1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 by Delphix. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/zio.h>
40 #include <sys/zap.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/arc.h>
43 #include <sys/zil.h>
44 #include <sys/dsl_scan.h>
45
46 /*
47 * Virtual device management.
48 */
49
50 static vdev_ops_t *vdev_ops_table[] = {
51 &vdev_root_ops,
52 &vdev_raidz_ops,
53 &vdev_mirror_ops,
54 &vdev_replacing_ops,
55 &vdev_spare_ops,
56 &vdev_disk_ops,
57 &vdev_file_ops,
58 &vdev_missing_ops,
59 &vdev_hole_ops,
60 NULL
61 };
62
63 /* maximum scrub/resilver I/O queue per leaf vdev */
64 int zfs_scrub_limit = 10;
65
66 /*
67 * Given a vdev type, return the appropriate ops vector.
68 */
69 static vdev_ops_t *
70 vdev_getops(const char *type)
71 {
72 vdev_ops_t *ops, **opspp;
73
74 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
75 if (strcmp(ops->vdev_op_type, type) == 0)
76 break;
77
78 return (ops);
79 }
80
81 /*
82 * Default asize function: return the MAX of psize with the asize of
83 * all children. This is what's used by anything other than RAID-Z.
84 */
85 uint64_t
86 vdev_default_asize(vdev_t *vd, uint64_t psize)
87 {
88 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
89 uint64_t csize;
90
91 for (int c = 0; c < vd->vdev_children; c++) {
92 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
93 asize = MAX(asize, csize);
94 }
95
96 return (asize);
97 }
98
99 /*
100 * Get the minimum allocatable size. We define the allocatable size as
101 * the vdev's asize rounded to the nearest metaslab. This allows us to
102 * replace or attach devices which don't have the same physical size but
103 * can still satisfy the same number of allocations.
104 */
105 uint64_t
106 vdev_get_min_asize(vdev_t *vd)
107 {
108 vdev_t *pvd = vd->vdev_parent;
109
110 /*
111 * If our parent is NULL (inactive spare or cache) or is the root,
112 * just return our own asize.
113 */
114 if (pvd == NULL)
115 return (vd->vdev_asize);
116
117 /*
118 * The top-level vdev just returns the allocatable size rounded
119 * to the nearest metaslab.
120 */
121 if (vd == vd->vdev_top)
122 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
123
124 /*
125 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
126 * so each child must provide at least 1/Nth of its asize.
127 */
128 if (pvd->vdev_ops == &vdev_raidz_ops)
129 return (pvd->vdev_min_asize / pvd->vdev_children);
130
131 return (pvd->vdev_min_asize);
132 }
133
134 void
135 vdev_set_min_asize(vdev_t *vd)
136 {
137 vd->vdev_min_asize = vdev_get_min_asize(vd);
138
139 for (int c = 0; c < vd->vdev_children; c++)
140 vdev_set_min_asize(vd->vdev_child[c]);
141 }
142
143 vdev_t *
144 vdev_lookup_top(spa_t *spa, uint64_t vdev)
145 {
146 vdev_t *rvd = spa->spa_root_vdev;
147
148 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
149
150 if (vdev < rvd->vdev_children) {
151 ASSERT(rvd->vdev_child[vdev] != NULL);
152 return (rvd->vdev_child[vdev]);
153 }
154
155 return (NULL);
156 }
157
158 vdev_t *
159 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
160 {
161 vdev_t *mvd;
162
163 if (vd->vdev_guid == guid)
164 return (vd);
165
166 for (int c = 0; c < vd->vdev_children; c++)
167 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
168 NULL)
169 return (mvd);
170
171 return (NULL);
172 }
173
174 void
175 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
176 {
177 size_t oldsize, newsize;
178 uint64_t id = cvd->vdev_id;
179 vdev_t **newchild;
180
181 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
182 ASSERT(cvd->vdev_parent == NULL);
183
184 cvd->vdev_parent = pvd;
185
186 if (pvd == NULL)
187 return;
188
189 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
190
191 oldsize = pvd->vdev_children * sizeof (vdev_t *);
192 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
193 newsize = pvd->vdev_children * sizeof (vdev_t *);
194
195 newchild = kmem_zalloc(newsize, KM_SLEEP);
196 if (pvd->vdev_child != NULL) {
197 bcopy(pvd->vdev_child, newchild, oldsize);
198 kmem_free(pvd->vdev_child, oldsize);
199 }
200
201 pvd->vdev_child = newchild;
202 pvd->vdev_child[id] = cvd;
203
204 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
205 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
206
207 /*
208 * Walk up all ancestors to update guid sum.
209 */
210 for (; pvd != NULL; pvd = pvd->vdev_parent)
211 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
212 }
213
214 void
215 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
216 {
217 int c;
218 uint_t id = cvd->vdev_id;
219
220 ASSERT(cvd->vdev_parent == pvd);
221
222 if (pvd == NULL)
223 return;
224
225 ASSERT(id < pvd->vdev_children);
226 ASSERT(pvd->vdev_child[id] == cvd);
227
228 pvd->vdev_child[id] = NULL;
229 cvd->vdev_parent = NULL;
230
231 for (c = 0; c < pvd->vdev_children; c++)
232 if (pvd->vdev_child[c])
233 break;
234
235 if (c == pvd->vdev_children) {
236 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
237 pvd->vdev_child = NULL;
238 pvd->vdev_children = 0;
239 }
240
241 /*
242 * Walk up all ancestors to update guid sum.
243 */
244 for (; pvd != NULL; pvd = pvd->vdev_parent)
245 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
246 }
247
248 /*
249 * Remove any holes in the child array.
250 */
251 void
252 vdev_compact_children(vdev_t *pvd)
253 {
254 vdev_t **newchild, *cvd;
255 int oldc = pvd->vdev_children;
256 int newc;
257
258 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
259
260 for (int c = newc = 0; c < oldc; c++)
261 if (pvd->vdev_child[c])
262 newc++;
263
264 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
265
266 for (int c = newc = 0; c < oldc; c++) {
267 if ((cvd = pvd->vdev_child[c]) != NULL) {
268 newchild[newc] = cvd;
269 cvd->vdev_id = newc++;
270 }
271 }
272
273 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
274 pvd->vdev_child = newchild;
275 pvd->vdev_children = newc;
276 }
277
278 /*
279 * Allocate and minimally initialize a vdev_t.
280 */
281 vdev_t *
282 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
283 {
284 vdev_t *vd;
285
286 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
287
288 if (spa->spa_root_vdev == NULL) {
289 ASSERT(ops == &vdev_root_ops);
290 spa->spa_root_vdev = vd;
291 spa->spa_load_guid = spa_generate_guid(NULL);
292 }
293
294 if (guid == 0 && ops != &vdev_hole_ops) {
295 if (spa->spa_root_vdev == vd) {
296 /*
297 * The root vdev's guid will also be the pool guid,
298 * which must be unique among all pools.
299 */
300 guid = spa_generate_guid(NULL);
301 } else {
302 /*
303 * Any other vdev's guid must be unique within the pool.
304 */
305 guid = spa_generate_guid(spa);
306 }
307 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
308 }
309
310 vd->vdev_spa = spa;
311 vd->vdev_id = id;
312 vd->vdev_guid = guid;
313 vd->vdev_guid_sum = guid;
314 vd->vdev_ops = ops;
315 vd->vdev_state = VDEV_STATE_CLOSED;
316 vd->vdev_ishole = (ops == &vdev_hole_ops);
317
318 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
319 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
320 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
321 for (int t = 0; t < DTL_TYPES; t++) {
322 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
323 &vd->vdev_dtl_lock);
324 }
325 txg_list_create(&vd->vdev_ms_list,
326 offsetof(struct metaslab, ms_txg_node));
327 txg_list_create(&vd->vdev_dtl_list,
328 offsetof(struct vdev, vdev_dtl_node));
329 vd->vdev_stat.vs_timestamp = gethrtime();
330 vdev_queue_init(vd);
331 vdev_cache_init(vd);
332
333 return (vd);
334 }
335
336 /*
337 * Allocate a new vdev. The 'alloctype' is used to control whether we are
338 * creating a new vdev or loading an existing one - the behavior is slightly
339 * different for each case.
340 */
341 int
342 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
343 int alloctype)
344 {
345 vdev_ops_t *ops;
346 char *type;
347 uint64_t guid = 0, islog, nparity;
348 vdev_t *vd;
349
350 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
351
352 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
353 return (SET_ERROR(EINVAL));
354
355 if ((ops = vdev_getops(type)) == NULL)
356 return (SET_ERROR(EINVAL));
357
358 /*
359 * If this is a load, get the vdev guid from the nvlist.
360 * Otherwise, vdev_alloc_common() will generate one for us.
361 */
362 if (alloctype == VDEV_ALLOC_LOAD) {
363 uint64_t label_id;
364
365 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
366 label_id != id)
367 return (SET_ERROR(EINVAL));
368
369 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
370 return (SET_ERROR(EINVAL));
371 } else if (alloctype == VDEV_ALLOC_SPARE) {
372 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
373 return (SET_ERROR(EINVAL));
374 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
375 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
376 return (SET_ERROR(EINVAL));
377 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
378 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
379 return (SET_ERROR(EINVAL));
380 }
381
382 /*
383 * The first allocated vdev must be of type 'root'.
384 */
385 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
386 return (SET_ERROR(EINVAL));
387
388 /*
389 * Determine whether we're a log vdev.
390 */
391 islog = 0;
392 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
393 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
394 return (SET_ERROR(ENOTSUP));
395
396 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
397 return (SET_ERROR(ENOTSUP));
398
399 /*
400 * Set the nparity property for RAID-Z vdevs.
401 */
402 nparity = -1ULL;
403 if (ops == &vdev_raidz_ops) {
404 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
405 &nparity) == 0) {
406 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
407 return (SET_ERROR(EINVAL));
408 /*
409 * Previous versions could only support 1 or 2 parity
410 * device.
411 */
412 if (nparity > 1 &&
413 spa_version(spa) < SPA_VERSION_RAIDZ2)
414 return (SET_ERROR(ENOTSUP));
415 if (nparity > 2 &&
416 spa_version(spa) < SPA_VERSION_RAIDZ3)
417 return (SET_ERROR(ENOTSUP));
418 } else {
419 /*
420 * We require the parity to be specified for SPAs that
421 * support multiple parity levels.
422 */
423 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
424 return (SET_ERROR(EINVAL));
425 /*
426 * Otherwise, we default to 1 parity device for RAID-Z.
427 */
428 nparity = 1;
429 }
430 } else {
431 nparity = 0;
432 }
433 ASSERT(nparity != -1ULL);
434
435 vd = vdev_alloc_common(spa, id, guid, ops);
436
437 vd->vdev_islog = islog;
438 vd->vdev_nparity = nparity;
439
440 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
441 vd->vdev_path = spa_strdup(vd->vdev_path);
442 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
443 vd->vdev_devid = spa_strdup(vd->vdev_devid);
444 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
445 &vd->vdev_physpath) == 0)
446 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
447 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
448 vd->vdev_fru = spa_strdup(vd->vdev_fru);
449
450 /*
451 * Set the whole_disk property. If it's not specified, leave the value
452 * as -1.
453 */
454 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
455 &vd->vdev_wholedisk) != 0)
456 vd->vdev_wholedisk = -1ULL;
457
458 /*
459 * Look for the 'not present' flag. This will only be set if the device
460 * was not present at the time of import.
461 */
462 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
463 &vd->vdev_not_present);
464
465 /*
466 * Get the alignment requirement.
467 */
468 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
469
470 /*
471 * Retrieve the vdev creation time.
472 */
473 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
474 &vd->vdev_crtxg);
475
476 /*
477 * If we're a top-level vdev, try to load the allocation parameters.
