1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
  25  * Copyright (c) 2012 by Delphix. All rights reserved.
  26  */
  27 
  28 #include <sys/spa.h>
  29 #include <sys/spa_impl.h>
  30 #include <sys/nvpair.h>
  31 #include <sys/uio.h>
  32 #include <sys/fs/zfs.h>
  33 #include <sys/vdev_impl.h>
  34 #include <sys/zfs_ioctl.h>
  35 #include <sys/utsname.h>
  36 #include <sys/systeminfo.h>
  37 #include <sys/sunddi.h>
  38 #include <sys/zfeature.h>
  39 #ifdef _KERNEL
  40 #include <sys/kobj.h>
  41 #include <sys/zone.h>
  42 #endif
  43 
  44 /*
  45  * Pool configuration repository.
  46  *
  47  * Pool configuration is stored as a packed nvlist on the filesystem.  By
  48  * default, all pools are stored in /etc/zfs/zpool.cache and loaded on boot
  49  * (when the ZFS module is loaded).  Pools can also have the 'cachefile'
  50  * property set that allows them to be stored in an alternate location until
  51  * the control of external software.
  52  *
  53  * For each cache file, we have a single nvlist which holds all the
  54  * configuration information.  When the module loads, we read this information
  55  * from /etc/zfs/zpool.cache and populate the SPA namespace.  This namespace is
  56  * maintained independently in spa.c.  Whenever the namespace is modified, or
  57  * the configuration of a pool is changed, we call spa_config_sync(), which
  58  * walks through all the active pools and writes the configuration to disk.
  59  */
  60 
  61 static uint64_t spa_config_generation = 1;
  62 
  63 /*
  64  * This can be overridden in userland to preserve an alternate namespace for
  65  * userland pools when doing testing.
  66  */
  67 const char *spa_config_path = ZPOOL_CACHE;
  68 
  69 /*
  70  * Called when the module is first loaded, this routine loads the configuration
  71  * file into the SPA namespace.  It does not actually open or load the pools; it
  72  * only populates the namespace.
  73  */
  74 void
  75 spa_config_load(void)
  76 {
  77         void *buf = NULL;
  78         nvlist_t *nvlist, *child;
  79         nvpair_t *nvpair;
  80         char *pathname;
  81         struct _buf *file;
  82         uint64_t fsize;
  83 
  84         /*
  85          * Open the configuration file.
  86          */
  87         pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
  88 
  89         (void) snprintf(pathname, MAXPATHLEN, "%s%s",
  90             (rootdir != NULL) ? "./" : "", spa_config_path);
  91 
  92         file = kobj_open_file(pathname);
  93 
  94         kmem_free(pathname, MAXPATHLEN);
  95 
  96         if (file == (struct _buf *)-1)
  97                 return;
  98 
  99         if (kobj_get_filesize(file, &fsize) != 0)
 100                 goto out;
 101 
 102         buf = kmem_alloc(fsize, KM_SLEEP);
 103 
 104         /*
 105          * Read the nvlist from the file.
 106          */
 107         if (kobj_read_file(file, buf, fsize, 0) < 0)
 108                 goto out;
 109 
 110         /*
 111          * Unpack the nvlist.
 112          */
 113         if (nvlist_unpack(buf, fsize, &nvlist, KM_SLEEP) != 0)
 114                 goto out;
 115 
 116         /*
 117          * Iterate over all elements in the nvlist, creating a new spa_t for
 118          * each one with the specified configuration.
 119          */
 120         mutex_enter(&spa_namespace_lock);
 121         nvpair = NULL;
 122         while ((nvpair = nvlist_next_nvpair(nvlist, nvpair)) != NULL) {
 123                 if (nvpair_type(nvpair) != DATA_TYPE_NVLIST)
 124                         continue;
 125 
 126                 VERIFY(nvpair_value_nvlist(nvpair, &child) == 0);
 127 
 128                 if (spa_lookup(nvpair_name(nvpair)) != NULL)
 129                         continue;
 130                 (void) spa_add(nvpair_name(nvpair), child, NULL);
 131         }
 132         mutex_exit(&spa_namespace_lock);
 133 
 134         nvlist_free(nvlist);
 135 
 136 out:
 137         if (buf != NULL)
 138                 kmem_free(buf, fsize);
 139 
 140         kobj_close_file(file);
 141 }
 142 
 143 static void
 144 spa_config_write(spa_config_dirent_t *dp, nvlist_t *nvl)
 145 {
 146         size_t buflen;
 147         char *buf;
 148         vnode_t *vp;
 149         int oflags = FWRITE | FTRUNC | FCREAT | FOFFMAX;
 150         char *temp;
 151 
 152         /*
 153          * If the nvlist is empty (NULL), then remove the old cachefile.
