vd, uint64_t txg)
2053 {
2054         spa_t *spa = vd->vdev_spa;
2055         vdev_t *lvd;
2056         metaslab_t *msp;
2057         dmu_tx_t *tx;
2058 
2059         ASSERT(!vd->vdev_ishole);
2060 
2061         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2062                 ASSERT(vd == vd->vdev_top);
2063                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2064                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2065                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2066                 ASSERT(vd->vdev_ms_array != 0);
2067                 vdev_config_dirty(vd);
2068                 dmu_tx_commit(tx);
2069         }
2070 
2071         /*
2072          * Remove the metadata associated with this vdev once it's empty.
2073          */
2074         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2075                 vdev_remove(vd, txg);
2076 
2077         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2078                 metaslab_sync(msp, txg);
2079                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2080         }
2081 
2082         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2083                 vdev_dtl_sync(lvd, txg);
2084 
2085         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2086 }
2087 
2088 uint64_t
2089 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2090 {
2091         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2092 }
2093 
2094 /*
2095  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2096  * not be opened, and no I/O is attempted.
2097  */
2098 int
2099 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2100 {
2101         vdev_t *vd, *tvd;
2102 
2103         spa_vdev_state_enter(spa, SCL_NONE);
2104 
2105         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2106                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2107 
2108         if (!vd->vdev_ops->vdev_op_leaf)
2109                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2110 
2111         tvd = vd->vdev_top;
2112 
2113         /*
2114          * We don't directly use the aux state here, but if we do a
2115          * vdev_reopen(), we need this value to be present to remember why we
2116          * were faulted.
2117          */
2118         vd->vdev_label_aux = aux;
2119 
2120         /*
2121          * Faulted state takes precedence over degraded.
2122          */
2123         vd->vdev_delayed_close = B_FALSE;
2124         vd->vdev_faulted = 1ULL;
2125         vd->vdev_degraded = 0ULL;
2126         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2127 
2128         /*
2129          * If this device has the only valid copy of the data, then
2130          * back off and simply mark the vdev as degraded instead.
2131          */
2132         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2133                 vd->vdev_degraded = 1ULL;
2134                 vd->vdev_faulted = 0ULL;
2135 
2136                 /*
2137                  * If we reopen the device and it's not dead, only then do we
2138                  * mark it degraded.
2139                  */
2140                 vdev_reopen(tvd);
2141 
2142                 if (vdev_readable(vd))
2143                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2144         }
2145 
2146         return (spa_vdev_state_exit(spa, vd, 0));
2147 }
2148 
2149 /*
2150  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2151  * user that something is wrong.  The vdev continues to operate as normal as far
2152  * as I/O is concerned.
2153  */
2154 int
2155 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2156 {
2157         vdev_t *vd;
2158 
2159         spa_vdev_state_enter(spa, SCL_NONE);
2160 
2161         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2162                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2163 
2164         if (!vd->vdev_ops->vdev_op_leaf)
2165                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2166 
2167         /*
2168          * If the vdev is already faulted, then don't do anything.
2169          */
2170         if (vd->vdev_faulted || vd->vdev_degraded)
2171                 return (spa_vdev_state_exit(spa, NULL, 0));
2172 
2173         vd->vdev_degraded = 1ULL;
2174         if (!vdev_is_dead(vd))
2175                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2176                     aux);
2177 
2178         return (spa_vdev_state_exit(spa, vd, 0));
2179 }
2180 
2181 /*
2182  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2183  * any attached spare device should be detached when the device finishes
2184  * resilvering.  Second, the online should be treated like a 'test' online case,
2185  * so no FMA events are generated if the device fails to open.
2186  */
2187 int
2188 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2189 {
2190         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2191 
2192         spa_vdev_state_enter(spa, SCL_NONE);
2193 
2194         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2195                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2196 
2197         if (!vd->vdev_ops->vdev_op_leaf)
2198                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2199 
2200         tvd = vd->vdev_top;
2201         vd->vdev_offline = B_FALSE;
2202         vd->vdev_tmpoffline = B_FALSE;
2203         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2204         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2205 
2206         /* XXX - L2ARC 1.0 does not support expansion */
2207         if (!vd->vdev_aux) {
2208                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2209                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2210         }
2211 
2212         vdev_reopen(tvd);
2213         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2214 
2215         if (!vd->vdev_aux) {
2216                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2217                         pvd->vdev_expanding = B_FALSE;
2218         }
2219 
2220         if (newstate)
2221                 *newstate = vd->vdev_state;
2222         if ((flags & ZFS_ONLINE_UNSPARE) &&
2223             !vdev_is_dead(vd) && vd->vdev_parent &&
2224             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2225             vd->vdev_parent->vdev_child[0] == vd)
2226                 vd->vdev_unspare = B_TRUE;
2227 
2228         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2229 
2230                 /* XXX - L2ARC 1.0 does not support expansion */
2231                 if (vd->vdev_aux)
2232                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2233                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2234         }
2235         return (spa_vdev_state_exit(spa, vd, 0));
2236 }
2237 
2238 static int
2239 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2240 {
2241         vdev_t *vd, *tvd;
2242         int error = 0;
2243         uint64_t generation;
2244         metaslab_group_t *mg;
2245 
2246 top:
2247         spa_vdev_state_enter(spa, SCL_ALLOC);
2248 
2249         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2250                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2251 
2252         if (!vd->vdev_ops->vdev_op_leaf)
2253                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2254 
2255         tvd = vd->vdev_top;
2256         mg = tvd->vdev_mg;
2257         generation = spa->spa_config_generation + 1;
2258 
2259         /*
2260          * If the device isn't already offline, try to offline it.