478 */
479 if (parent && !parent->vdev_parent &&
480 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
481 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
482 &vd->vdev_ms_array);
483 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
484 &vd->vdev_ms_shift);
485 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
486 &vd->vdev_asize);
487 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
488 &vd->vdev_removing);
489 }
490
491 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
492 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
493 alloctype == VDEV_ALLOC_ADD ||
494 alloctype == VDEV_ALLOC_SPLIT ||
495 alloctype == VDEV_ALLOC_ROOTPOOL);
496 vd->vdev_mg = metaslab_group_create(islog ?
497 spa_log_class(spa) : spa_normal_class(spa), vd);
498 }
499
500 /*
501 * If we're a leaf vdev, try to load the DTL object and other state.
502 */
503 if (vd->vdev_ops->vdev_op_leaf &&
504 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
505 alloctype == VDEV_ALLOC_ROOTPOOL)) {
506 if (alloctype == VDEV_ALLOC_LOAD) {
507 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
508 &vd->vdev_dtl_smo.smo_object);
509 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
510 &vd->vdev_unspare);
511 }
512
513 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
514 uint64_t spare = 0;
515
516 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
517 &spare) == 0 && spare)
518 spa_spare_add(vd);
519 }
520
521 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
522 &vd->vdev_offline);
523
524 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
525 &vd->vdev_resilvering);
526
527 /*
528 * When importing a pool, we want to ignore the persistent fault
529 * state, as the diagnosis made on another system may not be
530 * valid in the current context. Local vdevs will
531 * remain in the faulted state.
532 */
533 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
534 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
535 &vd->vdev_faulted);
536 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
537 &vd->vdev_degraded);
538 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
539 &vd->vdev_removed);
540
541 if (vd->vdev_faulted || vd->vdev_degraded) {
542 char *aux;
543
544 vd->vdev_label_aux =
545 VDEV_AUX_ERR_EXCEEDED;
546 if (nvlist_lookup_string(nv,
547 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
548 strcmp(aux, "external") == 0)
549 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
550 }
551 }
552 }
553
554 /*
555 * Add ourselves to the parent's list of children.
556 */
557 vdev_add_child(parent, vd);
558
559 *vdp = vd;
560
561 return (0);
562 }
563
564 void
565 vdev_free(vdev_t *vd)
566 {
567 spa_t *spa = vd->vdev_spa;
568
569 /*
570 * vdev_free() implies closing the vdev first. This is simpler than
571 * trying to ensure complicated semantics for all callers.
572 */
573 vdev_close(vd);
574
575 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
576 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
577
578 /*
579 * Free all children.
580 */
581 for (int c = 0; c < vd->vdev_children; c++)
582 vdev_free(vd->vdev_child[c]);
583
584 ASSERT(vd->vdev_child == NULL);
585 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
586
587 /*
588 * Discard allocation state.
589 */
590 if (vd->vdev_mg != NULL) {
591 vdev_metaslab_fini(vd);
592 metaslab_group_destroy(vd->vdev_mg);
593 }
594
595 ASSERT0(vd->vdev_stat.vs_space);
596 ASSERT0(vd->vdev_stat.vs_dspace);
597 ASSERT0(vd->vdev_stat.vs_alloc);
598
599 /*
600 * Remove this vdev from its parent's child list.
601 */
602 vdev_remove_child(vd->vdev_parent, vd);
603
604 ASSERT(vd->vdev_parent == NULL);
605
606 /*
607 * Clean up vdev structure.
608 */
609 vdev_queue_fini(vd);
610 vdev_cache_fini(vd);
611
612 if (vd->vdev_path)
613 spa_strfree(vd->vdev_path);
614 if (vd->vdev_devid)
615 spa_strfree(vd->vdev_devid);
616 if (vd->vdev_physpath)
617 spa_strfree(vd->vdev_physpath);
618 if (vd->vdev_fru)
619 spa_strfree(vd->vdev_fru);
620
621 if (vd->vdev_isspare)
622 spa_spare_remove(vd);
623 if (vd->vdev_isl2cache)
624 spa_l2cache_remove(vd);
625
626 txg_list_destroy(&vd->vdev_ms_list);
627 txg_list_destroy(&vd->vdev_dtl_list);
628
629 mutex_enter(&vd->vdev_dtl_lock);
630 for (int t = 0; t < DTL_TYPES; t++) {
631 space_map_unload(&vd->vdev_dtl[t]);
632 space_map_destroy(&vd->vdev_dtl[t]);
633 }
634 mutex_exit(&vd->vdev_dtl_lock);
635
636 mutex_destroy(&vd->vdev_dtl_lock);
637 mutex_destroy(&vd->vdev_stat_lock);
638 mutex_destroy(&vd->vdev_probe_lock);
639
640 if (vd == spa->spa_root_vdev)
641 spa->spa_root_vdev = NULL;
642
643 kmem_free(vd, sizeof (vdev_t));
644 }
645
646 /*
647 * Transfer top-level vdev state from svd to tvd.
648 */
649 static void
650 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
651 {
652 spa_t *spa = svd->vdev_spa;
653 metaslab_t *msp;
654 vdev_t *vd;
655 int t;
656
657 ASSERT(tvd == tvd->vdev_top);
658
659 tvd->vdev_ms_array = svd->vdev_ms_array;
660 tvd->vdev_ms_shift = svd->vdev_ms_shift;
661 tvd->vdev_ms_count = svd->vdev_ms_count;
662
663 svd->vdev_ms_array = 0;
664 svd->vdev_ms_shift = 0;
665 svd->vdev_ms_count = 0;
666
667 if (tvd->vdev_mg)
668 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
669 tvd->vdev_mg = svd->vdev_mg;
670 tvd->vdev_ms = svd->vdev_ms;
671
672 svd->vdev_mg = NULL;
673 svd->vdev_ms = NULL;
674
675 if (tvd->vdev_mg != NULL)
676 tvd->vdev_mg->mg_vd = tvd;
677
678 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
679 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
680 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
681
682 svd->vdev_stat.vs_alloc = 0;
683 svd->vdev_stat.vs_space = 0;
684 svd->vdev_stat.vs_dspace = 0;
685
686 for (t = 0; t < TXG_SIZE; t++) {
687 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
688 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
689 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
690 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
691 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
692 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
693 }
694
695 if (list_link_active(&svd->vdev_config_dirty_node)) {
696 vdev_config_clean(svd);
697 vdev_config_dirty(tvd);
698 }
699
700 if (list_link_active(&svd->vdev_state_dirty_node)) {
701 vdev_state_clean(svd);
702 vdev_state_dirty(tvd);
703 }
704
705 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
706 svd->vdev_deflate_ratio = 0;
707
708 tvd->vdev_islog = svd->vdev_islog;
709 svd->vdev_islog = 0;
710 }
711
712 static void
713 vdev_top_update(vdev_t *tvd, vdev_t *vd)
714 {
715 if (vd == NULL)
716 return;
717
718 vd->vdev_top = tvd;
719
720 for (int c = 0; c < vd->vdev_children; c++)
721 vdev_top_update(tvd, vd->vdev_child[c]);
722 }
723
724 /*
725 * Add a mirror/replacing vdev above an existing vdev.
726 */
727 vdev_t *
728 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
729 {
730 spa_t *spa = cvd->vdev_spa;
731 vdev_t *pvd = cvd->vdev_parent;
732 vdev_t *mvd;
733
734 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
735
736 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
737
738 mvd->vdev_asize = cvd->vdev_asize;
739 mvd->vdev_min_asize = cvd->vdev_min_asize;
740 mvd->vdev_max_asize = cvd->vdev_max_asize;
741 mvd->vdev_ashift = cvd->vdev_ashift;
742 mvd->vdev_state = cvd->vdev_state;
743 mvd->vdev_crtxg = cvd->vdev_crtxg;
744
745 vdev_remove_child(pvd, cvd);
746 vdev_add_child(pvd, mvd);
747 cvd->vdev_id = mvd->vdev_children;
748 vdev_add_child(mvd, cvd);
749 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
750
751 if (mvd == mvd->vdev_top)
752 vdev_top_transfer(cvd, mvd);
753
754 return (mvd);
755 }
756
757 /*
758 * Remove a 1-way mirror/replacing vdev from the tree.
759 */
760 void
761 vdev_remove_parent(vdev_t *cvd)
762 {
763 vdev_t *mvd = cvd->vdev_parent;
764 vdev_t *pvd = mvd->vdev_parent;
765
766 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
767
768 ASSERT(mvd->vdev_children == 1);
769 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
770 mvd->vdev_ops == &vdev_replacing_ops ||
771 mvd->vdev_ops == &vdev_spare_ops);
772 cvd->vdev_ashift = mvd->vdev_ashift;
773
774 vdev_remove_child(mvd, cvd);
775 vdev_remove_child(pvd, mvd);
776
777 /*
778 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
779 * Otherwise, we could have detached an offline device, and when we
780 * go to import the pool we'll think we have two top-level vdevs,
781 * instead of a different version of the same top-level vdev.
782 */
783 if (mvd->vdev_top == mvd) {
784 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
785 cvd->vdev_orig_guid = cvd->vdev_guid;
786 cvd->vdev_guid += guid_delta;
787 cvd->vdev_guid_sum += guid_delta;
788 }
789 cvd->vdev_id = mvd->vdev_id;
790 vdev_add_child(pvd, cvd);
791 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
792
793 if (cvd == cvd->vdev_top)
794 vdev_top_transfer(mvd, cvd);
795
796 ASSERT(mvd->vdev_children == 0);
797 vdev_free(mvd);
798 }
799
800 int
801 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
802 {
803 spa_t *spa = vd->vdev_spa;
804 objset_t *mos = spa->spa_meta_objset;
805 uint64_t m;
806 uint64_t oldc = vd->vdev_ms_count;
807 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
808 metaslab_t **mspp;
809 int error;
810
811 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
812
813 /*
814 * This vdev is not being allocated from yet or is a hole.
815 */
816 if (vd->vdev_ms_shift == 0)
817 return (0);
818
819 ASSERT(!vd->vdev_ishole);
820
821 /*
822 * Compute the raidz-deflation ratio. Note, we hard-code
823 * in 128k (1 << 17) because it is the current "typical" blocksize.
824 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
825 * or we will inconsistently account for existing bp's.
826 */
827 vd->vdev_deflate_ratio = (1 << 17) /
828 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
829
830 ASSERT(oldc <= newc);
831
832 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
833
834 if (oldc != 0) {
835 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
836 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
837 }
838
839 vd->vdev_ms = mspp;
840 vd->vdev_ms_count = newc;
841
842 for (m = oldc; m < newc; m++) {
843 space_map_obj_t smo = { 0, 0, 0 };
844 if (txg == 0) {
845 uint64_t object = 0;
846 error = dmu_read(mos, vd->vdev_ms_array,
847 m * sizeof (uint64_t), sizeof (uint64_t), &object,
848 DMU_READ_PREFETCH);
849 if (error)
850 return (error);
851 if (object != 0) {
852 dmu_buf_t *db;
853 error = dmu_bonus_hold(mos, object, FTAG, &db);
854 if (error)
855 return (error);
856 ASSERT3U(db->db_size, >=, sizeof (smo));
857 bcopy(db->db_data, &smo, sizeof (smo));
858 ASSERT3U(smo.smo_object, ==, object);
859 dmu_buf_rele(db, FTAG);
860 }
861 }
862 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
863 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
864 }
865
866 if (txg == 0)
867 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
868
869 /*
870 * If the vdev is being removed we don't activate
871 * the metaslabs since we want to ensure that no new
872 * allocations are performed on this device.
