new usr/src/uts/comon/fs/zfs/arc.c 1 new usr/src/uts/comon/fs/zfs/arc.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 57 * tlght

135192 Wed Apr 24 12:44:23 2013 58 *
new usr/src/uts/comon/fs/zfs/arc.c 59 * 3. The Megiddo and Mbdha nodel assunes a fixed page size. Al
3742 zfs comments need cleaner, nore consistent style 60 * elenents of the cache are therefore exactly the sane size. So
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con> 60 * elenents of the cache are therefor exactly the sane size. So
Submi tted by: Al an Soners <al ans@pectral ogi c. con> 61 * when adjusting the cache size following a cache nmiss, its sinply
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con» 62 * a matter of choosing a single page to evict. In our nodel, we
Revi ewed by: George W son <george. wi | son@lel phi x. com> 63 * have variabl e sized cache bl ocks (rangeing from512 bytes to
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con> 64 * 128K bytes). We therefore choose a set of blocks to evict to nake
EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEEEREEEERERERERESRESRESRESESESESE] 64 * 128K bytes) \M therefor Choose a Set Of bl OCkS to eVIC'[to nake

1/* 65 * space for a cache miss that approximates as closely as possible

2 * CDDL HEADER START 66 * the space used by the new bl ock.

3 * 67 *

4 * The contents of this file are subject to the terms of the 68 * See also: "ARC A Self-Tuning, Low Overhead Repl acenent Cache"

5 * Common Devel opnent and Distribution License (the "License"). 69 * by N. Megiddo & D. Mbdha, FAST 2003

6 * You may not use this file except in conpliance with the License. 70 */

7 *

8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE 72 1*

9 * or http://ww.opensol aris.org/os/licensing. 73 * The | ocki ng nodel :

10 * See the License for the specific | anguage governi ng perm ssions 74 *

11 * and limtations under the License. 75 * A newreference to a cache buffer can be obtained in two

12 = 76 * ways: 1) via a hash table | ookup using the DVA as a key,

13 * When distributing Covered Code, include this CDDL HEADER in each 77 * or 2) via one of the ARC lists. The arc_read() interface

14 * file and include the License file at usr/src/OPENSOLARI S. LI CENSE. 78 * uses nethod 1, while the internal arc algorithns for

15 * |f applicable, add the follow ng below this CODL HEADER, with the 79 * adjusting the cache use nethod 2. W therefore provide two

16 * fields enclosed by brackets “[]" replaced with your own identifying 79 * adjusting the cache use nethod 2. W therefor provide two

17 * information: Portions Copyright [yyyy]l [nane of copyright owner] 80 * types of locks: 1) the hash table |ock array, and 2) the

18 * 81 * arc list |ocks.

19 * CDDL HEADER END 82 *

20 */ 83 * Buffers do not have their own nutexes, rather they rely on the

21 /* 84 * hash table nutexes for the bulk of their protection (i.e. nost

22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved. 85 * fields in the arc_buf_hdr_t are protected by these nutexes).

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved. 86 *

24 * Copyright (c) 2013 by Del phix. Al rights reserved. 87 * buf_hash_find() returns the appropriate mutex (held) when it

25 */ 88 * |ocates the requested buffer In the hash table. It returns

89 * NULL for the nmutex if the buffer was not in the table.

27 | * 90 *

28 * DVA-based Adjustabl e Replacenent Cache 91 * buf_hash_renpve() expects the appropriate hash mutex to be

29 * 92 * already held before it is invoked.

30 * Wiile nuch of the theory of operation used here is 93 *

31 * based on the self-tuning, |ow overhead replacenent cache 94 * Each arc state also has a nutex which is used to protect the

32 * presented by Megiddo and Mddha at FAST 2003, there are sone 95 * buffer |list associated with the state. Wen attenpting to

33 * significant differences: 96 * obtain a hash table I ock while holding an arc list |ock you

34 * 97 * nust use: nutex_tryenter() to avoid deadl ock. Al so note that

35 * 1. The Megiddo and Mbdha npdel assunes any page is evictable. 98 * the active state nutex nust be held before the ghost state nutex.

36 * Pages in its cache cannot be "locked" into nenory. This nekes 99 *

37 * the eviction algorithmsinple: evict the |ast page in the |list. 100 * Arc buffers may have an associ ated eviction callback function.

38 * This also nake the performance characteristics easy to reason 101 * This function will be invoked prior to renoving the buffer (e.g.

39 * about. Qur cache is not so sinple. At any given nonent, some 102 * in arc_do_user_evicts()). Note however that the data associated

40 * subset of the blocks in the cache are un-evictable because we 103 * with the buffer may be evicted prior to the callback. The call back

41 * have handed out a reference to them Blocks are only evictable 104 * nust be made with *no | ocks held* (to prevent deadl ock). Additionally,

42 * when there are no external references active. This makes 105 * the users of callbacks nmust ensure that their private data is

43 * eviction far nore problenatic: we choose to evict the evictable 106 * protected from sinmultaneous callbacks from arc_buf_evict()

44 * blocks that are the "lowest" in the list. 107 * and arc_do_user_evicts().

45 * 108 *

46 * There are tines when it is not possible to evict the requested 109 * Note that the majority of the performance stats are nanipul ated

47 * space. In these circunstances we are unable to adjust the cache 110 * with atomi c operations.

48 * size. To prevent the cache growi ng unbounded at these tines we 111 *

49 * inplenent a "cache throttle" that slows the flow of new data 112 * The L2ARC uses the |2arc_buflist_ntx global mutex for the foll ow ng:

50 * into the cache until we can nake space avail able. 113 *

51 * 114 * - L2ARC buflist creation

52 * 2. The Megiddo and Mddha nodel assunes a fixed cache size. 115 * - L2ARC buflist eviction

53 * Pages are evicted when the cache is full and there is a cache 116 * - L2ARC write conpletion, which wal ks L2ARC buflists

54 * miss. CQur nodel has a variable sized cache. It grows with 117 * - ARC header destruction, as it renmpves from L2ARC buflists

55 * high use, but also tries to react to nmenory pressure fromthe 118 * - ARC header release, as it renpves from L2ARC buflists

* *

operating system decreasing its size when system nmenory is 119

new usr/src/uts/comon/fs/zfs/arc.c

121 #incl ude <sys/spa. h>

122 #incl ude <sys/zio. h>

123 #include <sys/zfs_context.h>
124 #include <sys/arc. h>

125 #incl ude <sys/refcount.h>

126 #include <sys/vdev. h>

127 #incl ude <sys/vdev_inpl.h>
128 #ifdef _KERNEL

129 #include <sys/vmsystm h>

130 #i ncl ude <vni anon. h>

131 #i ncl ude <sys/fs/swapnode. h>
132 #include <sys/dnlc. h>

133 #endi f

134 #include <sys/callb.h>

135 #include <sys/kstat.h>

136 #include <zfs_fletcher.h>

138 #i fndef _KERNEL

139 /* set with ZFS DEBUG-watch, to enabl e watchpoints on frozen buffers */
140 bool ean_t arc_watch = B_FALSE
141 int arc_procfd

142 #endi f

144 static kmutex_t arc_reclaimthr_Iock;

145 static kcondvar _t arc_reclaimthr_cv; /* used to signal reclaimthr
146 static uint8_t arc_thread_exit;

148 extern int zfs_wite_limt_shift;
149 extern uint64_t zfs_wite_limt_max;
150 extern kmutex_t zfs_wite_limt_|ock;

152 #define ARC_REDUCE_DNLC PERCENT 3
153 uint _t arc_reduce_dnl c_percent = ARC_REDUCE_DNLC PERCENT;

155 typedef enumarc_reclaimstrategy {

156 ARC_RECLAI M_AGGR, [*

157 ARC_RECLAI M_CONS /*

158 } arc_reclaimstrategy_t;
__unchanged_portion_omtted_

Aggressive reclaimstrategy */
Conservative reclaimstrategy */

375 #define ARCSTAT(stat) (arc_stats. stat. val ue. ui 64)
377 #define ARCSTAT_INCR(stat, val) \

378 atom c_add_64(&arc_stats. stat.val ue. ui 64, (val))
378 atonmi c_add_64(&arc_stats. stat.val ue.ui 64, (val));
ARCSTAT I NCR(stat, 1)
ARCSTAT_I NCR(stat, -1)

380 #define ARCSTAT BUMP(stat)
381 #define ARCSTAT_BUMPDOWN(st at)

383 #define ARCSTAT_MAX(stat, val) { \
384 uint64_t m \
385 while ((val) > (m= arc_stats.stat.val ue.ui 64) && \
386 (m!= atom c_cas_64(&arc_stats.stat.value.ui64, m (val)))) \
387 conti nue; \
388 }

__unchanged_portion_onitted_
575 static buf_hash_table_t buf_hash_table;

577 #define BUF_HASH | NDEX(spa, dva, birth) \

578 (buf _hash(spa, dva, birth) & buf_hash_table. ht _nask)

579 #define BUF_HASH LOCK_NTRY(i dx) (buf_hash_table.ht_|ocks[idx & (BUF_LOCKS-1)])
580 #define BUF_HASH_LOCK(i dx) (& BUF_HASH_LOCK_NTRY(i dx) . ht _I ock))

581 #define HDR_LOCK(hdr) \

582 (BUF_HASH_LOCK(BUF_HASH | NDEX(hdr - >b_spa, &hdr->b_dva, hdr->b_birth)))

*/

new usr/src/uts/comon/fs/zfs/arc.c
584 uint64_t zfs_crc64_tabl e[256];
586 /*
587 * Level 2 ARC
588 */
590 #define L2ARC WRI TE_SI ZE (8 * 1024 * 1024
591 #define L2ARC_HEADROOM 2
592 #define L2ARC_FEED SECS 1
593 #defi ne L2ARC_FEED M N_MB 200
595 #define | 2arc_wites_sent ARCSTAT(ar cst at _|
596 #define |2arc_wites_done ARCSTAT(ar cst at _
598 /* L2ARC Performance Tunables */
598 /*
599 * L2ARC Perfornmance Tunabl es
600 */
599 uint64_t |2arc_wite_max = L2ARC WRI TE_SI ZE;
600 uint64_t |2arc_wite_boost = L2ARC WRI TE_SI ZE;
601 uint64_t |2arc_headroom = L2ARC_HEAI
602 uint64_t |2arc_feed_secs = L2ARC_FEED SECS;
603 uint64_t |2arc_feed_m n_ns = L2ARC_FEED M N_M5;
604 bool ean_t |2arc_noprefetch = B_TRUE;
605 bool ean_t |2arc_feed_again = B_TRUE;
606 bool ean_t |2arc_norw = B_TRUE;
608 /*
609 * L2ARC Internals
610 */
611 typedef struct |2arc_dev {
612 vdev_t *| 2ad_vdev;
613 spa_t *| 2ad_spa;
614 ui nt 64_t | 2ad_hand;
615 ui nt 64_t | 2ad_write;
616 ui nt64_t | 2ad_boost ;
617 ui nt64_t | 2ad_start;
618 ui nt 64_t | 2ad_end;
619 ui nt 64_t | 2ad_evi ct;
620 bool ean_t | 2ad_first;
621 bool ean_t | 2ad_writing;
622 list_t *| 2ad_bufli st;
623 list_node_t | 2ad_node;
624 } | 2arc_dev_t;
__unchanged_portion_omtted_
3517 int
3518 arc_tenpreserve_space(uint64_t reserve, uint64_t
3519 {
3520 int error;
3521 ui nt 64_t anon_si ze;
3523 #ifdef ZFS_DEBUG
3524 I
3525 * Once in a while, fail for no reason.
3526 */
3527 if (spa_get_random(10000) == 0) {
3528 dprintf("forcing random fail ure\
3529 return (SET_ERROR(ERESTART));
3530
3531 #endi f
3532 if (reserve > arc_c/4 && !arc_no_grow)
3533 arc_c = MN(arc_c_max, reserve *
3534 if (reserve > arc_c)
3535 return (SET_ERROR(ENOVEM)) ;

) /* initial wite max */
/* numof wites */
/* caching interval secs */

/* min caching interval ns */

|2_wites_sent)
I 2_writes_done)

/* default max wite size */

/* extra write during warnup */
/* nunber of dev wites */

/* interval seconds */

/* mininterval mlliseconds */
/* don’t cache prefetch bufs */
/* turbo warnmup */

/* no reads during wites */

/* vdev */

/* spa */

/* next wite |location */

/* desired wite size, bytes */
/* warmup wite boost, bytes */
/* first addr on device */

/* last addr on device */

/* last addr eviction reached */
/* first sweep through */

/* currently witing */

/* buffer list */

/* device list node */

txg)

Everyt hi ng shoul d cope.

n");

4);

new usr/src/uts/comon/fs/zfs/arc.c

3537
3538
3539
3540
3541
3542

3544
3545
3546
3548
3547
3548
3549
3550

3552
3553
3554
3555
3556
3557
3558

3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572 }

/*

* Don’t count |oaned bufs as in flight dirty data to prevent |ong
* network delays from bl ocking transactions that are ready to be
* assigned to a txg.

*/

anon_si ze = MAX((int64_t)(arc_anon->arcs_size - arc_| oaned_bytes), 0);

/*

Wites will, alnpst always, require additional menory allocations
in order to conpress/encrypt/etc the data. We therefore need to
in order to conpress/encrypt/etc the data. W therefor need to

*
*
*
* make sure that there is sufficient available menory for this.
*/
if

(error = arc_nenory_throttle(reserve, anon_size, txg))
return (error);

Throttle wites when the anount of dirty data in the cache
gets too large. W try to keep the cache less than half full
of dirty blocks so that our sync tines don't grow too |arge.
Note: if two requests come in concurrently, we nmight let them
both succeed, when one of themshould fail. Not a huge deal.
/

* Ok ok ok ok ok F

if (reserve + arc_tenpreserve + anon_size > arc_c / 2 &&

anon_size > arc_c / 4)

dprintf("failing, arc_tenpreserve=%I|uK anon_neta=% 1| uK "
"anon_dat a=% | uK tenpreserve=% | uK arc_c=% | uK\n",
ar c_t enpr eserve>>10,
ar c_anon- >ar cs_| si ze[ARC_BUFC_METADATA] >>10,
ar c_anon- >ar cs_| si ze[ARC_BUFC_DATA] >>10,
reserve>>10, arc_c>>10);

return (SET_ERROR(ERESTART));

atom c_add_64(&arc_t enpreserve, reserve);
return (0);

__unchanged_portion_onitted_

new usr/src/uts/ comon/fs/zfs/bptree.c

R R R R

5987 Wed Apr 24 12:44:23 2013
new usr/src/uts/comon/fs/zfs/bptree.c
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»
Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>
EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEEEREEEERERERERESRESRESRESESESESE]
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific | anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets “[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 =
19 * CDDL HEADER END
20 */
22 | *

23 * Copyright (c) 2012 by Delphix. Al rights reserved.
*/

26 #include <sys/arc. h>

27 #include <sys/bptree. h>

28 #include <sys/dnu. h>

29 #include <sys/dnu_obj set. h>
30 #include <sys/dnu_tx. h>

31 #include <sys/dnu_traverse. h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_dir.h>

34 #include <sys/dsl _pool . h>

35 #incl ude <sys/dnode. h>

36 #include <sys/refcount. h>

37 #include <sys/spa. h>

39 /*

40 * A bptree is a queue of root block pointers fromdestroyed datasets. \WWen a
41 * dataset is destroyed its root block pointer is put on the end of the pool’s
42 * bptree queue so the dataset’s blocks can be freed asynchronously by

43 * dsl_scan_sync. This allows the delete operation to finish without traversing
44 * all the dataset’s bl ocks.

45 *

46 * Note that while bt_begin and bt_end are only ever incremented in this code,
46 * Note that while bt_begin and bt_end are only ever incremented in this code
47 * they are effectively reset to O every tinme the entire bptree is freed because
48 * the bptree's object is destroyed and re-created.

49 */

51 struct bptree_args {

52 bptree_phys_t *ba_phys; /* data in bonus buffer, dirtied if freeing */
53 bool ean_t ba_free; /* true if freeing during traversal */

55 bptree_itor_t *ba_func; /* function to call for each bl ockpointer */

new usr/src/uts/ comon/fs/zfs/bptree.c

56 voi d *ba_arg;
57 dmu_tx_t *ba_tx;
58 } bptree_args_t;

/* caller supplied tx,

__unchanged_portion_omtted_

/* caller supplied argument to ba_func */

NULL if not freeing */

new usr/ src/uts/ comon/ fs/zfs/dnode. c 1 new usr/ src/uts/ comon/ fs/zfs/dnode. c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 1851 ret urn (ETTOT),
56489 Wed Apr 24 12:44:24 2013 1852 if (hole)
new usr/src/uts/comon/ fs/zfs/dnode. c 1853 return (0);
3742 zfs comments need cleaner, nore consistent style 1854 /*
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con> 1855 * This can only happen when we are searching up
Submi tted by: Al an Soners <al ans@pectral ogi c. con> 1856 * the block tree for data. W don’t really need to
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con» 1857 * adjust the offset, as we will just end up | ooking
Revi ewed by: George W son <george.w | son@lel phi x. con» 1858 * at the pointer to this block in its parent, and its
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con> 1859 * going to be unallocated, so we will skip over it.
EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEEEREEEERERERERESRESRESRESESESESE] 1860 */
____unchanged_portion_onitted_ 1861 return (SET_ERROR(ESRCH));
1862 }
1805 /* 1863 error = dbuf _read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT);
1806 * Scans a block at the indicated "level" |ooking for a hole or data, 1864 if (error) {
1807 * depending on 'flags’. 1865 dbuf _rel e(db, FTAQ;
1808 * 1866 return (error);
1809 * If level > 0, then we are scanning an indirect block looking at its 1867 }
1810 * pointers. |If level == 0, then we are |ooking at a bl ock of dnodes. 1868 data = db->db. db_dat a;
1811 * 1869 }
1812 * |If we don’t find what we are looking for in the block, we return ESRCH.
1813 * Otherwise, return with *offset pointing to the beginning (if searching 1871 if (db && txg &&
1814 * forwards) or end (if searching backwards) of the range covered by the 1872 (db->db_bl kptr == NULL || db->db_bl kptr->blk_birth <= txg)) {
1815 * bl ock pointer we matched on (or dnode). 1873 /*
1806 * This function scans a block at the indicated "l evel" |ooking for 1874 * This can only happen when we are searching up the tree
1807 * a hole or data (depending on 'flags’). If level >0, then we are 1875 * and these conditions nean that we need to keep clinbing.
1808 * scanning an indirect block looking at its pointers. If level == 0, 1876 */
1809 * then we are |looking at a block of dnodes. |If we don’'t find what we 1877 error = SET_ERROR(ESRCH);
1810 * are looking for in the block, we return ESRCH Qherwi se, return 1878 } elseif (lvl == 0)
1811 * with *offset pointing to the beginning (if searching forwards) or 1879 dnode_phys_t *dnp = data;
1812 * end (if searching backwards) of the range covered by the bl ock 1880 span = DNODE_SHI FT;
1813 * pointer we matched on (or dnode). 1881 ASSERT(dn->dn_t ype == DMJ_OT_DNOCDE) ;
1816 *
1817 * The basic search algorithmused bel ow by dnode_next_offset() is to 1883 for (i = (*offset >> span) & (blkfill - 1);
1818 * use this function to search up the block tree (widen the search) until 1884 i >= 0 &% i < blkfill; i +=inc)
1819 * we find sonmething (i.e., we don't return ESRCH) and then search back 1885 if ((dnp[i].dn_type == DMJ_OT_NONE) == hol e)
1820 * down the tree (narrow the search) until we reach our original search 1886 br eak;
1821 * level. 1887 *of fset += (1ULL << span) * inc;
1822 */ 1888 }
1823 static int 1889 if (i <0 || i ==blkfill)
1824 dnode_next _of fset _| evel (dnode_t *dn, int flags, uint64_t *offset, 1890 error = SET_ERROR(ESRCH);
1825 int lvl, uint64_t blkfill, uint64_t txg) 1891 } else {
1826 { 1892 bl kptr_t *bp = data;
1827 drmu_buf _i npl _t *db = NULL; 1893 uint64_t start = *offset;
1828 voi d *data = NULL; 1894 span = (lvl - 1) * epbs + dn->dn_databl kshift;
1829 uint64_t epbs = dn->dn_phys->dn_i ndbl kshi ft - SPA_BLKPTRSHI FT; 1895 mnfill = 0;
1830 uint64_t epb = 1ULL << epbs; 1896 maxfill = blkfill << ((Ivl - 1) * epbs);
1831 uinté4_t mnfill, maxfill;
1832 bool ean_t hol e; 1898 if (hole)
1833 int i, inc, error, span; 1899 maxfill--;
1900 el se
1835 dprintf("probing object %lu offset %Ix |level % of %\n", 1901 monfill++;
1836 dn->dn_obj ect, *offset, Ivl, dn->dn_phys->dn_nlevels);
1903 *of fset = *of fset >> span;
1838 hole = ((flags & DNODE_FIND HOLE) != 0); 1904 for (i = BF64_CGET(*offset, 0, epbs);
1839 inc = (flags & DNODE_FI ND_BACKWARDS) ? -1 : 1; 1905 i >= 0 & i < epb; i +=inc) {
1840 ASSERT(txg == 0 || !hole); 1906 if (bp[i].blk_fill >= mnfill &&
1907 bp[i].blk_fill <= maxfill &&
1842 if (Ivl == dn->dn_phys->dn_nl evels) { 1908 (hole || bp[i].blk_birth > txg))
1843 error = 0; 1909 br eak;
1844 epb = dn->dn_phys->dn_nbl kptr; 1910 if (inc >0 || *offset > 0)
1845 data = dn->dn_phys->dn_bl kptr; 1911 *of fset += inc;
1846 } else { 1912 }
1847 uint64_t bl kid = dbuf_whichbl ock(dn, *offset) >> (epbs * |vl); 1913 *of fset = *offset << span;
1848 error = dbuf _hold_inpl(dn, Ivl, blkid, TRUE, FTAG &db); 1914 if (inc <0) {
1849 if (error) { 1915 /* traversing backwards; position offset at the end */
1850 if (error != ENCENT) 1916 ASSERT3U(*of fset, <=, start);

new usr/src/uts/comon/ fs/zfs/dnode. c

1917 *of fset = MN(*offset + (1ULL << span) - 1, start);
1918 } else if (*offset < start) {
1919 *offset = start;

1920 }

1921 if (i <0 || i >= eph)

1922 error = SET_ERROR(ESRCH);
1923 1

1925 if (db)

1926 dbuf _rel e(db, FTAQ;

1928 return (error);

1929 }

____unchanged_portion_onitted_

new usr/src/uts/ comon/fs/zfs/dnode_sync.c 1

R R R R

19318 Wed Apr 24 12:44:24 2013
new usr/src/ uts/ comon/fs/zfs/dnode_sync. c
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»
Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

LR

____unchanged_portion_onitted_

304 /*

305 * Traverse the indicated range of the provided file

305 * free_range: Traverse the indicated range of the provided file

306 * and "free" all the blocks contained there.

307 */

308 static void

309 dnode_sync_free_range(dnode_t *dn, uint64_t blkid, uint64_t nblks, dmu_tx_t *tx)
310 {

311 bl kptr_t *bp = dn->dn_phys->dn_bl kptr;

312 dmu_buf _i npl _t *db;

313 int trunc, start, end, shift, i, err;

314 int dnlevel = dn->dn_phys->dn_nlevels;

316 if (blkid > dn->dn_phys->dn_nmaxbl ki d)

317 return;

319 ASSERT(dn- >dn_phys- >dn_maxbl ki d < Ul NT64_MAX) ;

320 trunc = blkid + nbl ks > dn->dn_phys->dn_maxbl ki d;

321 if (trunc)

322 nbl ks = dn->dn_phys->dn_maxbl kid - blkid + 1;

324 /* There are no indirect blocks in the object */

325 if (dnlevel == 1) {

326 if (blkid >= dn->dn_phys->dn_nbl kptr)

327 /* this range was never nade persistent */

328 return;

329 }

330 ASSERT3U(bl ki d + nbl ks, <=, dn->dn_phys->dn_nbl kptr);

331 (void) free_blocks(dn, bp + blkid, nblks, tx);

332 if (trunc) {

333 uint64_t off = (dn->dn_phys->dn_naxblkid + 1) *
334 (dn->dn_phys- >dn_dat abl kszsec << SPA_M NBLOCKSHI FT) ;
335 dn- >dn_phys->dn_naxbl kid = (blkid ? blkid - 1 : 0);
336 ASSERT(of f < dn->dn_phys->dn_maxbl kid ||

337 dn- >dn_phys->dn_naxbl kid == 0 ||

338 dnode_next _of fset(dn, 0, &off, 1, 1, 0) != 0);
339 }

340 return;

341 }

343 shift = (dnlevel - 1) * (dn->dn_phys->dn_indbl kshift - SPA _BLKPTRSHI FT);
344 start = blkid >> shift;

345 ASSERT(start < dn->dn_phys->dn_nbl kptr);

346 end = (blkid + nblks - 1) >> shift;

347 bp += start;

348 for (i = start; i <= end; i++ bp++) {

349 if (BP_IS_HOLE(bp))

350 conti nue;

351 rw_ent er (&n->dn_struct _rw ock, RW READER);

352 err = dbuf _hol d_inpl (dn, dnlevel-1, i, TRUE, FTAG &db);
353 ASSERTO(err);

354 rw_exit(&dn->dn_struct _rw ock);

356 if (free_children(db, blkid, nblks, trunc, tx) == ALL) {

new usr/src/ uts/ comon/fs/zfs/dnode_sync. c

357 ASSERT3P(db- >db_bl kptr, ==, bp);

358 (void) free_blocks(dn, bp, 1, tx);

359 }

360 dbuf _rel e(db, FTAQ;

361 }

362 if (trunc) {

363 uint64_t off = (dn->dn_phys->dn_naxbl kid + 1) *

364 (dn->dn_phys- >dn_dat abl kszsec << SPA_M NBLOCKSHI FT) ;
365 dn->dn_phys->dn_maxbl kid = (blkid ? blkid - 1 : 0);
366 ASSERT(of f < dn->dn_phys->dn_maxbl kid ||

367 dn- >dn_phys->dn_naxbl kid == |

368 dnode_next _of fset(dn, 0, &off, 1, 1, 0) !'= 0);
369 }

370 }

372 | *

373 * Try to kick all the dnode’s dbufs out of the cache...

373 * Try to kick all the dnodes dbufs out of the cache...

374 */

375 void

376 dnode_evi ct _dbuf s(dnode_t *dn)

377 {

378 int progress;

379 int pass = 0;

381 do {

382 drmu_buf _inpl _t *db, marker;

383 int evicting = FALSE;

385 progress = FALSE;

386 mut ex_ent er (&dn- >dn_dbuf s_nt x) ;

387 list_insert_tail (&n->dn_dbufs, &nmarker);

388 db = |ist_head(&dn->dn_dbufs);

389 for (; db !'= ▮ db = |ist_head(&dn->dn_dbufs)) {
390 I'ist_remove(&dn->dn_dbufs, db);

391 list_insert_tail (&dn->dn_dbufs, db);

392 #ifdef DEBUG

393 DB_DNODE_ENTER(db) ;

394 ASSERT3P(DB_DNODE(db), ==, dn);

395 DB_DNODE_EXI T(db) ;

396 #endif /* DEBUG */

398 nmut ex_ent er (&db- >db_nt x) ;

399 if (db->db_state == DB_EVICTING {

400 progress = TRUE;

401 evicting = TRUE;

402 mut ex_exi t (&db->db_nt x) ;

403 } else if (refcount_is_zero(&db->db_hol ds)) {
404 progress = TRUE;

405 dbuf _clear(db); /* exits db_ntx for us */
406 } else {

407 mut ex_exi t (&db->db_nt x) ;

408 }

410 }

411 list_renove(&dn->dn_dbufs, &nmarker);

412 /*

413 * NB: we need to drop dn_dbufs_ntx between passes so
414 * that any DB_EVICTI NG dbufs can make progress.

415 * |deally, we would have sone cv we could wait on, but
416 * since we don't, just wait a bit to give the other
417 * thread a chance to run.

418 */

419 mut ex_exi t (&n->dn_dbuf s_nt x) ;

420 if (evicting)

421 del ay(1);

new usr/src/uts/ comon/fs/zfs/dnode_sync.c

422 pass++;

423 ASSERT(pass < 100); /* sanity check */
424 } while (progress);

426 rw_ent er (&n->dn_struct _rw ock, RWWRI TER);
427 if (dn->dn_bonus && refcount_is_zero(&dn->dn_bonus->db_hol ds)) {
428 nmut ex_ent er (&Jn- >dn_bonus->db_nt x) ;
429 dbuf _evi ct (dn->dn_bonus);

430 dn->dn_bonus = NULL;

431 }

432 rw_exit(&dn->dn_struct_rw ock);

433 }

____unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/dsl_prop.c

R R R R

29200 Wed Apr 24 12:44:24 2013
new usr/src/uts/comon/fs/zfs/dsl_prop.c
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>

Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»

Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

LR

____unchanged_portion_onitted_

380 /*

381 * Unregister this callback. Return O on success, ENCENT if ddnane is
382 * invalid, or ENOVMSG if no natching call back registered.

382 * invalid, ENOVMBG if no matching call back registered.

383 */

384 int

385 dsl _prop_unregi ster(dsl _dataset _t *ds, const char *propnane,
386 (dsl _prop_changed_cb_t *cal | back, void *cbarg)

387

388 dsl _dir_t *dd = ds->ds_dir;

389 dsl _prop_cb_record_t *cbr;

391 mut ex_ent er (&dd- >dd_| ock) ;

392 for (cbr = 1ist_head(&dd->dd_prop_chs);

393 cbr; cbr = list_next(&dd->dd_prop_chs, cbr)) {
394 if (cbr->cbr_ds == ds &&

395 cbr->cbr_func == cal | back &&

396 cbr->cbr_arg == cbarg &&

397 strcnp(cbr->cbr_propnane, propnane) == 0)
398 break;

399 }

401 if (cbr == NULL)

402 mut ex_exi t (&Jd- >dd_| ock) ;

403 return (SET_ERROR(ENOVEG));

404 }

406 I'ist_renove(&dd->dd_prop_chbs, cbr);

407 mut ex_exi t (&dd- >dd_I ock) ;

408 kmem free((voi d*)cbr->cbr_propname, strlen(cbr->cbr_propnane)+1);
409 kmem free(cbr, sizeof (dsl_prop_cb_record_t));

411 return (0);

412 }

__unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/sa.c

R R R R

51577 Wed Apr 24 12:44:25 2013
new usr/src/uts/comon/fs/zfs/sa.c
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>

Submi tted by:

Al an Soners <al ans@pectral ogi c. con>

spill block is stored at the end of the current bonus buffer. Any

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»
Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>
EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEEEREEEERERERERESRESRESRESESESESE]
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific | anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets “[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 =
19 * CDDL HEADER END
20 */
22 | *
23 * Copyright (c) 2010, Oracle and/or its affiliates. Al rights reserved.
24 * Portions Copyright 2011 i Xsystens, |nc
25 * Copyright (c) 2013 by Del phix. Al rights reserved.
26 */
28 #include <sys/zfs_context.h>
29 #include <sys/types. h>
30 #include <sys/param h>
31 #include <sys/systm h>
32 #include <sys/sysmacros. h>
33 #include <sys/dnu. h>
34 #include <sys/dnmu_inpl . h>
35 #include <sys/dnu_obj set. h>
36 #include <sys/dbuf.h>
37 #include <sys/dnode. h>
38 #include <sys/zap. h>
39 #include <sys/sa.h>
40 #i ncl ude <sys/sunddi . h>
41 #incl ude <sys/sa_inpl.h>
42 #include <sys/dnode. h>
43 #incl ude <sys/errno. h>
44 #include <sys/zfs_context.h>
46 /*
47 * ZFS System attri butes:
48 *
49 * A generic nechanismto allow for arbitrary attributes
50 * to be stored in a dnode. The data will be stored in the bonus buffer of
51 * the dnode and if necessary a special "spill" block will be used to handle
52 * overflow situations. The spill block wll be sized to fit the data
53 * fromb512 - 128K Wien a spill block is used the BP (bl kptr_t) for the
*
*
*

attributes that would be in the way of the bl kptr_t will be rel ocated
into the spill block.

new usr/src/uts/comon/fs/zfs/sa.c

I T T T i T I I Uk I

Attribute registration:

Stored persistently on a per dataset basis

a mappi ng between attribute "string" names and their actual attribute
nuneri c val ues, |length, and byteswap function. The nanmes are only used
during registration. Al attributes are known by their unique attribute
idvalue. |If an attribute can have a variable size then the val ue

O will be used to indicate this.

Attribute Layout:

Attribute |ayouts are a way to conpactly store nmultiple attributes, but
wi t hout taking the overhead associated with managi ng each attribute
individually. Since you will typically have the same set of attributes
stored in the sane order a single table will be used to represent that
layout. The ZPL for exanple w il usually have only about 10 different
layouts (regular files, device files, syniinks,

regular files + scanstanp, files/dir with extended attributes, and then
you have the possibility of all of those minus ACL, because it would
be kicked out into the spill bl ock)

Layouts are sinply an array of the attributes and their
ordering i.e. [0, 1, 4, 5,

Each distinct layout is given a unique |ayout nunmber and that is whats
stored in the header at the beginning of the SA data buffer.

a set of

A layout only covers a single dbuf (bonus or spill) | f
spill buffer then
b

attributes is split up between the bonus buffer and

a
two different |ayouts will be used. This allows us to byteswap the

spill without Iooking at the bonus buffer and keeps the on disk fornat of
the bonus and spill buffer the same.

Adding a single attribute will cause the entire set of attributes to

be rewitten and could result in a new | ayout nunber being constructed
as part of the rewite if no such layout exists for the new set of
attribues. The new attribute will be appended to the end of the already
existing attributes.

Both the attribute registration and attribute |ayout infornmation are
stored in normal ZAP attributes. Their should be a snall nunber of
known | ayouts and the set of attributes is assuned to typically be quite
smal | .

The registered attributes and | ayout "table" information is maintained
in core and a special "sa_os_t" is attached to the objset_t.

A special interface is provided to allow for quickly applying

a large set of attributes at once. sa_replace_all_by tenplate() is

used to set an array of attributes. This is used by the ZPL when
creating a brand new file. The tenplate that is passed into the function
specifies the attribute, size for variable length attributes, |ocation of
Idata and special "data |ocator” function if the data isn't in a contiguous
ocati on.

Byt eswap i nplications:

#endi f /* ! codereview */

*
*
*

* Ok %k

Since the SA attributes are not entirely self describing we can’t do
the nornal byteswap processing. The special ZAP | ayout attribute and
attribute registration attributes define the byteswap function and the
size of the attributes, unless it is variable sized.

The nornal ZFS byt eswapping i nfrastructure assumes you don’t need

to read any objects in order to do the necessary byteswappi ng. Wereas
SA attributes can only be properly byteswapped if the dataset is opened

new usr/src/uts/comon/fs/zfs/sa.c

123
124
125
126

128
129

131
132
133
134
135
136
137
138
139
140

142
143
144
145
146
147
148

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

* and the layout/attribute ZAP attributes are available. Because of this
* the SA attributes will be byteswapped when they are first accessed by

* the SA code that will read the SA data.

*/

typedef void (sa_iterfunc_t)(void *hdr, void *addr,
uint16_t length, int length_idx, boolean_t,

sa_attr_type_t,
voi d *userp);

static int sa_build_index(sa_handle_t *hdl,

static void sa_i dx_tab_hol d(objset _t *os,

static void *sa_find_idx_tab(objset_t *os,
voi d *data);

static void sa_ i dx _tab_rel e(objset_t *os, void *arg);

static void sa_copy data(sa_data_|locator_t *func, void *start,
int buflen);

static int sa erdlfy attrs(sa_handle_t *hdl, sa_attr_type_t newattr,
sa_data_op_t action, sa_data_| ocator_t *Iocator void *datastart,
uint16_t buflen, drm_tx_t *tX);

sa_buf _type_t buftype);
sa_idx_tab_t *idx_tab);
drmu_obj ect _type_t bonust ype,

void *target,

arc_byteswap_func_t *sa_bswap_table[] = {
byt eswap_ui nt 64_arr ay,
byt eswap_ui nt 32_arr ay,
byt eswap_ui nt 16_arr ay,
byt eswap_ui nt 8_array,
zfs_acl _byt eswap,

§i5
#define SA COPY_DATA(f, s, t, 1)\
\
if (f == NULL) { \

if (I ==28) {\
*(uint64_t *)t = *(uint64_t *)s; \
} elseif (I == 16 \
*(uint64_t *)t = *(uint64_t *)s; \
*(uint64_t *)((uintptr_t)t + 8) =\
*(uint64_t *)((uintptr_t)s + 8); \
} else { \
bcopy(s, t, 1); \

} else\
sa_copy_data(f, s, t, I); \

This table is fixed and cannot be changed. |Its purpose is to
allow the SA code to work with both ol d/ new ZPL file systens.

*
*
*
* |t contains the list of |legacy attributes. These attributes aren’'t
*
*
*

stored in the "attribute" registry zap objects, since older ZPL file systens
won’t have the registry. Only objsets of type ZFS TYPE_FI LESYSTEM wi | |
/use this static table.
*
sa_attr _reg_ t sa_legacy_attrs[] = {
"ZPL_ATI ME", sizeof (uint64_t) * 2, SA U NI64_ARRAY, 0},
"ZPL_MTI ME", sizeof (uint64_t) * 2, SA U NT64_ARRAY, 1},
"ZPL_CTIME", sizeof (uint64_t) * 2, SA Ul NT64_ARRAY, 2},
"ZPL_CRTI ME", sizeof (uint64_t) * 2, SA U NT64_ARRAY, 3},
"ZPL_GEN', si zeof (uint64_t), SA U NT64_ARRAY, 4},
"ZPL_MODE", sizeof (uint64_t), SA U NT64_ARRAY, 5},
"ZPL_SI ZE", sizeof (uint64_t), SA U NT64_ARRAY, 6},
"ZPL_PARENT", sizeof (uint64_t), SA U NT64_ARRAY, 7},
"ZPL_LI NKS", sizeof (uint64_t), SA U NT64_ARRAY, 8},
"ZPL_XATTR', sizeof (uint64_t), SA_Ul NT64_ARRAY, 9},
"ZPL_RDEV", sizeof (uint64_t), SA Ul NT64_ARRAY, 10},
“ZPL_FLAGS", sizeof (uint64_t), SA U NT64_ARRAY, 11},
"ZPL_U D', sizeof (uint64_t), SA U NT64_ARRAY, 12}
"ZPL_G D', sizeof (uint64_t), SA_U NT64_ARRAY, 13},

new usr/src/uts/comon/fs/zfs/sa.c

189
190
191

193
114
194
195
196
197
198

200
201
202

203

{"ZPL_PAD', sizeof (uint64_t) * 4, SA U NT64_ARRAY, 14},
{"ZPL_ZNODE_ACL", 88, SA Ul NT8_ARRAY, 15},

e

/*

* ZPL | egacy | ayout

* This is only used for objects of type DMJ OT_ZNODE

*/

sa_attr_type_t sa_l egacy_zpl _layout[] = {
0

, 1,2, 3, 4, 5 6, 7 8 9 10, 11, 12, 13, 14, 15
s
/*
* Special dummy |ayout used for buffers with no attributes.
*
/
sa_attr_type_t sa_dummy_zpl _layout[] ={ 0 };

205 static int sa_legacy_attr_count = 16;

206 static kmem cache_t *sa_cache = NULL;

208 /* ARGSUSED*/

209 static int

210 {sa_cache_construct or(void *buf, void *unused, int knflag)
211

212 sa_handl e_t *hdl = buf;

214 hdl - >sa_bonus_tab = NULL;

215 hdl - >sa_spill _tab = NULL;

216 hdl - >sa_os = NULL;

217 hdl - >sa_userp = NULL;

218 hdl - >sa_bonus = NULL;

219 hdl ->sa_spill = NULL;

220 mut ex_i ni t (&hdl ->sa_ Iock NULL, MJTEX_DEFAULT, NULL);
221 return (0);

222 }

__unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/spa.c

R R R R

174704 Wed Apr 24 12:44:25 2013
new usr/src/uts/comron/fs/zfs/spa.c
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>

Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»

Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

LR

____unchanged_portion_onitted_

4517 [*

4518 * Detach a device froma mrror or replacing vdev.

4519 *

4520 #endif /* | codereview */

4521 * |f 'replace_done’ is specified, only detach if the parent
4522 * is a replacing vdev.

4523 */

4524 int

4525 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4526 {

4527 uint64_t txg;

4528 int error;

4529 vdev_t *rvd = spa->spa_root_vdev;

4530 vdev_t *vd, *pvd, *cvd, *tvd;

4531 bool ean_t unspare = B_FALSE;

4532 uint64_t unspare_guid = O;

4533 char *vdpat h;

4535 ASSERT(spa_writeabl e(spa));

4537 txg = spa_vdev_enter(spa);

4539 vd = spa_| ookup_by_gui d(spa, guid, B _FALSE);

4541 if (vd == NULL)

4542 return (spa_vdev_exit(spa, NULL, txg, ENODEV));

4544 if (!vd->vdev_ops->vdev_op_| eaf)

4545 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));

4547 pvd = vd->vdev_parent;

4549 /*

4550 * |f the parent/child relationship is not as expected, don't do it.
4551 * Consider MA R(B,C) -- that is, a mrror of Awith a replacing
4552 * vdev that’'s replacing Bwith C. The user’s intent in replacing
4553 * is togo fromMA B) to MA C. |If the user decides to cancel
4554 * the replace by detaching C, the expected behavior is to end up
4555 * MA B). But suppose that right after deciding to detach C,
4556 * the replacenent of B conpletes. W would have M A C, and then
4557 * ask to detach C, which would | eave us with just A -- not what
4558 * the user wanted. To prevent this, we make sure that the

4559 * parent/child relationship hasn't changed -- in this exanple,
4560 * that Cs parent is still the replacing vdev R

4561 */

4562 if (pvd->vdev_guid != pguid & pguid != 0)

4563 return (spa_vdev_exit(spa, NULL, txg, EBUSY));

4565 I*

4566 * Only 'replacing’ or 'spare’ vdevs can be repl aced.

4567 */

4568 if (replace_done && pvd->vdev_ops != &dev_repl aci ng_ops &&

4569 pvd- >vdev_ops ! = &dev_spare_ops)

4570 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));

new usr/src/uts/comron/fs/zfs/spa.c

4572
4573

4575
4576
4577
4578
4579
4580
4581

4583
4584
4585
4586
4587
4588

4590

4592
4593
4594
4595
4596
4597
4598
4599

4601
4602

4604
4605

4607
4608
4609
4610
4611
4612
4613
4614

4616
4617
4618
4619
4620
4621
4622
4623
4624

4626
4627
4628
4629
4630
4631
4632
4633
4634

4636

ASSERT(pvd- >vdev_ops ! = &vdev_spare_ops ||
spa_versi on(spa) >= SPA VERSI ON_SPARES) ;

/*
* Only mirror, replacing, and spare vdevs support detach.
*
/
if (pvd->vdev_ops != &dev_repl aci ng_ops &&
pvd- >vdev_ops != &dev_mirror_ops &&
pvd- >vdev_ops ! = &dev_spare_ops)
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));

*

* If this device has the only valid copy of sone data,
* we cannot safely detach it.
*

if (vdev_dtl _required(vd))
return (spa_vdev_exit(spa, NULL, txg, EBUSY));

ASSERT(pvd- >vdev_chi | dren >= 2);

/*

* |If we are detaching the second disk froma repl aci ng vdev, then

* check to see if we changed the original vdev's path to have "/old"
* at the end in spa_vdev_attach(). |If so, undo that change now.

*/

if (pvd->vdev_ops == &dev_repl aci ng_ops && vd->vdev_id > 0 &&
vd- >vdev_path != NULL)
size_t len = strlen(vd->vdev_path);

for (int ¢ = 0; c < pvd->vdev_children; c++) {
cvd = pvd->vdev_child[c];

if (cvd == vd || cvd->vdev_path == NULL)
conti nue;

if (strncnp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
strcnp(cvd->vdev_path + len, "/old") == 0) {
spa_strfree(cvd->vdev_pat h);
cvd->vdev_path = spa_strdup(vd->vdev_path);

br eak;
}
}
}
/*
* |f we are detaching the original disk froma spare, then it inplies
* that the spare should beconme a real disk, and be renoved fromthe
* active spare list for the pool.
*/
if (pvd->vdev_ops == &dev_spare_ops &&
vd->vdev_id == 0 &&
pvd- >vdev_chi | d[pvd- >vdev_chi I dren - 1]->vdev_i sspare)
unspare = B_TRUE;
/*
* Erase the disk | abels so the disk can be used for other things.
* This nust be done after all other error cases are handl ed,
* but before we di sembowel vd (so we can still do I/Otoit).
* But if we can’t do it, don’t treat the error as fatal --
*

it may be that the unwitability of the disk is the reason
* it’'s being detached!
*/

error = vdev_| abel _init(vd, 0, VDEV_LABEL_REMOVE);

| *

new usr/src/uts/comon/fs/zfs/spa.c

4637
4638
4639
4640

4642
4643
4644
4645

4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662

4664
4665
4666
4667
4668
4669
4670
4671
4672
4673

4676
4677
4678
4679
4680
4681

4683
4684
4685
4686

4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698

4700
4702

* Renpve vd fromits parent and conpact the parent’s children.
&/

vdev_renove_chi |l d(pvd, vd);

vdev_conpact _chi |l dren(pvd);

/*
* Renenber one of the renmmining children so we can get tvd bel ow
*
/
cvd = pvd->vdev_chil d[pvd- >vdev_children - 1];

/*
* |f we need to renpve the remaining child fromthe list of hot spares,
* do it now, marking the vdev as no longer a spare in the process.

* W nust do this before vdev_renove_parent(), because that can
* change the GUDif it creates a new topl evel GUD. For a simlar

* reason, we nust renove the spare now, in the same txg as the detach;

* otherw se someone could attach a new sibling, change the GU D, and

* the subsequent attenpt to spa_vdev_renove(unspare_guid) would fail.

*

/

f

(unspare)
ASSERT(cvd >vdev_i sspare);
spa_spare_renove(cvd);
unspare_guid = cvd- Svdev _guid;
(voi d) spa_vdev rem)ve(spa unspare_gui d, B_TRUE);
) cvd->vdev_unspare = B_TRUE;
/*
* |f the parent mrror/replacing vdev only has one child,
* the parent is no |onger needed. Renpve it fromthe tree.
*/
if (pvd->vdev_children == {
if (pvd->vdev_ops == &vdev_spare_ ops)
cvd->vdev_unspare = B_FALSE
vdev_r enove_par ent(cvd)
cvd->vdev_resilvering = B_FALSE;

/*

* We don’t set tvd until now because the parent we just renpved
* may have been the previous top-I|evel vdev.

*/

tvd = cvd->vdev_top;

ASSERT(t vd- >vdev_parent == rvd)

/*
* Reeval uate the parent vdev state.
*/
d

ev_propagat e_state(cvd);

*
* |f the "autoexpand property is set on the pool then automatically
* try to expand the size of the pool. For exanple if the device we
* just detached was smaller than the others, it may be possible to
* add netaslabs (i.e. grow the pool). W need to reopen the vdev
* first so that we can obtain the updated sizes of the |eaf vdevs.
*
/

if (spa->spa_autoexpand) {

vdev_reopen(tvd);

vdev_expand(tvd, txg);
}

vdev_config_dirty(tvd);
/*

new usr/src/uts/comon/fs/zfs/spa.c

4703
4704
4705
4706
4707
4708
4709
4710
4711
4712

4714

4716
4717

4719

4721
4722
4723

4725
4726
4727
4728
4729
4730
4731

4733
4734
4735
4736
4737

4739
4740
4741
4742
4743
4744
4745

4747
4748
4749

4751
4752
4753
4754

4756
4757

4759
4760
4761
4762
4763
4764

}

/*
* Split a set of devices fromtheir mrrors, and create a new pool fromthem
/

i nt

* Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
* vd->vdev_detached is set and free vd's DIL object in syncing context.
* But first nake sure we’'re not on any *other* txg's DTL list, to
* prevent vd from being accessed after it’s freed.
*
vdpat h = spa_strdup(vd->vdev_path);
for (int t =0; t < TXG.SIZE, t++)
(void) txg_list_renmove_this(& vd->vdev_dtl _list, vd, t);
vd- >vdev_det ached = B_TRUE;
vdev_dirty(tvd, VDD DTL, vd, txg);

spa_event _notify(spa, vd, ESC ZFS VDEV_REMOVE);

/* hang on to the spa before we rel ease the |ock */
spa_open_ref (spa, FTAG;

error = spa_vdev_exit(spa, vd, txg, 0);

spa_history_l og_internal (spa, "detach", NULL,
"vdev=%", vdpath);
spa_strfree(vdpath);

/*
* |If this was the renpval of the original device in a hot spare vdev,
* then we want to go through and renove the device fromthe hot spare
* |list of every other pool.
S
if (unspare) {

spa_t *altspa = NULL;

mut ex_ent er (&spa_nanmespace_| ock) ;

whil e ((altspa = spa_next(altspa)) != NULL) {
f (altspa->spa_state != POOL_STATE_ACTI VE | |
al tspa == spa)
conti nue;

spa_open_ref(al tspa, FTAQ;

nut ex_exi t (&spa_nanmespace_| ock) ;

(voi d) spa_vdev_renove(al tspa, unspare_guid, B_TRUE);
mut ex_ent er (&spa_nanespace_| ock) ;

spa_cl ose(al tspa, FTAG;

mut ex_exi t (&pa_nanmespace_| ock) ;

/* search the rest of the vdevs for spares to remove */
spa_vdev_resil ver _done(spa);

}

/* all done with the spa; OK to rel ease */
nmut ex_ent er (&spa_nanespace_| ock) ;

spa_cl ose(spa, FTAQ;

mut ex_exi t (&spa_nanmespace_| ock) ;

return (error);

spa_vdev_split_mirror(spa_t *spa, char *newnane, nvlist_t *config,

4765 {

4766
4767
4768

nvlist_t *props, boolean_t exp)

int error = 0;
uint64_t txg, *glist;
spa_t *newspa;

new usr/src/uts/comon/fs/zfs/spa.c

4769
4770
4771
4772
4773
4774

4776
4778

4780
4781
4782
4783
4784

4786
4787

4789
4790

4792
4793
4794

4796
4797
4798
4799
4800
4801
4802

4804
4805
4806
4807
4808

4810
4811
4812
4813
4814
4815

4817
4818
4819
4820

4822
4823
4824
4825

4827
4828

4830
4831
4832

4834

uint_t c, children, |astlog;
nvlist_t **child, *nvl, *tnp;
dmu_tx_t *tx;

char *altroot = NULL;

vdev_t *rvd, **vm = NULL; /* vdev nmodify list */
bool ean_t acti vate_sl og;

ASSERT(spa_writeabl e(spa));
txg = spa_vdev_enter(spa);

/* clear the log and flush everything up to now */
activate_slog = spa_passivate_| og(spa);

(void) spa_vdev_config_exit(spa, NULL, txg, O, FTAQ;
error = spa_offline_l og(spa);

txg = spa_vdev_config_enter(spa);

if (activate_slog)
spa_activate_| og(spa);

if (error 1= 0)
return (spa_vdev_exit(spa, NULL, txg, error));

/* check new spa nane before going any further */
if (spa_l ookup(newnane) != NULL
return (spa_vdev_exit(spa, NULL, txg, EEXI ST));

/*
* scan through all the children to ensure they're all mrrors
*/

if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG VDEV_TREE, &nvl) != 0 ||
nvlist_l ookup_nvlist_array(nvl, ZPOOL_CONFI G CHI LDREN, &child,
&children) != 0)
return (spa_vdev_exit(spa, NULL, txg, EINVAL));

/* first, check to ensure we’ve got the right child count */
rvd = spa- >spa root _vdev;
lastlog =
for (c = 0; ¢ < rvd->vdev_children; c++)
vdev_t *vd = rvd->vdev_child[c];

/* don’t count the holes & | ogs as children */

if (vd->vdev_islog || vd->vdev_ishole) {
if (lastlog ==
lastlog = c;
conti nue;
}
lastlog = 0;
}
if (children !'= (lastlog != 0 ? lastlog : rvd->vdev_children))

return (spa_vdev_exit(spa, NULL, txg, EINVAL));

/* next, ensure no spare or cache devices are part of the split */
if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFI G SPARES, &t np) == 0 ||
nvlist_| ookup_nvlist(nvl, ZPOOL_CONFI G L2CACHE, &tnp) == 0)
return (spa_vdev_exit(spa, NULL, txg, El NVAL))

vm = knmem zal | oc(children * sizeof (vdev_t *), KM SLEEP);
glist = knmem zal | oc(children * sizeof (uint64_t), KM SLEEP)

/* then, |oop over each vdev and validate it */
for (c = 0; ¢ < children; c++) {
uint64_t is_hole = 0;

(void) nvlist_| ookup_uint64(child[c], ZPOOL_CONFIG_|S HOLE,

new usr/src/uts/comron/fs/zfs/spa.c

4835

4837
4838
4839
4840
4841
4842
4843
4844
4845

4847
4848
4849
4850
4851
4852

4854
4855
4856
4857
4858
4859

4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873

4875
4876
4877
4878

4880
4881
4882
4883
4884
4885
4886
4887
4888
4889

4891
4892
4893
4894
4895

4897
4898
4899
4900

}

& s_hol e);

if (is_hole I'=0) {
i f (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
spa- >spa_r oot _vdev->vdev_chi |l d[c] - >vdev_i sl og) {
conti nue;
} else {
error = SET_ERROR(El NVAL) ;
br eak;

}

/* which disk is going to be split? */
if (nvlist_|ookup_uint64(child[c], ZPOOL_CONFI G GUI D,
&glist[c]) !'=0) {
error = SET_ERROR(ElI NVAL) ;
br eak;
}
/ okltuplnthespa*/
] = spa_l Iookup by_gui d(spa, glist[c], B_FALSE);
[c] == NuLL) {
error = SET_ERR(P(ENCDEV) ;
br eak;

*lo
v [c
if (vm

}

/* make sure there’s nothing stopping the split */
if (vm[c]->vdev_parent->vdev_ops != &dev_mirror_ops ||
vm [c]->vdev_islog ||
vm [c]->vdev_i shole ||
vm [c]->vdev_i sspare ||
v [c] ->vdev_i sl 2cache ||
lvdev_writeabl e(vm[c]) ||
vm [c]->vdev_children !'= 0 |
v [c]->vdev_state ! = VDEV_STATE HEALTHY | |
c ! = spa- >spa root _vdev->vdev_chil d[c]->vdev_id) {
error = SET_ERROR(ElI NVAL);
br eak;

}

if (vdev_dtl reqwred(vrﬂ[c])) {
error = SET_ERROR(EBUSY);
br eak;

}

/* we need certain info fromthe top | evel */

VERI FY(nvl i st_add_ui nt64(child[c], ZPOOL CO\IFI G_METASLAB_ARRAY,
v [¢] - >vdev_t op- >vdev_ns array) =0

VERI FY(nvl i st _add_ui nt 64(child[c], ZPOOL CINFIG METASLAB_SHI FT,
vm [¢] - >vdev _top->vdev_ns_shi ft) == 0);

VERI FY(nvl i st _add_ui nt 64(chi | d[c] ZPOOL_ CONFI G_ASI ZE,
vm [c] - >vdev_t op- >vdev_asi ze) == 0);

VERI FY(nvl i st _add_ui nt 64(child[c], ZPC{L_(INFIGLASHIFT
vm [¢] - >vdev_t op- >vdev_ashi ft) == 0);

if (error 1'=0) {

}

kmem free(vm, children * sizeof (vdev_t *));
kmem free(glist, children * sizeof (uint64_t));
return (spa_vdev_exit(spa, NULL, txg, error));

/* stop witers fromusing the disks */

for

(c = 0; ¢ <children; c++) {
if (vm[c] !'= NULL)
v [c]->vdev_of fline = B_TRUE

new usr/src/uts/comon/fs/zfs/spa.c

4901
4902

4904
4905
4906
4907
4908
4909
4910
4911

4913
4914
4915
4916
4917
4918

4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931

4933
4934
4935
4936

4938
4939

4941
4942

4944
4945

4947
4948
4949
4950

4952
4953
4954
4955
4956
4957
4958
4959
4960

4962
4963
4964
4965
4966

vdev_r eopen(spa- >spa_r oot _vdev) ;

/*
* Tenporarily record the splitting vdevs in the spa config. This
* will disappear once the config is regenerated.
*
/
VERI FY(nvlist_alloc(&vl, NV_UNIQUE_NAME, KM SLEEP) == 0);
VERI FY(nvlist_add_ui nt 64 array(nvl ZPOOL_CONFI G ! SPLI T LI ST,
glist, children) == 0
kmemfree(gl ist, children * sizeof (uint64_t));

nmut ex_ent er (&spa- >spa_props_| ock) ;

VERI FY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG SPLIT,
nvl) == 0);

mut ex eX|t(&spa- >spa_props_ Iock)

spa->spa_config_splitting = nvl;

vdev_config_dirty(spa->spa_root_vdev);

/* configure and create the new pool */

VERI FY(nvlist_add_string(config, ZPOOL_CONFI G POOL_NAME, newnane) == 0);

VERI FY(nvl i st _add_ui nt 64(confi g, ZPOOL_CONFI G_POOL_STATE,
exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTI VE) == 0);

VERI FY(nvl i st _add_ui nt 64(config, ZPOO._CONFI G VERSI ON,
spa_versi on(spa)) == 0);

VERI FY(nvlist_add_ui nt 64(confl g, ZPOOL_CONFI G_POOL_TXG
spa->spa_config_txg) == 0);

VERI FY(nvl i st_add_ui nt 64(config, ZPOOL_CONFI G POOL_GUl D,
spa_generate_gui d(NULL)) == 0);

(void) nvlist_|ookup_string(props,
zpool _prop_t o_nane(ZPOOL_PROP_ALTROOT), &altroot);

/* add the new pool to the namespace */
newspa = spa_add(newnane, config, altroot);
newspa- >spa_confi g_txg = spa->spa_config_txg;
spa_set _| og_st at e(newspa, SPA LOG CLEAR);

/* rel ease the spa config | ock, retaining the namespace |ock */
spa_vdev_config_exit(spa, NULL, txg, 0, FTAG;

if (zio_injection_enabled)
zi o_handl e_pani c_i nj ection(spa, FTAG 1);

spa_acti vat e(newspa, spa_node_gl obal);
spa_async_suspend(newspa) ;

/* create the new pool fromthe disks of the original pool */
error = spa_| oad(newspa, SPA LOAD | MPORT, SPA | MPORT_ASSEMBLE, B_TRUE);
if (error)

goto out;

/* if that worked, generate a real config for the new pool */
if (newspa->spa_root_vdev != NULL)
VERI FY(nvl i st_al | oc(&ewspa- >spa confl g_splitting,
NV_UNI QUE_NAMVE, KM SLEEP) =
VERI FY(nvl i st _add_ui nt 64(newspa >spa config_spli ttl ng,
ZPOOL_CONFI G SPLIT_GUI D, spa_gui d(spa)) ==
spa_confi g_set (newspa, spa_confi g_gener at e(newspa NULL, -1ULL,
B_TRUE)) ;
}

/* set the props */

if (props !'= NULL)
spa_configfile_set(newspa, props, B FALSE);
error = spa_prop_set(newspa, props);
if (error)

new usr/src/uts/comron/fs/zfs/spa.c

4967
4968

4970
4971
4972
4973

4975
4976

4978

4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000

5002
5003

5005
5006
5007

5009

5011
5012
5013
5014

5016

5018
5019
5020
5021

5023

5025
5026
5027
5028
5029
5030

5032

out :

goto out;

}

/* flush everything */

txg = spa_vdev_config_enter(newspa);
vdev_config_dirty(newspa->spa_root vdev)

(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG;

if (zio_injection_enabl ed)
zi o_handl e_pani c_i nj ecti on(spa, FTAG 2);

spa_async_r esunme(newspa) ;

/* finally, update the original pool’s config */
txg = spa_vdev_config_enter(spa);
tx leLI tx_create_dd(spa_get _ dsi (spa) >dp_nos_dir);
error = dnmu_tx_assign(tx, TXG WAIT
if (error I= 0)
dnu _tx_abort (tx);
for (c = 0; ¢ < children; c++) {
if (vm[c] I'= NULL)
vdev_split(vm[c]);
if (error == 0)
spa_history_l og_internal (spa, "detach", tx,
"vdev=%", vml[c]->vdev_path);
vdev_free(vni[c]);
}

}
vdev_confi g_dirty(spa->spa_root_vdev);
spa->spa_config_splitting = NULL;
nvlist free(nvl)
if (error == 0)

dnu_t x_conmmi t (tx);
(void) spa_vdev_exit(spa, NULL, txg, 0);

if (zio_injection_enabl ed)
zi o_handl e_pani c_i nj ection(spa, FTAG 3);

/* split is conplete; log a history record */
spa_history_l og_i nternal (newspa, "split", NULL,
"from pool %", spa_nane(spa));

kmem free(vm, children * sizeof (vdev_t *));
/* if we're not going to nount the filesystens in userland, export */
if (exp)

error = spa_export_conmon(newnanme, POOL_STATE_EXPORTED, NULL,

B FALSE, B FALSE)

return (error);
spa_unl oad(newspa) ;
spa_deacti vat e(newspa) ;
spa_r enove(newspa) ;
txg = spa_vdev_config_enter(spa);
/* re-online all offlined disks */
for (c = 0; ¢ < children; c++) {

if (vm[c] !'= NULL)

vm [c]->vdev_of fline = B_FALSE;

}
vdev_r eopen(spa- >spa_r oot _vdev);

nvlist_free(spa->spa_config_splitting);

new usr/src/uts/comon/fs/zfs/spa.c 9 new usr/src/uts/comon/fs/zfs/spa.c
5033 spa->spa_config_splitting = NULL; 5099 */
5034 (void) spa_vdev_exit(spa, NULL, txg, error); 5100 if (vd->vdev_islog) {
5101 if (vd->vdev_stat.vs_alloc !'= 0)
5036 kmem free(vm , children * sizeof (vdev_t *)); 5102 error = spa_offline_log(spa);
5037 return (error); 5103 } else {
5038 } 5104 error = SET_ERROR(ENOTSUP) ;
5105 }
5040 static nvlist_t *
5041 spa_nvlist_| ookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5107 if (error)
5042 { 5108 return (error);
5043 for (int i =0; i < count; i++) {
5044 uint64_t guid; 5110 7%
5111 * The evacuation succeeded. Renpve any remmi ning MOS net adat a
5046 VERI FY(nvli st _I| ookup_ui nt 64(nvpp[i], ZPOOL_CONFI G GU D, 5112 * associated with this vdev, and wait for these changes to sync.
5047 &gui d) ==0); 5113 *f
5114 ASSERTO(vd >vdev_stat.vs_alloc);
5049 if (guid == target_guid) 5115 txg = spa_vdev_config_ent er(spa)
5050 return (nvpp[i]); 5116 vd- >vdev_renovi ng = B_TRUE;
5051 } 5117 vdev_dirty(vd, 0, NULL, txg);
5118 vdev_confi g_di rty(vd)
5053 return (NULL); 5119 spa_vdev_confi g_exit (spa, NULL, txg, 0, FTAG;
5054 }
5121 return (0);
5056 static void 5122 }
5057 spa_vdev_renpve_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5058 nvlist_t *dev_to_renove) 5124 | *
5059 { 5125 * Conplete the renpval by cleaning up the nanespace.
5060 nvlist_t **newdev = NULL; 5126 */
5127 static void
5062 if (count > 1) 5128 spa_vdev_renpve_from nanespace(spa_t *spa, vdev_t *vd)
5063 newdev = krmem al | oc((count - 1) * sizeof (void *), KM SLEEP); 5129 {
5130 vdev_t *rvd = spa->spa_root_vdev;
5065 for (int i =0, j 0' i < count; i++) { 5131 uint64_t id = vd->vdev_id;
5066 if (dev[i] == dev_to rem:)ve) 5132 bool ean_t last_vdev = (id == (rvd->vdev_children - 1));
5067 cont i nue;
5068 VERI FY(nvl i st_dup(dev[i], &ewdev[j++], KM SLEEP) == 0); 5134 ASSERT(MUTEX_HELD(&spa_nanespace_| ock));
5069 } 5135 ASSERT(spa_confi g_hel d(spa, SCL_ALL, R\NV\RI TER) == SCL_ALL);
5136 ASSERT(vd == vd- >vdev_t op);
5071 VERI FY(nvlist_renove(config, name, DATA TYPE_NVLI ST_ARRAY) == 0);
5072 VERI FY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5138 /*
5139 * Only renpbve any devi ces which are enpty.
5074 for (int i =0; i <count - 1; i++) 5140 */
5075 nvlist_free(newdev[i]); 5141 if (vd->vdev_stat.vs_alloc != 0)
5142 return;
5077 if (count > 1)
5078) kmem free(newdev, (count - 1) * sizeof (void *)); 5144 (void) vdev_label _init(vd, 0, VDEV_LABEL_REMOVE);
5079
5146 if (list_link_active(&d->vdev_state_dirty_node))
5081 /* 5147 vdev_state_cl ean(vd);
5082 * Evacuate the device. 5148 if (list_link_active(&d->vdev_config_dirty_node))
5083 */ 5149 vdev_config_cl ean(vd);
5084 static int
5085 {spa_vdev_rennve_evacuate(spa_t *spa, vdev_t *vd) 5151 vdev_free(vd);
5086
5087 uint64_t txg; 5153 if (last_vdev)
5088 int error = 0; 5154 vdev_conpact _chi I dren(rvd);
5155 } else {
5090 ASSERT(MUTEX_HELD(&spa_nanespace_| ock)); 5156 vd = vdev_al | oc_conmmon(spa, id, 0, &dev_hol e_ops);
5091 ASSERT(spa_confi g_hel d(spa, SCL_ALL, RWWRI TER) == 0); 5157 vdev_add_chi I d(rvd, vd);
5092 ASSERT(vd == vd->vdev_top); 5158 }
5159 vdev_config_dirty(rvd);
5094 /*
5095 * Evacuate the device. W don't hold the config lock as witer 5161 /*
5096 * since we need to do I/0O but we do keep the 5162 * Reassess the health of our root vdev.
5097 * spa_nanespace_|l ock held. Once this conpletes the device 5163 */
5098 * shoul d no | onger have any bl ocks allocated on it. 5164 vdev_reopen(rvd);

new usr/src/uts/comon/fs/zfs/spa.c 11

5165 }

5167 /*

5168 * Renpbve a device fromthe pool -

5169 *

5170 * Renoving a device fromthe vdev nanmespace requires several steps

5171 * and can take a significant anount of time. As a result we use

5172 * the spa_vdev_config_[enter/exit] functions which allow us to

5173 * grab and rel ease the spa_config_lock while still holding the namespace
5174 * lock. During each step the configuration is synced out.

5175 *

5176 * Currently, this supports renoving only hot spares, slogs, and |level 2 ARC
5177 * devices.

4519 */

4521 | *

4522 * Renpve a device fromthe pool. Currently, this supports renmpving only hot
4523 * spares, slogs, and | evel 2 ARC devices.

5178 */

5179 int

g%gg {spa_vdev_rermve(spa_t *spa, uint64_t guid, boolean_t unspare)

5182 vdev_t *vd;

5183 nmet asl ab_group_t *nm;

5184 nvlist_t **spares, **|2cache, *nv;

5185 uint64_t txg = O;

5186 uint_t nspares, nl2cache;

5187 int error = 0;

5188 bool ean_t | ocked = MJUTEX_HELD(&pa_nanespace_| ock);

5190 ASSERT(spa_writeabl e(spa));

5192 if (!locked)

5193 txg = spa_vdev_enter(spa);

5195 vd = spa_|l ookup_by_guid(spa, guid, B _FALSE);

5197 if (spa->spa_spares.sav_vdevs != NULL &&

5198 nvlist_l ookup_nvlist_array(spa->spa_spares.sav_config,

5199 ZPOOL_CONFI G SPARES, &spares, &nspares) == 0 &&

5200 (nv /: spa_nvlist_| ookup_by_gui d(spares, nspares, guid)) != NULL) {
5201 *

5202 * Only renove the hot spare if it’s not currently in use
5203 * in this pool.

5204 *

5205 if (vd == NULL || unspare) {

5206 spa_vdev_renove_aux(spa->spa_spares. sav_confi g,
5207 ZPOOL_CONFI G_SPARES, spares, nspares, hv);
5208 spa_l oad_spares(spa);

5209 spa- >spa_spares. sav_sync = B_TRUE;

5210 } else {

5211 error = SET_ERROR(EBUSY);

5212 }

5213 } else if (spa->spa_| 2cache. sav_vdevs != NULL &&

5214 nvlist_| ookup_nvlist_array(spa->spa_| 2cache. sav_confi g,

5215 ZPOOL_CONFI G_L2CACHE, &l 2cache, &nl 2cache) == 0 &&

5216 (nv = spa_nvlist_| ookup_by_qguid(l 2cache, nl 2cache, guid)) != NULL) {
5217 /*

5218 * Cache devices can al ways be renpved.

5219 */

5220 spa_vdev_renove_aux(spa->spa_|l 2cache. sav_confi g,

5221 ZPOOL_CONFI G_L2CACHE, | 2cache, nl2cache, nv);

5222 spa_| oad_| 2cache(spa);

5223 spa- >spa_| 2cache. sav_sync = B_TRUE;

5224 } else if (vd !'= NULL && vd->vdev_islog) {

5225 ASSERT(!l ocked) ;

new usr/src/uts/comon/fs/zfs/spa.c

5226 ASSERT(vd == vd->vdev_top);

5228 /*

5229 * XXX - Once we have bp-rewite this should

5230 * become the common case.

5231 */

5233 nmg = vd->vdev_ny;

5235 /*

5236 * Stop allocating fromthis vdev.

5237 *

5238 nmet asl ab_gr oup_passi vat e(ng) ;

5240 /*

5241 * Wait for the youngest allocations and frees to sync,
5242 * and then wait for the deferral of those frees to finish.
5243 *

5244 spa_vdev_config_exit(spa, NULL,

5245 txg * TXG CONCURRENT_STATES + TXG DEFER S| ZE, 0, FTAG;
5247 1=

5248 * Attenpt to evacuate the vdev.

5249 *

5250 error = spa_vdev_renove_evacuate(spa, vd);

5252 txg = spa_vdev_config_enter(spa);

5254 *

5255 * |f we couldn't evacuate the vdev, unw nd.

5256 */

5257 if (error) {

5258 net asl ab_group_acti vat e(ng);

5259 return (spa_vdev_exit(spa, NULL, txg, error));
5260 }

5262 /*

5263 * Clean up the vdev nanespace.

5264 *

5265 spa_vdev_renove_from nanespace(spa, vd);

5267 } else if (vd !'= NULL) {

5268 /*

5269 * Normal vdevs cannot be renpved (yet).

5270 *

5271 error = SET_ERROR(ENOTSUP);

5272 } else {

5273 /*

5274 * There is no vdev of any kind with the specified guid.
5275 *

5276 error = SET_ERROR(ENCENT) ;

5277 1

5279 if (!locked)

5280 return (spa_vdev_exit(spa, NULL, txg, error));

5282 return (error);

5283 }

5285 /*

5286 * Find any device that’s done replacing, or a vdev marked 'unspare’ that's
5287 * currently spared, so we can detach it.

4633 * current spared, so we can detach it.

5288 */

5289 static vdev_t

*

5290 spa_vdev_resilver_done_hunt (vdev_t *vd)

new usr/src/uts/comon/fs/zfs/spa.c 13

5291 {
5292

5294
5295
5296
5297
5298

5300
5301
5302
5303
5304
5305
5306
5307
5308
5309

5311
5312

5314
5315
5316
5317
5318

5320
5321
5322
5323
5324
5325

5327
5328
5329
5330
5331
5332
5333
5334
5335

5337
5338
5339
5340
5341

5343
5344
5345
5346
5347
5348
5349
5350
5351

5353
5354
5355
5356

vdev_t *newd, *oldvd;

for (int ¢ = 0; ¢ < vd->vdev_children; c++) {
ol dvd = spa_vdev_resilver_done_hunt (vd->vdev_child[c]);
if (oldvd !'= NULL)
return (ol dvd);

Check for a conpleted replacenent. W always consider the first
vdev in the list to be the ol dest vdev, and the last one to be

the newest (see spa_vdev_attach() for how that works). In

the case where the newest vdev is faulted, we will not automatically
renove it after a resilver conpletes. This is OKas it will require
user intervention to determ ne which disk the adm n wishes to keep.