2261          */
2262         if (!vd->vdev_offline) {
2263                 /*
2264                  * If this device has the only valid copy of some data,
2265                  * don't allow it to be offlined. Log devices are always
2266                  * expendable.
2267                  */
2268                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2269                     vdev_dtl_required(vd))
2270                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2271 
2272                 /*
2273                  * If the top-level is a slog and it has had allocations
2274                  * then proceed.  We check that the vdev's metaslab group
2275                  * is not NULL since it's possible that we may have just
2276                  * added this vdev but not yet initialized its metaslabs.
2277                  */
2278                 if (tvd->vdev_islog && mg != NULL) {
2279                         /*
2280                          * Prevent any future allocations.
2281                          */
2282                         metaslab_group_passivate(mg);
2283                         (void) spa_vdev_state_exit(spa, vd, 0);
2284 
2285                         error = spa_offline_log(spa);
2286 
2287                         spa_vdev_state_enter(spa, SCL_ALLOC);
2288 
2289                         /*
2290                          * Check to see if the config has changed.
2291                          */
2292                         if (error || generation != spa->spa_config_generation) {
2293                                 metaslab_group_activate(mg);
2294                                 if (error)
2295                                         return (spa_vdev_state_exit(spa,
2296                                             vd, error));
2297                                 (void) spa_vdev_state_exit(spa, vd, 0);
2298                                 goto top;
2299                         }
2300                         ASSERT0(tvd->vdev_stat.vs_alloc);
2301                 }
2302 
2303                 /*
2304                  * Offline this device and reopen its top-level vdev.
2305                  * If the top-level vdev is a log device then just offline
2306                  * it. Otherwise, if this action results in the top-level
2307                  * vdev becoming unusable, undo it and fail the request.
2308                  */
2309                 vd->vdev_offline = B_TRUE;
2310                 vdev_reopen(tvd);
2311 
2312                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2313                     vdev_is_dead(tvd)) {
2314                         vd->vdev_offline = B_FALSE;
2315                         vdev_reopen(tvd);
2316                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2317                 }
2318 
2319                 /*
2320                  * Add the device back into the metaslab rotor so that
2321                  * once we online the device it's open for business.
2322                  */
2323                 if (tvd->vdev_islog && mg != NULL)
2324                         metaslab_group_activate(mg);
2325         }
2326 
2327         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2328 
2329         return (spa_vdev_state_exit(spa, vd, 0));
2330 }
2331 
2332 int
2333 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2334 {
2335         int error;
2336 
2337         mutex_enter(&spa->spa_vdev_top_lock);
2338         error = vdev_offline_locked(spa, guid, flags);
2339         mutex_exit(&spa->spa_vdev_top_lock);
2340 
2341         return (error);
2342 }
2343 
2344 /*
2345  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2346  * vdev_offline(), we assume the spa config is locked.  We also clear all
2347  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2348  */
2349 void
2350 vdev_clear(spa_t *spa, vdev_t *vd)
2351 {
2352         vdev_t *rvd = spa->spa_root_vdev;
2353 
2354         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2355 
2356         if (vd == NULL)
2357                 vd = rvd;
2358 
2359         vd->vdev_stat.vs_read_errors = 0;
2360         vd->vdev_stat.vs_write_errors = 0;
2361         vd->vdev_stat.vs_checksum_errors = 0;
2362 
2363         for (int c = 0; c < vd->vdev_children; c++)
2364                 vdev_clear(spa, vd->vdev_child[c]);
2365 
2366         /*
2367          * If we're in the FAULTED state or have experienced failed I/O, then
2368          * clear the persistent state and attempt to reopen the device.  We
2369          * also mark the vdev config dirty, so that the new faulted state is
2370          * written out to disk.