873 */
874 if (oldc == 0 && !vd->vdev_removing)
875 metaslab_group_activate(vd->vdev_mg);
876
877 if (txg == 0)
878 spa_config_exit(spa, SCL_ALLOC, FTAG);
879
880 return (0);
881 }
882
883 void
884 vdev_metaslab_fini(vdev_t *vd)
885 {
886 uint64_t m;
887 uint64_t count = vd->vdev_ms_count;
888
889 if (vd->vdev_ms != NULL) {
890 metaslab_group_passivate(vd->vdev_mg);
891 for (m = 0; m < count; m++)
892 if (vd->vdev_ms[m] != NULL)
893 metaslab_fini(vd->vdev_ms[m]);
894 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
895 vd->vdev_ms = NULL;
896 }
897 }
898
899 typedef struct vdev_probe_stats {
900 boolean_t vps_readable;
901 boolean_t vps_writeable;
902 int vps_flags;
903 } vdev_probe_stats_t;
904
905 static void
906 vdev_probe_done(zio_t *zio)
907 {
908 spa_t *spa = zio->io_spa;
909 vdev_t *vd = zio->io_vd;
910 vdev_probe_stats_t *vps = zio->io_private;
911
912 ASSERT(vd->vdev_probe_zio != NULL);
913
914 if (zio->io_type == ZIO_TYPE_READ) {
915 if (zio->io_error == 0)
916 vps->vps_readable = 1;
917 if (zio->io_error == 0 && spa_writeable(spa)) {
918 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
919 zio->io_offset, zio->io_size, zio->io_data,
920 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
921 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
922 } else {
923 zio_buf_free(zio->io_data, zio->io_size);
924 }
925 } else if (zio->io_type == ZIO_TYPE_WRITE) {
926 if (zio->io_error == 0)
927 vps->vps_writeable = 1;
928 zio_buf_free(zio->io_data, zio->io_size);
929 } else if (zio->io_type == ZIO_TYPE_NULL) {
930 zio_t *pio;
931
932 vd->vdev_cant_read |= !vps->vps_readable;
933 vd->vdev_cant_write |= !vps->vps_writeable;
934
935 if (vdev_readable(vd) &&
936 (vdev_writeable(vd) || !spa_writeable(spa))) {
937 zio->io_error = 0;
938 } else {
939 ASSERT(zio->io_error != 0);
940 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
941 spa, vd, NULL, 0, 0);
942 zio->io_error = SET_ERROR(ENXIO);
943 }
944
945 mutex_enter(&vd->vdev_probe_lock);
946 ASSERT(vd->vdev_probe_zio == zio);
947 vd->vdev_probe_zio = NULL;
948 mutex_exit(&vd->vdev_probe_lock);
949
950 while ((pio = zio_walk_parents(zio)) != NULL)
951 if (!vdev_accessible(vd, pio))
952 pio->io_error = SET_ERROR(ENXIO);
953
954 kmem_free(vps, sizeof (*vps));
955 }
956 }
957
958 /*
959 * Determine whether this device is accessible by reading and writing
960 * to several known locations: the pad regions of each vdev label
961 * but the first (which we leave alone in case it contains a VTOC).
962 */
963 zio_t *
964 vdev_probe(vdev_t *vd, zio_t *zio)
965 {
966 spa_t *spa = vd->vdev_spa;
967 vdev_probe_stats_t *vps = NULL;
968 zio_t *pio;
969
970 ASSERT(vd->vdev_ops->vdev_op_leaf);
971
972 /*
973 * Don't probe the probe.
974 */
975 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
976 return (NULL);
977
978 /*
979 * To prevent 'probe storms' when a device fails, we create
980 * just one probe i/o at a time. All zios that want to probe
981 * this vdev will become parents of the probe io.
982 */
983 mutex_enter(&vd->vdev_probe_lock);
984
985 if ((pio = vd->vdev_probe_zio) == NULL) {
986 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
987
988 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
989 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
990 ZIO_FLAG_TRYHARD;
991
992 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
993 /*
994 * vdev_cant_read and vdev_cant_write can only
995 * transition from TRUE to FALSE when we have the
996 * SCL_ZIO lock as writer; otherwise they can only
997 * transition from FALSE to TRUE. This ensures that
998 * any zio looking at these values can assume that
999 * failures persist for the life of the I/O. That's
1000 * important because when a device has intermittent
1001 * connectivity problems, we want to ensure that
1002 * they're ascribed to the device (ENXIO) and not
1003 * the zio (EIO).
1004 *
1005 * Since we hold SCL_ZIO as writer here, clear both
1006 * values so the probe can reevaluate from first
1007 * principles.
1008 */
1009 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1010 vd->vdev_cant_read = B_FALSE;
1011 vd->vdev_cant_write = B_FALSE;
1012 }
1013
1014 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1015 vdev_probe_done, vps,
1016 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1017
1018 /*
1019 * We can't change the vdev state in this context, so we
1020 * kick off an async task to do it on our behalf.
1021 */
1022 if (zio != NULL) {
1023 vd->vdev_probe_wanted = B_TRUE;
1024 spa_async_request(spa, SPA_ASYNC_PROBE);
1025 }
1026 }
1027
1028 if (zio != NULL)
1029 zio_add_child(zio, pio);
1030
1031 mutex_exit(&vd->vdev_probe_lock);
1032
1033 if (vps == NULL) {
1034 ASSERT(zio != NULL);
1035 return (NULL);
1036 }
1037
1038 for (int l = 1; l < VDEV_LABELS; l++) {
1039 zio_nowait(zio_read_phys(pio, vd,
1040 vdev_label_offset(vd->vdev_psize, l,
1041 offsetof(vdev_label_t, vl_pad2)),
1042 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1043 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1044 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1045 }
1046
1047 if (zio == NULL)
1048 return (pio);
1049
1050 zio_nowait(pio);
1051 return (NULL);
1052 }
1053
1054 static void
1055 vdev_open_child(void *arg)
1056 {
1057 vdev_t *vd = arg;
1058
1059 vd->vdev_open_thread = curthread;
1060 vd->vdev_open_error = vdev_open(vd);
1061 vd->vdev_open_thread = NULL;
1062 }
1063
1064 boolean_t
1065 vdev_uses_zvols(vdev_t *vd)
1066 {
1067 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1068 strlen(ZVOL_DIR)) == 0)
1069 return (B_TRUE);
1070 for (int c = 0; c < vd->vdev_children; c++)
1071 if (vdev_uses_zvols(vd->vdev_child[c]))
1072 return (B_TRUE);
1073 return (B_FALSE);
1074 }
1075
1076 void
1077 vdev_open_children(vdev_t *vd)
1078 {
1079 taskq_t *tq;
1080 int children = vd->vdev_children;
1081
1082 /*
1083 * in order to handle pools on top of zvols, do the opens
1084 * in a single thread so that the same thread holds the
1085 * spa_namespace_lock
1086 */
1087 if (vdev_uses_zvols(vd)) {
1088 for (int c = 0; c < children; c++)
1089 vd->vdev_child[c]->vdev_open_error =
1090 vdev_open(vd->vdev_child[c]);
1091 return;
1092 }
1093 tq = taskq_create("vdev_open", children, minclsyspri,
1094 children, children, TASKQ_PREPOPULATE);
1095
1096 for (int c = 0; c < children; c++)
1097 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1098 TQ_SLEEP) != NULL);
1099
1100 taskq_destroy(tq);
1101 }
1102
1103 /*
1104 * Prepare a virtual device for access.
1105 */
1106 int
1107 vdev_open(vdev_t *vd)
1108 {
1109 spa_t *spa = vd->vdev_spa;
1110 int error;
1111 uint64_t osize = 0;
1112 uint64_t max_osize = 0;
1113 uint64_t asize, max_asize, psize;
1114 uint64_t ashift = 0;
1115
1116 ASSERT(vd->vdev_open_thread == curthread ||
1117 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1118 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1119 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1120 vd->vdev_state == VDEV_STATE_OFFLINE);
1121
1122 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1123 vd->vdev_cant_read = B_FALSE;
1124 vd->vdev_cant_write = B_FALSE;
1125 vd->vdev_min_asize = vdev_get_min_asize(vd);
1126
1127 /*
1128 * If this vdev is not removed, check its fault status. If it's
1129 * faulted, bail out of the open.
1130 */
1131 if (!vd->vdev_removed && vd->vdev_faulted) {
1132 ASSERT(vd->vdev_children == 0);
1133 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1134 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1135 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1136 vd->vdev_label_aux);
1137 return (SET_ERROR(ENXIO));
1138 } else if (vd->vdev_offline) {
1139 ASSERT(vd->vdev_children == 0);
1140 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1141 return (SET_ERROR(ENXIO));
1142 }
1143
1144 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1145
1146 /*
1147 * Reset the vdev_reopening flag so that we actually close
1148 * the vdev on error.
1149 */
1150 vd->vdev_reopening = B_FALSE;
1151 if (zio_injection_enabled && error == 0)
1152 error = zio_handle_device_injection(vd, NULL, ENXIO);
1153
1154 if (error) {
1155 if (vd->vdev_removed &&
1156 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1157 vd->vdev_removed = B_FALSE;
1158
1159 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1160 vd->vdev_stat.vs_aux);
1161 return (error);
1162 }
1163
1164 vd->vdev_removed = B_FALSE;
1165
1166 /*
1167 * Recheck the faulted flag now that we have confirmed that
1168 * the vdev is accessible. If we're faulted, bail.
1169 */
1170 if (vd->vdev_faulted) {
1171 ASSERT(vd->vdev_children == 0);
1172 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1173 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1174 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1175 vd->vdev_label_aux);
1176 return (SET_ERROR(ENXIO));
1177 }
1178
1179 if (vd->vdev_degraded) {
1180 ASSERT(vd->vdev_children == 0);
1181 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1182 VDEV_AUX_ERR_EXCEEDED);
1183 } else {
1184 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1185 }
1186
1187 /*
1188 * For hole or missing vdevs we just return success.
1189 */
1190 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1191 return (0);
1192
1193 for (int c = 0; c < vd->vdev_children; c++) {
1194 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1195 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1196 VDEV_AUX_NONE);
1197 break;
1198 }
1199 }
1200
1201 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1202 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1203
1204 if (vd->vdev_children == 0) {
1205 if (osize < SPA_MINDEVSIZE) {
1206 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1207 VDEV_AUX_TOO_SMALL);
1208 return (SET_ERROR(EOVERFLOW));
1209 }
1210 psize = osize;
1211 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1212 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1213 VDEV_LABEL_END_SIZE);
1214 } else {
1215 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1216 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1217 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1218 VDEV_AUX_TOO_SMALL);
1219 return (SET_ERROR(EOVERFLOW));
1220 }
1221 psize = 0;
1222 asize = osize;
1223 max_asize = max_osize;
1224 }
1225
1226 vd->vdev_psize = psize;
1227
1228 /*
1229 * Make sure the allocatable size hasn't shrunk.
1230 */
1231 if (asize < vd->vdev_min_asize) {
1232 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1233 VDEV_AUX_BAD_LABEL);
1234 return (SET_ERROR(EINVAL));
1235 }
1236
1237 if (vd->vdev_asize == 0) {
1238 /*
1239 * This is the first-ever open, so use the computed values.
1240 * For testing purposes, a higher ashift can be requested.
1241 */
1242 vd->vdev_asize = asize;
1243 vd->vdev_max_asize = max_asize;
1244 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1245 } else {
1246 /*
1247 * Detect if the alignment requirement has increased.
1248 * We don't want to make the pool unavailable, just
1249 * issue a warning instead.
1250 */
1251 if (ashift > vd->vdev_top->vdev_ashift &&
1252 vd->vdev_ops->vdev_op_leaf) {
1253 cmn_err(CE_WARN,
1254 "Disk, '%s', has a block alignment that is "
1255 "larger than the pool's alignment\n",
1256 vd->vdev_path);
1257 }
1258 vd->vdev_max_asize = max_asize;
1259 }
1260
1261 /*
1262 * If all children are healthy and the asize has increased,
1263 * then we've experienced dynamic LUN growth. If automatic
1264 * expansion is enabled then use the additional space.
1265 */
1266 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1267 (vd->vdev_expanding || spa->spa_autoexpand))
1268 vd->vdev_asize = asize;
1269
1270 vdev_set_min_asize(vd);
1271
1272 /*
1273 * Ensure we can issue some IO before declaring the
1274 * vdev open for business.