 154          */
 155         if (nvl == NULL) {
 156                 (void) vn_remove(dp->scd_path, UIO_SYSSPACE, RMFILE);
 157                 return;
 158         }
 159 
 160         /*
 161          * Pack the configuration into a buffer.
 162          */
 163         VERIFY(nvlist_size(nvl, &buflen, NV_ENCODE_XDR) == 0);
 164 
 165         buf = kmem_alloc(buflen, KM_SLEEP);
 166         temp = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
 167 
 168         VERIFY(nvlist_pack(nvl, &buf, &buflen, NV_ENCODE_XDR,
 169             KM_SLEEP) == 0);
 170 
 171         /*
 172          * Write the configuration to disk.  We need to do the traditional
 173          * 'write to temporary file, sync, move over original' to make sure we
 174          * always have a consistent view of the data.
 175          */
 176         (void) snprintf(temp, MAXPATHLEN, "%s.tmp", dp->scd_path);
 177 
 178         if (vn_open(temp, UIO_SYSSPACE, oflags, 0644, &vp, CRCREAT, 0) == 0) {
 179                 if (vn_rdwr(UIO_WRITE, vp, buf, buflen, 0, UIO_SYSSPACE,
 180                     0, RLIM64_INFINITY, kcred, NULL) == 0 &&
 181                     VOP_FSYNC(vp, FSYNC, kcred, NULL) == 0) {
 182                         (void) vn_rename(temp, dp->scd_path, UIO_SYSSPACE);
 183                 }
 184                 (void) VOP_CLOSE(vp, oflags, 1, 0, kcred, NULL);
 185                 VN_RELE(vp);
 186         }
 187 
 188         (void) vn_remove(temp, UIO_SYSSPACE, RMFILE);
 189 
 190         kmem_free(buf, buflen);
 191         kmem_free(temp, MAXPATHLEN);
 192 }
 193 
 194 /*
 195  * Synchronize pool configuration to disk.  This must be called with the
 196  * namespace lock held.
 197  */
 198 void
 199 spa_config_sync(spa_t *target, boolean_t removing, boolean_t postsysevent)
 200 {
 201         spa_config_dirent_t *dp, *tdp;
 202         nvlist_t *nvl;
 203 
 204         ASSERT(MUTEX_HELD(&spa_namespace_lock));
 205 
 206         if (rootdir == NULL || !(spa_mode_global & FWRITE))
 207                 return;
 208 
 209         /*
 210          * Iterate over all cachefiles for the pool, past or present.  When the
 211          * cachefile is changed, the new one is pushed onto this list, allowing
 212          * us to update previous cachefiles that no longer contain this pool.
 213          */
 214         for (dp = list_head(&target->spa_config_list); dp != NULL;
 215             dp = list_next(&target->spa_config_list, dp)) {
 216                 spa_t *spa = NULL;
 217                 if (dp->scd_path == NULL)
 218                         continue;
 219 
 220                 /*
 221                  * Iterate over all pools, adding any matching pools to 'nvl'.
 222                  */
 223                 nvl = NULL;
 224                 while ((spa = spa_next(spa)) != NULL) {
 225                         /*
 226                          * Skip over our own pool if we're about to remove
 227                          * ourselves from the spa namespace or any pool that
 228                          * is readonly. Since we cannot guarantee that a
 229                          * readonly pool would successfully import upon reboot,
 230                          * we don't allow them to be written to the cache file.
 231                          */
 232                         if ((spa == target && removing) ||
 233                             !spa_writeable(spa))
 234                                 continue;
 235 
 236                         mutex_enter(&spa->spa_props_lock);
 237                         tdp = list_head(&spa->spa_config_list);
 238                         if (spa->spa_config == NULL ||
 239                             tdp->scd_path == NULL ||
 240                             strcmp(tdp->scd_path, dp->scd_path) != 0) {
 241                                 mutex_exit(&spa->spa_props_lock);
 242                                 continue;
 243                         }
 244 
 245                         if (nvl == NULL)
 246                                 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME,
 247                                     KM_SLEEP) == 0);
 248 
 249                         VERIFY(nvlist_add_nvlist(nvl, spa->spa_name,
 250                             spa->spa_config) == 0);
 251                         mutex_exit(&spa->spa_props_lock);
 252                 }
 253 
 254                 spa_config_write(dp, nvl);
 255                 nvlist_free(nvl);
 256         }
 257 
 258         /*
 259          * Remove any config entries older than the current one.