2371          */
2372         if (vd->vdev_faulted || vd->vdev_degraded ||
2373             !vdev_readable(vd) || !vdev_writeable(vd)) {
2374 
2375                 /*
2376                  * When reopening in reponse to a clear event, it may be due to
2377                  * a fmadm repair request.  In this case, if the device is
2378                  * still broken, we want to still post the ereport again.
2379                  */
2380                 vd->vdev_forcefault = B_TRUE;
2381 
2382                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2383                 vd->vdev_cant_read = B_FALSE;
2384                 vd->vdev_cant_write = B_FALSE;
2385 
2386                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2387 
2388                 vd->vdev_forcefault = B_FALSE;
2389 
2390                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2391                         vdev_state_dirty(vd->vdev_top);
2392 
2393                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2394                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2395 
2396                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2397         }
2398 
2399         /*
2400          * When clearing a FMA-diagnosed fault, we always want to
2401          * unspare the device, as we assume that the original spare was
2402          * done in response to the FMA fault.
2403          */
2404         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2405             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2406             vd->vdev_parent->vdev_child[0] == vd)
2407                 vd->vdev_unspare = B_TRUE;
2408 }
2409 
2410 boolean_t
2411 vdev_is_dead(vdev_t *vd)
2412 {
2413         /*
2414          * Holes and missing devices are always considered "dead".
2415          * This simplifies the code since we don't have to check for
2416          * these types of devices in the various code paths.
2417          * Instead we rely on the fact that we skip over dead devices
2418          * before issuing I/O to them.
2419          */
2420         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2421             vd->vdev_ops == &vdev_missing_ops);
2422 }
2423 
2424 boolean_t
2425 vdev_readable(vdev_t *vd)
2426 {
2427         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2428 }
2429 
2430 boolean_t
2431 vdev_writeable(vdev_t *vd)
2432 {
2433         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2434 }
2435 
2436 boolean_t
2437 vdev_allocatable(vdev_t *vd)
2438 {
2439         uint64_t state = vd->vdev_state;
2440 
2441         /*
2442          * We currently allow allocations from vdevs which may be in the
2443          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2444          * fails to reopen then we'll catch it later when we're holding
2445          * the proper locks.  Note that we have to get the vdev state
2446          * in a local variable because although it changes atomically,
2447          * we're asking two separate questions about it.
2448          */
2449         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2450             !vd->vdev_cant_write && !vd->vdev_ishole);
2451 }
2452 
2453 boolean_t
2454 vdev_accessible(vdev_t *vd, zio_t *zio)
2455 {
2456         ASSERT(zio->io_vd == vd);
2457 
2458         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2459                 return (B_FALSE);
2460 
2461         if (zio->io_type == ZIO_TYPE_READ)
2462                 return (!vd->vdev_cant_read);
2463 
2464         if (zio->io_type == ZIO_TYPE_WRITE)
2465                 return (!vd->vdev_cant_write);
2466 
2467         return (B_TRUE);
2468 }
2469 
2470 /*
2471  * Get statistics for the given vdev.
2472  */
2473 void
2474 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2475 {
2476         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2477 
2478         mutex_enter(&vd->vdev_stat_lock);
2479         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2480         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2481         vs->vs_state = vd->vdev_state;
2482         vs->vs_rsize = vdev_get_min_asize(vd);
2483         if (vd->vdev_ops->vdev_op_leaf)
2484                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2485         vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2486         mutex_exit(&vd->vdev_stat_lock);
2487 
2488         /*
2489          * If we're getting stats on the root vdev, aggregate the I/O counts
2490          * over all top-level vdevs (i.e. the direct children of the root).