1275 */
1276 if (vd->vdev_ops->vdev_op_leaf &&
1277 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1278 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1279 VDEV_AUX_ERR_EXCEEDED);
1280 return (error);
1281 }
1282
1283 /*
1284 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1285 * resilver. But don't do this if we are doing a reopen for a scrub,
1286 * since this would just restart the scrub we are already doing.
1287 */
1288 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1289 vdev_resilver_needed(vd, NULL, NULL))
1290 spa_async_request(spa, SPA_ASYNC_RESILVER);
1291
1292 return (0);
1293 }
1294
1295 /*
1296 * Called once the vdevs are all opened, this routine validates the label
1297 * contents. This needs to be done before vdev_load() so that we don't
1298 * inadvertently do repair I/Os to the wrong device.
1299 *
1300 * If 'strict' is false ignore the spa guid check. This is necessary because
1301 * if the machine crashed during a re-guid the new guid might have been written
1302 * to all of the vdev labels, but not the cached config. The strict check
1303 * will be performed when the pool is opened again using the mos config.
1304 *
1305 * This function will only return failure if one of the vdevs indicates that it
1306 * has since been destroyed or exported. This is only possible if
1307 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1308 * will be updated but the function will return 0.
1309 */
1310 int
1311 vdev_validate(vdev_t *vd, boolean_t strict)
1312 {
1313 spa_t *spa = vd->vdev_spa;
1314 nvlist_t *label;
1315 uint64_t guid = 0, top_guid;
1316 uint64_t state;
1317
1318 for (int c = 0; c < vd->vdev_children; c++)
1319 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1320 return (SET_ERROR(EBADF));
1321
1322 /*
1323 * If the device has already failed, or was marked offline, don't do
1324 * any further validation. Otherwise, label I/O will fail and we will
1325 * overwrite the previous state.
1326 */
1327 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1328 uint64_t aux_guid = 0;
1329 nvlist_t *nvl;
1330 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1331 spa_last_synced_txg(spa) : -1ULL;
1332
1333 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1334 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1335 VDEV_AUX_BAD_LABEL);
1336 return (0);
1337 }
1338
1339 /*
1340 * Determine if this vdev has been split off into another
1341 * pool. If so, then refuse to open it.
1342 */
1343 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1344 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1345 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1346 VDEV_AUX_SPLIT_POOL);
1347 nvlist_free(label);
1348 return (0);
1349 }
1350
1351 if (strict && (nvlist_lookup_uint64(label,
1352 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1353 guid != spa_guid(spa))) {
1354 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1355 VDEV_AUX_CORRUPT_DATA);
1356 nvlist_free(label);
1357 return (0);
1358 }
1359
1360 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1361 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1362 &aux_guid) != 0)
1363 aux_guid = 0;
1364
1365 /*
1366 * If this vdev just became a top-level vdev because its
1367 * sibling was detached, it will have adopted the parent's
1368 * vdev guid -- but the label may or may not be on disk yet.
1369 * Fortunately, either version of the label will have the
1370 * same top guid, so if we're a top-level vdev, we can
1371 * safely compare to that instead.
1372 *
1373 * If we split this vdev off instead, then we also check the
1374 * original pool's guid. We don't want to consider the vdev
1375 * corrupt if it is partway through a split operation.
1376 */
1377 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1378 &guid) != 0 ||
1379 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1380 &top_guid) != 0 ||
1381 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1382 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1383 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1384 VDEV_AUX_CORRUPT_DATA);
1385 nvlist_free(label);
1386 return (0);
1387 }
1388
1389 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1390 &state) != 0) {
1391 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1392 VDEV_AUX_CORRUPT_DATA);
1393 nvlist_free(label);
1394 return (0);
1395 }
1396
1397 nvlist_free(label);
1398
1399 /*
1400 * If this is a verbatim import, no need to check the
1401 * state of the pool.
1402 */
1403 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1404 spa_load_state(spa) == SPA_LOAD_OPEN &&
1405 state != POOL_STATE_ACTIVE)
1406 return (SET_ERROR(EBADF));
1407
1408 /*
1409 * If we were able to open and validate a vdev that was
1410 * previously marked permanently unavailable, clear that state
1411 * now.
1412 */
1413 if (vd->vdev_not_present)
1414 vd->vdev_not_present = 0;
1415 }
1416
1417 return (0);
1418 }
1419
1420 /*
1421 * Close a virtual device.
1422 */
1423 void
1424 vdev_close(vdev_t *vd)
1425 {
1426 spa_t *spa = vd->vdev_spa;
1427 vdev_t *pvd = vd->vdev_parent;
1428
1429 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1430
1431 /*
1432 * If our parent is reopening, then we are as well, unless we are
1433 * going offline.
1434 */
1435 if (pvd != NULL && pvd->vdev_reopening)
1436 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1437
1438 vd->vdev_ops->vdev_op_close(vd);
1439
1440 vdev_cache_purge(vd);
1441
1442 /*
1443 * We record the previous state before we close it, so that if we are
1444 * doing a reopen(), we don't generate FMA ereports if we notice that
1445 * it's still faulted.
1446 */
1447 vd->vdev_prevstate = vd->vdev_state;
1448
1449 if (vd->vdev_offline)
1450 vd->vdev_state = VDEV_STATE_OFFLINE;
1451 else
1452 vd->vdev_state = VDEV_STATE_CLOSED;
1453 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1454 }
1455
1456 void
1457 vdev_hold(vdev_t *vd)
1458 {
1459 spa_t *spa = vd->vdev_spa;
1460
1461 ASSERT(spa_is_root(spa));
1462 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1463 return;
1464
1465 for (int c = 0; c < vd->vdev_children; c++)
1466 vdev_hold(vd->vdev_child[c]);
1467
1468 if (vd->vdev_ops->vdev_op_leaf)
1469 vd->vdev_ops->vdev_op_hold(vd);
1470 }
1471
1472 void
1473 vdev_rele(vdev_t *vd)
1474 {
1475 spa_t *spa = vd->vdev_spa;
1476
1477 ASSERT(spa_is_root(spa));
1478 for (int c = 0; c < vd->vdev_children; c++)
1479 vdev_rele(vd->vdev_child[c]);
1480
1481 if (vd->vdev_ops->vdev_op_leaf)
1482 vd->vdev_ops->vdev_op_rele(vd);
1483 }
1484
1485 /*
1486 * Reopen all interior vdevs and any unopened leaves. We don't actually
1487 * reopen leaf vdevs which had previously been opened as they might deadlock
1488 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1489 * If the leaf has never been opened then open it, as usual.
1490 */
1491 void
1492 vdev_reopen(vdev_t *vd)
1493 {
1494 spa_t *spa = vd->vdev_spa;
1495
1496 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1497
1498 /* set the reopening flag unless we're taking the vdev offline */
1499 vd->vdev_reopening = !vd->vdev_offline;
1500 vdev_close(vd);
1501 (void) vdev_open(vd);
1502
1503 /*
1504 * Call vdev_validate() here to make sure we have the same device.
1505 * Otherwise, a device with an invalid label could be successfully
1506 * opened in response to vdev_reopen().
1507 */
1508 if (vd->vdev_aux) {
1509 (void) vdev_validate_aux(vd);
1510 if (vdev_readable(vd) && vdev_writeable(vd) &&
1511 vd->vdev_aux == &spa->spa_l2cache &&
1512 !l2arc_vdev_present(vd))
1513 l2arc_add_vdev(spa, vd);
1514 } else {
1515 (void) vdev_validate(vd, B_TRUE);
1516 }
1517
1518 /*
1519 * Reassess parent vdev's health.
1520 */
1521 vdev_propagate_state(vd);
1522 }
1523
1524 int
1525 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1526 {
1527 int error;
1528
1529 /*
1530 * Normally, partial opens (e.g. of a mirror) are allowed.
1531 * For a create, however, we want to fail the request if
1532 * there are any components we can't open.
1533 */
1534 error = vdev_open(vd);
1535
1536 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1537 vdev_close(vd);
1538 return (error ? error : ENXIO);
1539 }
1540
1541 /*
1542 * Recursively initialize all labels.
1543 */
1544 if ((error = vdev_label_init(vd, txg, isreplacing ?
1545 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1546 vdev_close(vd);
1547 return (error);
1548 }
1549
1550 return (0);
1551 }
1552
1553 void
1554 vdev_metaslab_set_size(vdev_t *vd)
1555 {
1556 /*
1557 * Aim for roughly 200 metaslabs per vdev.
1558 */
1559 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1560 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1561 }
1562
1563 void
1564 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1565 {
1566 ASSERT(vd == vd->vdev_top);
1567 ASSERT(!vd->vdev_ishole);
1568 ASSERT(ISP2(flags));
1569 ASSERT(spa_writeable(vd->vdev_spa));
1570
1571 if (flags & VDD_METASLAB)
1572 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1573
1574 if (flags & VDD_DTL)
1575 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1576
1577 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1578 }
1579
1580 /*
1581 * DTLs.
1582 *
1583 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1584 * the vdev has less than perfect replication. There are four kinds of DTL:
1585 *
1586 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1587 *
1588 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1589 *
1590 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1591 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1592 * txgs that was scrubbed.
1593 *
1594 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1595 * persistent errors or just some device being offline.
1596 * Unlike the other three, the DTL_OUTAGE map is not generally
1597 * maintained; it's only computed when needed, typically to
1598 * determine whether a device can be detached.
1599 *
1600 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1601 * either has the data or it doesn't.
1602 *
1603 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1604 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1605 * if any child is less than fully replicated, then so is its parent.
1606 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1607 * comprising only those txgs which appear in 'maxfaults' or more children;
1608 * those are the txgs we don't have enough replication to read. For example,
1609 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1610 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1611 * two child DTL_MISSING maps.
1612 *
1613 * It should be clear from the above that to compute the DTLs and outage maps
1614 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1615 * Therefore, that is all we keep on disk. When loading the pool, or after
1616 * a configuration change, we generate all other DTLs from first principles.
1617 */
1618 void
1619 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1620 {
1621 space_map_t *sm = &vd->vdev_dtl[t];
1622
1623 ASSERT(t < DTL_TYPES);
1624 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1625 ASSERT(spa_writeable(vd->vdev_spa));
1626
1627 mutex_enter(sm->sm_lock);
1628 if (!space_map_contains(sm, txg, size))
1629 space_map_add(sm, txg, size);
1630 mutex_exit(sm->sm_lock);
1631 }
1632
1633 boolean_t
1634 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1635 {
1636 space_map_t *sm = &vd->vdev_dtl[t];
1637 boolean_t dirty = B_FALSE;
1638
1639 ASSERT(t < DTL_TYPES);
1640 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1641
1642 mutex_enter(sm->sm_lock);
1643 if (sm->sm_space != 0)
1644 dirty = space_map_contains(sm, txg, size);
1645 mutex_exit(sm->sm_lock);
1646
1647 return (dirty);
1648 }
1649
1650 boolean_t
1651 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1652 {
1653 space_map_t *sm = &vd->vdev_dtl[t];
1654 boolean_t empty;
1655
1656 mutex_enter(sm->sm_lock);
1657 empty = (sm->sm_space == 0);
1658 mutex_exit(sm->sm_lock);
1659
1660 return (empty);
1661 }
1662
1663 /*
1664 * Reassess DTLs after a config change or scrub completion.