B
-~

(vd->vdev_ops == &vdev_repl aci ng_ops) {
ASSERT(vd->vdev_children > 1);

newd
ol dvd

= vd->vdev_chi | d[vd- >vdev_children - 1];

= vd->vdev_chil d[0] ;

if (vdev_dtl_enpty(newd, DTL_M SSING &&
vdev_dt| _enpty(newd, DTL_QUTAGE) &&
Ivdev_dt| _required(ol dvd))

return (ol dvd);

}

/*
* Check for a conpleted resilver with the "unspare’ flag set.
*
/
if (vd->vdev_ops == &vdev_spare_ops) {
vdev_t *first = vd->vdev_child[0];
vdev_t *last = vd->vdev_child[vd->vdev_children - 1];

if (last->vdev_unspare) {
oldvd = first;

newd = | ast;
} else if (first->vdev_unspare) {
oldvd = | ast;
newd = first;
} else {
ol dvd = NULL
}

if (oldvd !'= NULL &&
vdev_dt| _enpty(newd, DTL_M SSING &&
vdev_dt| _enpty(newd, DTL_QUTAGE) &&
I'vdev_dtl _required(ol dvd))
return (ol dvd);

If there are nore than two spares attached to a di sk,
and those spares are not required, then we want to
attenpt to free themup now so that they can be used
by other pools. Once we’'re back down to a single
*/di sk+spare, we stop renoving them

*

if (vd->vdev_children > 2) {

newd = vd->vdev_child[1];

* ok kb

if (newd->vdev_isspare && | ast->vdev_isspare &&
vdev_dt| _enpty(last, DTL_M SSI NG &&
vdev_dt| _enpty(last, DTL_OUTAGE) &&
I'vdev_dtl _required(newd))

new usr/src/uts/comron/fs/zfs/spa.c

5357
5358
5359

5361
5362

}

return (NULL);
}

__unchanged_portion_omtted_

return (newd);

new usr/src/uts/comon/fs/zfs/spa_config.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
14351 Wed Apr 24 12:44:26 2013

new usr/src/uts/comon/fs/zfs/spa_config.c

3742 zfs comments need cleaner, nore consistent style

Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»

Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

LR

__unchanged_portion_onitted_

318 /*

319 * Generate the pool’s configuration based on the current in-core state.

320 *

321 #endif /* | codereview */

322 * W infer whether to generate a conplete config or just one top-level config
323 * based on whether vd is the root vdev.

324 */

325 nvlist_t *

326 spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats)

327 {

328 nvlist_t *config, *nvroot;

329 vdev_t *rvd = spa- >spa root _vdev;

330 unsi gned | ong hostid =

331 bool ean_t | ocked = B_FALSE,

332 uint64_t split_guid;

334 if (vd == NULL) {

335 vd = rvd

336 | ocked = B_TRUE;

337 spa_conf ig_enter(spa, SCL_CONFI G| SCL_STATE, FTAG RW READER);
338 }

340 ASSERT(spa_config_hel d(spa, SCL_CONFI G| SCL_STATE, RW READER) ==
341 (SCL_CONFI G | SCL_STATE)) ;

343 /*

344 * If txg is -1, report the current value of spa->spa_config_txg.
345 *

346 if (txg == -1ULL)

347 txg = spa->spa_config_txg;

349 VERI FY(nvlist_alloc(&onfig, NV_UNI QUE NAVE, KM SLEEP) == 0);

351 VERI FY(nvlist_add_ui nt 64(config, ZPOOL_CONFI G_VERSI ON,

352 spa_version(spa)) == 0);

353 VERI FY(nvlist_add_string(config, ZPOOL_CONFI G POOL_NAME,

354 spa_name(spa)) == 0);

355 VERI FY(nvl i st_add_ui nt 64(config, ZPOOL_CONFI G POOL_STATE,

356 spa_state(spa)) == 0);

357 VERI FY(nvlist_add_ui nt 64(confi g, ZPOOL_CONFI G POOL_TXG

358 == 0);

359 VERI FY(nvI i st add ui nt 64(config, ZPOOL_CONFI G POOL_GUI D,

360 spa_gui d(spa)) == 0)

361 VERI FY(spa->spa_conmment == NULL || nvlist add strl ng(config,

362 ZPOOL_CONFI G_COWMVENT, spa->spa_comment) == 0);

365 #ifdef _KERNEL

366 hostid = zone_get_hosti d(NULL);

367 #else /* _KERNEL */

368 /*

369 * W're enul ating the systemis hostid in userland, so we can’t use
370 * zone_get _hostid().

371 */

new usr/src/uts/comon/fs/zfs/spa_config.c

372 (void) ddi_strtoul (hw_serial, NULL, 10, &hostid);

373 #endif [* _KERNEL */

374 if (hostid !'= 0)

375 VERI FY(nvli st add ui nt 64(confi g, ZPOOL_CONFI G_HOSTI D,

376 hostid) == 0);

377 }

378 VERI FY(nvlist_add_stri ng(conf| g, ZPOOL_CONFI G_HOSTNAME,

379 ut snane. nodenane) == 0);

381 if (vd !'= rvd)

382 VERI FY(nvl i st _add_ui nt 64(confi g, ZPOOL_CONFI G_TCP_GUI D,
383 vd- >vdev_t op->vdev_guid) == 0);

384 VERI FY(nvl i st_add_ui nt 64(config, ZPOOL_CONFI G GU D,

385 vd- >vdev_gui d) == 0);

386 if (vd->vdev_isspare)

387 VERI FY(nvlist_add_ui nt 64(config, ZPOOL_CONFI G | S_SPARE,
388 1ULL) == 0);

389 if (vd->vdev_islog)

390 VERI FY(nvl I'st_add_uint64(config, ZPOOL_CONFIG.IS_LOG
391 1ULL) == 0);

392 vd = vd- >vdev_t op; /* | abel contains top config */
393 } else {

394 /*

395 * y add the (potentially large) split information
396 * |n he nos config, and not in the vdev |abels

397 */

398 if (spa->spa_config_splitting != NULL)

399 VERI FY(nvlist_add_nvlist(config, ZPOOL_CONFIG SPLIT,
400 spa- >spa_config_splitting) == 0);

401 }

403 I *

404 * Add the top-level config. W even add this on pools which
405 * don’t support holes in the nanespace.

406 */

407 vdev_t op_confi g_generate(spa, config);

409 /*

410 * If we're splitting, record the original pool’s guid.

411 */

412 if (spa->spa_config_splitting != NULL &&

413 nvl i st_| ookup_ui nt 64(spa->spa_config_splitting,

414 ZPOOL_CONFI G SPLIT_GQUID, &split_guid) == 0)

415 VERI FY(nvl i st_add_ui nt 64(config, ZPOOL CONFI G SPLIT_GUI D,
416 split_guid) == 0);

417 }

419 nvroot = vdev_config_generate(spa, vd, getstats, 0);

420 VERI FY(nvlist_add_nvlist(config, ZPOOL_CONFI G VDEV_TREE, nvroot) == 0);
421 nvlist_free(nvroot);

423 /*

424 * Store what’'s necessary for reading the MOS in the | abel.

425 */

426 VERI FY(nvlist_add_nvlist(config, ZPOOL_CONFI G FEATURES FOR_READ,
427 spa- >spa_| abel _features) == 0);

429 if (getstats && spa_|l oad_state(spa) == SPA_LOAD NONE) {

430 ddt _hi stogram t *ddh;

431 ddt _stat_t *dds;

432 ddt _obj ect _t *ddo;

434 ddh = kmem zal | oc(si zeof (ddt_histogramt), KM SLEEP);
435 ddt _get _dedup_hi st ogranm(spa, ddh);

436 VERI FY(nvl i st _add_ui nt 64 array(confl g,

437 ZPOOL_CONFI G_DDT_HI STOGRAM

new usr/src/uts/comon/fs/zfs/spa_config.c

438 (uint64_t *)ddh, sizeof (*ddh) / sizeof (uint64_t)) == 0);
439 kmem free(ddh, sizeof (ddt_histogramt));

441 ddo = kmem zal | oc(si zeof (ddt_object_t), KM SLEEP);

442 ddt _get dedup obj ect _stats(spa, ddo);

443 VERI FY(nvl i st_add_ui nt64_array(config,

444 ZPOOL_CONFI G DDT_OBJ_STATS,

445 (uint64_t *)ddo “sizeof (*ddo) / sizeof (uint64_t)) == 0);
446 kmem free(ddo, sizeof (ddt_object _t));

448 dds = knmem zal | oc(si zeof (ddt_stat_t), KM SLEEP);

449 ddt _get _dedup_stats(spa, dds);

450 VERI FY(nvlist_add_ui nt 64_array(config,

451 ZPOOL_CONFI G DDT_STATS,

452 (uint64_t *)dds, “si zeof (*dds) / sizeof (uint64_t))
453 kmem free(dds, sizeof (ddt_stat t));

454 }

456 if (1ocked)

457 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG;

459 return (config);

460 }

462 [*

463 * Update all disk |abels, generate a fresh config based on the current
464 * in-core state, and sync the global config cache (do not sync the config
465 * cache if this is a booting rootpool).

466 */

467 void

468 spa_config_update(spa_t *spa, int what)

469 {

470 vdev_t *rvd = spa->spa_root_vdev;

471 uint64_t txg;

472 int c;

474 ASSERT(MUTEX_HELD(& pa_nanespace_| ock));

476 spa_config_enter(spa, SCL_ALL, FTAG RWWRI TER);

477 txg = spa_|l Iast _synced_t xg(spa) + 1;

478 if (what == SPA CONFI G UPDATE POOL) {

479 vdev_config_dirty(rvd);

480 } else {

481 /*

482 * If we have top-level vdevs that were added but have
483 * not yet been prepared for allocation, do that now.
484 * (It’'s safe now because the config cache is up to date,
485 * soit will be able to translate the new DVAs.)

486 */See coments in spa_vdev_add() for full details.

487 *

488 for (c = 0; c < rvd->vdev_children; c++) {

489 vdev_t *tvd = rvd->vdev_child[c];

490 if (tvd->vdev_ns_array == 0)

491 vdev_net asl ab_set _si ze(tvd);

492 vdev_expand(tvd, txg);

493 }

494

495 spa_config_exit(spa, SCL_ALL, FTAG;

497 /*

498 * Wit for the nbsconfig to be regenerated and synced.

499 */

500 t xg_wai t _synced(spa->spa_dsl| _pool, txg);

502 /*

503 * Update the global config cache to reflect the new nosconfig.

new usr/src/uts/comon/fs/zfs/spa_config.c

504
505
506

508
509
510 }

*
/
if (!spa->spa_is_root)
spa_config_sync(spa, B_FALSE, what != SPA CONFI G UPDATE_POQL) ;

if (what == SPA_CONFI G_UPDATE_POOL)
spa_config_updat e(spa, SPA CONFI G_UPDATE_VDEVS);

new usr/src/uts/ comon/fs/zfs/spa_msc.c

R R R R

45913 Wed Apr 24 12:44:26 2013
new usr/src/uts/ comon/fs/zfs/spa_msc.c
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>

Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»

Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

LR

____unchanged_portion_onitted_

1335 /*

1336 * This is a stripped-down version of strtoull, suitable only for converting
1337 * | owercase hexadeci mal nunbers that don’t overflow.

1337 * | owercase hexideci mal nunbers that don’t overflow.

1338 */

1339 uint64_t

1340 strtonun(const char *str, char **nptr)

1341 {

1342 uint64_t val = 0;

1343 char c;

1344 int digit;

1346 while ((c = *str) !'="\0") {

1347 if (c>'0 & c <="'9")
1348 digit =c - '0";
1349 else if (c >'a && c <="'1")
1350 digit =10 + ¢ - 'a’;
1351 el se

1352 break;

1354 val *= 16;

1355 val += digit;

1357 str++;

1358 }

1360 if (nptr)

1361 *nptr = (char *)str;

1363 return (val);

1364 }

__unchanged_portion_ontted_

new usr/src/uts/comon/fs/zfs/sys/ddt.h

R R R R

7760 Wed Apr 24 12:44:26 2013
new usr/src/uts/comon/fs/zfs/sys/ddt.h
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>

Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»

Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

LR

__unchanged_portion_onitted_

56 #define DDT_TYPE_CURRENT 0

58 #define DDT_COVPRESS BYTEORDER MASK 0x80
59 #define DDT_COVPRESS_FUNCTI ON_MASK ox7f
61 /*

62 * On-disk ddt entry: key (nane) and physical storage (value).
*

64 typedef struct ddt_key {

65 zi o_cksum t ddk_cksum /* 256-bit block checksum */

66 I*

67 * Encoded with | ogical & physical size, and conpression, as follows:
66 ui nt 64_t ddk_pr op; /* LSIZE, PSIZE, conpression */

67 } ddt_key_t;

69 /*

70 * ddk_prop |ayout:

71 *

68 * Fom o - Fomm - Fomm oo - Fom o - Fomm - R Fom - - Fomm -
69 o 0 | 0 | 0 | conmp | PSI ZE LSl ZE

70 * [- Fomme o [- [B - Fommmmm [Fomm e m
71 */

72 ui nt 64_t ddk_pr op;

73 } ddt_key_t;

75 #endif /* | codereview */

76 #define DDK_GET_LSI ZE(ddk) \

77 BF64_GET_SB((ddk) - >ddk_prop, 0, 16, SPA M NBLOCKSHI FT, 1)

78 #define DDK_SET LSIZE(ddk, x) _ \

79 BF64_SET_SB((ddk) - >ddk_prop, 0, 16, SPA_M NBLOCKSHI FT, 1, X)
81 #define DDK_GET_PSI ZE(ddk) \

82 BF64_GET_SB((ddk) - >ddk_prop, 16, 16, SPA M NBLOCKSHI FT, 1)
83 #define DDK_SET_PS| ZE(ddk, x) _ \

84 BF64_SET_SB((ddk) - >ddk_prop, 16, 16, SPA M NBLOCKSHI FT, 1, x)

86 #define DDK_GET_COMPRESS(ddk) BF64_GET((ddk) - >ddk_prop, 32, 8)
87 #define DDK_SET_COMPRESS(ddk, x) BF64_SET((ddk) - >ddk prop, 32, 8, x)

89 #define DDT_KEY_WORDS (sizeof (ddt_key_ t) / sizeof (uint64_t))
91 typedef struct ddt_phys {

92 dva_t ddp_dva[SPA_DVAS_PER BP] ;
93 ui nt 64_t ddp_refcnt;
94 ui nt 64_t ddp_phys_birth;

95 } ddt_phys_t;
97 enum ddt phys type {

98 PHYS_DI TTO = 0,
99 DDT PHYS_SI NGLE = 1,
100 DDT_PHYS_DOUBLE = 2,
101 DDT_PHYS_TRI PLE = 3,

102 DDT_PHYS_TYPES

new usr/src/uts/comron/fs/zfs/sys/ddt.h

105 /*

106 * In-core ddt entry

107 */

108 struct ddt _entry {

109 dt _key_t dde_key;

110 ddt “phys_t dde_phys[DDT_PHYS_TYPES] ;

111 zio_t *dde_| ead_zi o[DDT_PHYS TYPES] ;

112 voi d *dde_repai r_dat a;

113 enum ddt _t ype dde_t ype;

114 enum ddt _cl ass dde_cl ass;

115 uint8_t dde_| oadi ng;

116 uint8_t dde_| oaded;

117 kcondvar _t dde_cv;

118 avl _node_t dde_node;

119 };

121 /*

122 * In-core ddt

123 */

124 struct ddt {

125 kmut ex_t ddt _| ock;

126 avl _tree_t ddt _tree;

127 avl tree_t ddt _repair_tree;

128 enum zi o_checksum ddt _checksum

129 spa_t *ddt _spa;

130 obj set _t *ddt _os;

131 ui nt 64_t ddt _st at _obj ect;

132 ui nt 64_t ddt —obj ect [DDT TYPES] [DDT_CLASSES] ;

133 ddt _hi stogram t ddt _hi st ograni DDT_TYPES] [DDT CLASSES]

134 ddt _hi stogram t ddt _hi st ogram cache[DDT_TYPES] [DDT CLASSES]

135 ddt _obj ect _t ddt _obj ect _st at s[DDT_TYPES] [DDT_CLASSES] ;

136 avl _node_t ddt _node;

137 };

139 /*

140 * In-core and on-di sk bookmark for DDT wal ks

141 */

142 typedef struct ddt_bookmark {

143 ui nt 64_t ddb_cl ass;

144 ui nt 64_t ddb_t ype;

145 ui nt 64_t ddb_checksum

146 ui nt 64_t ddb_cur sor;

147 } ddt_bookmark_t;

149 /*

150 * Ops vector to access a specific DDT object type.

151 *

152 typedef struct ddt_ops {

153 char ddt_op_nane[32];

154 int (*ddt_op_create)(objset_t *os, uint64_t *object, dnmu_tx_t *tx,
155 bool ean_t prehash);

156 int (*ddt_op_destroy)(objset_t *os, uint64_t object, dmu_tx_t *tx);
157 int (*ddt_op_l ookup) (objset_t *os, uint64_t object, ddt_entry_t *dde)
158 void (*ddt_op_prefetch)(objset_t *os, uint64_t object,

159 ddt _entry_t *dde);

160 int (*ddt_op_| update)(ob] set_t *os, uint64_t object, ddt_entry_t *dde,
161 dmu_tx_t *tx);

162 int (*ddt_op_| rent)ve)(obj set_t *os, uint64_t object, ddt_entry_t *dde,
163 dmu_tx_t *tx);

164 int (*ddt_op_wal k)(ob] set _t *os, uint64_t object, ddt_entry_t *dde,
165 uint64_t *wal k) ;

166 ui nt 64_t (*ddt_op_count)(obj set_t *os, uint64_t object);

167 } ddt_ops_t;
169 #define DDT_NAMELEN 80

new usr/src/uts/comon/fs/zfs/sys/ddt.h

171
172
173
174
175
176
177
178
179
180

182
183
184
185

187

189
190
191
192
193
194
195
196

198

200
201
202
203
204
205

207
208

210
211
212

214
215

217
218
219
220
221
222

224
225

227
228

230

232
233
234
235

extern voi d ddt_obj ect _nane(ddt _t *ddt,
enum ddt _cl ass cl ass, char *nane);
extern int ddt_object_wal k(ddt_t *ddt, enum ddt_type type,
enum ddt _class class, uint64_t *nal k, ddt_entry_t =*dde);
extern uint64_t ddt_object_count (ddt _t *ddt enum ddt _type type,
enum ddt _cl ass cl ass);
extern int ddt_object |nfo(ddt t *ddt, enum ddt _type type,
enum ddt _cl ass cl ass, dnu Obj ect info t *
extern bool ean_t ddt_obj ect _exi st s(ddt _t *ddt,
enum ddt _clTass class);

enum ddt _type type,

enum ddt _type type,

extern void ddt_bp_fill(const ddt_phys_t *ddp, blkptr_t *bp,
uint64_t txg);
extern void ddt_bp_creat e(enum zi o_checksum checksum const ddt_key_t *ddk,
const ddt_phys_t *ddp, blkptr_t *bp);
extern void ddt_key_fill(ddt_key_t *ddk, const blkptr_t *bp);
extern void ddt_phys_fill (ddt_phys_t *ddp, const blkptr_t *bp);
extern void ddt_phys_cl ear (ddt _phys_t *ddp);
extern voi d ddt_phys_addref (ddt _phys_t *ddp);
extern voi d ddt_phys_decref (ddt _phys_t *ddp);
extern void ddt_phys_free(ddt_t *ddt, ddt keyt *ddk, ddt_phys_t *ddp,
uint64_t txg);
extern ddt_phys_t *ddt_phys_sel ect (const ddt_entry_t *dde, const blkptr_t *bp);
extern uint64_t ddt_phys_total refcnt(const ddt_entry_t *dde);
extern void ddt_stat_add(ddt_stat_t *dst, const ddt_stat_t *src, uint64_t neg);
extern voi d ddt_hi st ogram add(ddt _hi stogramt *dst, const ddt_histogramt *src);
extern void ddt_hi st ogram st at (ddt_stat _t *dds, const ddt _hi stogram t *ddh);
extern bool ean_t ddt _hi st ogram enpty(const ddt_hi stogramt *ddh);
extern voi d ddt_get _dedup_obj ect _stats(spa_t *spa, ddt_object _t *ddo)
extern void ddt_get _dedup_hi stogram(spa_t *spa, ddt_histogramt *ddh);
extern void ddt_get _dedup_stats(spa_t *spa, ddt_stat t *dds_total);

extern uint64_t ddt_get_dedup_dspace(spa_t *spa);
extern uint64_t ddt_get_pool _dedup_ratio(spa_t *spa);

extern int ddt_ditto_copi es_needed(ddt_t *ddt,
ddt _phys_t *ddp_willref);
extern int ddt_ditto_copies_present(ddt_entry_t *dde);

ddt _entry_t *dde,

extern size_t ddt_conpress(void *src,
extern void ddt_deconpress(uchar_t *src,

uchar _t *dst,
voi d *dst,

size_t s_| ize_
size_t s_len, size_

extern ddt_t *ddt_sel ect (spa_t *spa,
extern void ddt_enter(ddt_t *ddt);
extern void ddt_exit(ddt_t *ddt);
extern ddt_entry_t *ddt_Tookup(ddt_t *ddt, const blkptr_t *bp, boolean_t add);
extern void ddt_prefetch(spa_t *spa, const blkptr_t *bp);

extern void ddt_renove(ddt _t *ddt, ddt_entry_t *dde);

const bl kptr_t *bp);

extern bool ean_t ddt_cl ass_contai ns(spa_t *spa, enum ddt_cl ass nmax_cl ass,
const bl kptr_t *bp);

extern ddt_entry_t *ddt_repair_start(ddt_t *ddt, const blkptr_t *bp);
extern void ddt_repair_done(ddt_t *ddt, ddt_entry_t *dde);

extern int ddt_entry_conpare(const void *x1, const void *x2);
extern void ddt_create(spa_t *spa);

extern int ddt_load(spa_t *spa);

extern void ddt_unl oad(spa_t *spa)

extern void ddt_sync(spa_t *spa, uint64_t txg);

new usr/src/uts/comron/fs/zfs/sys/ddt.h

236 extern int ddt_wal k(spa_t *spa, ddt_bookmark_t *ddb, ddt_entry_
237 extern int ddt_object_update(ddt_t *ddt, enum ddt_type type,
238 enum ddt _cl ass class, ddt_entry_t *dde, dmu_tx_t *tx);

240 extern const ddt_ops_t ddt_zap_ops;
242 #if def

243 }
244 #endi f

__cpl uspl us

246 #endif /* _SYS DDT_H */

t *dde);

new usr/src/uts/comon/fs/zfs/sys/dnode. h

R R R R

10546 Wed Apr 24 12:44:26 2013
new usr/src/uts/comon/fs/zfs/sys/dnode. h
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»
Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

LR

__unchanged_portion_onitted_

146 typedef struct dnode {
147 I*

148 * Protects the structure of the dnode, including the nunber of levels
149 * of indirection (dn_nlevels), dn_maxblkid, and dn_next_*

148 * dn_struct_rw ock protects the structure of the dnode,

149 * including the nunber of |evels of indirection (dn_nlevels),

150 * dn_nmaxbl ki d, and dn_next _*

150 */

151 krw ock_t dn_struct_rw ock;

153 /* Qur link on dn_objset->0s_dnodes list; protected by os_lock. */
154 l'ist_node_t dn_Ilink;

156 /* imutable: */

157 struct objset *dn_obj set;

158 uint64_t dn_obj ect

159 struct dmu_buf |r'rp| *dn_dbuf ;

160 struct dnode_handl e *dn_handi e;

161 dnode_phys_t *dn_phys; 7* pointer into dn->dn_dbuf->db.db_data */
163 /*

164 * Copies of stuff in dn_phys. They're valid in the open

165 * context (eg. even before the dnode is first synced).

166 * \Where necessary, these are protected by dn_struct_rw ock.

167 */

168 dmu_obj ect _type_t dn_type; /* object type */

169 uint16_t dn_bonusl en; /* bonus length */

170 uint8_t dn_bonust ype; /* bonus type */

171 uint8_t dn_nbl kptr; /* nunber of blkptrs (i mutable) */
172 uint8_t dn_checksum /* ZI O_CHECKSUM type */

173 uint8_t dn_conpress; /* ZI O_COWPRESS type */

174 uint8_t dn_nl evel s;

175 uint8_t dn_i ndbl kshift;

176 uint8_t dn_databl kshift; /* zero if blksz not power of 2! */
177 uint8_t dn_noved; /* Has this dnode been noved? */
178 uint16_t dn_dat abl kszsec; /* in 512b sectors */

179 uint 32"t dn_dat abl ksz; /* in bytes */

180 ui nt64_t dn_maxbl ki d;

181 ui nt8_t dn_next _nbl kptr[TXG_SI ZF] ;

182 uint8_t dn_next_nl evel s| TXG_SI ZE] ;

183 uint8_t dn_next_i ndbl kshi ft [TXG | Si ZE] ;

184 ui nt8_t dn_next_bonust ype[TXG_SI ZE] ;

185 uint8_t dn_rmspill bl k[TXG_SI ZE] ; /* for removing spill blk */
186 uint16_t dn_next_bonusl en[TXG Sl ZE];

187 uint32_t dn_next_bl ksz[TXG SI ZF] ; /* next block size in bytes */
189 /* protected by dn_dbufs_ntx; declared here to fill 32-bit hole */
190 uint32_t dn_dbufs_count; /* count of dn_dbufs */

192 /* protected by os_lock: */

193 l'ist_node_t dn_dirty_|ink[TXG SI ZE] ; /* next on dataset’s dirty */
195 /* protected by dn_ntx: */

196 kmut ex_t dn_nt x;

197
198
199
200
201
202
203
204

206
207
208

210
211

213
214

216

218
219

221
222
223
224
225
226

228
229

new usr/src/uts/comon/fs/zfs/sys/dnode. h

list_t dn_dirty_records[TXG S| ZE] ;

avl _tree_t dn_ranges[TXG Sl ZE] ;

uint64_t dn_all ocat ed_t xg;

uint64_t dn_free_txg;

ui nt64_t dn_assigned_t xg;

kcondvar _t dn_not xhol ds;

enum dnode_di rtycontext dn_dirtyctx;

uint8_t *dn_dirtyctx_firstset; /* dbg: contents neaningl ess */

/* protected by own devices */
refcount _t dn_tx_hol ds;
refcount _t dn_hol ds;

knmut ex_t dn_dbufs_ntx;
list_t dn_dbufs; /* descendent dbufs */
/* protected by dn_struct_rw ock */

struct drmu_buf _i npl *dn_bonus; /* bonus buffer dbuf */
bool ean_t dn_have_spill; /* have spill or are spilling */
/* parent 10 for current sync wite */

zio_t *dn_zio;

/* used in syncing context */

ui nt64_t dn_ol dused; /* old phys used bytes */
uint64_t dn_ol dfl ags; /* old phys dn_flags */
uint64_t dn_ol duid, dn_ol dgid;

ui nt64_t dn_newui d, dn_newgi d;

int dn_id_flags;

/* holds prefetch structure */
struct zfetch dn_zfetch;

230 } dnode_t;

__unchanged_portion_onitted_

new usr/src/uts/comon/ fs/zfs/sys/dsl_pool.h

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
5201 Wed Apr 24 12:44:27 2013

new usr/src/uts/comon/ fs/zfs/sys/dsl _pool.h

3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»
Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

LR

__unchanged_portion_onitted_

73 typedef struct dsl_pool {
/* Immutable */

75 spa_t *dp_spa;

76 struct objset *dp_neta_objset;

77 struct dsl_dir *dp_root_dir;

78 struct dsl_dir *dp_nos_dir;

79 struct dsl_dir *dp_free_dir;

80 struct dsl_dataset *dp_ origi n_snap;

81 uint64_t dp_root_dir_obj;

82 struct taskg *dp_vnrel e taskq,

84 /* No | ock needed - sync context only */

85 bl kptr_t dp_neta_r oot bp;

86 hrtime_t dp_read_over head,

87 ui nt64_t dp_t hroughput ; I bytes per mllisec */
88 U|n164tdpwr|tellmt

89 uint64_t dp_tnp_userref s_obj ;

90 bpobj _t dp_free_bpobj;

91 uint64_t dp_bptree_obj;

92 uint64_t dp_enpty_bpobj;

94 struct dsl_scan *dp_scan;

96 /* Uses dp_lock */

97 knmut ex_t dp_l ock;

98 uint64_t dp_space_towite[TXG SI ZE] ;

99 uint64_t dp_tenpreserved] TXG SI ZE] ;

100 uint64_t dp_nos_used_del ta;

101 uint64_t dp_nos_conpressed_del ta;

102 uint64_t dp_nos_unconpressed_del ta;

104 /* Has its own |ocking */

105 tx_state_t dp_tx;

106 txg_list_t dp_dirty_datasets;

107 txg_list_t dp_dirty_zil ogs;

108 txg_list_t dp_dirty_dirs;

109 txg_list_t dp_sync_tasks;

111 I*

112 Protects administrative changes (properties, nanespace)
113

114 #endif /* | codereview */

115 * It is only held for wite in syncing context. Therefore
116 * syncing context does not need to ever have it for read,
117 * nobody el se could possibly have it for wite.
118 */

119 rrw ock_t dp_config_rw ock;

121 zfs_all _blkstats_t *dp_bl kstats;

122 } dsl _pool _t;

124 int dsl_pool _init(spa_t *spa, uint64_t txg, dsl_pool _t **dpp);
125 int dsl _pool _open(dsl _pool _t *dp);

since

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

149

151
152
153
154
155
156
157
158

160
161
162

**)-

new usr/src/uts/comon/ fs/zfs/sys/dsl_pool.h
voi d dsl _pool _cl ose(dsl _pool _t *dp);
dsl _pool _t *dsl _pool _create(spa_t *spa, nvlist_t *zplprops, uint64_t txg);
voi d dsl _pool _sync(dsl _pool _t *dp, uint64_t txg);
voi d dsl| _pool _sync_done(dsl| _pool _t *dp, uint64_t txg);
i nt dsl_pool _sync_cont ext (dsl _pool _t *dp);
uint 64_t dsl _pool _adj ust edsi ze(dsl _pool _t *dp, bool ean_t netfree);
uint 64_t dsl _pool _adj ust edfree(dsl _pool _t *dp, bool ean_t netfree);
int dsl_pool _tenpreserve_space(dsl _pool _t *dp, uint64_t space, dmu_tx_t *tx);
voi d dsl| _pool _tenpreserve_cl ear (dsl _pool _t *dp, int64_t space, dnu_tx_t *tx);
voi d dsl _pool _nenory_pressure(dsl _pool _t *dp) ;
voi d dsl _pool “wi |l use_space(dsl pool t *dp, int64_t space, dmu_tx_t *tx);
voi d dsl _free(dsl _pool _t *dp, uint64_t txg, const blkptr_t *bpp);
void dsl _free_sync(zio_t *pio, dsl_pool _t *dp, uint64_t txg,
const bl kptr_t *bpp);
voi d dsl _pool _create_origin(dsl_pool _t *dp, dmu_t x_t *tx);
voi d dsl _pool _upgrade_cl ones(dsl_pool _t *dp, dmu_tx t *tx);
voi d dsl _pool _upgrade_dir_cl ones(dsl _pool _t *dp, dmu_tx_t *tx)
voi d dsl _pool _nps_di duse space(dsl _pool _t *dp,
int64_t used, int64_t conp, int64_t unconp);
voi d dsl _pool _ confi g_enter(dsl _pool _t *dp, void *tag);
voi d dsl _pool _config_exit(dsl_pool _t *dp, void *tag);
bool ean_t dsl _pool _confi g_hel d(dsl _pool _t *dp);
taskq_t *dsl _pool _vnrel e_taskq(dsl _pool _t *dp);
int dsl _pool _user_hol d(dsl _pool _t *dp, uint64_t dsobj,
const char *tag, uint64_t now, dnmu_tx_t *tx);
int dsl _pool _user_rel ease(dsl _pool _t *dp, uint64_t dsobj,
const char *tag, dmu_tx_t *tx);
voi d dsl| _pool _cl ean_t np_userrefs(dsl_pool _t *dp);
int dsl_pool open_special _dir(dsl_pool t *dp, const char *name, dsl _dir_t
int dsl_pool _hol d(const char *nanme, void *tag, dsl_pool _t **dp);
voi d dsl _pool _rel e(dsl _pool _t *dp, void *tag);
#i fdef __ cpl usplus
}
#endi f
#endif /* _SYS _DSL_POOL_H */

164

new usr/src/uts/comon/fs/zfs/sys/sa_inpl.h

R R R R

8379 Ved Apr

24 12:44:27 2013

new usr/src/uts/comon/fs/zfs/sys/sa_inpl.h

3742

Submi tted by:
Submi tted by:

zfs comments need cleaner, nore consistent style
W1l Andrews <wi || a@pectral ogi c. con>
Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»
Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

LR

151
152
153
154
155
156
157
158

160
161
162
163
164
153
154
155
156

158
159
160
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

185
186
187
188
189
190
191

193
194
195
196

__unchanged_portion_onitted_

/*

* header for all bonus and spill buffers.
*

#endif /* | codereview */

* The header has a fixed portion with a variable nunmber

* of "lengths" depending on the nunber of vari abl e sized
* attribues which are determ ned by the "l ayout nunber”
*/

#define SA_MAG C 0x2F505A /* ZFS SA */

typedef struct sa_hdr_phys {
/ui nt32_t sa_mmgic;
*
* Encoded with hdrsize and | ayout nunber as foll ows:
uintl6_t sa_layout_info; /* Encoded with hdrsize and | ayout nunber */
uint16_t sa_lengths[1]; /* optional sizes for variable length attrs */
I* ... Datafollowsthelengths *

} sa_hdr phys t;

/*
* sa_hdr_phys -> sa_l ayout _info
*
* 16 10 0
[RSN +
* | hdrsz |Iayout |
L S LR +
*
* Bits 0-10 are the |ayout nunber
* Bits 11-16 are the size of the header.
* The hdrsize is the nunber * 8
*
* For exanpl e.
* hdrsz of 1 ==> 8 byte header
* 2 ==> 16 byte header
*
*/

uint16_t sa_l ayout_info;

uint16_t sa_lengths[1]; /* optional sizes for variable length attrs */

/* ... Data fol lows the lengths. */
} sa_hdr_phys_t;
#endif /¥ 1 codereview */
#defi ne SA_HDR _LAYOUT_NUM hdr) BF32_GET(hdr->sa_l ayout _info, 0, 10)
#define SA_HDR Sl ZE(hdr) BF32_GET_SB(hdr->sa_l ayout _info, 10, 6, 3, 0)
#define SA_HDR_LAYOUT | NFO ENCODE(X, num size) \
{\
BF32_SET_SB(x, 10, 6, 3, 0, size); \
BF32_SET(x, 0, 10, num; \
}
typedef enum sa_buf type {
SA_BONUS = T,
SASPILL = 2

} sa_buf _type_t;

new usr/src/uts/comon/fs/zfs/sys/sa_inpl.h

198
199
200
201
202
203
204

206
207
208
209
210

212
213
214
215
216
217
218
219
220

222
223

225
226
227

229
230

232
233

235
236

240
241
242

245

247
248
249

251
252
253
254
255

257
258
259
260
261
262

typedef enum sa_data_op {

SA_LOOKUP,
SA_UPDATE,
SA_ADD,
SA_REPLACE,
SA_REMOVE
} sa_data_op_t;
/*
* (Opaque handl e used for npst sa functions
*
* This needs to be kept as small as possible.
*
/
struct sa_handl e {
kmut ex_t sa_| ock;
dmu_buf _t *sa_bonus;
drmu_buf _t *sa_spill;
obj set _t *sa_os;
voi d *sa_userp;
sa_i dx_tab_t *sa_bonus_t ab; /* idx of bonus */
sa_idx_tab_t *sa_spill_tab; /* only present if spill activated */
e
#define SA _GET_DB(hdl, type) \
(dmu_buf _inmpl _t *)((ty == SA BONUS) ? hdl ->sa_bonus : hdl->sa_spill)
#define SA GET_HDR(hdl, type) \
((sa_hdr physt *) ((dmu_buf _inpl _t *)(SA_GET_DB(hdl, \
type)) - >db. db_dat a))
#define SA | DX_TAB GET(hdl, type) \
(type == SA_ BONUS ? hdl - >sa_bonus_tab : hdl->sa_spill_tab)
#define 1'S_SA BONUSTYPE(a) \
((a == DMJ_OT_SA) ? B_TRUE : B _FALSE)
#def i ne SA_BONUSTYPE_FROM DB(db) \
(dmu_get _bonust ype((dmu_buf _t *)db))
#defi ne SA BLKPTR_SPACE (DN_MAX BONUSLEN - sizeof (blkptr_t))
#define SA_LAYOUT_NUM x, type) \
((T1S_SA BONUSTYPE(type) ? 0 : (((1S_SA BONUSTYPE(type)) && \
((SA_HDR_LAYQUT_NUM X)) == 0)) ? 1 : SA HDR LAYQUT_NUMX))))
#define SA REG STERED_LEN(sa, attr) sa->sa_attr_table[attr].sa_|length
#define SA ATTR LEN(sa, idx, attr, hdr) ((SA REG STERED LEN(sa, attr) == 0) ?\
hdr - >sa_| Iengths[TCXZ LEN IDX(|dx >sa_idx_tab[attr])] : \
SA_REG STERED LEN(sa, attr))
#define SA SET_HDR(hdr, num size) \
\
hdr->sa_magic = SA MAG C; \
SA_HDR LAYOQUT_| NFO_ENCODE(hdr - >sa_| ayout _i nfo, num size); \
}
#define SA ATTR I NFQ(sa, idx, hdr, attr, bulk, type, hdl) \
{\
bul k. sa_size = SA_ATTR LEN(sa, idx, attr, hdr); \
bul k. sa buftype = type;
bul k. sa_addr =
(voi d *)((w ntptr_t) TOC OFF(i dx->sa_idx_tab[attr]) + \

new usr/src/uts/comon/fs/zfs/sys/sa_inpl.h

263 (uintptr_t)hdr); \

264 }

266 #define SA HDR SI ZE MATCH LAYQUT(hdr, th) \

267 (SA_HDR _SI ZE(hdr) == (sizeof (sa_hdr_phys_t) +\

268 (tb->lot_var_sizes > 1 ? P2ROUNDUP((tb->lot_var_sizes - 1) * \
269 si zeof (uintl6_t), 8) : 0)))

271 int sa_add_inpl (sa_handle_t *, sa_attr_type_t,
272 uint32_t, sa data_locator_t, void *, dmu_tx_t *);

274 void sa_register_update_cal |l back_| ocked(objset_t *, sa update_cb_t *);
275 int sa_size_|locked(sa_handle_t *, sa_ attr_type_t, int *);

277 void sa_default_locator(void **, uint32_t *, uint32_t, boolean_t, void *);
278 int sa_attr_size(sa_os_t *, sa_idx_tab_t *, sa_ attr_type_t,
279 uint16_t *, sa_hdr_phys_t *);

281 #ifdef _ cplusplus
282 extern "C' {
283 #endi f

285 #ifdef _ cplusplus
286 }
287 #endi f

289 #endif /* _SYS SA IMPL_H */

new usr/src/uts/comon/ fs/zfs/sys/spa_inpl.h

R R R R

10869 Wed Apr 24 12:44:27 2013

new usr/src/uts/comon/fs/zfs/sys/spa_inpl.h
3742 zfs comments need cl eaner,
Submi tted by:
Submi tted by:
Revi ewed by:
Revi ewed by:
Revi ewed by:

nore consistent style
W1l Andrews <wi || a@pectral ogi c. con>
Al an Soners <al ans@pectral ogi c. con>
Mat t hew Ahrens <mahr ens@lel phi x. con»

George W son <george. wi | son@lel phi x. com>

Eric Schrock <eric.schrock@lel phi x. con>

LR

__unchanged_portion_onitted_

115 struct spa {

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

* Fi el ds protected by spa_nanespace_| ock.
*/

char spa_nane[MAXNAVELEN] ;
char *spa_comment ;

avl _node_t spa_avl ;

nvlist_t *spa_config;

nvlist_t *spa_config_syncing;
nvlist_t *spa_config_splitting;
nvlist_t *spa_l oad_i nf o;

ui nt 64_t spa_config_txg;

int spa_sync_pass;

pool _state_t spa_state;

I nt spa_i nj ect _ref;
uint8_t spa_sync_on;

spa_ | oad_state_t spa_l oad_state;

ui nt 64_t spa_ |n"port flags;

spa_t askqgs_t spa_zi o_t askq[ZI O_TYPES]
dsl _pool _t *spa_dsl _pool ;

bool ean_t spa_is_initializing;

met asl ab_cl ass_t *spa_nor nal

met asl ab_cl ass_t *spa_l og_cl ass;

ui nt 64_t spa_first_txg;

ui nt 64_t spa_final _txg;

ui nt64_t spa_freeze_txg;

ui nt 64_t spa_| oad_max_t xg;

ui nt 64_t spa_cl ai m max_t xg;
tinmespec_t spa_l oaded_ts;

obj set _t *spa_net a_obj set;
txg_list_t spa_vdev_txg_list;
vdev_t *spa_r oot _vdev;

ui nt 64_t spa_config_guid;
uint64_t spa_| oad_gui d;

ui nt 64_t spa_l ast _synced_gui d;
list_t spa_config_dirty_list;
list_t spa_state_dirty_list;

spa_aux_vdev_t spa_spares;
spa_aux_vdev_t spa_l 2cache;

nvlist_t *spa_| abel _features;

ui nt 64_t spa_confi g_object;

ui nt 64_t spa_config_generation;
ui nt 64_t spa_synci ng_t xg;

bpobj _t spa_def erred_bpobj ;
bplist_t spa_free_bpli st[TXG S| ZE] ;
uber bl ock_t spa_ubsync;

uber bl ock_t spa_uber bl ock;

bool ean_t spa_extreme_rew nd;
uint 64_t spa_l ast _i o;

kmut ex_t spa_scrub_| ock;

ui nt64_t spa_scrub_inflight;
kcondvar _t spa_scrub_io_cv;
uint8_t spa_scrub_active;

uint8_t spa_scrub_type;

N % % 56 ok ok ok F % % % % o % 3k

pool nane */

comment */

node in spa_nanmespace_avl */

| ast synced config */

currently syncing conflg */

config for splitting */

info and errors fromload */

txg of last config change */

iterate-to-convergence */

pool state */

Injection references */

sync threads are running */

current | oad operation */
ort specific flags */

i mp
| O_TASKQ TYPES] ;

true while opening pool */
normal data class */
intent log data class */

first txg after spa_open() */

txg of export/destroy */
freeze pool at this txg */
best initial ub_txg */

hi ghest claimed birth txg */
1st successful open time */

copy of dp->dp_neta_objset */

per-txg dirty vdev list */
top-1evel vdev container */
config pool guid */
spa_load initialized guid */
| ast synced guid */

vdevs with dirty config */
vdevs with dirty state */
hot spares */

L2ARC cache devices */
Features for reading MXS */

MOS obj ect for pool config */

confi g generation nunber */
txg currently syncing */
deferred-free bplist */

/* bplist of stuff to free */

| ast synced uberbl ock */
current uberblock */

rewi nd past deferred frees */
I bolt of last non-scan I/O */

resilver/scrub | ock */
in-flight scrub 1/GCs */
scrub I/O conpletion */
active or suspended? */
type of scrub we’'re doing */

new usr/src/uts/comon/ fs/zfs/sys/spa_inpl.h

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

ui nt 8_t
uint8_t
ui nt 8_t
ui nt64_t
ui nt 64_t
kmut ex_t
kt hread_t

int

kcondvar _t
uint16_t

char

ui nt 64_t

kmut ex_t
kcondvar _t
uint8_t
uint8_t
bool ean_t
bool ean_t

int
int

spa_l og_state_t
ui nt 64_t

ddt _t

ui nt64_t
ui nt 64_t
ui nt 64_t
ui nt 64_t
kmut ex_t
kmut ex_t
kcondvar _t

spa_scrub_fini shed;
spa_scrub_started,;
spa_scrub_reopen;
spa_scan_pass_start;
spa_scan_pass_exan]
spa_async_| ock;
*spa_async_t hr ead;
spa_async_suspended;
spa_async_cv;
spa_async_t asks;
*spa_root;

spa_ena,

spa_| ast _open_fail ed;
spa_| ast _ubsync_t xg;

spa_l ast _ubsync_txg_ts;

spa_l oad_t xg;

spa_|l oad_txg_ts;
spa_|l oad_neta_errors;
spa_l oad_data_errors;
spa_verify_m n_txg;
spa_errlog_| ock;
spa_errlog_| ast;
spa_errl og_scrub;
spa_errlist_| ock;
spa_errlist_|ast;
spa_errlist scrub
spa_defl at e}
spa_history;
spa_history_| ock;
*spa_pendi ng_vdev;
spa_props_| ock;

spa_pool _props_obj ect;

spa_boot fs;

spa_f ai | node;
spa_del egati on;
spa_config_list;
*spa_async_zi o_root;

*spa_suspend_zi o_r oot ;

spa_suspend_| ock;
spa_suspend_cv;
spa_suspended;
spa_cl al m ng;
spa_debug;

spa_i s_root;
spa_m nref;
spa_node;

spa_|l og_state;
spa_aut oexpand;

e e e e e e e e e —

I I T T T i T T S R

indicator to rotate logs */
started since |ast boot */
scrub doi ng vdev_reopen */
start time per pass/reboot */
exam ned bytes per pass */
protect async state */
thread doing async task */
async tasks suspended */
wait for thread_exit() */
async task mask */
alternate root directory */
spa-wi de ereport ENA */
error if last open failed */
"best" uberbl ock txg *
tinmestanp fromthat ub */
ub txg that |oaded */
timestanp fromthat ub */
verify netadata err count */
verify data err count */
start txg of verify scrub */
error log lock */

| ast error |og object */
scrub error | og object */
error list/ereport lock */
last error list */

scrub error list */

shoul d we deflate? */

hi story object */

history | ock */

pendi ng vdev additions */
property lock */

obj ect for properties */
default boot filesystem*/
failure node for the pool */
del egation on/off */
previous cache file(s) */
root of all async I/O */
root of all suspended I1/0 */
protects suspend_zio_root */
notification of resume */
pool is suspended */

pool is doing zil_claim)
debug enabl ed? */

pool is root */

num refs when first opened */
FREAD | FWRI TE */

log state */

I un expansi on on/off */

spa_ddt [ZI O CHECKSUM FUNCTIONS]; / in-core DDTs */

spa_ddt _stat _obj ect;
spa_dedup_di tto;
spa_dedup_checksum
spa_dspace;
spa_vdev_top_| ock;
spa_proc_| ock;
spa_proc_cv;

spa_proc_state_t spa_proc_state;

struct proc
uint64_t
bool ean_t

*spa_proc;

spa_di d;

spa_aut or epl ace;
spa_vdev_| ocks;
spa_creation_version;

spa_prev_sof tware_versi o
spa_feat_for_wite_obj;
spa_feat_for_read_obj;

spa_f eat _desc_obj;

B 2 Ik

~==5SSTS ST ST SSSSsS

EE

DDT statistics */

dedup ditto threshold */
default dedup checksum */
dspace in normal class */
dueling offline/remove */
protects spa_proc* */
spa_proc_state transitions */
see definition */

"zpool - pool name" process */
if procp !'=p0, did of t1 */
aut orepl ace set in open */

| ocks grabbed */

version at pool creation */
/* See ub_software_version */
required to wite to pool */
required to read from pool */
Feature descriptions */

new usr/src/uts/comon/ fs/zfs/sys/spa_inpl.h

235
236
237
238
239
240
241
242
242
243
244
245
246
247
248
249

cyclic_id_t spa_deadman_cyci d; /* cyclic id */

ui nt 64_t spa_deadman_cal | s; /* nunber of deadman calls */
ui nt 64_t spa_sync_startting; /* starting time fo spa_sync */
ui nt 64_t spa_deadman_syncti nme; /* deadman expiration tiner */
kmut ex_t spa_i okst at _| ock; /* protects spa_iokstat_* */
struct kstat *spa_i okst at ; /* kstat of io to this pool */
/*

*

*
*
*
*

*/

spa_refcount & spa_config_lock nust be the |ast elenents
spa_refcnt & spa_config_lock nust be the |ast elenents
because refcount_t changes size based on conpilation options.
In order for the MDB nodule to function correctly, the other
fields nmust remain in the same |ocation.

spa_config_lock_t spa_config_|lock[SCL_LOCKS]; /* config changes */
refcount _t spa_refcount; /* nunber of opens */

__unchanged_portion_omtted_

new usr/src/uts/comon/ fs/zfs/sys/space_nap. h

R R R R

6907 Wed Apr 24 12:44:28 2013

new usr/src/uts/comon/ fs/zfs/sys/space_nap. h

3742 zfs comments need cl eaner,
Submi tted by: W1
Submi tted by:

nore consistent style
Andrews <wi | | a@pectral ogi c. con>
Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»
Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

LR

87 /*

88 * debug entry

89 *

90 * 1 3 10 50

91 * L ---4-------- e R e i .
92 * | 1| action | syncpass | txg (lower bits) |
93 % e eeemeee e B R L ’
94 * 63 62 60 59 50 49 0
95 *

96 *

97 *

97 * non-debug entry

98 *

99 * 1 47 1 15

I e R .
101 * | O] of fset (smshift units) | type | run |
102 % e oo ’
103 * 63 62 17 16 15 0
104 */

106 /* Al this stuff takes and returns bytes */

107 #defi ne SM RUN_DECODE(x) (BF64_DECODE(x, 0, 15) + 1)

108 #define SM_RUN_ENCODE(x) BF64_ENCODE((x) - 1, 0, 15)

109 #define SM TYPE_DECODE(X) BF64_DECODE(X, 15, 1)

110 #define SM TYPE_ENCODE(x) BF64_ENCODE(x, 15, 1)

111 #define SM OFFSET_DECODE(x) BF64_DECCDE(x, 16, 47)

112 #define SM OFFSET_ENCODE(x) BF64_ENCCDE(x, 16, 47)

113 #define SM _DEBUG DECODE(x) BF64_DECODE(x, 63, 1)

114 #define SM DEBUG _ENCODE(x) BF64_ENCODE(x, 63, 1)

116 #defi ne SM DEBUG ACTI ON_DECODE(x) BF64_DECODE(x, 60, 3)

117 #define SM DEBUG ACTI ON_ENCODE(x) BF64_ENCODE(x, 60, 3)

119 #define SM DEBUG_SYNCPASS_DECCDE(x) BF64_DECODE(x, 50, 10)

120 #define SM DEBUG_SYNCPASS_ENCCDE(x) BF64_ENCODE(x, 50, 10)

122 #define SM DEBUG TXG_DECODE(x) BF64_DECCDE(x, 0, 50)

123 #define SM_DEBUG_ TXG_ENCODE(x) BF64_ENCODE(x, 0, 50)

125 #define SM RUN_MAX SM_RUN_DECODE(~OULL)

127 #define SM ALLOC 0x0

128 #define SM FREE 0x1

130 /*

131 * The data for a given space nmap can be kept on bl ocks of any size.
132 * Larger blocks entail fewer i/o operations, but they also cause the
133 * DMJ to keep nore data in-core, and also to waste nore i/o bandwi dth
134 * when only a few bl ocks have changed since the last transaction group.
135 * This could use a lot nore research, but for now, set the freelist
136 * block size to 4k (2712).

137 *

138

#def i

__unchanged_portion_onitted_

ne SPACE_MAP_BLOCKSHI FT 12

new usr/src/uts/comon/ fs/zfs/sys/space_nap. h

140

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

159
160
161
162

164
165
166
167

169
170
171
172

174
175
176
177
178
179
180
181

183

extern void
extern void
extern void

extern void
extern void
extern void

extern

extern
extern
extern
extern

extern

#i f def
184 }
__unchanged_portion_omtted_

uint8_t shift,

uint64_t start,

extern space_seg_t

uint64_t size,

space_map_func

space_map_func

uint8_t maptype,

space_map_obj _t

obj set_t *os, d

uint64_t start,

__cplusplus

kmut ex

space_map_i nit(void);
space_map_fini (void);
space_map_creat e(space_nmap_t *sm uint64_t start,

t *1p);

uint64_t size);

*space_map_fi nd(space_nmap_t

avl _ind

_t *func,

_t *func,

space_|

*sno,

m_tx_t

space_nap_destroy(space_map_t *sm;
space_map_add(space_map_t *sm uint64_t start,
space_map_renove(space_nmap_t *sm uint64_t start,
extern bool ean_t space_nap_cont ai ns(space_nap_t

ex_t *wherep)

extern voi d space_nmap_swap(space_nap_t
extern voi d space_map_vacat e(space_nap_t *sm
space_map_t
extern void space_map_wal k(space_map_t *sm
space_map_

map_obj _t *

obj set _t *os,

extern void space_mmp_truncat e(space_map_obj _

*tX);

extern void space_nap_ref_create(avl _t
extern void space_map_ref_destroy(avl
extern void space_map_ref_add_seg(avl
uint64_t end,
extern void space_map_ref_add_nap(avl
space_map_t *sm
extern void space_nap_ref _generate_nap(avl
space_map_t *sm ;

int64_t refcnt);

int64_t mnref)

**nsrc,
*ndest) ;
t *ndest);

extern void space_nmap_| oad_wai t (space_map_t *sn);
extern int space_nap_| oad(space_map_t *sm space_nmap_ops_t *ops,

sno, obj set

voi d space_map_unl oad(space_map_t *sm;

*sm

typedef void space_map_func_t(space_map_t *sm uint64_t start,

_t Fos);

*sm uint64_t

drmtxt

ree_t *t);

_tree_t *t);
_tree_t *t,
inté4_t refcnt);
_tree_t *t,

_tree_t

start,

voi d space_map_sync(space_map_t *sm uint8_t naptype,

*tx);

“*sno,

*t

uint64_t size);

uint64_t size,

uint64_t size);

uint64_t size);

*sm uint64_t start,

space_map_t **ndest);

uint64_t space_map_al | oc(space_map_t *sm uint64_t size);
voi d space_nap_cl ai n{space_map_t *sm uint64_t start,
voi d space_nap_free(space_nmap_t
uint 64_t space_map_nexsi ze(space_nmap_t *sn);

uint64_t size);
uint64_t size);

new usr/src/uts/comon/ fs/zfs/sys/unique.h 1 new usr/src/uts/comon/ fs/zfs/sys/unique.h

R R R R 56

}
1631 Wed Apr 24 12:44:28 2013 __unchanged_portion_onitted_
new usr/src/uts/comon/ fs/zfs/sys/unique.h
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>

Submi tted by: Al an Soners <al ans@pectral ogi c. con>
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»
Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>
EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEEEREEEERERERERESRESRESRESESESESE]
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific | anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets “[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 =
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2007 Sun Mcrosystens, Inc. All rights reserved.
. !
*

Use is subject to license terms.
/

26 #ifndef _SYS_UNIQUE H
27 #define “SYS_UNI QUE H

29 #pragne ident " %YW % % %E% SM "
31 #include <sys/zfs_context.h>

33 #ifdef __cplusplus

34 extern "C' {

35 #endi f

37 /* The nunber of significant bits in each unique value. */
38 #define UNI QUE_BITS 56

40 voi d unique_init(void);
41 voi d uni que_fini(void);

43 [*

44 * Return a new unique value (which will not be uniquified against until
45 * it is unique_insert()-ed).

45 * jt is unique_insert()-ed.

46

47 uint64_t unique_create(void);

49 /* Return a unique value, which equals the one passed in if possible. */
50 uint64_t unique_insert(uint64_t value);

52 /* Indicate that this value no |onger needs to be uniquified against. */
53 voi d uni que_renove(ui nt64_t val ue);

55 #ifdef __cplusplus

new usr/src/uts/comon/ fs/zfs/sys/vdev_inpl.h

R R R R

11454 Wed Apr 24 12:44:28 2013
new usr/src/uts/comon/ fs/zfs/sys/vdev_inpl.h
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>

Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»

Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

LR

____unchanged_portion_onitted_

242 | *

243 * vdev_dirty() flags

244 =/

245 #define VDD _METASLAB 0x01
246 #define VDD _DTL 0x02

248 |* O fset of enbedded boot |oader region on each |abel */

249 #define VDEV_BOOT_OFFSET (2 * sizeof (vdev_label _t))

250 #endif /* ! codereview */

251 [*

252 * Size of enbedded boot |oader region on each | abel.

248 * Size and offset of enbedded boot | oader regi on on each |abel.

254

251 #defi ne VDEV_BOOT_OFFSET (2 * sizeof (vdev_label_t))

255 #define VDEV_BOOT_SI ZE (7ULL << 19) [* 3.5M*/
257 [*

258 * Size of label regions at the start and end of each |eaf device.
259 */

260 #define VDEV_LABEL_START_SIZE (2 * sizeof (vdev_|abel _t) + VDEV_BOOT_SI ZE)

261 #define VDEV_LABEL_END SIZE (2 * sizeof (vdev_label _t))
262 #define VDEV_LABELS 4
263 #defi ne VDEV_BEST_LABEL VDEV_LABELS

265 #define VDEV_ALLOC LOAD
266 #define VDEV_ALLOC_ADD

267 #define VDEV_ALLOC_SPARE
268 #define VDEV_ALLOC L2CACHE
269 #define VDEV_ALLOC_ROOTPOOL
270 #define VDEV_ALLOC SPLIT
271 #define VDEV_ALLOC ATTACH

COUBRWNEFLO

273 | *
274 * Alocate or free a vdev
275 */

276 extern vdev_t *vdev_all oc_comon(spa_t *spa, uint_t id, uint64_t guid,

277 vdev_ops_t *ops);

278 extern int vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *config,
279 vdev_t *parent, uint_t id, int alloctype);

280 extern void vdev_free(vdev_t *vd);

282 | *

283 * Add or renove children and parents

284 */

285 extern void vdev_add_child(vdev_t *pvd, vdev_t *cvd);

286 extern void vdev_renove_chil d(vdev_t *pvd, vdev_t *cvd);

287 extern void vdev_conpact _children(vdev_t *pvd);

288 extern vdev_t *vdev_add_parent (vdev_t *cvd, vdev_ops_t *ops);
289 extern void vdev_renove_parent (vdev_t *cvd);

291 /*
292 * vdev sync |load and sync
293 */

253 * The total size of the first two labels plus the boot area is 4MB.
*
/

new usr/src/uts/comon/fs/zfs/sys/vdev_inpl.h

294 extern void vdev_| oad_| og_state(vdev_t *nvd, vdev_t *ovd);
295 extern bool ean_t vdev_| og_state_valid(vdev_t *vd);

296 extern void vdev_| oad(vdev_t *vd);

297 extern void vdev_sync(vdev_t *vd, uint64_t txg);

298 extern void vdev_sync_done(vdev_t *vd, uint64_t txg);

299 extern void vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg);

301 /*
302 * Available vdev types.
303 */

304 extern vdev_ops_t vdev_root _ops;

305 extern vdev_ops_t vdev_mirror_ops;
306 extern vdev_ops_t vdev_repl aci ng_ops;
307 extern vdev_ops_t vdev_ral dz_ops;
308 extern vdev_ops_t vdev_di sk_ops;

309 extern vdev_ops_t vdev_fil e_ops;

310 extern vdev_ops_t vdev_m ssing_ops;
311 extern vdev_ops_t vdev_hol e_ops;

312 extern vdev_ops_t vdev_spare_ops;

314 /| *
315 * Conmon size functions
316 */

317 extern uint64_t vdev_defaul t _asize(vdev_t *vd, uint64_t psize);
318 extern uint64_t vdev_get_min_asize(vdev_t *vd);
319 extern void vdev_set_m n_asi ze(vdev_t *vd);

321 /*
322 * dobal variables

323

324 /* zdb uses this tunable, so it nust be declared here to make |int happy.

325 #endif /* | codereview */
326 extern int zfs_vdev_cache_si ze;

328 /*

329 * The vdev_buf _t is used to translate between zio_t and buf_t, and back again.
330 */

331 typedef struct vdev_buf {

332 buf _t vb_buf; /* buffer that describes the io */

333 zio_t *vb_i o; /* pointer back to the original zio_t */

334 } vdev_buf_t;

336 #ifdef _ cplusplus
337 }

338 #endi f

340 #endif /* _SYS VDEV_IMPL_H */

319 * zdb uses this tunable, so it nust be declared here to nake |int happy.
*
/

new usr/src/uts/comon/fs/zfs/sys/zap.h

R R R R

17681 Wed Apr 24 12:44:28 2013
new usr/src/uts/comon/ fs/zfs/sys/zap.h

3742

zfs coments need cl eaner, nore consistent style

Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>

Submi tted by:

Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»
Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>
EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEEEREEEERERERERESRESRESRESESESESE]
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governing pernissions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets “[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 =
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.
23 */Copyright (c) 2012 by Del phix. Al rights reserved.
24 *
26 #ifndef _SYS ZAP H
27 #define _SYS_ZAP H
29 /*
30 * ZAP - ZFS Attribute Processor
31 *
32 * The ZAP is a nodule which sits on top of the DMJ (Data Managenent
33 * Unit) and inplenents a higher-level storage primtive using DMJ
34 * objects. Its primary consuner is the ZPL (ZFS Posix Layer).
35 *
36 * A "zapobj" is a DWMJ object which the ZAP uses to stores attributes.
37 * Users should use only zap routines to access a zapobj - they should
38 * not access the DMJ object directly using DMJ routi nes.
39 *
40 * The attributes stored in a zapobj are name-value pairs. The nane is
41 * a zero-termi nated string of up to ZAP_MAXNAMELEN bytes (i ncluding
42 * terminating NULL). The value is an array of integers, which may be
43 * 1, 2, 4, or 8 bytes long. The total space used by the array (nunber
44 * of integers * integer |length) can be up to ZAP_MAXVALUELEN byt es.
45 * Note that an 8-byte integer value can be used to store the |ocation
46 * (object nunber) of another dnu object (which may be itself a zapobj).
47 * Note that you can use a zero-length attribute to store a single bit
48 * of information - the attribute is present or not.
49 *
50 * The ZAP routines are thread-safe. However, you nust observe the
51 * DMJ s restriction that a transaction may not be operated on
52 * concurrently.
53 *
54 * Any of the routines that return an int may return an I/Oerror (EIO
*
*

or ECHECKSUM) .

new usr/src/uts/comon/ fs/zfs/sys/zap.h

115

I npl enentation / Performance Notes:

The ZAP is intended to operate nost efficiently on attributes with
short (49 bytes or |ess) names and single 8-byte values, for which
the microzap will be used. The ZAP should be efficient enough so
that the user does not need to cache these attributes.

The ZAP' s | ocking scheme nekes its routines thread-safe. Operations
on different zapobjs will be processed concurrently. Operations on
the sane zapobj which only read data will be processed concurrently.
Operations on the sanme zapobj which nodify data will be processed
concurrently when there are nany attributes in the zapobj (because
the ZAP uses per-block |ocking - nore than 128 * (nunmber of cpus)
smal |l attributes will suffice).

/

B 2 I R

We're using zero-term nated byte strings (ie. ASCIl or UTF-8 C
strings) for the names of attributes, rather than a byte string
bounded by an explicit length. |If some day we want to support nanes
in character sets which have enbedded zeros (eg. UTF-16, UTF-32),
we' |l have to add routines for using |ength-bounded strings.

/

N

#i ncl ude <sys/dmu. h>

#ifdef _ cplusplus
extern "C' {
#endi f
/*
Specifies matching criteria for ZAP | ookups.

*
* The matchtype specifies which entry will be accessed.
* MI_EXACT: only find an exact match (non-normalized)
* MI_FIRST: find the "first" normalized (case and Uni code
* form) match; the designated "first” match will not change as |ong
* as the set of entries with this nornalization doesn’t change
* MI_BEST: if there is an exact match, find that, otherw se find the
* first normalized natch
*
t

pedef enum mat chtype

/* Only find an exact match (non-normalized) */
#endif /* | codereview */
MT_EXA

1 '
* |If there is an exact match, find that, otherwi se find the
* first nornalized match.
*/
#endif /* ! codereview */
MT_BEST,
*
* Find the "first" normalized (case and Unicode form match;
* the designated "first" match will not change as |ong as the
* set of entries with this normalization doesn’t change.
*/
#endif /* | codereview */
MI_FI RST
} matchtype_t;

typedef enum zap_fl ags {

/* Use 64-bit hash value (serialized cursors will always use 64-bits) */

ZAP_FLAG HASH64 = 1 << 0,
/* Key is binary, not string (zap_add_uint64() can be used) */
ZAP_FLAG UINT64_KEY = 1 << 1

new usr/src/uts/comon/fs/zfs/sys/zap.h

116
117
118
119
120
121

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

146
147
148
149
150
151
152
153
154

156
157
158
159

161
162
163
164
165
166

168
169
170
171
172

174
175
176
177
178
179
180
181

/*
* First word of key (which nmust be an array of uint64) is
* already randomy distributed.
*
/

ZAP_FLAG PRE_HASHED_KEY = 1 << 2,
} zap_flags_t;

/*

Create a new zapobj with no attributes and return its object nunber.
MI_EXACT wi || cause the zap object to only support MI_EXACT | ookups,
ot herwi se any matchtype can be used for | ookups.

nornfl ags specifies what nornalization will be done. values are:

0: no nornalization (legacy on-di sk format, supports MI_EXACT mat chi ng
only)

US_TEXTPREP_TOLOVWER: case nornalization will be perforned.
MT_FI RST/ MI_BEST matching will find entries that match w thout
regard to case (eg. |looking for "foo" can find an entry "Foo").

Eventual |y, other flags will permt unicode nornalization as well.

B T
-~

uint64_t zap_create(objset_t *ds, dnu_object_type_t ot,
drmu_obj ect _type_t bonustype, int bonuslen, dnu_tx_t *tx);

uint64_t zap_create_norm(objset_t *ds, int nornflags, dnu_object_type_t ot,
dmu_obj ect _type_t bonustype, int bonuslen, dnmu_tx_t *tx);

uint64_t zap_create_flags(objset_t *os, int nornflags, zap_flags_t flags,
dmu_obj ect _type_t ot, int |eaf_blockshift, int indirect_blockshift,
drmu_obj ect _type_t bonustype, int bonuslen, dnmu_tx_t *tx);

uint64_t zap_create_link(objset_t *os, dnu_object_type_t ot,
uint64_t parent_obj, const char *nane, dnu_tx_t *tx);

/*

* Create a new zapobj with no attributes fromthe given (unall ocated)
* obj ect nunber.

*/

int zap_create_claimobjset_t *ds, uint64_t obj, dnu_object_type_t ot,
dmu_obj ect _type_t bonustype, int bonuslen, dnmu_tx_t *tx);

int zap_create_claimnorn(objset_t *ds, uint64_t obj,
int nornflags, dmu_object_type_t ot,
drmu_obj ect _type_t bonustype, int bonuslen, dnu_tx_t *tx);

/*
* The zapobj passed in nust be a valid ZAP object for all of the
* foll ow ng routines.
*
/

*

* Destroy this zapobj and all its attributes.

*

* Frees the object nunber using dmu_object_free.
/

int zap_destroy(objset_t *ds, uint64_t zapobj, dmu_tx_t *tx);

/*

* Manipul ate attributes.

*

* 'integer_size' is in bytes, and nust be 1, 2, 4, or 8.

*/

/*

* Retrieve the contents of the attribute with the given nane.

*

* |f the requested attribute does not exist, the call will fail and
* return ENCENT.

*

* If 'integer_size' is smaller than the attribute’' s integer size, the
*

call will fail and return EI NVAL.

new usr/src/uts/comon/ fs/zfs/sys/zap.h

182
183
184
185
186
187

99
100
101
188
189
190
191
192
193
194
195
196

198
108
199
200
201
202
203
204
205
116
117
206
207
208
209
210
211
212
213
214

216
217

219
220
221
222
223
224
225
226
227
228
229
230

232
233
234
235
236
237
238
239
240
241

If "integer_size is equal to or larger than the attribute’s integer
size, the call will succeed and return O.

When converting to a larger integer size, the integers will be treated as
unsi gned (ie. no sign-extension will be perforned).

size, the call will succeed and return 0. * Wen converting to a

larger integer size, the integers will be treated as unsigned (ie. no
sign-extension will be perforned).

num.integers’ is the length (in integers) of 'buf’.

If the attribute is longer than the buffer, as many integers as will
fit will be transferred to "buf’. If the entire attribute was not
transferred, the call will return EOVERFLOWN

B I A
-~

int zap_| ookup(objset_t *ds, uint64_t zapobj, const char *nane,
uint64_t 1 nteger_size, uint64_t num.integers, void *buf);

*

*

* If rn_len is nonzero, realname will be set to the name of the found
* entry (which may be different fromthe requested nanme if matchtype is
* not MI_EXACT).

*

* |f normalization_conflictp is not NULL, it will be set if there is

* another nane with the sane case/uni code normalized form

*/

int zap_| ookup(objset_t *ds, uint64_t zapobj, const char *nane,
uint64_t integer_size, uint64_t num.integers, void *buf);
int zap_|l ookup_norn(objset_t *ds, uint64_t zapobj, const char *nane,
uint64_t 1nteger_size, uint64_t num.integers, void *buf,
matchtype_t nt, char *realnane, int rn_len,
bool ean_t *nornali zation_conflictp);
int zap_| ookup_uint64(objset_t *os, ulnt64_t zapobj, const uint64_t *key,
int key_numnts, uint64_t integer_size, uint64_t num.integers, void *buf);
int zap_contains(objset_t *ds, uint64_t zapobj, const char *nane);
int zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
int key_numnts);

int zap_count_wite(objset_t *os, uint64_t zapobj, const char *nane,
int add, uint64_t *towite, uint64_t *tooverwite);
Create an attribute with the given nane and val ue.

If an attribute with the given nanme already exists, the call wll
fail and return EEXI ST.

* Ok Ok k% %

nt zap_add(objset_t *ds, uint64_t zapobj, const char *key,
int integer_size, uint64_t num.integers,
const void *val, dnmu_tx_t *tx);
nt zap_add_ui nt 64(objset _t *ds, uint64_t zapobj, const uint64_t *key,
int key_numnts, int integer_size, uint64_t num.integers,
const void *val, dmu_tx_t *tx);

Set the attribute with the given name to the given value. If an
attribute with the given nane does not exist, it will be created. |If
an attribute with the given nane already exists, the previous val ue
will be overwitten. The integer_size may be different fromthe
existing attribute’s integer size, in which case the attribute’s
integer size will be updated to the new val ue.

* ok kb % k%

int zap_update(objset_t *ds, uint64_t zapobj, const char *nane,
int integer_size, uint64_t num.integers, const void *val, dnmu_tx_t *tx);

new usr/src/uts/comon/fs/zfs/sys/zap.h

242 int zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,

243
244

246
247
248
249
250
251
252
253
254
255
256

258
259
260
261
262
263
264
265
266
267
268

270
271
272
273
274

276
277
278
279
280
281
282
283

285
286
287
288
289
290

292
293
294

296
297
298

300
301
302
303
304
305
306
307

/

int key_numnts,
int integer_size, uint64_t num.integers, const void *val, dnmu_tx_t *tx);

Get the length (in integers) and the integer size of the specified
attribute.

If the requested attribute does not exist, the call will fail and
return ENCENT.

zap_l engt h(obj set _t *ds, uint64_t zapobj, const char *narme,

uint64_t *integer_size, uint64_t *num.integers);

zap_l engt h_ui nt 64(obj set _t *os, uint64_t zapobj, const uint64_t *key,

int key_numnts, uint64_t *integer_size, uint64_t *num.i ntegers);
Renove the specified attribute.

If the specified attribute does not exist, the call will fail and

* return ENCENT
*

nt
nt

nt
*
*
*
*

int

* ok * ok

*

*/

zap_renove(objset _t *ds, uint64_t zapobj, const char *name, dmu_tx_t *tx);

zap_renove_norn(obj set _t *ds, uint64_t zapobj, const char *nane,

mat cht ype_t mt, dmu_tx “t *tx)

zap_renove_ui nt 64(obj set _t *0s, uint64_t zapobj, const uint64_t *key,
int key_numints, dnu_tx_t *tx);

Returns (in *count) the nunber of attributes in the specified zap

obj ect .
/

zap_count (obj set _t *ds, uint64_t zapobj, uint64_t *count);

Returns (in nane) the name of the entry whose (val ue & nask)
(za_first_integer) is value, or ENCENT if not found. The string
pointed to by nane nust be at |east 256 bytes long. |f mask==0, the
mat ch nmust be exact (ie, same as mask=-1ULL).

int zap_val ue_search(objset_t *os, uint64_t zapobj,

/*

*
*
*

uint64_t value, uint64_t mask, char *nane);

Transfer all the entries fromfrombj into intoobj. Only works on
int_size=8 num.integers=1 values. Fails if there are any duplicated

entries.
*/

int zap_join(objset_t *os, uint64_t fronobj, uint64_t intoobj, dmu_tx_t *tx);

/* Same as zap_join, but set the values to 'value . */
int zap_join key(obj set_t *os, uint64_t fronobj, uint64_t intoobj,

uinte4_t value, dmu_tx_t *tx);

/* Same as zap_join, but add together any duplicated entries. */
int zap_join_increnment(objset_t *os, uint64_t fronobj, uint64_t intoobj,

dmu_tx_t *tx);

Mani pul ate entries where the name + value are the "sane" (the nanme is
a stringified version of the value).

zap_add_i nt (obj set _t *os, uint64_t obj, uint64_t value, dnu_tx_t *tx);
zap_renpve_i nt (objset _t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
zap_l ookup_int(objset_t *os, uint64_t obj, uint64_t val ue)

zap_i ncrenment _i nt (obj set _t *os, uint64_t obj, uint64_t key, int64_t delta,

new usr/src/uts/comon/ fs/zfs/sys/zap.h

308

310
311
312
313
314
315
316

318
319

321
322
323

325
326
327
328
329
330
331
332

dmu_tx_t *tx);

/* Here the key is an int and the value is a different int. */
int zap_add_i nt _key(objset_t *os, uint64_t obj,

uint64_t key, uint64_t value, dmu_tx_t *tx);
uint64_t obj,

int zap_update_int_key(objset_t *os,

uint64_t key, uint64_t value, dmu_tx_t

nt zap_| ookup_i nt _key(objset_t *os,
uint64_t key, uint64_t *val uep);

int zap_increment(objset_t *os, uint64_t obj, const char *nane,

dmu_tx_t *tx);

struct zap;

struct zap_| eaf;

typedef struct zap_cursor {
/* This structure i s opaque!
obj set _t *zc_obj set;
struct zap *zc_zap;
struct zap_leaf *zc_|eaf;
uint64_t zc_zapobj;
uint64_t zc_serialized;
uint64_t zc_hash;
uint32_t zc_cd;

} zap_cursor_t;

__unchanged_portion_omtted_

Ftx);

uint64_t obj,

*/

int64_t delta,

new usr/src/uts/comon/ fs/zfs/sys/zap_l eaf. h

R R R R

7553 Wed Apr 24 12:44:29 2013
new usr/src/uts/comon/fs/zfs/sys/zap_l eaf.h
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»
Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

LR

__unchanged_portion_onitted_
96 #define ZLF_ENTRI ES_CDSORTED (1<<0)

98 /*

99 * TAKE NOTE:

100 * If zap_leaf_phys_t is nodified, zap_|eaf_byteswap() nust be nodified.
101 */

102 typedef struct zap_l eaf _phys {

103 struct zap_|l eaf _header {

104 /* Public to ZAP */

105 #endif /* ! codereview */

106 uint64_t | h_bl ock_type; | * ZBT_LEAF */

107 uint 64_t | h_padl;

108 uint64_t | h_prefix; /* hash prefix of this leaf */
109 uint32_t | h_magic; /* ZAP_LEAF_MAG C */

110 uint16_t | h_nfree; /* nunber free chunks */

111 uint1l6_t | h_nentries; /* nunber of entries */

112 uint16_t | h_prefix_len; /* numbits used to id this */

114 /* Private to zap_leaf */
104 /* above is accessable to zap, belowis zap_leaf private */

115 uintl6_t | h_freelist; /* chunk head of free |ist
116 uint8_t Ih_flags; /* ZLF_* flags */
117 uint8_t | h_pad2[11];

118 } I_hdr; /* 2 24-byte chunks */

120 /*

121 * The header is followed by a hash table with

122 * ZAP_LEAF_HASH NUMENTRI ES(zap) entries. The hash table is
123 * folTowed by an array of ZAP_LEAF_NUMCHUNKS(zap)

124 * zap_l eaf _chunk structures. These structures are accessed
125 * with the ZAP_LEAF _CHUNK() macro.