2491          */
2492         if (vd == rvd) {
2493                 for (int c = 0; c < rvd->vdev_children; c++) {
2494                         vdev_t *cvd = rvd->vdev_child[c];
2495                         vdev_stat_t *cvs = &cvd->vdev_stat;
2496 
2497                         mutex_enter(&vd->vdev_stat_lock);
2498                         for (int t = 0; t < ZIO_TYPES; t++) {
2499                                 vs->vs_ops[t] += cvs->vs_ops[t];
2500                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2501                         }
2502                         cvs->vs_scan_removing = cvd->vdev_removing;
2503                         mutex_exit(&vd->vdev_stat_lock);
2504                 }
2505         }
2506 }
2507 
2508 void
2509 vdev_clear_stats(vdev_t *vd)
2510 {
2511         mutex_enter(&vd->vdev_stat_lock);
2512         vd->vdev_stat.vs_space = 0;
2513         vd->vdev_stat.vs_dspace = 0;
2514         vd->vdev_stat.vs_alloc = 0;
2515         mutex_exit(&vd->vdev_stat_lock);
2516 }
2517 
2518 void
2519 vdev_scan_stat_init(vdev_t *vd)
2520 {
2521         vdev_stat_t *vs = &vd->vdev_stat;
2522 
2523         for (int c = 0; c < vd->vdev_children; c++)
2524                 vdev_scan_stat_init(vd->vdev_child[c]);
2525 
2526         mutex_enter(&vd->vdev_stat_lock);
2527         vs->vs_scan_processed = 0;
2528         mutex_exit(&vd->vdev_stat_lock);
2529 }
2530 
2531 void
2532 vdev_stat_update(zio_t *zio, uint64_t psize)
2533 {
2534         spa_t *spa = zio->io_spa;
2535         vdev_t *rvd = spa->spa_root_vdev;
2536         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2537         vdev_t *pvd;
2538         uint64_t txg = zio->io_txg;
2539         vdev_stat_t *vs = &vd->vdev_stat;
2540         zio_type_t type = zio->io_type;
2541         int flags = zio->io_flags;
2542 
2543         /*
2544          * If this i/o is a gang leader, it didn't do any actual work.
2545          */
2546         if (zio->io_gang_tree)
2547                 return;
2548 
2549         if (zio->io_error == 0) {
2550                 /*
2551                  * If this is a root i/o, don't count it -- we've already
2552                  * counted the top-level vdevs, and vdev_get_stats() will
2553                  * aggregate them when asked.  This reduces contention on
2554                  * the root vdev_stat_lock and implicitly handles blocks
2555                  * that compress away to holes, for which there is no i/o.
2556                  * (Holes never create vdev children, so all the counters
2557                  * remain zero, which is what we want.)
2558                  *
2559                  * Note: this only applies to successful i/o (io_error == 0)
2560                  * because unlike i/o counts, errors are not additive.
2561                  * When reading a ditto block, for example, failure of
2562                  * one top-level vdev does not imply a root-level error.
2563                  */
2564                 if (vd == rvd)
2565                         return;
2566 
2567                 ASSERT(vd == zio->io_vd);
2568 
2569                 if (flags & ZIO_FLAG_IO_BYPASS)
2570                         return;
2571 
2572                 mutex_enter(&vd->vdev_stat_lock);
2573 
2574                 if (flags & ZIO_FLAG_IO_REPAIR) {
2575                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2576                                 dsl_scan_phys_t *scn_phys =
2577                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2578                                 uint64_t *processed = &scn_phys->scn_processed;
2579 
2580                                 /* XXX cleanup? */
2581                                 if (vd->vdev_ops->vdev_op_leaf)
2582                                         atomic_add_64(processed, psize);
2583                                 vs->vs_scan_processed += psize;
2584                         }
2585 
2586                         if (flags & ZIO_FLAG_SELF_HEAL)
2587                                 vs->vs_self_healed += psize;
2588                 }
2589 
2590                 vs->vs_ops[type]++;
2591                 vs->vs_bytes[type] += psize;
2592 
2593                 mutex_exit(&vd->vdev_stat_lock);
2594                 return;
2595         }
2596 
2597         if (flags & ZIO_FLAG_SPECULATIVE)
2598                 return;
2599 
2600         /*
2601          * If this is an I/O error that is going to be retried, then ignore the
2602          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2603          * hard errors, when in reality they can happen for any number of
2604          * innocuous reasons (bus resets, MPxIO link failure, etc).
2605          */
2606         if (zio->io_error == EIO &&
2607             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2608                 return;
2609 
2610         /*
2611          * Intent logs writes won't propagate their error to the root
2612          * I/O so don't mark these types of failures as pool-level
2613          * errors.
2614          */
2615         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2616                 return;
2617 
2618         mutex_enter(&vd->vdev_stat_lock);
2619         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2620                 if (zio->io_error == ECKSUM)
2621                         vs->vs_checksum_errors++;
2622                 else
2623                         vs->vs_read_errors++;
2624         }
2625         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2626                 vs->vs_write_errors++;
2627         mutex_exit(&vd->vdev_stat_lock);
2628 
2629         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2630             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2631             (flags & ZIO_FLAG_SCAN_THREAD) ||
2632             spa->spa_claiming)) {
2633                 /*
2634                  * This is either a normal write (not a repair), or it's
2635                  * a repair induced by the scrub thread, or it's a repair
2636                  * made by zil_claim() during spa_load() in the first txg.