1665 */
1666 void
1667 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1668 {
1669 spa_t *spa = vd->vdev_spa;
1670 avl_tree_t reftree;
1671 int minref;
1672
1673 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1674
1675 for (int c = 0; c < vd->vdev_children; c++)
1676 vdev_dtl_reassess(vd->vdev_child[c], txg,
1677 scrub_txg, scrub_done);
1678
1679 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1680 return;
1681
1682 if (vd->vdev_ops->vdev_op_leaf) {
1683 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1684
1685 mutex_enter(&vd->vdev_dtl_lock);
1686 if (scrub_txg != 0 &&
1687 (spa->spa_scrub_started ||
1688 (scn && scn->scn_phys.scn_errors == 0))) {
1689 /*
1690 * We completed a scrub up to scrub_txg. If we
1691 * did it without rebooting, then the scrub dtl
1692 * will be valid, so excise the old region and
1693 * fold in the scrub dtl. Otherwise, leave the
1694 * dtl as-is if there was an error.
1695 *
1696 * There's little trick here: to excise the beginning
1697 * of the DTL_MISSING map, we put it into a reference
1698 * tree and then add a segment with refcnt -1 that
1699 * covers the range [0, scrub_txg). This means
1700 * that each txg in that range has refcnt -1 or 0.
1701 * We then add DTL_SCRUB with a refcnt of 2, so that
1702 * entries in the range [0, scrub_txg) will have a
1703 * positive refcnt -- either 1 or 2. We then convert
1704 * the reference tree into the new DTL_MISSING map.
1705 */
1706 space_map_ref_create(&reftree);
1707 space_map_ref_add_map(&reftree,
1708 &vd->vdev_dtl[DTL_MISSING], 1);
1709 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1710 space_map_ref_add_map(&reftree,
1711 &vd->vdev_dtl[DTL_SCRUB], 2);
1712 space_map_ref_generate_map(&reftree,
1713 &vd->vdev_dtl[DTL_MISSING], 1);
1714 space_map_ref_destroy(&reftree);
1715 }
1716 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1717 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1718 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1719 if (scrub_done)
1720 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1721 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1722 if (!vdev_readable(vd))
1723 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1724 else
1725 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1726 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1727 mutex_exit(&vd->vdev_dtl_lock);
1728
1729 if (txg != 0)
1730 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1731 return;
1732 }
1733
1734 mutex_enter(&vd->vdev_dtl_lock);
1735 for (int t = 0; t < DTL_TYPES; t++) {
1736 /* account for child's outage in parent's missing map */
1737 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1738 if (t == DTL_SCRUB)
1739 continue; /* leaf vdevs only */
1740 if (t == DTL_PARTIAL)
1741 minref = 1; /* i.e. non-zero */
1742 else if (vd->vdev_nparity != 0)
1743 minref = vd->vdev_nparity + 1; /* RAID-Z */
1744 else
1745 minref = vd->vdev_children; /* any kind of mirror */
1746 space_map_ref_create(&reftree);
1747 for (int c = 0; c < vd->vdev_children; c++) {
1748 vdev_t *cvd = vd->vdev_child[c];
1749 mutex_enter(&cvd->vdev_dtl_lock);
1750 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1751 mutex_exit(&cvd->vdev_dtl_lock);
1752 }
1753 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1754 space_map_ref_destroy(&reftree);
1755 }
1756 mutex_exit(&vd->vdev_dtl_lock);
1757 }
1758
1759 static int
1760 vdev_dtl_load(vdev_t *vd)
1761 {
1762 spa_t *spa = vd->vdev_spa;
1763 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1764 objset_t *mos = spa->spa_meta_objset;
1765 dmu_buf_t *db;
1766 int error;
1767
1768 ASSERT(vd->vdev_children == 0);
1769
1770 if (smo->smo_object == 0)
1771 return (0);
1772
1773 ASSERT(!vd->vdev_ishole);
1774
1775 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1776 return (error);
1777
1778 ASSERT3U(db->db_size, >=, sizeof (*smo));
1779 bcopy(db->db_data, smo, sizeof (*smo));
1780 dmu_buf_rele(db, FTAG);
1781
1782 mutex_enter(&vd->vdev_dtl_lock);
1783 error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1784 NULL, SM_ALLOC, smo, mos);
1785 mutex_exit(&vd->vdev_dtl_lock);
1786
1787 return (error);
1788 }
1789
1790 void
1791 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1792 {
1793 spa_t *spa = vd->vdev_spa;
1794 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1795 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1796 objset_t *mos = spa->spa_meta_objset;
1797 space_map_t smsync;
1798 kmutex_t smlock;
1799 dmu_buf_t *db;
1800 dmu_tx_t *tx;
1801
1802 ASSERT(!vd->vdev_ishole);
1803
1804 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1805
1806 if (vd->vdev_detached) {
1807 if (smo->smo_object != 0) {
1808 int err = dmu_object_free(mos, smo->smo_object, tx);
1809 ASSERT0(err);
1810 smo->smo_object = 0;
1811 }
1812 dmu_tx_commit(tx);
1813 return;
1814 }
1815
1816 if (smo->smo_object == 0) {
1817 ASSERT(smo->smo_objsize == 0);
1818 ASSERT(smo->smo_alloc == 0);
1819 smo->smo_object = dmu_object_alloc(mos,
1820 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1821 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1822 ASSERT(smo->smo_object != 0);
1823 vdev_config_dirty(vd->vdev_top);
1824 }
1825
1826 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1827
1828 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1829 &smlock);
1830
1831 mutex_enter(&smlock);
1832
1833 mutex_enter(&vd->vdev_dtl_lock);
1834 space_map_walk(sm, space_map_add, &smsync);
1835 mutex_exit(&vd->vdev_dtl_lock);
1836
1837 space_map_truncate(smo, mos, tx);
1838 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1839 space_map_vacate(&smsync, NULL, NULL);
1840
1841 space_map_destroy(&smsync);
1842
1843 mutex_exit(&smlock);
1844 mutex_destroy(&smlock);
1845
1846 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1847 dmu_buf_will_dirty(db, tx);
1848 ASSERT3U(db->db_size, >=, sizeof (*smo));
1849 bcopy(smo, db->db_data, sizeof (*smo));
1850 dmu_buf_rele(db, FTAG);
1851
1852 dmu_tx_commit(tx);
1853 }
1854
1855 /*
1856 * Determine whether the specified vdev can be offlined/detached/removed
1857 * without losing data.
1858 */
1859 boolean_t
1860 vdev_dtl_required(vdev_t *vd)
1861 {
1862 spa_t *spa = vd->vdev_spa;
1863 vdev_t *tvd = vd->vdev_top;
1864 uint8_t cant_read = vd->vdev_cant_read;
1865 boolean_t required;
1866
1867 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1868
1869 if (vd == spa->spa_root_vdev || vd == tvd)
1870 return (B_TRUE);
1871
1872 /*
1873 * Temporarily mark the device as unreadable, and then determine
1874 * whether this results in any DTL outages in the top-level vdev.
1875 * If not, we can safely offline/detach/remove the device.
1876 */
1877 vd->vdev_cant_read = B_TRUE;
1878 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1879 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1880 vd->vdev_cant_read = cant_read;
1881 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1882
1883 if (!required && zio_injection_enabled)
1884 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1885
1886 return (required);
1887 }
1888
1889 /*
1890 * Determine if resilver is needed, and if so the txg range.
1891 */
1892 boolean_t
1893 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1894 {
1895 boolean_t needed = B_FALSE;
1896 uint64_t thismin = UINT64_MAX;
1897 uint64_t thismax = 0;
1898
1899 if (vd->vdev_children == 0) {
1900 mutex_enter(&vd->vdev_dtl_lock);
1901 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1902 vdev_writeable(vd)) {
1903 space_seg_t *ss;
1904
1905 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1906 thismin = ss->ss_start - 1;
1907 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1908 thismax = ss->ss_end;
1909 needed = B_TRUE;
1910 }
1911 mutex_exit(&vd->vdev_dtl_lock);
1912 } else {
1913 for (int c = 0; c < vd->vdev_children; c++) {
1914 vdev_t *cvd = vd->vdev_child[c];
1915 uint64_t cmin, cmax;
1916
1917 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1918 thismin = MIN(thismin, cmin);
1919 thismax = MAX(thismax, cmax);
1920 needed = B_TRUE;
1921 }
1922 }
1923 }
1924
1925 if (needed && minp) {
1926 *minp = thismin;
1927 *maxp = thismax;
1928 }
1929 return (needed);
1930 }
1931
1932 void
1933 vdev_load(vdev_t *vd)
1934 {
1935 /*
1936 * Recursively load all children.
1937 */
1938 for (int c = 0; c < vd->vdev_children; c++)
1939 vdev_load(vd->vdev_child[c]);
1940
1941 /*
1942 * If this is a top-level vdev, initialize its metaslabs.
1943 */
1944 if (vd == vd->vdev_top && !vd->vdev_ishole &&
1945 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1946 vdev_metaslab_init(vd, 0) != 0))
1947 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1948 VDEV_AUX_CORRUPT_DATA);
1949
1950 /*
1951 * If this is a leaf vdev, load its DTL.
1952 */
1953 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1954 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1955 VDEV_AUX_CORRUPT_DATA);
1956 }
1957
1958 /*
1959 * The special vdev case is used for hot spares and l2cache devices. Its
1960 * sole purpose it to set the vdev state for the associated vdev. To do this,
1961 * we make sure that we can open the underlying device, then try to read the
1962 * label, and make sure that the label is sane and that it hasn't been
1963 * repurposed to another pool.
1964 */
1965 int
1966 vdev_validate_aux(vdev_t *vd)
1967 {
1968 nvlist_t *label;
1969 uint64_t guid, version;
1970 uint64_t state;
1971
1972 if (!vdev_readable(vd))
1973 return (0);
1974
1975 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
1976 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1977 VDEV_AUX_CORRUPT_DATA);
1978 return (-1);
1979 }
1980
1981 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1982 !SPA_VERSION_IS_SUPPORTED(version) ||
1983 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1984 guid != vd->vdev_guid ||
1985 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1986 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1987 VDEV_AUX_CORRUPT_DATA);
1988 nvlist_free(label);
1989 return (-1);
1990 }
1991
1992 /*
1993 * We don't actually check the pool state here. If it's in fact in
1994 * use by another pool, we update this fact on the fly when requested.
1995 */
1996 nvlist_free(label);
1997 return (0);
1998 }
1999
2000 void
2001 vdev_remove(vdev_t *vd, uint64_t txg)
2002 {
2003 spa_t *spa = vd->vdev_spa;
2004 objset_t *mos = spa->spa_meta_objset;
2005 dmu_tx_t *tx;
2006
2007 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2008
2009 if (vd->vdev_dtl_smo.smo_object) {
2010 ASSERT0(vd->vdev_dtl_smo.smo_alloc);
2011 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2012 vd->vdev_dtl_smo.smo_object = 0;
2013 }
2014
2015 if (vd->vdev_ms != NULL) {
2016 for (int m = 0; m < vd->vdev_ms_count; m++) {
2017 metaslab_t *msp = vd->vdev_ms[m];
2018
2019 if (msp == NULL || msp->ms_smo.smo_object == 0)
2020 continue;
2021
2022 ASSERT0(msp->ms_smo.smo_alloc);
2023 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2024 msp->ms_smo.smo_object = 0;
2025 }
2026 }
2027
2028 if (vd->vdev_ms_array) {
2029 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2030 vd->vdev_ms_array = 0;
2031 vd->vdev_ms_shift = 0;
2032 }
2033 dmu_tx_commit(tx);
2034 }
2035
2036 void
2037 vdev_sync_done(vdev_t *vd, uint64_t txg)
2038 {
2039 metaslab_t *msp;
2040 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2041
2042 ASSERT(!vd->vdev_ishole);
2043
2044 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2045 metaslab_sync_done(msp, txg);
2046
2047 if (reassess)
2048 metaslab_sync_reassess(vd->vdev_mg);
2049 }
2050
2051 void
2052 vdev_sync(vdev_t *vd, uint64_t txg)
2053 {
2054 spa_t *spa = vd->vdev_spa;
2055 vdev_t *lvd;
2056 metaslab_t *msp;
2057 dmu_tx_t *tx;
2058
2059 ASSERT(!vd->vdev_ishole);
2060
2061 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2062 ASSERT(vd == vd->vdev_top);
2063 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2064 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2065 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2066 ASSERT(vd->vdev_ms_array != 0);
2067 vdev_config_dirty(vd);
2068 dmu_tx_commit(tx);
2069 }
2070
2071 /*
2072 * Remove the metadata associated with this vdev once it's empty.