126 */

128 uint16_t | _hash[1];

129 } zap_| eaf _phys_ t
__unchanged_porti on _omtted_

164 typedef struct zap_entry_handl e {
165 /* Set by zap_leaf and public to ZAP */

156 /* belowis set by zap_leaf.c and is public to zap.c */
166 uint64_t zeh_num.i ntegers;

167 uint64_t zeh_hash;

168 uint32_t zeh_cd;

169 uint8_t zeh_integer_size;

171 /* Private to zap_| eaf */

162 /* belowis private to zap_leaf.c */

172 uint16_t zeh_f akechunk;

173 uint16_t *zeh_chunkp;

174 zap_l eaf t *zeh_| eaf;

175 } zap_entry handle_t;

*/

new usr/src/uts/comon/ fs/zfs/sys/zap_l eaf.h

177
178
179
180
181
182

184
185
186
187
188
189

191
192
193
194
195
196
197
198

200
201

203
204
205
206
197
207
208
209

211
212
213
214

216
217
218
219
220
221
222
223

225
216
217
218
219
226
227

229
230
231

233
234
235
236
237

/*

* Return a handle to the nanmed entry, or ENCENT if not found. The hash
* val ue nust equal zap_hash(nane).

*/

extern int zap_| eaf _| ookup(zap_| eaf _t *I,

struct zap_nane *zn, zap_entry_handle_t *zeh);

/*

* Return a handle to the entry with this hash+cd, or the entry with the
* next closest hash+cd.

*/

extern int zap_| eaf _| ookup_cl osest (zap_| eaf _t *I,
uint64_t hash, uint32_t cd, zap_entry_| handle t *zeh);

Read the first numintegers in the attribute. Integer size
conversion will be done without sign extension. Return EINVAL if
integer_size is too small. Return EOVERFLOWif there are nore than
num.integers in the attribute.

* Ok ok k% %

extern int zap_entry_read(const zap_entry_handl e_t *zeh,
uint8_t integer_size, uint64_t num.integers, void *buf)

extern int zap_entry_read_nane(struct zap *zap, const zap_entry_handl e_t *zeh,
uint16_t buflen, char *buf);

/
Repl ace the value of an existing entry.

*
*
*
* May fail if it runs out of space (ENOSPC).

* zap_entry_update nmay fail if it runs out of space (ENGSPC).

*/

extern int zap_entry_update(zap_entry_handl e_t *zeh,

uint8_t integer_size, uint64_t num.integers, const void *buf);

/*

* Renove an entry.

*/

extern void zap_entry_renove(zap_entry_handl e_t *zeh);

/*

* Create an entry. An equal entry nmust not exist, and this entry nust
* belong in this leaf (according to its hash value). Fills in the

* entry handl e on success. Returns 0 on success or ENOSPC on failure.
*/

extern int zap_entry_create(zap_leaf_t *|, struct zap_nane *zn, uint32_t cd,

uint8_t integer_size, uint64_t num.integers, const void *buf,
zap_entry_handl e_t *zeh);
/* Determ ne whether there is another entry with the same normalized form */
/*
* Return true if there are additional entries with the sane nornalized
* form
*/
extern bool ean_t zap_entry_nornalization_conflict(zap_entry_handle_t *zeh,

struct zap_nane *zn, const char *name, struct zap *zap);
/*
* Qther stuff.
*/
extern void zap_leaf _init(zap_leaf t *I, boolean_t sort);

extern void zap_| eaf _byteswap(zap_| eaf _phys_t *buf, int len);
extern void zap_|l eaf _split(zap_leaf_t *I, zap_leaf_t *nl, boolean_t sort);
extern void zap_| eaf _stats(struct zap *zap zap_l eaf _t *I,

struct zap_stats *zs);

new usr/src/uts/comon/ fs/zfs/sys/zap_l eaf. h

239 #ifdef __cplusplus
240 }
____unchanged_portion_onitted_

new usr/src/uts/comon/ fs/zfs/sys/zfs_acl.h

R R R R

8160 Wed Apr 24 12:44:29 2013
new usr/src/uts/comon/ fs/zfs/sys/zfs_acl.h
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>

Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»

Revi ewed by: George W son <george.w | son@lel phi x. con»

Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEEEREEEERERERERESRESRESRESESESESE]
1/*

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the |icense at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing pernissions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END
/

NRERRRRRRRRE
COONOUITAWNROW©O~NOUTSWN

R T N I

25 #ifndef _SYS FS ZFS ACL_H
26 #define _SYS FS ZFS ACL_H

28 #ifdef _KERNEL

29 #include <sys/isa_defs. h>
30 #include <sys/types32. h>
31 #endif

32 #include <sys/acl.h>

33 #include <sys/dnu. h>

34 #include <sys/zfs_fuid.h>
35 #include <sys/sa.h>

37 #ifdef __cplusplus
38 extern "C' {
39 #endif

41 struct znode_phys;

43 #define ACE SLOT CNT 6
44 #define ZFS_ACL_VERSI ON_| NI TI AL OULL
45 #define ZFS ACL_VERSION FUD 1ULL
46 #define ZFS ACL_VERSI ON ZFS_ACL_VERS| ON_FUI D

48 /*
49 * ZFS ACLs (Access Control Lists) are stored in various forns.
50 *
49 * ZFS ACLs are store in various forms.
51 * Files created with ACL version ZFS_ACL_VERSI ON_| NI TI AL
52 * will all be created with fixed | ength ACEs of type
53 * zfs_ol dace_t.
*
*

Files with ACL version ZFS ACL_VERSION FUI D will be created

22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.
*/

new usr/src/uts/comon/ fs/zfs/sys/zfs_acl.h

56 * with various sized ACEs. The abstraction entries will utilize
57 * zfs_ace_hdr_t, normal user/group entries will use zfs_ace_t

58 * and sone specialized CIFS ACEs will use zfs_object_ace_t.

59 */

61 /*

62 * Al ACEs have a common hdr. For

63 * owner@ group@ and everyone@this is all
64 * thats needed.

65 */

66 typedef struct zfs_ace_hdr {

67 uintl6_t z_type;

68 uint16_t z_flags;

69 uint32_t z_access_mask;

70 } zfs_ace_hdr_t;

__unchanged_portion_onitted_

124 typedef struct acl_ops {
125

uint 32_t (*ace_nmask_get) (void *acep); /* get access mask */
126 voi d (*ace_mask_set) (void *acep,
127 uint32_t mask); /* set access mask */
128 uint16_t (*ace_flags_get) (void *acep); /* get flags */
129 voi d (*ace_flags_set) (void *acep,
130 uintl6_t flags); /* set flags */
131 ui nt16_t (*ace_type_get)(void *acep); /* get type */
132 voi d (*ace_type_set)(void *acep,
133 uintl6_t type); /* set type */
134 ui nt 64_t (*ace_who_get)(void *acep); /* get who/fuid */
135 voi d (*ace_who_set) (void *acep,
136 uint64_t who); /* set who/fuid */
137 size_t (*ace_size)(void *acep); /* how big is this ace */
138 size_t (*ace_abstract_size)(void); /* sizeof abstract entry */
139 int (*ace_mask_off)(void); /* off of access nmask in ace */
140 /* ptr to data if any */
141 #endif /* ! codereview */
142 int (*ace_data)(void *acep, void **datap);

139 /* ptr to data if any */
143 } acl _ops_t;

__unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/sys/zfs_rlock.h

R R R R

2620 Wed Apr 24 12:44:29 2013
new usr/src/uts/comon/ fs/zfs/sys/zfs_rlock.h
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>

Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»

Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

LR

____unchanged_portion_onitted_

end of file. zfs_range_lock() returns the range |ock structure.

59 /*
60 * Lock a range (offset, length) as either shared (RL_READER)
61 * or exclusive (RL_WRITER or RL_APPEND). RL_APPEND is a special type that
62 * is converted to RL_WRI TER that specified to lock fromthe start of the
63 * end of file. Returns the range |ock structure.
60 * Lock a range (offset, length) as either shared (READER)
61 * or exclusive (WRITER or APPEND). APPEND is a special type that
62 * is converted to WRITER that specified to lock fromthe start of the
*
*
65 rl_t *zfs_range_l ock(znode_t *zp, uint64_t off, uint64_t len, rl_type_t type);
67 /* Unlock range and destroy range |ock structure. */
67 /*
68 * Unlock range and destroy range |ock structure.
69 *

68 void zfs_range_unlock(rl_t *rl);
70 /*
71 * Reduce range | ocked as RWWRI TER fromwhole file to specified range.
72 * Asserts the whole file was previously |ocked.
*/

74 void zfs_range_reduce(rl_t *rl, uint64_t off, uint64_t len);

76 [*

77 * AVL conparison function used to order range |ocks
78 * Locks are ordered on the start offset of the range.
79 *

x AVL conparison function used to conpare range | ocks

80 iné zfs_range_conpare(const void *argl, const void *arg2);
82 #endif /* _KERNEL */

84 #ifdef __cplusplus

____unchanged_portion_onitted_

new usr/src/uts/comon/ fs/zfs/sys/zfs_znode. h

R R R R

13128 Wed Apr

24 12:44:29 2013

new usr/src/uts/comon/ fs/zfs/sys/zfs_znode. h

3742 zfs comments need cl eaner,
Submi tted by:
Submi tted by:

Revi ewed by:
Revi ewed by:
Revi ewed by:

Wl

nore consistent style
Andrews <wi | | a@pectral ogi c. con>

Al an Soners <al ans@pectral ogi c. con>
Mat t hew Ahrens <mahr ens@lel phi x. con»
George W son <george. wi | son@lel phi x. com>
Eric Schrock <eric.schrock@lel phi x. con>

LR

__unchanged_portion_onitted_

is an extended attribute */
ace has inheritable ACEs */
files ACL is trivial */

ACL has CWPLX Object ACE */
ACL protected */

ACL shoul d be defaul ted */
ACL should be inherited */
Scanstanp in bonus area */
exec was given to everyone */

—~— e — —
* Ok ok ok kb ¥ b ¥

ZPL_ATI ME]
ZPL_MTI ME]
ZPL_CTI ME]
ZPL_CRTI NE]
ZPL_GEN|
ZPL_DACL_ACES]
ZPL_XATTR]
ZPL_SYMLI NK]
ZPL_RDEV]
ZPL_SCANSTANP]
ZPL_UI D]
ZPL_G D]
ZPL_PARENT]
ZPL_LI NKS]
ZPL_MODE]
ZPL_DACL_COUNT]
ZPL_FLAGS]
ZPL_SI ZE]
ZPL_ZNCDE_ACL]
ZPL_PAD|

VERSI ON_FUI D && \

77 1*

78 * Define special zfs pflags

79 */

80 #define ZFS_XATTR Ox1

81 #define ZFS_| NHERI T_ACE 0x2

82 #define ZFS ACL_TRI VI AL 0x4

83 #define ZFS_ACL_OBJ_ACE 0x8

84 #define ZFS_ACL_PROTECTED 0x10

85 #define ZFS_ACL_DEFAULTED 0x20

86 #define ZFS_ACL_AUTO | NHERI T 0x40

87 #define ZFS_BONUS_SCANSTAMP 0x80

88 #define ZFS_NO EXECS DEN ED 0x100

90 #define SA_ZPL_ATI ME(Zz) z->z_attr_table
91 #define SA_ZPL_MTI VE(z) z->z_attr_table
92 #define SA_ZPL_CTI ME(z) z->z_attr_table
93 #define SA_ZPL_CRTI ME(z) z->z_attr_table
94 #define SA_ZPL_CEN(z) z->z_attr_table
95 #define SA_ZPL_DACL_ACES(z) z->z_attr_table
96 #define SA ZPL_XATTR(z) z->z_attr_table
97 #define SA_ZPL_SYM.I NK(z) z->z_attr_table
98 #define SA_ZPL_RDEV(z) z->z_attr_table
99 #define SA_ZPL_SCANSTAMP(z) z->z_attr_table
100 #define SA ZPL_Ul DX z) z->z_attr_table
101 #define SA_ZPL_G DY z) z->z_attr_table
102 #define SA_ZPL_PARENT(z) z->z_attr_table
103 #define SA_ZPL_LI NKS(z) z->z_attr_table
104 #define SA_ZPL_MODE(z) z->z_attr_table
105 #define SA_ZPL_DACL_COUNT(z) z->z_attr_table
106 #define SA_ZPL_FLAGS(z) z->z_attr_table
107 #define SA_ZPL_SI ZE(z) z->z_attr_table
108 #define SA_ZPL_ZNODE ACL(z) z->z_attr_table
109 #define SA ZPL_PAD(z) z->z_attr_table
111 /*

112 * |s I D epheneral ?

113 *

114 #define | S_EPHEMERAL(X) (x > MAXU D)
116 /*

117 * Should we use FU Ds?

118 */

119 #define USE_FU DS(version, os) (version >= ZPL
120 spa_ver si on(dnu_obj set _spa(os)) >= SPA_VERSI ON_FUI D)
121 #define USE_SA(version, os) (version >= ZPL_VERSI ON_SA && \
122 spa_versi on(dmu_ Obj set_spa(os)) >= SPA_VERSI ON_SA)
124 #define MASTER NODE OBJ 1

126 /*

127 * Special attributes for master node.

128 * "userquota@ and "groupquota@ are also valid (from
129 * zfs_userquota_prop_prefixes[]).

130 */

new usr/src/uts/comon/ fs/zfs/sys/zfs_znode. h

131
132
133
134
135
136
137

139

141
141
142
143
144
145
146
147
148
149
150
151

153
154
155
156
157

159
160
161
162
163
164
165

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

183
184
185
186
187
188
189
190
191
192
193
194
195

#define ZFS_FSI D "FSI D'

#define ZFS_UNLI NKED_SET " DELETE_QUEUE"
#define ZFS_ROOT_OBJ " ROOT"

#def i ne ZPL_VERSI ON_STR " VERSI ON'
#define ZFS_FU D_TABLES "FU D'

#defi ne ZFS_SHARES DI R " SHARES"
#define ZFS_SA ATTRS "SA _ATTRS"

#define ZFS_MAX_BLOCKSI ZE (SPA_MAXBLOCKS! ZE)

/* Path conponent |ength */

/*

* Path conponent |ength

*

#endi f /* | codereview */

* The generic fs code uses MAXNAMELEN to represent

* what the |argest conponent length is. Unfortunately,

* this length includes the terminating NULL. ZFS needs

* to tell the users via pathconf() and statvfs() what the
* true maxi mum |l ength of a conponent is, excluding the NULL.
*

#define ZFS MAXNAMELEN (MAXNAMELEN - 1)

/*
* Convert node bits (zp_node) to BSD-style DT_* values for storing in
* the directory entries.
&/
#define | FTODT(node) (((node) & S | FMI) >> 12)

/*

* The directory entry has the type (currently unused on Solaris) in the

* top 4 bits, and the object nunmber in the low 48 bits. The "m ddle"

*/12 bits are unused.

*

#define ZFS DI RENT_TYPE(de) BF64 GET(de, 60, 4)

#define ZFS DI RENT_OBJ(de) BF64 _GET(de, 0, 48)

/*

* Directory entry | ocks control access to directory entries.

* They are used to protect creates, deletes, and renanes.

*/Each directory znode has a nutex and a list of |ocked nanes.

*

#i fdef _KERNEL

typedef struct zfs_dirlock {
char *dl _nane; /* directory entry being |ocked */
ui nt32_t dl _sharecnt; /* 0 if exclusive, >0 if shared */
uint8_t dl _narel ock; /* 1if z nanelocklsNOTheId*/
uint16_t dl _nanesi ze; /* set if dl _nane was allocated */
kcondvar _t dl _cv; /* wait for entry to be unlocked */
struct znode *dl_dzp; /* directory znode */
struct zfs_dirlock *dl _next; /* next in z_dirlocks list */

} zfs_dirlock_t;

typedef struct znode {
struct zfsvfs *z_zfsvfs;
vnode_t *z_vnode;
ui nt 64_t z id; /* object ID for this znode */
kmut ex_t z_| ock; /* znode nodification lock */
krw ock_t z_parent_|lock; [/* parent lock for directories */
krw ock_t z_name_| ock; /* "master" lock for dirent |ocks */
zfs_dirlock_t *z_dirl ocks; /* directory entry lock list */
kmut ex_t z_range_| ock; /* protects changes to z_range_avl */
avl _tree_t z_range_avl ; /* avl tree of file range |ocks */
ui nt8_t z_unl i nked; /* file has been unlinked */
uint8_t z_atine_di rty, /* atinme needs to be synced */
ui nt 8_t z_zn_prefetch; /* Prefetch znodes? */

new usr/src/uts/comon/ fs/zfs/sys/zfs_znode. h

196 ui nt 8_t z_noved; /* Has this znode been nobved? */
197 uint_t z_bl ksz; /* block size in bytes */

198 ui nt _t z_seq; /* nodification sequence number */
199 ui nt 64_t z_mapent ; /* nunber of pages mapped to file */
200 ui nt 64_t z_gen; /* generation (cached) *

201 ui nt 64_t z_si ze; /* file size (cached) */

202 ui nt 64_t z_atinme[2]; /* atime (cached) */

203 ui nt 64_t z_links; /* file links (cached)

204 ui nt 64_t z_pfl ags; /* pr ags (cached) */

205 ui nt 64_t z_uid; /* uid fuid (cached) */

206 ui nt 64_t z_gid; /* g| d fuid (cached) */

207 node_t z_node; /* node (cached) */

208 ui nt32_t z_sync_cnt; /* synchronous open count */

209 kmut ex_t z_acl _| ock; /* acl data |ock */

210 zfs_acl _t *z_acl _cached; /* cached acl */

211 i st _node_t z_li nk_node; /* all znodes in fs link */

212 sa_handl e_t *z_sa_hdl; /* handle to sa data */

213 bool ean_t Z_ls_sa; /* are we native sa? */

214 } znode_t;

217 I|*

218 * Range | ocking rules

28 © ccccscoccccscocossocs

220 * 1. Wien truncating a file (zfs_create, zfs_setattr, zfs_space) the whole
221 * file range needs to be |locked as RL_WRITER. Only then can the pages be
222 * freed etc and zp_size reset. zp_size nmust be set within range | ock.
223 * 2. For wites and punching holes (zfs_wite & zfs_space) just the range
224 * being witten or freed needs to be | ocked as RL_WRI TER

225 * Miltiple wites at the end of the file nust coordinate zp_size updates
226 * to ensure data isn't lost. A conpare and swap loop is currently used
227 * to ensure the file size is at least the offset last witten.

228 * 3. For reads (zfs_read, zfs_get_data & zfs_putapage) just the range being
229 * read needs to be | ocked as RL_READER. A check agai nst zp_size can then
230 * be made for reading beyond end of file.

231 */

233 [*

234 * Convert between znode pointers and vnode pointers

235 */

236 #define ZTOV(ZP) ((ZP) - >z_vnode)

237 #define VTQOZ(VP) ((znode_t *)(VP)->v_data)

239 /* Called on entry to each ZFS vnode and vfs operation */

143 | *

144 * ZFS ENTER() is called on entry to each ZFS vnode and vfs operation.

145 * ZFS_EXIT() nust be called before exitting the vop.

146 * ZFS VERIFY_ZP() verifies the znode is valid.

147

240 #defl ne ZFS_ENTER(zfsvfs) \

241 {\

242 rrw_enter_read(& zfsvfs)->z_teardown_| ock, FTAG; \

243 if ((zfsvfs)->z_unnmount ed)

244 ZFS_EXI T(zfsvfs); \

245 return (E1O; \

246 A

247 }

249 /* Must be called before exiting the vop */

250 #endif /* | codereview */

251 #define ZFS_EXI T(zfsvfs) rrw exit (& zfsvfs)->z_teardown_| ock, FTAQ

253 /* Verifies the znode is valid */

254 #endif /* ! codereview */

255 #define ZFS VERI FY_ZP(zp) \

256 if ((zp)->z_sa_hdl == NULL) { \

new usr/src/uts/comon/ fs/zfs/sys/zfs_znode. h

257 ZFS _EXI T((zp)->z_zfsvfs); \

258 return (EIO; \

259 1

261 /*

262 * Macros for dealing with dnu_buf_hold

263 */

264 #define ZFS_OBJ_HASH(obj _num ((ob] nun) & (ZFS_OBI_MIX_SZ - 1))
265 #define ZFS_OBJ_MJUTEX(zf svfs, obj

266 (& zfsvfs)->z_hol d mx[ZFS CBJ HASH(obJ _num1])
267 #define ZFS_OBJ_HOLD ENTER(zfsvfs, obj _num \

268 nut ex_ent er (ZFS_0OBJ MJTEX((zfsvfs) (obj _nunm))
269 #define ZFS_OBJ_HOLD TRYENTER(zfsvfs, obj _| \

270 mut ex_tryent er (ZFS_OBJ NUTEX((zf svf s) (obj _num))
271 #define ZFS_OBJ_HOLD EXI T(zfsvfs, obj_num) \

272 mut ex_exi t (ZFS_OBJ_MUTEX((zfsvfs), (obj_num))
274 |* Encode ZFS stored tine values froma struct timespec */
157 /*

158 * Macros to encode/ decode ZFS stored tine values fromto struct timespec
159

275 #define ZFS_TI ME_ENCODE(tp, stnp) \

276 { \

277 (stmp)[0] = (uint64_t)(tp)->tv_sec; \

278 (stmp)[1] = (uint64_t)(tp)->tv_nsec; \

279 }

281 /* Decode ZFS stored tine values to a struct timespec */
282 #endif /* | codereview */

283 #define ZFS_TI ME_DECCODE(tp, stnp) \

284 { \

285 (tp)->tv_sec = (time_t)(stnp)[0]; \
286 (tp)->tv_nsec = (long)(st er)[l]; \
287 }

289 /*

290 * Tinmestanp defines

291 */

292 #define ACCESSED AT_ATI ME)

293
294

296
297
298

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

(
#def i ne STATE_CHANGED (AT_CTI ME)
#def i ne CONTENT_MODI FI ED (AT_MTI NE | AT_CTI ME)

#def i ne ZFS_ACCESSTI ME_STAMP(zf svfs, zp) \
if ((zfsvfs)->z atime & ! ((zfsvfs)->z vfs->vfs flag & VFS RDONLY)) \

zfs_tstanp_updat e_setup(zp, ACCESSED, NULL, NULL, B_FALSE);
extern int zfs_init_fs(zfsvfs_t *, znode_t **);
extern void zfs_set _dat aprop(obj set _t *);

extern void zfs_create_fs(objset_t *os,
dmu_tx_t *tx);

cred_t *cr, nvlist_t *,

extern void zfs_tstanp_update_setup(znode_t *, uint_t, uint64_t [2],
uint64_t [2], boolean_t);

extern void zf's _grow_bl ocksi ze(znode_t *, uint64_t, dmu_tx_t *);

extern int zfs_freesp(znode_t *, uint64_t, uint64_t, int, boolean_t);

extern void zfs_znode_ini t(void);

extern void zfs_znode_fini(void);

extern int zfs_zget (zfsvfs_t *, uint64_t, znode_t **);

extern int

extern void
extern void
extern void
extern void

zfs_rezget (znode_t *);
zfs_zinactive(znode_t *);

zfs_znode_del ete(znode_t *, dnu_tx_t *);
zfs_znode_free(znode t *);
zfs_renove_op_t abl es() ;

extern int zfs_create_op_tabl es();
extern int zfs_sync(vfs_t *vfsp, short flag, cred_t *cr);
extern dev_t zfs_cnpl dev(uint64_t);

extern int

zfs_get _zpl prop(obj set _t *os, zfs_prop_t prop, uint64_t *val ue);

new usr/src/uts/comon/ fs/zfs/sys/zfs_znode. h

320 extern int zfs_get_stats(objset_t *os, nvlist_t *nv);

321 extern void zfs_znode_dmu_fi ni (znode_t *);

323 extern void zfs_log_create(zilog_ t *zilog, dnu_tx_t *tx, uint64_t txtype,
324 znode_t *dzp, znode_t *zp, char *nane, vsecattr_t *, zfs_fuid_info_t *,
325 vattr_t *vap);

326 extern int zfs_log_create_txtype(zil_create_t, vsecattr_t *vsecp,

327 vattr_t *vap);

328 extern void zfs_log_renmove(zilog_t *zilog, dnu_tx_t *tx, uint64_t txtype,
329 znode_t *dzp, char *nane, uint64_t foid);

330 #define ZFS_NO OBJECT O /* no object id */

331 extern void zfs_log_link(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype,
332 znode_t *dzp, znode_t *zp, char *nane);

333 extern void zfs_log_symink(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype,
334 znode_t *dzp, znode_t *zp, char *nane, char *link);

335 extern void zfs_log_renane(zilog_ t *zilog, dnu_tx_t *tx, uint64_t txtype,
336 znode_t *sdzp, char *snane, znode_t *tdzp, char *dname, znode_t *szp);
337 extern void zfs_log wite(zilog_t *zilog, dnu_tx_t *tx, int txtype,

338 znode_t *zp, offset_t off, ssize_t len, int ioflag);

339 extern void zfs_log_truncate(zilog_t *zilog, dmu_tx_t *tx, int txtype,
340 znode_t *zp, uint64_t off, uint64_t len);

341 extern void zfs_log_setattr(zilog_t *zilog, dnu_tx_t *tx, int txtype,

342 znode_t *zp, vattr_t *vap, uint_t mask_applied, zfs_fuid_info_t *fuidp);
343 extern void zfs_log_acl(zilog_t *zilog, dmu_tx_t *tx, znode_t *zp,

344 vsecattr_t *vsecp, zfs_fuid_info_t *fuidp);

345 extern void zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dnu_tx_t *tx);
346 extern void zfs_upgrade(zfsvfs_t *zfsvfs, dmu_tx_t *tx);

347 extern int zfs_create_share_dir(zfsvfs_t *zfsvfs, dnu_tx_t *tx);

349 extern caddr_t zfs_nap_page(page_t *, enum seg_rw);

350 extern void zfs_unnap_page(page_t *, caddr_t);

352 extern zil _get_data_t zfs_get_data;

353 extern zil _replay_func_t *zfs_replay_vector[TX_MAX_TYPE];

354 extern int zfsfstype;

356 #endif /* _KERNEL */

358 extern int zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int |len);
360 #ifdef _ cplusplus

361 }

362 #endi f

364

#endif /* _SYS FS_ZFS ZNODE_H */

new usr/src/uts/comon/fs/zfs/sys/zil.h

R R R R

15273 Wed Apr 24 12:44:30 2013
new usr/src/uts/comon/fs/zfs/sys/zil.h
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>

Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»

Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

LR

____unchanged_portion_onitted_

229 [*
230 * FU D ACL record will be an array of ACEs fromthe original ACL.
231 * If this array includes epheneral 1Ds, the record will also include
232 * an array of log-specific FUDs to replace the epheneral |Ds.
233 * Only one copy of each unique domain will be present, so the |og-specific
234 * FUDs will use an index into a conpressed domain table. On replay this
235 * information will be used to construct real FU Ds (and bypass idmap,
236 * since it nmay not be avail able).
237 *
239 /*
240 * Log record for creates with optional ACL
241 * This log record is also used for recording any FU D
242 * information needed for replaying the create. |f the
243 * file doesn’t have any actual ACEs then the Ir_aclcnt
244 * would be zero.
245 *
246 * After Ir_acl_flags, there are a Ir_acl_bytes nunber of variable sized ace’s.
247 * |f create is also setting xvattr’'s, then acl data follows xvattr.
248 * |f ACE FU Ds are needed then they will follow the xvattr_t. Follow ng
249 * the FUDs will be the domain table information. The FU Ds for the owner
250 * and group will be in Ir_create. Nane follows ACL data.
251 #endif /* | codereview */
252 */
253 typedef struct {
254 Ir_create_t Ir_create; /* conmmon create portion */
255 ui nt 64_t I r_aclcnt; /* nunber of ACEs in ACL */
256 ui nt 64_t | r_dontnt; /* nunber of unique donmains */
257 ui nt 64_t I r_fuident; /* nunber of real fuids */
258 ui nt64_t I r_acl _bytes; /* nunber of bytes in ACL */
259 ui nt 64_t I'r_acl _flags; /* ACL flags */
245 /* Ir_acl _bytes nunber of variable sized ace’s follows */
246 /* if create is also setting xvattr’s, then acl data follows xvattr */
247 /* if ACE FU Ds are needed then they will follow the xvattr_t */
248 /* Following the FUDs will be the domain table information. */
249 /* The FU Ds for the owner and group will be in the Ir_create */
/*

250 portion of the record. */

251 /* nane follows ACL data */

260 } Ir_acl _create_t;
__unchanged_portion_onitted_

new usr/src/uts/comon/ fs/zfs/sys/zio_conpress.h

R R R R

2905 Wed Apr 24 12:44:30 2013
new usr/src/uts/comon/ fs/zfs/sys/zio_conpress.h
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>

Submi tted by: Al an Soners <al ans@pectral ogi c. con>
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»
Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>
EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEEEREEEERERERERESRESRESRESESESESE]
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governing pernissions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets “[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 =
19 * CDDL HEADER END
20 */
22 |*

23 * Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.
24 * Use is subject to |license terns.
25 =/
26 /*
27 */Copyright (c) 2013 by Saso Kiselkov. Al rights reserved.
*

30 #ifndef _SYS_ZI O COMPRESS H
31 #define _SYS_zI O COMPRESS H

33 #include <sys/zio.h>

35 #ifdef __cplusplus
36 extern "C' {
37 #endif

39 /* Common signature for all zio conpress functions. */

39 /*

40 * Common signature for all zio conpress/deconpress functions.
41 */

40 typedef size_t zio_conpress_func_t(void *src, void *dst,

41 size_t s_len, size_t d_len, int);

42 [/* Common signature for all zio deconpress functions. */

43 #endif /* | codereview */

44 typedef int zio_deconpress_func_t(void *src, void *dst,

45 size_t s_len, size_t d_len, int);

47 |*

48 * Infornation about each conpression function.

49 */

50 typedef struct zio_conpress_info {

51 zi o_conpress_func_t *ci _conpress; /* conpression function */
52 zi o_deconpress_func_t *ci _deconpress; /* deconpression function */

53 int ci_level; /* level paraneter */

new usr/src/uts/comon/ fs/zfs/sys/zio_conpress.h

54
55

) char) *ci _name;
} zio_conpress_info_t;

/* al gorithm name */

extern zio_conpress_info_t zio_conpress_tabl e[ZI O COWPRESS_FUNCTI ONS] ;

/*
* Conpression routines.
*/

extern size_t |zjb_conpress(void *src, void *dst, size_t s_len, size_t d_len,

int level);

extern int |zjb_deconpress(void *src, void *dst, size_t s_len, size_t d_len,
int level);

extern size_t gzip_conpress(void *src, void *dst, size_t s_len, size_t d_len,
int level);

extern int gzip_deconpress(void *src, void *dst, size_t s_len, size_t d_len,
int level);

extern size_t zle_conpress(void *src, void *dst, size_t s_len, size_t d_len,
int level);

extern int zle_deconpress(void *src, void *dst, size_t s_len, size_ t d_len,
int level);

extern size_t |z4_conpress(void *src, void *dst, size_t s_len, size_t d_len,
int level);

extern int |z4_deconpress(void *src, void *dst, size_t s_len, size_ t d_len,
int level);

/*

* Conpress and deconpress data if necessary.
*/

extern size_t zio_conpress_data(enum zio_conpress c, void *src, void *dst,
size_t s_len);

extern int zio_deconpress_data(enum zi o_conpress ¢, void *src, void *dst,
size_t s_len, size_t d_len);

#ifdef __cplusplus

}

#endi f

#endif /* _SYS ZI O COMPRESS_H */

new usr/src/uts/comon/fs/zfs/txg.c

R R R R

21961 Wed Apr 24 12:44:30 2013
new usr/src/uts/comon/fs/zfs/txg.c
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>

Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»

Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

LR

____unchanged_portion_onitted_

564 /*
565 * Delay this thread by del ay nanoseconds if we are still in the open
566 transaction group and there is already a waiting txg quiescing or quiesced.

*

567 * Abort the delay if this txg stalls or enters the quiescing state.

566 * transaction group and there is already a waiting txg quiesing or quiesced.
*

567 Abort the delay if this txg stalls or enters the quiesing state.

568 */

569 void

570 txg_del ay(dsl _pool _t *dp, uint64_t txg, hrtine_t delay, hrtime_t resolution)
571 {

572 tx_state_t *tx = &dp->dp_tx;

573 hrtime_t start = gethrtinme();

575 /* don't delay if this txg could transition to quiescing i nmediately */
575 /* don’t delay if this txg could transition to quiesing i mediately */
576 if (tx->tx_open_txg > txg ||

577 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)

578 return;

580 mut ex_ent er (& x- >t x_sync_| ock) ;

581 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {

582 mut ex_exi t (& x- >t x_sync_| ock);

583 return;

584 1

586 while (gethrtinme() - start < delay &&

587 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) {

588 (void) cv_tinmedwait_hires(& x->tx_qui esce_nore_cv,

589 & x- >t x_sync_l ock, delay, resolution, 0);

590 }

592 mut ex_exi t (& x->t x_sync_I ock);

593 }

__unchanged_portion_omtted_

new usr/src/uts/comon/fs/zfs/vdev.c

R R R R

86358 Wed Apr 24 12:44:31 2013
new usr/src/uts/comon/fs/zfs/vdev.c
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>

Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»

Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

LR

__unchanged_portion_onitted_

958 /*

959 * Determne whether this device is accessible.

960 *

961 * Read and wite to several known |ocations: the pad regions of each

962 * vdev | abel but the first, which we |eave alone in case it contains

963 * a VICC.

959 * Determ ne whether this device is accessible by reading and witing

960 * to several known |ocations: the pad regions of each vdev | abel

961 * but the first (which we | eave alone in case it contains a VIOC).

964 */

965 zio_t *

966 vdev_probe(vdev_t *vd, zio_t *zio)

967 {

968 spa_t *spa = vd->vdev_spa;

969 vdev_probe_stats_t *vps = NULL;

970 zio_t *pio;

972 ASSERT(vd- >vdev_ops->vdev_op_| eaf);

974 I*

975 * Don’t probe the probe.

976 */

977 if (zio & (zio->o_flags & ZI O FLAG PROBE))

978 return (NULL);

980 /*

981 * To prevent ’probe storns’ when a device fails, we create

982 * just one probe i/o at atime. Al zios that want to probe

983 * this vdev will become parents of the probe io.

984 */

985 mut ex_ent er (& d- >vdev_probe_| ock);

987 if ((pio = vd->vdev_probe_zio) == NULL) {

988 vps = kmem zal | oc(si zeof (vps), KM SLEEP);

990 vps->vps_flags = ZI O FLAG CANFAI L | ZI O FLAG PROBE |

991 ZI O FLAG DONT_CACHE |~ ZI O FLAG DONT_AGGREGATE |

992 ZI O_FLAG_TRYHARD;

994 if (spa_config_held(spa, SCL_ZIO, RWWRITER)) {

995 /*

996 * vdev_cant _read and vdev_cant_wite can only
997 * transition from TRUE to FALSE when we have the
998 * SCL_ZIO lock as witer; otherw se they can only
999 * transition fromFALSE to TRUE. This ensures that
1000 * any zio |ooking at these values can assune that
1001 * failures persist for the life of the I/O That's
1002 * inportant because when a device has intermttent
1003 * connectivity problens, we want to ensure that
1004 * they're ascribed to the device (ENXIO and not
1005 * the zio (EIO.

1006 *

1007 * Since we hold SCL_ZIO as writer here, clear both
1008 * val ues so the probe can reevaluate fromfirst

new usr/src/uts/comon/fs/zfs/vdev.c

1009
1010
1011
1012
1013
1014

1016
1017
1018

1020
1021
1022
1023
1024
1025
1026
1027
1028

1030
1031

1033

1035
1036
1037
1038

1040
1041
1042
1043
1044
1045
1046
1047

1049
1050

1052
1053
1054 }

* principles.
*/

vps->vps_flags | = ZI O FLAG CONFI G WRI TER
vd->vdev_cant _read = B_FALSE;
vd- >vdev_cant _wite = B_FALSE;

}

vd->vdev_probe_zio = pio = zio_nul | (NULL, spa, vd,
vdev_pr obe_done, vps,
vps->vps_flags | ZI O FLAG DONT_PROPAGATE) ;

/*
* We can’t change the vdev state in this context, so we
* kick off an async task to do it on our behal f.
*
/
if (zio != NULL) {
vd- >vdev_probe_wanted = B_TRUE;
spa_async_request (spa, SPA_ASYNC_PROBE);

}

if (zio !'= NULL)
zi o_add_child(zio, pio);

nmut ex_exi t (&vd->vdev_probe_| ock);

if (vps == NULL) {
ASSERT(zio != NULL)
return (NULL);

}

for (int I =1; | < VDEV_LABELS; |++) {
zi o_nowai t (zi o_read phys(pl o, vd,
“vdev_| abel _of f set (vd- >vdev _psi ze, |,
of f set of (vdev_| abel _t, _pad2)),
VDEV_PAD SI ZE, zi o_buf aI T oc(VDEV PAD Sl ZE) ,
ZI O CHECKSUM OFF, vdev_probe_done, vp
ZI O_PRI ORI TY_SYNC_READ, vps->vps_ £l ags B_TRUE)) ;

}

if (zio == NULL)
return (pio);

zi o_nowai t (pi 0);
return (NULL);

__unchanged_portion_onitted_

2183 /
2184
2185
2186
2187
2188
2189
2182
2183
2184
2185
2190
2191 i

Online the given vdev.

*
*
*
* If " ZFS_ONLINE_UNSPARE' is set, it inplies two things. First, any attached
* spare device should be det ached when the device finishes resilveri ng.

* Second, the online should be treated |like a 'test’ online case, so no FMA

* events are generated if the device fails to open.

* Online the given vdev. |If 'unspare’ is set, It inplies two things. First,

* any attached spare device should be det ached when the device finishes

* resilvering. Second, the online should be treated like a 'test’ online case,
* so no FMA events are generated if the device fails to open.

*

/

nt

2192 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)

2193 {
2194

2196

vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;

spa_vdev_state_enter(spa, SCL_NONE);

new usr/src/uts/comon/fs/zfs/vdev.c

2198
2199

2201
2202

2204
2205
2206
2207
2208

2210
2211
2212
2213
2214

2216
2217

2219
2220
2221
2222

2224
2225
2226
2227
2228
2229
2230

2232

2234
2235
2236
2237
2238
2239

2240 }
__unchanged_portion_onitted_

if ((vd = spa_l ookup_by_gui d(spa, guid, B_TRUE)) == NULL)
return (spa_vdev_state_exit(spa, NULL, ENODEV));

if (!vd->vdev_ops->vdev_op_| eaf)
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));

tvd = vd->vdev_t op;

vd- >vdev_of fline = B_FALSE;

vd->vdev_t npoffline = B_FALSE;

vd- >vdev_checkrenove = !l (flags & ZFS_ONLI NE_CHECKREMOVE) ;
vd->vdev_forcefault = !l (flags & ZFS_ONLI NE_FORCEFAULT);

/* XXX - L2ARC 1.0 does not support expansion */
if (!vd->vdev_aux) {
for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
pvd- >vdev_expanding = !!(flags & ZFS_ONLI NE_EXPAND) ;
}

vdev_r eopen(tvd);
vd- >vdev_checkrenove = vd->vdev_forcefault = B_FALSE;

if (!vd->vdev_aux) {
for (pvd = vd; pvd != rvd; pvd pvd- >vdev_parent)
pvd- Svdev _expandi ng = B_FALSE;
}

if (newstat e)
*newst ate = vd->vdev_state;
if ((flags & ZFS_ONLI NE_UNSPARE) &&
lvdev_is_dead(vd) && vd- >vdev _parent &&
vd- >vdev_parent - >vdev_ops == &vdev _spare_ops &&
vd- >vdev_par ent - >vdev_chi | d[0] == vd)
vd- >vdev_unspare = B_TRUE;

if ((flags & ZFS_ONLI NE_EXPAND) || spa->spa_autoexpand) {
/* XXX - L2ARC 1.0 does not support expansion */
if (vd->vdev_aux)
return (spa_vdev_state_exit(spa, vd, ENOISUP));
spa_async_request (spa, SPA_ASYNC _CONFl G_UPDATE) ;

return (spa_vdev_state_exit(spa, vd, 0));

new usr/src/uts/ comon/fs/zfs/vdev_queue. c

R R R R

12090 Wed Apr 24 12:44:31 2013
new usr/src/uts/ comon/fs/zfs/vdev_queue. c
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»

Revi ewed by: Ceorge W son <george. w | son@el phi x. con»

Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEEEREEEERERERERESRESRESRESESESESE]
1/*

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the |icense at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing pernissions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

-~

Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to license terms.
/

NRERRRRRRRRE
COONOUITAWNROW©O~NOUTSWN
L I I I I S R I

26 /*
27 * Copyright (c) 2012 by Del phix. Al rights reserved.
*/

30 #include <sys/zfs_context.h>
31 #include <sys/vdev_inpl.h>
32 #include <sys/spa_inpl.h>

33 #include <sys/zio.h>

34 #include <sys/avl.h>

36 /*
37 * These tunables are for performance anal ysis.
38 */

40 /* The maxi mum nunber of 1/0s concurrently pending to each device. */
41 int zfs_vdev_nmax_pendi ng = 10;

43 #endif /* | codereview */
/*

44

45 * The initial nunmber of 1/0s pending to each device, before it starts ranping
46 * up to zfs_vdev_nax_pendi ng.

39 * zfs_vdev_nax_pending is the maxi mum nunber of i/0s concurrently

40 * pending to each device. zfs_vdev_mn_pending is the initial nunber

41 * of i/os pending to each device (before it starts ranping up to

42 * max_pendi ng) .

47 */

44 int zfs_vdev_nax_pendi ng = 10;

48 int zfs_vdev_m n_pending = 4;

50 /*
51 * The deadlines are grouped into buckets based on zfs_vdev_tinme_shift:

new

usr/src/uts/ comon/ fs/zfs/vdev_queue. c

52 * deadline = pri + gethrtinme() >> tinme_shift)

53 */

54 int zfs_vdev_tinme_shift = 29; /* each bucket is 0.537 seconds */
56 /* exponential 1/O issue ranp-up rate */

57 int zfs_vdev_ranp_rate = 2;

59 /*

60 * To reduce | OPs, we aggregate small adjacent |/GCs into one large I/Q
61 * For read I/ Cs, we also aggregate across snall adjacency gaps; for wites
62 * we include spans of optional 1/0Os to aid aggregation at the di sk even when
63 * they aren’t able to help us aggregate at this level.

64 *

65 int zfs_vdev_aggregation_limt = SPA _MAXBLOCKSI ZE;

66 int zfs_vdev_read_gap_limt = 32 << 10;

67 int zfs_vdev_wite_gap_limt = 4 << 10;

69 /*

70 * Virtual device vector for disk I/0 scheduling.

71 */

72 int

73 vdev_queue_deadl i ne_conpare(const void *x1, const void *x2)

74 {

75 const zio_t *zl = x1;

76 const zio_t *z2 = x2;

78 if (z1->io_deadline < z2->io_deadline)

79 return (-1);

80 if (z1->i o_deadline > z2->i o_deadline)

81 return (1);

83 if (z1->io_offset < z2->io_offset)

84 return (-1);

85 if (z1->io_offset > z2->io_offset)

86 return (1);

88 if (z1 < z2)

89 return (-1);

90 if (z1 > z2)

91 return (1);

93 return (0);

94 }

__unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

R R R R

64390 Wed Apr

24 12:44:31 2013

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Al an Soners <al ans@pectral ogi c. con>
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»
Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>
EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEEEREEEERERERERESRESRESRESESESESE]
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governing pernissions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets “[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 =
19 * CDDL HEADER END
20 */
22 |*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.
24 * Copyright (c) 2013 by Del phix. Al rights reserved.
25 =/
27 #include <sys/zfs_context.h>
28 #include <sys/spa. h>
29 #include <sys/vdev_inpl.h>
30 #include <sys/zio.h>
31 #include <sys/zio_checksum h>
32 #include <sys/fs/zfs.h>
33 #include <sys/fmfs/zfs.h>
35 /*
36 * Virtual device vector for RAID Z
37 *
38 * This vdev supports single, double, and triple parity. For single parity,
39 * we use a sinple XOR of all the data colums. For double or triple parity,
40 * we use a special case of Reed-Sol onon coding. This extends the
41 * technique described in "The mathematics of RAID-6" by H Peter Anvin by
42 * drawing on the systemdescribed in "A Tutorial on Reed-Sol onon Coding for
43 * Fault-Tolerance in RAID-like Systems" by Janes S. Plank on which the
44 * forner is also based. The latter is designed to provide higher perfornance
45 * for wites.
46 *
47 * Note that the Plank paper clained to support arbitrary N+M but was then
48 * amended six years later identifying a critical flaw that invalidates its
49 * clainms. Nevertheless, the technique can be adapted to work for up to
50 * triple parity. For additional parity, the anendnent "Note: Correction to
51 * the 1997 Tutorial on Reed-Sol onon Coding" by Janmes S. Plank and Ying Ding
52 * is viable, but the additional conplexity means that wite performance will
53 * suffer.
*
*
*

Al'l of the nethods above operate on a Galois field, defined over the

integers nmod 2"N. In our case we choose N=8 for G-(8) so that all elenents

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

122

#endi f /* |

typedef struct

*
*
*
*
*
*
*
e
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

can be expressed with a single byte.
field are defined as follows:

Briefly, the operations on the

o addition (+) is represented by a bitw se XOR
o subtraction (-) is therefore identical to addition: A+ B=A- B
o multiplication of A by 2 is defined by the follow ng bitw se expression:

coder evi ew */

N
~
1

>>>>>>>>
I I
TR
I:(>I:(>I)>|)>I:'>I:(>I:(>|)>
~oRrNwhOo
+ o+ +
I:(>I)>I:'>
~~~

In C, multiplying by 2 is therefore ((a << 1) » ((a & 0x80) ? Ox1d : 0)).
As an aside, this nultiplication is derived fromthe error correcting
primitive polynomial x"8 + x"4 + x"3 + x"2 + 1.

bserve that any nunber in the field (except for 0) can be expressed as a
power of 2 -- a generator for the field. W store a table of the powers of
2 and | ogs base 2 for quick | ook ups, and exploit the fact that A * B can
be rewitten as 2*(log_2(A) + log_2(B)) (where '+ is normal addition rather
than field addition). The inverse of a field element A (A*-1) is therefore
AN (255 - 1) = Ar254.

The up-to-three parity colums, P, Q R over several data col ums,
) 0, ... D.n-1, can be expressed by field operations:

O

0+D1+
n-1* DO
... ((D0)
n-1* Do
... ((D_0)

P
Q
R

* 4 k4t

~D—~N

§
(

+ x4 *

We chose 1, 2, and 4 as our generators because 1 corresponds to the trival
XOR operation, and 2 and 4 can be conputed qui ckly and generate linearly-
i ndependent coefficients. (There are no additional coefficients that have
this property which is why the uncorrected Pl ank nmethod breaks down.)

See the reconstruction code below for how P, Q and R can used individually
or in concert to recover nissing data col ums.
/

raidz_col {

uint64_t rc_devidx; /* child device index for 1/0 */
uint64_t rc_of fset; /* device offset */
uint64_t rc_size; /* 110 size */
voi d *rc_dat a; /* 110 data */
voi d *rc_gdat a; /* used to store the "good" version */
int rc_error; [* 1/Oerror for this device */
uint8_t rc_tried; /* Did we attenpt this 1/0O colum? */
uint8_t rc_skipped; /* Did we skip this I/O colum? */

} raidz_col _t;

typedef struct raidz_map {
uint64_t rmcols; /* Regul ar col um count */
uint64_t rmscols; /* Count including skipped colums */
uint64_t rmbigcols; /* Nunber of oversized colums */
uint64_t rmasize; /* Actual total 1/0 size */
uint64_t rm.m ssingdat a; /* Count of missing data devices */
uint64_t rmm ssingparity; /* Count of missing parity devices */
uint64_t rmfirstdatacol; /* First data colum/parity count */
uint64_t rmnskip; /* Ski pped sectors for padding */



new usr/src/uts/comon/fs/zfs/vdev_raidz.c 3 new usr/src/uts/comon/fs/zfs/vdev_raidz.c
123 uint64_t rmskipstart; /* Colum index of padding start */ 185 0Oxe6, Oxdl, Oxbf, 0x63, 0xc6, 0x91, Ox3f, Ox7e,
124 voi d *rm dat acopy; /* rm.asi ze-buffer of copied data */ 186 Oxfc, Oxeb, 0xd7, Oxb3, 0x7b, Oxf6, Oxfl, Oxff,
125 uintptr_t rmreports; /* # of referencing checksum reports */ 187 Oxe3, Oxdb, Oxab, Ox4b, 0x96, 0x31, 0x62, 0xc4,
126 uint8_t rmfreed; /* map no | onger has referencing ZI O */ 188 0x95, 0x37, Ox6e, Oxdc, Oxa5, 0x57, Oxae, 0x41,
127 ui nt8_t rm ecksum nj ect ed; /* checksumerror was injected */ 189 0x82, 0x19, 0x32, 0x64, Oxc8, 0x8d, 0x07, O0xOe,
128 raidz_col _t rmcol [1]; /* Flexible array of 1/0 colums */ 190 Oxlc, 0x38, 0x70, Oxe0, Oxdd, Oxa7, 0x53, 0xa6,
129 } raidz_map_t; 191 0x51, Oxa2, 0x59, 0xb2, 0x79, 0xf2, O0xf9, Oxef,
192 0xc3, O0x9b, Ox2b, 0x56, Oxac, 0x45, O0x8a, 0x09,
131 #define VDEV_RAI DZ_P 0 193 0x12, O0x24, 0x48, 0x90, 0x3d, Ox7a, Oxf4, O0xf5,
132 #define VDEV_RAIDZ_Q 1 194 oxf7, 0Oxf3, Oxfb, Oxeb, Oxcbh, 0x8b, Ox0b, 0x16,
133 #define VDEV_RAIDZ_R 2 195 0Ox2c, 0x58, O0xb0, Ox7d, Oxfa, Oxe9, Oxcf, 0x83,
196 Ox1lb, O0x36, Ox6c, O0xd8, Oxad, 0x47, 0x8e, 0x01
135 #define VDEV_RAI DZ_MJL_2(x) (((x) << 1) ™ (((x) & 0x80) ? Ox1d : 0)) 197 };
136 #define VDEV_RAI DZ_MJL_4(x) (VDEV_RAI DZ_MJL_2( VDEV_RAI DZ_MJL_2(x))) 198 /* Logs of 2 in the Galois field defined above. */
199 #endif /* | codereview */
138 /* 200 static const uint8_t vdev_raidz_|log2[256] = {
139 * W provide a nechanismto performthe field multiplication operation on a 201 0x00, 0x00, Ox01, O0x19, 0x02, 0x32, Oxla, 0xc6,
140 * 64-bit value all at once rather than a byte at a tine. This works by 202 0x03, Oxdf, 0x33, Oxee, Oxlb, 0x68, 0xc7, O0x4b,
141 * creating a mask fromthe top bit in each byte and using that to 203 0x04, O0x64, 0xe0, Ox0e, 0x34, 0x8d, Oxef, 0x81,
142 * conditionally apply the XOR of 0x1d. 204 Ox1lc, Oxcl, Ox69, Oxf8, Oxc8, 0x08, Ox4c, 0x71,
143 */ 205 0x05, Ox8a, O0x65, Ox2f, Oxel, 0x24, O0xOf, 0x21,
144 #define VDEV_RAI DZ_64MJL_2(x, mask) \ 206 0x35, 0x93, 0x8e, Oxda, Oxf0, 0x12, 0x82, 0x45,
145 { \ 207 0Ox1d, Oxb5, 0Oxc2, 0x7d, Ox6a, 0x27, Oxf9, O0xb9,
146 (mask) = (x) & 0x8080808080808080ULL; \ 208 0xc9, O0x9a, 0x09, O0x78, Ox4d, Oxe4, 0x72, O0xa6,
147 mask) = ((mask) << 1) - ((mask) >> 7); \ 209 0x06, Oxbf, Ox8b, 0x62, 0x66, 0Oxdd, 0x30, O0xfd,
148 (x) = (((x) << 1) & OxfefefefefefefefeULL) " \ 210 Oxe2, 0x98, 0x25, 0xb3, 0x10, 0x91, 0x22, 0x88,
149 ((mask) & Ox1dldldididididid); \ 211 0x36, 0xd0, O0x94, Oxce, Ox8f, 0x96, Oxdb, Oxbd,
150 } 212 oxf1l, Oxd2, Ox13, Ox5c, 0x83, 0x38, 0x46, 0x40,
213 Oxle, Ox42, Oxb6, Oxa3, Oxc3, 0x48, 0x7e, O0x6e,
152 #define VDEV_RAI DZ_64MJL_4(x, mask) \ 214 0x6b, Ox3a, 0x28, 0x54, Oxfa, 0x85, Oxba, 0x3d,
153 { \ 215 Oxca, Ox5e, 0x9b, O0x9f, O0x0Oa, 0x15, 0x79, 0x2b,
154 VDEV_RAI DZ_64MJL_2((x), mask); \ 216 Ox4e, 0Oxd4, Oxe5, Oxac, 0x73, Oxf3, Oxa7, 0x57,
155 VDEV_RAI DZ_64MJUL_2((x), mask); \ 217 0x07, 0x70, OxcO, Oxf7, Ox8c, 0x80, 0x63, 0x0d,
156 } 218 0x67, Ox4a, Oxde, Oxed, O0x31, Oxc5, Oxfe, 0x18,
219 0Oxe3, Oxab, 0x99, O0x77, 0x26, 0xb8, 0xb4, O0x7c,
158 /* 220 0x11, Ox44, 0x92, 0xd9, 0x23, 0x20, 0x89, O0x2e,
159 * Force reconstruction to use the general purpose nethod. 221 0x37, Ox3f, Oxdl, Ox5b, 0x95, Oxbc, Oxcf, Oxcd,
160 */ 222 0x90, O0x87, 0x97, Oxb2, Oxdc, Oxfc, Oxbe, 0x61,
161 int vdev_raidz_default_to_general; 223 0Oxf 2, 0x56, 0xd3, Oxab, 0x14, 0x2a, 0x5d, 0x9e,
224 0x84, 0x3c, 0x39, 0x53, 0x47, 0x6d, 0x41, Oxa2,
163 /* Powers of 2 in the Galois field defined above. */ 225 Ox1f, Ox2d, Ox43, 0xd8, Oxb7, Ox7b, Oxa4, 0x76,
63 /* 226 Oxc4, O0x17, O0x49, Oxec, Ox7f, OxOc, Ox6f, Oxf6,
64 * These two tables represent powers and logs of 2 in the Galois field defined 227 0Ox6c, Oxal, O0x3b, 0x52, 0x29, 0x9d, 0x55, Oxaa,
65 * above. These val ues were conputed by repeatedly nmultiplying by 2 as above. 228 Oxfb, O0x60, 0x86, Oxbl, Oxbb, Oxcc, 0x3e, O0x5a,
66 */ 229 Oxcb, 0x59, Ox5f, Oxb0, O0x9c, Oxa9, O0xa0, 0x51,
164 static const uint8_t vdev_raidz poWZ[ 256] = { 230 0x0b, Oxf5, 0x16, Oxeb, Ox7a, 0x75, 0x2c, 0xd7,
165 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 231 Ox4f, Oxae, O0xd5, 0xe9, 0Oxe6, Oxe7, Oxad, 0xe8,
166 Ox1d, Ox3a, 0x74, 0xe8, Oxcd, 0x87, 0x13, 0x26, 232 0x74, 0xd6, Oxf4, Oxea, 0xa8, 0x50, 0x58, Oxaf,
167 0x4c, Ox98, 0x2d, 0x5a, 0xb4, 0x75, Oxea, 0xc9, 233 };
168 0x8f, 0x03, 0x06, OxOc, O0x18, 0x30, 0x60, 0xcO,
169 0x9d, 0x27, Ox4e, O0x9c, O0x25, Ox4a, 0x94, 0x35, 235 static void vdev_raidz_generate_parity(raidz_map_t *rm;
170 Ox6a, 0xd4, Oxb5, 0x77, Oxee, Oxcl, Ox9f, 0x23,
171 0x46, O0x8c, O0x05, Ox0a, Ox14, 0x28, 0x50, 0xaO, 237 |*
172 0x5d, Oxba, O0x69, Oxd2, Oxb9, Ox6f, Oxde, Oxal, 238 * Miltiply a given nunber by 2 raised to the given power.
173 0x5f, Oxbe, Ox61, Oxc2, 0x99, 0x2f, 0x5e, Oxbc, 239 */
174 0x65, Oxca, 0x89, O0xO0f, Oxle, 0x3c, 0x78, 0xfO, 240 static uint8_t
175 Ooxfd, Oxe7, 0xd3, Oxbb, 0x6b, 0xd6, Oxbl, Ox7f, 241 vdev_rai dz_exp2(uint_t a, int exp)
176 Oxfe, Oxel, Oxdf, Oxa3, Ox5b, Oxb6, 0x71, Oxe2, 242 {
177 0xd9, Oxaf, O0x43, 0x86, Ox11, 0x22, 0x44, 0x88, 243 if (a ==0)
178 0x0d, Oxla, 0x34, 0x68, 0xdO, Oxbd, 0x67, Oxce, 244 return (0);
179 0x81, Ox1f, Ox3e, Ox7c, O0xf8, Oxed, Oxc7, 0x93,
180 0x3b, 0x76, Oxec, Oxc5, 0x97, 0x33, 0x66, Oxcc, 246 ASSERT(exp >= 0);
181 0x85, 0x17, Ox2e, Ox5c, Oxb8, O0x6d, Oxda, O0xa9, 247 ASSERT(vdev_raidz_log2[a] >0 || a == 1);
182 Ox4f, 0x9e, 0x21, 0x42, 0x84, 0x15, O0x2a, 0x54,
183 Oxa8, 0x4d, 0x9a, 0x29, 0x52, Oxa4, 0x55, Oxaa, 249 exp += vdev_raidz_| og2[a];
184 0x49, 0x92, 0x39, O0x72, Oxe4, 0xd5, Oxb7, 0x73, 250 if (exp > 255)




new usr/src/uts/comon/fs/zfs/vdev_raidz.c

251 exp -= 255;

253 return (vdev_rai dz_pow2[ exp]);

254 }

256 static void

257 vdev_raidz_nmap_free(raidz_map_t *rm

258 {

259 int c;

260 size_t size;

262 for (c =0; ¢ <rm>mfirstdatacol; c++)

263 zio_buf_free(rm>rmcol[c].rc_data, rm>rmcol[c].rc_size);
265 if (rm>mcol[c].rc_gdata != NULL)

266 zio_buf_free(rm>rmcol[c].rc_gdata,
267 rm>rmcol [c].rc_size);

268 }

270 size = 0;

271 for (c = rm>mfirstdatacol; ¢ < rm>rmcols; c++)
272 size += rm>rmcol[c].rc_size;

274 if (rm>rmdatacopy != NULL)

275 zi o_buf _free(rm >rm datacopy, size);

277 kmem free(rm offsetof(raidz_map_t, rmcol [rm>rmscols]));
278 }

280 static void

281 vdev_rai dz_map_free_vsd(zio_t *zio)

282 {

283 raidz_map_t *rm = zio->i o_vsd;

285 ASSERTO(rm >rm freed);

286 rm>mfreed = 1;

288 if (rm>mreports ==

289 vdev_raidz_map_free(rm;

290 }

292 [ * ARGSUSED*/

293 static void

294 vdev_rai dz_cksum free(void *arg, size_t ignored)

295 {

296 raidz_map_t *rm= arg;

298 ASSERT3U(rm >rm reports, >, 0);

300 if (--rm>mreports == 0 & rm>mfreed != 0)

301 vdev_rai dz_map_free(rm;

302 }

304 static void

305 vdev_rai dz_cksum finish(zio_cksumreport_t *zcr, const void *good_dat a)
306 {

307 raidz_map_t *rm = zcr->zcr_cbdat a;

308 size_t ¢ = zcr->zcr_chinfo;

309 size_t x;

311 const char *good = NULL;

312 const char *bad = rm>rmcol[c].rc_data;

314 if (good_data == NULL) {

315 zfs_ereport_finish_checksun(zcr, NULL, NULL, B _FALSE);

316

return;

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

317

319
320
321
322
323
324
325
326
327

329
330
331
332
333
334
335
336
337
338

340
341
342
343
344
345

347
348
349
350

352
353
354

356
357
358
359
360
361

363
364
365
366
367

369
370
371

373
374
375

377
378
379
380
381
382

* Ok Ok ok H %

/

}
if (c <rm>mfirstdatacol) {
/*

* The first time through, calculate the parity blocks for
* the good data (this relies on the fact that the good
* data never changes for a given logical ZIO
*
/
if (rm>rmcol[0].rc_gdata == NULL) {
char *bad_parity[ VDEV_RAI DZ_MAXPARI TY] ;
char *buf;

/*

* Set up the rmcol[]s to generate the parity for
* good_data, first saving the parity bufs and

* replacing themwith buffers to hold the result.
*

for (x = 0; x < rm>mfirstdatacol; x++) {
bad_parity[x] = rm>rmcol[x].rc_data;

rm>rmcol [x].rc_data = rm>rmcol [x].rc_gdata

zio_buf _alloc(rm>rmcol [x].rc_size);

}

/* fill in the data columms from good_data */
buf = (char *)good_dat a;
for (; x <rm>mcols; x++) {
rm>rmcol[x].rc_data = buf;
buf += rm>rmcol [x].rc_size;

}

/*

* Construct the parity fromthe good data.

*

vdev_rai dz_generate_parity(rm;

/* restore everything back to its original state */

for (x = 0; x <rm>mfirstdatacol; x++)
rm>rmcol [x].rc_data = bad_parity[x];

buf = rm >rm dat acopy;

for (x = rm>mfirstdatacol; x < rm>mcols; x++) {

rm>rmcol [x].rc_data = buf;
buf += rm>rmcol [x].rc_size;

}
}
ASSERT3P(rm>rmcol [c].rc_gdata, !=, NULL);
good = rm>rmcol [c].rc_gdata;
} else {

/* adjust good_data to point at the start of our colum */
good = good_dat a;

for (x = rm>mfirstdatacol; x < c; x++)
good += rm>rmcol [ x].rc_size;

}

/* we drop the ereport if it ends up that the data was good */
zfs_ereport _finish_checksum(zcr, good, bad, B_TRUE);

I nvoked indirectly by zfs_ereport_start_checksun(), called

bel ow when our read operation fails conpletely. The main point

is to keep a copy of everything we read fromdi sk, so that at
vdev_rai dz_cksum finish() tinme we can conpare it with the good data.



new usr/src/uts/comon/fs/zfs/vdev_raidz.c

383 static void
384 vdev_rai dz_cksumreport(zio_t *zio, zio_cksumreport_t *zcr, void *arg)

385
386
387

389
390

392
393
394
395
396

398
399

401
402

404
405
406
407
408
409
410
411

413
414
415

417

419
420

422
423

425
426
427
428

430
431
432
433

435
436
437
438
439
440
441
442
443
444
445
446
447
448

{

}

size_t ¢ = (size_t)(uintptr_t)arg;
caddr _t buf;

raidz_map_t *rm = zio->i o_vsd;
size_t size;

/* set up the report and bunp the refcount */
zcr->zcr_cbhdat a rm

zcr->zcer_chinfo = c;
zcr->zcr _finish vdev_rai dz_cksum fi ni sh;
zcr->zcr_free = vdev_rai dz_cksum free;

rm>rmreports++,
ASSERT3U(rm >rm reports, >, 0);

if (rm>rmdatacopy != NULL)
return;

It's the first time we're called for this raidz_nmap_t, so we need
to copy the data aside; there’s no guarantee that our zio's buffer
won't be re-used for sonething else.

Qur parity data is already in separate buffers, so there’s no need
to copy them
/

* % ok k% ok ok

size = 0;

for (c = rm>mfirstdatacol; ¢ < rm>rmcols; c++)
size += rm>rmcol [c].rc_size;

buf = rm >rm.datacopy = zio_buf_all oc(size);

for (c = rm>mfirstdatacol; ¢ < rm>rmcols; c++) {
raidz_col _t *col = &m>rmcol[c];

bcopy(col ->rc_data, buf, col->rc_size);
col ->rc_data = buf;

buf += col ->rc_si ze;

}
ASSERT3P(buf - (caddr_t)rm >rm datacopy, ==, size);

static const zio_vsd_ops_t vdev_raidz_vsd_ops = {

}
/

vdev_rai dz_map_free_vsd,
vdev_rai dz_cksum r eport

Divides the 10 evenly across all child vdevs; usually, dcols is
* the nunber of children in the target vdev.
*/

static raidz_map_t *
vdev_raidz_map_al loc(zio_t *zio, uint64_t unit_shift, uint64_t dcols,

{

uint64_t nparity)

raidz_map_t *rm

/* The starting RAIDZ (parent) vdev sector of the block. */
uint64_t b = zio->o_offset >> unit_shift;

/* The zio's size in units of the vdev’s mininum sector size */
uint64_t s = zio->o_size >> unit_shift;

/* The first colum for this stripe. */

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

449
450
451
452

454
455
456
457
458

460
461
462
463
464

466
467

469
470
471
472
473

475
476
477
478
479
480
481
482
483
484

486
488

490
491
492
493
494
495
496
497
498
499
500

502

504
505
506
507
508
509
510
511
512
513
514

uinté4_t f = b %dcols;

/* The starting byte offset on each child vdev. */

uint64_t o = (b / dcols) << unit_shift;

uinté4_t q, r, c, bc, col, acols, scols, coff, devidx, asize, tot;

/*

* "Quotient": The nunber of data sectors for this stripe on all but
* the "big colum" child vdevs that al so contain "remai nder" data.
*

q =s / (dcols - nparity);

/*

* "Remai nder": The nunber of partial stripe data sectors in this I/Q
* This will add a sector to sone, but not all, child vdevs.

*/

r =s - gq* (dcols - nparity);

/* The nunber of "big colums" - those which contain renai nder data. */
bc =(r == 0?0 : r + nparity);

/*

* The total nunber of data and parity sectors associated with
* this I/0O

*/

tot = s + nparity * (q+(r == 0?0 : 1));

/* acols: The columms that will be accessed. */
/* scols: The colums that will be accessed or skipped. */

if (q ==0)
/* Qur 1/0O request doesn’t span all child vdevs. */
acol s = bc;
scols = M N(dcols, roundup(bc, nparity + 1));
} else {
acol s = dcol s;
scol s = dcol s;
}

ASSERT3U( acol s, <=, scols);
rm = knmem al | oc(of fsetof (rai dz_map_t, rmcol[scols]), KMSLEEP);

rm>rmcols = acol s;
rm>rmscols = scols;
rm >rmbigcols = bc;
rm>rmskipstart = bc;
rm>rmm ssingdata = O;
rm>rmmssingparity = 0;
rm>mfirstdatacol = nparity;
rm >rmdatacopy = NULL;
rm>mreports = 0;
rm>mfreed = 0O;

rm >rm ecksum nj ected = O;

asize = 0;
for (c = 0; ¢ < scols; c++) {
col =f + ¢c;
coff = o;
if (col >= dcols) {
col -= dcols;
coff += 1ULL << unit_shift;
rm>rmcol [c].rc_devidx = col;
rm>mcol[c].rc_offset = coff;
rm>rmcol[c].rc_data = NULL;
rm>rmcol [c].rc_gdata = NULL;



new usr/src/uts/comon/fs/zfs/vdev_raidz.c 9 new usr/src/uts/comon/fs/zfs/vdev_raidz.c
515 rm>mcol[c].rc_error = 0; 581 return (rm;
516 rm>mcol[c].rc_tried = O; 582 }
517 rm>rmcol [c].rc_skipped = O;
584 static void
519 if (c >= acols) 585 vdev_rai dz_generate_parity_p(raidz_map_t *rm
520 rm>rmcol[c].rc_size = 0; 586 {
521 else if (c < bc) 587 uint64_t *p, *src, pcount, ccount, i;
522 rm>rmcol[c].rc_size = (q + 1) << unit_shift; 588 int c;
523 el se
524 rm>rmcol[c].rc_size = q << unit_shift; 590 pcount = rm>rmcol [ VDEV_RAIDZ_P].rc_size / sizeof (src[0]);
526 asize += rm>rmcol[c].rc_size; 592 for (c = rm>mfirstdatacol; ¢ < rm>rmcols; c++) {
527 } 593 src = rm>rmcol[c].rc_data;
594 p = rm>rmcol [ VDEV_RAIDZ_P].rc_dat a;
529 ASSERT3U( asi ze, ==, tot << unit_shift); 595 ccount = rm>mcol[c].rc_size / sizeof (src[0]);
530 rm>rmasize = roundup(asize, (nparity + 1) << unit_shift);
531 rm>rmnskip = roundup(tot, nparity + 1) - tot; 597 if (c ==rm>mfirstdatacol) {
532 ASSERT3U(rm >rm asi ze - asize, ==, rm>mnskip << unit_shift); 598 ASSERT( ccount == pcount);
533 ASSERT3U(r m >rm nski p, <=, nparity); 599 for (i =0; i < ccount; i++, src++, p++) {
600 *p = *src;
535 for (c =0; ¢c <rm>mfirstdatacol; c++) 601
536 rm>mcol[c].rc_data = zio_buf_alloc(rm>mcol[c].rc_size); 602 } else {
603 ASSERT( ccount <= pcount);
538 rm>rmcol[c].rc_data = zi o->i o_data; 604 for (i =0; i < ccount; i++, src++ p++) {
605 *p A= *src;
540 for (c = c + 1; ¢ < acols; c++) 606 }
541 rm>mcol[c].rc_data = (char *)rm>mcol[c - 1].rc_data + 607 }
542 rm>mcol[c - 1].rc_size; 608 }
609 }
544 /*
545 * |f all data stored spans all columms, there’s a danger that parity 611 static void
546 * will always be on the sane device and, since parity isn't read 612 vdev_rai dz_generate_parity_pq(raidz_map_t *rnmn
547 * during nornal operation, that that device's I/O bandw dth won't be 613 {
548 * used effectively. We therefore switch the parity every 1MB. 614 uint64_t *p, *q, *src, pcnt, ccnt, nmask, i;
549 & 615 int c;
550 * ... at least that was, ostensibly, the theory. As a practical
551 * matter unless we juggle the parity between all devices evenly, we 617 pcnt = rm>rmcol [ VDEV_RAIDZ_P].rc_size / sizeof (src[0]);
552 * won't see any benefit. Further, occasional wites that aren’t a 618 ASSERT(rm >rm col [ VDEV_RAIDZ_P] .rc_si ze ==
553 * nultiple of the LCM of the nunber of children and the nininum 619 rm>rmcol [ VDEV_RAIDZ_Q . rc_si ze);
554 * stripe width are sufficient to avoid pessimal behavior.
555 * Unfortunately, this decision created an inplicit on-disk fornmat 621 for (c = rm>mfirstdatacol; ¢ < rm>rmcols; c++) {
556 * requirement that we need to support for all eternity, but only 622 src = rm>rmcol[c].rc_data;
557 * for single-parity RAID Z. 623 p = rm>rmcol [ VDEV_RAIDZ_P].rc_dat a;
558 * 624 g = rm>mcol [ VDEV_RAIDZ_Q .rc_data;
559 * |f we intend to skip a sector in the zeroth colum for padding
560 * we nust nmake sure to note this swap. W will never intend to 626 cent = rm>rmcol [c].rc_size / sizeof (src[0]);
561 * skip the first colum since at |east one data and one parity
562 * colum nust appear in each row. 628 if (c =rm>mfirstdatacol) {
563 */ 629 ASSERT(ccnt == pcnt || ccnt == 0);
564 ASSERT(rm >rm.cols >= 2); 630 for (i =0; i < ccnt; i++, src++, p++, q++) {
565 ASSERT(rm >rmcol [0].rc_size == rm>rmcol [1] .rc_si ze); 631 *p = *src;
632 *q = *src;
567 if (rm>mfirstdatacol == 1 && (zio->io_offset & (1ULL << 20))) { 633 }
568 devidx = rm>rmcol [0].rc_devidx; 634 for (; i < pcnt; i++, src++, p++, q++) {
569 o =rm>mcol[0].rc_offset; 635 *p = 0;
570 rm>rmcol[0].rc_devidx = rm>rmcol [1].rc_devidx; 636 *q = 0;
571 rm>mcol[0].rc_offset = rm>rmcol[1].rc_offset; 637 }
572 rm>rmcol [1].rc_devi dx = devi dx; 638 } else {
573 rm>mcol [1].rc_offset = o; 639 ASSERT(ccnt <= pcnt);
575 if (rm>rmskipstart == 0) 641 /*
576 rm>rmskipstart = 1; 642 * Apply the al gorithm descri bed above by multiplying
577 } 643 * the previous result and adding in the new val ue.
644 */
579 zio->io_vsd = rm 645 for (i =0; i < ccnt; i++, src++, p++, gq++) {
580 zi 0->i o_vsd_ops = &vdev_rai dz_vsd_ops; 646 *p A= *src;




new usr/src/uts/comon/fs/zfs/vdev_raidz.c

648
649
650

652
653
654
655
656
657
658
659
660
661 }

663 static void
664 vdev_rai dz_generate_parity_pqr(raidz_nmap_t *rm

665 {
666
667

669
670
671
672
673

675
676
677
678
679

681

683
684
685
686
687
688
689
690
691
692
693
694
695
696

698
699
700
701
702
703

705
706

708
709
710

ui nt 64_

int c;

pent =

VDEV_RAI DZ_64MJL_2(*q, mask);
*q "= *src;
}
/*
* Treat short colums as though they are full of Os.

* Note that there’s therefore nothing needed for P.
*

for (; i < pent; i++, qg++) {
VDEV_RAI DZ_64MJL_2(*q, mask);
}

t *p, *q, *r, *src, pcnt, ccnt, mask, i;

rm>rmcol [VDEV_RAIDZ P].rc_size / sizeof (src[0]);

ASSERT(rm >rm col [ VDEV_RAIDZ_P] .rc_si ze ==
rm>rmcol [ VDEV_RAIDZ_Q . rc_si ze);
ASSERT(rm >rm col [ VDEV_RAIDZ_P] .rc_si ze ==
rm>rmcol [ VDEV_RAIDZ_R] . rc_si ze);

for (c

= rm>mfirstdatacol; ¢ < rm>mcols; c++) {
src = rm>rmcol [c].rc_data;
p rm>rm col [ VDEV_RAIDZ_P] . rc_dat a;
q rm>rm col [ VDEV_RAIDZ_Q . rc_dat a;
r rm>rm col [ VDEV_RAIDZ_R] . rc_dat a;

cent = rm>mcol[c].rc_size / sizeof (src[0]);

if (c ==rm>mfirstdatacol) {

ASSERT(ccnt == pcnt || ccnt == 0);

for (i = 0; i < ccnt; i++ src++, p++, g++, r++) {
*p = *src;
*q = *src;
*r = *src

}

for (; i < pent; i++, src++, p++, gq++, r++) {
*p = 0;
*q = 0’
*r =0

}
} else {
ASSERT(ccnt <= pcnt);

/*

* Apply the al gorithm descri bed above by multiplying

* the previous result and adding in the new val ue.

*/

for (i =0; i < ccnt; i++, src++, p++, g++, r++) {
*p A= *grg;

VDEV_RAI DZ_64MUL_2(*q, mask);
*q A= *src;

VDEV_RAI DZ_64MJUL_4(*r, mask);
*r A= *src;

11

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

713
714
715
716
717
718
719
720
721
722

724
725
726
727
728
729

}
/ *

* Generate RAID parity in the first virtual

* Treat short colums as though they are full

of O0s.

* Note that there’s therefore nothing needed for P.

r++)

*/
for (; i < pcnt; i++, qg++, {
VDEV_RAI DZ_64MJL_2(*q, mask);
VDEV_RAI DZ_64MJUL_4(*r, mask);
}

* parity colums avail abl e.
*/

static void

vdev_rai dz_generate_parity(raidz_map_t *rm

730 {

731
732
733
734
735
736
737
738
739
740
741
742
743
744

746
747

}

static i
vdev_r ai

748 {

749
750
751

753
754
755

757
758
759

761
762
763
764
765

767
768
769

771
772

774
775

777
778

switch (rm>rmfirstdatacol) {
case 1:

12

columms according to the nunmber of

vdev_rai dz_generate_parity_p(rm;

br eak;
case 2:
vdev_rai dz_generate_parity_pq(rm;
br eak;
case 3:
vdev_rai dz_generate_parity_pqr(rm;
br eak;
defaul t:
com_err (CE_PANIC, "invalid RAID Z configuration");
}
nt

dz_reconstruct _p(raidz_nmap_t *rm

uint64_t *dst, *src, xcount, ccount,

int x = tgts[0];
int c;

ASSERT(ntgts == 1);
ASSERT(x >= rm>rmfirstdatacol);
ASSERT(Xx < rm>rmcol s);

int

count,

*tgts, int ntgts)

xcount = rm>rmcol [x].rc_size / sizeof (src[0]);

ASSERT(xcount <= rm>rmcol [ VDEV_RAIDZ_P].rc_size / sizeof

ASSERT(xcount > 0);

src = rm>rmcol [ VDEV_RAI DZ_P] . rc_dat a;

dst = rm>rmcol [x].rc_data;

for (i = 0; i < xcount; i++, dst++
*dst = *src;

}

Src++)

{

for (c = rm>mfirstdatacol; ¢ < rm>rmcols; c++) {

src = rm>mcol[c].rc_data;
dst = rm>rmcol [x].rc_data;

if (c ==x)
cont i nue;

ccount = rm>mcol[c].rc_size / sizeof (src[0]);
count = M N(ccount, xcount);

for (i =0; i < count; i++
*dst ~= *src;

dst ++,

src++) {

(src[0]));



new usr/src/uts/comon/fs/zfs/vdev_raidz.c

779 }

780 1

782 return (1 << VDEV_RAI DZ_P);
783 }

785 static int

786 vdev_raidz_reconstruct_q(raidz_map_t *rm int *tgts, int ntgts)
787 {

788 uint64_t *dst, *src, xcount, ccount, count, nask, i;

789 uint8_t *b;

790 int x = tgts[0];

791 int c, j, exp;

793 ASSERT(ntgts == 1);

795 xcount = rm>rmcol [x].rc_size / sizeof (src[0]);

796 ASSERT(xcount <= rm>rmcol [ VDEV_RAIDZ @ .rc_size / sizeof (src[0]));
798 for (c = rm>mfirstdatacol; ¢ < rm>rmcols; c++) {

799 src = rm>rmcol[c].rc_data;

800 dst = rm>rmcol [x].rc_data;

802 if (c ==x)

803 ccount = 0;

804 el se

805 ccount = rm>rmcol[c].rc_size / sizeof (src[0]);
807 count = M N(ccount, xcount);

809 if (c ==rm>mfirstdatacol) {

810 for (i =0; i < count; i++, dst++ src++) {
811 *dst = *src;

812 }

813 for (; i < xcount; i++, dst++) {

814 *dst = 0;

815 }

817 } else {

818 for (i =0; i < count; i++ dst++, src++) {
819 VDEV_RAI DZ_ 64NUL 2( dst, mask);
820 *dst A= *src;

821 }

823 for (; i < xcount; i++, dst++) {

824 VDEV_RAI DZ_64MJL_2( *dst, mask);
825 }

826 }

827 }

829 src = rm>rmcol [ VDEV_RAIDZ_Q .rc_dat a;

830 dst = rm>rmcol [x].rc_data;

831 exp = 255 - (rm>mcols - 1 - Xx);

833 for (i = 0; i < xcount; i++, dst++, src++) {

834 *dst "= *src

835 for (j =0, b = (uint8_t *)dst j < 8; j++, b++) {
836 *b = vdev_rai dz_exp2(* b, exp);

837 }

838 }

840 return (1 << VDEV_RAIDZ _Q;

841 }

843 static int

844 vdev_rai dz_reconstruct _pq(raidz_map_t *rm int *tgts,

int ntgts)

13

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

14

845 {

846 uint8_t *p, *qg, *pxy, *gxy, *xd, *yd, tnp, a, b, aexp, bexp;
847 voi d *pdata, *qdata;

848 uint64_t xsize, ysize, i;

849 int x = tgts[0];

850 int y =tgts[1];

852 ASSERT(ntgts == 2);

853 ASSERT(x < y);

854 ASSERT(x >= rm>rmfirstdatacol);

855 ASSERT(y < rm>rmcols);

857 ASSERT(rm >rmcol [x].rc_size >= rm>mcol[y].rc_size);

859 I*

860 * Move the parity data aside -- we're going to conpute parity as
861 * though colums x and y were full of zeros -- Pxy and Qxy. W want to
862 * reuse the parity generation mechani smw thout trashing the actual
863 * parity so we nake those colums appear to be full of zeros by
864 * setting their lengths to zero.

865 */

866 pdata = rm >rm col [ VDEV_RAI DZ_P] . rc_dat a;

867 gqdata = rm >rm col [ VDEV_ RAIDZQ rc_data;

868 xsize = rm>rmcol [x].rc_size;

869 ysize = rm>rmcol [y].rc_size;

871 rm>rmcol [ VDEV_RAIDZ_P].rc_data =

872 zio_buf _alloc(rm>rm coI[VDEV RAI DZ_P].rc_si ze);

873 rm>rmcoI[VDEV RAIDZ_Q .

874 zi o_buf aIIoc(rm>rmcoI[VDEV RAIDZ_Q .rc_size);

875 rm>rmcol [X].rc _size = 0;

876 rm>mcol[y].rc_size = 0;

878 vdev_rai dz_generate_parity_pq(rm;

880 rm>rmcol [x].rc_size = xsize;

881 rm>rmcol [y].rc_size = ysize;

883 p = pdata;

884 q = qdata;

885 pxy = rm>rmcol [ VDEV_RAIDZ P].rc_data;

886 gxy = rm>rmcol [ VDEV_RAIDZ_Q . rc_dat a;

887 xd = rm>rmcol [x].rc_data;

888 yd = rm>rmcol [y].rc_data;

890 /*

891 * We now have:

892 * Pxy = P + Dx+D_y

893 * Xy = Q + 2”°(ndevs - 1 - x) D x + 2*(ndevs - 1 - vy) Dy
894 *

895 * We can then solve for D x:

896 * Dx =A* (P+ Pxy) + B* (Q+ Qxy)

897 * where

898 * A= 2Mx - y) * (2M(x - y) + 1)~-1

899 * B = 272(ndevs - 1 - x) * (2%(x - y) + 1)*-1

900 *

901 * Wth D x in hand, we can easily solve for D_y:

902 * Dy =P + Pxy + Dx

903 */

905 a = vdev_raidz_pow2[255 + x - y];

906 b = vdev_raidz_pow2[255 - (rm>mcols - 1 - x)];

907 tnmp = 255 - vdev_raidz_log2[a * 1];

909 aexp = vdev_raidz_| og2[ vdev_rai dz_exp2(a, tm)];

910 bexp = vdev_raidz_| og2[ vdev_rai dz_exp2(b, tnp)];



new usr/src/uts/ comon/fs/zfs/vdev_raidz.c 15

912
913
914

916
917
918

920
921
922
923

925
926
927
928
929

931
932

934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976

B I T T T T N

for (i = 0; i < xsize; i++ p++, q++, pxy++, qgxy++, xd++, yd++) {
*xd = vdev_raidz_exp2(*p N *pxy, aexp) "
vdev_rai dz_exp2(*q ™ *qgxy, bexp);
if (i <ysize)
*yd = *p N *pxy N *Xd;
}

zi o_buf _free(rm >rmcol [ VDEV_RAI DZ_P] . rc_dat a,
rm>rm col [ VDEV_RAI DZ_P] . rc_si ze);

zi o_buf _free(rm>rmcol [ VDEV_RAIDZ_Q .rc_data,
rm>rmcol [ VDEV_RAIDZ_Q .rc_size);

/*

* Restore the saved parity data.

*/
rm>rmcol [ VDEV_RAIDZ_P].rc_data = pdata;
rm>rmcol [ VDEV_RAIDZ_QJ.rc_data = qdata;

return ((1 << VDEV_RAIDZ_P) | (1 << VDEV_RAIDZ Q);

BEG N CSTYLED */

In the general case of reconstruction, we nmust solve the systemof |inear
equations defined by the coeffecients used to generate parity as well as
the contents of the data and parity disks. This can be expressed with

vectors for the original data (D) and the actual data (d) and parity (p)

and a matrix conposed of the identity matrix (1) and a dispersal matrix (V):
| | _ — | pO |
| VvV | [ DO | | p_m1]
I | X [ + | =] do |
[ 1 [ Dn-2 | | ¢
| =~~~ | dn1]

| is sinply a square identity matrix of size n, and V is a vander nonde
matri x defined by the coeffecients we chose for the various parity col ums

(1, 2, 4). Note that these values were chosen both for sinplicity, speedy
conputation as well as linear separability.

[ 1 .. 111] | PO |

| 2~n-1 . 42 1| . ] : |

| 47n-1 .. 16 4 1 | [ DO ] | p.m1 |

| 1 . 000 | | D1 | | d_o

| 0 000| x| D2 | =] d1 |

| : oo | : | | d_2 |

| 0 100 | | Dn-1] | : |

| 0 010 | == == : |

| 0 001 | | d_n-1 |
Note that I, V, d, and p are known. To conpute D, we nust invert the
matri x and use the known data and parity values to reconstruct the unknown
data values. W begin by renpving the rows in V|| and d|p that correspond

to failed or missing colums; we then make V|| square (n x n) and d|p
sized n by renopving rows corresponding to unused parity fromthe bottom up
to generate (V|1)’ and (d|p)’. We can then generate the inverse of (V|I)’
usi ng Gauss-Jordan elimnation. In the exanple bel ow we use n¥3 parity
colums, n=8 data colums, with errors in d_1, d_2, and p_1:

r1 1 1 1 1 1 1 17T

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042

B I I T T B N

128 64 32 16 8
19 205 116 29 64
1 0 0 0 O
0 1 0 0 0
(MI) =] 0 0 1 0 0O
0 0 0 1 O
0 0 0 0 1
0 0 0 0 O©
0 0 0 0 ©
0 0 0 0 O
1 1 1 1 1
128 64 32 16 8
19 205 116 29 64
1 0 0 0 O
0 1 0 0 0
(V1)) =] 0 0 1 0 0
0 0 0 1 O
0 0 0 0 1
0 0 0 0 O©
0 0 0 0 O
0 0 0 0 O

Here we enpl oy Gauss-Jordan eli
have carefully chosen the seed
matrix is not singular.

1 1 1 1 1 1 1
19 205 116 29 64 16 4
1 0 0 0O O 0 O
o 0 O 1 0O 0 O
0O 0 0 O 1 0 O
o 0O O 0 o 1 0
o 0 O O o0 oO 1
o o0 O O o0 o0 o0
1 0 0 0 O 0 o
1 1 1 1 1 1 1
19 205 116 29 64 16 4
o 0 O 1 0 0 O
0O 0O 0 O 1 0 O
o 0 0O 0 oO0 1 0
o 0 O 0O o0 O 1
o o0 O o o o0 o0
1 0 0O 0 O 0 O
0 1 1 0 0 0 o0
0 205116 0 O O O
o 0 O 1 0o 0 O
0O 0 0 O 1 0 O
o 0O O 0 o 1 0
o 0 O O o0 o0 1
0O 0O O O o o0 o0
1 0 0 0O O 0 o
0 1 1 0O 0O 0 o0
0O 0 185 0 O 0 O
0o 0 O 1 0 0 O
0O 0 0 O 1 0 O
o 0O O 0 o 1 0
o 0 O o o0 o 1

IN

m ssi ng di sks

[}

OORrRPOO0OO0OOOR
OFRPOO0OOO0OOOA~N
POOOOOOORHF

1
l

OORrRPOO0OO0OOOR MR
OFRPOO0OOO0OOOANE
POOOOOOORREKF

mnation to find the inverse of (V|I)’.
values 1, 2, and 4 to ensure that this

POOOOOREF
[eYololeloloXa) d
[efelolololo) Yo
[efololola] oo
[efolola) Jolole)
OO0OO0ORrOO0O0OO
[e¥eol Helololole)
(el lelolololole)
RPOOOOOOO

POOOOREFRO
[eYelolololo) o)
OO0 O0OO0OrOO
OO0 O0O0OO0O0ORr
[elelolo) Jololo)
OOO0ORrOO0O0OO
OOrPOO0OOO0OO
OFrRPO0OO0OO0OO0O0OO
POOOOOOO

POOOOOOO
QOO0 O0OO0Or O
OO0 O0OO0OrOOo
OCOO0O0OORREF
©
OCOOORrRNFO
COOrOOFr O
OORrOORRFrRO
o
OrRrOO0OORMRO
RPOOOORrRKFRO

[elelolololoXa]
OO0O0OO0O0Or O
ooooroo
OOOONREF

N

N
OO0OORrOoOro
oOOoORrOh~RLO

Ve

16



new usr/src/uts/comon/fs/zfs/vdev_raidz.c 17 new usr/src/uts/comon/fs/zfs/vdev_raidz.c 18
1043 *| o0 O O O O o0 O0 1 0O 0 0O O O O 0 1 | 1109 for (j =0; j <n; j++) {
1044 * ~~ S 1110 pow -= map[i];
1045 * __ _ 1111 if (pow < 0)
1046 * 1 0 0O 0O O O o0 O o o 1 o O O 0 o 1112 pow += 255;
1047 * 0 1 1 0O 0 O o0 O 1 0 1 1 1 1 1 1 1113 rows[i][]J] = vdev_raidz_pow2[pow ;
1048 * o 0 1 0O 0 O 0 O 166 100 4 40 158 168 216 209 1114 }
1049 * o o0 O 1 o 0 0 O o o O 1 0 0 0 o 1115 }
1050 * o o0 O O 1 o0 0 O o o O o 1 o0 0 o 1116 }
1051 * o 0 O O o0 1 0 O 0O 0 O 0 ©O 1 0 O
1052 * o 0 O O o0 O 1 o o 0 O O O O 1 o 1118 static void
1053 * 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1119 vdev_raidz_matrix_invert(raidz_map_t *rm int n, int nmssing, int *mssing,
1054 * ~~ S 1120 uint8 t **rows, uint8_t **invrows, const uint8_t *used)
1055 * . 1121 {
1056 * 1 0 0O 0O O O 0 O o 0 1 o O O 0 o 1122 int i, j, ii, ji;
1057 * 0 1 0 0 0 0 0 0 167 100 5 41 159 169 217 208 1123 uint8_t |og;
1058 * o o0 1 0 o0 O 0 O 166 100 4 40 158 168 216 209
1059 * o 0 O 1 o0 0 0 O o o O 1 0 0 0 o 1125 /*
1060 * 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1126 * Assert that the first nmssing entries fromthe array of used
1061 * 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1127 * colums correspond to parity columms and that subsequent entries
1062 * o o0 O O o o0 1 o o o0 0O o O o0 1 o 1128 * correspond to data col umms.
1063 * o o0 O O o o0 o0 1 0o o O o O O0O o0 1 1129 *
1064 * ~~ == 1130 for (i =0; i <nmssing;, i++) {
1065 * . . 1131 ASSERT3S(used[i], <, rm>mfirstdatacol);
1066 * | o o 1 0 O O 0 0 | 1132 }
1067 * | 167 100 5 41 159 169 217 208 | 1133 for (; i <n; i++) {
1068 * | 166 100 4 40 158 168 216 209 | 1134 ASSERT3S(used[i], >=, rm>mfirstdatacol);
1069 * (vft)y'~~2=| 0 O O 1 0O 0O 0 0 | 1135 }
1070 * | 0 0 0 ©0 1 0 0 0 |
1071 * | o o o O O 1 o0 0 | 1137 /*
1072 * | o 0 0 O 0 O 1 0 | 1138 * First initialize the storage where we'll conpute the inverse rows.
1073 * | o o o O O O O 1 | 1139 */
1074 * —= = 1140 for (i =0; i <nmssing;, i++) {
1075 * 1141 for (j =0; j <n; j++) {
1076 * We can then sinply conmpute D = (V|1)'~-1 x (d|p)’ to discover the val ues 1142 invrows[i][J] = (i ==j) ?1: 0;
1077 * of the m ssing data. 1143 }
1078 * 1144 }
1079 * As is apparent fromthe exanple above, the only non-trivial rows in the
1080 * inverse matrix correspond to the data disks that we're trying to 1146 /*
1081 * reconstruct. Indeed, those are the only rows we need as the others woul d 1147 * Subtract all trivial rows fromthe rows of consequence.
1082 * only be useful for reconstructing data known or assuned to be valid. For 1148 *
1083 * that reason, we only build the coefficients in the rows that correspond to 1149 for (i =0; i <nmssing; i++) {
1084 * targeted col unms. 1150 for (j = nmissing; j <n; j++) {
1085 */ 1151 ASSERT3U(used[j], >=, rm>mfirstdatacol);
1086 /* END CSTYLED */ 1152 jj = used[j] - rm>mfirstdatacol;
1153 ASSERT3S(jj, <, n);
1088 static void 1154 invrows[i][j] = rows[il[jj];
1089 vdev_raidz_matrix_init(raidz_map_t *rm int n, int nmap, int *nmap, 1155 rows[i][jj] = O;
1090 uint8_t **rows) 1156 }
1091 { 1157 }
1092 int i, j;
1093 int pow, 1159 /*
1160 * For each of the rows of interest, we nust normalize it and subtract
1095 ASSERT(n == rm>rmcols - rm>mfirstdatacol); 1161 *anmultiple of it fromthe other rows.
1162 */
1097 /* 1163 for (i = 0; i < nmssing; i++)
1098 * Fill in the mssing rows of interest. 1164 for (j =0; j <mssing[i]; j++) {
1099 *f 1165 ASSERTO(rows[i[[j]);
1100 for (i =0; i < nmap; i++) { 1166 }
1101 ASSERT3S(0, <=, map[i]); 1167 ASSERT3U(rows[i][m ssing[i]], != 0);
1102 ASSERT3S(map[i], <=, 2);
1169 /*
1104 pow = map[i] * n; 1170 * Conpute the inverse of the first element and multiply each
1105 if (pow > 255) 1171 * element in the row by that val ue.
1106 pow - = 255; 1172 */
1107 ASSERT( pow <= 255); 1173 log = 255 - vdev_raidz_log2[rows[i][missing[i]]];




new usr/src/uts/comon/fs/zfs/vdev_raidz.c 19 new usr/src/uts/comon/fs/zfs/vdev_raidz.c
1175 for (j =0; j <n; j++) { 1241 }
1176 rows[i][j] = vdev_raidz_exp2(rows[i][j], log);
1177 invrows[i][j] = vdev_raidz_exp2(invrows[i][]], |o0g); 1243 for (i =0; i <n; i++) {
1178 } 1244 ¢ = used[i];
1245 ASSERT3U(c, <, rm>rmcols);
1180 for (ii =0; ii <nmssing;, ii++) {
1181 if (i ==1ii) 1247 src = rm>mcol[c].rc_data;
1182 conti nue; 1248 ccount = rm>rmcol[c].rc_size;
1249 for (j =0; j < nmssing; T+ {
1184 ASSERT3U(rows[ii][mssing[i]], !'=, 0); 1250 cc = mssing[j] + rm>mfirstdatacol;
1251 ASSERT3U(cc, >=, rm>rmfirstdatacol);
1186 log = vdev_raidz_l og2[rows[ii][mssing[i]]]; 1252 ASSERT3U(cc, <, rm>rmcols);
1253 ASSERT3U(cc, !=, c);
1188 for (j =0; j <n; j++) {
1189 rows[ii][j] "= 1255 dst[j] = rm>rmcol[cc].rc_data;
1190 vdev_rai dz exp2(row5[ i10i], log); 1256 dcount[j] = rm>rmcol[cc].rc_size;
1191 i nvrows[ii] [i] 1257 }
1192 vdev_rai dz_epo(l nvrows[i][j], lo0g);
1193 } 1259 ASSERT(ccount >= rm>rmcol [m ssing[0]].rc_size || i > 0);
1194 }
1195 } 1261 for (x = 0; x < ccount; X++, src++) {
1262 if (*src !'=0)
1197 I* 1263 log = vdev_raidz_| og2[ *src];
1198 * Verify that the data that is left in the rows are properly part of
1199 * an identity matrix. 1265 for (cc = 0; cc < nmissing; cc++) {
1200 */ 1266 if (x >= dcount[cc])
1201 for (i =0; i <nmssing;, i++) { 1267 conti nue;
1202 for (j =0; j < o i+t {
1203 if (] == mSSI gli]) { 1269 if (*src == O) {
1204 A RTSU( rows[i][j], ==, 1); 1270 va
1205 } else { 1271 } else {
1206 ASSERTO(rows[i][j]); 1272 if ((Il =log + invliog[cc][i]) >= 255)
1207 } 1273 Il -= 255;
1208 } 1274 val = vdev_raidz_pow2[l1];
1209 } 1275 }
1210 }
1277 if (i ==
1212 static void 1278 dst[cc][x] = val;
1213 vdev_raidz_matrix_reconstruct(raidz_map_t *rm int n, int nnissing, 1279 el se
1214 int *mssing, uint8_ t **invrows, const uint8_ t *used) 1280 dst[cc][x] ~= val;
1215 { 1281 }
1216 int i, j, x, cc, c; 1282 }
1217 uint8_t *src; 1283 }
1218 uint64_t ccount;
1219 uint8_t *dst [VDEV RAI DZ_MAXPARI TY] ; 1285 kmem free(p, psize);
1220 ui nt 64_t dcount [ VDEV_RAI DZ_MAXPARI TY] 1286 }
1221 uint8_t log = 0;
1222 uint8_ t val; 1288 static int
1223 int 11; 1289 vdev_rai dz_reconstruct_general (raidz_map_t *rm int *tgts, int ntgts)
1224 uint8_t *i nvI og[ VDEV_RAI DZ_NMAXPARI TY] ; 1290 {
1225 uint8_t *p, *pp; 1291 int n, i, c, t, tt;
1226 size_t psize; 1292 int nnissi ng_r ows;
1293 int mssing_| rows[VDEV RAI DZ_NAXPARI TY] ;
1228 psize = sizeof (invliog[0][0]) * n * nm ssing; 1294 int parity_map[ VDEV_RAI DZ_NAXPARI TY] ;
1229 p = kmem al | oc(psi ze, KM SLEEP);
1296 uint8_t *p, *pp;
1231 for (pp = i =0; i <nmssing; i++) { 1297 size_t psize;
1232 i nvI og[i] = pp;
1233 pp += n; 1299 uint8_t *rows[ VDEV_RAI DZ_MAXPARI TY] ;
1234 } 1300 uint8_t *invrows[ VDEV_RAI DZ_NMAXPARI TY] ;
1301 uint8_t *used;
1236 for (i =0; i < nm' ssing; i++) {
1237 for (j =0; j <n; j++) { 1303 int code = 0;
1238 ASSERT3U(i nvr ows[ i10j1, '=, 0);
1239 inviog[i][j] = vdev_raidz I 092[| nvrows[i][j]];
1240 } 1306 n=rm>mcols - rm>mfirstdatacol;




new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1308
1309
1310
1311
1312
1313
1314
1315
1316
1317

1319
1320
1321
1322
1323
1324
1325

1327
1328
1329
1330
1331
1332
1333

1335

1337
1338
1339

1341
1342

1344
1345
1346

1348
1349
1350
1351
1352
1353
1354

1356
1357
1358

1360
1361
1362
1363
1364
1365

1367
1368
1369
1370

1372

/*
* Figu
*/
nm ssin
for (t

}

/*
* Figu

re out which data colums are m ssing.

g_rows = 0;
=0; t < ntgts; t++)
if (tgts[t] >= rm>mfirstdatacol) {
m ssi ng_rows[ nm ssi ng_rows++] =
tgts[t] - rm>mfirstdatacol;

re out which parity colums to use to help generate the m ssing

* data col ums.

*/
for (tt

}

ASSERT(
ASSERT3

psi ze
nmi
p = ke

for (pp

used =
for (i

}

for (tt

=0, c=0, i =0;
ASSERT(tt < nt gt S);
ASSERT(c < rm>r m_f| rstdatacol);

< nmissing_rows; c++) {

/*

* Skip any targeted parity colums.
*

/

if (c ==tgts[tt]) {
tt++;

conti nue;

}
code |= 1 << ¢;

parity_map[i] = c;

I ++;
code !'= 0);
U(code, <, 1 << VDEV_RAI DZ_MAXPARI TY);

= (sizeof (rows[0][0]) + sizeof (invrows[0][O0]))
ssing_rows * n + sizeof (used[O0]) * n;

m al | oc(psi ze, KM SLEEP);
=p, i =0; i <nmssing_rows; i++) {
rows[i] = pp
p +=n;
invrows[i] = pp;
Pp += n;
pp;
= 0; i < nmissing_rows; i++) {

ed[i] = parity_map[i];

=0, c =rm>mfirstdatacol; ¢ < rm>mcols; c++) {
if (tt < nmssing_rows &&
c == mssing_rows[tt] + rm>mfirstdatacol) {
tt++;
conti nue;

}

ASSERT3S(i, <, n);
used[i] = c;
i ++;

21

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1373
1374
1375

1377
1378
1379
1380
1381

1383
1384
1385
1386
1387

1389

1391
1392

1394
1395

}

static i
vdev_r ai

1396 {

1397
1398
1399
1400
1401
1402

1404
1405
1406
1407
1408
1409

1411
1412
1413
1414
1415
1416

1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

1431
1432
1433
1435

1437
1438

* Initialize the interesting rows of the matrix.
&/

vdev_raidz_matrix_init(rm n, nmssing_rows, parity_map, rows);
/*

* Invert the matrix.

*/
nm ssi ng_rows, m ssing_rows,

vdev_raidz_matrix_invert(rm n, rows,

invrows, used)
/*
* Reconstruct the mssing data using the generated matrix.
*

vdev_raidz_matrix_reconstruct(rm n,
invrows, used);

nm ssi ng_rows, m Ssing_rows,

kmem free(p, psize);

return (code);

nt
dz_reconstruct(raidz_map_t *rm int *t, int nt)
int tgts[ VDEV_RAI DZ_MAXPARI TY], *dt;
int ntgts;
int i, c;
int code;
int nbadparlty, nbaddat a;
int parity_valid[ VDEV_RAI DZ_MAXPARI TY] ;
/*
* The tgts list nust already be sorted.
*/
for (i =1; i <nt; i++) {
ASSERT(t[i] > t[i - 1]);
nbadparity = rm>rmfirstdatacol;
nbaddata = rm>rmcols - nbadparity;
ntgts = 0;
for (i =0, ¢ =0; ¢c <rm>mcols; c++) {

if (c <rm>mfirstdatacol)
parity_valid[c] = B_FALSE;

if (i <nt & c ==t[i]) {
tgts[ntgts++] = c;
i ++;
} elseif (rm>rmco|[c].rc_error 1= 0) {

tgts[ntgts++] = c;
} elseif (c > rm>mfirstdatacol) {

nbaddat a- - ;

} else {
parity_valid[c] = B_TRUE
nbadparity--;

}

}

ASSERT(ntgts >= nt);

ASSERT( nbaddat a >= O)'

ASSERT( nbaddat a + nbadparity == ntgts);
dt = & gts[nbadparity];

/*
* See if we can use any of our optinized reconstruction routines.



new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1439 */

1440 if (!vdev_raidz_default_to_general) {

1441 switch (nbaddata) {

1442 case 1:

1443 if (parity_valid[VDEV_RAI DZ_P])

1444 return (vdev_raidz_reconstruct_p(rm dt, 1));
1446 ASSERT(rm >rm firstdatacol > 1);

1448 if (parity_valid[VDEV_RAIDZ (})

1449 return (vdev_raidz_reconstruct_q(rm dt, 1));
1451 ASSERT(rm >rm firstdatacol > 2);

1452 break;

1454 case 2:

1455 ASSERT(rm >rm firstdatacol > 1);

1457 if (parity_valid[ VDEV_RAIDZ_P] &&

1458 parity_valid[ VDEV_RAI DZ_Q)

1459 return (vdev_raidz_reconstruct_pg(rm dt, 2));
1461 ASSERT(rm >rm firstdatacol > 2);

1463 br eak;

1464 }

1465 1

1467 code = vdev_raidz_reconstruct_general (rm tgts, ntgts);
1468 ASSERT(code < (1 << VDEV_RAI DZ_MAXPARI TY) ) ;

1469 ASSERT(code > 0);

1470 return (code);

1471 }

1473 static int

1474 vdev_rai dz_open(vdev_t *vd, uint64_t *asize, uint64_t *nmax_asize,
1475 uint64_t *ashift)

1476 {

1477 vdev_t *cvd;

1478 uint64_t nparity = vd->vdev_nparity;

1479 int c;

1480 int lasterror = 0;

1481 int nunerrors = 0;

1483 ASSERT(nparity > 0);

1485 if (nparity > VDEV_RAI DZ_MAXPARI TY |

1486 vd->vdev_chil dren < nparity + 1)

1487 vd- >vdev_stat.vs_aux = VDEV_AUX_BAD LABEL;

1488 return (SET_ERROR(EINVAL));

1489 }

1491 vdev_open_chi | dren(vd);

1493 (c = 0; c < vd->vdev_children; c++) {

1494 cvd = vd->vdev_child[c];

1496 if (cvd->vdev_open_error = 0)

1497 | asterror = cvd->vdev_open_error;

1498 NUMEr r or S++;

1499 cont i nue;

1500 }

1502 *asize = M N( asize - 1, cvd->vdev_asize - 1) + 1;
1503 *max_asi ze = MN( max_asi ze - 1, cvd->vdev_max_asize - 1) + 1;
1504 *ashift = MAX(*ashift, cvd->vdev_ashift);

23

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1505

1507
1508

1510
1511
1512
1513

1515
1516

1518
1519

1521
1523
1524
1525

1527
1528

}

}

*asi ze *= vd->vdev_chil dren;
*max_asi ze *= vd->vdev_chil dren;

if (numerrors > nparity) {
vd- >vdev_stat.vs_aux = VDEV_AUX_NO REPLI CAS;
return (lasterror);

}

return (0);

static void
vdev_rai dz_cl ose(vdev_t *vd)
1520 {

}

int c;

for (¢ = 0; ¢ < vd->vdev_children; c++)
vdev_cl ose(vd->vdev_child[c]);

static uint64_t

vdev_rai dz_asi ze(vdev_t *vd,

1529 {

1530
1531
1532
1533

1535
1536
1537

1539
1540

1542

}

uint64_t psize)

uint64_t asi ze;

uint64_t ashift = vd->vdev_top->vdev_ashift;
uint64_t cols = vd->vdev_children;

uint64_t nparity = vd->vdev_nparity;

asize = ((psize - 1) >> ashift) + 1;

asize += nparity * ((asize + cols - nparity -
asi ze = roundup(asi ze, nparity + 1) << ashift;

1) / (cols - nparity));

return (asize);

static void

1543 vdev_rai dz_chil d_done(zio_t *zio)

1544 {

1545 raidz_col _t *rc = zio->io_private;

1547 rc->rc_error = zio->o_error;

1548 rc->rc_tried = 1;

1549 rc->rc_ski pped = 0;

1550 }

1552 /*

1553 * Start an | O operation on a RAIDZ VDev

1554 *

1555 * Qutline:

1556 * - For wite operations:

1557 * 1. Generate the parity data

1558 * 2. Create child zio wite operations to each colum’s vdev, for both
1559 * data and parity

1560 * 3. If the colum skips any sectors for padding, create optional dunmmy
1561 * wite zio children for those areas to inprove aggregati on continuity.
1562 * - For read operations:

1563 * 1. Create child zio read operations to each data colum’s vdev to read
1564 * the range of data required for zio.

1565 * 2. If this is a scrub or resilver operation, or if any of the data
1566 * vdevs have had errors, then create zio read operations to the parity
1567 * colums’ VDevs as wel | .

1568 */

1569 static int

1570 vdev_raidz_io_start(zio_t *zio)



new usr/src/uts/ comon/fs/zfs/vdev_raidz.c 25

1571 {
1572
1573
1574
1575
1576
1577

1579
1580

1582

1584
1585

1587
1588
1589
1590
1591
1592
1593
1594

1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611

1613
1614

1616

1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636

vdev_t *vd = zio->io_vd;
vdev_t *tvd = vd->vdev_top;
vdev_t *cvd;

raidz_map_t *rm

raidz_col _t *rc;

int c, i;

rm = vdev_rai dz_map_al | oc(zi o, tvd->vdev_ashift, vd->vdev_children,
vd->vdev_nparity);

ASSERT3U(rm >rm asi ze, ==, vdev_psize_to_asize(vd, zio->io_size));

if (zio->o_type == ZIO TYPE_WRI TE) {
vdev_rai dz_generate_parity(rm;

for (c =0; ¢c <rm>mcols; c++) {
rc = &m>rmcol[c];
cvd = vd->vdev_child[rc->rc_devi dx];
zi o_nowai t (zi o_vdev_child_io(zio, NULL, cvd,
rc->rc_offset, rc->rc_data, rc->rc_size,
zio->io_type, zio->o_priority, O,
vdev_rai dz_child_done, rc));

}

/*
* Cenerate optional 1/0s for any skipped sectors to inprove
* aggregation contiguity.
*/

for (c = rm>mskipstart, i = 0; i <rm>mnskip; c++, i++) {
ASSERT(c <= rm>rmscol s);
if (c == rm>rmscols)

c =0
rc = &m>rmcol[c];
cvd = vd->vdev_child[rc->rc_devidx];
zi o_nowai t (zi o_vdev_child_io(zio, NULL, cvd,

rc->rc_offset + rc->rc_size,

NULL,

1 << tvd->vdev_ashift,

zi 0->i o_type,

zio->o_priority,

ZI O FLAG NODATA | ZI O FLAG OPTI ONAL, NULL, NULL))
}
return (ZI O_Pl PELI NE_CONTI NUE) ;
}
ASSERT( zi 0->i o_type == ZI O TYPE_READ);
/*
* |terate over the colums in reverse order so that we hit the parity
* last -- any errors along the way will force us to read the parity.
*/

for (c =rm>mcols - 1; ¢ >=0; c--) {
rc = &m>mcol[c];
cvd = vd->vdev_child[rc->rc_devidx];
if (!vdev_readabl e(cvd))
if (c > rm>mfirstdatacol)
rm >rm.m ssi ngdat a++;
el se
rm>rm.m ssingparity++;
rc->rc_error = SET_ERROR(ENXI O ;
rc->rc_tried = 1; /* don’t even try */
rc->rc_ski pped = 1;
conti nue;

}
1f (vdev_dtl _contains(cvd, DIL_M SSING zio->o_txg, 1)) {
if (c > rm>rmfirstdatacol)

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1637 rm>rm.m ssi ngdat a++;

1638 el se

1639 rm>rm.m ssingparity++;

1640 rc->rc_error = SET_ERROR(ESTALE);

1641 rc->rc_ski pped = 1;

1642 conti nue;

1643

1644 iIf (c > rm>mfirstdatacol || rm>mnmnissingdata > 0 ||
1645 (zio->io_flags & (ZI O FLAG SCRUB | ZI O FLAG RESILVER))) {
1646 zi o_nowai t (zi o_vdev_child_io(zio, NULL, cvd,

1647 rc->rc_offset, rc->rc_data, rc- >rc_size,
1648 zi o- >|otype zio->io_priority, O,

1649 vdev_rai dz_chil d_done, rc));

1650 }

1651 }

1653 return (ZI O_Pl PELI NE_CONTI NUE) ;

1654 }

1657 /*

1658 * Report a checksumerror for a child of a RAID-Z device.

1659 */

1660 static void

1661 rai dz_checksumerror(zio_t *zio, raidz_col _t *rc, void *bad_data)

1662

1663 vdev_t *vd = zi o->i o_vd->vdev_child[rc->rc_devidx];

1665 if (!(zio->o_flags & ZI O FLAG SPECULATI VE)) {

1666 zi o_bad_cksum t zbc;

1667 raidz_map_t *rm = zio->io_vsd;

1669 nut ex_ent er (&vd- >vdev_st at _| ock);

1670 vd- >vdev_st at . vs_checksum error s++;

1671 mut ex_exi t (&d->vdev_st at _| ock);

1673 zbc. zbc_has_cksum = 0;

1674 zbc. zbc_i njected = rm >rm ecksum nj ect ed;

1676 zfs_ereport_post _checksun(zi o->i o_spa, vd, zio,

1677 rc->rc_offset, rc->rc_size, rc->rc data bad _data,
1678 &zbc);

1679 }

1680 }

1682 /*

1683 * We keep track of whether or not there were any injected errors, so that
1684 * any ereports we generate can note it.

1685 */

1686 static int

1687 rai dz_checksumverify(zio_t *zio)

1688 {

1689 zi o_bad_cksumt zbc;

1690 raidz_map_t *rm = zio->i o_vsd;

1692 int ret = zio_checksumerror(zio, &zbc);

1693 if (ret I—O&&zbc zbcmjectedl—o)

1694 rm>rm ecksum njected = 1;

1696 return (ret);

1697 }

1699 /*

1700 * Generate the parity fromthe data colums. |If we tried and were able to
1701 * read the parity without error, verify that the generated parity matches the
1702 * data we read. If it doesn't, we fire off a checksumerror. Return the



new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1703
1704

*

*/

nunber such failures.

1705 static int
1706 raidz_parity_verify(zio_t *zio, raidz_map_t *rm

1707 {

1708 voi d *ori g[ VDEV_RAI DZ_MAXPARI TY] ;

1709 int c, ret =0;

1710 raidz_col _t *rc;

1712 for (c =0; ¢ <rm>mfirstdatacol; c++) {

1713 rc = &m>mcol[c];

1714 if (!rc->rc_tried || rc->rc_error !'= 0)

1715 conti nue;

1716 orig[c] = zio_buf_alloc(rc->rc_size);

1717 bcopy(rc->rc_data, orig[c], rc->rc_size);

1718 }

1720 vdev_rai dz_generate_parity(rmn;

1722 for (c =0; ¢ <rm>mfirstdatacol; c++) {

1723 rc = &m>mcol[c];

1724 if ('rc->rc_tried || rc->rc_error != 0)

1725 cont i nue;

1726 if (bcnp(orig[c], rc->rc_data, rc->rc_size) !'=0) {
1727 rai dz_checksumerror(zio, rc, orig[c]);

1728 rc->rc_error = SET_ERROR(ECKSUM ;

1729 ret++;

1730 }

1731 zi o_buf _free(orig[c], rc->rc_size);

1732 }

1734 return (ret);

1735 }

1737 | *

1738 * Keep statistics on all the ways that we used parity to correct data.
1739 */

1740 static uint64_t raidz_corrected[1 << VDEV_RAI DZ_MAXPARI TY] ;

1742 static int

1743 vdev_raidz_worst_error(raidz_map_t *rm

1744 {

1745 int error = 0;

1747 for (int ¢ =0; ¢ <rm>mcols; c++)

1748 error = zio_worst_error(error, rm>rmcol[c].rc_error);
1750 return (error);

1751 }

1753 /*

1754 * |terate over all conbinations of bad data and attenpt a reconstruction.
1755 * Note that the algorithmbelow is non-optimal because it doesn't take into
1756 * account how reconstruction is actually perforned. For exanple, with
1757 * triple-parity RAID-Z the reconstruction procedure is the sane if colum 4
1758 * is targeted as invalid as if colums 1 and 4 are targeted since in both
1759 * cases we'd only use parity information in colum O.

1760 */

1761 static int

1762 vdev_rai dz_conbrec(zio_t *zio, int total _errors, int data_errors)

1763 {

1764 raidz_map_t *rm = zio->i o_vsd;

1765 raidz_col _t *rc;

1766 voi d *orig[ VDEV_RAI DZ_MAXPARI TY] ;

1767 int tstore[ VDEV_RAI DZ MAXPARI TY + 2];

1768 int *tgts = & store[1];

27

new usr/src/uts/ comon/fs/zfs/vdev_raidz.c 28
1769 int current, next, i, c, n;

1770 int code, ret = 0;

1772 ASSERT(total _errors < rm>mfirstdatacol);

1774 /*

1775 * This sinplifies one edge condition.

1776 */

1777 tgts[-1] = -1;

1779 for (n =1, n<=rm>mfirstdatacol - total _errors; n++) {

1780 /*

1781 * |Initialize the targets array by finding the first n colums
1782 * that contain no error.

1783 *

1784 * |f there were no data errors, we need to ensure that we're
1785 * always explicitly attenpting to reconstruct at |east one
1786 * data colum. To do this, we sinply push the highest target
1787 * up into the data col ums.

1788 *

1789 for (c =0, i =0; i <n; i++)

1790 if (i ==n- 1 &% data_errors == 0 &&

1791 c <rm>mfirstdatacol) {

1792 c = rm>mfirstdatacol;

1793 }

1795 while (rm>rmcol[c].rc_error = 0) {

1796 Ct++;

1797 ASSERT3S(c, <, rm>rmcols);

1798 }

1800 tgts[i] = c++;

1801 }

1803 /*

1804 * Setting tgts[n] sinplifies the other edge condition.
1805 */

1806 tgts[n] = rm>rmcols;

1808 *

1809 * These buffers were allocated in previous iterations.
1810 */

1811 for (i =0; i <n- 1; i++) {

1812 ASSERT(orig[i] != NULL)

1813

1815 origln - 1] = zio_buf_alloc(rm>rmcol [0].rc_size);

1817 current = 0;

1818 next = tgts[current];

1820 while (current != n)

1821 tgts[current] = next;

1822 current = 0;

1824 /*

1825 * Save off the original data that we're going to
1826 * attenpt to reconstruct.

1827 */

1828 for (i =0; i <n; i++) {

1829 ASSERT(orig[i] !'= NULL)

1830 c =tgts[i];

1831 ASSERT3S(c, >=, 0);

1832 ASSERT3S(c, <, rm>rmcols);

1833 rc = &m>mcol[c];

1834 bcopy(rc->rc_data, orig[i], rc->rc_size);



new usr/src/uts/ comon/fs/zfs/vdev_raidz.c 29

1835

1837
1838
1839
1840
1841
1842
1843

1845
1846
1847
1848
1849
1850
1851
1852
1853

1855
1856
1857

1859
1860
1861
1862
1863
1864
1865
1866

1868
1869
1870
1871
1872
1873
1874
1875
1876

1878

1880
1881
1882
1883
1884

1886
1887
1888
1889
1890
1891
1892

1894
1895

1897
1898
1899
1900

}

/*

* Attenpt a reconstruction and exit the outer |oop on
* success.

*/

code = vdev_raidz reconstruct(rm tgts, n);
i f (raidz_checksumverify(zio) == 0) {
atomi c_i nc_64(&rai dz_correct ed[ code] ) ;

for (i = 0; < n; i+ {

ASSERT(rc->rc error == 0);
if (rc->rc_tried)
rai dz_checksumerror(zio, rc,
Orlg[ IDH
rc->rc_error = SET ERRO?(ECKSUM

}
ret = code;
goto done;
}
/*
* Restore the original data.
*/
for (i =0; i <n; i++) {
c =tgts[i];
rc = &m>mcol[c];
bcopy(orig[i], rc->rc_data, rc->rc_size);
}
do {
/*
* Find the next valid colum after the current
* position..
*/
for (next = tgts[current] + 1;
next < rm>rmcols &&
rm>rmcol [next].rc_error != 0; next++)
conti nue;
ASSERT(next <= tgts[current + 1]);
/*
* |f that spot is available, we're done here.
*
if (next !=tgts[current + 1])
br eak;
/*
* Otherwise, find the next valid colum after
* the previous position.
*/
for (c = tgts[current - 1] + 1;
rm>mcol[c].rc_error = 0; c++)
conti nue;
tgts[current] = c;
current ++;
} while (current !'= n);

new usr/src/uts/ comon/fs/zfs/vdev_raidz.c 30
1901 done:

1902 for (i =0; i <n; i++) {

1903 zio_buf_free(orig[i], rm>rmcol[0].rc_size);

1904 }

1906 return (ret);

1907 }

1909 /*

1910 * Conplete an | O operation on a RAI DZ VDev

1911 *

1912 * Qutline:

1913 * - For wite operations:

1914 * 1. Check for errors on the child |GCs.

1915 * 2. Return, setting an error code if too few child VDevs were witten
1916 * to reconstruct the data later. Note that partial wites are
1917 * consi dered successful if they can be reconstructed at all.

1918 * - For read operations:

1919 * 1. Check for errors on the child I|GCs.

1920 * 2. If data errors occurred:

1921 * a. Try to reassenble the data fromthe parity avail abl e.

1922 * b. If we haven't yet read the parity drives, read them now.

1923 * c. If all parity drives have been read but the data still doesn’t
1924 ~* reassenble wth a correct checksum then try conbinatori al
1925 * reconstruction.

1926 * d. If that doesn't work, return an error.

1927 * 3. If there were unexpect ed errors or this is a resilver operati on,
1928 * rewite the vdevs that had errors.

1929 */

1930 static void
1931 vdev_raidz_i o_done(zio_t *zio)

1932 {

1933 vdev_t *vd = zio->i 0_vd;

1934 vdev_t *cvd;

1935 raidz_map_t *rm = zio->i o_vsd;

1936 raidz_col _t *rc;

1937 int unexpect ed_errors = 0;

1938 int parity_errors = 0;

1939 int parity_untried = 0;

1940 int data_errors = 0;

1941 int total _errors = 0;

1942 int

1943 int tgts[VDEV RAI DZ_MAXPARI TY] ;

1944 int code;

1946 ASSERT(zio-> o_bp !'= NULL); /* XXX need to add code to enforce this */
1948 ASSERT(rm >rm m ssingparity <= rm>mfirstdatacol);

1949 ASSERT(rm >rm ni ssingdata <= rm>rmcols - rm>rmf| rstdatacol);
1951 for (c =0; ¢c <rm>mcols; c++) {

1952 rc = &m>mcol[c];

1954 if (rc->rc_error) {

1955 ASSERT(rc->rc_error != ECKSUM; /* child has no bp */
1957 if (c <rm>mfirstdatacol)

1958 parity_errors++;

1959 el se

1960 dat a_errors++;

1962 if (!rc->rc_skipped)

1963 unexpect ed_errors++;

1965 total _errors++;

1966 } elseif (c <rm>mfirstdatacol && !rc->rc_tried) {



new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1967
1968
1969

1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984

1986
1987

1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999

2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032

parity_untried++;

}
}
if (zio->io_type == ZIO TYPE_WRI TE) {
/*
* XXX -- for now, treat partial wites as a success.
* (If we couldn’t wite enough columms to reconstruct
* the data, the I/Ofailed. Oherw se, good enough.)
*
* Now that we support wite reallocation, it would be better
* to treat partial failure as real failure unless there are
* no non-degraded top-level vdevs left, and not update DTLs
*if we intend to reallocate.
*/

[* XXPOLICY */
if (total _errors > rm>rmfirstdatacol)
zio-> o_error = vdev_raidz_worst_error(rm;

return;

}
ASSERT( zi 0->i o_type == ZI O TYPE_READ);
/ *

There are three potential phases for a read:
1. produce valid data fromthe colums read
2. read all disks and try again
3. perform conbinatorial reconstruction

*

*

*

*

*

* Each phase is progressively both nore expensive and less likely to

* occur. If we encounter nore errors than we can repair or all phases

* fail, we have no choice but to return an error.

*

/*
* |f the nunber of errors we saw was correctable -- |less than or equal

* to the nunber of parity disks read -- attenpt to produce data that

* has a valid checksum Naturally, this case applies in the absence of

* any errors.

*

if (total _errors <= rm>mfirstdatacol - parity_untried) {
if (data_errors == 0)
if (raidz_checksumuverify(zio) == 0) {
/*

* If we read parity information (unnecessarily

* as it happens since no reconstruction was

* needed) regenerate and verify the parity.

* W al so regenerate parity when resilvering

* so we can wite it out to the failed device

* later.

*/

f (parity_errors + parity_untried <
rm>rmfirstdatacol ||
(zio->o0_flags & ZI O FLAG RESI LVER)) {

n = raidz_parity_verify(zio, rm;

unexpected_errors += n;

ASSERT(parity_errors + n <=
rm>rmfirstdatacol);

}
goto done;
} else {
/*
* W either attenpt to read all the parity colums or

* none of them If we didn't try to read parity, we
* wouldn’t be here in the correctable case. There nust

31

new usr/src/uts/ comon/fs/zfs/vdev_raidz.c 32
2033 * al so have been fewer parity errors than parity
2034 * colums or, again, we wouldn't be in this code path.
2035 */

2036 ASSERT(parity_untried == 0);

2037 ASSERT(parity_errors < rm>rmf|rstdataco|)

2039 /*

2040 * |dentify the data columms that reported an error.
2041 */

2042 n = 0;

2043 for (c =rm>mfirstdatacol; ¢ < rm>mcols; c++) {
2044 rc = &m>rmcol[c];

2045 if (rc->rc_error =0

2046 ASSERT(n < VDEV_RAI DZ_MAXPARI TY)

2047 tgts[n++] = c;

2048

2049 }

2051 ASSERT(rm >rm firstdatacol >= n);

2053 code = vdev_raidz_reconstruct(rm tgts, n);

2055 if (raidz_checksumuverify(zio) == 0) {

2056 atom c_i nc_64( & ai dz_corrected[ code] ) ;

2058 /*

2059 * If we read nore parity di sks than were used
2060 * for reconstruction, confirmthat the other
2061 * parity disks produced correct data. This
2062 * routine is suboptimal in that it regenerates
2063 * the parity that we already used in addition
2064 * to the parity that we're attenpting to
2065 * verify, but this should be a relatively
2066 * unconmon case, and can be optimzed if it
2067 * becones a problem Note that we regenerate
2068 * parity when resilvering so we can wite it
2069 * out to failed devices later.

2070 */

2071 f (parity_errors < rm>mfirstdatacol - n ||
2072 (zio->To_flags & 710 FLAG RESI LVER)) {
2073 n =raidz_parity_verify(zio, rm;

2074 unexpected_errors += n;

2075 ASSERT(parity_errors + n <=

2076 rm>rmfirstdatacol);

2077 }

2079 goto done;

2080 }

2081 }

2082 }

2084 /*

2085 * This isn't a typical situation -- either we got a read error or
2086 * a child silently returned bad data. Read every block so we can
2087 * try again with as nmuch data and parity as we can track down. |f
2088 * we’ve already been through once before, all children will be narked
2089 * as tried so we’'ll proceed to conbinatorial reconstruction.

2090 *

2091 unexpected_errors = 1;

2092 rm>rmm ssingdata = 0;

2093 rm>rmmssingparity = 0;

2095 (c =0; ¢c <rm>mcols; c++) {

2096 if (rm>mcol[c].rc_tried)

2097 cont i nue;



new usr/src/uts/ comon/fs/zfs/vdev_raidz.c 33

2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109

2111
2112

2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125