2637                  * In the normal case, we commit the DTL change in the same
2638                  * txg as the block was born.  In the scrub-induced repair
2639                  * case, we know that scrubs run in first-pass syncing context,
2640                  * so we commit the DTL change in spa_syncing_txg(spa).
2641                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2642                  *
2643                  * We currently do not make DTL entries for failed spontaneous
2644                  * self-healing writes triggered by normal (non-scrubbing)
2645                  * reads, because we have no transactional context in which to
2646                  * do so -- and it's not clear that it'd be desirable anyway.
2647                  */
2648                 if (vd->vdev_ops->vdev_op_leaf) {
2649                         uint64_t commit_txg = txg;
2650                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2651                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2652                                 ASSERT(spa_sync_pass(spa) == 1);
2653                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2654                                 commit_txg = spa_syncing_txg(spa);
2655                         } else if (spa->spa_claiming) {
2656                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2657                                 commit_txg = spa_first_txg(spa);
2658                         }
2659                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2660                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2661                                 return;
2662                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2663                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2664                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2665                 }
2666                 if (vd != rvd)
2667                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2668         }
2669 }
2670 
2671 /*
2672  * Update the in-core space usage stats for this vdev, its metaslab class,
2673  * and the root vdev.
2674  */
2675 void
2676 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2677     int64_t space_delta)
2678 {
2679         int64_t dspace_delta = space_delta;
2680         spa_t *spa = vd->vdev_spa;
2681         vdev_t *rvd = spa->spa_root_vdev;
2682         metaslab_group_t *mg = vd->vdev_mg;
2683         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2684 
2685         ASSERT(vd == vd->vdev_top);
2686 
2687         /*
2688          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2689          * factor.  We must calculate this here and not at the root vdev
2690          * because the root vdev's psize-to-asize is simply the max of its
2691          * childrens', thus not accurate enough for us.
2692          */
2693         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2694         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2695         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2696             vd->vdev_deflate_ratio;
2697 
2698         mutex_enter(&vd->vdev_stat_lock);
2699         vd->vdev_stat.vs_alloc += alloc_delta;
2700         vd->vdev_stat.vs_space += space_delta;
2701         vd->vdev_stat.vs_dspace += dspace_delta;
2702         mutex_exit(&vd->vdev_stat_lock);
2703 
2704         if (mc == spa_normal_class(spa)) {
2705                 mutex_enter(&rvd->vdev_stat_lock);
2706                 rvd->vdev_stat.vs_alloc += alloc_delta;
2707                 rvd->vdev_stat.vs_space += space_delta;
2708                 rvd->vdev_stat.vs_dspace += dspace_delta;
2709                 mutex_exit(&rvd->vdev_stat_lock);
2710         }
2711 
2712         if (mc != NULL) {
2713                 ASSERT(rvd == vd->vdev_parent);
2714                 ASSERT(vd->vdev_ms_count != 0);
2715 
2716                 metaslab_class_space_update(mc,
2717                     alloc_delta, defer_delta, space_delta, dspace_delta);
2718         }
2719 }
2720 
2721 /*
2722  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2723  * so that it will be written out next time the vdev configuration is synced.
2724  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2725  */
2726 void
2727 vdev_config_dirty(vdev_t *vd)
2728 {
2729         spa_t *spa = vd->vdev_spa;
2730         vdev_t *rvd = spa->spa_root_vdev;
2731         int c;
2732 
2733         ASSERT(spa_writeable(spa));
2734 
2735         /*
2736          * If this is an aux vdev (as with l2cache and spare devices), then we
2737          * update the vdev config manually and set the sync flag.
2738          */
2739         if (vd->vdev_aux != NULL) {
2740                 spa_aux_vdev_t *sav = vd->vdev_aux;
2741                 nvlist_t **aux;
2742                 uint_t naux;
2743 
2744                 for (c = 0; c < sav->sav_count; c++) {
2745                         if (sav->sav_vdevs[c] == vd)
2746                                 break;
2747                 }
2748 
2749                 if (c == sav->sav_count) {
2750                         /*
2751                          * We're being removed.  There's nothing more to do.
2752                          */
2753                         ASSERT(sav->sav_sync == B_TRUE);
2754                         return;
2755                 }
2756 
2757                 sav->sav_sync = B_TRUE;
2758 
2759                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2760                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2761                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2762                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2763                 }
2764 
2765                 ASSERT(c < naux);
2766 
2767                 /*
2768                  * Setting the nvlist in the middle if the array is a little
2769                  * sketchy, but it will work.
2770                  */
2771                 nvlist_free(aux[c]);
2772                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2773 
2774                 return;
2775         }
2776 
2777         /*
2778          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2779          * must either hold SCL_CONFIG as writer, or must be the sync thread
2780          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2781          * so this is sufficient to ensure mutual exclusion.