2073 */
2074 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2075 vdev_remove(vd, txg);
2076
2077 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2078 metaslab_sync(msp, txg);
2079 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2080 }
2081
2082 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2083 vdev_dtl_sync(lvd, txg);
2084
2085 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2086 }
2087
2088 uint64_t
2089 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2090 {
2091 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2092 }
2093
2094 /*
2095 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2096 * not be opened, and no I/O is attempted.
2097 */
2098 int
2099 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2100 {
2101 vdev_t *vd, *tvd;
2102
2103 spa_vdev_state_enter(spa, SCL_NONE);
2104
2105 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2106 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2107
2108 if (!vd->vdev_ops->vdev_op_leaf)
2109 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2110
2111 tvd = vd->vdev_top;
2112
2113 /*
2114 * We don't directly use the aux state here, but if we do a
2115 * vdev_reopen(), we need this value to be present to remember why we
2116 * were faulted.
2117 */
2118 vd->vdev_label_aux = aux;
2119
2120 /*
2121 * Faulted state takes precedence over degraded.
2122 */
2123 vd->vdev_delayed_close = B_FALSE;
2124 vd->vdev_faulted = 1ULL;
2125 vd->vdev_degraded = 0ULL;
2126 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2127
2128 /*
2129 * If this device has the only valid copy of the data, then
2130 * back off and simply mark the vdev as degraded instead.
2131 */
2132 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2133 vd->vdev_degraded = 1ULL;
2134 vd->vdev_faulted = 0ULL;
2135
2136 /*
2137 * If we reopen the device and it's not dead, only then do we
2138 * mark it degraded.
2139 */
2140 vdev_reopen(tvd);
2141
2142 if (vdev_readable(vd))
2143 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2144 }
2145
2146 return (spa_vdev_state_exit(spa, vd, 0));
2147 }
2148
2149 /*
2150 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2151 * user that something is wrong. The vdev continues to operate as normal as far
2152 * as I/O is concerned.
2153 */
2154 int
2155 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2156 {
2157 vdev_t *vd;
2158
2159 spa_vdev_state_enter(spa, SCL_NONE);
2160
2161 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2162 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2163
2164 if (!vd->vdev_ops->vdev_op_leaf)
2165 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2166
2167 /*
2168 * If the vdev is already faulted, then don't do anything.
2169 */
2170 if (vd->vdev_faulted || vd->vdev_degraded)
2171 return (spa_vdev_state_exit(spa, NULL, 0));
2172
2173 vd->vdev_degraded = 1ULL;
2174 if (!vdev_is_dead(vd))
2175 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2176 aux);
2177
2178 return (spa_vdev_state_exit(spa, vd, 0));
2179 }
2180
2181 /*
2182 * Online the given vdev. If 'unspare' is set, it implies two things. First,
2183 * any attached spare device should be detached when the device finishes
2184 * resilvering. Second, the online should be treated like a 'test' online case,
2185 * so no FMA events are generated if the device fails to open.
2186 */
2187 int
2188 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2189 {
2190 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2191
2192 spa_vdev_state_enter(spa, SCL_NONE);
2193
2194 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2195 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2196
2197 if (!vd->vdev_ops->vdev_op_leaf)
2198 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2199
2200 tvd = vd->vdev_top;
2201 vd->vdev_offline = B_FALSE;
2202 vd->vdev_tmpoffline = B_FALSE;
2203 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2204 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2205
2206 /* XXX - L2ARC 1.0 does not support expansion */
2207 if (!vd->vdev_aux) {
2208 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2209 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2210 }
2211
2212 vdev_reopen(tvd);
2213 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2214
2215 if (!vd->vdev_aux) {
2216 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2217 pvd->vdev_expanding = B_FALSE;
2218 }
2219
2220 if (newstate)
2221 *newstate = vd->vdev_state;
2222 if ((flags & ZFS_ONLINE_UNSPARE) &&
2223 !vdev_is_dead(vd) && vd->vdev_parent &&
2224 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2225 vd->vdev_parent->vdev_child[0] == vd)
2226 vd->vdev_unspare = B_TRUE;
2227
2228 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2229
2230 /* XXX - L2ARC 1.0 does not support expansion */
2231 if (vd->vdev_aux)
2232 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2233 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2234 }
2235 return (spa_vdev_state_exit(spa, vd, 0));
2236 }
2237
2238 static int
2239 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2240 {
2241 vdev_t *vd, *tvd;
2242 int error = 0;
2243 uint64_t generation;
2244 metaslab_group_t *mg;
2245
2246 top:
2247 spa_vdev_state_enter(spa, SCL_ALLOC);
2248
2249 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2250 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2251
2252 if (!vd->vdev_ops->vdev_op_leaf)
2253 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2254
2255 tvd = vd->vdev_top;
2256 mg = tvd->vdev_mg;
2257 generation = spa->spa_config_generation + 1;
2258
2259 /*
2260 * If the device isn't already offline, try to offline it.
2261 */
2262 if (!vd->vdev_offline) {
2263 /*
2264 * If this device has the only valid copy of some data,
2265 * don't allow it to be offlined. Log devices are always
2266 * expendable.
2267 */
2268 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2269 vdev_dtl_required(vd))
2270 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2271
2272 /*
2273 * If the top-level is a slog and it has had allocations
2274 * then proceed. We check that the vdev's metaslab group
2275 * is not NULL since it's possible that we may have just
2276 * added this vdev but not yet initialized its metaslabs.
2277 */
2278 if (tvd->vdev_islog && mg != NULL) {
2279 /*
2280 * Prevent any future allocations.
2281 */
2282 metaslab_group_passivate(mg);
2283 (void) spa_vdev_state_exit(spa, vd, 0);
2284
2285 error = spa_offline_log(spa);
2286
2287 spa_vdev_state_enter(spa, SCL_ALLOC);
2288
2289 /*
2290 * Check to see if the config has changed.
2291 */
2292 if (error || generation != spa->spa_config_generation) {
2293 metaslab_group_activate(mg);
2294 if (error)
2295 return (spa_vdev_state_exit(spa,
2296 vd, error));
2297 (void) spa_vdev_state_exit(spa, vd, 0);
2298 goto top;
2299 }
2300 ASSERT0(tvd->vdev_stat.vs_alloc);
2301 }
2302
2303 /*
2304 * Offline this device and reopen its top-level vdev.
2305 * If the top-level vdev is a log device then just offline
2306 * it. Otherwise, if this action results in the top-level
2307 * vdev becoming unusable, undo it and fail the request.
2308 */
2309 vd->vdev_offline = B_TRUE;
2310 vdev_reopen(tvd);
2311
2312 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2313 vdev_is_dead(tvd)) {
2314 vd->vdev_offline = B_FALSE;
2315 vdev_reopen(tvd);
2316 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2317 }
2318
2319 /*
2320 * Add the device back into the metaslab rotor so that
2321 * once we online the device it's open for business.
2322 */
2323 if (tvd->vdev_islog && mg != NULL)
2324 metaslab_group_activate(mg);
2325 }
2326
2327 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2328
2329 return (spa_vdev_state_exit(spa, vd, 0));
2330 }
2331
2332 int
2333 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2334 {
2335 int error;
2336
2337 mutex_enter(&spa->spa_vdev_top_lock);
2338 error = vdev_offline_locked(spa, guid, flags);
2339 mutex_exit(&spa->spa_vdev_top_lock);
2340
2341 return (error);
2342 }
2343
2344 /*
2345 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2346 * vdev_offline(), we assume the spa config is locked. We also clear all
2347 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2348 */
2349 void
2350 vdev_clear(spa_t *spa, vdev_t *vd)
2351 {
2352 vdev_t *rvd = spa->spa_root_vdev;
2353
2354 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2355
2356 if (vd == NULL)
2357 vd = rvd;
2358
2359 vd->vdev_stat.vs_read_errors = 0;
2360 vd->vdev_stat.vs_write_errors = 0;
2361 vd->vdev_stat.vs_checksum_errors = 0;
2362
2363 for (int c = 0; c < vd->vdev_children; c++)
2364 vdev_clear(spa, vd->vdev_child[c]);
2365
2366 /*
2367 * If we're in the FAULTED state or have experienced failed I/O, then
2368 * clear the persistent state and attempt to reopen the device. We
2369 * also mark the vdev config dirty, so that the new faulted state is
2370 * written out to disk.
2371 */
2372 if (vd->vdev_faulted || vd->vdev_degraded ||
2373 !vdev_readable(vd) || !vdev_writeable(vd)) {
2374
2375 /*
2376 * When reopening in reponse to a clear event, it may be due to
2377 * a fmadm repair request. In this case, if the device is
2378 * still broken, we want to still post the ereport again.
2379 */
2380 vd->vdev_forcefault = B_TRUE;
2381
2382 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2383 vd->vdev_cant_read = B_FALSE;
2384 vd->vdev_cant_write = B_FALSE;
2385
2386 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2387
2388 vd->vdev_forcefault = B_FALSE;
2389
2390 if (vd != rvd && vdev_writeable(vd->vdev_top))
2391 vdev_state_dirty(vd->vdev_top);
2392
2393 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2394 spa_async_request(spa, SPA_ASYNC_RESILVER);
2395
2396 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2397 }
2398
2399 /*
2400 * When clearing a FMA-diagnosed fault, we always want to
2401 * unspare the device, as we assume that the original spare was
2402 * done in response to the FMA fault.
2403 */
2404 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2405 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2406 vd->vdev_parent->vdev_child[0] == vd)
2407 vd->vdev_unspare = B_TRUE;
2408 }
2409
2410 boolean_t
2411 vdev_is_dead(vdev_t *vd)
2412 {
2413 /*
2414 * Holes and missing devices are always considered "dead".
2415 * This simplifies the code since we don't have to check for
2416 * these types of devices in the various code paths.
2417 * Instead we rely on the fact that we skip over dead devices
2418 * before issuing I/O to them.
2419 */
2420 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2421 vd->vdev_ops == &vdev_missing_ops);
2422 }
2423
2424 boolean_t
2425 vdev_readable(vdev_t *vd)
2426 {
2427 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2428 }
2429
2430 boolean_t
2431 vdev_writeable(vdev_t *vd)
2432 {
2433 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2434 }
2435
2436 boolean_t
2437 vdev_allocatable(vdev_t *vd)
2438 {
2439 uint64_t state = vd->vdev_state;
2440
2441 /*
2442 * We currently allow allocations from vdevs which may be in the
2443 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2444 * fails to reopen then we'll catch it later when we're holding
2445 * the proper locks. Note that we have to get the vdev state
2446 * in a local variable because although it changes atomically,
2447 * we're asking two separate questions about it.
2448 */
2449 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2450 !vd->vdev_cant_write && !vd->vdev_ishole);
2451 }
2452
2453 boolean_t
2454 vdev_accessible(vdev_t *vd, zio_t *zio)
2455 {
2456 ASSERT(zio->io_vd == vd);
2457
2458 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2459 return (B_FALSE);
2460
2461 if (zio->io_type == ZIO_TYPE_READ)
2462 return (!vd->vdev_cant_read);
2463
2464 if (zio->io_type == ZIO_TYPE_WRITE)
2465 return (!vd->vdev_cant_write);
2466
2467 return (B_TRUE);
2468 }
2469
2470 /*
2471 * Get statistics for the given vdev.