 260          */
 261         dp = list_head(&target->spa_config_list);
 262         while ((tdp = list_next(&target->spa_config_list, dp)) != NULL) {
 263                 list_remove(&target->spa_config_list, tdp);
 264                 if (tdp->scd_path != NULL)
 265                         spa_strfree(tdp->scd_path);
 266                 kmem_free(tdp, sizeof (spa_config_dirent_t));
 267         }
 268 
 269         spa_config_generation++;
 270 
 271         if (postsysevent)
 272                 spa_event_notify(target, NULL, ESC_ZFS_CONFIG_SYNC);
 273 }
 274 
 275 /*
 276  * Sigh.  Inside a local zone, we don't have access to /etc/zfs/zpool.cache,
 277  * and we don't want to allow the local zone to see all the pools anyway.
 278  * So we have to invent the ZFS_IOC_CONFIG ioctl to grab the configuration
 279  * information for all pool visible within the zone.
 280  */
 281 nvlist_t *
 282 spa_all_configs(uint64_t *generation)
 283 {
 284         nvlist_t *pools;
 285         spa_t *spa = NULL;
 286 
 287         if (*generation == spa_config_generation)
 288                 return (NULL);
 289 
 290         VERIFY(nvlist_alloc(&pools, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 291 
 292         mutex_enter(&spa_namespace_lock);
 293         while ((spa = spa_next(spa)) != NULL) {
 294                 if (INGLOBALZONE(curproc) ||
 295                     zone_dataset_visible(spa_name(spa), NULL)) {
 296                         mutex_enter(&spa->spa_props_lock);
 297                         VERIFY(nvlist_add_nvlist(pools, spa_name(spa),
 298                             spa->spa_config) == 0);
 299                         mutex_exit(&spa->spa_props_lock);
 300                 }
 301         }
 302         *generation = spa_config_generation;
 303         mutex_exit(&spa_namespace_lock);
 304 
 305         return (pools);
 306 }
 307 
 308 void
 309 spa_config_set(spa_t *spa, nvlist_t *config)
 310 {
 311         mutex_enter(&spa->spa_props_lock);
 312         if (spa->spa_config != NULL)
 313                 nvlist_free(spa->spa_config);
 314         spa->spa_config = config;
 315         mutex_exit(&spa->spa_props_lock);
 316 }
 317 
 318 /*
 319  * Generate the pool's configuration based on the current in-core state.
 320  * We infer whether to generate a complete config or just one top-level config
 321  * based on whether vd is the root vdev.
 322  */
 323 nvlist_t *
 324 spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats)
 325 {
 326         nvlist_t *config, *nvroot;
 327         vdev_t *rvd = spa->spa_root_vdev;
 328         unsigned long hostid = 0;
 329         boolean_t locked = B_FALSE;
 330         uint64_t split_guid;
 331 
 332         if (vd == NULL) {
 333                 vd = rvd;
 334                 locked = B_TRUE;
 335                 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
 336         }
 337 
 338         ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
 339             (SCL_CONFIG | SCL_STATE));
 340 
 341         /*
 342          * If txg is -1, report the current value of spa->spa_config_txg.
 343          */
 344         if (txg == -1ULL)
 345                 txg = spa->spa_config_txg;
 346 
 347         VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 348 
 349         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
 350             spa_version(spa)) == 0);
 351         VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
 352             spa_name(spa)) == 0);
 353         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
 354             spa_state(spa)) == 0);
 355         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
 356             txg) == 0);
 357         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
 358             spa_guid(spa)) == 0);
 359         VERIFY(spa->spa_comment == NULL || nvlist_add_string(config,
 360             ZPOOL_CONFIG_COMMENT, spa->spa_comment) == 0);
 361 
 362 
 363 #ifdef  _KERNEL
 364         hostid = zone_get_hostid(NULL);
 365 #else   /* _KERNEL */
 366         /*
 367          * We're emulating the system's hostid in userland, so we can't use
 368          * zone_get_hostid().
 369          */
 370         (void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
 371 #endif  /* _KERNEL */
 372         if (hostid != 0) {
 373                 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
 374                     hostid) == 0);
 375         }
 376         VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
 377             utsname.nodename) == 0);
 378 
 379         if (vd != rvd) {
 380                 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TOP_GUID,
 381                     vd->vdev_top->vdev_guid) == 0);
 382                 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_GUID,
 383                     vd->vdev_guid) == 0);
 384                 if (vd->vdev_isspare)
 385                         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_SPARE,
 386                             1ULL) == 0);
 387                 if (vd->vdev_islog)
 388                         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_LOG,
 389                             1ULL) == 0);
 390                 vd = vd->vdev_top;           /* label contains top config */
 391         } else {
 392                 /*
 393                  * Only add the (potentially large) split information
 394                  * in the mos config, and not in the vdev labels
 395                  */
 396                 if (spa->spa_config_splitting != NULL)
 397                         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_SPLIT,
 398                             spa->spa_config_splitting) == 0);
 399         }
 400 
 401         /*
 402          * Add the top-level config.  We even add this on pools which
 403          * don't support holes in the namespace.