2782          */
2783         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2784             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2785             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2786 
2787         if (vd == rvd) {
2788                 for (c = 0; c < rvd->vdev_children; c++)
2789                         vdev_config_dirty(rvd->vdev_child[c]);
2790         } else {
2791                 ASSERT(vd == vd->vdev_top);
2792 
2793                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2794                     !vd->vdev_ishole)
2795                         list_insert_head(&spa->spa_config_dirty_list, vd);
2796         }
2797 }
2798 
2799 void
2800 vdev_config_clean(vdev_t *vd)
2801 {
2802         spa_t *spa = vd->vdev_spa;
2803 
2804         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2805             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2806             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2807 
2808         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2809         list_remove(&spa->spa_config_dirty_list, vd);
2810 }
2811 
2812 /*
2813  * Mark a top-level vdev's state as dirty, so that the next pass of
2814  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2815  * the state changes from larger config changes because they require
2816  * much less locking, and are often needed for administrative actions.
2817  */
2818 void
2819 vdev_state_dirty(vdev_t *vd)
2820 {
2821         spa_t *spa = vd->vdev_spa;
2822 
2823         ASSERT(spa_writeable(spa));
2824         ASSERT(vd == vd->vdev_top);
2825 
2826         /*
2827          * The state list is protected by the SCL_STATE lock.  The caller
2828          * must either hold SCL_STATE as writer, or must be the sync thread
2829          * (which holds SCL_STATE as reader).  There's only one sync thread,
2830          * so this is sufficient to ensure mutual exclusion.
2831          */
2832         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2833             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2834             spa_config_held(spa, SCL_STATE, RW_READER)));
2835 
2836         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2837                 list_insert_head(&spa->spa_state_dirty_list, vd);
2838 }
2839 
2840 void
2841 vdev_state_clean(vdev_t *vd)
2842 {
2843         spa_t *spa = vd->vdev_spa;
2844 
2845         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2846             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2847             spa_config_held(spa, SCL_STATE, RW_READER)));
2848 
2849         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2850         list_remove(&spa->spa_state_dirty_list, vd);
2851 }
2852 
2853 /*
2854  * Propagate vdev state up from children to parent.
2855  */
2856 void
2857 vdev_propagate_state(vdev_t *vd)
2858 {
2859         spa_t *spa = vd->vdev_spa;
2860         vdev_t *rvd = spa->spa_root_vdev;
2861         int degraded = 0, faulted = 0;
2862         int corrupted = 0;
2863         vdev_t *child;
2864 
2865         if (vd->vdev_children > 0) {
2866                 for (int c = 0; c < vd->vdev_children; c++) {
2867                         child = vd->vdev_child[c];
2868 
2869                         /*
2870                          * Don't factor holes into the decision.
2871                          */
2872                         if (child->vdev_ishole)
2873                                 continue;
2874 
2875                         if (!vdev_readable(child) ||
2876                             (!vdev_writeable(child) && spa_writeable(spa))) {
2877                                 /*
2878                                  * Root special: if there is a top-level log
2879                                  * device, treat the root vdev as if it were
2880                                  * degraded.
2881                                  */
2882                                 if (child->vdev_islog && vd == rvd)
2883                                         degraded++;
2884                                 else
2885                                         faulted++;
2886                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2887                                 degraded++;
2888                         }
2889 
2890                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2891                                 corrupted++;
2892                 }
2893 
2894                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2895 
2896                 /*
2897                  * Root special: if there is a top-level vdev that cannot be
2898                  * opened due to corrupted metadata, then propagate the root
2899                  * vdev's aux state as 'corrupt' rather than 'insufficient
2900                  * replicas'.
2901                  */
2902                 if (corrupted && vd == rvd &&
2903                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2904                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2905                             VDEV_AUX_CORRUPT_DATA);
2906         }
2907 
2908         if (vd->vdev_parent)
2909                 vdev_propagate_state(vd->vdev_parent);
2910 }
2911 
2912 /*
2913  * Set a vdev's state.  If this is during an open, we don't update the parent
2914  * state, because we're in the process of opening children depth-first.
2915  * Otherwise, we propagate the change to the parent.
2916  *
2917  * If this routine places a device in a faulted state, an appropriate ereport is
2918  * generated.
2919  */
2920 void
2921 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2922 {
2923         uint64_t save_state;
2924         spa_t *spa = vd->vdev_spa;
2925 
2926         if (state == vd->vdev_state) {
2927                 vd->vdev_stat.vs_aux = aux;
2928                 return;
2929         }
2930 
2931         save_state = vd->vdev_state;
2932 
2933         vd->vdev_state = state;
2934         vd->vdev_stat.vs_aux = aux;
2935 
2936         /*
2937          * If we are setting the vdev state to anything but an open state, then
2938          * always close the underlying device unless the device has requested
2939          * a delayed close (i.e. we're about to remove or fault the device).