2472 */
2473 void
2474 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2475 {
2476 vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2477
2478 mutex_enter(&vd->vdev_stat_lock);
2479 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2480 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2481 vs->vs_state = vd->vdev_state;
2482 vs->vs_rsize = vdev_get_min_asize(vd);
2483 if (vd->vdev_ops->vdev_op_leaf)
2484 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2485 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2486 mutex_exit(&vd->vdev_stat_lock);
2487
2488 /*
2489 * If we're getting stats on the root vdev, aggregate the I/O counts
2490 * over all top-level vdevs (i.e. the direct children of the root).
2491 */
2492 if (vd == rvd) {
2493 for (int c = 0; c < rvd->vdev_children; c++) {
2494 vdev_t *cvd = rvd->vdev_child[c];
2495 vdev_stat_t *cvs = &cvd->vdev_stat;
2496
2497 mutex_enter(&vd->vdev_stat_lock);
2498 for (int t = 0; t < ZIO_TYPES; t++) {
2499 vs->vs_ops[t] += cvs->vs_ops[t];
2500 vs->vs_bytes[t] += cvs->vs_bytes[t];
2501 }
2502 cvs->vs_scan_removing = cvd->vdev_removing;
2503 mutex_exit(&vd->vdev_stat_lock);
2504 }
2505 }
2506 }
2507
2508 void
2509 vdev_clear_stats(vdev_t *vd)
2510 {
2511 mutex_enter(&vd->vdev_stat_lock);
2512 vd->vdev_stat.vs_space = 0;
2513 vd->vdev_stat.vs_dspace = 0;
2514 vd->vdev_stat.vs_alloc = 0;
2515 mutex_exit(&vd->vdev_stat_lock);
2516 }
2517
2518 void
2519 vdev_scan_stat_init(vdev_t *vd)
2520 {
2521 vdev_stat_t *vs = &vd->vdev_stat;
2522
2523 for (int c = 0; c < vd->vdev_children; c++)
2524 vdev_scan_stat_init(vd->vdev_child[c]);
2525
2526 mutex_enter(&vd->vdev_stat_lock);
2527 vs->vs_scan_processed = 0;
2528 mutex_exit(&vd->vdev_stat_lock);
2529 }
2530
2531 void
2532 vdev_stat_update(zio_t *zio, uint64_t psize)
2533 {
2534 spa_t *spa = zio->io_spa;
2535 vdev_t *rvd = spa->spa_root_vdev;
2536 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2537 vdev_t *pvd;
2538 uint64_t txg = zio->io_txg;
2539 vdev_stat_t *vs = &vd->vdev_stat;
2540 zio_type_t type = zio->io_type;
2541 int flags = zio->io_flags;
2542
2543 /*
2544 * If this i/o is a gang leader, it didn't do any actual work.
2545 */
2546 if (zio->io_gang_tree)
2547 return;
2548
2549 if (zio->io_error == 0) {
2550 /*
2551 * If this is a root i/o, don't count it -- we've already
2552 * counted the top-level vdevs, and vdev_get_stats() will
2553 * aggregate them when asked. This reduces contention on
2554 * the root vdev_stat_lock and implicitly handles blocks
2555 * that compress away to holes, for which there is no i/o.
2556 * (Holes never create vdev children, so all the counters
2557 * remain zero, which is what we want.)
2558 *
2559 * Note: this only applies to successful i/o (io_error == 0)
2560 * because unlike i/o counts, errors are not additive.
2561 * When reading a ditto block, for example, failure of
2562 * one top-level vdev does not imply a root-level error.
2563 */
2564 if (vd == rvd)
2565 return;
2566
2567 ASSERT(vd == zio->io_vd);
2568
2569 if (flags & ZIO_FLAG_IO_BYPASS)
2570 return;
2571
2572 mutex_enter(&vd->vdev_stat_lock);
2573
2574 if (flags & ZIO_FLAG_IO_REPAIR) {
2575 if (flags & ZIO_FLAG_SCAN_THREAD) {
2576 dsl_scan_phys_t *scn_phys =
2577 &spa->spa_dsl_pool->dp_scan->scn_phys;
2578 uint64_t *processed = &scn_phys->scn_processed;
2579
2580 /* XXX cleanup? */
2581 if (vd->vdev_ops->vdev_op_leaf)
2582 atomic_add_64(processed, psize);
2583 vs->vs_scan_processed += psize;
2584 }
2585
2586 if (flags & ZIO_FLAG_SELF_HEAL)
2587 vs->vs_self_healed += psize;
2588 }
2589
2590 vs->vs_ops[type]++;
2591 vs->vs_bytes[type] += psize;
2592
2593 mutex_exit(&vd->vdev_stat_lock);
2594 return;
2595 }
2596
2597 if (flags & ZIO_FLAG_SPECULATIVE)
2598 return;
2599
2600 /*
2601 * If this is an I/O error that is going to be retried, then ignore the
2602 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2603 * hard errors, when in reality they can happen for any number of
2604 * innocuous reasons (bus resets, MPxIO link failure, etc).
2605 */
2606 if (zio->io_error == EIO &&
2607 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2608 return;
2609
2610 /*
2611 * Intent logs writes won't propagate their error to the root
2612 * I/O so don't mark these types of failures as pool-level
2613 * errors.
2614 */
2615 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2616 return;
2617
2618 mutex_enter(&vd->vdev_stat_lock);
2619 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2620 if (zio->io_error == ECKSUM)
2621 vs->vs_checksum_errors++;
2622 else
2623 vs->vs_read_errors++;
2624 }
2625 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2626 vs->vs_write_errors++;
2627 mutex_exit(&vd->vdev_stat_lock);
2628
2629 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2630 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2631 (flags & ZIO_FLAG_SCAN_THREAD) ||
2632 spa->spa_claiming)) {
2633 /*
2634 * This is either a normal write (not a repair), or it's
2635 * a repair induced by the scrub thread, or it's a repair
2636 * made by zil_claim() during spa_load() in the first txg.
2637 * In the normal case, we commit the DTL change in the same
2638 * txg as the block was born. In the scrub-induced repair
2639 * case, we know that scrubs run in first-pass syncing context,
2640 * so we commit the DTL change in spa_syncing_txg(spa).
2641 * In the zil_claim() case, we commit in spa_first_txg(spa).
2642 *
2643 * We currently do not make DTL entries for failed spontaneous
2644 * self-healing writes triggered by normal (non-scrubbing)
2645 * reads, because we have no transactional context in which to
2646 * do so -- and it's not clear that it'd be desirable anyway.
2647 */
2648 if (vd->vdev_ops->vdev_op_leaf) {
2649 uint64_t commit_txg = txg;
2650 if (flags & ZIO_FLAG_SCAN_THREAD) {
2651 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2652 ASSERT(spa_sync_pass(spa) == 1);
2653 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2654 commit_txg = spa_syncing_txg(spa);
2655 } else if (spa->spa_claiming) {
2656 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2657 commit_txg = spa_first_txg(spa);
2658 }
2659 ASSERT(commit_txg >= spa_syncing_txg(spa));
2660 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2661 return;
2662 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2663 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2664 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2665 }
2666 if (vd != rvd)
2667 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2668 }
2669 }
2670
2671 /*
2672 * Update the in-core space usage stats for this vdev, its metaslab class,
2673 * and the root vdev.
2674 */
2675 void
2676 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2677 int64_t space_delta)
2678 {
2679 int64_t dspace_delta = space_delta;
2680 spa_t *spa = vd->vdev_spa;
2681 vdev_t *rvd = spa->spa_root_vdev;
2682 metaslab_group_t *mg = vd->vdev_mg;
2683 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2684
2685 ASSERT(vd == vd->vdev_top);
2686
2687 /*
2688 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2689 * factor. We must calculate this here and not at the root vdev
2690 * because the root vdev's psize-to-asize is simply the max of its
2691 * childrens', thus not accurate enough for us.
2692 */
2693 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2694 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2695 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2696 vd->vdev_deflate_ratio;
2697
2698 mutex_enter(&vd->vdev_stat_lock);
2699 vd->vdev_stat.vs_alloc += alloc_delta;
2700 vd->vdev_stat.vs_space += space_delta;
2701 vd->vdev_stat.vs_dspace += dspace_delta;
2702 mutex_exit(&vd->vdev_stat_lock);
2703
2704 if (mc == spa_normal_class(spa)) {
2705 mutex_enter(&rvd->vdev_stat_lock);
2706 rvd->vdev_stat.vs_alloc += alloc_delta;
2707 rvd->vdev_stat.vs_space += space_delta;
2708 rvd->vdev_stat.vs_dspace += dspace_delta;
2709 mutex_exit(&rvd->vdev_stat_lock);
2710 }
2711
2712 if (mc != NULL) {
2713 ASSERT(rvd == vd->vdev_parent);
2714 ASSERT(vd->vdev_ms_count != 0);
2715
2716 metaslab_class_space_update(mc,
2717 alloc_delta, defer_delta, space_delta, dspace_delta);
2718 }
2719 }
2720
2721 /*
2722 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2723 * so that it will be written out next time the vdev configuration is synced.
2724 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2725 */
2726 void
2727 vdev_config_dirty(vdev_t *vd)
2728 {
2729 spa_t *spa = vd->vdev_spa;
2730 vdev_t *rvd = spa->spa_root_vdev;
2731 int c;
2732
2733 ASSERT(spa_writeable(spa));
2734
2735 /*
2736 * If this is an aux vdev (as with l2cache and spare devices), then we
2737 * update the vdev config manually and set the sync flag.
2738 */
2739 if (vd->vdev_aux != NULL) {
2740 spa_aux_vdev_t *sav = vd->vdev_aux;
2741 nvlist_t **aux;
2742 uint_t naux;
2743
2744 for (c = 0; c < sav->sav_count; c++) {
2745 if (sav->sav_vdevs[c] == vd)
2746 break;
2747 }
2748
2749 if (c == sav->sav_count) {
2750 /*
2751 * We're being removed. There's nothing more to do.
2752 */
2753 ASSERT(sav->sav_sync == B_TRUE);
2754 return;
2755 }
2756
2757 sav->sav_sync = B_TRUE;
2758
2759 if (nvlist_lookup_nvlist_array(sav->sav_config,
2760 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2761 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2762 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2763 }
2764
2765 ASSERT(c < naux);
2766
2767 /*
2768 * Setting the nvlist in the middle if the array is a little
2769 * sketchy, but it will work.
2770 */
2771 nvlist_free(aux[c]);
2772 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2773
2774 return;
2775 }
2776
2777 /*
2778 * The dirty list is protected by the SCL_CONFIG lock. The caller
2779 * must either hold SCL_CONFIG as writer, or must be the sync thread
2780 * (which holds SCL_CONFIG as reader). There's only one sync thread,
2781 * so this is sufficient to ensure mutual exclusion.
2782 */
2783 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2784 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2785 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2786
2787 if (vd == rvd) {
2788 for (c = 0; c < rvd->vdev_children; c++)
2789 vdev_config_dirty(rvd->vdev_child[c]);
2790 } else {
2791 ASSERT(vd == vd->vdev_top);
2792
2793 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2794 !vd->vdev_ishole)
2795 list_insert_head(&spa->spa_config_dirty_list, vd);
2796 }
2797 }
2798
2799 void
2800 vdev_config_clean(vdev_t *vd)
2801 {
2802 spa_t *spa = vd->vdev_spa;
2803
2804 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2805 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2806 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2807
2808 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2809 list_remove(&spa->spa_config_dirty_list, vd);
2810 }
2811
2812 /*
2813 * Mark a top-level vdev's state as dirty, so that the next pass of
2814 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2815 * the state changes from larger config changes because they require
2816 * much less locking, and are often needed for administrative actions.
2817 */
2818 void
2819 vdev_state_dirty(vdev_t *vd)
2820 {
2821 spa_t *spa = vd->vdev_spa;
2822
2823 ASSERT(spa_writeable(spa));
2824 ASSERT(vd == vd->vdev_top);
2825
2826 /*
2827 * The state list is protected by the SCL_STATE lock. The caller
2828 * must either hold SCL_STATE as writer, or must be the sync thread
2829 * (which holds SCL_STATE as reader). There's only one sync thread,
2830 * so this is sufficient to ensure mutual exclusion.