2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149

2151
2152
2153
2154
2155
2156
2157
2158

2160
2161
2162
2163
2164

zi o_vdev_i o_r edone(zi 0);
do {
rc = &m>rmcol[c];
if (rc->rc_tried)
conti nue;
zi o_nowai t (zi o_vdev_child_io(zio, NULL,
vd- >vdev_chil d[rc->rc_devi dx],
rc->rc_offset, rc->rc_data, rc->rc_size,
zio->io_type, zio->io_priority, O,
vdev_rai dz_child_done, rc));
} while (++c < rm>rmcols);

return;

At this point we've attenpted to reconstruct the data given the
errors we detected, and we’'ve attenpted to read all columms. There
must, therefore, be one or nore additional problens -- silent errors
resulting in invalid data rather than explicit I/Oerrors resulting
in absent data. We check if there is enough additional data to

possi bly reconstruct the data and then perform conbi natori al
reconstruction over all possible conbinations. If that fails,

we’ re cooked.

* % ok ko ok ok ok
-

if (total _errors > rm>mfirstdatacol) {
zio->o_error = vdev_raidz_worst_error(rm;

} else if (total_errors < rm>rmfirstdatacol &&
(code = vdev_raidz_conbrec(zio, total _errors, data_errors)) != 0) {
/

*

* If we didn't use all the available parity for the

* conbi natorial reconstruction, verify that the renaining
* parity is correct.
*/
f

(code !'= (1 << rm>mfirstdatacol) - 1)
(void) raidz_parity_verify(zio, rm;

W' re here because either:

total _errors == rmfirst_datacol, or
vdev_rai dz_conbrec() failed

reconstruction.

Start checksum ereports for all children which haven't

*
*
*
*
*
*
* In either case, there is enough bad data to prevent
*
*
*
* failed, and the 10 wasn’t specul ative.

*/

i

if (!(zio->io_flags & ZI O FLAG SPECULATI VE)) {
for (c =0; ¢ <rm>mcols; c++) {
rc = &m>mcol[c];
if (rc->rc_error == 0) {
zi 0_bad_cksumt zbc;
zbc. zbc_has_cksum = 0;
zbc. zbc_i njected =
rm >rm ecksum nj ect ed;

zfs_ereport_start_checksum(
zi 0->i 0_spa,
vd->vdev_chi I d[ rc->rc_devi dx],
zio, rc->rc_offset, rc->rc_size,
(void *)(uintptr_t)c, &zbc);

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

2165
2166
2167
2168

2170 done:
2171

2173
2174
2175
2176
2177
2178
2179
2180

2182
2183

2185
2186
2187
2188
2189
2190
2191
2192 }

34
}

zi o_checksumverified(zio);

if (zio->io_error == 0 & spa_writeabl e(zio->i o_spa) &
(unexpected_errors || (zio->io_flags & ZI O FLAG RESILVER))) {
/*

* Use the good data we have in hand to repair damaged children.
*

for (c =0; ¢ <rm>rmcols; c++) {
rc = &m>mcol[c];
cvd = vd->vdev_child[rc->rc_devidx];

if (rc->rc_error == 0)
conti nue;

zi o_nowai t (zi o_vdev_child_io(zio, NULL, cvd,
rc->rc_offset, rc->rc_data, rc->rc_size,
ZIO TYPE_WRITE, zio->io_priority,
ZI O FLAG | O REPAIR | (unexpected_errors ?
ZI O FLAG SELF_HEAL : 0), NULL, NULL));

2194 static void
2195 vdev_rai dz_state_change(vdev_t *vd, int faulted, int degraded)

2196 {
2197
2198
2199
2200
2201
2202
2203
2204 }

if (faulted > vd->vdev_nparity)
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_NO_REPLT CAS) ;
else if (degraded + faulted != 0)
vdev_set _state(vd, B _FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE)
el se
vdev_set _state(vd, B_FALSE, VDEV_STATE HEALTHY, VDEV_AUX_NONE);

2206 vdev_ops_t vdev_raidz_ops = {

2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217 };

vdev_r ai dz_open,

vdev_r ai dz_cl ose,
vdev_rai dz_asi ze,
vdev_raidz_io_start,
vdev_rai dz_i o_done,
vdev_r ai dz_st at e_change,

NULL,

NULL,

VDEV_TYPE_RAI DZ, /* nane of this vdev type */
B_FALSE /* not a |eaf vdev */



new usr/src/uts/comon/fs/zfs/zfs_acl.c

R R R R

67493 Wed Apr 24 12:44:32 2013
new usr/src/uts/comon/fs/zfs/zfs_acl.c
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»
Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

LR

____unchanged_portion_onitted_

1335 static void
1336 zfs_acl _chnod(vtype_t vtype, uint64_t node, boolean_t trim zfs_acl_t *aclp)

1337 {

1338 voi d *acep = NULL;

1339 ui nt64_t who;

1340 int new_count, new_bytes;

1341 int ace_si ze;

1342 int entry_type;

1343 uint16_t iflags, type;

1344 ui nt 32_t access_mask;

1345 zfs_acl _node_t *newnode;

1346 size_t abstract_size = acl p->z_ops. ace_abstract _si ze();
1347 voi d *zacep;

1348 bool ean_t isdir;

1349 trivial _acl _t masks;

1351 new_count = new_bytes = 0;

1353 isdir = (vtype == VDIR);

1355 acl _trivial _access_masks((node_t)node, isdir, &masks);

1357 newnode = zfs_acl _node_al | oc((abstract_size * 6) + acl p->z_acl _bytes);
1359 zacep = newnode->z_acl dat a;

1360 if (masks. al |l ow0)

1361 zfs_set_ace(acl p, zacep, masks.allowd, ALLOW -1, ACE_OMNER);
1362 zacep = (void *)((uintptr_t)zacep + abstract_size);

1363 new_count ++;

1364 new_bytes += abstract_size;

1365 }

1366 if (masks. denyl) {

1365 } if (nmasks.denyl) {

1367 zfs_set_ace(acl p, zacep, masks.denyl, DENY, -1, ACE_OMER);
1368 zacep = (void *)((uintptr_t)zacep + abstract_size);

1369 new_count ++;

1370 new _bytes += abstract_size;

1371 }

1372 if (masks. deny2) {

1373 zfs_set_ace(acl p, zacep, nasks.deny2, DENY, -1, OAN NG GROUP);
1374 zacep = (void *)((uintptr_t)zacep + abstract_size);

1375 new_count ++;

1376 new_bytes += abstract_size;

1377 }

1379 while (acep = zfs_acl _next_ace(aclp, acep, &who, &access_nask,

1380 & flags, &ype)) {

1381 uint16_t inherit_flags;

1383 entry_type = (iflags & ACE_TYPE_FLAGS);

1384 inherit_flags = (iflags & ALL_INHERIT);

1386 if ((entry_type == ACE_OMER || entry_type == ACE_EVERYONE | |
1387 (entry_type == OMI NG GROUP)) &&

new usr/src/uts/comon/fs/zfs/zfs_acl.c

1388
1389
1390

1392
1393
1394
1395
1396
1397
1398
1399

1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411

1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433

1435
1436
1437
1438
1439
1440
1441
1442
1443 }

1769 /*
1770 *
1769 *
1771 */
1772 int

((inherit_flags & ACE_INHERI T_ONLY_ACE) == 0)) {
conti nue;

}

/*

* If this ACL has any inheritable ACEs, mark that in
* the hints (which are later nasked into the pflags)
* so create knows to do inheritance.

*

if (isdir & (inherit_flags &
( ACE_FI LE_I NHERI T_ACE| ACE_DI RECTORY_| NHERI T_ACE) ) )
acl p->z_hints | = ZFS_| NHERI T_ACE;

if ((type !'= ALLOWV && type !'= DENY) ||
(inherit_flags & ACE_I NHERI T_ONLY_ACE)) {

switch (type)

case ACE_ACCESS_ALLOWED OBJECT_ACE TYPE:

case ACE_ACCESS DEN ED OBJECT ACE TYPE

case ACE_SYSTEM AUDI T_OBJECT ACE TYPE:

case ACE_SYSTEM ALARM OBJECT_ACE_TYPE:
acl p->z_hints | = ZFS_ACL_OBJ_ACE;
br eak;

} else {

*
* Limit permssions to be no greater than
* group perm ssions.
* The "aclinherit" and "acl node" properties
* affect policy for create and chnod(2),
* respectively.
*
if ((type == ALLOW && trim
access_mask &= masks. group;

}

zfs_set_ace(acl p, zacep, access_nask, type, who, iflags);
ace_size = acl p->z_ops. ace_si ze(acep) ;

zacep = (void *)((uintptr_t)zacep + ace_size);

new_count ++;

new_bytes += ace_si ze;

}

zfs_set_ace(acl p, zacep, masks.owner, 0, -1, ACE OMER);

zacep = (void *)((uintptr_t)zacep + abstract_size);

zfs_set _ace(acl p, zacep, nasks.group, 0, -1, OAN NG GROUP);
zacep = (void *)((uintptr_t)zacep + abstract_size);
zfs_set_ace(acl p, zacep, masks.everyone, 0, -1, ACE_EVERYONE);

new_count += 3;

new_bytes += abstract_size * 3;

zfs_acl _rel ease_nodes(acl p);

acl p->z_acl _count = new_count;

acl p->z_acl _bytes = new_bytes;

newnode- >z_ace_count = new_count;
newnode- >z_si ze = new_byt es;
list_insert_tail (&aclp->z_acl, newnode);

__unchanged_portion_onitted_

Retrieve a file' s ACL
Retrieve a files ACL

1773 zfs_getacl (znode_t *zp, vsecattr_t *vsecp, bool ean_t skipaclchk, cred_t *cr)

1774 {
1775

zfs_acl _t *acl p;



new usr/src/uts/comon/fs/zfs/zfs_acl.c

1776
1777
1778
1779

1781
1782

1784
1785

1787
1788

1790

1792
1793
1794
1795
1796

1798
1799
1800
1801
1802
1803
1804
1805

1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822

1824
1825
1826

1828
1829

1831
1832

1834
1835

1837
1838
1839
1840
1841

ul ong_t mask;

int error;

int count = O;
int | argeace = 0;

mask = vsecp->vsa_mask & (VSA_ACE | VSA ACECNT |
VSA_ACE_ACLFLAGS | VSA_ACE ALLTYPES);

if (mask == 0)
return ( SET_ERROR(ENOSYS));

if (error = zfs_zaccess(zp, ACE_READ ACL, 0, skipaclchk, cr))
return (error);

mut ex_ent er (&p->z_acl _| ock);

error = zfs_acl _node_read(zp, B_FALSE, &aclp, B_FALSE);
if (error 1= 0) {

mut ex_exi t (&p->z_acl _I| ock);

return (error);

}

/*
* Scan ACL to determ ne nunber of ACEs
*

if ((zp->z_pflags & ZFS_ACL_OBJ_ACE) && ! (mask & VSA ACE_ALLTYPES)) {
voi d *zacep = NULL;
ui nt 64_t who;
uint 32_t access_nask;
uint16_t type, iflags;

whil e (zacep = zfs_acl _next_ace(acl p, zacep,
&who, &access_mask, & flags, & ype)) {
switch (type)
case ACE_ACCESS_ALLOWED OBJECT_ACE_TYPE:
case ACE_ACCESS DENI ED OBJECT_ACE_TYPE:
case ACE_SYSTEM AUDI T_OBJECT_ACE_TYPE:
case ACE_SYSTEM ALARM OBJECT_ACE_TYPE:

Targeace++;
conti nue;
defaul t:
count ++;
}

vsecp->vsa_acl cnt = count;
} else )
count = (int)aclp->z_acl _count;

if (mask & VSA_ACECNT)
vsecp->vsa_acl cnt = count;
}

if (mask & VSA ACE) {
size_t aclsz;

acl sz = count * sizeof (ace_t) +
si zeof (ace_object_t) * |argeace;

vsecp->vsa_acl entp = knmem al | oc(acl sz, KM SLEEP);
vsecp->vsa_acl entsz = acl sz;

if (aclp->z_version == ZFS ACL_VERSI ON_FUI D)
zfs_copy_fuid_2_ace(zp->z_zfsvfs, aclp, cr
vsecp->vsa_acl entp, !(mask & VSA ACE ALLTYPES))
el se {
zfs_acl _node_t *acl node;

new usr/src/uts/comon/fs/zfs/zfs_acl.c

1842

1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862

1864

1866
1867 }

void *start = vsecp->vsa_acl entp;

for (aclnode = list_head(&acl p->z_acl); aclnode;
acl node = |ist_next(&aclp->z_acl, aclnode)) {
bcopy(acl node->z_acl data, start,
acl node- >z_si ze);
start = (caddr_t)start + acl node->z_si ze;

}
ASSERT((caddr _t)start - (caddr_t)vsecp->vsa_aclentp ==
acl p->z_acl _bytes);

}

}
if (mask & VSA_ACE_ACLFLAGS) {
vsecp->vsa_acl fl ags = 0;
if (zp->z_pflags & ZFS ACL_DEFAULTED)
vsecp->vsa_acl fl ags | = ACL_DEFAULTED,
if (zp->z_pflags & ZFS_ACL_PROTECTED)
vsecp->vsa_acl fl ags | = ACL_PROTECTED,
if (zp->z_pflags & ZFS ACL_AUTO | NHERI T)
vsecp->vsa_acl fl ags | = ACL_AUTO | NHERI T;
}

mut ex_exi t (&p->z_acl _| ock);

return (0);

__unchanged_portion_onitted_

1924 /*
1925 * Set
1924 * Set
1926 */
1927 int

afile's ACL
f

iles ACL

1928 zfs_setacl (znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr)

1929 {
1930
1931
1932
1933
1934
1935
1936
1937
1938

1940
1941

1943
1944

1946
1947

1949
1950
1951
1952

1954
1955
1956
1957
1958
1959
1960

zfsvfs_t *zfsvfs = zp->z_zfsvfs;

zilog_t *Z|Iog = zfsvfs->z_l og;

ul ong_t mask = vsecp->vsa_| rmsk & (VSA_ACE | VSA ACECNT);
drmu_t x_t *tX;

int error;

zfs_acl _t *acl p;

zfs_fuid_info_t *fuidp = NULL;

bool ean_t fuid_dirtied,

ui nt 64_t acl _obj ;

if (mask ==

ret ur21 ( SET_ERROR( ENOSYS) ) ;

if (zp->z_pflags & ZFS_| MUTABLE)
return (SET_ERROR(EPERM ) ;

if (error = zfs_zaccess(zp, ACE_WRI TE_ACL, 0, skipaclchk, cr))
return (error);

error = zfs_vsec_2_acl p(zfsvfs, ZTOV(zp)->v_type, vsecp, cr, &fuidp,
&acl p);
if (error)
return (error);

*

* |f ACL wide flags aren't being set then preserve any
* existing flags.
*/

if (!(vsecp->vsa_mask & VSA ACE_ACLFLAGS)) {
acl p->z_hints | =
(zp->z_pflags & VA_ACL_W DE_FLAGS);



new usr/src/uts/comon/fs/zfs/zfs_acl.c

1961
1962
1963
1964

1966
1968

1970
1971
1972

1974
1975
1976
1977

1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991

1993
1994
1995
1996
1997

1999
2000
2001
2002
2003
2004
2005
2006
2007

2009
2010
2011
2012

2014
2015

2017

2019
2020
2021
2022
2023
2024

2026

top:

done:

}

nmut ex_ent er (&p->z_acl _| ock);
mut ex_ent er (&zp->z_| ock) ;

tx = dmu_tx_create(zfsvfs->z_os);
dmu_t x_hol d_sa(tx, zp->z_sa_hdl, B TRUE);

fuid_dirtied = zfsvfs->z_fuid_dirty;
if (fuid_dirtied)
zfs_fuid_txhold(zfsvfs, tx);

/*

* If old version and ACL won’t fit in bonus and we aren’t
* upgradi ng then take out necessary DMJ hol ds

*/

if ((acl_obj = zfs_external _acl(zp)) '= 0) {
if (zfsvfs->z_version >= ZPL_VERSI ON_FU D &&
zfs_znode_acl _version(zp) <= ZFS_ACL_VERSI ON_I NI TIAL) {
dmu_tx_hold_free(tx, acl_obj, O,
“DMJ_OBJECT_END) ;
dmu_t x_hol d wrlte(tx DMU_NEW OBJECT, O,
“acl p->z_acl _bytes);
} else {

drmu_t x_hol d_write(tx, acl_obj, 0, aclp->z_acl_bytes);

}
} else if (!zp->z_is_sa && acl p->z_acl byt es > ZFS ACE_SPACE) {
dmu_tx_hold_write(tx, DMJ NEWOBJECT, 0, aclp->z_acl_bytes);
}

zfs_sa_upgrade_t xhol ds(tx, zp);
error = dnu_tx_assign(tx, TXG NOMIT);
if (error) {
nmut ex_exi t (&p->z_acl _| ock);
nmut ex_exi t (&p->z_l ock);

if (error == ERESTART) {
drmu_t x_wai t (tx);
dmu_t x_abort (tx);
goto top;

dmu_t x_abort (tx);
zfs_acl _free(acl p);
return (error);

}

error = zfs aclset commn(zp, aclp, cr, tx);
ASSERT(error == 0

ASSERT( zp- >z_ac|_cached == NULL);

zp->z_acl _cached = acl p;

if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);

zfs_log_acl (zilog, tx, zp, vsecp, fuidp);
if (fuidp)

zfs_fuid_info_free(fuidp);
drmu_t x_commi t (tx);

mut ex_exi t (& p->z_| ock);
mut ex_exit (& p->z_acl Iock);

return (error);

new usr/src/uts/comon/fs/zfs/zfs_acl.c 6
2027 }
__unchanged_portion_onitted_
2344 | *
2345 * Determ ne whether Access shoul d be granted/denied.
2346 *

2347 #endif /* | codereview */
2348 * The least priv subsytemis always consulted as a basic privilege
2349 * can define any form of access.

2350 */

2351 int

2352 {zfs_zaccess(znode_t *zp, int node, int flags, boolean_t skipaclchk, cred_t *cr)
2353

2354 ui nt 32_t wor ki ng_node;

2355 int error;

2356 int is_attr;

2357 bool ean_t check_privs;

2358 znode_t *Xzp;

2359 znode_t *check_zp = zp;

2360 node_t needed_bi ts;

2361 uid_t owner ;

2363 is_attr = ((zp->z_pflags & ZFS_XATTR) && (ZTOV(zp)->v_type == VDIR));
2365 I

2366 * |f attribute then validate against base file

2367 */

2368 if (is_ attr) {

2369 ui nt 64_t parent;

2371 if ((error = sa_|l ookup(zp->z_sa_hdl,

2372 SA ZPL_PARENT(zp->z_zfsvfs), &parent,

2373 si zeof (parent))) != 0)

2374 return (error);

2376 if ((error = zfs_zget(zp->z_zfsvfs,

2377 parent, &xzp)) != 0) {

2378 return (error);

2379 }

2381 check_zp = xzp;

2383 /*

2384 * fixup node to map to xattr perns

2385 */

2387 if (node & (ACE_WRI TE_DATA| ACE_APPEND DATA)) {

2388 mode & ~( ACE_WRI TE_DATA| ACE_APPEND DATA) ;

2389 node | = ACE_WRI TE_NAMED ATTRS;

2390 }

2392 if (nobde & (ACE_READ _DATA| ACE_EXECUTE)) {

2393 mode & ~( ACE_READ DATA| ACE_EXECUTE) ;

2394 node | = ACE_READ NAMED ATTRS;

2395 }

2396 }

2398 owner = zfs_fuid_nap_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OMER);
2399 /*

2400 * Map the bits required to the standard vnode flags VREAD VRl TE| VEXEC
2401 * in needed_bits. Map the bits mapped by worki ng_node (currently
2402 * missing) in mssing_bits.

2403 * Call secpolicy_vnode_access2() with (needed_bits & ~checknode),
2404 * needed_bits.

2405 */

2406 needed_bits = 0;



new usr/src/uts/comon/fs/zfs/zfs_acl.c

2408
2409
2410
2411

2413
2414
2415
2416
2417
2418
2419
2420

2422
2423
2424
2425
2426
2427
2428

2430
2431
2432
2433
2434

2436
2437
2438

2440
2441

2443
2444
2445
2446

2448
2449

2451
2452
2453

2455
2456
2457
2458
2459
2460
2461
2462

2464
2465

2467
2468
2469
2470

2472

wor ki ng_node = node;
if ((working_mode & (ACE_READ_ACL| ACE_READ ATTRI BUTES)) &&
owner == crgetuid(cr))
wor ki ng_node & ~( ACE_READ_ACL| ACE_READ_ATTRI BUTES) ;

i f (working_nmode & (ACE_READ_DATA| ACE_READ NAMED ATTRS
ACE_READ_ACL| ACE_READ ATTRI BUTES| ACE_SYNCHRONI ZE) )
“needed_bits [= VREAD;
if (working_nmode & (ACE WRI TE_DATA| ACE_WRI TE_NAVED ATTRS|
ACE_APPEND_DATA| ACE_WRI TE_ATTRI BUTES| ACE_SYNCHRONI ZE) )
“needed_bits | = WRITE;
if (working_npbde & ACE_EXECUTE)
needed_bits | = VEXEC;

if ((error = zfs_zaccess commn(check zp, node, &wor ki ng_node,
&check_privs, skipaclchk, cr)) == 0) {
if (is_attr)
VN_RELE( ZTOV(xzp)) ;
return (secpolicy_vnode_access2(cr, ZTOV(zp), owner,
needed_bits, needed_bits));

if (error & !check_privs) {
if (is_attr)
VN_RELE( ZTOV(xzp));
return (error);

if (error & (flags & V_APPEND)) {
error = zfs_zaccess_append(zp, &working_node, &check_privs,

if (error & & check_privs) {
node_t checknode = 0;

*

* First check for inplicit owner perm ssion on
* read_acl/read_attributes
*/

error = 0;
ASSERT(wor ki ng_node != 0);

if ((working_mode & (ACE_READ_ACL| ACE_READ ATTRI BUTES) &&
owner == crgetuid(cr)))

wor ki ng_node &= ~( ACE_READ_ACL| ACE_READ_ATTRI BUTES);

if (working_node & (ACE_READ DATA| ACE_READ NAMED ATTRS|
ACE_READ_ACL| ACE_READ_ATTRI BUTES| ACE_SYNCHRONI ZE) )
“checknode | = VREAD;
if (working_node & (ACE_WRI TE_DATA| ACE_WRI TE_NAMED ATTRS|
ACE_APPEND_DATA| ACE_WRI TE_ATTRI BUTES| ACE_SYNCHRONI ZE) )
“checknode | = WARI TE;
if (working_node & ACE_EXECUTE)
checknmode | = VEXEC;

error = secpolicy_vnode_access2(cr, ZTOV(check_zp), owner,
needed_bits & ~checknpde, needed_bits);

if (error == 0 & (worki ng_node & ACE_WRI TE_OWNER) )
error = secpolicy_vnode_chown(cr, owner);

if (error == 0 & (working_npde & ACE_WRI TE_ACL))
error = secpolicy_vnode_setdac(cr, owner);

if (error == 0 && (worki ng_node &

cr);

new usr/src/uts/comon/fs/zfs/zfs_acl.c

2473
2474

2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491

2494
2495

2497
2498 }

2500 /*

2501 * Translate traditional

(ACE_DELETE| ACE_DELETE CHILD)))

error = secpolicy_vnode_renove(cr);

if (error == 0 & (working_npde & ACE_SYNCHRONI ZE)) {
error = secpolicy_vnode_chown(cr, ;

i}f (erro; ==0) {

* See if any bits other than those already checked

owner)

* for are still present. |If so then return EACCES

*/

i f (working_npde & ~(ZFS_CHECKED MASKS)) {
error = SET_ERROR( EACCES);

}

}
} else if (error ==

) |
error = secpolicy_vnode_access2(cr, ZTOV(zp),

needed_bits, needed_bits);

if (is_attr)
VN_RELE( ZTOV(xzp)) ;

return (error);

2502 * native ACL format and call zfs_zaccess()
*
/

2503
2504 int

2505 zfs_zaccess_rwx(znode_t *zp, node_t node, int flags,

2506 {
2507
2508 }

2510 /*

return (zfs_zaccess(zp, zfs_unix_to_v4(node >> 6),

2511 * Access function for secpolicy_vnode_setattr
*/

2512
2513 int

2514 zfs_zaccess_uni x(znode_t *zp, node_t node, cred_t *cr

2515 {
2516

2518
2519 }

int v4_node = zfs_uni x_to_v4(node >> 6);

return (zfs_zaccess(zp, v4_node, 0, B_FALSE,

2521 static int
2522 zfs_del ete_final _check(znode_t *zp, znode_t *dzp,

2523
2524 {
2525
2526

2528

2530
2531

2533
2534

2536
2537 }

node_t avail abl e_perns, cred_t *cr)

int error;
uid_t downer;

downer = zfs_fuid_nmap_id(dzp->z_zfsvfs, dzp->z_uid,

uni x VREAD/ WARRI TE/ VEXEC node into

cred_t *cr)

)

cr));

error = secpolicy_vnode_access2(cr, ZTOV(dzp),

downer, avail abl e_pernms, VRl TE| VEXEC);

if (error == 0)
error = zfs_sticky_renove_access(dzp,

return (error);

zp,

fl ags,

cr,

cr);

owner,

B_FALSE

ZFS_OMKER) ;

cr))



new usr/src/uts/comon/fs/zfs/zfs_acl.c

2539 /*

2540 * Deternine whet her Access shoul d be granted/deny, w thout
2541 * consulting least priv subsystem

2542 *

2345 *

2543 * The following chart is the recormended NFSv4 enforcenent for
2544 * ability to delete an object.

2545 *

2546 oo oo
2547 * | Parent Dir | Target Cbj ect Permissions |
2548 * | permssions |

2549 e e oo
2550 * | | ACL Allows | ACL Denies| Delete |
2551 * | | Delete | Delete | unspecified|
AL A e e
2553 * | ACL Al ows | Permt | Permt | Permt |
2554 * | DELETE_CHILD | |
41 ] - T e
2556 * | ACL Denies | Permt | Deny | Deny |
2557 * | DELETE_CHILD | | | |
2558 e
2559 * | ACL specifies | | | |
2560 * | only allow | Permt | Permt | Permt |
2561 : | wite and | | | |
%gg% . | execute | | | |
2564 * | ACL denies | | | |
2565 * | wite and | Permt | Deny | Deny |
%ggg : | execute | | | |
2568 * "

2569 * |

2570 * No search privilege, can’t even look up file?

2571 *

2572 */

2573 int

2574 zfs_zaccess_del ete(znode_t *dzp, znode_t *zp, cred_t *cr)

2575 {

2576 uint32_t dzp_worki ng_node = O;

2577 uint32_t zp_worki ng_node = 0;

2578 int dzp_error, zp_error;

2579 node_t avai | abl e_per ns;

2580 bool ean_t dzpcheck_privs = B_TRUE;

2581 bool ean_t zpcheck_privs = B_TRUE;

2583 I

2584 * W want specific DELETE permi ssions to

2585 * take precedence over WRI TE/ EXECUTE. W don’t

2586 * want an ACL such as this to ness us up.

2587 * user:joe:wite_data:deny, user:joe:delete:allow

2588 *

2589 * However, deny perm ssions may ultimtely be overridden
2590 * by secpolicy_vnode_access().

2591 *

2592 * W will ask for all of the necessary pernissions and then
2593 * ook at the working nodes fromthe directory and target object
2594 * to determ ne what was found.

2595 */

2597 if (zp->z_pflags & (ZFS | MMUTABLE | ZFS NOUNLI NK))
2598 return (SET_ERROR(EPERM))

2600 /*

2601 * First row

2602 * |f the directory perm ssions allow the delete, we are done.

2603

*/

new usr/src/uts/comon/fs/zfs/zfs_acl.c 10

2604
2605
2606

2608
2609
2610
2611
2612
2613

2615

2617
2618
2619
2620

2622
2623
2624
2625
2626
2627
2628
2629
2630

2632
2633

2635
2636
2637
2638

2640
2641

2643
2644

2646
2647
2648

2650
2651

2653

2655 }
__unchanged_portion_onitted_

if ((dzp_error = zfs_zaccess_comon(dzp, ACE_DELETE_CHI LD,
&Jzp_wor ki ng_node, &dzpcheck_privs, B _FALSE, cr)) == 0)
return (0);

/*
* |f target object has delete perm ssion then we are done
*/

if ((zp_error = zfs_zaccess_comon(zp, ACE_DELETE, &zp_working_node,
&pcheck_privs, B FALSE, cr)) == 0)
return (0);

ASSERT(dzp_error && zp_error);

if (!dzpcheck_privs)
return (dzp_error);
if (!zpcheck_privs)
return (zp_error);

Second row

If directory returns EACCES then del ete_child was denied
due to deny delete_child. 1In this case send the request through
secpolicy_vnode_renove(). W don't use zfs_del ete_final_check()
since that *could* allow the del ete based on wite/execute perm ssion
and we want delete permissions to override wite/execute.

/

* ok % ok % ok F ok

if (dzp_error == EACCES)
return (secpolicy_vnode_renove(cr));

*

* Third Row
* only need to see if we have wite/execute on directory.
*/

dzp_error = zfs_zaccess_common(dzp, ACE_EXECUTE| ACE_WRI TE_DATA,
&dzp_wor ki ng_node, &dzpcheck_privs, B_FALSE, cr);

if (dzp_error !'= 0 & !dzpcheck_privs)
return (dzp_error);

/*

* Fourth row

*/

avai | abl e_perns = (dzp_worki ng_node & ACE_WRI TE_DATA) ? 0 : WRITE;
avail abl e_perns | = (dzp_worki ng_npde & ACE_EXECUTE) ? 0 : VEXEC

return (zfs_del ete_final _check(zp, dzp, avail able_perns, cr));



new usr/src/uts/ comon/fs/zfs/zfs_ctldir.c 1

R R R R

34539 Wed Apr 24 12:44:32 2013
new usr/src/uts/comon/fs/zfs/zfs_ctldir.c
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»
Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

LR

__unchanged_portion_onitted_

1052 /*

1053 * pvp is the '.zfs’ directory (zfsctl_node_t).
1054 *

1055 #endif /* ! codereview */

1056 * Creates vp, which is ’.zfs/snapshot’
1057 *

1058 * This function is the callback to create a GFS vnode for
1059 * when a lookup is perforned on .zfs for "snapshot".

1060 */

1061 vnode_t *

1062 zfsctl_nknode_snapdir(vnode_t *pvp)

(zfsctl_snapdir_t).

' . zf s/ snapshot’

1063 {

1064 vnode_t *vp;

1065 zfsctl _snapdir_t *sdp;

1067 vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp,

1068 zfsctl _ops_snapdir, NULL, NULL, MAXNAMELEN,

1069 zf sct| _snapdir_readdir_cb, NULL);

1070 sdp = vp->v_data;

1071 sdp- >sd_node. zc |d ZFSCTL | NO_SNAPDI R;

1072 sdp- >sd_node. zc chl me = ((zfsctl_node_t *)pvp->v_data)->zc_cntine;
1073 mut ex_i ni t (&dp->sd_l ock, NULL, MJITEX_DEFAULT, NULL);

1074 avl _create(&sdp->sd_snaps, snapentry_conpare,

1075 “sizeof (zfs_snapentry_t), offsetof(zfs_snapentry t, se_node));
1076 return (vp);

1077 }

1079 vnode_t *

1080 zfsctl_nknode_shares(vnode_t *pvp)

1081 {

1082 vnode_t *vp;

1083 zfsctl _node_t *sdp;

1085 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp,

1086 zfsctl _ops_shares, NULL, NULL, MAXNAMELEN,

1087 NULL, NULL);

1088 sdp = vp->v_data;

1089 sdp->zc_cntime = ((zfsctl_node_t *)pvp->v_data)->zc_cnting;
1090 return (vp);

1092 }

1094 /* ARGSUSED */
1095 static int
1096 zfsctl_shares_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,

1097 caller_context_t *ct)

1098 {

1099 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1100 znode_t *dzp;

1101 int error;

1103 ZFS_ENTER( zf svfs);

1104 if (zfsvfs->z shares_dir == =0) {

1105 ZFS_EXI T(zfsvfs);

new usr/src/uts/comon/fs/zfs/zfs_ctldir.c

1106 return (SET_ERROR( ENOT
1107 1

1108 if ((error = zfs _zget (zfsvfs,
1109 error = VOP_GETATTR(ZT!
1110 VN_RELE(ZTOV(dzp));
1111 }

1112 ZFS_EXI T(zf svfs)

1113 return (error);

1116 }

1118 /* ARGSUSED */
1119 static int
1120 zfsctl_snapdir_getattr(vnode_t *vp, va

SUP) ) ;

zfsvfs->z_shares_dir, &zp)) == 0) {
Oov(dzp), vap, flags, cr, ct);

ttr_t *vap, int flags, cred_t *cr,

>vfs_dat a;
dat a;

e(vp);
avl nun’nodes(&sdp >sd_snaps) + 2;
= drmu_obj set _snap_cnt i me(zfsvfs->z_os);

1121 cal l er_context_t *ct)

1122 {

1123 zfsvfs_t *zfsvfs = vp->v_vfsp-
1124 zfsctl _snapdir_t *sdp = vp->v_
1126 ZFS_ENTER( zf svfs);

1127 zfsctl _common_getattr(vp, vap);
1128 vap->va_nodeid = gfs_file_inod
1129 vap->va_nlink = vap->va_size =
1130 vap->va_ctinme = vap->va_ntine
1131 ZFS_EXI T(zfsvfs);

1133 return (0);

1134 }

1136 /* ARGSUSED */
1137 static void
1138 zfsctl _snapdir_inactive(vnode_t *vp, c

red_t *cr, caller_context_t *ct)

dat a;

dp- >sd_snaps) == 0);
_l ock);
naps) ;
eof (zf sctl _snapdir_t));

_tops_snapdir[] = {

open = zfsctl_comon_open } ,
cl ose = zfsctl_common_cl ose } ,
or = fs_inval } ,
getattr = zfsctl_snapdir_getattr 1,

| ookup = zfsctl_snapdir_| ookup }
seek = fs_seek }

inactive = zfsctl_snapdir_inactive } },
fid = zfsctl _comon_fid } },

access = zfsctl_commopn_access } ,
rename = zfsctl_snapdir_renanme } },
rndir = zfsctl_snapdir_renove } ,
nkdir = zfsctl _snapdir_nkdir } ,
readdir = gfs_vop_readdir } ,

_tops_shares[] = {
open = zfsctl_comon_open } }

1139 {

1140 zfsctl _snapdir_t *sdp = vp->v_
1141 void *private;

1143 private = gfs_dir_inactive(vp);
1144 1f (private !'= NULL)

1145 ASSERT( avl _nummodes( &s
1146 nmut ex_dest r oy( &dp- >sd
1147 avl _destroy(&sdp->sd_s
1148 kmem free(private, siz
1149 1

1150 }

1152 static const fs_operation_def_t zfsctl
1153 VOPNANE_OPEN, .vop_
1154 VOPNAVE_CL CSE, . vop_
1155 VOPNAME_| OCTL, .err
1156 VOPNAVE_GETATTR, . vop_
1157 VOPNAME_ACCESS, . vop_.
1158 VOPNAME_RENANME, .vop_|
1159 VOPNAME_RMDI R, .vop_|
1160 VOPNAME_MKDI R, . vop_|
1161 VOPNAVME_READDI R, . vop_|
1162 VOPNAVE_LOOKUP, .vop_|
1163 VOPNAME_SEEK, .vop_
1164 VOPNAME_| NACTI VE, . vop_|
1165 VOPNAME_FI D, . vop_|
1166 NULL }

1167 };

1169 static const fs_operation_def_t zfsctl
1170 { VOPNANE_OPEN, { .vop_
1171 { VOPNAME_CLCSE, { .vop_

cl ose = zfsctl _common_cl ose } },



new usr/src/uts/comon/fs/zfs/zfs_ctldir.c 3 new usr/src/uts/comon/fs/zfs/zfs_ctldir.c
1172 { VOPNAME_| OCTL, { .error = fs_inval 1,
1173 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_shares_getattr } }, 1239 /*
1174 { VOPNAME_ACCESS, { .vop_access = zfsct|l_common_access } 1}, 1240 * Di spose of the vnode for the snapshot nount point.
1175 { VOPNAME_READDI R, { .vop_readdir = zfsctl_shares_readdir } }, 1241 * This is safe to do because once this entry has been renpved
1176 { VOPNAME_LOOKUP, { .vop_l ookup = zfsctl_shares_l ookup } 1}, 1242 * fromthe AVL tree, it can't be found again, so cannot becomne
1177 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 1243 * "active". |f we |ookup the same nane again we will end up
1178 { VOPNAME_| NACTI VE, { .vop_inactive = gfs_vop_inactive } }, 1244 * creating a new vnode.
1179 { VOPNAME_FI D, { .vop_fid = zfsctl_shares_fid } }, 1245 *
1180 { NULL } 1246 of s_vop_i nactive(vp, cr, ct);
1181 }; 1247 }
1183 /*
1184 * pvp is the GFS vnode . zfs/snapshot’. 1250 /*
1185 * 1251 * These VP's shoul d never see the light of day. They should al ways
1186 * This creates a GFS node under ’'.zfs/snapshot’ representing each 1252 * be covered.
1187 * snapshot. This newy created GFS node is what we nount snapshot 1253 */
1188 * vfs_t's ontop of. 1254 static const fs_operation_def_t zfsctl_tops_snapshot[] =
1189 */ 1255 VOPNAME_| NACTI VE, { .vop_inactive = zfsctl_snapshot_inactive },
1190 static vnode_t * 1256 NULL, NULL
1191 {zfsctl_snapshot _nknode(vnode_t *pvp, uint64_t objset) 1257 };
1192
1193 vnode_t *vp; 1259 int
1194 zfsctl _node_t *zcp; 1260 zfsctl_| ookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_ t **zfsvfsp)
1261 {
1196 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, 1262 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1197 zfsctl _ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL); 1263 vnode_t *dvp, *vp;
1198 zcp = vp->v_data; 1264 zfsctl _snapdir_t *sdp;
1199 zcp->zc_id = objset; 1265 zfsctl _node_t *zcp;
1266 zfs_snapentry_t *sep;
1201 return (vp); 1267 int error;
1202 }
1269 ASSERT( zfsvfs->z_ctldir != NULL);
1204 static void 1270 error = zfsctl_root_| ookup(zfsvfs->z_ctldir, "snapshot", &dvp,
1205 zfsctl _snapshot _i nactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1271 NULL, O, NULL, kcred, NULL, NULL, NULL);
1206 { 1272 if (error 1= 0)
1207 zfsctl _snapdir_t *sdp; 1273 return (error);
1208 zfs_snapentry_t *sep, *next; 1274 sdp = dvp->v_dat a;
1209 vnode_t *dvp;
1276 mut ex_ent er (&sdp- >sd_| ock) ;
1211 VERI FY(gfs_dir_l ookup(vp, "..", &Jvp, cr, 0, NULL, NULL) == 0); 1277 sep = avl _first(&sdp->sd_snaps);
1212 sdp = dvp->v_dat a; 1278 while (sep !'= NULL) {
1279 Vp = sep->se_root;
1214 mut ex_ent er (&sdp- >sd_| ock) ; 1280 zcp = vp->v_data;
1281 if (zcp->zc_id == objsetid)
1216 if (vp->v_count > 1) { 1282 br eak;
1217 mut ex_exi t (&sdp->sd_| ock);
1218 return; 1284 sep = AVL_NEXT(&sdp->sd_snaps, sep);
1219 } 1285 1
1220 ASSERT(! vn_i smt pt (vp));
1287 if (sep !'= NULL) {
1222 sep = avl _first(&sdp->sd_snaps); 1288 VN_HOLD(vp);
1223 while (sep !'= NULL) { 1289 /*
1224 next = AVL_NEXT(&sdp->sd_snaps, sep); 1290 * Return the nounted root rather than the covered nount point.
1291 * Takes the GFS vnode at .zfs/snapshot/<snapshot objsetid>
1226 if (sep->se_root == vp) { 1292 * and returns the ZFS vnode nounted on top of the GFS node.
1227 avl _renove( &dp->sd_snaps, sep); 1293 * This ZFS vnode is the root of the vfs for objset 'objsetid .
1228 kmem free(sep->se_nane, strlen(sep->se_nane) + 1); 1294 */
1229 kmem free(sep, sizeof (zfs_snapentry_t)); 1295 error = traverse(&vp);
1230 br eak; 1296 if (error ==
1231 } 1297 if (vp == sep->se_root)
1232 sep = next; 1298 error = SET_ERROR(EI NVAL) ;
1233 } 1299 el se
1234 ASSERT(sep != NULL); 1300 *zfsvfsp = VIQZ(vp)->z_zfsvfs;
1301 }
1236 mut ex_exi t (&sdp->sd_| ock); 1302 mut ex_exi t (&sdp->sd_| ock) ;
1237 VN_RELE( dvp) ; 1303 VN_RELE(vp) ;




new usr/src/uts/comon/fs/zfs/zfs_ctldir.c 5

1304 } else {

1305 error = SET_ERROR(EI NVAL) ;

1306 mut ex_exi t (&dp->sd_I ock) ;

1307 }

1309 VN_RELE( dvp) ;

1311 return (error);

1312 }

1314 /*

1315 * Unnount any snapshots for the given filesystem This is called from
1316 * zfs_unmount() - if we have a ctldir, then go through and unnount all the
1317 * snapshots.

1318 */

1319 int

1320 zfsctl _unount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr)

1321 {

1322 zfsvfs_t *zfsvfs = vfsp->vfs_data;

1323 vnode_t *dvp;

1324 zfsctl _snapdir_t *sdp;

1325 zfs_snapentry_t *sep, *next;

1326 int error;

1328 ASSERT( zfsvfs->z_ctldir !'= NULL);

1329 error = zfsctl_root_| ookup(zfsvfs->z_ctldir, "snapshot", &dvp,
1330 NULL, O, NULL, cr, NULL, NULL, NULL);

1331 if (error 1= 0)

1332 return (error);

1333 sdp = dvp->v_dat a;

1335 mut ex_ent er (&sdp- >sd_| ock) ;

1337 sep = avl _first(&sdp->sd_snaps);

1338 while (sep != NULL)

1339 next = AVL_NEXT(&sdp->sd_snaps, sep);

1341 /*

1342 * |f this snapshot is not nounted, then it nust
1343 * have just been unnounted by sonebody el se, and
1344 * will be cleaned up by zfsctl_snapdir_inactive().
1345 *

1346 if (vn_ismtpt(sep->se_root))

1347 avl _renove( &dp->sd_snaps, sep);

1348 error = zfsctl_unnount _snap(sep, fflags, cr);
1349 if (error) {

1350 avl _add( &sdp- >sd_snaps, sep);

1351 br eak;

1352 }

1353 }

1354 sep = next;

1355 1

1357 mut ex_exi t (&sdp->sd_| ock) ;

1358 VN_RELE(dvp);

1360 return (error);

1361 }




new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

R R R R

144076 Wed Apr 24 12:44:32 2013
new usr/src/uts/comon/fs/zfs/zfs_ioctl.c
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»
Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

LR

__unchanged_portion_onitted_

325 /*
326 * zfs_earlier_version
327 *

326 * Return non-zero if the spa version is |ess than requested version.
327 */

328 static int

329 zfs_earlier_version(const char *nane, int version)

330 {

331 spa_t *spa;

333 if (spa_open(name, é&spa, FTAGQ == 0) {
334 if (spa_version(spa) < version) {
335 spa_cl ose(spa, FTAQ;

336 return (1);

337 }

338 spa_cl ose(spa, FTAGQ;

339

340 return (0);

341 }

343 [ *

346 * zpl _earlier_version

347 *

344 * Return TRUE if the ZPL version is |less than requested version.
345 */

346 static bool ean_t

347 zpl _earlier_version(const char *nane, int version)

348 {

349 obj set _t *os;

350 bool ean_t rc = B_TRUE;

352 if (dnu_objset_hol d(name, FTAG &os) == 0) {

353 uint64_t zplversion;

355 if (dmu_objset_type(os) !'= DMJ OST_ZFS) {
356 dmu_obj set _rel e(os, FTAQ;

357 return (B_TRUE);

358

359 /* XXX readi ng from non-owned objset */
360 if (zfs_get_zpl prop(os, ZFS_PROP_VERSI ON, &zpl version)
361 rc = zplversion < version;

362 dnu_obj set _rel e(os, FTAQ;

363 }

364 return (rc);

365 }

__unchanged_portion_omtted_

2950 #define ZFS_PROP_UNDEFI NED ((uint64_t)-1)

2952 /*

2953 * inputs:

2954 * os parent objset pointer (NULL if root fs)
2955 * fuids_ok fuids allowed in this version of the spa?
2956 * sa_ok SAs allowed in this version of the spa?

== 0)

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2957 #endlf /* ! codereview */

2958
2958
2959
2960
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972

2973 s
2974 zfs

2975
2976
2977
2978
2979
2980

2982

2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002

3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016

3018
3019

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
?

ati

creat eprops list of properties requested by creator

def aul t _zpl ver zpl version to use if unspecified in createprops

fui ds_ok fuids allowed in this version of the spa?

os parent objset pointer (NULL if root fs)

out puts:

zpl props val ues for the zplprops we attach to the master node object
is_ci true if requested file systemwi |l be purely case-insensitive

Determne the settings for utf8only, normalization and
casesensitivity. Specific values may have been requested by the
creator and/or we can inherit values fromthe parent dataset. |If
the file systemis of too early a vintage, a creator can not
request settings for these properties, even if the requested
setting is the default value. W don’ t actually want to create dsl
properties for these, so renbve themfromthe source nvlist after

processi ng.
/

icint
fill_zpl props_inpl (objset_t *os, uint64_t zplver,

bool ean_t fuids_ok, boolean_t sa_ok, nvlist_t *createprops,
nvlist_t *zpl props, boolean_t *i s_m)

uint64_t sense = ZFS_PROP_UNDEFI NED;

uint64_t norm = ZFS_PROP_UNDEFI NED;

uint64_t u8 = ZFS PROP_UNDEFI NED;

ASSERT( zpl props != NULL);

/*
* Pull out creator prop choices, if any.
*

if (createprops)

(void) nvlist_| ookup_ui nt 64(createprops,
zfs_prop_to_nanme(ZFS_PROP_VERSI ON), &zpl ver);

(void) nvlist_| ookup_ui nt64(createprops,
zfs_prop_t o_nanme(ZFS_PROP_NORMALI ZE), &norm);

(void) nvlist_renove_all (createprops,
zfs_prop_t o_nanme( ZFS_PROP_NORMALI ZE) ) ;

(void) nvlist_| ookup_ui nt64(createprops,
zfs_prop_to_nanme(ZFS_PROP_UTF8ONLY), &u8);

(void) nvlist_renove_all (createprops,
zfs_prop_to_name(ZFS_PROP_UTF8ONLY)) ;

(void) nvlist_| ookup_ui nt64(createprops,
zfs_prop_to_name(ZFS_PROP_CASE), &sense);

(void) nvlist_renove_all (createprops,
zfs_prop_to_name(ZFS_PROP_CASE) ) ;

/*
* If the zpl version requested is V\,hacky or the file system
* or pool Is version is too "young" to support nornalization
* and the creator tried to set a value for one of the props,
* error out.
*/
if ((zplver < ZPL_VERSION INITIAL || zplver > ZPL_VERSION) ||
(zpl ver >= ZPL_VERSION_FUI D && !fuids_ok) ||
(zpl ver >= ZPL_VERSI ON_SA && !sa_ok) T[]
(zpl ver < ZPL_VERS|I ON_NORMAL| ZATT ON &&
(norm!= ZFS PROP_UNDEFI NED || u8 != ZFS_PROP_UNDEFI NED | |
sense ! = ZFS_PROP_UNDEFI NED) ) )
return (SET_ERROR(ENOTSUP));

/*
* Put the version in the zpl props



new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3020
3021
3022

3024
3025
3026
3027

3029
3030
3031
3032
3033
3034
3035
3036
3037

3039
3040
3041
3042

3044
3045

3047

3048 }

*

/

VERI FY(nvl i st_add_ui nt 64(zpl props,
zfs_prop_to_name(ZFS_PROP_VERSI ON), zplver) == 0);

if (norm == ZFS_PROP_UNDEFI NED)
VERI FY(zfs_get _zpl prop(os, ZFS_PROP_NORMALI ZE, &norm) == 0);
VERI FY( nvlist_add_ui nt 64(zpl props,
zfs_prop_t o_nanme(ZFS_PROP_NORMALI ZE), norn) == 0);

/*
* If we're nornalizing, nanes nust always be valid UTF-8 strings.

*/
if (norm
ug =

= ]_;
if (u8 == ZFS PROP_UNDEFI NED)
VERI FY(zfs_get _zpl prop(os, ZFS_PROP_UTF8ONLY, &u8) == 0);
VERI FY(nvl i st_add_ui nt 64(zpl props,
zfs_prop_to_nane(ZFS_PROP_UTF8ONLY), u8) == 0);

if (sense == ZFS_PROP_UNDEFI NED)
VERI FY(zfs_get _zpl prop(os, ZFS PROP_CASE, &sense) == 0);
VERI FY(nvlist_add_ui nt 64(zpl props,
zfs_prop_to_nane(ZFS_PROP_CASE), sense) == 0);

if (is_ci)
*Is_ci = (sense == ZFS_CASE_| NSENSI Tl VE) ;

return (0);

____unchanged_portion_onmitted_




new usr/src/uts/comon/fs/zfs/zfs_log.c 1

R R R R

17962 Wed Apr 24 12:44:33 2013
new usr/src/uts/comon/fs/zfs/zfs_log.c
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>

Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»

Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

LR

__unchanged_portion_onitted_

213 /*

214 * Handl es TX_CREATE, TX CREATE_ATTR, TX MKDI R, TX MKDI R_ATTR and
215 * TK_MKXATTR transacti ons.

214 * zfs_log_create() is used to handl e TX CREATE, TX_CREATE_ATTR, TX_MKDI R,
215 * TX_MKDI R_ATTR and TX_MKXATTR

216 * transactions.

216 *

217 * TX_CREATE and TX_MKDIR are standard creates, but they may have FU D
218 * dommin information appended prior to the name. In this case the
219 * uid/gid in the log record will be a log centric FU D.

220 *

221 * TX_CREATE_ACL_ATTR and TX_MKDI R_ACL_ATTR handl e speci al creates that
222 * may contain attributes, ACL and optional fuid information.

223 *

224 * TX_CREATE_ACL and TX_MKDI R_ACL handl e special creates that specify
225 * and ACL and normal users/groups in the ACEs.

226 *

227 * There may be an optional xvattr attribute information simlar
228 * to zfs_log_setattr.

229 *

230 */AI so, after the file name "domain" strings may be appended.

231 *

232 void

233 zfs_log_create(zilog_t *zilog, dnu_tx_t *tx, uint64_t txtype,

234 znode_t *dzp, znode_t *zp, char *nane, vsecattr_t *vsecp,

235 zfs_fuid_info_t *fuidp, vattr_t *vap)

236 {

237 itx_t *itx;

238 Ir_create_t *Ir;

239 Ir_acl _create_t *lracl;

240 size_t aclsize = (vsecp != NULL) ? vsecp->vsa_aclentsz : 0;
241 size_t xvatsize = 0;

242 size_t txsize;

243 xvattr_t *xvap = (xvattr_t *)vap;

244 voi d *end;

245 size_t lrsize;

246 size_t nanesi ze = = strlen(nanme) + 1;

247 size_t fuidsz = 0;

249 if (zil_replaying(zilog, tx))

250 return;

252 /*

253 * |f we have FU Ds present then add in space for

254 * donmains and ACE fuid s if any.

255 */

256 if (fuidp) {

257 fuidsz += fuidp->z_donai n_str_sz;

258 fuidsz += fuidp->z_fuid_cnt * “si zeof (uint64_t);
259 }

261 if (vap->va_mask & AT_XVATTR)

262 xvat si ze = ZI L_XVAT_SI ZE( xvap- >xva_mapsi ze) ;

new usr/src/uts/comon/fs/zfs/zfs_log.c

264
265
266
267
268
269
270
271
272
273
274

276

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

297
298
299

301
302
303
304
305
306
307
308
309

311

313
314
315
316
317
318
319
320
321
322

324
325
326

328
329

(int)txtype == TX_CREATE_ATTR || (int)txtype == TX_MD R ATTR ||
(int)txtype TX_CREATE || (int)txtype == TX_ M(DI |
(int)txtype == TX_MKXATTR) {

txsize = sizeof (*lr) + nanesize + fuidsz + xvatsi ze;
Irsize = sizeof (*Ir);

} else {
txsize =

si zeof (Ir_acl_create_t) + nanesize + fuidsz +
ZI'L_ACE_| LENGTH( acl si ze) + xvat si ze;
Irsize = sizeof (lr_acl_create_t);

}
itx = zil_itx_create(txtype, txsize);

create_t *)& tx->itx_lr;

dzp->z_i d;

zp->z_i d;

_ zp->z m)de

S EPHEI\/ERAL(zp >z _uid))

lr->r_uid = (uint64_t)zp->z_uid;

o
IR

lr->lr_uid = fui dp->z_fui d_owner;

}
if (s EPHEI\/ERAL(zp >z_gid))

lr->lr_gid =(U|nt64t)zp >z_gid;
} else {

lr->r_gid = fui dp->z_fui d_group;

(v0| d) sa Iookup(zp >z_sa_hdl, SA ZPL_CEN(zp->z_zfsvfs), & r->Ir_gen,
sizeof (uint64_t));

(void) sa Iookup(zp >z_sa_hdl, SA ZPL_CRTI ME(zp->z_zfsvfs),
Ir->lr_crtime, sizeof (ui nt64_t) * 2);

if (sa_l ookup(zp->z_sa_hdl, SA ZPL_RDEV(zp->z_zfsvfs), & r->Ir_rdev,
sizeof (lr->lr_rdev)) != 0)
lr->r_rdev = 0;

/*

* Fill in xvattr info if any

*/

if (vap->va_mask & AT_XVATTR)
zfs_log_xvattr((lr_attr_t *)((caddr_t)Ir + Irsize), xvap);
end = (caddr_t)Ir + Irsize + xvatsi ze;

} else {
end = (caddr_t)Ir + Irsize;
}
/* Now fill in any ACL info */
if (vsecp) {
Iracl = (Ir_acl _create_t *)& tx->itx_|lr;
Iracl ->lr_aclcnt = vsecp->vsa_aclcnt;
Iracl ->lr_acl _bytes = acl si ze;
Iracl->lr_doncnt = fui dp ? fuidp->z_donain_cnt : O;
I racl ->lr_fuidcnt furdp ? fuidp->z_fuid_cnt : O;
if (vsecp >vsa_acl f I ags & VSA ACE_ACLFLAGS)
Iracl ->lr_acl _flags = (uint64_t)vsecp->vsa_acl fl ags;
el se
Iracl->lr_acl _flags = O;
bcopy(vsecp->vsa_acl entp, end, aclsize);
end = (caddr_t)end + ZI L_ACE LENGTH(acI si ze);
}

/* drop in FUD info */
if (furdp) {



new usr/src/uts/comon/fs/zfs/zfs_log.c

330 end = zfs_log_fuid_ids(fuidp, end);

331 end = zfs_| og_fui d_domai ns(fuidp, end);
332 }

333 /*

334 * Now place file nanme in log record

335 */

336 bcopy(nane, end, nanesize);

338 zil _itx_assign(zilog, itx, tx);

339 }

341 /*

342 * Handl es both TX_REMOVE and TX RMDI R transactions.

343

344 void

345 zfs_log_remove(zilog_t *zilog, dnu_tx_t *tx, uint64_t txtype,
346 znode_t *dzp, char *nane, uint64_t foid)

347 {

348 itx_t *itx;

349 Ir_renmove_t *lr;

350 size_t nanesize = strlen(nanme) + 1;

352 if (zil_replaying(zilog, tx))

353 return;

355 itx = zil_itx_create(txtype, sizeof (*Ir) + nanesize);
356 Ir = (lr_remove_t *)& tx->itx_lr;

357 Ir->lr_doid = dzp->z_id;

358 bcopy(nanme, (char *)(Ir + 1), nanesize);

360 itx->tx_oid = foid;

362 zil _itx_assign(zilog, itx, tx);

363 }

365 /*

366 * Handl es TX LINK transactions.
367 * zfs_log_link() handles TX_LINK transactions.
*/

367

368 void

369 zfs_log_link(zilog_t *zilog, dnmu_tx_t *tx, uint64_t txtype,
370 znode_t *dzp, znode_t *zp, char *nane)

371 {

372 itx_t *itx;

373 Ir_link_t *Ir;

374 size_t nanesize = strlen(nane) + 1,

376 if (zil_replaying(zilog, tx))

377 return;

379 itx = zil_itx_create(txtype, sizeof (*Ir) + nanesize);
380 Ir:(lr_llnkt*)&ltx Sitx_lr;

381 Ir->lr_doid = dzp->z_id,;

382 Ir->r_link_obj = zp->z_id;

383 bcopy(nane, (char *)(lr + 1) nanesi ze) ;

385 zil _itx_assign(zilog, itx, tx);

386 }

388 /*

389 * Handl es TX_SYM.INK transactions.

390 * zfs_log_symink() handles TX SYM.INK transactions.

390 */

391 void

392 zfs_log_symink(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype,

343 * zfs_log_renove() handles both TX REMOVE and TX RMVDI R transactions.
*/

new usr/src/uts/comon/fs/zfs/zfs_log.c

393 znode_t *dzp, znode_t *zp, char *nane, char *link)

394 {

395 itx_t *itx;

396 Ir_create_t *Ir;

397 size_t nanesize = strlen(nanme) + 1;

398 size_t linksize = strlen(link) + 1,

400 if (zil_replaying(zilog, tx))

401 return;

403 itx = zil_itx_create(txtype, sizeof (*Ir) + nanesize + linksize);
404 Ir = (lr_create_t *)& tx->itx_Ir;

405 Ir->lr_doid = dzp->z_id;

406 lr->r_foid = zp->z_id;

407 Ir->lr_uid = zp->z_uid;

408 lr->lr gid:zp->z gi d;

409 Ir->lr_node = zp->z_nvode;

410 (void) sa | ookup(zp->z_sa_hdl, SA ZPL_GEN(zp->z_zfsvfs), & r->lr_gen,
411 sizeof (uint64_t));

412 (voi d) sa_l ookup(zp- >z_sa_hd| , SA_ZPL_CRTI ME(zp->z_zfsvfs),
413 Ir->lr_crtime, sizeof (uint64_t) * 2);

414 bcopy(name, (char *)(lr + 1), nanesize);

415 bcopy(link, (char *)(lr + 1) + nanesize, |inksize);

417 zil _itx_assign(zilog, itx, tx);

418 }

420 [ *

421 * Handl es TX _RENAME transactions.
422 * zfs_log_renane() handl es TX_RENAME transactions.
*
/

422

423 void

424 zfs_log_rename(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype,
425 znode_t *sdzp, char *snane, znode_t *tdzp, char *dname, znode_t *szp)
426 {

427 itx_t *itx;

428 Ir_rename_t *Ir;

429 size_t snanesize = strlen(snane) + 1;

430 size_t dnanesize = strlen(dnane) + 1,

432 if (zil_replaying(zilog, tx))

433 return;

435 itx = zil_itx_create(txtype, sizeof (*Ir) + snanesize + dnanesize);
436 Ir = (Ir_rename_t *)& tx->itx_|r;

437 Ir->r_sdoid = sdzp->z_id;

438 Ir->r_tdoid = tdzp->z_id;

439 bcopy(snane, (char *)(Tr + 1), snamesi ze) ;

440 bcopy(dnane, (char *)(Ir + 1) + snanesize, dnanesize);
441 itx->tx_oid = szp->z_id;

443 zil _itx_assign(zilog, itx, tx);

444 )

446 | *

447 * Handl es TX_ WRI TE transactions.

448 * zfs_log_wite() handl es TX WRI TE transacti ons.
448 */

449 ssize_ t zfs_immediate wite sz = 32768;

451 void

452 zfs_log_wite(zilog_t *zilog, dmu_tx_t *tx, int txtype,

453 znode_t *zp, offset_t off, ssize_t resid, int ioflag)
454 {

455 itx_w_state t wite_state;

456 bool ean_t sl oggi ng;



new usr/src/uts/comon/fs/zfs/zfs_log.c

457
458

460
461

463
464

466
467
468
469
470
471
472
473

475
476
477

479
480
481
482

484
485
486
487
488
489
490

492
493
494
495
496
497
498
499
500
501

503
504
505
506
507
508
509
510

512
514
515
516
518
520

521
522

uintptr_t fsync_cnt;
ssize_t imediate_wite_sz;

if (zil_repl ayl ng(zilog, tx) || zp->z_unlinked)
retur

imediate_wite_sz = (zil og->zl _| ogbias == ZFS_LOGBI AS_THROUGHPUT)
? 0: zfs_imediate_wite_sz;

sl oggi ng = spa_has_sl ogs(zil og->zl _spa) &&
(ziTog->zI _| ogbi as == ZFS_LOGBI AS _LATENCY) ;
if (resid > imediate_wite sz & !slogging & resid <= zp->z_bl ksz)

wite_state = WR_| NDI RECT;
else if (ioflag & (FSYNC | FDSYNC))
wite_state = WR_COPI ED,
el se
wite_state = WR_NEED COPY;

if ((fsync_cnt = (uintptr_t)tsd_get(zfs_fsyncer_key)) != 0)
(void) tsd_set(zfs_fsyncer_key, (void *)(fsync_cnt - 1));
}

while (resid) {
itx_t *itx;
Ir_wite_t *Ir;
ssize_t len;

*

* |f the wite would overflow the largest block then split it.
*/

if (wite_state = WR_INDI RECT && resid > ZI L_MAX_LOG DATA)
I en = SPA_MAXBLOCKSI ZE >> 1;

el se
len = resid;

itx = zil_itx create(txtype, sizeof (*Ir) +
(wite state == WR COPIED ? len : 0));
Ir = (lr_wite_t *)& tx->itx_lr;
if (wite_state == WR_COPI ED && dnu _read(zp->z_zfsvfs->z_os,
zp->z_id, off, len, Ir + 1, DMJ READ NO PREFETCH) != 0) {
ziI_itx_destroy(itx);
itx = zil_itx_create(txtype, sizeof (*Ir));
= (lr_wite_t *)& tx->1tx_lr;
wite_state = WR _NEED COPY;
}

itx->tx_w_state = wite_state,
if (wite_ state——V\RNEEDOODY)
itx->tx_sod += len;
lr->r_foid = zp->z_id;
Ir->lr_offset = off;

Ir->lr_length = Ien
Ir->lr_blkoff =
BP_ZERQ( &l r->lr_| bI kptr);

itx->tx_private = zp->z_zfsvfs;
if (!(ioflag & (FSYNC | FDSYNC)) && (zp->z_sync_cnt == 0) &&
(fsync_cnt == 0
itx->tx_sync = B_FALSE;
zil _itx_assign(zilog, itx, tx);

off += len;
resid -= len;

new usr/src/uts/comon/fs/zfs/zfs_log.c

523

525
526
527
527
528

}
| *

* Handl es TX_TRUNCATE transacti ons.
* zfs_log_truncate() handl es TX_TRUNCATE transactions.

*/

voi d

529 zfs_log_truncate(zilog_t *zilog, dmu_tx_t *tx, int txtype,

530
531
532
533

535
536

538
539
540
541
542

544
545
546

548
549
550
550
551
552

554
555
556
557
558
559

561
562

564
565
566
567
568
569
570

572
573

575
576
577
578
579
580
581
582
583

585
586

{

}
/*

znode_t *zp, uint64_t off, uint64_t |en)

itx_t *itx;

Ir_truncate_t *Ir;

if (zil_replaying(zilog, tx) || zp->z_unlinked)
return;

itx = zil_itx create(txt ype, sizeof (*Ir));

Ir = (Ir_truncate_t *)& tx->itx_lr;

lr->lr_foid = zp->z_id;

Ir->lr_offset = off;

Ir->lr_length = len

itx->tx_sync = (zp->z_sync_cnt != 0);

zil _itx_assign(zilog, itx, tx);

* Handl es TX_SETATTR transactions.
* zfs_log_setattr() handl es TX SETATTR transactions.
*/

voi d

zfs_log_setattr(zilog_t *zilog, dnu_tx_t *tx, int txt

{

ype
znode_t *zp, vattr_t *vap, uint_t mask applled zfs_fui d_info_t *fuidp)

itx_t *itx;

Ir_setattr_t *lr;

xvattr_t *xvap = (xvattr_t *)vap;

size_t recsi ze = sizeof (lr_setattr_t);
voi d *start;

if (zil_replaying(zilog, tx) || zp->z_unlinked)
return;

/*

* | f XVATTR set, then log record size needs to allow
* for Ir_attr_t + xvattr nask, nmapsize and create tine
* plus actual attribute val ues

*

if (vap->va_mask & AT_XVATTR)
recsize = sizeof (*Ir) + ZIL_XVAT_SI ZE(xvap- >xva_napsi ze);

if (fuidp)
recsi ze += fuidp->z_donai n_str_sz;

itx = zil _itx_create(txtype, recsize);

Ir = (Ir_setattr_t *)& tx->itx_lr;

Ir->r_foid = zp->z_i d;

Ir->lr_mask = (uint64_t)mask_applied;

Ir->Ir_mode = (uint64_t)vap->va_node;

if ((mask_applied & AT _UID) & TS EPHEMERAL(vap->va_ui d))
Ir->r_uid = fuidp->z_fuid_owner;

el se
Ir->lr_uid = (uint64_t)vap->va_uid;

if ((mask_applied & AT_G D) && | S_EPHEMERAL(vap->va_gid))
Ir->r_gid = fuidp->z_fuid_group;



new usr/src/uts/comon/fs/zfs/zfs_log.c 7 new usr/src/uts/comon/fs/zfs/zfs_log.c

587 el se 652 Ir->lr_acl _flags = 0;
588 lr->lr_gid = (uint64_t)vap->va_gid; 653 }
654 Ir->lr_aclcnt = (uint64_t)vsecp->vsa_aclcnt;
590 Ir->lr_size = (uint64_t)vap->va_size;
591 ZFS_TI ME_ENCODE( &vap->va_atine, |r->lr_atine); 656 if (txtype == TX ACL_\VO) {
592 ZFS_ TIIVEENOCDE(&vap >va_nmtime, lr->r_nti ), 657 (Tr_acl _vo_t *)Ir;
593 start (Ir_setattr_t *)(Ir + 1) 658 bcopy(vsecp >vsa_aclentp, (ace_t *)(lrv0 + 1), aclbytes);
594 if (vap >va_mask & AT_XVATTR) { 659 } else {
595 zfs Iog xvattr((lr_attr_t *)start, xvap); 660 void *start = (ace_t *)(Ir + 1);
596 start = (caddr_t)start + ZI L_XVAT_SI ZE(xvap >xva_mapsi ze) ;
597 } 662 bcopy(vsecp->vsa_acl entp, start, aclbytes);
599 /* 664 start = (caddr_t)start + ZIL_ACE_LENGTH( acl bytes);
600 * Now stick on domain information if any on end
601 */ 666 if (fuidp) {
667 start = zfs_log_fuid_ids(fuidp, start);
603 if (fuidp) 668 (void) zfs_Tog_fuid_domai ns(fuidp, start);
604 (void) zfs_log_fuid_donmains(fuidp, start); 669 }
670 1
606 itx->itx_sync = (zp->z_sync_cnt != 0);
607 zi | _itx_assi gn(2| log, itx, tx); 672 itx->itx_sync = (zp->z_sync_cnt != 0);
608 } 673 zil _itx_assign(zilog, itx, tx);
674 }
610 /* __unchanged_portion_omtted_

611 * Handl es TX_ACL transactions.
612 * zfs_log_acl () handl es TX_ACL transacti ons.
*/

612

613 void

614 zfs_log_acl (zilog_t *zilog, dmu_tx_t *tx, znode_t *zp,

615 vsecattr_t *vsecp, zfs_fuid_info_t *fmdp)

616 {

617 itx_t *itx;

618 Ir_acl _vO0_t *lrvo0;

619 Ir_acl_t *lr;

620 int txtype;

621 int Irsize;

622 size_t txsize;

623 size_t acl bytes = vsecp->vsa_acl entsz;

625 if (zil repl aying(zilog, tx) || zp->z_unlinked)

626 return;

628 txtype = (zp->z_zfsvfs->z_version < ZPL_VERSI ON_FU D) ?
629 X_ACL_V0 : TX_ACL;

631 if (txtype == TX_ACL)

632 Irsize = sizeof (*Ir);

633 el se

634 Irsize = sizeof (*lIrv0);

636 txsize = Irsize +

637 ((txtype == TX_ACL) ? ZI L_ACE_LENGTH( acl bytes) : aclbytes) +
638 (fU|dp’7fU|dp >z _domain_str_sz : 0)

639 sizeof (uint64_t) * (fuidp ? fuidp- >z_fU| d_cnt : 0);
641 itx = zil_itx_create(txtype, txsize);

643 Ir = (lr_acl _t *)& tx->itx_Ir;

644 Ir->lr_foid = zp->z_id;

645 if (txtype == TX_ACL)

646 Ir->lr_acl _bytes = acl bytes;

647 Ir->r_dontnt = fU| dp ? fui dp- >z_domai n_cnt : O;
648 | r->lr_fuidcnt fuidp ? fuidp->z_fuid_cnt : O;
649 if (vsecp->vsa nask & VSA_ACE_ACLFLAGS)

650 Ir->Ir_acl _flags = (uint64_t)vsecp->vsa_acl flags;

651 el se




new usr/src/uts/comon/fs/zfs/zfs_rlock.c

R R R R

17062 Wed Apr 24 12:44:33 2013
new usr/src/uts/comon/fs/zfs/zfs_rlock.c

3742 zfs comments need cl eaner,

nore consistent style

Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>

Submi tted by:

Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»

Revi ewed by: Ceorge W son <george. w | son@el phi x. con»

Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEEEREEEERERERERESRESRESRESESESESE]
1/*

NRERRRRRRRRE
COONOUITAWNROW©O~NOUTSWN
H %k 3k ok k3 3k 3k Ok X 3k ¥ 3k F 3k X F ¥ F ok F

25 [ *
26 *
*

I
N
EE I S I I I T I N S T N R

CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the |icense at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing pernissions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyright 2010 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to license terms.

Copyright (c) 2012 by Del phix. Al rights reserved.
/

This file contains the code to inplement file range locking in

ZFS, although there isn't much specific to ZFS (all that comes to mind is
ZFS, although there isn't nmuch specific to ZFS (all that comes to mnd
support for growing the blocksize).

Interface

Defined in zfs_rlock.h but essentially
rl = zfs_range_l ock(zp, off, len,
zfs_range_unl ock(rl);
zfs_range_reduce(rl, off, len);

N ock_type);

AVL tree

An AVL tree is used to naintain the state of the existing ranges
that are |ocked for exclusive (witer) or shared (reader) use.

The starting range offset is used for searching and sorting the tree.

Conmon case

The (hopefully) usual case is of no overlaps or contention for

locks. On entry to zfs_lock_range() arl_t is allocated; the tree
searched that finds no overTap, and *this* rl_t is placed in the tree.

Overl aps/ Ref erence counti ng/ Proxy | ocks

The avl code only allows one node at a particular offset. Also it’s very

new usr/src/uts/comon/fs/zfs/zfs_rlock.c

111

113
114
115
116
117
118
119
120
121

B T T T T T

*
*

Check if a wite |ock can be grabbed,
*/

inefficient to search through all previous entries |ooking for overlaps
(because the very 1st in the ordered list mght be at offset 0 but
cover the whole file).

So this inplenmentation uses reference counts and proxy range | ocks.
Firstly, only reader |ocks use reference counts and proxy | ocks,
because witer |ocks are exclusive.

When a reader |ock overlaps with another then a proxy lock is created
for that range and replaces the original lock. If the overlap

is exact then the reference count of the proxy is sinply increnented.
O herwi se, the proxy lock is split into smaller |ock ranges and

new proxy |l ocks created for non overl appi ng ranges.

The reference counts are adjusted accordingly.

Meanwhi | e, the orginal lock is kept around (this is the callers handle)
and its offset and length are used when rel easing the |ock.

Thread coordination

In order to make wakeups efficient and to ensure nultiple continuous
readers on a range don’t starve a witer for the sane range |ock,

two condition variables are allocated in each rl_t.

If a witer (or reader) can't get a range it initialises the witer

(or reader) cv; sets a flag saying there’s a witer (or reader) waiting;
and waits on that cv. Wien a thread unlocks that range it wakes up all
witers then all readers before destroying the | ock.

Append node wites

Append node writes need to lock a range at the end of a file.

The offset of the end of the file is determ ned under the

range | ocking nutex, and the |ock type converted from RL_APPEND t o
RL_WRI TER and the range | ocked.

Grow bl ock handling

ZFS supports multiple block sizes currently upto 128K. The snal | est

bl ock size is used for the file which is grown as needed. During this
growth all other witers and readers nust be excluded.

So if the block size needs to be grown then the whole file is
exclusively |l ocked, then later the caller will reduce the |ock

range to just the range to be witten using zfs_reduce_range.

/

#i ncl ude <sys/zfs_rlock. h>

or wait and recheck until avail able.

static void
zfs_range_l ock_writer(znode_t *zp, rl_t *new)

avl _tree_t *tree =
rl_t *rl;

avl _i ndex_t where;
uint64_t end_si ze;
uint64_t off = new >r_off;
uint64_t len = new>r_|en;

&z p->z_range_avl ;

for (55) {
/*
* Range |l ocking is also used by zvol and uses a
* dumm ed up znode. However, for zvol, we don't need to
* append or grow bl ocksize, and besi des we don’'t have
* a "sa" data or z_zfsvfs - so skip that processing.
*
* Yes, this is ugly, and woul d be solved by not handling
*

grow or append in range |ock code. If that was done then



new usr/src/uts/comon/fs/zfs/zfs_rlock.c 3

122
123
124
125
126
127
128
129
130
131

133
134
135
136
137
138
139
140
141
142
143
144

146
147
148
149
150
151
152
153

155
156
157
158
159
160

162
163
164

166
167
168

170
171
172
173
174
175
176
177
178

180
181
182
183

wai t:

184 }
__unchanged_portion_onitted_

* we could meke the range | ocking code generically avail able
* to other non-zfs consuners.
*
/
if (zp->z_vnode) { /* caller is ZPL */
/*

* |f in append node pick up the current end of file.
* This is done under z_range_lock to avoid races.
*
/
if (new>r_type == RL_APPEND)
new >r_of f = zp->z_si ze;

/*

* |f we need to grow the bl ock size then grab the whole
* file range. This is also done under z_range_l ock to

* avoi d races.

*/

end_size = MAX(zp->z_size, new>r_off + len);

if (end_size > zp->z_blksz && (!1SP2(zp->z_bl ksz) ||

zp->z_bl ksz < zp->z_zfsvfs->z_max_bl ksz)) {
new >r_off = 0;
new >r_| en = U NT64_MAX;

}

/*

* First check for the usual case of no | ocks
*/

if (avl_numodes(tree) == 0)

{
new >r_type = RL_WRITER; /* convert to witer */
avl _add(tree, new);

return;
}
/*
* Look for any locks in the range.
*
rl = avl _find(tree, new, &where);
if (rl)

goto wait; /* already |ocked at sane offset */

rl = (rl_t *)avl _nearest(tree, where, AVL_AFTER);
if (rl && (rl->r_off < new>r_off + new>r_len))
goto wait;

rl = (rl_t *)avl _nearest(tree, where, AVL_BEFORE);
if (rl & rl->r_off + rl->r_len > new >r_off)
goto wait;

new>r_type = RL_WRI TER, /* convert possible RL_APPEND */
avl _insert(tree, new, where);
return;

if (!rl->_wite_wanted) {
cv_init(&l->_w_cv, NULL, CV_DEFAULT, NULL);
rl->r_wite_wanted = B_TRUE;

}
cv_wait(&Il->r_w_cv, &p->z_range_| ock);
/* reset to original */

new >r_off = off;
new>r_len = |len;




new usr/src/uts/comon/fs/zfs/zfs_sa.c

R R R R

10532 Wed Apr 24 12:44:34 2013
new usr/src/uts/comon/fs/zfs/zfs_sa.c
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»
Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

LR

__unchanged_portion_onitted_

t cached */
NULL, &ntinme, 16);
NULL, &ctine, 16);

187 /*

188 * I'mnot convinced we should do any of this upgrade.

189 * since the SA code can read both ol d/ new znode formats
190 * with probably little to no perfornance difference.

190 * with probably little to know performance difference.

191 *

192 * Al newfiles will be created with the new fornat.

193 */

195 voi d

196 zfs_sa_upgrade(sa_handle_t *hdl, dmu_tx_t *tx)

197 {

198 dmu_buf _t *db = sa_get_db(hdl);

199 znode_t *zp = sa_get_userdata(hdl);

200 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

201 sa_bul k_attr_t bul k[ 20] ;

202 int count = 0;

203 sa_bul k_attr_t sa_attrs[20] = { 0 };

204 zfs_acl _locator_cb_t locate = 0 };

205 uint64_t uid, gid, node, rdev, xattr, parent;

206 ui nt 64_t crtlma[Z] M|ne[2], ctine[2];

207 zfs_acl _phys_t znode acl ;

208 char scanst anp[ AV_ SCANSTAMP  S7] ;

209 bool ean_t drop_l ock = B_FALSE;

211 /*

212 * No upgrade if ACL isn't cached

213 * since we won’t know which | ocks are held

214 * and ready the ACL would require special "locked"