 404          */
 405         vdev_top_config_generate(spa, config);
 406 
 407         /*
 408          * If we're splitting, record the original pool's guid.
 409          */
 410         if (spa->spa_config_splitting != NULL &&
 411             nvlist_lookup_uint64(spa->spa_config_splitting,
 412             ZPOOL_CONFIG_SPLIT_GUID, &split_guid) == 0) {
 413                 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_SPLIT_GUID,
 414                     split_guid) == 0);
 415         }
 416 
 417         nvroot = vdev_config_generate(spa, vd, getstats, 0);
 418         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
 419         nvlist_free(nvroot);
 420 
 421         /*
 422          * Store what's necessary for reading the MOS in the label.
 423          */
 424         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
 425             spa->spa_label_features) == 0);
 426 
 427         if (getstats && spa_load_state(spa) == SPA_LOAD_NONE) {
 428                 ddt_histogram_t *ddh;
 429                 ddt_stat_t *dds;
 430                 ddt_object_t *ddo;
 431 
 432                 ddh = kmem_zalloc(sizeof (ddt_histogram_t), KM_SLEEP);
 433                 ddt_get_dedup_histogram(spa, ddh);
 434                 VERIFY(nvlist_add_uint64_array(config,
 435                     ZPOOL_CONFIG_DDT_HISTOGRAM,
 436                     (uint64_t *)ddh, sizeof (*ddh) / sizeof (uint64_t)) == 0);
 437                 kmem_free(ddh, sizeof (ddt_histogram_t));
 438 
 439                 ddo = kmem_zalloc(sizeof (ddt_object_t), KM_SLEEP);
 440                 ddt_get_dedup_object_stats(spa, ddo);
 441                 VERIFY(nvlist_add_uint64_array(config,
 442                     ZPOOL_CONFIG_DDT_OBJ_STATS,
 443                     (uint64_t *)ddo, sizeof (*ddo) / sizeof (uint64_t)) == 0);
 444                 kmem_free(ddo, sizeof (ddt_object_t));
 445 
 446                 dds = kmem_zalloc(sizeof (ddt_stat_t), KM_SLEEP);
 447                 ddt_get_dedup_stats(spa, dds);
 448                 VERIFY(nvlist_add_uint64_array(config,
 449                     ZPOOL_CONFIG_DDT_STATS,
 450                     (uint64_t *)dds, sizeof (*dds) / sizeof (uint64_t)) == 0);
 451                 kmem_free(dds, sizeof (ddt_stat_t));
 452         }
 453 
 454         if (locked)
 455                 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
 456 
 457         return (config);
 458 }
 459 
 460 /*
 461  * Update all disk labels, generate a fresh config based on the current
 462  * in-core state, and sync the global config cache (do not sync the config
 463  * cache if this is a booting rootpool).
 464  */
 465 void
 466 spa_config_update(spa_t *spa, int what)
 467 {
 468         vdev_t *rvd = spa->spa_root_vdev;
 469         uint64_t txg;
 470         int c;
 471 
 472         ASSERT(MUTEX_HELD(&spa_namespace_lock));
 473 
 474         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 475         txg = spa_last_synced_txg(spa) + 1;
 476         if (what == SPA_CONFIG_UPDATE_POOL) {
 477                 vdev_config_dirty(rvd);
 478         } else {
 479                 /*
 480                  * If we have top-level vdevs that were added but have
 481                  * not yet been prepared for allocation, do that now.
 482                  * (It's safe now because the config cache is up to date,
 483                  * so it will be able to translate the new DVAs.)
 484                  * See comments in spa_vdev_add() for full details.
 485                  */
 486                 for (c = 0; c < rvd->vdev_children; c++) {
 487                         vdev_t *tvd = rvd->vdev_child[c];
 488                         if (tvd->vdev_ms_array == 0)
 489                                 vdev_metaslab_set_size(tvd);
 490                         vdev_expand(tvd, txg);
 491                 }
 492         }
 493         spa_config_exit(spa, SCL_ALL, FTAG);
 494 
 495         /*
 496          * Wait for the mosconfig to be regenerated and synced.
 497          */
 498         txg_wait_synced(spa->spa_dsl_pool, txg);
 499 
 500         /*
 501          * Update the global config cache to reflect the new mosconfig.
 502          */
 503         if (!spa->spa_is_root)
 504                 spa_config_sync(spa, B_FALSE, what != SPA_CONFIG_UPDATE_POOL);
 505 
 506         if (what == SPA_CONFIG_UPDATE_POOL)
 507                 spa_config_update(spa, SPA_CONFIG_UPDATE_VDEVS);
 508 }