2831 */
2832 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2833 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2834 spa_config_held(spa, SCL_STATE, RW_READER)));
2835
2836 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2837 list_insert_head(&spa->spa_state_dirty_list, vd);
2838 }
2839
2840 void
2841 vdev_state_clean(vdev_t *vd)
2842 {
2843 spa_t *spa = vd->vdev_spa;
2844
2845 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2846 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2847 spa_config_held(spa, SCL_STATE, RW_READER)));
2848
2849 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2850 list_remove(&spa->spa_state_dirty_list, vd);
2851 }
2852
2853 /*
2854 * Propagate vdev state up from children to parent.
2855 */
2856 void
2857 vdev_propagate_state(vdev_t *vd)
2858 {
2859 spa_t *spa = vd->vdev_spa;
2860 vdev_t *rvd = spa->spa_root_vdev;
2861 int degraded = 0, faulted = 0;
2862 int corrupted = 0;
2863 vdev_t *child;
2864
2865 if (vd->vdev_children > 0) {
2866 for (int c = 0; c < vd->vdev_children; c++) {
2867 child = vd->vdev_child[c];
2868
2869 /*
2870 * Don't factor holes into the decision.
2871 */
2872 if (child->vdev_ishole)
2873 continue;
2874
2875 if (!vdev_readable(child) ||
2876 (!vdev_writeable(child) && spa_writeable(spa))) {
2877 /*
2878 * Root special: if there is a top-level log
2879 * device, treat the root vdev as if it were
2880 * degraded.
2881 */
2882 if (child->vdev_islog && vd == rvd)
2883 degraded++;
2884 else
2885 faulted++;
2886 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2887 degraded++;
2888 }
2889
2890 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2891 corrupted++;
2892 }
2893
2894 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2895
2896 /*
2897 * Root special: if there is a top-level vdev that cannot be
2898 * opened due to corrupted metadata, then propagate the root
2899 * vdev's aux state as 'corrupt' rather than 'insufficient
2900 * replicas'.
2901 */
2902 if (corrupted && vd == rvd &&
2903 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2904 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2905 VDEV_AUX_CORRUPT_DATA);
2906 }
2907
2908 if (vd->vdev_parent)
2909 vdev_propagate_state(vd->vdev_parent);
2910 }
2911
2912 /*
2913 * Set a vdev's state. If this is during an open, we don't update the parent
2914 * state, because we're in the process of opening children depth-first.
2915 * Otherwise, we propagate the change to the parent.
2916 *
2917 * If this routine places a device in a faulted state, an appropriate ereport is
2918 * generated.
2919 */
2920 void
2921 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2922 {
2923 uint64_t save_state;
2924 spa_t *spa = vd->vdev_spa;
2925
2926 if (state == vd->vdev_state) {
2927 vd->vdev_stat.vs_aux = aux;
2928 return;
2929 }
2930
2931 save_state = vd->vdev_state;
2932
2933 vd->vdev_state = state;
2934 vd->vdev_stat.vs_aux = aux;
2935
2936 /*
2937 * If we are setting the vdev state to anything but an open state, then
2938 * always close the underlying device unless the device has requested
2939 * a delayed close (i.e. we're about to remove or fault the device).
2940 * Otherwise, we keep accessible but invalid devices open forever.
2941 * We don't call vdev_close() itself, because that implies some extra
2942 * checks (offline, etc) that we don't want here. This is limited to
2943 * leaf devices, because otherwise closing the device will affect other
2944 * children.
2945 */
2946 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2947 vd->vdev_ops->vdev_op_leaf)
2948 vd->vdev_ops->vdev_op_close(vd);
2949
2950 /*
2951 * If we have brought this vdev back into service, we need
2952 * to notify fmd so that it can gracefully repair any outstanding
2953 * cases due to a missing device. We do this in all cases, even those
2954 * that probably don't correlate to a repaired fault. This is sure to
2955 * catch all cases, and we let the zfs-retire agent sort it out. If
2956 * this is a transient state it's OK, as the retire agent will
2957 * double-check the state of the vdev before repairing it.
2958 */
2959 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2960 vd->vdev_prevstate != state)
2961 zfs_post_state_change(spa, vd);
2962
2963 if (vd->vdev_removed &&
2964 state == VDEV_STATE_CANT_OPEN &&
2965 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2966 /*
2967 * If the previous state is set to VDEV_STATE_REMOVED, then this
2968 * device was previously marked removed and someone attempted to
2969 * reopen it. If this failed due to a nonexistent device, then
2970 * keep the device in the REMOVED state. We also let this be if
2971 * it is one of our special test online cases, which is only
2972 * attempting to online the device and shouldn't generate an FMA
2973 * fault.
2974 */
2975 vd->vdev_state = VDEV_STATE_REMOVED;
2976 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2977 } else if (state == VDEV_STATE_REMOVED) {
2978 vd->vdev_removed = B_TRUE;
2979 } else if (state == VDEV_STATE_CANT_OPEN) {
2980 /*
2981 * If we fail to open a vdev during an import or recovery, we
2982 * mark it as "not available", which signifies that it was
2983 * never there to begin with. Failure to open such a device
2984 * is not considered an error.
2985 */
2986 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2987 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2988 vd->vdev_ops->vdev_op_leaf)
2989 vd->vdev_not_present = 1;
2990
2991 /*
2992 * Post the appropriate ereport. If the 'prevstate' field is
2993 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2994 * that this is part of a vdev_reopen(). In this case, we don't
2995 * want to post the ereport if the device was already in the
2996 * CANT_OPEN state beforehand.
2997 *
2998 * If the 'checkremove' flag is set, then this is an attempt to
2999 * online the device in response to an insertion event. If we
3000 * hit this case, then we have detected an insertion event for a
3001 * faulted or offline device that wasn't in the removed state.
3002 * In this scenario, we don't post an ereport because we are
3003 * about to replace the device, or attempt an online with
3004 * vdev_forcefault, which will generate the fault for us.
3005 */
3006 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3007 !vd->vdev_not_present && !vd->vdev_checkremove &&
3008 vd != spa->spa_root_vdev) {
3009 const char *class;
3010
3011 switch (aux) {
3012 case VDEV_AUX_OPEN_FAILED:
3013 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3014 break;
3015 case VDEV_AUX_CORRUPT_DATA:
3016 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3017 break;
3018 case VDEV_AUX_NO_REPLICAS:
3019 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3020 break;
3021 case VDEV_AUX_BAD_GUID_SUM:
3022 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3023 break;
3024 case VDEV_AUX_TOO_SMALL:
3025 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3026 break;
3027 case VDEV_AUX_BAD_LABEL:
3028 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3029 break;
3030 default:
3031 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3032 }
3033
3034 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3035 }
3036
3037 /* Erase any notion of persistent removed state */
3038 vd->vdev_removed = B_FALSE;
3039 } else {
3040 vd->vdev_removed = B_FALSE;
3041 }
3042
3043 if (!isopen && vd->vdev_parent)
3044 vdev_propagate_state(vd->vdev_parent);
3045 }
3046
3047 /*
3048 * Check the vdev configuration to ensure that it's capable of supporting
3049 * a root pool. Currently, we do not support RAID-Z or partial configuration.
3050 * In addition, only a single top-level vdev is allowed and none of the leaves
3051 * can be wholedisks.
3052 */
3053 boolean_t
3054 vdev_is_bootable(vdev_t *vd)
3055 {
3056 if (!vd->vdev_ops->vdev_op_leaf) {
3057 char *vdev_type = vd->vdev_ops->vdev_op_type;
3058
3059 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3060 vd->vdev_children > 1) {
3061 return (B_FALSE);
3062 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3063 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3064 return (B_FALSE);
3065 }
3066 } else if (vd->vdev_wholedisk == 1) {
3067 return (B_FALSE);
3068 }
3069
3070 for (int c = 0; c < vd->vdev_children; c++) {
3071 if (!vdev_is_bootable(vd->vdev_child[c]))
3072 return (B_FALSE);
3073 }
3074 return (B_TRUE);
3075 }
3076
3077 /*
3078 * Load the state from the original vdev tree (ovd) which
3079 * we've retrieved from the MOS config object. If the original
3080 * vdev was offline or faulted then we transfer that state to the
3081 * device in the current vdev tree (nvd).
3082 */
3083 void
3084 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3085 {
3086 spa_t *spa = nvd->vdev_spa;
3087
3088 ASSERT(nvd->vdev_top->vdev_islog);
3089 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3090 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3091
3092 for (int c = 0; c < nvd->vdev_children; c++)
3093 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3094
3095 if (nvd->vdev_ops->vdev_op_leaf) {
3096 /*
3097 * Restore the persistent vdev state
3098 */
3099 nvd->vdev_offline = ovd->vdev_offline;
3100 nvd->vdev_faulted = ovd->vdev_faulted;
3101 nvd->vdev_degraded = ovd->vdev_degraded;
3102 nvd->vdev_removed = ovd->vdev_removed;
3103 }
3104 }
3105
3106 /*
3107 * Determine if a log device has valid content. If the vdev was
3108 * removed or faulted in the MOS config then we know that
3109 * the content on the log device has already been written to the pool.
3110 */
3111 boolean_t
3112 vdev_log_state_valid(vdev_t *vd)
3113 {
3114 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3115 !vd->vdev_removed)
3116 return (B_TRUE);
3117
3118 for (int c = 0; c < vd->vdev_children; c++)
3119 if (vdev_log_state_valid(vd->vdev_child[c]))
3120 return (B_TRUE);
3121
3122 return (B_FALSE);
3123 }
3124
3125 /*
3126 * Expand a vdev if possible.
3127 */
3128 void
3129 vdev_expand(vdev_t *vd, uint64_t txg)
3130 {
3131 ASSERT(vd->vdev_top == vd);
3132 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3133
3134 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3135 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3136 vdev_config_dirty(vd);
3137 }
3138 }
3139
3140 /*
3141 * Split a vdev.
3142 */
3143 void
3144 vdev_split(vdev_t *vd)
3145 {
3146 vdev_t *cvd, *pvd = vd->vdev_parent;
3147
3148 vdev_remove_child(pvd, vd);
3149 vdev_compact_children(pvd);
3150
3151 cvd = pvd->vdev_child[0];
3152 if (pvd->vdev_children == 1) {
3153 vdev_remove_parent(cvd);
3154 cvd->vdev_splitting = B_TRUE;
3155 }
3156 vdev_propagate_state(cvd);
3157 }
3158
3159 void
3160 vdev_deadman(vdev_t *vd)
3161 {
3162 for (int c = 0; c < vd->vdev_children; c++) {
3163 vdev_t *cvd = vd->vdev_child[c];
3164
3165 vdev_deadman(cvd);
3166 }
3167
3168 if (vd->vdev_ops->vdev_op_leaf) {
3169 vdev_queue_t *vq = &vd->vdev_queue;
3170
3171 mutex_enter(&vq->vq_lock);
3172 if (avl_numnodes(&vq->vq_pending_tree) > 0) {
3173 spa_t *spa = vd->vdev_spa;
3174 zio_t *fio;
3175 uint64_t delta;
3176
3177 /*
3178 * Look at the head of all the pending queues,
3179 * if any I/O has been outstanding for longer than
3180 * the spa_deadman_synctime we panic the system.
3181 */
3182 fio = avl_first(&vq->vq_pending_tree);
3183 delta = gethrtime() - fio->io_timestamp;
3184 if (delta > spa_deadman_synctime(spa)) {
3185 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3186 "delta %lluns, last io %lluns",
3187 fio->io_timestamp, delta,
3188 vq->vq_io_complete_ts);
3189 fm_panic("I/O to pool '%s' appears to be "
3190 "hung.", spa_name(spa));
3191 }
3192 }
3193 mutex_exit(&vq->vq_lock);
3194 }
3195 }