215 * interfaces that woul d be nmessy

216 *

217 if (zp->z_acl _cached == NULL || ZTOV(zp)->v_type == VLNK)
218 return;

220 /*

221 * If the z_lock is held and we aren’t the owner
222 * the just return since we don't want to deadl ock
223 * trying to update the status of z_is_sa. This
224 * file can then be upgraded at a later tine.

225 *

226 * Qtherw se, we know we are doing the

227 */sa_updat e() that caused us to enter this function.
228 *

229 if (mutex_owner(&p->z_lock) != curthread) {

230 if (mutex_tryenter(&p->z_|l ock) == 0)

231 return;

232 el se

233 drop_l ock = B_TRUE;

234 1

236 /* First do a bulk query of the attributes that aren’
237 SA_ADD_BULK_ATTR( bul k, count, SA ZPL_MTl ME( zf svfs),
238 SA_ADD_BULK_ATTR(bul k, count, SA ZPL_CTI ME( zf svfs),
239 SA_ADD_BULK_ATTR(bul k, count, SA_ZPL_CRTI ME( zf svfs)

NULL, &crtinme, 16);

new usr/src/uts/comon/fs/zfs/zfs_sa.c

8);

8);

8);
8):

240 SA ADD BULK_ATTR(bul k, count, SA ZPL_MODE(zfsvfs), NULL, &mde, 8);
241 SA_ADD_BULK_ATTR(bul k, count, SA_ZPL PARENT(zfsvfs) NULL, &parent,
242 SA_ADD_BULK_ATTR(bul k, count, SA ZPL_XATTR(zfsvfs), NULL, &xattr,
243 SA_ADD_BULK_ATTR(bul k, count, SA_ZPL_RDEV(zfsvfs), NULL, & dev, 8);
244 SA_ADD _BULK_ATTR(bul k, count, SA_ZPL_U D(zfsvfs), NULL, &uid, 8);
245 SA_ADD BULK_ATTR( bul k, count, SA ZPL G D(zfsvfs), NULL, &gid, 8);
246 SA_ADD_BULK_ATTR(bul k, count, SA_ZPL_ZNODE ACL(zfsvf s), NULL,

247 & node_acl, 88);

249 if (sa_bul k_| ookup_l ocked(hdl, bulk, count) != 0)

250 got o done;

253 /*

254 * Wiile the order here doesn't matter its best to try and organize
255 */it is such a way to pick up an already existing | ayout nunber
256 *

257 count = 0;

258 SA ADD BULK_ATTR(sa_attrs, count, SA ZPL_MODE(zfsvfs), NULL, &node,
259 SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_SI ZE( zf svfs), NULL,

260 &zp->z_si ze, 8);

261 SA ADD BULK ATTR(sa_attrs, count, SA ZPL_GEN(zfsvfs),

262 NUCL, &zp->z_gen, 8);

263 SA_ADD | BULK _ ATTR(sa_attrs, count, SA ZPL_Ul D(zfsvfs), NULL, &uid,
264 SA_ADD BULK_ATTR(sa_attrs, count, SA ZPL_G D(zfsvfs), NULL, &gid,
265 SA_ADD BULK_ATTR(sa_attrs, count, SA ZPL_PARENT(zfsvfs),

266 NULCL, &parent, 8);

267 SA ADD BULK ATTR(sa attrs, count, SA ZPL FLAGS(zfsvfs), NULL,

268 &p->z_pflags, 8);

269 SA ADD BULK_ATTR(sa_attrs, count, SA ZPL_ATI ME(zfsvfs), NULL,

270 zp->z_atine, 16);

271 SA_ADD_BULK_ATTR(sa_attrs, count, SA ZPL_ Ml ME(zfsvfs), NULL,

272 &ntine, 16);

273 SA_ADD BULK ATTR( sa_attrs, count, SA ZPL_CTI ME(zfsvfs), NULL,

274 &cti me, 16);

275 SA_ADD_BULK_ATTR(sa_attrs, count, SA ZPL_CRTIME(zfsvfs), NULL,

276 &crtine, 16);

277 SA_ADD BULK ATTR( sa_attrs, count, SA ZPL_LI NKS(zfsvfs), NULL,

278 &zp->z_Tinks, 8);

279 if (zp->z_vnode->v_type == VBLK || zp->z_vnode->v_type == VCHR)
280 SA_ADD BULK_ATTR(sa_attrs, count, SA ZPL_RDEV(zfsvfs), NULL,
281 &rdev, 8);

282 SA_ADD BULK_ATTR(sa_attrs, count, SA ZPL_DACL_COUNT(zfsvfs), NULL,
283 & p->z_acl _cached->z_acl _count, 8);

285 if (zp->z_acl _cached->z_version < ZFS_ACL_VERSI ON_FU D)

286 zfs_acl _xform(zp, zp->z_acl _cached, CRED());

288 | ocate.cb_aclp = zp->z_acl _cached;

289 SA ADD BULK_ATTR(sa_attrs, count, SA ZPL_DACL_ACES(zfsvfs),

290 zfs_acl _data_| ocator, & ocate, zp->z_acl _cached->z_acl _bytes);
292 if (xattr)

293 SA ADD BULK_ATTR(sa_attrs, count, SA ZPL_XATTR(zfsvfs),

294 NULL, &xattr, 8);

296 /* if scanstanp then add scanstanmp */

298 if (zp->z_pflags & ZFS_BONUS_SCANSTAMP)

299 bcopy((caddr_t)db->db_data + ZFS_OLD ZNODE_PHYS_SI ZE,

300 scanst anp, AV_SCANSTAMP_S7);

301 SA ADD BULK_ATTR(sa_attrs, count, SA ZPL_SCANSTAMP(zfsvfs),
302 NULL, scanstanp, AV_SCANSTAI\/P_SZ);

303 zp->z_pflags & ~ZFS_BONUS_SCANSTAMP;

304 1

8);



new usr/src/uts/comon/fs/zfs/zfs_sa.c

306 VERI FY(dmu_set _bonustype(db, DMJ_OT_SA, tx) == 0);
307 VERI FY(sa_repl ace_al | _by_tenpl ate_| ocked(hdl, sa_attrs,
308 count, tx) == 0);

309 if (znode_acl.z_acl _extern_obj)

310 VERI FY(0 == dmu_obj ect _free(zfsvfs->z_os,
311 znode_acl . z_acl _extern_obj, tx));

313 zp->z_is_sa = B_TRUE;

314 done:

315 if (drop_l ock)

316 mut ex_exi t (&p->z_l ock);

317 }

__unchanged_portion_omtted_




new usr/src/uts/comon/ fs/zfs/zfs_vfsops.c

R R R R

60200 Wed Apr 24 12:44:34 2013
new usr/src/uts/comon/fs/zfs/zfs_vfsops.c
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>

Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»

Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

LR

__unchanged_portion_onitted_

1350 /*

1351 * Check that the hex label string is appropriate for the dataset being
1352 * mounted into the gl obal _zone proper.

1351 * zfs_check_gl obal _I abel :

1352 * Check that the hex |abel string is appropriate for the dataset
1353 * bei ng nmounted into the gl obal _zone proper.

1353 *

1354 * Return an error if the hex label string is not default or

1355 * admi n_| ow adm n_high. For adm n_|low | abels, the corresponding
1356 * dataset nust be readonly.

1357 */

1358 int

1359 {zfs_check_gl obal _| abel (const char *dsname, const char *hexsl)
1360

1361 if (strcasecnp(hexsl, ZFS_M.SLABEL_DEFAULT) == 0)

1362 return (0);

1363 if (strcasecnp( hexsl ADM N_H GH) == 0)

1364 return (0);

1365 if (strcasecnp(hexsl, ADM N _LON == 0) {

1366 /* nust be readonl y */

1367 uint64_t rdonly;

1369 if (dsl_prop_get_integer(dsnane,

1370 zfs_prop_t o_nanme(ZFS_PROP_READONLY), &rdonly, NULL))
1371 return (SET ERROR( EACCES) ) ;

1372 return (rdonly ? : EACCES);

1373 }

1374 return (SET_ERROR(EACCES));

1375 }

1377 | *

1379 * zfs_nount_| abel _policy:

1378 * Deternine whether the mount is allowed accordi ng to MAC check.
1379 * by conparing (where appropriate) |abel of the dataset against
1380 * the label of the zone being nounted into. |f the dataset has
1381 * no | abel, create one.

1382 *

1383 * Returns O if access allowed, error otherw se (e.g. EACCES)
1385 * Ret ur ns:

1386 * 0 : access al | oned

1387 * >0 : error code, such as EACCES

1384 */

1385 static int
1386 zfs_nount_l abel _policy(vfs_t *vfsp, char *osnane)

1387 {

1388 int error, retv;

1389 zone_t *mmt zone = NULL;

1390 ts_| abel _t *mt _tsl;

1391 bsl abel _t *mt _sl ;

1392 bsl abel _t ds_sl;

1393 char ds_hexsl [ MAXNAMVELEN] ;

1395 retv = EACCES; /* assune the worst */

new usr/src/uts/comon/fs/zfs/zfs_vfsops.c

1397 /*

1398 * Start by getting the dataset label if it exists.

1399 */

1400 error = dsl _prop_get(osnanme, zfs_prop_to_nane(ZFS_PROP_M.SLABEL),
1401 1, sizeof (ds_hexsl), &ds_hexsl, NULL);

1402 if (error)

1403 return (SET_ERROR(EACCES));

1405 /*

1406 * |f labeling is NOT enabled, then disallow the nmount of datasets
1407 * which have a non-default |abel already. No other |abel checks
1408 * are needed.

1409 */

1410 if (lis_systemlabeled()) {

1411 if (strcasecnp( ds hexsl ZFS_M_SLABEL_DEFAULT) == 0)

1412 return

1413 return (SET_| ERR(R( EAOCES))

1414 1

1416 /

1417 * Get the label of the mountpoint. |f nounting into the gl obal
1418 * zone (i.e. nountpoint is not within an active zone and t

1419 * zoned property is off), the |label nmust be default or

1420 */adm’ n_| ow adm n_hi gh only; no other checks are needed.

1421 *

1422 mt zone = zone_find_by_any_path(refstr_val ue(vfsp->vfs_mtpt), B_FALSE);
1423 if (mmtzone->zone_id == GLOBAL_ZONEI D) {

1424 uint64_t zoned;

1426 zone_r el e(rmt zone) ;

1428 if (dsl _prop_get _i nteger (osnane,

1429 zfs_prop_t o_name( ZFS_PROP_ZONED), &zoned, NULL))

1430 return (SET_ERROR( EACCES));

1431 if (!zoned)

1432 return (zfs_check_gl obal _| abel (osnane, ds_hexsl));
1433 el se

1434 /*

1435 * This is the case of a zone dataset being nounted
1436 * initially, before the zone has been fully created;
1437 * allow this nount into global zone.

1438 */

1439 return (0);

1440 1

1442 mt _tsl = mmtzone->zone_sl abel ;

1443 ASSERT(mt _tsl !'= NULL);

1444 | abel hoI d(mt _tsl);

1445 mt _sT = | abel 2bsl abel (mt_tsl);

1447 if (strcasecnp(ds_hexsl, ZFS_M.SLABEL_DEFAULT) == 0) {

1448 /*

1449 * The dataset doesn’t have a real |abel, so fabricate one.
1450 */

1451 char *str = NULL;

1453 if (I_to_str_internal (mt_sl, &str) == 0 &&

1454 dsl _prop_set_string(osnane,

1455 zfs_prop_to_nanme(ZFS_PROP_M.SLABEL),

1456 ZPROP_SRC_LOCAL, str) == 0)

1457 retv = 0;

1458 if (str = NULL)

1459 kmem free(str, strlen(str) + 1)

1460 } else if (hexstr_to_label (ds_hexsl, &dJs_sl) == 0) {

1461 /*

1462 * Now conpare | abels to conplete the MAC check. If the



new usr/src/uts/comon/ fs/zfs/zfs_vfsops.c 3

1463 * | abel s are equal then allow access. [|f the nountpoint
1464 * | abel dominates the dataset |abel, allow readonly access.
1465 * Qtherw se, access is denied.

1466 */

1467 if (blequal (mt_sl, &ds_sl))

1468 retv = 0;

1469 else if (bldom nates(mt_sl, &ds_sl)) {

1470 vfs_setmtopt (vfsp, MNTOPT_RO NULL, 0);

1471 retv = 0;

1472 }

1473 1

1475 | abel _rel e(mt _tsl);

1476 zone_rel e(mt zone) ;

1477 return (retv);

1478 }

____unchanged_portion_onitted_




new usr/src/uts/comon/fs/zfs/zfs_vnops.c

R R R R

130563 Wed Apr 24 12:44:34 2013
new usr/src/uts/comon/fs/zfs/zfs_vnops.c
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»
Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

LR

____unchanged_portion_onitted_

422 offset _t zfs_read_chunk_size = 1024 * 1024; /* Tunable */

424 | *

425 * Read bytes fromspecified file into supplied buffer.

426 *

427 * I'N: vp - vnode of file to be read from

428 * ui o - structure supplying read |ocation, range info,
429 * and return buffer.

430 * ioflag - SYNC flags; used to provide FRSYNC senanti cs.
431 * cr - credentials of caller.

432 * ct - caller context

433 *

434 = QUT: ui o - updated offset and range, buffer filled.

435 *

436 * RETURN:. 0 on success, error code on failure.

436 * RETURN: O if success

437 * error code if failure

437 *

438 * Side Effects:

439 * vp - atine updated if byte count > 0

440 */

441 | * ARGSUSED */
442 static int
443 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t

444 {

445 znode_t *zp = VTIQZ(vp);

446 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
447 obj set _t *0s;

448 ssize_t n, nbytes;

449 int error = 0;

450 rl_t *rl;

451 Xui o_t *xui o = NULL;

453 ZFS_ENTER( zf svfs);

454 ZFS_VERI FY_ZP(zp);

455 os = zfsvfs->z_os;

457 if (zp->z_pflags & ZFS_AV_QUARANTI NED) {
458 ZFS_EXI T(zfsvfs);

459 return ( SET_ERROR(EACCES));
460 }

462 /*

463 * Validate file offset

464 *

465 if (uio->uio_|loffset < (offset_t)0) {
466 ZFS_EXI T(zfsvfs);

467 return (SET_ERROR(EINVAL));
468 1

470 I

471 * Fasttrack enpty reads

472 */

473 if (uio->uio_resid == 0) {

*ct)

new usr/src/uts/comon/ fs/zfs/zfs_vnops.c

474 ZFS_EXI T(zfsvfs);

475 return (0);

476 }

478 /*

479 * Check for nmandatory | ocks

480 */

481 i f ( MANDMODE( zp- >z_node)) {

482 if (error = chklock(vp, FREAD,

483 ui 0->ui o_| of fset, uio->uio_resid, uio->uio_fnode, ct)) {
484 ZFS _EXI T(zfsvfs);

485 return (error);

486 }

487 }

489 /*

490 * |f we're in FRSYNC node, sync out this znode before reading it.
491 */

492 if (ioflag & FRSYNC || zfsvfs->z_os->0s_sync == ZFS_SYNC_ALVAYS)
493 zil _commit(zfsvfs->z_log, zp->z_id);

495 /*

496 * Lock the range agai nst changes.

497 */

498 rl = zfs_range_|l ock(zp, uio->uio_|offset, uio->uio_resid, RL_READER);
500 /*

501 * |f we are reading past end-of-file we can skip

502 * to the end; but we mght still need to set atine.

503 */

504 if (uio->uio_loffset >= zp->z_size) {

505 error = 0;

506 goto out;

507 }

509 ASSERT(ui 0->ui o_| of fset < zp->z_size);

510 n = M N(uio->uio_resid, zp->z_size - uio->uio_|loffset);

512 if ((uio->uio_extflg == UOXUO &&

513 (((xuio_t *)uio)->xu_type == Ul OTYPE_ZEROCOPY)) {

514 int nblk;

515 int blksz = zp->z_bl ksz;

516 uint64_t offset = uio->uio_|offset;

518 XUi o = (xuio_t *)uio;

519 if ((1SP2(blksz))) {

520 nbl k = (P2ROUNDUP( of fset + n, blksz) - P2ALI G\(of fset,
521 bl ksz)) / blksz;

522 } else {

523 ASSERT( of fset + n <= bl ksz);

524 nbl k = 1;

525 }

526 (voi d) dnu_xuio_init(xuio, nblk);

528 if (vn_has_cached_data(vp)) {

529 /*

530 * For sinplicity, we always allocate a full buffer
531 */even if we only expect to read a portion of a bl ock.
532 *

533 while (--nblk >= 0) {

534 (voi d) dmu_xui o_add(xui o,

535 dmu_r equest _ar cbuf (sa_get _db(zp->z_sa_hdl),
536 bl ksz), 0, blksz);

537 }

538 }

539 }



new usr/src/uts/comon/fs/zfs/zfs_vnops.c

541
542
543

545
546
547
548
549
550
551
552
553
554

556
557

while (n > 0) {

}

558 out:

559

561
562
563
564 }
566 /
567
568
569
570
571
572
573
573
574
575
576
577
578
579
579
580
580
581
582
583

I 3

585 /*

/

nbytes = M N(n, zfs_read_chunk_size -
P2PHASE( ui o- >ui o_| of fset, zfs_read_chunk_size));

if (vn_has_cached_data(vp))

error = mappedread(vp, nbytes, uio);
el se

error = dnu_read_ui o(os, ui o,
if (error) {

/* convert checksumerrors into IO errors */

if (error == ECKSUM

error = SET_ERROR(EIO);

zp->z_id, nbytes);

break;

}

n -= nbytes;

zfs_range_unl ock(rl);

ZFS_ACCESSTI ME_STAMP( zf svf s,

zp);

ZFS_EXI T(zf svfs);

return (

Wite the byt
I'N:

QUT:

RETURN:
RETURN:

Ti mest anps:
vp - cti

ARGSUSED */

586 static int

587 zfs_write(vnode_t *vp,

588 {
589
590
591
592
593
594
595
596
597
598
599
600
601
602

znode_t
rlinbd_t
ssi ze_t
ssize_t
uint 64_t
drmu_t x_t
zfsvfs_t
zil og_t
of fset _t
ssize_t

error);

es to a file.

vp - vnode of file to be witten to.

ui o - structure supplying wite location, range info,
and data buffer.

ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is
set if in append node.

ioflag - FAPPEND flag set if in append node.

cr - credentials of caller.

ct - caller context (NFS/CIFS femnonitor only)

ui o - updated of fset and range.

0 on success, error code on failure.
0 if success

error code if failure

me| ntime updated if byte count > 0

uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
*zp = VIQZ(vp);

limt =uio->uio_llimt;
start_resid = uio->uio_resid;
tx_bytes;

end_si ze;

*tX;

*zfsvfs = zp->z_zfsvfs;

*zil og;

wof f ;

n, nbytes;

*rl;

max_bl ksz = zfsvfs->z_max_bl ksz;
error = 0;

_t *abuf ;

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

603
604
605
606
607
608
609
610
611

613
614
615
616
617
618

620
621

623
624

626
627
628
629
630
631

633
634
635
636
637
638
639
640
641

643

645
646
647
648
649
650
651
652

654
655
656
657
658
659
660
661
662

664
665
666
667
668

iovec_t *ai ov = NULL;

Xui o_t *Xui 0 = NULL;

int i_iov = 0;

int iovent = uio->uio_iovent;
i ovec_t *iovp = ui 0->uio_iov;

int wite_eof;

int count = O;

sa_bul k_attr_t bul k[4];

ui nt 64_t ntime[2], cting[2];

/*

* Fasttrack enpty wite
*/

n = start_resid;
if (n==
return (0);

if (linmit == RLIMBGA_INFINITY ||
limt = MAXOFFSET_T;

ZFS_ENTER( zf svfs);
ZFS_VERI FY_ZP(zp);

limt > MAXOFFSET_T)

SA_ADD BULK_ATTR(bul k, count, SA_ZPL_MTI ME(zf svfs), NULL, &ntine,
SA ADD BULK_ATTR(bul k, count, SA ZPL_CTI ME( zf svfs), NULL, &ctine,
SA _ADD BULK_ATTR(bul k, count, SA ZPL_SI ZE(zfsvfs), NULL,
& p->z_size, 8);
SA_ADD BULK_ATTR(bul k, count, SA ZPL_FLAGS(zfsvfs), NULL,
&p->z_pflags, 8);
/*
* |f imutable or not appending then return EPERM
*
if ((zp->z_pflags & (ZFS_| MMUTABLE | ZFS_READONLY)) ||
((zp->z_pflags & ZFS_APPENDONLY) && ! (ioflag & FAPPEND) &&
(uio->uio_loffset < zp->z_size))) {
ZFS_EXI T(zfsvfs);
return (SET_ERROR(EPERV));
}
zilog = zfsvfs->z_| og;
/*
* Validate file offset
*
/
woff = ioflag & FAPPEND ? zp->z_size : uio->uio_|offset;
if (woff < 0) {
ZFS_EXI T(zfsvfs);
return (SET_ERROR(EINVAL));
}
*
* Check for mandatory |ocks before calling zfs_range_| ock()
* in order to prevent a deadl ock with |ocks set via fcntl ().
*/
i f (MANDMODE( (node_t ) zp->z_node) &&
(error = chkl ock(vp, FWRITE, woff, n, uio->uio_fnode, ct)) != 0)

ZFS_EXI T(zfsvfs);
return (error);

}
/*
* Pre-fault the pages to ensure slow (eg NFS) pages
* don’t hold up txg.
* Skip this if uio contains |oaned arc_buf.
*

/

16);
16);

{



new usr/src/uts/comon/fs/zfs/zfs_vnops.c

669
670
671
672
673

675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

703
704
705
706
707

709
710

712
713

717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732

agai n:

if ((uio->uio_extflg == UO XU O &&
(((xuio_t *)uio)->xu_type == U OTYPE_ZEROCOPY) )
Xuio = (xuio_t *)uio;
el se
ui o_pref aul t pages(M N(n, max_bl ksz), uio);

/*
* If in append node, set the io offset pointer to eof.
*

if (ioflag & FAPPEND) {

* (btain an appending range | ock to guarantee file append
* semantics. W reset the wite offset once we have the | ock.
*/

rl = zfs _range_l ock(zp, 0, n, RL_APPEND);
woff =rl->r off
if (rl->r_len == U NT64_MAX) {

/*

* W overlocked the file because this wite will cause
* the file block size to increase.

* Note that zp_size cannot change with this | ock held.
*/

wof f = zp->z_si ze;

}
ui 0->ui o_| of fset = woff;

} else {
/*
* Note that if the file block size will change as a result of
* this wite, then this range lock will lock the entire file
* so that we can re-wite the block safely.
*/

rl = zfs_range_l ock(zp, woff, n, RL_WRI TER);
}

if (woff >=1limt) {
zfs_range_unl ock(rl);
ZFS_EXI T(zfsvfs);
return (SET_ERROR(EFBIQ);
}

if ((woff +n) >1limt [| woff > (limt - n))
n=1limt - woff;

/* WII this wrlte extend the file length? */
wite_eof = (woff + n > zp->z_size);

end_size = MAX(zp->z_size, woff + n);
*

* Wite the file in reasonable size chunks. Each chunk is witten
* in a separate transaction; this keeps the intent |og records snall
* and allows us to do nore fine-grained space accounting.

V\Imle (n>0) {
abuf
wof f

NULL;
ui 0->ui o_| of fset;

if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
zfs_owner _overquot a(zfsvfs, zp, B_TRUE)) {
if (abuf != NULL)
drmu_r et ur n_ar cbuf (abuf);
error = SET_ERROR(EDQUOT) ;
br eak;

}
if (xuio &% abuf == NULL) {

new usr/src/uts/comon/ fs/zfs/zfs_vnops.c

735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756

758
759
760
761
762
763
764
765
766
767
768

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788

790
791
792
793
794
795
796
797

799
800

ASSERT(i _iov < iovcnt);
aiov = & ovp[i _iov];
abuf = dmu_xui o_arcbuf (xuio, i_iov);
dmu_xui o_cl ear (xuio, i_iov);
DTRACE_PROBE3(zfs_cp_write, int, i_iov,
iovec_t *, aiov, arc_| buf to*, abuf)
ASSERT( (ai ov->i ov base == abuf->b_data) ||
((char *)aiov->i ov_base - (char *)abuf->b_data +

ai ov->i ov_|l en == arc_buf_size(abuf)));
i _iov++t;
} else if (abuf == NULL & & n >= max_bl ksz &&

wof f >= zp->z_size &&
P2PHASE(wof f, max_bl ksz) == 0 &&

zp->z_bl ksz == max_bl ksz) {
/*
* This wite covers a full block. "Borrow' a buffer
* fromthe dnu so that we can fill it before we enter
* a transaction. This avoids the possibility of
* holding up the transaction if the data copy hangs
* up on a pagefault (e.g., froman NFS server mapping).
*
/
size_t chytes;
abuf = dmu_request _arcbuf (sa_get _db(zp->z_sa_hdl),
max_bl ksz);
ASSERT(abuf != NULL);
ASSERT( ar c_buf _si ze(abuf) == max_bl ksz);

if (error = uiocopy(abuf->b_data, max_bl ksz,
U O WRITE, uio, &chytes)) {
dmu_r et ur n_ar cbuf (abuf);
br eak;

}
) ASSERT( cbytes == max_bl ksz);

/*
* Start a transaction.
*/

tx = dnu_t x_create(zfsvfs->z_os);
dmu_t x_hol d_sa(tx, zp->z_sa_hdl, B FALSE);
dmu_tx_hold_write(tx, zp->z_id, woff, MN(n, max_blksz));
zfs_sa upgrade t xhol ds(tx, zp);
error drmu_t x_assi gn(tx, TXG_NO/\AI T);
if (error) {
if (error == ERESTART) {

dmu_tx_wai t (tx);

drmu_t x_abort (tx);

goto agai n;

dmu_t x_abort (tx);
if (abuf !'= NULL)

drmu_r et ur n_ar cbuf (abuf);
br eak;

-

* ok kb % %
-

If zfs_range_l ock() over-1locked we grow the bl ocksize
and then reduce the lock range. This will only happen
on the first iteration since zfs_range_reduce() will
shrink down r_len to the appropriate size.

if (rl->r_len == U NT64_MAX) {
ui nt64_t new_bl ksz;

if (zp->z_blksz > max_bl ksz)
ASSERT( ! | SP2(zp->z_bl ksz));



new usr/src/uts/comon/fs/zfs/zfs_vnops.c

801
802
803
804
805
806
807

809
810
811
812
813

815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847

849
850
851
852
853
854
855
856
857
858
859

861
862
863
864
865
866

new_bl ksz = M N(end_si ze, SPA_MAXBLOCKSI ZE) ;

} else {
new_bl ksz = M N(end_si ze, max_bl ksz);

}
zfs_grow_bl ocksi ze(zp, new_bl ksz, tx);
zfs_range_reduce(rl, woff, n);

}

/*

* XXX - should we really limt each wite to z_max_bl ksz?
* Perhaps we shoul d use” SPA_MAXBLOCKSI ZE chunks?

*/

nbytes = M N(n, max_bl ksz - P2PHASE(wof f, max_bl ksz));

if (abuf == NULL) {
tx bytes = ui 0->uio_resid;
error = dnu_wite_uio dbuf(sa get _db(zp->z_sa_hdl),

uio, nbytes, tx);

tx_bytes -= uio->uio_resid;

} else {
tx_bytes = nbytes;
ASSERT(xui 0 == NULL || tx_bytes == aiov->iov_|en);
/*
* If this is not a full block wite, but we are
* extending the file past EOF and this data starts
* bl ock-al igned, use assign_arcbuf(). Oherwise,
* wite via dnu_wite().

*/
if (tx_bytes < max_blksz && (!wite_eof ||
ai ov->i ov_base != abuf->b_data)) {
ASSERT( xui 0) ;

dnu_write(zfsvfs->z_os, zp->z_id, woff,
ai ov->i ov_| en, aiov->iov_ base tx);

dmu_return arcbuf(abuf)

xui o_st at _wbuf _copi ed();

} else {

ASSERT(xui o || tx_bytes == max_bl ksz);

dmu_assi gn_ar chuf (sa_get db(zp >z_sa hdl)
“wof f, abuf, tx);

}
ASSERT(tx_bytes <= uio->uio_resid);
ui oski p(ui o, tx_bytes);

}
1f (tx_bytes && vn_has_cached_data(vp)) {

updat e_pages(vp, woff,
x_bytes, zfsvfs->z_os, zp->z_id);

}

*

* |f we made no progress, we're done. |f we nmade even
* partial progress, update the znode and ZI L accordingly.
*

if (tx_bytes == 0) {
(voi d) sa_update(zp->z_sa_hdl, SA ZPL_SI ZE(zfsvfs),
(void *)&zp->z_size, sizeof (uint64_t), tx);
drmu_t x_comm t (tx);
ASSERT(error != O)

br eak;
}
/*
* Clear Set-U D/ Set-G D bits on successful wite if not
: privileged and at |east one of the excute bits is set.
*

It would be nice to to this after all wites have
* been done, but that would still expose the |ISU D/|SG D

new usr/src/uts/comon/ fs/zfs/zfs_vnops.c

867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884

886
887

889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904

906

908
909

911
912
913
914

916
917
918

922
923
924
925
926
927
928
929

931
932

* to another app after the partial wite is comitted.
*

* Note: we don't call zfs_fuid_map_id() here because
* user 0 is not an epheneral uid.

*/

mut ex_ent er (&p->z_acl _| ock);

if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |

(S_IXUSR >> 6))) =0 &
(zp->z_mode & (S_ISUD| S ISG@D) !'=0 &&
secpol i cy_vnode_setid_retain(cr,
(zp->z_nmode & SISUD) !'=0 & zp->z_uid ==0) I=0) {
ui nt 64_t newnnde;
zp->z_node & ~(S_ISUD| S I1SED);
newnode = zp->z_node;
(voi d) sa_update(zp->z_sa_hdl, SA ZPL_MODE( zfsvfs),
(voi d *) &newnnde, si zeof (ui nt64_t), tx);

mut ex_exi t (&p->z_acl _| ock);

zfs_tstanp_updat e_setup(zp, CONTENT_MODI FI ED, ntine, ctine,
B_TRUE) ;

/*

* Update the file size (zp_size) if it has changed,
* account for possible concurrent updates.

*/

while ((end_size = zp->z_size) < uio->uio_loffset) {
(void) atomic_cas_64(&p->z_size, end_size,
ui 0->ui o_Toffset);
ASSERT(error == 0);

——

*

* If we are replaying and eof is non zero then force

* the file size to the specified eof. Note, there's no
* concurrency during replay.

*

if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
zp->z_size = zfsvfs->z_replay_eof;

error = sa_bul k_updat e(zp->z_sa_hdl, bulk, count, tx);

zfs_log_wite(zilog, tx, TX WRITE, zp, woff, tx_bytes, ioflag);
drmu_t x_commi t (tx);

if (error 1=0)

br eak;
ASSERT(t x_bytes == nbytes);
n -= nbytes;

if (!Ixuio & n > 0)
ui o_prefaul t pages(M N(n, max_bl ksz), uio);

}
zfs_range_unl ock(rl);

/*
* If we're in replay node, or we nmade no progress, return error.
* Otherwise, it's at least a partial wite, so it’s successful.
*/
if (zfsvfs->z_replay || uio->uio_resid == start_resid) {

ZFS_EXI T(zfsvfs);

return (error);

}

if (ioflag & (FSYNC | FDSYNC) ||
zf svfs->z_os->0s_sync == ZFS_SYNC_ALVAYS)



new usr/src/uts/comon/fs/zfs/zfs_vnops.c 9 new usr/src/uts/comon/ fs/zfs/zfs_vnops.c 10
933 zil _commit(zilog, zp->z_id); 1190 }
1191 if (tvp == DNLC_NO VNODE) {
935 ZFS_EXI T(zfsvfs); 1192 VN_RELE(t vp);
936 return (0); 1193 return (SET_ERRCR( ENCENT) ) ;
937 } 1194 } else {
__unchanged_portion_onitted_ 1195 *vpp = tvp;
1196 return (specvp_check(vpp, cr));
1197 }
1134 /* 1198 }
1135 * Lookup an entry in a directory, or an extended attribute directory. 1199 }
1136 * If it exists, return a held vnode reference for it. 1200 }
1137 *
1138 * I'N: dvp - vnode of directory to search. 1202 DTRACE_PROBE2( zfs__fastpath__| ookup__m ss, vnode_t *, dvp, char *, nm;
1139 * nm - name of entry to | ookup.
1140 * pnp - full pathname to | ookup [ UNUSED) . 1204 ZFS_ENTER( zf svfs);
1141 * flags - LOOKUP_XATTR set if looking for an attribute. 1205 ZFS_VERI FY. ZP(zdp)
1142 * rdir - root directory vnode [UNUSED) .
1143 * cr - credentials of caller. 1207 *vpp = NULL;
1144 * ct - caller context
1145 * direntflags - directory |ookup flags 1209 if (flags & LOOKUP_XATTR) {
1146 * real pnp - returned pathnane. 1210 /*
1147 * 1211 * |f the xattr property is off, refuse the | ookup request.
1148 * QUT: vpp - vnode of located entry, NULL if not found. 1212 */
1149 = 1213 if (1(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1150 * RETURN: O on success, error code on failure. 1214 ZFS_EXI T(zfsvfs);
1151 * RETURN: O if success 1215 return (SET_ERROR(EI NVAL));
1152 * error code if failure 1216 }
1151 *
1152 * Ti mest anps: 1218 /*
1153 * NA 1219 * We don't allow recursive attributes..
1154 */ 1220 * Maybe soneday we will.
1155 /* ARGSUSED */ 1221 */
1156 static int 1222 if (zdp->z_pflags & ZFS_XATTR) {
1157 zfs_l ookup(vnode_t *dvp, char *nm vnode_t **vpp, struct pathname *pnp, 1223 ZFS_EXI T(zfsvfs);
1158 int flags, vnode_t *rdir, cred_t *cr, «caller_context_t *ct, 1224 return (SET_ERROR(EI NVAL));
1159 int *direntflags, pathname_t *real pnp) 1225 }
1160 {
1161 znode_t *zdp = VTOZ(dvp); 1227 if (error = zfs_get_xattrdir(VTQz(dvp), vpp, cr, flags)) {
1162 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1228 ZFS_EXI T(zfsvfs);
1163 int error = 0, 1229 return (error);
1230 }
1165 /* fast path */
1166 if (!(flags & (LOOKUP_XATTR | FI GNORECASE))) { 1232 /*
1233 * Do we have permission to get into attribute directory?
1168 if (dvp->v_type != VDR 1234 */
1169 return (SET_ ERRCR( ENOTDI R))
1170 } else if (zdp->z_sa_hdl == NULL) { 1236 if (error = zfs_zaccess(VTQZ(*vpp), ACE_EXECUTE, O,
1171 return (SET_ERROR(EIO)); 1237 B FALSE, cr)) {
1172 } 1238 VN_RELE( *vpp) ;
1239 *vpp = NULL,;
1174 if (nnf0] ==0 || (nnf0] =="." && nn{1] == '\0")) { 1240 }
1175 error = zfs_fastaccesschk_execute(zdp, cr);
1176 if (lerror) { 1242 ZFS_EXI T(zfsvfs);
1177 *vpp = dvp, 1243 return (error);
1178 VN_HOLD( *vpp) ; 1244 }
1179 return (0);
1180 } 1246 if (dvp->v_type !'= VDIR) {
1181 return (error); 1247 ZFS_EXI T(zf svfs);
1182 } else { 1248 return (SET_ERROR(ENOTDI R));
1183 vnode_t *tvp = dnl c_| ookup(dvp, nm; 1249 }
1185 if (tvp) { 1251 /*
1186 error = zfs_fastaccesschk_execute(zdp, cr); 1252 * Check accessibility of directory.
1187 if (error) { 1253 */
1188 VN_RELE(tvp);
1189 return (error); 1255 if (error = zfs_zaccess(zdp, ACE EXECUTE, 0, B FALSE, cr)) {




new usr/src/uts/comon/fs/zfs/zfs_vnops.c

1256 ZFS_EXI T(zfsvfs);

1257 return (error);

1258 }

1260 if (zfsvfs->z_utf8 && u8_validate(nm strlen(nn)

1261 NULL, US_VALI DATE_ENTIRE, &error) < 0)

1262 ZFS_EXI T(zf svfs) ;

1263 return (SET_ERRCR( EILSEQ);

1264 }

1266 error = zfs_dirlook(zdp, nm vpp, flags, direntflags, realpnp);
1267 if (error ==

1268 error = specvp_check(vpp, cr);

1270 ZFS_EXI T(zfsvfs)

1271 return (error);

1272 }

1274 | *

1275 * Attenpt to create a new entry in a directory. |If the entry
1276 * already exists, truncate the file if perm ssible, else return
1277 * an error. Return the vp of the created or trunc'd file

1278 *

1279 * I'N: dvp - vnode of directory to put new file entry in.
1280 * nane - nane of new file entry.

1281 * vap - attributes of new file.

1282 * excl - flag indicating exclusive or non-exclusive node.
1283 * node - node to open file with.

1284 * cr - credentials of caller.

1285 * flag - large file flag [ UNUSED] .

1286 * ct - caller context

1287 * vsecp - ACL to be set

1288 *

1289 * QUT: vpp - vnode of created or trunc'd entry.
1290 *

1291 * RETURN: 0 on success, error code on failure.

1293 * RETURN: O if success

1294 * error code if failure

1292 ~*

1293 * Ti mest anps:

1294 * dvp - ctine|ntinme updated if new entry created

1295 * vp - ctinme|ntinme always, atime if new

1296 */

1298 /* ARGSUSED */

1299 static int

1300 zfs_create(vnode_t *dvp, char *nanme, vattr_t *vap, vcexcl_t excl,
1301 int node, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1302 ( vsecattr_t *vsecp)

1303

1304 znode_t *zp, *dzp = VTQZ(dvp);

1305 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;

1306 zilog_t *zil og;

1307 obj set _t *0s;

1308 zfs_dirlock_t *dl;

1309 drmu_t x_t *tx;

1310 int error;

1311 ksid_t *ksi d;

1312 uid_t ui d;

1313 gid_t gid = crgetgid(cr);

1314 zfs_acl _ids_t acl _i ds;

1315 bool ean_t fuid_dirtied;

1316 bool ean_t have_acl = B_FALSE;

1318 /*

1319 * |f we have an epheneral id, ACL, or XVATTR then

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 12
1320 * make sure file systemis at proper version

1321 */

1323 ksid = crgetsid(cr, KSID_OMER);

1324 if (ksid)

1325 uid = ksid_getid(ksid);

1326 el se

1327 uid = crgetuid(cr);

1329 if (zfsvfs->z_use_fuids == B_FALSE &&

1330 (vsecp || (vap->va_mask & AT_XVATTR) ||

1331 I'S EPHEMERAL(ui d) [| |'S_EPHEMERAL(gid)))

1332 return (SET_ERROR(EITNVAL));

1334 ZFS_ENTER( zf svfs);

1335 ZFS VERI FY_ZP(dzp);

1336 os = zfsvfs->z_os;

1337 zilog = zfsvfs->z_| og;

1339 if (zfsvfs->z_utf8 &% u8_validate(nanme, strlen(nane),
1340 NULL, US_VALI DATE ENTIRE, &error) < 0) {

1341 ZFS EXI T(zfsvfs);

1342 return (SEI’_ERR(P( El LSEQ) ) ;

1343 }

1345 if (vap->va_mask & AT_XVATTR) {

1346 if ((error = secpolicy_xvattr((xvattr_t *)vap
1347 crgetuid(cr), cr, vap->va_type)) !'=0) {
1348 ZFS_EXI T( zf svfs);

1349 return (error);

1350 }

1351 1

1352 top:

1353 *vpp = NULL;

1355 if ((vap->va_node & VSVTX) && secpol i cy_vnode_stky_nodify(cr))
1356 vap->va_node &= ~VSVT.

1358 if (*nane == '\0") {

1359 /*

1360 * Null conponent name refers to the directory itself.
1361 */

1362 VN_HOLD( dvp) ;

1363 zp = dzp;

1364 dl = NULL;

1365 error = 0;

1366 } else {

1367 /* p033| bl e VN_HOLD(zp) */

1368 int zflg = 0;

1370 if (flag & FI GNORECASE)

1371 zflg | = ZCl LOCK;

1373 error = zfs_dirent_l ock(&dl, dzp, nane, &zp, zflg,
1374 NULL, NULL);

1375 if (error) {

1376 if (have_acl)

1377 zfs_acl _ids free(&acl _ids);
1378 if (strcnp(nane, ". 0)

1379 error = SET. ERROR( El SDI R) ;
1380 Esﬁmnzmwg

1381 return (error);

1382 }

1383 }

1385 if (zp == NULL) {



new usr/src/uts/comon/fs/zfs/zfs_vnops.c 13 new usr/src/uts/comon/ fs/zfs/zfs_vnops.c
1386 uint64_t txtype; 1452 if (fuid_dirtied)
1453 zfs_fuid_sync(zfsvfs, tx);
1388 /*
1389 * Create a new file object and update the directory 1455 (void) zfs_link_create(dl, zp, tx, ZNEW;
1390 * to reference it. 1456 txtype = zfs _log create txtype(Z Fi LE, vsecp, vap);
1391 */ 1457 if (flag & FI GNORECASE)
1392 if (error = zfs_zaccess(dzp, ACE_ADD FILE, 0, B FALSE, cr)) { 1458 txtype | = TX C;
1393 if (have_acl) 1459 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1394 zfs_acl _ids_free(&acl _ids); 1460 vsecp, acl_ids.z_fui dp, vap);
1395 goto out; 1461 zfs_acl _1ds_free(&acl _ids);
1396 } 1462 drmu_t x_comm t (tx);
1463 } else {
1398 /* 1464 int aflags = (flag & FAPPEND) ? V_APPEND : O;
1399 * W only support the creation of regular files in
1400 * extended attribute directories. 1466 if (have_acl)
1401 */ 1467 zfs_acl _ids_free(&acl _ids);
1468 have_acl = B_FALSE;
1403 if ((dzp->z_pflags & ZFS_XATTR) &&
1404 (vap->va_type = VREGQ) { 1470 /*
1405 if (have_acl) 1471 * Adirectory entry already exists for this nanme.
1406 zfs_acl _ids_free(&acl _ids); 1472 */
1407 error = SET_ERROR(EI NVAL) ; 1473 l*
1408 goto out; 1474 * Can’t truncate an existing file if in exclusive node.
1409 } 1475 */
1476 if (excl == EXCL) {
1411 if (!have_acl && (error = zfs_acl _ids_create(dzp, 0, vap, 1477 error = SET_ERROR(EEXI ST);
1412 cr, vsecp, &acl_ids)) !=0) 1478 goto out;
1413 goto out; 1479 }
1414 have_acl = B_TRUE; 1480 /*
1481 * Can't open a directory for witing.
1416 if (zfs_acl _ids_overquota(zfsvfs, &acl_ids)) { 1482 */
1417 zfs acl ids_free(&acl |ds) 1483 if ((ZTOV(zp)->v_type == VDIR) && (node & S IWRITE)) {
1418 error = SET_ERROR( EDQUOT); 1484 error = SET_ERROR(EISDIR);
1419 goto out; 1485 goto out;
1420 } 1486 }
1487 /*
1422 tx = drmu_tx_create(os); 1488 */Veri fy requested access to file.
1489 *
1424 drmu_t x_hol d_sa_create(tx, acl_ids.z_aclp->z_acl _bytes + 1490 if (mode && (error = zfs_zaccess_rwx(zp, node, aflags, cr)))
1425 ZFS_SA BASE_ATTR SI ZE) ; 1491 goto out;
1492 }
1427 fuid_dirtied = zfsvfs->z_fuid_dirty;
1428 if (fuid_dirtied) 1494 mut ex_ent er (&Jzp->z_| ock) ;
1429 zfs_fuid_txhold(zfsvfs, tx); 1495 dzp->z. _seq++;
1430 dmu_t x_hol d_zap(tx, dzp->z_id, TRUE, nane); 1496 mut ex_exi t (&Jzp->z_l ock);
1431 dnu_t x_hol d_sa(tx, dzp->z_sa_hdl, B_FALSE);
1432 if (!zfsvfs->z_use_sa && 1498 l*
1433 acl _ids. z_acl p->z_acl _bytes > ZFS ACE_SPACE) { 1499 * Truncate regular files if requested.
1434 dnmu_t x_hol d_write(tx, DMJ_NEW OBJECT, 1500 *
1435 0, acl _ids.z_acl p->z_acl _bytes); 1501 if ((ZTOV(zp)->v_type == VREG &&
1436 } 1502 (vap->va_mask & AT_SI ZE) && (vap->va_size == 0)) {
1437 error = dmu_tx_assign(tx, TXG NOWAIT); 1503 /* we can’t hold any |ocks when calling zfs_freesp()
1438 if (error) { 1504 zfs_dirent _unl ock(dl);
1439 zfs_dirent _unl ock(dl); 1505 dl = NULL;
1440 if (error == ERESTART) { 1506 error = zfs_freesp(zp, 0, 0, node, TRUE);
1441 drmu_t x_wai t (tx); 1507 if (error ==
1442 drmu”t x abort(tx) 1508 vnevent _create(ZTOV(zp), ct);
1443 goto top; 1509 }
1444 } 1510 }
1445 zfs_acl _ids_free(&acl _ids); 1511 }
1446 drmu_t x_abort (tx); 1512 out:
1447 ZFS_EXI T(zfsvfs);
1448 return (error); 1514 if (dl)
1449 } 1515 zfs_dirent _unl ock(dl);
1450 zfs_nknode(dzp, vap, tx, cr, 0, &p, &acl _ids);
1517 if (error) {




new usr/src/uts/comon/fs/zfs/zfs_vnops.c 15 new usr/src/uts/comon/fs/zfs/zfs_vnops.c 16
1518 if (zp)
1519 VN_RELE(ZTOV(zp)); 1583 top:
1520 } else { 1584 xattr_obj = 0;
1521 *vpp = ZTOV(zp); 1585 xzp = NULL;
1522 error = specvp_ check(vpp, cr); 1586 /*
1523 } 1587 * Attenpt to lock directory; fail if entry doesn't exist.
1588 */
1525 if (zfsvfs->z_os->0s_sync == ZFS_SYNC_ALWAYS) 1589 if (error = zfs_dirent_|l ock(&dl, dzp, name, &zp, zflg,
1526 zil _commit(zilog, 0); 1590 NULL, real nnp))
1591 if (real nnp)
1528 ZFS_EXI T(zf svfs); 1592 pn_free(real nnp);
1529 return (error); 1593 ZFS_EXI T(zfsvfs);
1530 } 1594 return (error);
1595 }
1532 /*
1533 * Renpve an entry froma directory. 1597 vp = ZTOV(zp);
1534 *
1535 * I'N: dvp - vnode of directory to renove entry from 1599 if (error = zfs_zaccess_del ete(dzp, zp, cr)) {
1536 * name - nane of entry to renove. 1600 goto out;
1537 * cr - credentials of caller. 1601 }
1538 * ct - caller context
1539 * flags - case flags 1603 I*
1540 * 1604 * Need to use rndir for renoving directories.
1541 * RETURN: O on success, error code on failure. 1605 */
1544 * RETURN: O if success 1606 if (vp->v_type == VDIR) {
1545 = error code if failure 1607 error = SET_ERROR(EPERM ;
1542 * 1608 goto out;
1543 * Ti mest anps: 1609 }
1544 * dvp - ctine|nti
1545 * vp - ctime (if I|nk > 0) 1611 vnevent _renove(vp, dvp, nanme, ct);
1546 */
1613 if (real nnp)
1548 uint64_t null_xattr = 0; 1614 dnl c_renove(dvp, real nnp->pn_buf);
1615 el se
1550 /* ARGSUSED*/ 1616 dnl c_renove(dvp, nane);
1551 static int
1552 zfs_renove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1618 mut ex_ent er (& p->v_I ock);
1553 int flags) 1619 may_del ete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1554 { 1620 mut ex_exi t (& p->v_| ock);
1555 znode_t *zp, *dzp = VTQOZ(dvp);
1556 znode_t *Xzp; 1622 /*
1557 vnode_t *vp; 1623 * We nay del ete the znode now, or we nay put it in the unlinked set;
1558 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1624 * it depends on whether we're the last |link, and on whether there are
1559 zilog_t *zil og; 1625 * other holds on the vnode. So we dmu_tx_hold() the right things to
1560 ui nt 64_t acl _obj, xattr_obj; 1626 * allow for either case.
1561 ui nt64_t xattr_obj _unlinked = 0; 1627 *
1562 ui nt 64_t obj = 0; 1628 obj = zp->z_id;
1563 zfs_dirlock_t *dl; 1629 tx = dnu_tx create(zf svfs->z_o0s);
1564 dmu_t x_t *tX; 1630 de tx_hol d_zap(tx, dzp->z_id, FALSE, nane) ;
1565 bool ean_t nmay_del et e_now, del ete_now = FALSE; 1631 dmu_t x_hol d_sa(tx, zp- >z_sa_hd| , B_FALSE);
1566 bool ean_t unl i nked, toobig = FALSE; 1632 zfs_sa_upgr ade_txhol ds(tx, zp);
1567 ui nt 64_t t xt ype; 1633 zfs_sa_upgrade_t xhol ds(tx, dzp);
1568 pat hnane_t *real nnp = NULL; 1634 if (may_del et e_now) {
1569 pat hnane_t real nm 1635 toobig =
1570 I nt error; 1636 zp->z_size > zp->z_bl ksz * DMJ_MAX_DELETEBLKCNT;
1571 int zflg = ZEXI STS; 1637 /* if the file is too big, only hold _free a token amount */
1638 dmu_t x_hol d_free(tx, zp->z_id, O,
1573 ZFS_ENTER( zf svfs); 1639 “(toobi g ? DMJ_MAX_ACCESS : DMJ OBJECT_END)) ;
1574 ZFS_VERI FY_ZP( dzp) 1640 }
1575 zilog = zfsvfs- >z_| 0g;
1642 /* are there any extended attributes? */
1577 if (flags & FI GNORECASE) { 1643 error = sa_l ookup(zp->z_sa_hdl, SA ZPL_XATTR(zfsvfs),
1578 zflg | = ZC LOXK; 1644 &xattr_obj, sizeof (xattr_obj));
1579 pn_al | oc( & eal nm; 1645 if (error == 0 & xattr_obj) {
1580 real nnp = & eal nm 1646 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1581 } 1647 ASSERTO(error);




new usr/src/uts/comon/fs/zfs/zfs_vnops.c

1648
1649
1650

1652
1653
1654
1655

1657
1658

1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676

1678
1679
1680
1681

1683
1684
1685
1686

1688

1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704

1706
1707
1708
1709
1710
1711
1712
1713

dnu_t x_hol d_sa(tx, zp->z_sa_hdl, B _TRUE);
dmu_t x_hol d_sa(tx, xzp->z_sa_hdl, B_FALSE);
}

mut ex_ent er (&zp->z_| ock) ;

if ((acl_obj = zfs_external _acl(zp)) !'= 0 & nay_del et e_now)
dmu_t x_hol d_free(tx, acl_obj, 0, DMJ OBJECT_END);

mut ex_exi t (&p->z_| ock);

/* charge as an update -- would be nice not to charge at all */
dmu_t x_hol d_zap(tx, zfsvfs->z unlinkedobj, FALSE, NULL);

error = dnu_tx_assign(tx, TXG NOMIT);
if (error) {
zfs_dirent _unl ock(dl);
VN_RELE(vp);
if (xzp)
VN_RELE(ZTOV(xzp));
if (error == ERESTART) {
drmu_t x_wai t (tx);
dmu_t x_abort (tx);
goto top;

}
i1f (real nnp)
pn_free(real nnp);
dnu_t x_abort (tx);
ZFS_EXI T(zf svfs);
return (error);

}

/*
* Renove the directory entry.
*

error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);

if (error)
dmu_t x_commi t (tx);
goto out;

}

if (unlinked) {

/*

* Hold z_lock so that we can nake sure that the ACL obj
* hasn’t changed. Could have been del eted due to

* zfs_sa_upgrade().

*/

mut ex_ent er (&p->z_| ock);

mut ex_ent er (& p->v_l ock);

(void) sa_l ookup(zp->z_sa_hdl, SA ZPL_XATTR(zfsvfs),
&attr_obj _unlinked, sizeof (xattr_obj_unlinked));

del ete_now = may_del ete_now && !toobig &&

vp->v_count == 1 && !vn_has_cached_data(vp) &&
xattr_obj == xattr_obj_unlinked && zfs_external _acl (zp) ==
acl _obj;

mut ex_exi t (&p->v_I ock) ;

}

if (delete_now) {
if (xattr_obj_unlinked)
ASSERT3U( xzp->z_I|inks, ==, 2);
mut ex_ent er (& zp->z_| ock);
xzp->z_unlinked = 1;
xzp->z_links = 0;
error = sa_update(xzp->z_sa_hdl, SA ZPL_LI NKS(zfsvfs),
&zp->z_links, sizeof (xzp->z_links), tx);

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

1714
1715
1716

1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736

1738
1739
1740
1741

1743
1744
1745
1746

1748

1750
1751
1752
1753

1755
1756

1758
1759
1760

1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1775
1776

ASSERT3U(error, ==, 0);
mut ex_exi t (&zp->z_l ock) ;
zfs_unlinked_add(xzp, tx);

if (zp->z_is_sa)
error = sa_renove(zp->z_sa_hdl,
SA ZPL_XATTR(zfsvfs), tx);
el se
error = sa_update(zp->z_sa_hdl,
SA ZPL_XATTR(zfsvfs), &null _xattr,
sizeof (uint64_t), tx);
ASSERTO(error);

mut ex_ent er (&p->v_| ock);

vp->v_count - -

ASSERTO(vp->v_count);

mut ex_exi t (&p->v_| ock);

mut ex_exi t (& p->z_| ock) ;

zfs_znode_del ete(zp, tx);
} else if (unlinked)

mut ex_exi t (&p->z_| ock);

zfs_unlinked_add(zp, tx);
}

txtype = TX_REMOVE;
if (flags & FI GNORECASE)
txtype | = TX C;
zfs_log_renove(zilog, tx, txtype, dzp, nanme, obj);

dmu_t x_commi t (tx);

out:

#

* Ok kR kR (D ¥ Ok ¥ bk b F ok * %

if (real nnp)
pn_free(real nnp)

zfs_dirent _unl ock(dl);

if (!delete_now
VN_RELE(vp);

if (xzp)
VN_RELE( ZTOV(xzp));

if (zfsvfs->z_os->0s_sync == ZFS_SYNC_ALWAYS)
zil _commt(zilog, 0);

ZFS_EXI T(zfsvfs);
return (error);

Create a new directory and insert it into dvp using the name
provided. Return a pointer to the inserted directory.

I'N: dvp - vnode of directory to add subdir to.

dirname - name of new directory.
vap - attributes of new directory.
cr - credentials of caller.
ct - caller context
flags - case flags

ndif /* | codereview */
vsecp - ACL to be set

QUT: vpp - vnode of created directory.
RETURN: 0 on success, error code on failure.

RETURN: 0 if success
error code if failure



new usr/src/uts/comon/fs/zfs/zfs_vnops.c

1778 *

1779 * Ti mest anps:

1780 * dvp - ctine|ntine updated

1781 * vp - ctime|ntine|atinme updated

1782 *

1783 /* ARGSUSED*/

1784 static int

1785 zfs_nkdir(vnode_t *dvp, char *dirnane, vattr_t *vap, vnode_t **vpp, cred_t
1786 caller_context_t *ct, int flags, vsecattr_t *vsecp)
1787 {

1788 znode_t *zp, *dzp = VTQOZ(dvp);

1789 zfsvfs_t *zfsvfs = dzp->z_zfsvfs

1790 zilog_t *zil og;

1791 zfs_dirlock_t *dl;

1792 ui nt 64_t t xt ype;

1793 drmu_t x_t *tx;

1794 int error;

1795 int zf = ZNEW

1796 ksid_t *ksi d;

1797 uid_t ui d;

1798 gid_t gid = crgetgid(cr);

1799 zfs_acl _ids_t acl _i ds;

1800 bool ean_t fuid dirtied;

1802 ASSERT(vap->va_type == VDIR);

1804 /*

1805 * |f we have an epheneral id, ACL, or XVATTR then
1806 * make sure file systemis at proper version
1807 */

1809 ksid = crgetsid(cr, KSID OMER);

1810 if (ksid)

1811 uid = ksid_getid(ksid);

1812 el se

1813 uid = crgetui d(cr)

1814 if (zfsvfs->z_use_fuids == B_FALSE &&

1815 (vsecp || (vap->va_mask & AT_XVATTR) ||
1816 I'S_ EPHEMERAL(ui d) [| |'S_EPHEMERAL(gid)))
1817 return (SET_ERROR(ETNVAL));

1819 ZFS_ENTER( zf svfs);

1820 ZFS_VER| FY_ZP(dzp) ;

1821 zilog = zfsvfs- >z_| 0g;

1823 if (dzp->z_pflags & ZFS_XATTR) {

1824 ZFS_EXI T(zf svfs);

1825 return (SET_ERROR(EINVAL));

1826 }

1828 if (zfsvfs->z_utf8 && u8_validate(dirnane,

1829 strlen(dirnane), NULL, UB_VALIDATE ENTIRE, &error) < 0) {
1830 ZFS_EXI T(zf svfs);

1831 return (SET_ERROR(EILSEQ));

1832 }

1833 if (flags & FI GNORECASE)

1834 zf | = ZCl LOCK;

1836 if (vap->va_mask & AT_XVATTR)

1837 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1838 crgetuid(cr), cr, vap->va_type)) !'= 0) {
1839 ZFS_EXI T(zfsvfs);

1840 return (error);

1841 }

1842 1

19

*cr,

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857

1859
1860
1861
1862
1863
1864

1866
1867
1868
1869
1870
1871

1873
1874
1875
1876
1877
1878

1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892

1894
1895

1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909

top:

if ((error = zfs_acl _ids_create(dzp, 0, vap, cr,
vsecp, &acl _ids)) !=0) {
ZFS_EXI T(zfsvfs);

return (error);

}*
* First make sure the new directory doesn’t exist.
*
* Existence is checked first to nake sure we don’t return
* EACCES instead of EEXI ST which can cause sone applications
. )
*/to fail.
*vpp = NULL;
if (error = zfs_dirent_|l ock(&dl, dzp, dirnane, &zp, zf,
NULL, NULL))
zfs_acl _ids_free(&acl _ids);
ZFS_EXI T(zfsvfs);
return (error);
}
if (error = zfs_zaccess(dzp, ACE_ADD SUBDI RECTORY, 0, B FALSE, cr)) {
zfs_acl _ids_free(&acl _ids);
zfs_dirent _unl ock(dl);
ZFS_EXI T(zfsvfs);
return (error);
}
if (zfs_acl _ids_overquota(zfsvfs, &acl_ids)) {
zfs_acl _ids_free(&acl _ids);
zfs_dirent _unl ock(dl);
ZFS_EXI T(zfsvfs);
return (SET_ERROR(EDQUQT));
}

*

* Add a new entry to the directory.
*/

tx = dmu_tx_create(zfsvfs->z_os);

dmu_t x_hol d_zap(tx,
dmu_t x_hol d_zap(tx,

dzp->z_id, TRUE di rnane) ;
DMU_NEW OBJECT, FALSE, NULL)

fuid dirtied = zfsvfs->z fuid_ dirty;
if (fuid_dirtied)
zfs_fuid_txhold(zfsvfs, tx);
if (!zfsvfs->z_use_sa && acl _ids. z_acl p->z_acl _bytes > ZFS_ACE_SPACE)
dmu_tx_hold_write(tx, DMJ_NEW OBJECT, O,
acl _ids.z_acl p->z_acl _bytes);

}

dmu_t x_hol d_sa_create(tx, acl
ZFS_SA BASE_ATTR SI ZE)

_ids.z_acl p->z_acl _bytes +

error = drmu_t x_assign(tx, TXG_NOMIT);
if (error) {
zfs_dirent _unl ock(dl);

if (error == ERESTART) {
dmu_t x_wai t (tx);
dmu_t x_abort (tx);
goto top;

zfs_acl _ids_free(&acl
dnu_t x_abort (tx);
ZFS_EXI T(zf svfs);
return (error);

_ids);



new usr/src/uts/comon/fs/zfs/zfs_vnops.c

1911
1912
1913
1914

1916
1917

1919
1920
1921
1922

1924

1926
1927
1928
1929
1930

1932
1934
1936

1938
1939

1941
1942
1943

1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973

/*
* Create new node.
*

zfs_nknode(dzp, vap, tx, cr, 0, &p, &acl_ids);

if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);

/*
* Now put new nane in parent dir.
*

(void) zfs_link_create(dl, zp, tx, ZNEW;
*vpp = ZTOV(zp);
txtype = zfs_log_create_txtype(Z_ D R, vsecp, vap);
if (flags & FI GNORECASE)
txtype | = TX C;
zfs_log_create(zilog, tx, txtype, dzp, zp, dirnanme, vsecp,
acl _ids.z_fuidp, vap)
zfs_acl _ids_free(&acl _ids);
dmu_t x_commi t (tx);
zfs_dirent _unl ock(dl);

if (zfsvfs->z_os->0s_sync == ZFS SYNC_ALVWAYS)
zi| _commit(zilog, ;

ZFS_EXI T(zf svfs);

return (0);
}
/*
* Renpve a directory subdir entry. |f the current working
* directory is the same as the subdir to be renoved, the
* remove will fail.
*
* I'N: dvp - vnode of directory to renove from
* nane - nane of directory to be renpved.
* cwd - vnode of current working directory.
* cr - credentials of caller.
* ct - caller context
* flags - case flags
*
X RETURN:. 0 on success, error code on failure.
* RETURN: O if success
* error code if failure
*
* Ti mest anps:
* dvp - ctine|ntine updated
*/
| * ARGSUSED* /
static int

zfs_rmdir(vnode_t *dvp, char *nane, vnode_t *cwd, cred_t *cr,

{

caller_context_t *ct, int flags)

znode_t *dzp = VTQZ(dvp);
znode_t zZp;

vnode_t *vp

zfsvfs_t *zf svfs = dzp->z_zfsvfs;
zil og_t *zil og;

zfs_dirlock_t *dl;

drmu_t x_t *tx;

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 22
1974 int error;

1975 int zflg = ZEXI STS;

1977 ZFS_ENTER( zf svfs);

1978 ZFS_VERI FY_ZP( dzp)

1979 zilog = zfsvfs- >z_| 0g;

1981 if (flags & FlI GNORECASE)

1982 zflg | = ZQ LOXK;

1983 top:

1984 zp = NULL;

1986 I

1987 * Attenpt to lock directory; fail if entry doesn't exist.
1988 */

1989 if (error = zfs_dirent_|l ock(&dl, dzp, nane, &p, zflg,
1990 NULL, NULL))

1991 ZFS_EXI T(zf svfs);

1992 return (error);

1993 }

1995 vp = ZTOV(zp);

1997 if (error = zfs_zaccess_del ete(dzp, zp, cr)) {

1998 goto out;

1999 }

2001 if (vp->v type 1= VDR

2002 error = SET ERRCR( ENOTDI R) ;

2003 goto out;

2004 }

2006 if (vp == cwd) {

2007 error = SET_ERROR(ElI NVAL) ;

2008 goto out;

2009 1

2011 vnevent _rndir(vp, dvp, nane, ct);

2013 /*

2014 * Gab a lock on the directory to make sure that noone is
2015 * trying to add (or |ookup) entries while we are renoving it.
2016 */

2017 rw_enter (&p->z_nane_| ock, RWWRI TER);

2019 /*

2020 * Grab a lock on the parent pointer to make sure we play well
2021 * with the treewal k and directory renanme code.

2022 */

2023 rw_enter (&p->z_parent _| ock, RWWRI TER);

2025 tx = dmu_tx_create(zfsvfs->z_os);

2026 de tx_hol d_zap(tx, dzp->z_id, FALSE, nane);

2027 dmu_t x_hol d_sa(tx, zp->z_sa_| hdl B _FALSE);

2028 dmu_t x_hol d_zap(tx, zfsvfs->z unl i nkedobj, FALSE, NULL);
2029 zf s_sa_upgrade_t xhol ds(tx, zp);

2030 zfs_sa_upgrade_t xhol ds(tx, dzp)

2031 error = dnu_tx_assign(tx, TXG_ NOWAI T);

2032 if (error) {

2033 rw_exit(&p->z_parent_| ock);

2034 rw_exit(&p->z_name_| ock);

2035 zfs_dirent _unl ock(dl);

2036 VN_RELE(vp);

2037 if (error == ERESTART) {

2038 drmu_t x_wai t (tx);

2039 drmu_t x_abort (tx);



new usr/src/uts/comon/fs/zfs/zfs_vnops.c

2040 goto top;

2041

2042 dmu_t x_abort (tx);

2043 ZFS_EXI T(zfsvfs);

2044 return (error);

2045 }

2047 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);

2049 if (error == 0)

2050 uint64 t txtype = TX RVMDIR;

2051 if (flags & Fl GNORECASE)

2052 txtype | = TX C;

2053 zfs_l og_renove(zilog, tx, txtype, dzp, nane, ZFS_NO OBJECT);
2054 1

2056 dmu_t x_commi t (tx);

2058 rw_exit(&p->z_parent_| ock);

2059 rw_exit (&p->z_nane_| ock);

2060 out:

2061 zfs_dirent_unl ock(dl);

2063 VN_RELE(vp);

2065 if (zfsvfs->z_os->0s_sync == ZFS_SYNC_ALWAYS)

2066 zil _commt(zilog, 0);

2068 ZFS_EXI T(zfsvfs);

2069 return (error);

2070 }

2072 | *

2073 * Read as nmany directory entries as will fit into the provided
2074 * buffer fromthe given directory cursor position (specified in
2075 * the uio structure).

2075 * the uio structure.

2076 *

2077 * I'N: vp - vnode of directory to read.

2078 * ui o - structure supplying read |ocation, range info,
2079 * and return buffer.

2080 * cr - credentials of caller.

2081 * ct - caller context

2082 * flags - case flags

2083 *

2084 * QUT: ui o - updated offset and range, buffer filled.
2085 * eof p - set to true if end-of-file detected.
2086 *

2087 * RETURN: 0 on success, error code on failure.

2087 * RETURN: 0 if success

2088 * error code if failure

2088 *

2089 * Ti nest anps:

2090 * vp - atinme updated

2091 *

2092 * Note that the low 4 bits of the cookie returned by zap is always zero.
2093 * This allows us to use the |low range for "special" directory entries:
2094 * We use O for ".’, and 1 for '..’. If this is the root of the fil esystem
2095 * we use the offset 2 for the '.zfs' directory.

2096 */

2097 /* ARGSUSED */

2098 static int

2099 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,

2100 cal l er_context _t *ct, int flags)

2101 {

2102 znode_t *zp = VIQZ(vp);

new usr/src/uts/comon/ fs/zfs/zfs_vnops.c

2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119

2121
2122

2124
2125
2126
2127
2128

2130
2131
2132
2133
2134
2135

2137
2138
2139
2140
2141
2142
2143

2145
2146
2147
2148
2149
2150
2151

2153
2154
2155
2156

2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168

i ovec_t *iovp;

edirent _t *eodp;

dirent64_t *odp;

zfsvfs_t *zfsvfs = zp->z_zfsvfs;
obj set _t *0s;

caddr _t out buf ;

size_t buf si ze;

zap_cursor _t zc;

zap_attribute_t zap;

uint_t byt es_want ed;

ui nt 64_t of fset; /* nust be unsigned; checks for < 1 */
ui nt64_t parent;

int | ocal _eof;

int out count ;

int error;

ui nt 8_t prefetch;

bool ean_t check_sysattrs;

ZFS_ENTER( zf svfs);
ZFS_VERI FY_ZP(zp);

if ((error = sa_l ookup(zp->z_sa_hdl, SA ZPL_PARENT( zf svfs),
&parent, sizeof (parent))) !'= 0) {
ZFS_EXI T(zfsvfs);
return (error);

}

/*
* |f we are not given an eof variable,
* use a | ocal one.
*/
if (eofp == NULL)
eof p = &l ocal _eof;

/*
* Check for valid iov_len.
*

if (uio->uio_iov->iov_len <= 0) {
ZFS_EXI T(zf svfs);
return (SET_ERROR(EINVAL));
}

/*
* Quit if directory has been renmpved (posix)
*/
if ((*eofp = zp->z_unlinked) != 0) {
ZFS_EXI T(zf svfs);
return (0);

}

error = 0;

os = zfsvfs->z_os;

of fset = uio->uio_| of fset;
prefetch = zp->z_zn_prefetch;

/*
* Initialize the iterator cursor.
*/

if (offset <= 3) {
/*
* Start iteration fromthe beginning of the directory.
*
/

zap_cursor_init(&c, os, zp->z_id);
} else {
/*

* The offset is a serialized cursor.



new usr/src/uts/comon/fs/zfs/zfs_vnops.c

2169
2170
2171

2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187

2189
2190
2191
2192
2193
2194
2195
2196
2197

2199
2200
2201
2202
2203
2204
2205
2206

2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232

2234

*/
zap_cursor_init_serialized(&c, os, zp->z_id, offset
}
/*
* Cet space to change directory entries into fs independent format.
*/
iovp = uio- >UIO i ov;
byt es_wanted = iovp->iov_|en

),

if (uio->uio_segflg !I'= UIOSYSSPACE || uio->uio_iovent !'=1) {

buf si ze = byt es_want ed;
out buf = kmem all oc(buf5| ze, KM SLEEP);
odp = (struct “dirent64 *)out buf ;
} else {
buf si ze = byt es _want ed;
out buf = NULL
odp = (struct dirent64 *)iovp->i ov_base;

eodp = (struct edirent *)odp;

/
If this VFS supports the systemattribute view interface;

and

about normalization conflicts on this vfs; then we nust check

for normalization conflicts with the sysattr name space.
*/

check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR VI EW)

(vp->v_flag & V. XATTRDIR) && zfsvfs->z_norm &&
(flags™ & V_RDDI R_ENTFLAGS);

/*
* Transformto file-systemindependent format
*/

out count = O;

whil e (outcount < bytes_wanted) {
ino64_t obj num
ushort_t reclen;
of f64_t *next = NULL;

| *

* Special case ‘*.’, ‘..’, and ‘.zfs’.
*/

if (offset == 0) {
(void) strcpy(zap.za_nane, ".");
zap. za_normal i zati on_ conflict =
obj num = zp->z_i d;

} else if (offset == 1)
(voi d) strcpy(zap za_name, "..");
zap. za_nornal i zati on_ “conflict = 0;
obj num = parent;

} else if (offset == 2 8& zfs _show ctldir(z
(voi d) strcpy(zap za_nane, ZFS_CTLDI R_NAME);
zap.za_nornal i zation “conflict = 0;
obj num = ZFSCTL_I NO_ROOT;

} else {
/*

0

* Grab next entry.
*
/
if (error = zap_cursor _retrieve(&c, &zap))
if ((* eofp = (error == ENCENT)) !=0
br eak;
el se
got o update;
}

if (zap.za_integer_length != 8 ||

*
*
* we're |ooking at an extended attribute directory; and we care
*
*

{
)

25

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 26
2235 zap.za_num.integers != 1) {

2236 cmm_err (CE_WARN, "zap_readdir: bad directory "
2237 "entry, obj = %ld, offset = %Ild\n"
2238 (u_longlong_t)zp->z_id,

2239 (u_l onglong_t)offset);

2240 error = SET_ERROR(ENXI O ;

2241 goto update;

2242 }

2244 obj num = ZFS_DI RENT_OBJ(zap. za_first_integer);
2245 /*

2246 * MacOS X can extract the object type here such as:
2247 * uint8_t type = ZFS_DI RENT_TYPE(zap.za_first_integer);
2248 */

2250 if (check_sysattrs && !zap.za_normalization_conflict) {
2251 zap. za_nornalization_conflict =

2252 xattr_sysattr_casechk(zap. za_nane);
2253 }

2254 }

2256 if (fl ags & V_RDDI R_ACCFI LTER) {

2257

2258 * If we have no access at all, don't include
2259 * this entry in the returned i nformation

2260 */

2261 znode *ezp;

2262 if (zfs zget (zp->z_zfsvfs, objnum &ezp) != 0)
2263 goto skip_entry;

2264 if (!zfs_has_access(ezp, cr)) {

2265 VN_RELE(ZTOV(ezp)) ;

2266 goto skip_entry;

2267 }

2268 VN_RELE(ZTOV(ezp));

2269 }

2271 if (flags & V_RDDI R_ENTFLAGS)

2272 recl en = EDI RENT_RECLEN(strl en(zap. za_nane));

2273 el se

2274 reclen = DI RENT64_RECLEN(strl en(zap.za_nane));
2276 /*

2277 * WIIl this entry fit in the buffer?

2278 */

2279 if (outcount + reclen > bufsize) {

2280 /*

2281 * Did we nanage to fit anything in the buffer?
2282 */

2283 if (loutcount) {

2284 error = SET_ERROR(EI NVAL) ;

2285 goto update;

2286 }

2287 br eak;

2288 }

2289 if (flags & V_RDDI R_ENTFLAGS) {

2290 /*

2291 * Add extended flag entry:

2292 */

2293 eodp->ed_i no = obj num

2294 eodp->ed_reclen = reclen;

2295 /* NOTE: ed_off is the offset for the *next* entry */
2296 next &( eodp- >ed _off);

2297 eodp- >ed efl ags = zap.za_normalization_conflict ?
2298 ED_CASE_CONFLICT : 0;

2299 (voi d) st rncpy(eodp- >ed nanme, zap.za_nhane,

2300 EDI RENT_NAMELEN(r eclen)) ;



new usr/src/uts/comon/fs/zfs/zfs_vnops.c

2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314

2316

2318
2319
2320

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335

2337
2338
2339
2340
2341
2342
2343
2344
2345
2346

eodp = (edirent_t *)((intptr_t)eodp + reclen);
} else {

/*

*/Add nornmal entry:

*

odp->d_i no = obj num
odp->d_reclen = reclen;
/* NOTE: d_off is the offset for the *next* entry */
next = & odp->d_off
(void) strncpy(odp->d_nane, zap.za_nane,
DI RENT64_NAMELEN(r ecl en));
odp = (dirent64_t *)((intptr_t)odp + reclen);

out count += reclen;

ASSERT( out count <= bufsi ze);

/* Prefetch znode */
if (prefetch)
dmu_prefetch(os, objnum 0, 0);
skip_entry:
/*

* Move to the next entry, fill in the previous offset.
*
if (offset > 2 || (offset == 2 & & !zfs_show ctldir(zp))) {
zap_cursor _advance( &zc);
of fset = zap_cursor_serialize(&zc);
} else {
of fset += 1;
}
if (next)

*next = offset;
zp->z_zn_prefetch = B_FALSE; /* a |ookup will re-enable pre-fetching */
if (uio->uio_segflg == U O SYSSPACE && ui 0->uio_iovent == 1) {

i ovp- >i ov_base += outcount;
iovp->iov_|len -= outcount;
ui 0->uio_resid -= outcount;
} else if (error = uionobve(outbuf, (long)outcount, U O READ, uio)) {
/*
* Reset the pointer.
*/
of fset = ui o->uio_loffset;

2348 update:

2349
2350
2351

2353
2354

2356

2358
2359
2360
2361 }

zap_cursor _fini(&zc);
if (uio->uio_segflg = U O_SYSSPACE | |
kmem f ree(out buf, bufsize);

ui o->ui o_iovent = 1)

if (error == ENCENT)
error = 0;

ZFS_ACCESSTI ME_STAMP( zf svfs, zp);

uio->uio_|l offset = offset;
ZFS_EXI T(zfsvfs);
return (error);

__unchanged_portion_onitted_

2393 /
2394

*

* Get the requested file attributes and place themin the provi ded

27

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 28
2395 * vattr structure.

2396 *

2397 * I'N: vp - vnode of file.

2398 * vap - va_mask identifies requested attributes.

2399 * | f AT_XVATTR set, then optional attrs are requested
2400 * flags - ATTR_NOACLCHECK (C| FS server context)

2401 * cr - credentials of caller.

2402 * ct - caller context

2403 *

2404 * QUT: vap - attribute val ues.

2405 *

2406 * RETURN: 0 (al ways succeeds).

2407 * RETURN: O (al ways succeeds)

2407

2408 /* ARGSUSED */

2409 static int

2410 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,

2411 cal | er_context_t *ct)

2412 {

2413 znode_t *zp = VTOZ( p);

2414 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

2415 int error = 0;

2416 uint64_t 1inks;

2417 uint64_t nti ne[2] , ctime[2];

2418 xvattr_t *xvap = (xvattr t *)vap; /* vap may be an xvattr_t * */
2419 xoptattr_t *xoap = NULL

2420 bool ean_t ski pacl chk = (f | ags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2421 sa_bul k_attr_t bul k[ 2];

2422 int count = 0;

2424 ZFS_ENTER( zf svfs);

2425 ZFS_VERI FY_ZP(zp);

2427 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &ap->va_gid);

2429 SA ADD BULK_ATTR(bul k, count, SA ZPL_MTI ME(zfsvfs), NULL, &ntine, 16)
2430 SA_ADD_BULK_ATTR(bul k, count, SA_ZPL_CTI ME(zfsvfs), NULL, &ctine, 16)
2432 if ((error = sa_bul k_| ookup(zp->z_sa_hdl, bulk, count)) != 0) {
2433 ZFS_EXI T(zfsvfs)

2434 return (error);

2435 }

2437 /*

2438 * |f ACL is trivial don't bother |ooking for ACE_READ_ATTRI BUTES.
2439 * Also, if we are the owner don’'t bother, since owner should

2440 * always be allowed to read basic attributes of file.

2441 *

2442 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&

2443 (vap->va_uid !'= crgetuid(cr))) {

2444 if (error = zfs_zaccess(zp, ACE_READ ATTRI BUTES, O,

2445 ski pacl chk, cr))

2446 ZFS EXI T(zfsvfs)

2447 return (error);

2448 }

2449 }

2451 /*

2452 * Return all attributes. It’s cheaper to provide the answer

2453 * than to deternine whether we were asked the question.

2454 *

2456 nmut ex_ent er (&zp->z_| ock);

2457 vap->va_type = vp->v_type;

2458 vap- >va_node = zp->z_node & MODEMASK;