2940          * Otherwise, we keep accessible but invalid devices open forever.
2941          * We don't call vdev_close() itself, because that implies some extra
2942          * checks (offline, etc) that we don't want here.  This is limited to
2943          * leaf devices, because otherwise closing the device will affect other
2944          * children.
2945          */
2946         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2947             vd->vdev_ops->vdev_op_leaf)
2948                 vd->vdev_ops->vdev_op_close(vd);
2949 
2950         /*
2951          * If we have brought this vdev back into service, we need
2952          * to notify fmd so that it can gracefully repair any outstanding
2953          * cases due to a missing device.  We do this in all cases, even those
2954          * that probably don't correlate to a repaired fault.  This is sure to
2955          * catch all cases, and we let the zfs-retire agent sort it out.  If
2956          * this is a transient state it's OK, as the retire agent will
2957          * double-check the state of the vdev before repairing it.
2958          */
2959         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2960             vd->vdev_prevstate != state)
2961                 zfs_post_state_change(spa, vd);
2962 
2963         if (vd->vdev_removed &&
2964             state == VDEV_STATE_CANT_OPEN &&
2965             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2966                 /*
2967                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2968                  * device was previously marked removed and someone attempted to
2969                  * reopen it.  If this failed due to a nonexistent device, then
2970                  * keep the device in the REMOVED state.  We also let this be if
2971                  * it is one of our special test online cases, which is only
2972                  * attempting to online the device and shouldn't generate an FMA
2973                  * fault.
2974                  */
2975                 vd->vdev_state = VDEV_STATE_REMOVED;
2976                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2977         } else if (state == VDEV_STATE_REMOVED) {
2978                 vd->vdev_removed = B_TRUE;
2979         } else if (state == VDEV_STATE_CANT_OPEN) {
2980                 /*
2981                  * If we fail to open a vdev during an import or recovery, we
2982                  * mark it as "not available", which signifies that it was
2983                  * never there to begin with.  Failure to open such a device
2984                  * is not considered an error.
2985                  */
2986                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2987                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2988                     vd->vdev_ops->vdev_op_leaf)
2989                         vd->vdev_not_present = 1;
2990 
2991                 /*
2992                  * Post the appropriate ereport.  If the 'prevstate' field is
2993                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
2994                  * that this is part of a vdev_reopen().  In this case, we don't
2995                  * want to post the ereport if the device was already in the
2996                  * CANT_OPEN state beforehand.
2997                  *
2998                  * If the 'checkremove' flag is set, then this is an attempt to
2999                  * online the device in response to an insertion event.  If we
3000                  * hit this case, then we have detected an insertion event for a
3001                  * faulted or offline device that wasn't in the removed state.
3002                  * In this scenario, we don't post an ereport because we are
3003                  * about to replace the device, or attempt an online with
3004                  * vdev_forcefault, which will generate the fault for us.
3005                  */
3006                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3007                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3008                     vd != spa->spa_root_vdev) {
3009                         const char *class;
3010 
3011                         switch (aux) {
3012                         case VDEV_AUX_OPEN_FAILED:
3013                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3014                                 break;
3015                         case VDEV_AUX_CORRUPT_DATA:
3016                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3017                                 break;
3018                         case VDEV_AUX_NO_REPLICAS:
3019                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3020                                 break;
3021                         case VDEV_AUX_BAD_GUID_SUM:
3022                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3023                                 break;
3024                         case VDEV_AUX_TOO_SMALL:
3025                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3026                                 break;
3027                         case VDEV_AUX_BAD_LABEL:
3028                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3029                                 break;
3030                         default:
3031                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3032                         }
3033 
3034                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3035                 }
3036 
3037                 /* Erase any notion of persistent removed state */
3038                 vd->vdev_removed = B_FALSE;
3039         } else {
3040                 vd->vdev_removed = B_FALSE;
3041         }
3042 
3043         if (!isopen && vd->vdev_parent)
3044                 vdev_propagate_state(vd->vdev_parent);
3045 }
3046 
3047 /*
3048  * Check the vdev configuration to ensure that it's capable of supporting
3049  * a root pool. Currently, we do not support RAID-Z or partial configuration.
3050  * In addition, only a single top-level vdev is allowed and none of the leaves
3051  * can be wholedisks.
3052  */
3053 boolean_t
3054 vdev_is_bootable(vdev_t *vd)
3055 {
3056         if (!vd->vdev_ops->vdev_op_leaf) {
3057                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3058 
3059                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3060                     vd->vdev_children > 1) {
3061                         return (B_FALSE);
3062                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3063                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3064                         return (B_FALSE);
3065                 }
3066         } else if (vd->vdev_wholedisk == 1) {
3067                 return (B_FALSE);
3068         }
3069 
3070         for (int c = 0; c < vd->vdev_children; c++) {
3071                 if (!vdev_is_bootable(vd->vdev_child[c]))
3072                         return (B_FALSE);
3073         }
3074         return (B_TRUE);
3075 }
3076 
3077 /*
3078  * Load the state from the original vdev tree (ovd) which
3079  * we've retrieved from the MOS config object. If the original
3080  * vdev was offline or faulted then we transfer that state to the
3081  * device in the current vdev tree (nvd).
3082  */
3083 void
3084 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3085 {
3086         spa_t *spa = nvd->vdev_spa;
3087 
3088         ASSERT(nvd->vdev_top->vdev_islog);
3089         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3090         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3091 
3092         for (int c = 0; c < nvd->vdev_children; c++)
3093                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3094 
3095         if (nvd->vdev_ops->vdev_op_leaf) {
3096                 /*
3097                  * Restore the persistent vdev state
3098                  */
3099                 nvd->vdev_offline = ovd->vdev_offline;
3100                 nvd->vdev_faulted = ovd->vdev_faulted;
3101                 nvd->vdev_degraded = ovd->vdev_degraded;
3102                 nvd->vdev_removed = ovd->vdev_removed;
3103         }
3104 }
3105 
3106 /*
3107  * Determine if a log device has valid content.  If the vdev was
3108  * removed or faulted in the MOS config then we know that
3109  * the content on the log device has already been written to the pool.
3110  */
3111 boolean_t
3112 vdev_log_state_valid(vdev_t *vd)
3113 {
3114         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3115             !vd->vdev_removed)
3116                 return (B_TRUE);
3117 
3118         for (int c = 0; c < vd->vdev_children; c++)
3119                 if (vdev_log_state_valid(vd->vdev_child[c]))
3120                         return (B_TRUE);
3121 
3122         return (B_FALSE);
3123 }
3124 
3125 /*
3126  * Expand a vdev if possible.
3127  */
3128 void
3129 vdev_expand(vdev_t *vd, uint64_t txg)
3130 {
3131         ASSERT(vd->vdev_top == vd);
3132         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3133 
3134         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3135                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3136                 vdev_config_dirty(vd);
3137         }
3138 }
3139 
3140 /*
3141  * Split a vdev.
3142  */
3143 void
3144 vdev_split(vdev_t *vd)
3145 {
3146         vdev_t *cvd, *pvd = vd->vdev_parent;
3147 
3148         vdev_remove_child(pvd, vd);
3149         vdev_compact_children(pvd);
3150 
3151         cvd = pvd->vdev_child[0];
3152         if (pvd->vdev_children == 1) {
3153                 vdev_remove_parent(cvd);
3154                 cvd->vdev_splitting = B_TRUE;
3155         }
3156         vdev_propagate_state(cvd);
3157 }
3158 
3159 void
3160 vdev_deadman(vdev_t *vd)
3161 {
3162         for (int c = 0; c < vd->vdev_children; c++) {
3163                 vdev_t *cvd = vd->vdev_child[c];
3164 
3165                 vdev_deadman(cvd);
3166         }
3167 
3168         if (vd->vdev_ops->vdev_op_leaf) {
3169                 vdev_queue_t *vq = &vd->vdev_queue;
3170 
3171                 mutex_enter(&vq->vq_lock);
3172                 if (avl_numnodes(&vq->vq_pending_tree) > 0) {
3173                         spa_t *spa = vd->vdev_spa;
3174                         zio_t *fio;
3175                         uint64_t delta;
3176 
3177                         /*
3178                          * Look at the head of all the pending queues,
3179                          * if any I/O has been outstanding for longer than
3180                          * the spa_deadman_synctime we panic the system.
3181                          */
3182                         fio = avl_first(&vq->vq_pending_tree);
3183                         delta = gethrtime() - fio->io_timestamp;
3184                         if (delta > spa_deadman_synctime(spa)) {
3185                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3186                                     "delta %lluns, last io %lluns",
3187                                     fio->io_timestamp, delta,
3188                                     vq->vq_io_complete_ts);
3189                                 fm_panic("I/O to pool '%s' appears to be "
3190                                     "hung.", spa_name(spa));
3191                         }
3192                 }
3193                 mutex_exit(&vq->vq_lock);
3194         }
3195 }