2459 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;



new usr/src/uts/comon/fs/zfs/zfs_vnops.c 29

2460
2461
2462
2463
2464
2465
2466
2467
2468

2470
2471
2472
2473
2474
2475
2476
2477
2478
2479

2481
2482
2483
2484
2485

2487
2488
2489
2490
2491

2493
2494
2495
2496
2497

2499
2500
2501
2502
2503

2505
2506
2507
2508
2509

2511
2512
2513
2514
2515

2517
2518
2519
2520
2521

2523
2524
2525

vap- >va_nodei d = zp->z_id;
if ((vp->v_flag & VROOT) && zfs_show ctldir(zp))
links = zp->z_links + 1;
el se
links = zp->z_links;
vap->va_nlink = MN(links, UNT32_MAX); /* nlink_t limt! */
vap- >va_si ze = zp->z_si ze;
vap->va_rdev = vp->v_rdev
vap->va_seq = zp->z_seq;

/*
* Add in any requested optional attributes and the create tine.
* Al'so set the corresponding bits in the returned attribute bitnap.
*
/
if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
if (XVA_ISSET_REQ xvap, XAT_ARCHIVE)) {
xoap- >xoa_ar chive =
((zp->z_pflags & ZFS_ARCHI VE) != 0);
XVA_SET_RTN(xvap, XAT_ ARCHI VE);

if (XVA_I SSET_REQ(xvap, XAT_READONLY)) {
xoap- >xoa_readonly =
((zp->z_pflags & ZFS_READONLY) != 0);
XVA_SET_RTN(xvap, XAT_READONLY);

if (XVA I SSET_REQ xvap, XAT_SYSTEM) {
xoap- >xoa_system =
((zp->z_pflags & ZFS_SYSTEM != 0);
XVA_SET_RTN(xvap, XAT_SYSTEM;

if (XVA_I SSET_REQ(xvap, XAT_H DDEN)) {
xoap- >xoa_hi dden =
((zp->z_pflags & ZFS H DDEN) != 0);
XVA_SET_RTN( xvap, XAT_HI DDEN);

if (XVA_I SSET_REQ(xvap, XAT_NOUNLINK)) {
xoap- >xo0a_nounl i nk =
((zp->z_pflags & ZFS_NOUNLINK) != 0);
XVA_SET_RTN(xvap, XAT_NOUNLI NK) ;

if (XVA_I SSET_REQ(xvap, XAT_I MMUTABLE)) ({
xoap- >xoa_i nmut abl e =
((zp->z_pflags & ZFS_ | MMUTABLE) != 0);
XVA_SET_RTN( xvap, XAT_| MMUTABLE) ;

if (XVA I SSET_REQ xvap, XAT_APPENDONLY)) {
xoap- >xo0a_appendonly =
((zp->z_pflags & ZFS_APPENDONLY) != 0)
XVA_SET_RTN(xvap, XAT_APPENDONLY) ;

if (XVA_| SSET_REQ xvap, XAT_NODUWP)) {
xoap- >xo0a_nodunp =
((zp->z_pflags & ZFS_NCDUMP) !
XVA_SET_RTN(xvap, XAT_NCDUWP);

0);

if (XVA_I SSET_REQ(xvap, XAT_OPAQUE)) {
xoap- >xoa_opaque =
((zp->z_pflags & ZFS_OPAQUE) != 0);

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

2526
2527

2529
2530
2531
2532
2533

2535
2536
2537
2538
2539

2541
2542
2543
2544

2546
2547

2549
2550
2551
2552
2553

2555
2556
2557
2558
2559
2560
2561
2562

2564
2565
2566
2567
2568

2570
2571
2572
2573
2574
2575

2577
2578
2579

2581
2583

2585
2586
2587
2588
2589
2590

}
if

}

XVA_SET_RTN( xvap, XAT_OPAQUE);

(XVA_| SSET_REQ(xvap, XAT_AV_QUARANTI NED)) {
xoap- >xo0a_av_quarantined =

((zp->z_pflags & ZFS_AV_QUARANTI NED) != 0);

XVA _SET_RTN(xvap, XAT_AV_QUARANTI NED);

( XVA_I SSET_REQ( xvap, XAT_AV_IVCDI FIED)) {
xoap->xoa_av_nodified =
((zp->z_pflags & ZFS_AV_MODI FI ED)
XVA_SET_RTN(xvap, XAT_AV_MODI FI ED);

(XVA_I SSET_REQ(xvap, XAT_AV_SCANSTAWP) &&
vp->v_type == VREQ
zfs_sa_get _scanstanp(zp, xvap);

(XVA_I SSET_REQ( xvap, XAT_CREATETI ME)) {
uint64_t times[2

(void) sa_l ookup(zp->z_sa_hdl, SA_ZPL_

times, sizeof (times));
ZFS_TI ME DECODE(&xoap >xoa_createtine,
XVA_SET_RTN(xvap, XAT_CREATETI ME);

(XVA_| SSET_REQ(xvap, XAT_REPARSE)) {

I=0);

CRTI ME( zf svfs),

tinmes);

xoap->xoa_reparse = ((zp->z_pflags & ZFS REPARSE) !=

XVA SET_RTN(xvap, XAT_REPARSE);

(XVA_| SSET_REQ( xvap, XAT_GEN)) {
xo0ap- >xoa_generation = zp->z_gen;
XVA_SET_RTN(xvap, XAT_GEN);

(XVA_I SSET_REQ(xvap, XAT_OFFLINE)) {
xoap->xoa_offline =

((zp->z_pflags & ZFS_OFFLINE) != 0);

XVA_SET_RTN(xvap, XAT_OFFLINE);

(XVA_| SSET_REQ(xvap, XAT_SPARSE)) {
X0ap- >xoa_sparse =

((zp->z_pflags & ZFS SPARSE) != 0);

XVA _SET_RTN(xvap, XAT_SPARSE):

ZFS_TI ME_DECODE( &vap->va_atine, zp->z_atine);
ZFS_TI ME_DECODE( &vap->va_ntine, ntine);
ZFS_TI ME_DECODE( & ap->va_ctine, ctine);

mut ex_exi t (&p->z_l ock);

sa_obj ect _size(zp->z_sa_hdl, &vap->va_bl ksi ze, &vap->va_nbl ocks);

if (zp->z_blksz == 0) {
/*

*

*/

Bl ock size hasn’t been set; suggest maxinal

vap->va_bl ksi ze = zfsvfs->z_max_bl ksz;

I/O transfers.

30

0);



new usr/src/uts/comon/fs/zfs/zfs_vnops.c

2592 ZFS_EXI T(zf svfs);

2593 return (0);

2594 }

2596 /*

2597 * Set the file attributes to the values contained in the
2598 * vattr structure.

2599 *

2600 * I'N: vp - vnode of file to be nodified.

2601 * vap - new attribute val ues.

2602 * If AT_XVATTR set, then optional attrs are being set
2603 * flags - ATTR_UTI ME set if non-default tine val ues provi ded.
2604 * - ATTR_NOACLCHECK (CI FS context only).
2605 * cr - credentials of caller.

2606 * ct - caller context

2607 *

2608 * RETURN: O on success, error code on failure.

2609 * RETURN: 0 if success

2610 * error code if failure

2609 *

2610 * Ti nestanps:

2611 * vp - ctine updated, ntime updated if size changed.
2612 */

2613 /* ARGSUSED */
2614 static int

2615 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,

2616 cal l er_context_t *ct)

2617 {

2618 znode_t *zp = VIQZ(vp);

2619 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2620 zilog_t *zil og;

2621 drmu_t x_t *tx;

2622 vattr_t ol dva;

2623 xvattr_t tnpxvattr;

2624 uint_t mask = vap->va_mask;

2625 uint_t saved_mask = 0;

2626 int trimmsk = 0;

2627 ui nt64_t new_node;

2628 ui nt 64_t new_ui d, new gid;

2629 ui nt 64_t xattr_obj;

2630 ui nt 64_t ntime[2], cting[2];

2631 znode_t *attrzp;

2632 int need_pol i cy = FALSE;

2633 int err, errz;

2634 zfs_fuid_info_t *fmdp = NULL

2635 xvattr_t *xvap = (xvattr_t *)vap /* vap may be an xvattr_t * */
2636 xoptattr_t *xoap;

2637 zfs_acl _t *acl P;

2638 bool ean_t ski pacl chk = (fl ags & ATTR_NQACLCHECK) ? B _TRUE : B_FALSE;
2639 bool ean_t fuid dirtied = FALSE;
2640 sa_bulk_attr_t bulk[7], xattr bul k[ 7];

2641 int count = 0, xattr_count = 0;
2643 if (mask == 0)

2644 return (0);

2646 if (mask & AT_NOSET)

2647 return (SET_ERROR(EINVAL));

2649 ZFS_ENTER( zf svfs);

2650 ZFS_VERI FY_ZP(zp);

2652 zilog = zfsvfs->z_| og;

2654 /*

2655 * Make sure that if we have epheneral uid/gid or xvattr specified

31

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

2656 * that file systemis at proper version |evel

2657 */

2659 if (zfsvfs->z_use_fuids == B_FALSE &&

2660 (((mask & AT_UID) && IS > EPHEMERAL ( vap- >va_ui d)) ||

2661 ((mask & AT_G D) && |'S EPHEMERAL(vap->va_gid)) ||

2662 (mask & AT_XVATTR))) {

2663 ZFS_EXI T(zf svfs);

2664 return (SET_| ERRO?( EI NVAL) ) ;

2665 }

2667 if (mask & AT_SIZE && vp->v_type == VDIR) {

2668 ZFS_EXI T(zfsvfs);

2669 return (SET_ERROR(EISDIR));

2670 1

2672 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type !=

2673 ZFS_EXI T(zfsvfs);

2674 return (SET_ERROR(EI NVAL));

2675 }

2677 /*

2678 * If this is an xvattr_t, then get a pointer to the structure of
2679 * optional attributes. |If this is NULL, then we have a vattr_t.
2680 */

2681 xoap = xva_get xoptattr(xvap);

2683 xva_i nit (& npxvattr);

2685 /*

2686 * Imutable files can only alter immtable bit and atine

2687 */

2688 if ((zp->z_pflags & ZFS_| MMUTABLE)

2689 ((mask™ & (AT_SI ZE| AT_UI D| AT_G D] AT_MTI MVE| AT_MODE)) ||

2690 ((mask & AT_XVATTR) && XVA TSSET_REQ xvap, XAT CREATETIME)))) {
2691 ZFS_EXI T(zfsvfs)

2692 return (SET_ERROR(EPERM ) ;

2693 }

2695 if ((mask & AT _SIZE) && (zp->z_pflags & ZFS _READONLY)) {

2696 ZFS_EXI T(zfsvfs);

2697 return (SET_ERR(R( EPERV) ) ;

2698 }

2700 /*

2701 * Verify tinestanps doesn't overflow 32 bits.

2702 * ZFS can handl e | arge timestanps, but 32bit syscalls can't
2703 * handle tines greater than 2039. This check shoul d be renoved
2704 * once large tinestanps are fully supported.

2705 */

2706 if (mask & (AT_ATIME | AT_MIIME))

2707 if (((mask & AT_ATIME) && TI MESPEC OVERFLOWN &vap- >va_ati ne
2708 ((mask & AT_MII ME) && TI MESPEC OVERFLOW &vap->va_nti nme
2709 ZFS_EXI T(zfsvfs);

2710 return (SET_ERRCR( EOVERFLOW ) ;

2711 }

2712 1

2714 top:

2715 attrzp = NULL;

2716 acl p = NULL;

2718 /* Can this be noved to before the top |abel? */

2719 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) ({

2720 ZFS_EXI T(zfsvfs)

2721 return (SET_ERROR(ERCFS));

32

[
{



new usr/src/uts/comon/fs/zfs/zfs_vnops.c 33

2722 }

2724 /*

2725 * First validate perm ssions

2726 */

2728 if (mask & AT_SIZE) {

2729 err = zfs_zaccess(zp, ACE_WRI TE_DATA, 0, skipaclchk, cr);
2730 if (err)

2731 ZFS_EXI T(zfsvfs);

2732 return (err);

2733 }

2734 /*

2735 * XXX - Note, we are not providing any open

2736 * nmode flags here (like FNDELAY), so we may

2737 * block if there are locks present... this

2738 * shoul d be addressed in openat().

2739 */

2740 /* XXX - would it be OKto generate a log record here? */
2741 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);

2742 if (err)

2743 ZFS_EXI T(zfsvfs);

2744 return (err);

2745 }

2746 }

2748 if (mask & (AT_ATIME| AT_MIIME) ||

2749 ((mask & AT_XVATTR)  && (XVA_| SSET_REQ xvap, XAT_HI DDEN) ||
2750 XVA_| SSET_REQ(xvap, XAT_READONLY) ||

2751 XVA_| SSET_REQ xvap, XAT_ARCHI VE) ||

2752 XVA_| SSET_REQ( xvap, XAT_OFFLINE) ||

2753 XVA_| SSET_REQ( xvap, XAT_SPARSE) ||

2754 XVA | SSET_REQ( xvap, XAT_CREATETI

2755 XVA_| SSET _REQ(xvap, XAT_SYSTEM) ) ))

2756 “need_policy = zfs_zaccess(zp, ACE_WR TE_ATTRI BUTES, O,
2757 ski pacl chk, cr);

2758 }

2760 if (mask & (AT_U D] AT_ GD)) {

2761 int i dmask = (mask & (AT_U D/ AT_GD));

2762 int take_owner

2763 int take_group;

2765 /*

2766 * NOTE: even if a new node is being set,

2767 * we may clear S ISUD S ISGAD bits.

2768 */

2770 if (!(msk & AT_MODE))

2771 vap- >va_node = zp->z_node;

2773 /*

2774 * Take ownership or chgrp to group we are a nenber of
2775 */

2777 take_owner = (nmask & AT_UI D) && (vap->va_uid == crgetuid(cr));
2778 take_group = (mask & AT_G D) &&

2779 zf's_groupnenber (zfsvfs, vap->va_gid, cr);

2781 /*

2782 * |f both AT_U D and AT_A D are set then take_owner and
2783 * take_group nust both be set in order to allow taking
2784 * owner shi p.

2785 *

2786 * Otherw se, send the check through secpolicy_vnode_setattr()
2787 *

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 34
2788 */

2790 if (((idmask ::(AT U D|AT_G D)) && take_owner && take_group) ||
2791 ((idmask == AT_UID) &% take_owner) ||

2792 ((idmask == AT_G D) && take_group)) {

2793 if (zfs_zaccess(zp, ACE_WRI TE_OMER, 0,

2794 ski pacl chk, cr) == 0) {

2795 /*

2796 * Renpve setuid/setgid for non-privileged users
2797 */

2798 secpolicy_setid_clear(vap, cr);

2799 trimmask = (mask & (AT_U D AT_GD));
2800 } else {

2801 need_policy = TRUE

2802 }

2803 } else {

2804 need_policy = TRUE

2805 }

2806 1

2808 nmut ex_ent er (&zp->z_| ock) ;

2809 ol dva. va_npde = zp->z_nvode;

2810 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);

2811 if (mask & AT_XVATTR) {

2812 /*

2813 * Update xvattr mask to include only those attributes
2814 * that are actually changing.

2815 *

2816 * the bits will be restored prior to actually setting
2817 * the attributes so the caller thinks they were set.
2818 */

2819 if (XVA_ ISSET ~ REQ(xvap, XAT_APPENDONLY)) {

2820 f (xoap->xoa_appendonly !=

2821 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2822 need_pol i cy = TRUE;

2823 } else {

2824 XVA_CLR_REQ(xvap, XAT_APPENDONLY) ;

2825 XVA_SET_REQ( & mpxvattr, XAT APPENDO\ILY);
2826 }

2827 }

2829 if (XVA_I SSET_REQ(xvap, XAT_NOUNLINK)) {

2830 i f (xoap->xoa_nounlink !=

2831 ((zp->z_pflags & ZFS NOUNLINK) != 0)) {
2832 need_pol icy = TRUE;

2833 } else {

2834 XVA_CLR_REQ(xvap, XAT_NOUNLI NK) ;

2835 XVA_SET_REQ( & mpxvattr, XAT NOUNLI NK) ;
2836 }

2837 }

2839 if (XVA_I SSET_REQ(xvap, XAT_| MUTABLE)) {

2840 i f (xoap->xoa_imutable !=

2841 ((zp->z_pflags & ZFS_| MMUTABLE) != 0)) {
2842 need_pol i cy = TRUE;

2843 } else {

2844 XVA_CLR_REQ(xvap, XAT_| MMUTABLE);

2845 XVA_SET_REQ & mpxvattr, XAT IM\/UTABLE)
2846 }

2847 }

2849 i f (XVA_I SSET_REQ xvap, XAT_NODUWP)) {

2850 i f (xoap->xoa_nodunp !=

2851 ((zp->z_pflags & ZFS_NODUWP) != 0)) {
2852 need_pol icy = TRUE;

2853 } else {



new usr/src/uts/comon/fs/zfs/zfs_vnops.c 35 new usr/src/uts/comon/fs/zfs/zfs_vnops.c 36
2854 XVA_CLR_REQ(xvap, XAT_NODUWP); 2920 saved_mask = vap->va_nmask;
2855 XVA_SET_REQ( & npxvattr, XAT NGDUI\/P); 2921 vap->va_nmask &= ~tri m mask;
2856 } 2922 }
2857 } 2923 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2924 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2859 if (XVA_I SSET_REQ(xvap, XAT_AV_MODI FI ED)) { 2925 if (err)
2860 i f (xoap->xoa_av_nodified != 2926 ZFS_EXI T(zfsvfs);
2861 ((zp->z_pflags & ZFS_AV_MODI FIED) != 0)) { 2927 return (err);
2862 need_policy = TRUE; 2928 }
2863 } else {
2864 XVA _CLR REQ(xvap, XAT_AV_MODI FI ED); 2930 if (trimmask)
2865 XVA_SET_REQ & npxvattr, XAT_AV_MODI Fl ED); 2931 vap- >va_mask | = saved_mask;
2866 } 2932 }
2867 }
2934 I*
2869 if (XVA_ ISSET _REQ(xvap, XAT_AV QJARANTI NED)) { 2935 * secpolicy_vnode_setattr, or take ownership nay have
2870 f ((vp->v_type != VREG && 2936 * changed va_mask
2871 xoap- >xo0a_av_quar anti ned) || 2937 */
2872 xoap- >xo0a_av_quarantined != 2938 mask = vap->va_nask;
2873 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2874 need_pol icy = TRUE; 2940 if ((mask & (AT_.UD| AT_GD))) {
2875 } else { 2941 err = sa_l ookup(zp->z_sa_hdl, SA ZPL_XATTR(zfsvfs),
2876 XVA_CLR_REQ(xvap, XAT_AV_QUARANTI NED) ; 2942 & attr_obj, sizeof (xattr_obj));
2877 XVA_SET_REQ & npxvattr, XAT_AV_QUARANTI NED);
2878 } 2944 if (err == 0 && xattr_obj)
2879 } 2945 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
2946 if (err)
2881 if (XVA_I SSET_REQ xvap, XAT_REPARSE)) { 2947 goto out2;
2882 mut ex_exi t (&p->z_| ock); 2948 }
2883 ZFS_EXI T(zf svfs); 2949 if (mask & AT_UI D) {
2884 return (SET_ERRCR( EPERV) ) ; 2950 new uid = zfs _fuid_create(zfsvfs,
2885 } 2951 “(uint64_t)vap->va_uid, cr, ZFS OANER, &f uidp);
2952 if (newuid != zp->z_ uid &&
2887 if (need_policy == FALSE && 2953 zfs_fuid_overquota(zfsvfs, B _FALSE, new_uid)) {
2888 (XVA_| SSET_REQ(xvap, XAT_AV_SCANSTAWP) || 2954 Tif (attrzp)
2889 XVA_TSSET_REQ xvap, XAT OPAQUE))) { 2955 VN_RELE(ZTOV(attrzp));
2890 “need_policy = TRUE; 2956 err = SET_ERROR( EDQUOT) ;
2891 } 2957 goto out2
2892 } 2958 }
2959 }
2894 mut ex_exi t (&p->z_l ock);
2961 if (mask & AT_GA D) {
2896 if (mask & AT_MODE) { 2962 new gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
2897 if (zfs_ zaccess(zp, ACE_WRI TE_ACL, 0, skipaclchk, cr) == 0) { 2963 cr, ZFS_GROUP,  &fuidp);
2898 err = secpolicy_setid setsti cky cl ear(vp, vap, 2964 if (new gid != zp->z_gid 8&
2899 &ol dva, cr); 2965 zfs_fuid_overquota(zfsvfs, B TRUE, new gid)) {
2900 if (err) { 2966 if (attrzp)
2901 ZFS_EXI T(zf svfs); 2967 VN_RELE(ZTOV(attrzp));
2902 return (err); 2968 err = SET_ERROR( EDQUOT) ;
2903 } 2969 goto 0ut2
2904 trimmask | = AT_MODE; 2970 }
2905 } else { 2971 }
2906 need_policy = TRUE; 2972 }
2907 } 2973 tx = dnu_tx_create(zfsvfs->z_os);
2908 }
2975 if (mask & AT_MODE) {
2910 if (need_policy) { 2976 uint64_t pnode = zp->z_node;
2911 /* 2977 uint64_t acl _obj;
2912 * |f trimmask is set then take ownership 2978 new _node = (pnode & S_IFMI) | (vap->va_node & ~S_| FMI);
2913 * has been granted or wite_acl is present and user
2914 * has the ability to nodify node. 1In that case renove 2980 if (zp->z_zfsvfs->z_acl _node == ZFS_ACL_RESTRI CTED &&
2915 * U D GD and or MODE from mask so that 2981 1 (zp->z pfl ags & ZFS_ACL_TRIVIAL)) |
2916 * secpolicy_vnode_setattr() doesn’t revoke it. 2982 err SET_ERROR( EPERM) ;
2917 */ 2983 goto out;
2984 }
2919 if (trimnask) {




new usr/src/uts/comon/fs/zfs/zfs_vnops.c 37

2986 if (err = zfs_acl _chnod_setattr(zp, &aclp, new_node))
2987 goto out;

2989 nmut ex_ent er (&p->z_| ock) ;

2990 if (!zp->z_is_sa & ((acl _obj = zfs_external _acl (zp)) !'= 0)) {
2991 /*

2992 * Are we upgrading ACL fromold VO fornat
2993 * to V1 fornat?

2994 */

2995 if (zfsvfs->z_version >= ZPL_VERSI ON_FU D &&
2996 zfs_znode_acl _version(zp) ==

2997 ZFS_ACL_VERSI ON_I NI TI AL)

2998 “dmu_t x_hol d_free(tx, acl_obj, 0,
2999 DMJ_OBJECT_END) ;

3000 dmu_tx_hol d_write(tx, DMJ_NEW OBJECT,
3001 "0, acl p->z_acl _bytes);

3002 } else {

3003 drmu_t x_hol d_write(tx, acl_obj, O,
3004 acl p->z_acl _bytes);

3005 }

3006 } else if (!zp->z_is_sa & acl p->z_acl _bytes > ZFS_ACE_SPACE) {
3007 drmu_t x_hol d_write(tx, DMJ_NEW OBJECT

3008 0, acl p->z_acl _bytes);

3009 }

3010 nmut ex_exi t (&p->z_| ock);

3011 dnu_t x_hol d_sa(tx, zp->z_sa_hdl, B _TRUE);

3012 } else {

3013 if ((mask & AT_XVATTR) &&

3014 XVA_| SSET_REQ(xvap, XAT_AV_SCANSTAMWP))

3015 dmu_t x_hol d_sa(tx, zp->z_sa_hdl, B TRUE);
3016 el se

3017 dmu_t x_hol d_sa(tx, zp->z_sa_hdl, B _FALSE);
3018 }

3020 if (attrzp) {

3021 dmu_t x_hol d_sa(tx, attrzp->z_sa_hdl, B _FALSE);

3022 }

3024 fuid_dirtied = zfsvfs->z_fuid_dirty;

3025 if (fmd d|r| ed)

3026 fs_fuid_txhold(zfsvfs, tx);

3028 zfs_sa_upgrade_t xhol ds(tx, zp);

3030 err = dmu_tx_assign(tx, TXG NOWMAIT);

3031 if (err) {

3032 if (err == ERESTART)

3033 drmu_t x_wai t (tx);

3034 goto out;

3035 }

3037 count = 0;

3038 /*

3039 * Set each attribute requested.

3040 * We group settings according to the | ocks they need to acquire.
3041 *

3042 * Note: you cannot set ctine directly, although it will be
3043 * updated as a side-effect of calling this function.

3044 */

3047 if (mask & (AT_Ul D AT_G D AT_MXDE))

3048 mut ex_ent er (&p->z_acl _| ock);

3049 mut ex_ent er (&p->z_| ock) ;

3051 SA _ADD BULK_ATTR(bul k, count, SA ZPL_FLAGS(zfsvfs), NULL,

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 38
3052 & p->z_pflags, sizeof (zp->z_pflags));

3054 if (attrzp) {

3055 if (mask & (AT_U D] AT_G D] AT_MODE) )

3056 nut ex_enter (&attrzp->z_acl _| ock);

3057 nmut ex_enter (&attrzp->z_| ock);

3058 SA _ADD BULK_ATTR(xattr_bul k, xattr_count,

3059 SA_ZPL_FLAGS( zf svfs), NULL, &attrzp->z_pflags,

3060 sizeof (attrzp->z pflags));

3061 }

3063 if (mask & (AT_U D AT_GD)) {

3065 if (mask & AT_UD) {

3066 SA ADD BULK_ATTR(bul k, count, SA ZPL_ U D(zfsvfs), NULL,
3067 &new_ui d, sizeof (new_uid));

3068 zp->z_uid = new_uid;

3069 if (attrzp)

3070 SA_ADD BULK_ATTR(xattr_bul k, xattr_count,
3071 SA ZPL_U D( zf svfs), NULL, &new_uid,
3072 si zeof (new_uid));

3073 attrzp->z_uid = new_uid,

3074 }

3075 }

3077 if (mask & AT. @D {

3078 SA_ADD_BULK_ATTR( bul k, count, SA ZPL_d D(zfsvfs),
3079 NULL, &new_gid, sizeof (new_gid));

3080 zp->z_gid = new_gid;

3081 if (attrzp)

3082 SA_ADD BULK_ATTR(xattr_bul k, xattr_count,
3083 SA_ZPL_Q D(zfsvfs), NULL, &new gid,
3084 si zeof (new_gid));

3085 attrzp->z_gid = new_gid;

3086 }

3087 }

3088 if (!(mask & AT_MODE)) {

3089 SA_ADD_BULK_ATTR(bul k, count, SA ZPL_MODE( zf svfs),
3090 NULL, &new node, sizeof (new_node));

3091 new_node = zp- >z_m)de;

3092 }

3093 err = zfs_acl _chown_setattr(zp);

3094 ASSERT(err == 0);

3095 if (attrzp) {

3096 err = zfs_acl _chown_setattr(attrzp);

3097 ASSERT(err == 0);

3098 }

3099 }

3101 if (mask & AT_ {

3102 SA_ADD BULK _ATTR(bul k, count, SA ZPL_MODE(zfsvfs), NULL,
3103 &new node, sizeof (new_node));

3104 zp->z_node = new_node;

3105 ASSERT3U( (ui ntptr. t)acl p, !'=, NULL);

3106 err = zfs_acl set_common(zp, aclp, cr, tx);

3107 ASSERTO(err);

3108 if (zp->z_acl _cached)

3109 zfs_acl _free(zp->z_acl _cached);

3110 zp->z_acl _cached = acl p;

3111 acl p = NULL;

3112 1

3115 if (mask & AT_ATIME) {

3116 ZFS_TI ME_ENCODE( &ap->va_atime, zp->z_atinme);

3117 SA _ADD BULK_ATTR(bul k, count, SA ZPL_ATI NE(zf svfs), NULL,



new usr/src/uts/comon/fs/zfs/zfs_vnops.c

3118 & p->z_atinme, sizeof (zp->z_atine));

3119 1

3121 if (mask & AT_MIIME) {

3122 ZFS_TI ME_ENCODE( &ap->va_ntinme, ntine);

3123 SA _ADD BULK_ATTR(bul k, count, SA ZPL_MIl ME(zf svfs), NULL,
3124 minme, sizeof (rmrre));

3125 }

3127 /* XXX - shouldn’t this be done *before* the ATI ME/ MIl ME checks? */
3128 if (mask & AT _SIZE && ! (mask & AT_MIIME)) {

3129 SA ADD BULK_ATTR(bul k, count, SA ZPL_MII ME( zf svfs),

3130 NULL, ntine, si zeof (nti ma))

3131 SA _ADD BULK_ATTR(bul k, count, SA ZPL_CTI ME(zf svfs), NULL,
3132 &ctime, sizeof (cti me));

3133 zfs_tstanp_updat e_setup(zp, CONTENT_MODI FI ED, ntine, ctine,
3134 B_TRUE) ;

3135 } else if (mask !'= 0) {

3136 SA_ADD_BULK_ATTR(bul k, count, SA ZPL_CTI ME(zfsvfs), NULL,
3137 &ctime, sizeof (ctine));

3138 zfs_tstanp_updat e_setup(zp, STATE CHANGED, ntine, ctine,
3139 B _TRUE);

3140 if (attrzp) {

3141 SA_ADD_BULK_ATTR(xattr_bul k, xattr_count,

3142 SA_ZPL_CTI ME( zf svfs), NULL,

3143 &ctinme, sizeof (ctime));

3144 zfs_tstanp_update_setup(attrzp, STATE_CHANGED,
3145 ntine, ctinme, B TRUE);

3146 }

3147 }

3148 /*

3149 * Do this after setting timestanps to prevent tinmestanp

3150 * update fromtoggling bit

3151 */

3153 if (xoap & (mask & AT _XVATTR)) {

3155 /*

3156 * restore trimmed off masks

3157 * so that return nasks can be set for caller.

3158 */

3160 if (XVA | SSET_REQ &t npxvattr, XAT_APPENDONLY)) {

3161 XVA_SET_REQ(xvap, XAT_APPENDONLY)

3162 }

3163 1 (XVA_I SSET_REQ( & npxvattr, XAT_NOUNLINK)) {

3164 XVA_SET_REQ(xvap, XAT_NOUNLI NK);

3165 }

3166 if (XVA_| SSET_REQ &t npxvattr, XAT_I MMUTABLE)) {

3167 ) XVA_SET_REQ(xvap, XAT_| MMUTABLE) ;

3168

3169 if (XVA | SSET_REQ &t npxvattr, XAT_NODUWP)) {

3170 XVA_SET_REQ(xvap, XAT_NCDUMP) ;

3171 }

3172 1 (XVA_I SSET_REQ( & npxvattr, XAT_AV_MODI Fl ED)) {

3173 XVA_SET_REQ(xvap, XAT_AV_MODI FI ED);

3174 }

3175 if (XVA | SSET_REQ & npxvattr, XAT_AV. QUARANTl NED)) {
3176 XVA_SET_REQ(xvap, XAT_AV_QUARANTI NED);

3177 }

3179 if (XVA_I SSET_REQ xvap, XAT_AV_SCANSTAMP))

3180 ASSERT(vp->v_type == VREG;

3182 zfs_xvattr_set(zp, xvap, tx);

3183 }

39

new usr/src/uts/comon/ fs/zfs/zfs_vnops.c

3185 if (fuid_dirtied)

3186 zfs_fuid_sync(zfsvfs, tx);

3188 if (mask !'= 0)

3189 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, nask,
3191 nut ex_exi t (&p->z_| ock);

3192 if (mask & (AT_UID| AT_ GD|AT MCDE) )

3193 mut ex_exi t (&p->z_acl _| ock);

3195 if (attrzp) {

3196 if (mask & (AT_U D| AT_G D| AT_ )

3197 mut ex_exit(&attrzp->z_acl _| ock);
3198 mut ex_exit(&attrzp->z_| ock);

3199 }

3200 out:

3201 if (err == 0 &% attrzp)

3202 err2 = sa_bul k_update(attrzp->z_sa_hdl, xattr_bulk,
3203 xattr_count, tx);

3204 ASSERT(err2 == 0);

3205 }

3207 if (attrzp)

3208 VN_RELE(ZTOV(attrzp));

3210 #endif /* ! codereview */

3211 if (aclp)

3212 zfs_acl _free(acl p);

3214 if (fuidp) {

3215 zfs_fuid mfofree(fwdp)

3216 fui dp NULL;

3217 }

3219 if (err) {

3220 dmu_t x_abort (tx);

3221 if (err == ERESTART)

3222 goto top;

3223 } else {

3224 err2 = sa_bul k_updat e(zp->z_sa_hdl, bulk, count, tx);
3225 dnmu_t x_commi t (tx);

3226 }

3228 out 2:

3229 if (zfsvfs->z_os->0s_sync == ZFS_SYNC_ALVAYS)

3230 zil _commit(zilog, 0);

3232 ZFS_EXI T(zfsvfs);

3233 return (err);

3234 }

3236 typedef struct zfs_zlock {

3237 krw ock_t *zl _rw ock; /* lock we acquired */
3238 znode_t *z| _znode; /* znode we held */
3239 struct zfs_zlock *zl _next; /* next in list */

3240 } zfs_zlock_t;

3242 [ *

3243 * Drop |l ocks and rel ease vnodes that were
3244 */

3245 static void

3246 zfs_renanme_unl ock(zfs_zl ock_t **zl pp)

3247 {

3248 zfs_zlock_t *zl;

hel d by zfs_renanme_| ock().

fuidp);



new usr/src/uts/comon/fs/zfs/zfs_vnops.c 41 new usr/src/uts/comon/ fs/zfs/zfs_vnops.c
3250 while ((zl = *zl pp) I'= NULL) {
3251 if (zl- znode != NULL) 3317 if (rw == RWREADER) { /* i.e. not the first pass */
3252 VN_RELE( ZTOV( zl - >zl _znode)) ; 3318 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3253 rw_exit(zl->zl _rw ock); 3319 if (error)
3254 *zl pp = zl->zl _next; 3320 return (error);
3255 kmem free(zl, si zeof (*zl)); 3321 z| ->z| _znode = zp;
3256 } 3322 }
3257 } 3323 (void) sa_l ookup(zp->z_sa_hdl, SA ZPL_PARENT(zp->z_zfsvfs),
3324 &oi dp, sizeof (oidp));
3259 /* 3325 rwp = &p->z_parent _| ock,
3260 * Search back through the directory tree, using the ".." entries. 3326 rw = RW READER;
3261 * Lock each directory in the chain to prevent concurrent renames.
3262 * Fail any attenpt to npbve a directory into one of its own descendants. 3328 } while (zp->z_id != sdzp->z_id);
3263 * XXX - z_parent_|lock can overlap with map or grow | ocks
3264 */ 3330 return (0);
3265 static int 3331 }
3266 zfs_renanme_| ock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zl pp)
3267 { 3333 /*
3268 zfs_zl ock_t *zl; 3334 * Move an entry fromthe provided source directory to the target
3269 znode_t *zp tdzp 3335 * directory. Change the entry nane as indicated.
3270 ui nt64_t rootid = zp >z_zfsvfs->z_root; 3336 *
3271 ui nt 64_t oidp = zp->z_id; 3337 * I'N: sdvp - Source directory containing the "old entry".
3272 krw ock_t *rip = &szp-. >z _parent _| ock; 3338 * snm - dd entry nane.
3273 krw_t rw = RWWRI TER 3339 * tdvp - Target directory to contain the "new entry".
3340 * tnm - New entry name.
3275 /* 3341 * cr - credentials of caller.
3276 * First pass wite-locks szp and conpares to zp->z_id. 3342 * ct - caller context
3277 * Later passes read-lock zp and conpare to zp->z_parent. 3343 * flags - case flags
3278 */ 3344 *
3279 do { 3345 * RETURN: O on success, error code on failure.
3280 if (!rw_tryenter(rwp, rw)) { 3211 * RETURN: 0 if success
3281 /* 3212 * error code if failure
3282 * Another thread is renaming in this path. 3346 *
3283 * Note that if we are a WRITER we don’t have any 3347 * Tinestanps:
3284 * parent _|l ocks held yet. 3348 * sdvp,tdvp - ctine|ntine updated
3285 */ 3349 *
3286 if (rw== RWREADER && zp->z_id > szp->z_id) { 3350 /* ARGSUSED*/
3287 /* 3351 static int
3288 * Drop our |ocks and restart 3352 zfs_renane(vnode_t *sdvp, char *snm vnode_t *tdvp, char *tnm cred_t *cr,
3289 */ 3353 caller_context _t *ct, int flags)
3290 zf s_renanme_unl ock( &zl ); 3354 {
3291 *zI pp = NULL; 3355 znode_t *tdzp, *szp, *tzp;
3292 zp = tdzp; 3356 znode_t *sdzp = VTOZ(sdvp);
3293 oldp = zp->z_id; 3357 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs;
3294 rwp = &zp->z_parent _| ock; 3358 zilog_t *zil og;
3295 rw = RWWRI TER, 3359 vnode_t *real vp;
3296 conti nue; 3360 zfs_dirlock_t *sdl, *tdl;
3297 } else { 3361 drmu_t x_t *tX;
3298 /* 3362 zfs_zl ock_t *zl;
3299 * Wait for other thread to drop its |ocks 3363 int cnp, serr, terr;
3300 2f 3364 int error = 0;
3301 rwenter(rwp, rw; 3365 int zflg = 0;
3302 }
3303 } 3367 ZFS_ENTER( zf svfs);
3368 ZFS_VERI FY ZP(sdzp)
3305 zl = kmem_ al | oc(si zeof (*zl), KM SLEEP); 3369 zilog = zfsvfs->z_| og;
3306 zl ->zl _rw ock = rw p;
3307 zl - >zl _znode = NULL; 3371 /*
3308 zl ->z| _next = *zl pp; 3372 * Make sure we have the real vp for the target directory.
3309 *zlpp = zl; 3373 */
3374 if (VOP_REALVP(tdvp, & ealvp, ct) == 0)
3311 if (oidp == szp->z_id) /* W're a descendant of szp */ 3375 tdvp = real vp;
3312 return (SET_ERROR(EI NVAL));
3377 if (tdvp->v_vfsp !'= sdvp->v_vfsp || zfsctl_is_node(tdvp)) {
3314 if (oidp == rootid) /* W’ve hit the top */ 3378 ZFS_EXI T(zfsvfs);
3315 return (0); 3379 return (SET_ERROR(EXDEV));




new usr/src/uts/comon/fs/zfs/zfs_vnops.c

3380

3382
3383
3384
3385
3386
3387
3388

3390
3391

3393
3394
3395
3396

3398
3399
3400
3401
3402
3403
3404
3405
3406

3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423

3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445

top:

}

tdzp = VIQZ(tdvp);
ZFS_VERI FY_ZP(tdzp);
if (zfsvfs->z_utf8 && u8_validate(tnm
strlien(tnm, NULL, US_VALIDATE ENTIRE, &error) < 0) {
ZFS_EXI T(zfsvfs);
) return (SET_ERROR(EILSEQ);

if (flags & FI GNORECASE)
zflg | = ZC LOOK;

szp = NULL;
tzp = NULL;
zl = NULL;
/*

* This is to prevent the creation of links into attribute space

* by renanming a linked file into/outof an attribute directory.

* See the comment in zfs_link() for why this is considered bad.

*

/
if ((tdzp >z _pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS XATTR)) {

S_EXI T(zfsvfs);
return (SET_ERRO?(EI NVAL) ) ;

*

* Lock source and target directory entries. To prevent deadl ock,
* a lock ordering nust be defined. W lock the directory with

* the smallest object id first, or if it’s atie, the one with

* the lexically first nane.

*/

if (sdzp >z |d < tdzp->z_id) {
-1;
} else |f (sdzp >z_id > tdzp->z_id) {
cmp = 1;
} else {
/*
* First conpare the two name arguments w thout
* consi dering any case fol ding.

*/

int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER) ;

cnp = u8_strcnmp(snm tnm 0, nofold, U8_UNI CODE_LATEST, &error);

ASSERT(error == 0 || !zfsvfs->z_utf8);
if (cnp == 0) {
/*

* POSIX: "If the old argunent and the new ar gument
* both refer to links to the same existing file,
* the renane() function shall return successful ly
* and performno other action.
*

/

ZFS_EXI T(zfsvfs);
return (0);

—_~—

* Ok % ok % ok Xk ok %

If the file systemis case-folding, then we nmay
have sonme nore checking to do. A case-folding file
systemis either supporting m xed case sensitivity
access or is conpletely case-insensitive. Note
that the file systemis always case preserving.

In mxed sensitivity nbde case sensitive behavior
is the default. FlI GNORECASE nust be used to

43

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 44
3446 * explicitly request case insensitive behavior.

3447 *

3448 * |f the source and target nanes provided differ only
3449 * by case (e.g., a request to rename 'tim to 'Tim),
3450 * we will treat this as a special case in the

3451 * case-insensitive node: as long as the source nane
3452 * is an exact match, we will allow this to proceed as
3453 * a name- change request.

3454 *

3455 if ((zfsvfs->z_case == ZFS_CASE_|I NSENSI Tl VE | |

3456 (zfsvfs->z_case == ZFS_CASE_M XED &&

3457 flags & Fl GNCRECASE)) &&

3458 u8_strcnmp(snm tnm 0, zfsvfs->z_norm US_UN CODE_LATEST,
3459 &error) == 0) {

3460 /*

3461 * case preserving renane request, require exact
3462 * nane mat ches

3463 */

3464 zfl g | = ZCl EXACT;

3465 zfl g & ~ZCl LOXK;

3466 }

3467 }

3469 *

3470 * |If the source and destination directories are the sane, we should
3471 * grab the z_nanme_|l ock of that directory only once.

3472 */

3473 if (sdzp dzp) {

3474 |— ZHAVEL OCK;

3475 rw_ent er (&sdzp->z_nane_| ock, RW READER);

3476 }

3478 if (cmp < 0) {

3479 serr = zfs_dirent_l ock(&sdl, sdzp, snm &szp,

3480 ZEXISTS | zflg, NULL, NULL);

3481 terr = zfs_dirent _| ock(&tdl,

3482 tdzp, tnm & zp, ZRENAM NG | zflg, NULL, NULL)
3483 } else {

3484 terr = zfs_dirent _| ock(&tdl,

3485 tdzp, tnm & zp, zflg, NULL, NULL);

3486 serr = zfs_dirent_| ock(&sdl,

3487 sdzp, snm &szp, ZEXISTS | ZRENAM NG | zflg,

3488 NULL, NULL)

3489 1

3491 if (serr) {

3492 /*

3493 * Source entry invalid or not there.

3494 *

3495 if (Iterr) {

3496 zfs_dirent _unl ock(tdl);

3497 if (tzp)

3498 VN_RELE( ZTOV(t zp) ) ;

3499 }

3501 if (sdzp == tdzp)

3502 rw_exit(&sdzp->z_nane_| ock);

3504 if (strenp(snm "..") == 0)

3505 serr = SET. ERROR( El NVAL) ;

3506 ZFS_EXI T( zf svf s);

3507 return (serr);

3508 }

3509 if (terr) {

3510 zfs_dirent_unl ock(sdl);

3511 VN_RELE(ZTOV(szp));



new usr/src/uts/comon/fs/zfs/zfs_vnops.c 45

3513 if (sdzp == tdzp)

3514 rw_exit(&dzp->z_nane_| ock);

3516 if (strcrrp(tnm ") 0)

3517 terr = SET. ERROR( El NVAL) ;

3518 ZFS_EXI T( zf svf s);

3519 return (terr);

3520 }

3522 /*

3523 * Must have wite access at the source to renpve the old entry
3524 * and wite access at the target to create the new entry.
3525 * Note that if target and source are the same, this can be
3526 * done in a single check.

3527 */

3529 if (error = zfs_zaccess_renanme(sdzp, szp, tdzp, tzp, cr))
3530 goto out;

3532 if (ZTOV(szp)->v_type == VDIR) {

3533 I*

3534 * Check to meke sure renanme is valid.

3535 * Can’t do a nove like this: /usr/a/b to /usr/a/b/c/d
3536 */

3537 if (error = zfs_renanme_| ock(szp, tdzp, sdzp, &zl))
3538 goto out;

3539 }

3541 /*

3542 * Does target exist?

3543 */

3544 if (tzp) {

3545 /*

3546 * Source and target nust be the sane type.

3547 *

3548 if (ZTOV(szp)->v_type == VDIR) {

3549 if (ZTOV(tzp)->v_type != VD R)

3550 error = SET_ERROR(ENOTDI R) ;

3551 goto out;

3552

3553 } else {

3554 if (ZTOV(tzp)->v_type == VDIR) {

3555 error = SET_ERROR(EISDIR);

3556 goto out;

3557 }

3558 }

3559 /*

3560 * POSI X dictates that when the source and target
3561 * entries refer to the same file object, rename
3562 * must do nothing and exit w thout error.

3563 */

3564 if (szp- >zrd——tzp >z_id) {

3565 error = 0O;

3566 goto out;

3567 }

3568 1

3570 vnevent _renane_src(ZTOV(szp), sdvp, snm ct);

3571 if (tzp)

3572 vnevent _renane_dest (ZTOV(tzp), tdvp, tnm ct);
3574 /*

3575 * notify the target directory if it is not the sanme
3576 * as source directory.

3577 */

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 46
3578 if (tdvp != sdvp) {

3579 vnevent _renane_dest _dir(tdvp, ct);

3580 }

3582 tx = dnu_t x_create(zfsvfs->z_os);

3583 dmr _tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);

3584 dmu_t x_hol d_sa(tx, sdzp->z_sa_ hdl B_FALSE);

3585 dmu_t x_hol d_zap(tx, sdzp->z_id, FALSE, snm ;

3586 dmu_tx_hol d_zap(tx, tdzp->z_id, TRUE, tnn);

3587 if (sdzp !'= tdzp) {

3588 dmu_t x_hol d_sa(tx, tdzp->z_sa_hdl, B_FALSE);

3589 zfs_sa_upgrade_t xhol ds(tx, tdzp);

3590 }

3591 if (tzp) {

3592 dmu_t x_hol d_sa(tx, tzp->z_sa_hdl, B_FALSE);

3593 zfs_sa_upgrade_t xhol ds(tx, tzp);

3594 }

3596 zfs_sa_upgrade_t xhol ds(tx, szp);

3597 dmu_t x_ hol d_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);

3598 error = dnu_tx_assign(tx, TXG NOMIT);

3599 if (error) {

3600 if (zI !'= NULL)

3601 zfs_renanme_unl ock( &zl);

3602 zfs_dirent _unl ock(sdl);

3603 zfs_dirent _unl ock(tdl);

3605 if (sdzp == tdzp)

3606 rw_exit(&sdzp->z_nane_| ock);

3608 VN_RELE( ZTOV(szp));

3609 if (tzp)

3610 VN_RELE(ZTOV(t zp));

3611 if (error == ERESTART) {

3612 drmu_t x_wai t (tx);

3613 drmu_t x_abort (tx);

3614 goto top;

3615 }

3616 drmu_t x_abort (tx);

3617 ZFS EXI T(zfsvfs);

3618 return (error);

3619 }

3621 if (tzp) /* Attenpt to renpve the existing target */

3622 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);

3624 if (error == 0) {

3625 error = zfs_link_create(tdl, szp, tx, ZRENAM NG ;

3626 if (error == 0)

3627 szp->z_pflags | = ZFS_AV_MID Fl ED;

3629 error = sa_update(szp->z_sa_hdl, SA ZPL_FLAGS(zfsvfs),
3630 (void *)&szp->z_pfl ags, “si zeof (uint64_t), tx);
3631 ASSERTO(error);

3633 error = zfs_l ink_destroy(sdl, szp, tx, ZRENAM NG NULL);
3634 if (error == 0) {

3635 zfs_log_rename(zilog, tx, TX RENAME |

3636 (flags & FIGNORECASE ? TX_C : 0), sdzp,
3637 sdl ->dl _nane, tdzp, tdl->dl_nane, szp);
3639 /*

3640 * Update path information for the target vnode
3641 */

3642 vn_renanepat h(tdvp, ZTOV(szp), tnm

3643 strien(tnm);



new usr/src/uts/comon/fs/zfs/zfs_vnops.c

3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661

3663
3664
3665
3666

3668
3669

3671
3672

3675
3676
3677

3679
3680

3682
3683
3684

3686
3687
3688
3689
3690
3691
3559
3692
3693
3694
3695
3696
3564
3565
3697
3698
3699
3700
3701
3702
3703
3704

} else {
/
At this point,
the target nane, but have failed to renove
the source nane.
with the ZRENAM NG fl ag, there are
conplications; for one, the link count is
wrong. The easiest way to deal with this
is to renove the newy created target, and
return the original error. This nust
succeed;
fail, since we just created it.

* Ok ok ok k ok % ok * ok

*/
VERI FY3U(zfs_link_destroy(tdl, szp, tx,
ZRENAM NG NULL), ==, 0);

}

dmu_t x_commi t (tx);

out:

I T T

*/

if (zl !'= NULL)
zfs_renanme_unl ock(&zl);

zfs_dirent_unl ock(sdl);
zfs_dirent_unl ock(tdl);

if (sdzp == tdzp)
rw eX|t(&sdzp >z_nane_| ock) ;

VN_RELE(ZTOV(szp));
if (tz
VN_RELE(ZTOV(t zp))

if (zfsvfs->z_o0s->0s_sync == ZFS_SYNC_ALWAYS)
zil _commit(zilog, 0);

ZFS_EXI T(zf svfs);
return (error);

Insert the indicated synbolic reference entry into the directory.

I'N: dvp - Directory to contain new synbolic |ink.
i nk - Name for new symink entry.
vap - Attributes of new entry.
target - Target path of new symink.
cr - credentials of caller.
ct - caller context
flags - case flags

RETURN: 0 on success,
RETURN: O if success
error code if failure

error code on failure.

Ti mest anps:
dvp - ctine|ntinme updated

| * ARGSUSED* /
static int

zfs_sym ink(vnode_t *dvp, char *nane,

3705 {

3706

vattr_t *vap, char *link, cred_t *cr,

cal l er_context _t *ct, int flags)

znode_t *zp, *dzp = VTIQZ(dvp);

we have successfully created

Since the create was done

fortunately, it is very unlikely to

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 48
3707 zfs_dirlock_t *dl ;

3708 drmu_tx_t *tX;

3709 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;

3710 zilog_t *zil og;

3711 ui nt 64_t len = strlen(link);

3712 int error;

3713 int zflg = ZNEW

3714 zfs_acl _ids_t acl _i ds;

3715 bool ean_t fuid_dirtied;

3716 ui nt 64_t txtype = TX_SYM.I NK;

3718 ASSERT(vap->va_type == VLNK);

3720 ZFS_ENTER( zf svfs);

3721 ZFS_VER| FY_ZP(dzp) ;

3722 zilog = zfsvfs- >z_| 0g;

3724 if (zfsvfs->z_utf8 && u8_validate(nanme, strlen(nane),
3725 NULL, US_VALI DATE ENTIRE, &error) < 0) {

3726 ZFS EXI T(zfsvfs);

3727 return (SET_| ERRCR( EILSEQ);

3728 }

3729 if (flags & FI GNORECASE)

3730 zflg | = ZQ LOXK;

3732 if (len > MAXPATHLEN) {

3733 ZFS_EXI T(zf svfs);

3734 return ( SET_ERROR( ENAMETOOLONG) ) ;

3735 }

3737 if ((error = zfs_acl _ids_create(dzp, O,

3738 vap, cr, NULL, &acl _ids)) !'=0) {

3739 ZFS_EXI T(zf svfs);

3740 return (error);

3741 1

3742 top

3743 *

3744 * Attenpt to lock directory; fail if entry already exists.
3745 */

3746 error = zfs_dirent _| ock(&dl, dzp, nane, &zp, zflg, NULL, NULL);
3747 if (error)

3748 zfs_acl _ids_free(&acl _ids);

3749 ZFS_EXI T(zfsvfs);

3750 return (error);

3751 }

3753 if (error = zfs_zaccess(dzp, ACE ADD FILE, 0, B FALSE, cr)) {
3754 zfs_acl _ids_free(&acl _ids);

3755 zfs_dirent _unl ock(dl);

3756 ZFS EXI T(zfsvfs);

3757 return (error);

3758 }

3760 if (zfs_acl _ids_overquota(zfsvfs, &acl_ids)) {

3761 zfs_acl _ids_free(&acl _ids);

3762 zfs_dirent_unl ock(dl);

3763 ZFS_EXI T(zFsvfs)

3764 return ( SET_ERROR(EDQUQT));

3765

3766 = dmu_t x_create(zfsvfs->z_os);

3767 fmd dirtied = zfsvfs->z fuid dlrty

3768 dmu_t'x_hol d_write(tx, DMJ NEWOBJECT, 0, MAX(1, len));
3769 dmu_t x_hol d_zap(tx, dzp->z_id, TRUE, nane);

3770 drmu_t x_hol d_sa_create(tx, acl_ids.z_acl p->z_acl_bytes +
3771 TZFS_SA BASE_ATTR SI ZE + len);

3772 dmu_t x_hol d_sa(tx, dzp->z_sa_hdl, B_FALSE);



new usr/src/uts/comon/fs/zfs/zfs_vnops.c

3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791

3793
3794
3795
3796
3797

3799
3800

3802
3803
3804
3805
3806
3807
3808

3810
3811
3812
3813
3814
3815
3816

3818
3819
3820
3822
3824
3826
3828

3830
3831

3833
3834
3835 }

3837 /
3838

if (!zfsvfs->z_use_sa && acl _ids.z_acl p->z_acl _bytes > ZFS ACE_SPACE) {
dmu_t x_hol d_write(tx, DMJ_NEW OBJECT, O,
acl _ids. z_acl p->z_acl _bytes);

}
if (fuid_dirtied)
zfs_fuid_txhol d(zfsvfs, tx);
error = dnu_tx_assign(tx, TXG NOMIT);
if (error)
zfs_dirent _unl ock(dl);
if (error == ERESTART) {
drmu_t x_wai t (tx);
dmu_t x_abort (tx);
goto top;

zfs_acl _ids_free(&acl _ids);
dmu_t x_abort (tx);

ZFS_EXI T(zfsvfs);

return (error);

}

/*

* Create a new object for the symink.

* for version 4 ZPL datsets the symink will be an SA attribute
*

zfs_nknode(dzp, vap, tx, cr, 0, &p, &acl_ids);

if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);

mut ex_ent er (&zp->z_| ock) ;
if (zp->z_is_sa)
error = sa_update(zp->z_sa_hdl, SA ZPL_SYM.I NK(zfsvfs),
link, len, tx);
el se
zfs_sa_symink(zp, link, len, tx);
mut ex_exi t (&p->z_l ock);

zp->z_size = |en;
(void) sa_update(zp->z_sa_hdl, SA ZPL_SI ZE(zfsvfs),
& p->z_size, sizeof (zp->z_size), tx);
/*
* |Insert the new object into the directory.
*
/
(void) zfs_link_create(dl, zp, tx, ZNEW;
if (flags & Fl GNORECASE)
txtype | = TX C;
zfs_log_symink(zilog, tx, txtype, dzp, zp, nanme, link);
zfs_acl _ids_free(&acl _ids);
drmu_t x_commi t (tx);
zfs_dirent _unl ock(dl);
VN_RELE(ZTOV(zp)) ;

if (zfsvfs->z_os->0s_sync == ZFS_SYNC_ALVAYS)
zil _commit(zilog, 0);

ZFS_EXI T(zf svfs);
return (error);

*

* Return, in the buffer contained in the provided uio structure,

49

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

3839 * the synbolic path referred to by vp.

3840 *

3841 * I'N: vp - vnode of symbolic Iink.

3842 * ui o - structure to contain the link path
3711 * uoi p - structure to contain the link path
3843 * cr - credentials of caller.

3844 * ct - caller context

3845 *

3846 * QUT: ui o - structure containing the link path
3715 * QUT: ui o - structure to contain the link path
3847 *

3848 * RETURN: 0 on success, error code on failure.

3717 * RETURN: O if success

3718 * error code if failure

3849 *

3850 * Tinestanps:

3851 * vp - atinme updated

3852 */

3853 /* ARGSUSED */

3854 static int

3855 {zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3856

3857 znode_t *zp = VIQZ(vp);

3858 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

3859 int error;

3861 ZFS_ENTER( zf svfs);

3862 ZFS_VERI FY_ZP( zp)

3864 mut ex_ent er (&zp->z_| ock) ;

3865 if (zp->z_is_sa)

3866 error = sa_l ookup_ui o(zp->z_sa_hdl,

3867 SA_ZPL_SYM.I NK( zf svfs), uio);

3868 el se

3869 error = zfs_sa_readlink(zp, uio);

3870 mut ex_exi t (&p->z_l ock);

3872 ZFS_ACCESSTI ME_STAMP( zf svfs, zp);

3874 ZFS_EXI T(zfsvfs)

3875} return (error);

3876

3878 /*

3879 * Insert a newentry into directory tdvp referencing svp.
3880 *

3881 * I'N: tdvp - Directory to contain new entry.
3882 * svp - vnode of new entry.

3883 * name - nane of new entry.

3884 * cr - credentials of caller.

3885 * ct - caller context

3886 *

3887 * RETURN: 0 on success, error code on failure.

3757 * RETURN: O if success

3758 * error code if failure

3888 *

3889 * Tinestanps:

3890 * tdvp - ctime|ntime updated

3891 * svp - ctine updated

3892 */

3893 /* ARGSUSED */

3894 static int

3895 zfs_link(vnode_t *tdvp, vnode_t *svp, char *nane, cred_t *cr,
3896 call er_context_t *ct, int flags)

3897 {

3898 znode_t *dzp = VIQZ(tdvp);



new usr/src/uts/comon/fs/zfs/zfs_vnops.c 51

3899
3900
3901
3902
3903
3904
3905
3906
3907
3908

3910

3912
3913
3914

3916
3917

3919
3920
3921
3922
3923
3924
3925
3926

3928
3929
3930
3931

3933
3934

3936

3938
3939
3940
3941
3942
3943
3944
3945
3946

3948
3949
3950
3951
3952
3953
3954

3956
3957
3958
3959
3960
3961
3962
3963
3964

znode_t *tzp, *szp;

zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
zilog_t *zil og;

zfs_dirlock_t *dl ;

dmu_t x_t *tX;

vnode_t *real vp;

int error;

int zf = ZNEW

ui nt 64_t parent;

uid_t owner ;

ASSERT(t dvp->v_type == VDIR);

ZFS_ENTER( zf svfs);
ZFS_VERI FY_ZP( dzp)
zilog = zfsvfs->z I 0g;

if (VOP_REALVP(svp, & ealvp, ct) == 0)
svp = real vp;

/*
* POSI X dictates that we return EPERM here.
* Better choices include ENOTSUP or El SDI R
*/
if (svp->v_type == VDIR) {
ZFS_EXI T(zfsvfs);
return (SET_ ERRCR(EPERI\/p);

}

if (svp->v_vfsp !'= tdvp->v_vfsp || zfsctl_is_node(svp)) {
ZFS_EXI T(zf svfs);
return ( SET_ERROR(EXDEV));

}

szp = VTQZ(svp);
ZFS_VERI FY_ZP(szp);

/* Prevent links to .zfs/shares files */

if ((error = sa_l ookup(szp->z_sa_hdl, SA ZPL_PARENT(zfsvfs),
&parent, sizeof (uint64_t))) != O) {
ZFS_EXI T(zfsvfs);
return (error);

if (parent == zfsvfs->z_shares_dir) {
ZFS_EXI T(zfsvfs);
return (SET_ERROR(EPERM));

if (zfsvfs->z_utf8 && u8_validate(nane,
strlen(nane), NULL, UB_VALIDATE ENTIRE, &error) < 0) {
ZFS_EXI T(zf svf s)
return (SET_ERROR(EILSEQ);

}
if (flags & FlI GNORECASE)
zf | = ZCl LOCK;

/'k
* We do not support |inks between attributes and non-attributes
* because of the potential security risk of creating links

* into "nornmal" file space in order to circunvent restrictions
*/inposed in attribute space.

*

f

((szp >z _pflags & ZFS XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
S EXI T(zf svfs);
return (SET_| ERRCR(EI NVAL) ) ;

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

3965 }

3968 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OMER);
3969 if (owner !'= crgetuid(cr) &% secpolicy_ “basi ¢ Ilnk(cr) 1= 0) {
3970 ZFS_EXI T(zf svfs);

3971 return (SET_ERROR(EPERM));

3972 }

3974 if (error = zfs_zaccess(dzp, ACE_ADD FILE, 0, B _FALSE, cr)) {
3975 ZFS_EXI T(zfsvfs)

3976 return (error);

3977 }

3979 top

3980 /*

3981 * Attenpt to lock directory; fail if entry already exists.
3982 */

3983 error = zfs_dirent _| ock(&dl, dzp, nane, &t zp, zf, NULL, NULL);
3984 if (error) {

3985 ZFS_EXI T(zfsvfs);

3986 return (error);

3987 1

3989 tx = dnu_tx_create(zfsvfs->z_os);

3990 dmu_t x_hol d_sa(tx, szp->z_sa_hdl, B_FALSE);

3991 dmu_t x_hol d_zap(tx, dzp->z_id, TRUE, nane);

3992 zfs_sa_upgrade_t xhol ds(tx, szp);

3993 zfs_sa_upgrade_t xhol ds(tx, dzp);

3994 error = dnu_tx_assign(tx, TXG_ NOWAI T);

3995 if (error) {

3996 zfs_dirent _unl ock(dl);

3997 if (error == ERESTART) {

3998 dmu_t x_wai t (tx);

3999 drmu_t x_abort (tx);

4000 goto top;

4001

4002 dnu_t x_abort (tx);

4003 ZFS_EXI T(zf svfs);

4004 return (error);

4005 }

4007 error = zfs_link_create(dl, szp, tx, 0);

4009 if (error == 0) {

4010 uint64_t txtype = TX LINK;

4011 if (fl ags & FI GNORECASE)

4012 txtype | = TX Cl;

4013 zfs_log_link(zilog, tx, txtype, dzp, szp, nanme);
4014 }

4016 drmu_t x_commi t (tx);

4018 zfs_dirent _unl ock(dl);

4020 if (error == 0) {

4021 vnevent _|i nk(svp, ct);

4022 }

4024 if (zfsvfs->z_os->0s_sync == ZFS_SYNC_ALWAYS)

4025 zil _commit(zilog, 0);

4027 ZFS_EXI T(zfsvfs);

4028 return (error);

4029 }

__unchanged_portion_onitted_

52



new usr/src/uts/comon/fs/zfs/zfs_vnops.c

4044 | *

4045 * Push a page out to disk, klustering if possible.

4046 *

4047 * I'N: vp - file to push page to.

4048 * pp - page to push.

4049 * flags - additional flags.

4050 * cr - credentials of caller.

4051 *

4052 * QUT: of fp - start of range pushed.

4053 * | enp - len of range pushed.

4054 *

4055 * RETURN: O on success, error code on failure.

3926 * RETURN: O if success

3927 * error code if failure

4056 *

4057 * NOTE: callers nust have |ocked the page to be pushed. On
4058 * exit, the page (and all other pages in the kluster) nust be
4059 *

unl ocked.
4060 */
4061 /* ARGSUSED */
4062 static int
4063 zfs_put apage(vnode_t *vp, page_t *pp, u_offset_t *offp,

53

(ui nt 64_t ) PAGESI ZE) ;

flags);

4064 size_t *lenp, int flags, cred_t *cr)

4065 {

4066 znode_t *zp = VTQZ(vp);

4067 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

4068 dmu_t x_t *tX;

4069 u_offset_t of f, koff;

4070 size_t I en, klen;

4071 int err;

4073 off = pp->p_offset;

4074 | en = PAGESI ZE;

4075 I*

4076 * |f our blocksize is bigger than the page size, try to kluster
4077 * multiple pages so that we wite a full block (thus avoi di ng
4078 * a read-nmodify-wite).

4079 */

4080 if (off < zp->z_size & zp->z_bl ksz > PACESI ZE)

4081 kl en = P2ROUNDUP( (ul ong_t)zp->z_bl ksz, PAGESI ZE);
4082 koff = 1 SP2(klen) ? P2ALI GN(off, (u_offset_t)klen)
4083 ASSERT( kof f <= zp->z_si ze);

4084 if (koff + klen > zp->z_size)

4085 kl en = P2ROUNDUP( zp- >z_si ze - koff,

4086 pp = pvn_wite_kluster(vp, pp, &ff, & en, koff,
4087 }

4088 ASSERT3U( bt op(1 en), ==, btopr(len));

4090 I

4091 * Can’'t push pages past end-of-file.

4092 */

4093 if (off >= zp->z_size) {

4094 /* ignore al | pages */

4095 err = 0;

4096 goto out;

4097 } else if (off +Ien>zp >z_size) {

4098 int npages bt opr (zp->z_size - off);

4099 page_t *trunc;

4101 page_l i st_break(&p, & runc, npages);

4102 /* ignore pages past end of file */

4103 if (trunc)

4104 pvn_write_done(trunc, flags);

4105 len = zp->z_size - off;

4106 }

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

pp.

ne,

0);

4108 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||

4109 zf s_owner _over quot a( zf svfs, zp, B_TRUE)) {

4110 err = SET_ERROR( EDQUOT) ;

4111 goto out;

4112 1

4113 top

4114 tx = dnu_tx_create(zfsvfs->z_os);

4115 dmu_tx_hold_wite(tx, zp->z_id, off, len);

4117 dmu_t x_hol d_sa(tx, zp->z_sa_hdl, B FALSE);

4118 zfs_sa_upgrade_t xhol ds(tx, zp);

4119 err = dmu_tx_assign(tx, TXG NOWAIT);

4120 if (err 1=0) {

4121 if (err == ERESTART) {

4122 dmu_t x_wai t (tx);

4123 dmu_t x_abort (tx);

4124 goto top;

4125 }

4126 dmu_t x_abort (tx);

4127 goto out;

4128 }

4130 if (zp->z_blksz <= PAGESI ZE) {

4131 caddr _t va = zfs_map_ page(pp, S READ);

4132 ASSERT3U(| en, <=, PAGESI ZE);

4133 dnu wrlte(zfsvfs >z_0s, zp->z_id, off, len, va, tx);
4134 zfs_unmap_page(pp, va);

4135 } else {

4136 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, |len,
4137 1

4139 if (err ==0) {

4140 uinté4_t ntinme[2], ctinme[2];

4141 sa_bul k_attr_t bul k[ 3];

4142 int count = O;

4144 SA_ADD_BULK_ATTR(bul k, count, SA ZPL_MII ME(zfsvfs), NULL,
4145 &ntine, 16);

4146 SA_ADD_BULK ATTR(bqu count, SA ZPL_CTI ME(zf svfs), NULL,
4147 &ctinme, 16);

4148 SA_ADD_ BULK ATTR( bul k, count, SA ZPL_FLAGS(zfsvfs), NULL,
4149 &p->z_pflags, 8);

4150 zfs_tstanmp_ update setup(zp, CONTENT_MCDI FI ED, ntine, cti
4151 "B_TRI

4152 zfs_|log_ erte(zfsvfs >z _log, tx, TX WRITE, zp, off, len,
4153 }

4154 drmu_t x_commi t (tx);

4156 out:

4157 pvn_write_done(pp, (err ? B.ERROR: 0) | flags);

4158 if (offp)

4159 *of fp = of f;

4160 if (lenp)

4161 *lenp = len;

4163 return (err);

4164 }

4166 /*

4167 * Copy the portion of the file indicated frompages into the file.
4168 * The pages are stored in a page |list attached to the files vnode.
4169 *

4170 * I'N: vp - vnode of file to push page data to.

4171 * of f - positionin file to put data.

4172 * len - anount of data to wite.

54

tx);



new usr/src/uts/comon/fs/zfs/zfs_vnops.c 55

4173
4174
4175
4176
4177
4049
4050
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194

4196
4197

4199
4200
4201
4202
4203
4204
4205

4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222

4224
4225
4226
4227
4228
4229
4230
4231
4232

4234
4235
4236

* flags - flags to control the operation.
* cr - credentials of caller.

* ct - caller context.

*

* RETURN: O on success, error code on failure.

* RETURN: 0 if success

* error code if failure

*

* Ti mest anps:

* vp - ctine|ntinme updated

*/

/ * ARGSUSED* /

static int

zfs_put page(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,

{

cal l er_context _t

*ct)

znode_t *zp = VIQZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
page_t *pp;

size_t io_len;

u_offset_t io_off;

uint_t bl ksz;

rl_t *rl;

int error = 0;

ZFS_ENTER( zf svfs);
ZFS_VERI FY_ZP(zp)

*

* There's nothing to do if no data is cached.
*
/
if (!vn_has_cached_data(vp)) {
ZFS_EXI T(zfsvfs)
return (0);

*
* Align this request to the file block size in case we kluster.
* XXX - this can result in pretty aggresive |ocking, which can
* inpact sinultanious read/wite access. One option mght be
* to break up long requests (len == 0) into bl ock-by-bl ock

* operations to get narrower |ocking.

*

|

f

z = zp->z_bl ksz;
1 SP2( bl ksz))
io_of f = P2ALI GN_TYPED( of f, bl ksz, u_offset_t);
io_off = 0;
if (len >0 & | SP2(bl ksz))
io_len = P2ROUNDUP_TYPED(| en + (off -

io_off), blksz, size_t);
io_len = 0;

if (io_len == 0) {
/*

* Search the entire vp list for pages >= io_off.
*/

rl = zfs_range_|l ock(zp, io_off, U NT64_MAX, RL_WRI TER);
error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
goto out;

}

rl = zfs_range_l ock(zp, io_off, io_len, RL_WRI TER);

if (off > zp->z_size) {
/* past end of file */
zfs_range_unl ock(rl);

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 56
4237 ZFS_EXI T(zfsvfs);
4238 return (0);
4239 }
4241 len = M N(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4243 for (off = io off; io_off < off +1len; io_off += io_len) {
4244 if ((flags & B_.INVAL) || ((flags & B_ASYNC) == 0)) {
4245 pp = page_| ookup(vp, io_off,
4246 (flags & (B_INVAL | B _FREE)) ? SE_EXCL : SE SHARED);
4247 } else {
4248 pp = page_l ookup_nowait(vp, io_off,
4249 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4250 }
4252 if (pp != NULL && pvn_getdirty(pp, flags)) {
4253 int err;
4255 /*
4256 * Found a dirty page to push
4257 */
4258 err = zfs_putapage(vp, pp, & o_off, & o_len, flags, cr);
4259 if (err)
4260 error = err;
4261 } else {
4262 io_l en = PAGESI ZE;
4263 }
4264 }
4265 out:
4266 zfs_range_unl ock(rl);
4267 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->0s_sync == ZFS_SYNC_ALVAYS)
4268 zil _comm t(zfsvfs->z_log, zp->z_id);
4269 ZFS_EXI T( zf svfs)
4270 return (error);
4271 }
____unchanged_portion_onitted_
4334 | *
4335 * Bounds-check the seek operation.
4336 *
4337 * I'N: vp - vnode seeking within
4338 * oof f - old file offset
4339 * nof f p - pointer to new file offset
4340 * ct - caller context
4341 *
4342 * RETURN: O on success, EINVAL if new of fset invalid.
4215 * RETURN: 0 if success
4216 * EINVAL if new offset invalid
4343 *
4344 |* ARGSUSED */

4345 static int

4346 zfs_seek(vnode_t

4347
4348
4349
4350
4351
4352

4457
4458
4459
4460
4461
4462

{

}
/*

*
*
*
*
*

*vp, offset_t ooff, offset_t *noffp,

caller_context_t *ct)

Return pointers to the pages for the file region [off,

if (vp->v_type == VDIR)
return (0);

)
return ((*noffp < 0 || *noffp > MAXOCFFSET_T) ? EINVAL : 0);

__unchanged_portion_omtted_

off + len]

inthe pl array. |If plsz is greater than len, this function nay
al so return page pointers fromafter the specified region
(i.e. the region [off, off + plsz]). These additional pages are

only returned if they are already in the cache,

or were created as



new usr/src/uts/comon/fs/zfs/zfs_vnops.c 57 new usr/src/uts/comon/fs/zfs/zfs_vnops.c 58

4463 * part of a klustered read. 4527 ASSERT3U( pl sz, >=, PAGESI ZE);

4464 * 4528 pl sz -= PAGESI ZE;

4465 * I'N: vp - vnode of file to get data from 4529 pl ++;

4466 * of f - positionin file to get data from 4530 }

4467 * len - anmpunt of data to retrieve. 4531 }

4468 * pl sz - length of provided page list.

4469 * seg - segment to obtain pages for. 4533 /*

4470 * addr - virtual address of fault. 4534 * Fill out the page array with any pages already in the cache.

4471 * rw - node of created pages. 4535 *

4472 * cr - credentials of caller. 4536 while (plsz > 0 &&

4473 * ct - caller context. 4537 (*pl ++ = page_l ookup_nowai t (vp, off, SE SHARED))) {

4474 * 4538 of f += PAGESI ZE;

4475 * QUT: protp - protection node of created pages. 4539 pl sz -= PAGESI ZE;

4476 * pl - list of pages created. 4540 }

4477 * 4541 out:

4478 * RETURN: 0 on success, error code on failure. 4542 if (err) {

4352 * RETURN: O if success 4543 /*

4353 * error code if failure 4544 * Rel ease any pages we have previously |ocked.

4479 * 4545 */

4480 * Ti nestanps: 4546 while (pl > pl0)

4481 * vp - atinme updated 4547 page_unl ock(*--pl);

4482 */ 4548 } else {

4483 /* ARGSUSED */ 4549 ZFS_ACCESSTI ME_STAMP( zf svfs, zp);

4484 static int 4550 }

4485 zfs_get page(vnode_t *vp, offset_t off, size_t len, uint_t *protp,

4486 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4552 *pl = NULL;

4487 enum seg_rw rw, cred_t *cr, caller_context_t *ct)

4488 { 4554 ZFS_EXI T(zf svfs);

4489 znode_t *zp = VIQZ(vp); 4555 return (err);

4490 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4556 }

4491 page_t **pl0 = pl;

4492 I nt err = 0; 4558 [ *
4559 * Request a nenory map for a section of a file. This code interacts

4494 /* we do our own caching, faultahead is unnecessary */ 4560 * with commpn code and the VM system as foll ows:

4495 if (pl == NULL) 4561 *

4496 return (0); 4562 * - common code calls mmap(), which ends up in smrap_common()

4497 else if (len > plsz) 4563 * - this calls VOP_MAP(), which takes you into (say) zfs

4498 len = plsz; 4564 * - zfs_map() calls as_map(), passing segvn_create() as the call back

4499 el se 4565 * - segvn_create() creates the new segnment and cal | s VOP_ADDVAP()

4500 | en = P2ROUNDUP(| en, PACESI ZE); 4566 * - zfs_addmap() updates z_napcnt

4501 ASSERT(pl sz >= len); 4437 * common code calls nmmap(), which ends up in smmap_conmon()
4438 *

4503 ZFS_ENTER( zf svfs); 4439 * this calls VOP_MAP(), which takes you into (say) zfs

4504 ZFS_VERI FY_ZP(zp); 4440 *
4441 * zfs_map() calls as_map(), passing segvn_create() as the callback

4506 if (protp) 4442 *

4507 *protp = PROT_ALL; 4443 * segvn_create() creates the new segnent and cal | s VOP_ADDVAP()
4444 *

4509 /* 4445 * zfs_addmap() updates z_napcnt

4510 * Loop through the requested range [off, off + |len) |ooking 4567 */

4511 * for pages. If we don't find a page, we will need to create 4568 | * ARGSUSED*/

4512 * a new page and fill it with data fromthe file. 4569 static int

4513 */ 4570 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,

4514 while (len > 0) { 4571 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,

4515 if (*pl = page_| ookup(vp, off, SE SHARED)) 4572 caller_context_t *ct)

4516 *(pl +1) = NULL; 4573 {

4517 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4574 znode_t *zp = VTQZ(vp);

4518 goto out; 4575 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

4519 while (*pl) { 4576 segvn_crargs_t vn_a;

4520 ASSERT3U((*pl)->p_offset, ==, off); 4577 int error;

4521 of f += PAGESI ZE;

4522 addr += PAGESI ZE; 4579 ZFS_ENTER( zf svfs);

4523 if (len>0) { 4580 ZFS_VERI FY_ZP(zp);

4524 ASSERT3U(| en, >=, PAGESI ZE);

4525 I en -= PAGESI ZE; 4582 if ((prot & PROT_WRITE) && (zp->z_pflags &

4526 } 4583 (ZFS_| MMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {




new usr/src/uts/comon/fs/zfs/zfs_vnops.c

4584
4585
4586

4588
4589
4590
4591
4592

4594
4595
4596
4597

4599
4600
4601
4602

4604
4605
4606
4607

4609
4610
4611
4612
4613
4614
4615

4617
4618
4619
4620
4621
4622
4623

4625
4626
4627
4628
4629
4630
4631
4632
4633
4634

4636

4638
4639
4640
4641 }

ZFS_EXI T(zfsvfs);
return ( SET_ERROR(EPERM));
}

if ((prot & (PROT_READ | PROT_EXEC)) &&
(zp->z_pflags & ZFS_AV_QUARANTI NED)) {
ZFS EXI T(zfsvfs);
) return (SET_ERRCR( EACCES) ) ;

if (vp->v_flag & VNOVAP) {
ZFS_EXI T(zfsvfs);
return (SET_ERROR(ENCSYS));

}

if (off <0 |] len > MAXOFFSET_T - off) {
ZFS_EXI T(zfsvfs);
return (SET_ERROR(ENXIO));

}

if (vp->v type = VREG

ZFS_EXI T(zfsvfs);

return (SEI’_ERR(P(ENCDE\/));
}

/*

* If file is |ocked, disallow mapping.

*/

i f (MANDMODE( zp->z_npde) && vn_has_flocks(vp)) {
ZFS_EXI T(zfsvfs);
return (SEF_ERRO?(EAGAIN));

}

as_rangel ock(as);

error = choose_addr(as, addrp, len, off, ADDR VACALIGN, flags);

if (error 1= 0)
as_rangeunl ock(as);
ZFS_EXI T(zfsvfs);
return (error);

}

vn_a.vp = vp;
vn_a.of fset = (u_offset_t)off;
vn_a.type = flags & MAP_TYPE;
vn_a.prot = prot;

vn_a. maxprot = maxprot;
vn_a.cred = cr;

vn_a.anp = NULL;

vn_a.flags = flags & ~MAP_TYPE;
vn_a.szc = 0;
vn_a.lgrp_mempolicy_flags = 0;

error = as_nmap(as, *addrp, len, segvn_create, &vn_a);
as_rangeunl ock(as);

ZFS_EXI T(zfsvfs);
return (error);

__unchanged_portion_omtted_

4694 /
4695
4696
4697
4698
4699

*
* Free or aIIocate space in a file. Currently, this function only

* supports the ‘F_FREESP’ command. However, this command is sonewhat
* misnaned, as its functionality includes t he ability to allocate as
* well as free space.

*

59

new usr/src/uts/comon/ fs/zfs/zfs_vnops.c

4700
4701
4702
4703
4704
4705
4706
4707
4708
4587
4588
4709
4710
4711
4712
4713 /

*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*

/

I'N: vp - vnode of file to free data in.
cmd - action to take (only F_FREESP supported).
bf p - section of file to free/alloc.
flag - current file open node flags.
offset - current file offset.
cr - credentials of caller [UNUSED) .
ct - caller context.

RETURN: O on success, error code on failure.

RETURN: 0 if success
error code if failure

Ti mest anps:
vp - ctine|ntinme updated
ARGSUSED */

4714 static int
4715 zfs_space(vnode_t *vp, int cnd, flock64_t *bfp, int flag,

4716
4717 {
4718
4719
4720
4721

4723
4724

4726
4727
4728
4729

4731
4732
4733
4734

4736
4737
4738
4739

4741
4742

4744
4746

4747
4748 }

of fset _t offset, cred_t *cr, caller_context_t *ct)

znode_t *zp = VTOZ(vp)
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
ui nt 64_t off, len;

int error;

ZFS_ENTER( zf svfs);
ZFS_VERI FY_ZP(zp);

if (cmd != F_FREESP) {

ZFS_EXI T(zfsvfs);

return (SEF_ERRO?(EI NVAL) ) ;
}

if (error = convoff(vp, bfp, 0, offset)) {
ZFS_EXI T(zfsvfs);
return (error);

}

if (bfp->_len < 0) {

ZFS_EXI T(zfsvfs);

return (SET_ERROR(EINVAL));
}

of f
I en

= bfp->l _start;
= bfp->_len; /* 0 means fromoff to end of file */

error = zfs_freesp(zp, off, len, flag, TRUE);

ZFS_EXI T(zfsvfs);
return (error);

__unchanged_portion_onitted_

4922 /
4923
4924
4803
4804
4805
4806
4807
4925

*

* Ok Ok ok kR % O

-~

The snall est read we may consider to |oan out an arcbuf.
This nust be a power of 2.
Tunabl e, both nust be a power of 2.

zcr_blksz_min: the smallest read we nay consider to | oan out an archuf
zcr_blksz_max: if set to less than the file block size, allow |oaning out of

an archbuf for a partial block read

4926 int zcr_blksz_mn = (1 << 10); [/* 1K */

4927 /
4928
4929

*
*

If set to less than the file block size, allow | oaning out of an

* arcbuf for a partial block read. This nust be a power of 2.



new usr/src/uts/comon/fs/zfs/zfs_vnops.c 61

4930 */

4931 #endif /* ! codereview */

4932 int zcr_blksz_max = (1 << 17); [* 128K */

4934 | * ARGSUSED*/

4935 static int

4936 zfs_reqzcbuf(vnode_t *vp, enumuio_rwioflag, xuio_t *xuio, cred_t *cr,
4937 caller_context_t *ct)

4938 {

4939 znode_t *zp = VTQZ(vp);

4940 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

4941 int max_bl ksz = zfsvfs->z_max_bl ksz;

4942 uio_t *uio = &ui 0->xu_uio;

4943 ssize_t size = uio->uio_resid,

4944 of fset _t offset = uio->uio_|offset;

4945 int blksz;

4946 int fullblk, i;

4947 arc_buf _t *abuf;

4948 ssi ze_t maxsi ze;

4949 int preanble, postanble;

4951 if (xuio->xu_type != U OTYPE_ZEROCOPY)

4952 return (SET_ERROR(EINVAL));

4954 ZFS_ENTER( zf svfs);

4955 ZFS_VERI FY_ZP(zp);

4956 switch (ioflag) {

4957 case Ul O_V\RI TE:

4958 /*

4959 * Loan out an arc_buf for wite if wite size is bigger than
4960 * max_bl ksz, and the file's block size is also max_blksz.
4961 */

4962 bl ksz = max_bl ksz;

4963 if (size < blksz || zp->z_blksz != blksz) {

4964 ZFS_EXI T(zfsvfs);

4965 return (SET_ERROR(ElI NVAL));

4966 }

4967 /*

4968 * Caller requests buffers for wite before know ng where the
4969 * wite offset might be (e.g. NFS TCP write).
4970 *

4971 if (offset == -1) {

4972 preanble = 0;

4973 } else {

4974 preanbl e = P2PHASE( of f set, bl ksz);

4975 i1 f (preanble) {

4976 preanbl e = blksz - preanble;

4977 size -= pr earrbl e;

4978 }

4979 }

4981 post anbl e = P2PHASE(si ze, bl ksz);

4982 size -= postanbl e;

4984 full blk = size / blksz;

4985 (voi d) drmu_xui o_i nit(xuio,

4986 (preanble !'= 0) + fullblk + (postanble != 0));
4987 DTRACE_PROBE3( zfs_reqzcbuf _align, int, preanble,
4988 int, postanble, int,

4989 (preanble !'=0) + fullblk + (postanble != 0));
4991 /*

4992 * Have to fix iov base/len for partial buffers. They
4993 * currently represent full arc_buf’s.

4994 */

4995 if (preanble) {

new usr/src/uts/comon/ fs/zfs/zfs_vnops.c

62

than

4996 /* data begins in the mddle of the arc_buf */
4997 abuf = dmu_request _arcbuf (sa_get _db(zp->z_sa_hdl),
4998 bl ksz);

4999 ASSERT( abuf )

5000 (voi d) dmu_xui o_add( xui o, abuf,

5001 | ksz - preanbl e, preanbl e)

5002 }

5004 for (i =0; i < fullblk; i++) {

5005 abuf = dmu_request _arcbuf (sa_get _db(zp->z_sa_hdl),
5006 bl ksz);

5007 ASSERT( abuf ) ;

5008 (voi d) dnu_xui o_add(xui o, abuf, 0, blksz);

5009 }

5011 if (postanble) {

5012 /* data ends in the nmiddle of the arc_buf */
5013 abuf = dnmu_request _arcbuf (sa_get _db(zp->z_sa_hdl),
5014 bl ksz);

5015 ASSERT( abuf ) ;

5016 (voi d) dnu_xui o_add(xui o, abuf, 0, postanble);
5017 }

5018 br eak;

5019 case U O READ:

5020 /*

5021 * Loan out an arc_buf for read if the read size is |arger
5022 * the current file block size. Block alignment is not
5023 * considered. Partial arc_buf will be |oaned out for read.
5024 */

5025 bl ksz = zp->z_bl ksz;

5026 if (bI ksz < zcr_bl ksz_ni n)

5027 bl ksz = zcr_blksz_min;

5028 if (blksz > zcr_bl ksz_max)

5029 bl ksz = zcr_blksz_max;

5030 /* avoid potential conplexity of dealing with it */

5031 if (blksz > max_bl ksz) {

5032 ZFS_EXI T(zf svfs)

5033 return (SET_ ERRCR( EI NVAL) ) ;

5034 }

5036 maxsi ze = zp->z_size - uio->uio_|offset;

5037 if (size > maxsize)

5038 si ze = nmaxsi ze;

5040 if (size < blksz || vn_has_cached_data(vp)) {

5041 ZFS_EXI T( zf svfs);

5042 return (SET_ERROR(EI NVAL));

5043 }

5044 br eak;

5045 defaul t:

5046 ZFS_EXI T(zfsvfs);

5047 return (SET_ERROR(EI NVAL));

5048 }

5050 uio->uio_extflg = UO XU G

5051 XUl O_XUZC RW xui 0) = iofl ag;

5052 ZFS EXI T(zfsvfs);

5053 return (0);

5054 }

5056 /* ARGSUSED*/

5057 static int

5058 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5059 {

5060 int i;

5061 arc_buf _t *abuf;



new usr/src/uts/comon/fs/zfs/zfs_vnops.c

5062 int ioflag = XU O_XUZC_RW xui 0);

5064 ASSERT( xui 0- >xu_t ype == Ul OTYPE_ZEROCOPY) ;

5066 i = dmu_xui o_cnt (xul 0);

5067 V\hlle(l—- >0)

5068 abuf dmu_xui o_ar cbuf (xuio, i);

5069 /*

5070 * if abuf == NULL, it nmust be a wite buffer
5071 * that has been returned in zfs_wite().

5072 */

5073 if (abuf)

5074 dmu_r et urn_ar cbuf (abuf);

5075 ASSERT(abuf || ioflag == U O WRI TE);

5076 }

5078 dmu_xui o_fi ni (xui 0);

5079 return (0);

5080 }

5082 /*

5083 * Predeclare these here so that the conpiler assumes that
5084 * this is an "old style" function declaration that does

5085 * not include argunents => we won't get type mismatch errors
5086 * in the initializations that follow.

5087 */

5088 static int zfs_inval ();

5089 static int zfs_isdir();

5091 static int

5092 zfs_inval ()

5093 {

5094 return (SET_ERROR(EINVAL));

5095 }

5097 static int

5098 zfs_isdir()

5099 {

5100 return (SET_ERROR(EISDIR));

5101 }

5102 /*

5103 * Directory vnode operations tenplate

5104 */

5105 vnodeops_t *zfs_dvnodeops;

5106 const fs_operation_def_t zfs_dvnodeops_tenplate[] = {

5107 VOPNAME_OPEN, .vop_open = zfs_open },
5108 VOPNAME_CLCSE, .vop_close = zfs_close },
5109 VOPNANE_READ, .error = zfs_isdir },

5110 VOPNAVE_W\RI TE, .error = zfs_isdir },

5111 VOPNAME_| OCTL, .vop_ioctl = zfs_ioctl },
5112 VOPNAME_GETATTR, .vop_getattr = zfs_getattr },
5113 VOPNAME_SETATTR, .vop_setattr = zfs_setattr },
5114 VOPNAME_ACCESS, .vop_access = zfs_access },
5115 VOPNAME_ L OOKUP, .vop_| ookup = zfs_| ookup },
5116 VOPNAME_CREATE, .vop_create = zfs_create },
5117 VOPNAME_ REMOVE, .vop_renove = zfs_renove },
5118 VOPNAME_LI NK, .vop_link = zfs_link },
5119 VOPNAME_RENAME, .vop_renanme = zfs_renane },
5120 VOPNAME_MKDI R, .vop_nkdir = zfs_nkdir },
5121 VOPNAME_RMDI R, .vop_rndir = zfs_rndir },
5122 VOPNAME_READDI R, .vop_readdir = zfs readdi r 1,
5123 VOPNAME_SYMLI NK, .vop_syniink = zfs_symink }
5124 VOPNAME_FSYNC, .vop_fsync = zfs_fsync },
5125 VOPNAME_| NACTI VE, .vop_i nactive = zfs_inactive },
5126 VOPNAME_FI D, .vop_fid = zfs fid }

5127 VOPNAME_SEEK, .vop_seek = zfs_seek },

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

5128
5129
5130
5131
5132
5133

5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168

5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185

5187
5188
5189
5190
5191
5192
5193

VOPNAME_PATHCONF, . vop_pat hconf
VOPNAVE_GETSECATTR, { .vop_getsecat
VOPNAME_SETSECATTR, { .vop_setsecat
VOPNAME_VNEVENT, { .vop_vnevent
NULL, NULL
e
/*
* Regul ar file vnode operations tenplate
*
/
vnodeops_t *zfs_fvnodeops;

const fs_operation_def_t zfs_fvnodeops_tenpl ate

= zfs _pat hconf },

tr = zfs_getsecattr }
tr = zfs_setsecattr }
= fs_vnevent _support

[1={

VOPNAME_OPEN, .vop_open = zfs_open },
VOPNAME_CLCSE, .vop_close = zfs_close },
VOPNANE_READ, .vop_read = zfs_read },
VOPNAVE_W\RI TE, .vop_wite = zfs_wite },
VOPNAME_| OCTL, .vop_ioctl = zfs_ioctl },
VOPNAME_GETATTR, .vop_getattr = zfs_getattr },
VOPNAME_SETATTR, .vop_setattr = zfs_setattr },
VOPNAME_ACCESS, .vop_access = zfs_access },
VOPNAME_ L OOKUP, .vop_| ookup = zfs_| ookup },
VOPNAME_ RENAME, .vop_renane = zfs_renane },
VOPNAME_FSYNC, .vop_fsync = zfs_fsync },
VOPNAME_| NACTI VE, .vop_i nactive = zfs_inactive },
VOPNAME_FI D, .vop_fid = zfs_fid },
VOPNAME_SEEK, .vop_seek = zfs_seek },
VOPNAME_FRLOCK, .vop_frlock = zfs_frl ock },
VOPNAME_SPACE, .vop_space = zfs_space },
VOPNAME_GETPAGE, .vop_get page = zfs_getpage },
VOPNAME_PUTPAGE, .vop_put page = zfs_put page },
VOPNAME_ VAP, .vop_map = zfs_map },
VOPNAME_ADDVAP, .vop_addmap = zfs_addmap },
VOPNAME_DEL VAP, .vop_del map = zfs_del map },
VOPNAME_PATHCONF, .vop_pat hconf = zfs_pathconf },
VOPNAME_GETSECATTR, .vop_getsecattr = zfs_getsecattr }
VOPNAME_SETSECATTR, .vop_setsecattr = zfs_setsecattr }
VOPNAME_VNEVENT, .vop_vnevent = fs_vnevent_support
VOPNAME_REQZCBUF, .vop_reqzchuf = zfs_reqzcbuf },
VOPNAME_RETZCBUF, .vop_retzcbuf = zfs_retzcbuf },
NULL, NUL L

e

/*

* Synbolic link vnode operations tenplate

*

/
vnodeops_t *zfs_synvnodeops;

b

b,

const fs_operation_def_t zfs_synmvnodeops_tenplate[] = {
VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
VOPNAME_ACCESS, { .vop_access = zfs_access },
VOPNAME_RENAME, { .vop_renane = zfs_renane },
VOPNAME_READLI NK, { .vop_readlink = zfs_readlink },
VOPNAME_| NACTI VE, { .vop_inactive = zfs_inactive },
VOPNAME_FI D, { .vop_fid = zfs_fid },
VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent _support },
NULL, NULL
b5
/*
* special share hidden files vnode operations tenplate
*
/
vnodeops_t *zfs_shar evnodeops;

const fs_operation_def_t zfs_sharevnodeops_tenplate[] = {
.vop_getattr = zfs_getattr },

VOPNAME_GETATTR,
VOPNAMVE_ACCESS,

{

.vop_access = zfs_access },



new usr/src/uts/comon/fs/zfs/zfs_vnops.c

5194
5195
5196
5197
5198
5199
5200
5201

5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244

5246
5247
5248
5249
5250
5251
5252
5253
5254

VOPNAME_| NACTI VE,
VOPNAVE_FI D,
VOPNANE_PATHCONF,
VOPNAVE_GETSECATTR,
VOPNAME_SETSECATTR,
VOPNANME_VNEVENT,
NULL,

}s

| *

{ .vop_inactive = zfs_inactive },

{ .vop_fid = zfs_fid },

{ .vop_pathconf = zfs_pathconf },

{ .vop_getsecattr = zfs_getsecattr }
{ .vop_setsecattr = zfs_setsecattr }
{ .vop_vnevent = fs_vnevent _support
NULL

* Extended attribute directory vnode operations tenplate
*

#endi f /* ! codereview */

* This tenplate is identical

to the directory vnodes

* operation tenplate except for restricted operations:
*

VOP_VKDI R()
* VOP_SYM.I NK()

*

#endi f /* | codereview */

* Note that there are other restrictions enbedded in:

* zfs_create() - restrict type to VREG

* zfs_link() - no links into/out of attribute space
* zf s_renane() - no noves into/out of attribute space
*/

vnodeops_t *zfs_xdvnodeops;

const fs_operation_def_t zfs_xdvnodeops_tenplate[] = {

VOPNANME_OPEN,
VOPNAVE_CLOSE,
VOPNANE_| OCTL,
VOPNAME_GETATTR,
VOPNAME_SETATTR,
VOPNANME_ACCESS,
VOPNAVE_L OOKUP,
VOPNANE_CREATE,
VOPNAME_REMOVE,
VOPNANE_LI NK,
VOPNAVE_RENAME,
VOPNANE_MKDI R,
VOPNAME_RVDI R,
VOPNAME_READDI R,
VOPNAMVE_SYMLI NK,
VOPNANE_FSYNC,
VOPNANME_| NACTI VE,
VOPNAME_FI D,
VOPNAVE_SEEK,
VOPNANE_PATHCONF,
VOPNAME_GETSECATTR,
VOPNAME_SETSECATTR,
VOPNAVE_VNEVENT,

: NULL,

| *

.vop_open = zfs_open },
.vop_close = zfs_close },
.vop_ioctl = zfs_ioctl },
.vop_getattr = zfs_getattr },
.vop_setattr = zfs_setattr },
.vop_access zfs_access },
.vop_| ookup = zfs_| ookup },
.vop_create = zfs_create },
.vop_renove = zfs_renove },
.vop_link = zfs_link },
.vop_renanme = zfs_renane },
.error = zfs_inval },

.vop_rmdir = zfs_rmdir },
.vop_readdir = zfs_readdir },
.error = zfs_inval },

.vop_fsync = zfs_fsync },

.vop_i nactive = zfs_inactive },
.vop_fid = zfs_fid },

.vop_seek = zfs_seek },

.vop_pat hconf = zfs_pathconf },
.vop_getsecattr = zfs_getsecattr }
.vop_setsecattr = zfs_setsecattr }
.vop_vnevent = fs_vnevent_support
NUL L

* Error vnode operations tenplate

*/
vnodeops_t *zfs_evnodeops;

const fs_operation_def_t zfs_evnodeops_tenpl ate[]

VOPNAME_| NACTI VE,
VOPNANE_PATHCONF,
NULL,

s

{ .vop_inactive =

{
= zfs_inactive }
{ .vop_pathconf = zfs
NULL

2t ,
zfs_pat hconf },

b

b,

65




new usr/src/uts/comon/ fs/zfs/zfs_znode. c

R R R R

53484 Wed Apr 24 12:44:35 2013
new usr/src/uts/comon/fs/zfs/zfs_znode.c
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>

Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»

Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

LR

__unchanged_portion_onitted_

1008 /*

1009 * Update in-core attributes. It is assuned the caller will be doing an
1010 * sa_bul k_update to push the changes out.

1009 * zfs_xvattr_set only updates the in-core attributes

1010 * it is assuned the caller will be doing an sa_bul k_update
1011 * to push the changes out

1011 *

1012 void

1013 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx)

1014 {

1015 xoptattr_t *xoap;

1017 xoap = xva_get xoptattr(xvap);

1018 ASSERT( xoap) ;

1020 i f (XVA_I SSET_REQ xvap, XAT_CREATETIME)) {

1021 uint64_t times[2];

1022 ZFS TI MVE ENCODE(&xoap >xoa_createtinme, tines);
1023 (void) sa _updat e(zp->z_sa hdl, SA ZPL_CRTI ME(zp->z_zfsvfs),
1024 &ines, sizeof (tines), tx)

1025 XVA_SET_RTN(xvap, XAT_CREATETI ME) ;

1026 }

1027 i f (XVA | SSET_REQ xvap, XAT_READONLY))

1028 ZFS _ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly,
1029 zp->z_pflags, tx);

1030 XVA_SET_RTN( xvap, XAT_READO\ILY);

1031 }

1032 if (XVA | SSET_REQ xvap, XAT_H DDEN))

1033 ZFS_ATTR_SET(zp, ZFS_H DDEN, xoap->xoa_hi dden,
1034 zp->z_pflags, tx);

1035 XVA_SET_RTN(xvap, XAT_HI DDEN) ;

1036 1

1037 i f (XVA_I SSET_REQ xvap, XAT_SYSTEM) {

1038 ZFS _ATTR_SET(zp, ZFS_SYSTEM xoap->xoa_system
1039 zp->z_pflags, tx);

1040 XVA_SET_RTN(xvap, XAT SYSTEM;

1041 1

1042 if (XVA_I SSET_REQ(xvap, XAT_ARCHI VE)) {

1043 ZFS_ATTR_SET(zp, ZFS_ARCHI VE, xoap->xoa_ar chive,
1044 zp->z_pflags, tx);

1045 XVA_SET_RTN(xvap, XAT ARCHI VE);

1046 }

1047 if (XVA_I SSET_REQ(xvap, XAT_I MMUTABLE)) ({

1048 ZFS _ATTR_SET(zp, ZFS_I| MMUTABLE, xoap->xoa_i mmutabl e,
1049 zp->z_pflags, tx);

1050 XVA_SET_RTN(xvap, XAT_| MVUTABLE) ;

1051 }

1052 i f (XVA | SSET_REQ xvap, XAT_NOUNLINK)) {

1053 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounl i nk,
1054 zp->z_pflags, tx);

1055 XVA_SET_RTN( xvap, XAT_NCUNLI NK) ;

1056 }

1057 i f (XVA | SSET_REQ xvap, XAT_APPENDONLY)) {

1058 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly,

new usr/src/uts/comon/ fs/zfs/zfs_znode.c

1059 zp->z_pflags, tx);
1060 XVA SET_RTN(xvap, XAT_APPENDONLY);
1061 }
1062 if (XVA_I SSET_REQ(xvap, XAT_NODUWP))
1063 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap- >xoa_nodunp,
1064 zp->z_pflags, tx);
1065 XVA_SET_RTN(xvap, XAT_NCDUMP) ;
1066 }
1067 if (XVA_I SSET_REQ(xvap, XAT_OPAQUE))
1068 ZFS_ATTR SET(zp, ZFS_OPAQUE, xoap->xoa_opaque,
1069 zp->z_pflags, tx);
1070 XVA_SET_RTN(xvap, XAT OPAQUE);
1071 }
1072 i f (XVA | SSET_REQ xvap, XAT_AV_QUARANTI NED)) {
1073 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTI NED,
1074 xoap- >xoa_av_quar ant i ned, zp->z_pflags, tx);
1075 XVA_SET_RTN( xvap, XAT_AV_QJARANTI NED) ;
1076 }
1077 if (XVA | SSET_REQ xvap, XAT_AV_MODI FIED)) {
1078 ZFS_ATTR_SET(zp, ZFS_AV_MODI FI ED, xoap->xoa_av_nodified,
1079 zp->z_pflags, tx);
1080 XVA_SET_RTN( xvap, XAT_AV_MJDI FI ED) ;
1081 1
1082 i f (XVA_I SSET_REQ xvap, XAT_AV_SCANSTAMP)) {
1083 zfs_sa_set_scanstanp(zp, xvap, tx);
1084 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP) ;
1085 }
1086 if (XVA_I SSET_REQ xvap, XAT_REPARSE)) {
1087 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xo0a_reparse,
1088 zp->z_pflags, tx);
1089 XVA_SET_RTN(xvap, XAT_REPARSE);
1090 1
1091 i f (XVA_I SSET_REQ(xvap, XAT_OFFLI NE))
1092 ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline,
1093 zp->z_pflags, tx);
1094 XVA_SET_RTN(xvap, XAT_OFFLI NE);
1095 }
1096 if (XVA_I SSET_REQ(xvap, XAT_SPARSE)) {
1097 ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xo0a_sparse,
1098 zp->z_pflags, tx);
1099 XVA_SET_RTN( xvap, XAT_SPARSE;
1100 }
1101
__unchanged_portion_ontted_
1443 /*
1444 * |Increase the file length
1445 *
1446 * I'N: zp - znode of file to free data in.
1447 * end - new end-of-file
1448 *
1449 * RETURN:. 0 on success, error code on failure
1450 * RETURN: 0 if success
1451 * error code if failure
1450 */

1451 static int
1452 zfs_extend(znode_t *zp, uint64_t end)

1453 {

1454 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

1455 dmu_t x_t *tx;

1456 rl_t *rl;

1457 ui nt 64_t newbl ksz;

1458 int error;

1460 /*

1461 * We will change zp_size, lock the whole file.



new usr/src/uts/comon/ fs/zfs/zfs_znode. c

1462 */
1463 rl = zfs_range_l ock(zp, 0, U NT64_MAX, RL_WRI TER);
1465 I
1466 * Nothing to do if file already at desired |ength.
1467 */
1468 if (end <= zp->z_size) {
1469 zfs_range_unl ock(rl);
1470 return (0);
1471 }
1472 top
1473 tx = dmu_tx_create(zfsvfs->z_o0s);
1474 dmu_t x_hol d_sa(tx, zp->z_sa_hdl, B _FALSE);
1475 zfs_sa_upgrade_t xhol ds(tx, zp);
1476 if (end > zp->z_bl ksz &&
1477 ('1SP2(zp->z_bl ksz) || zp->z_blksz < zfsvfs->z_max_bl ksz)) {
1478 /*
1479 * W are growing the file past the current block size.
1480 */
1481 if (zp->z_blksz > zp->z_zfsvfs->z_max_bl ksz) {
1482 ASSERT( ! | SP2(zp->z_bl ksz));
1483 newbl ksz = M N(end, SPA_MAXBLOCKSI ZE) ;
1484 } else {
1485 newbl ksz = M N(end, zp->z_zfsvfs->z_max_bl ksz);
1486 }
1487 dnmu_tx_hold_write(tx, zp->z_id, 0, newbdl ksz);
1488 } else {
1489 newbl ksz = 0;
1490 }
1492 error = dnu_tx_assign(tx, TXG NOWMIT);
1493 if (error) {
1494 if (error == ERESTART) {
1495 dmu_t x_wai t (tx);
1496 drmu_t x_abort (tx);
1497 goto top;
1498
1499 dnu_t x_abort (tx);
1500 zfs_range_unl ock(rl);
1501 return (error);
1502 }
1504 if (newbl ksz)
1505 zfs_grow bl ocksi ze(zp, newbl ksz, tx);
1507 zp->z_si ze = end;
1509 VERI FY(0 == sa_update(zp->z_sa_hdl, SA ZPL_SI ZE(zp->z_zfsvfs),
1510 & p->z_size, sizeof (zp->z_size), tx));
1512 zfs_range_unl ock(rl);
1514 dmu_t x_commi t (tx);
1516 return (0);
1517 }
1519 /*
1520 * Free space in a file.
1521 *
1522 * I'N: zp - znode of file to free data in.
1523 * of f - start of section to free.
1524 * len - length of section to free.
1525 *
1526 * RETURN: 0 on success, error code on failure
*

1528 RETURN: 0 if success

new usr/src/uts/comon/ fs/zfs/zfs_znode.c

1529 * error code if failure

1527 */

1528 static int

1529 zfs_free_range(znode_t *zp, uint64_t off, uint64_t |en)

1530 {

1531 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

1532 rl_t *rl;

1533 int error;

1535 I*

1536 * Lock the range being freed.

1537 */

1538 rl = zfs_range_l ock(zp, off, len, RL_WRI TER);
1540 /*

1541 * Nothing to do if file already at desired |ength.
1542 */

1543 if (off >= zp->z_size) {

1544 zfs_range_unl ock(rl);

1545 return (0);

1546 }

1548 if (off + len > zp->z_size)

1549 len = zp->z_size - off;

1551 error = dnu_free_|l ong_range(zfsvfs->z_os, zp->z_id,
1553 zfs_range_unl ock(rl);

1555 return (error);

1556 }

1558 /*

1559 * Truncate a file

1560 *

1561 * I'N: zp - znode of file to free data in.
1562 * end - new end-of -file.

1563 *

1564 * RETURN: 0 on success, error code on failure
1567 * RETURN: O if success

1568 * error code if failure

1565 */

1566 static int
1567 zfs_trunc(znode_t *zp, uint64_t end)

1568 {

1569 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

1570 vnode_t *vp = ZTOV(zp);

1571 dmu_tx_t *tx;

1572 rl_t *rl;

1573 int error;

1574 sa_bul k_attr_t bul k[ 2];

1575 int count = 0O;

1577 /*

1578 * We will change zp_size, lock the whole file.
1579 */

1580 rl = zfs_range_l ock(zp, 0, U NT64_MAX, RL_WRI TER);
1582 /*

1583 * Nothing to do if file already at desired |ength.
1584 */

1585 if (end >= zp->z_size) {

1586 zfs_range_unl ock(rl);

1587 return (0);

1588 1

of f,

len);



new usr/src/uts/comon/ fs/zfs/zfs_znode. c

1590 error = dnu_free_|l ong_range(zfsvfs->z_os, zp->z_id, end, -1);
1591 if (error)

1592 zfs_range_unl ock(rl);

1593 return (error);

1594 }

1595 top:

1596 tx = dnu_tx_create(zfsvfs->z_os);

1597 dmu_t x_hol d_sa(tx, zp->z_sa_hdl, B _FALSE);

1598 zfs_sa upgrade txhol ds(tx, zp);

1599 error drmu_t x_assi gn(tx, TXG_NCN\AI T);

1600 if (error) {

1601 if (error == ERESTART) ({

1602 dmu_t x_wai t (tx);

1603 drmu_t x_abort (tx);

1604 goto top;

1605 }

1606 dnmu_t x_abort (tx);

1607 zfs_range_unl ock(rl);

1608 return (error);

1609 }

1611 zp->z_size = end;

1612 SA ADD BULK ATTR(bqu count, SA ZPL_SI ZE( zf svfs)

1613 NULL, &zp->z_size, sizeof (zp->z_size));

1615 if (end == 0) {

1616 zp->z_pflags & ~ZFS_SPARSE;

1617 SA_ADD BULK_ATTR(bul k, count, SA ZPL_FLAGS(zfsvfs)
1618 NULL, &zp->z_pflags, 8);

1619 }

1620 VERI FY(sa_bul k_updat e(zp->z_sa_hdl, bulk, count, tx) == 0);
1622 dmu_t x_commi t (tx);

1624 /*

1625 * Cear any napped pages in the truncated region. This has to
1626 * happen outside of the transaction to avoid the possibility of
1627 * a deadl ock with someone trying to push a page that we are
1628 * about to invalidate.

1629 */

1630 if (vn_has_cached_data(vp)) {

1631 page_t *pp;

1632 uint64_t start = end & PAGEMASK;

1633 int poff = end & PAGECFFSET;

1635 if (poff !'= 0 & (pp = page_| ookup(vp, start, SE SHARED))) {
1636 /*

1637 * \W need to zero a partial page.

1638 */

1639 pagezer o( pp, poff PACESI ZE - poff);

1640 start += PAGESI Z

1641 page_unl ock(pp);

1642 }

1643 error = pvn_vplist_dirty(vp, start, zfs_no_putpage,
1644 B_I NVAL | B_TRUNC, NULL);

1645 ASSERT(error == 0);

1646 1

1648 zfs_range_unl ock(rl);

1650 return (0);

1651 }

1653 /*

1654 * Free space in a file

1655 *

new usr/src/uts/comon/ fs/zfs/zfs_znode.c

1656 * I'N: zp - znode of file to free data in.
1657 * of - start of range

1658 * I en - end of range (0 => EOF)

1659 * flag - current file open node flags.

1660 * | og - TRUE if this action should be | ogged
1661 *

1662 * RETURN: O on success, error code on failure

1666 * RETURN: O if success

1667 * error code if failure

1663 */

1664 int

1665 {zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag,
1666

1667 vnode_t *vp = ZTOV(zp);

1668 dmu_tx_t *tx;

1669 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

1670 zilog_t *zilog = zfsvfs->z_| og;

1671 ui nt64_t node;

1672 uint64_t ntinme[2], ctinme[2];

1673 sa_bul k_attr_t bul k[ 3];

1674 int count = 0;

1675 int error;

1677 if ((error = sa_l ookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvf
1678 sizeof (node))) != 0)

1679 return (error);

1681 if (off > zp->z_size)

1682 error = zfs extend(zp, of f +l en);

1683 if (error == 0 && | 0og)

1684 goto |og;

1685 el se

1686 return (error);

1687 }

1689 /*

1690 * Check for any locks in the region to be freed.
1691 */

1693 if (MANDLOCK(vp, (node_t)node))

1694 uint64_t length = (len ? len : zp->z_size - of
1695 if (error = chklock(vp, FWRITE, off, length, f
1696 return (error);

1697 1

1699 if (len ==0) {

1700 error = zfs_trunc(zp, off);

1701 } else {

1702 if ((error = zfs_free_range(zp, off, len)) ==
1703 off + len > zp->z_si ze)

1704 error = zfs_extend(zp, off+len);
1705 1

1706 if (error || !'log)

1707 return (error);

1708 | og:

1709 tx = dnmu_tx_create(zfsvfs->z_os);

1710 drm _tx_hol d_sa(tx, zp->z_sa_hdl, B _FALSE);

1711 zfs_sa upgrade t xhol ds(tx, zp);

1712 error = dnu_tx_assign(tx, TXGﬁNO/\AI T);

1713 if (error) {

1714 it (error == ERESTART) {

1715 drTu_t X_wai t (tx);

1716 dmu_t x_abort (tx) ;

1717 goto | og;

1718

1719 drmu_t x_abort (tx);

bool ean_t | og)

s), &node,

f);
| ag,

0 &&

NULL))



new usr/src/uts/comon/ fs/zfs/zfs_znode. c

1720
1721

1723
1724
1725
1726
1727
1728
1729

1731

1733
1734

1735 }

return (error);

}

SA_ADD BULK_ATTR(bul k, count, SA ZPL_MII ME(zfsvfs), NULL, ntine, 16);
SA_ADD BULK_ATTR(bul k, count, SA ZPL_CTI ME( zf svfs), NULL, ctine, 16);
SA_ADD_BULK_ATTR( bul k, count, SA ZPL_FLAGS(zfsvfs),

NULL, &zp->z_pflags, 8);
zfs_tstanp_update_setup(zp, CONTENT_MODIFIED, ntine, ctine, B TRUE);
error = sa_bul k_updat e(zp->z_sa_hdl, bulk, count, tx);
ASSERT(error == 0);

zfs_log_truncate(zilog, tx, TX TRUNCATE, zp, off, len);

drmu_t x_commi t (tx);
return (0);

__unchanged_portion_omtted_




new usr/src/uts/comon/fs/zfs/zil.c

R R R R

57657 Wed Apr 24 12:44:35 2013
new usr/src/uts/comron/fs/zfs/zil.c

3742 zf
Submi tt

s comrents need cleaner, nore consistent style
ed by: W1l Andrews <wi || a@pectral ogi c. con>

Submi tted by: Al an Soners <al ans@pectral ogi c. con>
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»
Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>
EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEEEREEEERERERERESRESRESRESESESESE]
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific | anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets “[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 =
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.
23 * Copyright (c) 2013 by Delphix. Al rights reserved.
24 */
26 /* Portions Copyright 2010 Robert M| kowski */
28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/dnu. h>

31 #i
32 #i
33 #i
34 #i
35 #i
36 #i
37 #i
38 #i
39 #i
40 #i

IN
©
E R I T

ncl ude <sys/zap. h>

ncl ude <sys/arc. h>

ncl ude <sys/stat.h>

ncl ude <sys/resource. h>
nclude <sys/zil.h>

ncl ude <sys/zil _inpl.h>
ncl ude <sys/dsl _dat aset. h>
ncl ude <sys/vdev_inpl.h>
ncl ude <sys/dmu_t x. h>

ncl ude <sys/dsl _pool . h>

The zfs intent log (ZlIL) saves transaction records of systemcalls
that change the file systemin nenory with enough information

to be able to replay them These are stored in nmenory until

either the DMJ transaction group (txg) commts themto the stable pool
and they can be discarded, or they are flushed to the stable |og
(also in the pool) due to a fsync, O DSYNC or other synchronous
requirenment. In the event of a panic or power fail then those |og
records (transactions) are replayed.

There is one ZIL per file system Its on-disk (pool) format consists
of 3 parts:

- ZIL header
- ZIL bl ocks

new usr/src/uts/comon/fs/zfs/zil.c
57 * - ZIL records
58 *
59 * Alog record holds a systemcall transaction. Log bl ocks can
60 * hold many |og records and the bl ocks are chai ned together.
61 * Each ZIL block contains a block pointer (blkptr_t) to the next
62 * ZIL block in the chain. The ZIL header points to the first
63 * block in the chain. Note there is not a fixed place in the pool
64 * to hold blocks. They are dynamically allocated and freed as
65 * needed fromthe bl ocks available. Figure X shows the ZIL structure:
66 */
68 /*
69 * Disable intent logging replay. This global ZIL switch affects all pools.
69 * This global ZIL switch affects all pools
70 */
71 int zil _replay_disable = 0;
71 int zil _replay_disable = 0; /* disable intent |ogging replay */
73 |*
74 * Tunabl e paraneter for debuggi ng or perfornmance analysis. Setting
75 * zfs_nocacheflush will cause corruption on power loss if a volatile
76 * out-of-order wite cache is enabl ed.
777 */
78 bool ean_t zfs_nocacheflush = B_FALSE;
80 static kmem cache_t *zil _lwb_cache;
82 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
84 #define LWB_EMPTY(Iwb) ((BP_CET_LSIZE(& wb->Iwb_blk) - \
85 sizeof (zil_chain_t)) == (Iwb->Iwb_sz - |wb->lwb_nused))
88 /*
89 * ziltest is by and large an ugly hack, but very useful in
90 * checking replay without tedious work.
91 * When running ziltest we want to keep all itx’s and so maintain
92 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
93 * W subtract TXG CONCURRENT_STATES to allow for common code.
94 */
95 #define ZILTEST_TXG (U NT64_MAX - TXG_CONCURRENT_STATES)
97 static int
98 zil _bp_conpare(const void *x1, const void *x2)
99 {
100 const dva_t *dval = &((zil_bp_node_t *)x1)->zn_dva;
101 const dva_t *dva2 = &((zil _bp_node_t *)x2)->zn_dva;
103 if (DVA GET_VDEV(dval) < DVA GET_VDEV(dva2))
104 return (-1);
105 if (DVA _GET_VDEV(dval) > DVA GET_VDEV(dva2))
106 return (1);
108 i f (DVA_GET_OFFSET(dval) < DVA_GET_OFFSET(dva2))
109 return (-1);
110 if (DVA_GET_OFFSET(dval) > DVA GET_OFFSET(dva2))
111 return (1);
113 return (0);
114 }
____unchanged_portion_onitted_
880 /*
881 * Define a limted set of intent |og block sizes.
882 *
883 #endif /* | codereview */



new usr/src/uts/comon/fs/zfs/zil.c

884
885
886
887
888
889
890
891
892
893

895
896
897
898
899
900
901
902
903

905
906
907
908
909
910
911
912
913
914
915
916
917
918
919

921
922
923
924
925
926
927

931
932
933
934
935
936
937
938
939
940
941
942
943

945
947

948
949

b
/

u

* These nmust be a nultiple of 4KB. Note only the anpunt used (again

* aligned to 4KB) actually gets witten. However, we can’t always just
* all ocate SPA_MAXBLOCKSI ZE as the sl og space coul d be exhaust ed.
*/
ui

nt64_t zil _bl ock_buckets[] = {
4096, /* non TX_WRITE */

8192+4096 /* data base */
32*1024 + 4096, /* NFS wites */
Ul NT64_ MAX

*
* Use the slog as long as the logbias is 'latency’ and the current conmit size
* is less than the limt or the total list size 1s less than 2X the linit.
* Limt checking is disabled by setting zil_slog_limt to U NT64_NMAX.

*/

int64_t zil_slog_limt = 1024 * 1024;

#defi ne USE_SLOGE zi | og) (((Z|Iog) >z| _| ogbi a = ZFS _LOGBI AS_LATENCY) && \
(((zilog)->zl _cur_used < zil _slo g_llmt) |1\
((zilog)->zl itx_Tist_sz < (zil_slog_linmt << 1))))

*

* Start a log block wite and advance to the next |og bl ock.

* Calls are serialized.

*

/

tatic lwo_t *

il _Iwh_wite_start(zilog_t *zilog, Iwb_t *Iwb)
Iwb_t *nlwb = NULL;
zil _chain_t *zilc
spa_t *spa = zilog->zl _spa;
bl kptr_t *bp;
dmu_t x_t *tx;
uint64_t txg;
uint64_t zil_blksz, wsz;
int i, error;

if (BP_CGET_CHECKSUM & wb- >l wb_bl k) == ZI O_CHECKSUM ZI LOR2) {
zilc = (zil_chain_t *)lwb->lwb_buf;
bp = &zilc->zc_next_blk;

} else {
zilc = (zil_chain_t *)(Iwb->wb_buf + |wb->lw_sz);
bp = &zil c->zc_next _bl k;

ASSERT( | wb- >l wb_nused <= | wb- >l wb_sz);

/*
* Allocate the next block and save its address in this block
* before witing it in order to establish the | og chain.
* Note that if the allocation of nlwbh synced before we wote
* the block that points at it (lwb), we'd |eak it if we crashed.
* Therefore, we don’t do drmu_tx_commit() until zil_Iwb_wite_done().
* W dirty the dataset to ensure that zil sync() will be called
* to clean up in the event of allocation failure or 1/0O failure.
*
/

tx = dmu_t x_create(zil og->zl _os);

VERI FY(dnmu_t x_assi gn(tx, TXG WAl T) = 0);

dsl _dat aset _di rty(drmfobj set _ds(zi | og >zl _os), tx);
txg = dnu_tx_get _txg(tx);

Iwb->lwb_tx = tx;
/*

* Log bl ocks are pre-allocated. Here we select the size of the next
* bl ock, based on size used in the last block.

new usr/src/uts/comon/fs/zfs/zil.c

950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972

974
975
976
977
978
979
980
981

983
984
985
986

988
989
990

992
993
994
995
996

998
999
1000

1002
1003
1004

1006
1007
1008
1009

1011
1013

1014
1015

* - first find the smallest bucket that will fit the block froma

* limted set of block sizes. This is because it’'s faster to wite
* bl ocks allocated fromthe sane netaslab as they are adjacent or
* cl ose.

* - next find the maxi mum fromthe new suggested size and an array of
* previ ous sizes. This | essens a picket fence effect of wongly

* guesssing the size if we have a stream of say 2k, 64k, 2k, 64k

* requests.

*

* Note we only wite what is used, but we can’t just allocate

* the nmaxi mum bl ock size because we can exhaust the avail able

* pool |og space.

*
i
o]

bl ksz = zil og->zl _cur_used + sizeof (zil_chain_t);
(i = 0; zil_blksz > zil_bl ock_buckets[i]; i++)
conti nue;
zil _blksz = zil bI ock_buckets[i];
if (zil_blksz == UI NT64_MAX)
zi | _bl ksz SPA_NMAXBLOCKSI ZE;
zi |l og- >zl _prev_bl ks[Z| I og->zl _prev_rotor] = zil_blksz;
for (i =0; i < ZIL_PREV_BLKS; i++)
zil _blksz = MAX(Zil _blksz, zilog->zl _prev_blks[i]);
zilog->zl_prev_rot0r = (zilog->zl prev_rotor + 1) & (ZIL_ PREV BLKS - 1);

/
|
r

BP_ZERQ( bp) ;
/* pass the old bl kptr in order to spread |og bl ocks across devs */
error = zio_alloc_zil(spa, txg, bp, & wb->Iwb_blk, zil_blksz,
USE_SLOG(zi 10g));
if (error == 0) {
ASSERT3U( bp->bl k_birth, == txg);
bp- >bl k_cksum = Twb- >I\M) bl k. bl k_cksum
bp- >bl k_cksum zc_word[ ZI L_ZC SEQ ++;

/*
* Allocate a new log wite buffer (Iwb).
*
/
nlwb = zil_alloc_lwb(zilog, bp, txg);

/* Record the block for |ater vdev flushing */
zi | _add_bl ock(zilog, & wb->Iwb_blk);
}

if (BP_CGET_CHECKSUM & wb- >l wb_bl k) == ZI O CHECKSUM ZI LOR2) {
/* For SlimZIL only wite what is used. */
wsz = P2ROUNDUP_TYPED(| wb- >l wb_nused, ZIL_M N BLKSZ, uint64_t);
ASSERT3U(wsz, <=, |wb->lwb_sz);
zi o_shrink(lwb->l wb_zio, wsz);

} else {
) wsz = | wb->lwb_sz;

zil c->zc_pad =
zilc- >zc_nused I\Ab >| wb_nused;
zi | c->zc_eck. zec_cksum = Twb->I V\lo_bl k. bl k_cksum

/*
* clear unused data for security
*/
bzero(l wb->l wb_buf + |wb->lwb_nused, wsz - |wb->lwb_nused);

zio_nowait(lwb->wb_zio); /* Kick off the wite for the old log block */
*
* If there was an allocation failure then nlwb will be null which
* forces a txg_wait_synced().



new usr/src/uts/comon/fs/zfs/zil.c

1016
1017
1018

1020
1021
1022
1023
1024
1025
1026
1027
1028

1030
1031

1033
1034
1035

1037
1038
1039

1041
1043

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

1060
1061
1062
1063

1065
1066
1067
1068
1069
1070
1071
1072
1073

1075
1076
1077
1078
1079
1080
1081

}

*/
return (nlwb);

static lwb_t *
zil _Iwb_commit(zilog_t *zilog, itx_t *itx, Iwb_t *Iwb)

{

Ir_t *lrc =
Ir_wite_t *
char *I|r_buf
uint64_t txg = Irc->lrc_txg;
uint64_t reclen = Irc->lrc_reclen;
uint64_t dlen = 0;

& tx->itx_Ir; /* comon |og record */
lrw= (lr_wite_t *)lrc;

if (Iwb == NULL)
return (NULL);

ASSERT(| wb- >l wb_buf 1= NULL)
ASSERT(zilog_is_dirty(zilog) ||
spa_freeze_txg(zilog->zl _spa) != U NT64_MAX);

if (lrc->lrc_txtype == TX WRITE && itx->itx_w _state == WR_NEED_COPY)
dl en = P2ROUNDUP_TYPED
Ilrw>lr_length, sizeof (uint64_t), uint64_t);

zi |l og- >zl _cur _used += (reclen + dlen);

zil _Iwb_write_init(zilog, |w);
/*
* |f this record won't fit in the current |log block, start a new one.
*
if (Iwb->Iwb_nused + reclen + dlen > | wbh->lwb_sz) {
Iwb = zil _Iwb_wite_start(zilog, |wb);
if (Iwb == NULL)
return (NULL);
zil _Iwb_wite_init(zilog, |wb);
ASSERT( LVB_EMPTY( | wb) ) ;
if (Iwb->wb_nused + reclen + dlen > | wb->Iwb_sz) {
txg_wai t _synced(zil og->zl _dmu_pool, txg);

return (Twb);

}
}
I r_buf = lwb->wb_buf + |wb->lwb_nused;
bcopy(lrc, Ir_buf, reclen);
lrc = (Ir_t *)Ir_buf;
lrw= (lr_wite_t *)lrc;
/*

* |f it'’s awite, fetch the data or get its blkptr as appropriate.
*/
if (Irc->lrc_txtype == TX WVRITE) {
if (txg > spa_freeze_txg(zilog->zl_spa))
t xg_wai t _synced(zi | og->zI _dmu_pool, txg);
if (itx->tx_w_state = WR_COPIED) {

char *dbuf;

int error;

if (dlen) {
ASSERT(itx->i tx_wr_state == WR_NEED_COPY) ;
dbuf = Ir_buf + reclen;
Irw>lr_comon.lrc_reclen += dl en;

} else {
ASSERT(itx->i tx_wr_state == WR_| NDI RECT) ;
dbuf = NULL;

new usr/src/uts/comron/fs/zfs/zil.c

1082

1083 error = zil og->zl _get_dat a(

1084 itx->tx_private, Irw, dbuf, |wb->lwb_zio);
1085 if (error == EIO {

1086 t xg_wai t _synced(zi |l og- >zl _dmu_pool , txg);
1087 return (lwb);

1088

1089 if (error '=0) {

1090 ASSERT(error == ENCENT || error == EEXI ST ||
1091 error == EALREADY);

1092 return (lwb);

1093 }

1094 }

1095 }

1097 /*

1098 * We're actually naking an entry, so update Irc_seq to be the
1099 * log record sequence nunber. Note that this is generally not
1100 * equal to the itx sequence nunmber because not all transactions
1101 */are synchronous, and sonetines spa_sync() gets there first.
1102 *

1103 lrc->lrc_seq = ++zilog->zl _Ir_seq; /* we are single threaded */
1104 | wb- >l wb_nused += reclen + dlen;

1105 I wb- >l wb_max_t xg = MAX(| wb- >l wb_max_t xg, txg);

1106 ASSERT3U( | wh- >l wb_nused, <=, |wb->lwb_sz);

1107 ASSERTO( P2PHASE( | wb- >l wb_nused, sizeof (uint64_t)));

1109 return (I wb);

1110 }

1112 itx_t *

1113 zil _itx_create(uint64_t txtype, size_t Irsize)

1114 {

1115 itx_t *itx;

1117 I rsize = P2ROUNDUP_TYPED(I rsi ze, sizeof (uint64_t), size_t);
1119 itx = knem.al loc(of fsetof (itx_t, itx_lr) + |Irsize, KM SLEEP);
1120 itx->itx_lr.lrc_txtype = txtype;

1121 itx->itx_lr.lrc_reclen = Irsize;

1122 itx->tx_sod = 1Irsize; /* if wite & WR_NEED COPY will be increased */
1123 itx->itx_Ir.lrc_seq = O; /* defensive */

1124 itx->tx_sync = B_TRUE; /* default is synchronous */
1126 return (itx);

1127 }

1129 void

1130 zil _itx_destroy(itx_t *itx)

1131 {

1132 kmem free(itx, offsetof (itx_t, itx_Ir) + itx->tx_lr.lrc_reclen);
1133 }

1135 /*

1136 * Free up the sync and async itxs. The itxs_t has al ready been detached
1137 * so no | ocks are needed.

1138 */

1139 static void

1140 zil _itxg_clean(itxs_t *itxs)

1141 {

1142 itx_t *itx;

1143 list_t *list;

1144 avl _tree_t *t;

1145 voi d *cooki e;

1146 i tx_async_node_t *ian;



new usr/src/uts/comon/fs/zfs/zil.c

_sync_list;

i st head(llst)) I'= NULL) {

move(list, itx);

ee(itx, offsetof(itx_t, itx_lr) +
>itx_lr.lrc_reclen);

ync_tree;

vl _destroy_nodes(t, &cookie)) != NULL) {
& an->ia_list;

(itx = Iist head(llst)) I'= NULL) {
list_remove(list, itx

kmem free(itx, offsetof(ltxt itx_Ir)

itx->tx_lr.lrc_reclen);

stroy(list);
ee(i an, si zeof (itx_async_node_t));

sizeof (itxs_t));

void *x1, const void *x2)

0l = ((itx_async_node_t *)x1)->ia_foid;
02 = ((itx_async_node_t *)x2)->ia_foid;
(-1);

(1)

with the given oid.

t *zilog, uint64_t oid)
txg;
t *ian;

re;
st;

ean_list, sizeof (itx_t),

t xg(zi | og- >zl _spa)

= ZILTEST_TXG

spa_| ast _synced_t xg(zi | og->zl _spa) + 1;
; txg < (otxg + TXG_CONCURRENT_STATES) ;
*itxg = &ilog->zl Ttxg[txg & TXG NASK]
nter (& txg->itxg_| ock);

g->itxg_txg !'= tx

1148 list = & txs->i
1149 while ((itx =1
1150 list_re
1151 kmem fr
1152 itx-
1153 1

1155 cookie = NULL;
1156 t = & txs->i_as
1157 while ((ian = a
1158 list =
1159 while (
1160

1161

1162

1163 }

1164 list_de
1165 kmem fr
1166

1167 avl _destroy(t);
1169 kmem free(itxs,
1170 }

1172 static int

1173 zil _ai t x_conpar e(const
1174 {

1175 const uint64_t
1176 const uint64_t
1178 if (0ol < 02)
1179 return
1180 if (o1 > 02)
1181 return
1183 return (0);
1184 }

1186 /*

1187 * Renopve all async itx
1188 */

1189 static void

1190 zil _renove_async(zil og_|
1191 {

1192 uint64_t ot xg,
1193 itx_async_node_
1194 avl _tree_t *t;
1195 avl _i ndex_t whe
1196 list_t clean_li
1197 itx_t *itx;
1199 ASSERT(o0id != 0);
1200 list_create(&cl
1202 if (spa_freeze_
1203 ot xg
1204 el se

1205 otxg =
1207 for (txg = otxg
1208 itxg t
1210 mut ex_e
1211 if (itx
1212

1213

L 9) {
mut ex_exit (& txg->i txg_l ock);
conti nue;

of fsetof (itx_t,

I

I'= U NT64_MAX) /* ziltest support */

txg++) {

i tx_node));

new usr/src/uts/comron/fs/zfs/zil.c

1214

1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231

1233
1234

}

voi d
zil

1235 {

1236
1237
1238

1240
1241
1242
1243
1244
1245
1246
1247
1248

1250
1251
1252
1253
1254

1256
1257
1258
1259

1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277

1279

}

/*
* Locate the object node and append its |ist.
*/

t = &thg >i txg_i txs->i _async_tree;
ian = avl _find(t, &oid, &where);

if (ian !'= NULL)

l'ist_move_tail (&l ean_list,
mut ex_exi t (& txg->i txg_l ock);

& an->ia_list);

}

while ((itx = list_head(&clean_list)) !'= NULL) {
list_remove(&clean_list, itx);
kmem free(itx, offsetof(ltxt itx_lr) +

itx->itx_lr.lrc_reclen);
}
l'ist_destroy(&clean_list);
_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)

uint64_t txg;

itxg_t *itxg;

itxs_t *itxs, *clean = NULL;

/*

* (Object ids can be re-instantiated in the next txg so

* renpve any async transactions to avoid future |eaks.

* This can happen if a fsync occurs on the re-instantiated

* object for a WR_INDI RECT or WR_ NEED COPY write, which gets

* the new file data and flushes a write record for the ol d obj ect .
*/

if ((itx->itx_Ir.lrc_txtype & ~TX Cl) == TX_REMOVE)
zi |l _renmove_async(zilog, itx->itx_oid);
/*
* Ensure the data of a renanmed file is committed before the renane.
*
/

if ((itx->itx_lr.lrc_txtype & ~TX_Cl) == TX_RENAME)
zi | _async_to_sync(zilog, itx- >|tx _oid);
if (spa_freeze_txg(zilog->zl_spa) != U NT64_NAX)

txg = ZI LTEST TXG
el se
txg = dmu_tx_get_txg(tx);

itxg = &ilog->zl _itxg[txg & TXG MASK];
mut ex_ent er (& txg->i txg_| ock);
itxs = itxg->itxg_itxs;
if (itxg->itxg_txg !'= txg) {
if (itxs I'= NULL) {
/*

* The zil _clean callback hasn't got around to cleaning
* this itxg. Save the itxs for rel ease bel ow

* This should be rare.

*/

at omi c_add 64(&Z| | og- >zl
itxg- >|txg sod =
clean = itxg- >|txg itxs;

_itx_list_sz, -itxg->itxg_sod);

}
ASSERT(i t xg->i t xg_sod == 0);
itxg->itxg_txg = txg;

itxs = itxg->txg_itxs = knem zal | oc(sizeof (itxs_t), KM SLEEP);

list_create(& txs->i _sync_list, sizeof (itx_t),



new usr/src/uts/comon/fs/zfs/zil.c

1280 of fsetof (itx_t, itx_node));

1281 avl _create(& txs->i _async_tree, zil _aitx_conpare,

1282 si zeof (itx_async_node_t),

1283 of fset of (i tx_async_node_t, ia_node));

1284 }

1285 if (itx->itx_sync) {

1286 list_insert_tail (& txs->i _sync_list, itx);

1287 atom c_add_64(&zil og->zl _itx_list_sz, itx->itx_sod);
1288 itxg->itxg_sod += itx->itx_sod;

1289 } else {

1290 avl _tree_t *t = & txs->i _async_tree;

1291 uint64_t foid = ((lr_ooo_t *)& tx->itx_lr)->lr_foid;
1292 itx_async_node_t *ian;

1293 avl _i ndex_t where;

1295 ian = avl _find(t, & oid, &where);

1296 if (ian == NULL)

1297 ian = kmem al | oc(sizeof (itx_async_node_t), KM SLEEP);
1298 list_create(& an->ia_list, sizeof (itx_t),
1299 of fsetof (itx_t, i tx_node));

1300 ian->ia foid = foid;

1301 avl _insert(t, ian, where);

1302 }

1303 list_insert_tail(& an->ia_list, itx);

1304 }

1306 itx->itx_lr.lrc_txg = dmu_tx_get _txg(tx);

1307 zi |l og_di rty(Z| | og, txg);

1308 mut ex_exi t (& txg->i txg_| i ock);

1310 /* Rel ease the old itxs now we’ve dropped the |ock */

1311 if (clean !'= NULL)

1312 zi | _itxg_clean(clean);

1313 }

1315 /*

1316 * If there are any in-nenory intent |og transactions which have now been
1317 * synced then start up a taskq to free them W should only do this after we
1318 * have witten out the uberblocks (i.e. txg has been comtted) so that
1319 * don’t inadvertently clean out in-nenory log records that would be required
1320 * by zil _commit().

1321 */

1322 void

1323 zil _clean(zilog_t *zilog, uint64_t synced_txg)

1324 {

1325 itxg_t *itxg = &ilog->zl _itxg[synced_txg & TXG MASK];

1326 itxs_t *clean_ng;

1328 mut ex_enter (& txg->i txg_| ock);

1329 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG ({
1330 mut ex_exi t (& txg->i t xg_| ock);

1331 return;

1332 }

1333 ASSERT3U(i t xg->i t xg_txg, <=, synced_txg);

1334 ASSERT(i t xg->itxg_txg !'= 0);

1335 ASSERT( zi | og- >zl _cl ean taskq I'= NULL);

1336 atom c¢_add_64(&8zil og->zIl _itx_list_sz, -itxg->itxg_sod);

1337 itxg->txg_sod = O;

1338 clean_me = itxg->itxg_itxs;

1339 itxg->itxg_itxs = NULL;

1340 itxg->itxg_txg = 0,

1341 mut ex_exit (& t xg->i t xg_l ock);

1342 /*

1343 * Preferably start a task queue to free up the old itxs but
1344 * if taskq_dispatch can't allocate resources to do that then
1345 * free it in-line. This should be rare. Note, using TQ SLEEP

new usr/src/uts/comon/fs/zfs/zil.c

1346
1347
1348
1349
1350
1351

1353
1354
1355
1356
1357

}
| *

* created a bad performance problem
S

if (taskq_dispatch(zilog->zl_clean_taskq,
(void (*)(void *))zil_itxg_clean,
zi | _itxg_cl ean(cl ean_ne);

* Get the list of itxs to commt into zl_itx_commt_|ist.
=

static void

zil

1358 {

1359
1360
1361

1363
1364
1365
1366

1368
1369

1371
1372
1373
1374
1375

1377
1378
1379

1381
1382
1383
1384

1386 /

1387
1388
1389
1390

}

*

_get_commit_list(zilog_t *zilog)

uint64_t otxg, txg;
list_t *commt_list = &ilog->zl itx_commit_list;
uint64_t push_sod = 0;

if (spa_freeze_txg(zilog->zl_spa) != UNT64_MAX) /* ziltest support
otxg = ZI LTEST_TXG

el se
otxg = spa_l ast_synced_t xg(zil og->zl _spa) + 1;

for (txg = otxg; txg < (otxg + TXG CONCURRENT_STATES) ;
itxg_t *itxg = &ilog->zl _itxg[txg & TXG NASK]

txg++) {

mut ex_enter (& txg->i t xg_| ock);

if (itxg->itxg_txg !=tx
nut ex_exi t (& txg->i txg_| ock);
conti nue;

}

list_nove_tail (commt_list,
push_sod += itxg->itxg_sod;
1txg->itxg_sod = O;

& txg->itxg_itxs->i _sync_list);

mut ex_exi t (& t xg->i t xg_I ock);

}
atomi c_add_64(&zil og->zl _itx_list_sz, -push_sod);

* Move the async itxs for a specified object to commit into sync lists.

*/

static void

zil

1391 {

1392
1393
1394
1395

1397
1398
1399
1400

1402
1403

1405
1406
1407
1408
1409

1411

_async_to_sync(zilog_t *zilog, uint64_t foid)

uint64_t otxg, txg;
itx_async_node_t *ian;
avl _tree_t *t;

avl _i ndex_t where;

if (spa_freeze_txg(zilog->zl_spa) != UNI64_MAX) /* ziltest support
otxg = ZI LTEST_TXG

el se
otxg = spa_l ast_synced_t xg(zil og->zl _spa) + 1;

for (txg = otxg; txg < (otxg + TXG CONCURRENT_STATES);
itxg_t *itxg = &ilog->zl _itxg[txg & TXG MASK]

txg++) {

mut ex_ent er (& t xg->i t xg_I ock) ;

if (itxg->itxg_txg != txg)
mut ex_exit (& t xg->i t xg_l ock);
conti nue;

clean_me, TQ NOSLEEP) == NULL)

*/

*/



1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425

new usr/src/uts/comon/fs/zfs/zil.c 11
* |f afoidis specified then find that node and append its
* list. Otherwise walk the tree appending all the lists
* to the sync list. W add to the end rather than the
* beginning to ensure the create has happened.
*/
t = & txg->itxg_itxs->i _async_tree;
if (foid !=0) {
ian = avl _find(t, & oid, &where);
if (ian !'= NULL)
list_nove_tail (& txg->itxg_itxs->i_sync_list,
& an->ia_list);
} else {
voi d *cookie = NULL;
while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {

1427
1428
1429
1430
1431
1432
1433
1434
1435
1436 }

I'ist_nove_tail (& txg->itxg_itxs->i_sync_list,

&i

an->ia_list);

list_destroy(& an- >i a_list);

kmem free(i an,

}

mut ex_exi t (& t xg->i t xg_l ock);

1438 static void

1439 zi
1440 {
1441
1442
1443
1444
1445

1447
1449
1451

1453
1454
1455
1456
1457
1458
1459
1460

1462
1463
1464
1465
1466
1467
1468

1470
1471
1472
1473

1475
1476
1477

_commit_witer(zilog_t *zilog)

uint64_t txg;

itx_t *itx;

Iwb_t *Iwb;

spa_t *spa = zilog->zl _spa;
int error = 0;

ASSERT( zi | og->zl _root _zi o == NULL);

mut ex_exi t (&zi | og- >zl _I ock);
zil _get_commit_list(zilog);

/*

* Return if there’s nothing to conmt

* calling zil _create().
*

if (list_head(&zilog->zl_itx_conmmt_list) == NULL) {

mut ex_ent er (&zi | og- >zl _I| ock);
return;
}
if (zilog->zl_suspend) {
= N ;
} else {
Iwb = list_tail(&zilog->zl_Iwb_list);

if (lwb == NULL)

Iwb = zi |l _create(zilog);

}

DTRACE_PROBE1(zil __cwl, zilog_t

while (itx = list head( ilog-
txg = itx->itx_Ir.lrc

ASSERT( t xg) ;

wh = zil

*, zilog);
>zl _itx_commt_list)) {
_txg;

si zeof (itx_async_node_t));

before we dirty the fs by

if (txg > spa | ast synced txg(spa) || txg > spa_freeze_txg(spa))
_Twb I wb) ;

list remave(&u | og- >zl

_commit(zilog, Itx,
_itx_commt_list, itx);

new usr/src/uts/comon/fs/zfs/zil.c 12
1478 kmem free(itx, offsetof (itx_t, itx_Ir)

1479 + itx->itx_lr.lrc_reclen);

1480 }

1481 DTRACE_PROBE1(zil __cw2, zilog_t *, zilog);

1483 /* write the last block out */

1484 if (Iwb !'= NULL && lwb->lwb_zio !'= NULL)

1485 Iwb = zil _Iwb_wite_start(zilog, |wb);

1487 zi | og- >zl _cur _used = 0;

1489 /*

1490 * Wait if necessary for the log blocks to be on stable storage.
1491 */

1492 if (zilog->zl root _zio) {

1493 error = zio_wait(zilog->zl_root_zio);

1494 zil 0g->zl _root _zio = NULL;

1495 zi| _flush_vdevs(zilog);

1496 1

1498 if (error || Iwb == NULL)

1499 txg_wai t _synced(zi | og- >zl _dnu_pool, 0);

1501 mut ex_ent er (&zi | og- >zl _| ock);

1503 /*

1504 * Renenber the highest coomitted | og sequence nunber for ztest.
1505 * We only update this value when all the log wites succeeded,
1506 * because ztest wants to ASSERT that it got the whole |og chain.
1507 *

1508 if (error == 0 & Iwb != NULL)

1509 zilog->zl _commit_Ir_seq = zilog->zl _Ir_seq;

1510 }

1512 /*

1513 * Commt zfs transactions to stable storage.

1514 * |f foid is O push out all transactions, otherw se push only those
1515 * for that object or might reference that object.

1516 *

1517 * itxs are commtted in batches. In a heavily stressed zil there will be
1518 * a commit witer thread who is witing out a bunch of itxs to the |og
1519 * for a set of committing threads (cthreads) in the sane batch as the witer.
1520 * Those cthreads are all waiting on the sane cv for that batch.

1521 *

1522 * There will also be a different and growi ng batch of threads that are
1523 * waiting to commit (qthreads). Wien the committing batch conpletes
1524 * a transition occurs such that the cthreads exit and the gthreads becone
1525 * cthreads. One of the new cthreads becones the witer thread for the
1526 * batch. Any new threads arriving become new gt hreads.

1527 *

1528 * Only 2 condition variables are needed and there’'s no transition

1529 * between the two cvs needed. They just flip-flop between qthreads
1530 * and cthreads.

1531 *

1532 * Using this scheme we can efficiently wakeup up only those threads
1533 * that have been committed.

1534 */

1535 voi d

1536 zil _commit(zilog_t *zilog, uint64_t foid)

1537 {

1538 uint64_t nybatch;

1540 if (zilog->zl _sync == ZFS_SYNC_DI SABLED)

1541 return;

1543 /* nove the async itxs for the foid to the sync queues */



new usr/src/uts/comon/fs/zfs/zil.c 13 new usr/src/uts/comon/fs/zfs/zil.c 14
1544 zi |l _async_to_sync(zilog, foid); 1610 * be clai med because a device was missing during
1611 * zil_clainm(), but that device later returns,
1546 mut ex_ent er (&zi | og- >zl _| ock); 1612 * then this block could erroneously appear valid.
1547 nybat ch = zil og->zl _next_batch; 1613 * To guard against this, assign a new QU D to the new
1548 while (zilog->zl _witer) { 1614 * log chain so it doesn't matter what blk points to.
1549 cv_wai t (&il og- >zl _cv_batch[nybatch & 1], &zil og->zl _| ock); 1615 */
1550 if (nmybatch <= zilog->zl _combatch) { 1616 zil _init_log_chain(zilog, &blk);
1551 nut ex_exi t (&zi | og- >zl _| ock) ; 1617 zh->zh_l og = bl k;
1552 return; 1618 }
1553 } 1619 }
1554 1
1621 while ((Iwb = list_head(&zilog->zl Iwb_list)) !'= NULL) {
1556 zi | 0og- >zl _next _bat ch++; 1622 zh->zh_l og = | wb->| wb_bl k;
1557 zil og->zl _witer = B TRUE; 1623 if (Iwb->wb_buf !'= NULL || |wb->Iwb_nax_txg > txg)
1558 zil _commt_witer(zilog); 1624 br eak;
1559 zi | og->zl _com batch = nybat ch; 1625 list_renmove(&zilog->zl _Iwb_list, |wb);
1560 zilog->zl _witer = B_FALSE; 1626 zio_free_zil (spa, txg, & wb->lwb_blk);
1561 mut ex_exi t (&zi | og- >zl _| ock); 1627 kmem cache_free(zil _| wb_cache, |wb);
1563 /* wake up one thread to becone the next witer */ 1629 /*
1564 cv_signal (&zil og->zl _cv_bat ch[ (nybatch+1) & 1]); 1630 * |f we don't have anything left in the Iwb list then
1631 * we’'ve had an allocation failure and we need to zero
1566 /* wake up all threads waiting for this batch to be committed */ 1632 * out the zil_header blkptr so that we don't end
1567 cv_broadcast (&zi | og- >zl _cv_batch[ nybatch & 1]); 1633 * up freeing the same bl ock twice.
1568 } 1634 */
1635 if (list_head(&zilog->zl _|wb_list) == NULL)
1570 /* 1636 BP_ZERQ( & h- >zh_]| 0g) ;
1571 * Called in syncing context to free conmitted | og bl ocks and update | og header. 1637 }
1572 */ 1638 mut ex_exi t (&zi | og- >zl _I| ock);
1573 voi d 1639 }
1574 zil _sync(zilog_t *zilog, dmu_tx_t *tx)
1575 { 1641 void
1576 zi | _header _t *zh = zil _header_i n_synci ng_context(zil og); 1642 zil _init(void)
1577 uint64_t txg = drmu_tx_get_txg(tx); 1643 {
1578 spa_t *spa = zil og->zl _spa; 1644 zi|l _|l wb_cache = knem cache_create("zil _| wb_cache",
1579 uint64_t *replayed_seq = &zil og->zl _repl ayed_seq[txg & TXG MASK] ; 1645 sizeof (struct Iwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1580 Iwb_t *I wb; 1646 }
1582 /* 1648 voi d
1583 * W don’'t zero out zl_destroy_txg, so nmake sure we don't try 1649 zil _fini(void)
1584 * to destroy it twice. 1650 {
1585 @] 1651 kmem cache_destroy(zil _| wb_cache);
1586 if (spa_sync_pass(spa) != 1) 1652 }
1587 return;
1654 voi d
1589 nmut ex_ent er (&zi | og- >zl _| ock); 1655 {zi | _set_sync(zilog_t *zilog, uint64_t sync)
1656
1591 ASSERT( zi | og- >zl _stop_sync == 0); 1657 zi | og- >zl _sync = sync;
1658 }
1593 if (*replayed_seq != 0)
1594 ASSERT(zh->zh_repl ay_seq < *repl ayed_seq); 1660 void
1595 zh->zh_repl ay_seq = *repl ayed_seq; 1661 zil _set_l ogbias(zilog_t *zilog, uint64_t | ogbias)
1596 *repl ayed_seq = O; 1662 {
1597 } 1663 zi |l og->z| _| ogbi as = | ogbi as;
1664 }
1599 if (zilog->zl _destroy_txg == txg) {
1600 bl kptr_t blk = zh->zh_l og; 1666 zilog_t *
1667 zil _alloc(objset_t *os, zil_header_t *zh_phys)
1602 ASSERT( | i st _head(&zil og->zl _Iwb_list) == NULL); 1668 {
1669 zilog_t *zil og;
1604 bzero(zh, sizeof (zil_header_t));
1605 bzero(zil og- >zl _repl ayed_seq, sizeof (zilog->zl_replayed_seq)); 1671 zilog = knem zal | oc(sizeof (zilog_t), KM SLEEP);
1607 if (zilog->zl _keep_first) { 1673 zi | og- >zl _header = zh_phys;
1608 /* 1674 zi |l og->zl _os = os;
1609 * If this block was part of |og chain that couldn't 1675 zi |l og- >zl _spa = dnu_obj set _spa(os);




new usr/src/uts/comon/fs/zfs/zil.c

1676
1677
1678
1679
1680

1682

1684
1685
1686
1687

1689
1690

1692
1693

1695

1697
1698

1700
1701
1702
1703

1705
1706

1708
1709

}

voi d
zil

1710 {

1711

1713
1714

1716
1717

1719
1720

1722
1723

1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736

1738

1740
1741

zi | og- >zl _dnu_pool = dnu_obj set _pool (0s);
zi | og- >z| _dest roy_txg = TXG.INTIAL - 1;

zi | 0og->z| _| ogbi as dmu_obj set _I| ogbi as(o0s);
zi |l 0og- >zl _sync = drru Obj set _syncprop(os);

zi | og- >zl _next_batch =

mutex_init(&zilog->zl _| ock, NULL, MJTEX_DEFAULT, NULL);

(int i :0 i < TXG_SI ZE; i ++)
mut ex_i nit (&ilog->zl _itxg[i].

I\/UTEX DEFAULT, NULL);

i txg_l ock, NULL,

}

Iist create(&2| 0g-
of fsetof (I wb_t,

>zl _Iwb_list,
I wb_node) ) ;

sizeof (lwb_t),

list_create(&zilog->zl _itx_commt_list,
of fsetof (itx_t, itx_node));

sizeof (itx_t),

mut ex_i ni t (&zi | og- >zl _vdev_l ock, NULL, MUTEX_DEFAULT, NULL)

avl _create(&zil og->zl _vdev_tree, zil_vdev_conpare,

si zeof (zil_vdev_node_t), of f set of (ziT_vdev_node_t, zv_node));
cv_init(&ilog->zl _cv_witer, NULL, CV_DEFAULT, NULL);
cv_init(&zilog->zl _cv suspend NULL, CV_DEFAULT, I\ULL)
cv_init(&ilog->zl _cv_batch[0], NULL CV_DEFAULT, NULL)
cv_init(&zilog->zl _cv_batch[1], NULL, CV_DEFAULT, NULL);
return (zil og)

_free(zilog_t *zilog)

zi | og->zl _stop_sync = 1;

ASSERTO( zi | 0g- >zl
ASSERTO( zi | og- >zl

_suspend);
_suspendi ng) ;

ASSERT(list_is_enpty(&zilog->zl _Iwb_list));
l'ist_destroy(&zilog->zl _Iwb_list);

avl _destroy(&zil og->zl _vdev_tree);
mut ex_dest roy( &i | og- >zl _vdev_I ock);

ASSERT(list_is_enmpty(&zilog->zl _itx_conmit_list));
list_destroy(&zilog->zl _itx_commt_list);
(int
/

i =0; i <TXGSIZE, i++) {

*

* |t's possible for an itx to be generated that doesn’'t dirty
* atxg (e.g. ztest TX_ TRUNCATE). So there’'s no zil_clean()
*
*
*

cal |l back to remove the entry. W renpve those here.

Also free up the ziltest itxs.
*/

if (zilog->zl _itxg[i].itxg_itxs)
zil _itxg_clean(zilog->zl _itxg[i].itxg_itxs);
mut ex_destroy(&zil og->zl _itxg[i].itxg_l ock);
}
mut ex_destroy(&zi |l og- >zl _| ock);
cv_destroy(&zil og->zl _cv_witer);

cv_destroy(&zil og- >zl _cv_suspend);

15

new usr/src/uts/comon/fs/zfs/zil.c

1742 cv_destroy(&zil og->zl _cv_batch[0]);

1743 cv_destroy(&zil og->zl _cv_batch[1]);

1745 kmem free(zil og, sizeof (zilog_t));

1746 }

1748 | *

1749 * Open an intent |og.

1750 */

1751 zilog_t *

1752 zil _open(objset_t *os, zil_get_data_t *get_data)

1753 {

1754 zilog_t *zilog = dnu_objset_zil(os);

1756 ASSERT( zi | og- >zl _cl ean taskq == NULL);

1757 ASSERT( zi | 0g- >zl _get _data == NULL);

1758 ASSERT(li st _i s_enpty(&zi | og->zI _| V\b list));

1760 zi |l og->z| _get _data = get dat a;

1761 zilog->z| _clean_taskq = taskq_create("zil _clean", 1, mnclsyspri,
1762 2, 2, TASKQ PREPCPULATE);

1764 return (zilog);

1765 }

1767 /*

1768 * Close an intent |og.

1769 */

1770 voi d

1771 zil _cl ose(zilog_t *zilog)

1772 {

1773 Iwb_t *Iwb;

1774 uint64_t txg = O;

1776 zil _commit(zilog, 0); /* commit all itx */

1778 /*

1779 * The |wb_max_txg for the stubby Iwb will reflect the last activity
1780 * for the zil. After a txg_wait_synced() on the txg we know all the
1781 * cal | backs have occurred that may clean the zil. Only then can we
1782 * destroy the zl_cl ean_taskq.

1783 */

1784 mut ex_ent er (&zi | og- >zl _| ock) ;

1785 Iwb = list_tail(&zilog->zl _[wb_list);

1786 if (Iwb !'="NULL)

1787 txg = | wb->l wb_max_t xg;

1788 mut ex_exi t (&zi | og- >zl _I ock);

1789 if (txg)

1790 t xg_wai t _synced(zi | og- >zl _dmu_pool, txg);
1791 ASSERT(!zilog_is_dirty(zilog));

1793 taskq_destroy(zil og->zl _cl ean_t askq);

1794 zi |l 0og->z| _cl ean_taskg = NULL;

1795 zi | og->z| _get _data = NULL;

1797 /*

1798 * We shoul d have only one LWB left on the list; renove it now
1799 */

1800 mut ex_ent er (&zi | og- >zl _| ock);

1801 Iwb = |ist_head(&ilog->zl _|wb_list);

1802 if (Iwb !'="NULL)

1803 ASSERT(Iwb == list_tail (&ilog->zl _Iwb_list));
1804 list_rempve(&zilog->zl Iwb_list, |wb);

1805 zi o_buf _free(l wb->l wb_buf, |wb->Iwb_sz);

1806 kmem cache_free(zil _| wb_cache, |wb);

1807 }



17

new usr/src/uts/comon/fs/zfs/zil.c

1808 mut ex_exi t (&zi | og- >zl _I ock);

1809 }

1811 static char *suspend_tag = "zil suspending";

1813 /*

1814 * Suspend an intent log. Wiile in suspended node, we still honor

1815 * synchronous senantics, but we rely on txg_wait_synced() to do it.

1816 * On old version pools, we suspend the log briefly when taking a

1817 * snapshot so that it will have an enpty intent |og.

1818 *

1819 * Long holds are not really intended to be used the way we do he

1820 * held for such a short time. A concurrent caller of dsl_dat aset Iong hel d()
1821 * could fail. Therefore we take pains to only put a long hold if it is
1822 * actually necessary. Fortunately, it will only be necessary if the
1823 * objset is currently nounted (or the ZVOL equivalent). |In that case it
1824 * will already have a long hold, so we are not really naking things any worse.
1825 *

1826 * ldeally, we would | ocate the existing | ong-holder (i.e. the zfsvfs_t or
1827 * zvol _state_t), and use their nechanismto prevent their hold from being
1828 * dropped (e.g. VFS HOLD()). However, that would be even nore pain for
1829 * very little gain.

1830 *

1831 * if cookiep == NULL, this does both the suspend & resune.

1832 * Otherwise, it returns with the dataset "long held", and the cookie
1833 * should be passed into zil_resunme().

1834 */

1835 int

1836 zil _suspend(const char *osnane, void **cookiep)

1837 {

1838 obj set _t *os;

1839 zilog_t *zilog;

1840 const zil _header_t *zh;

1841 int error;

1843 error = dnu_obj set _hol d(osnane, suspend_tag, &os);

1844 if (error 1= 0)

1845 return (error);

1846 zil og = dnu_obj set _zil (0s);

1848 nmut ex_ent er (&zi | og- >zl _| ock);

1849 zh = zil og- >zl _header;

1851 if (zh->zh_flags & ZI L_REPLAY_NEEDED) ({ /* unpl ayed | og */
1852 nut ex_exi t (&zi I og- >zl _| ock) ;

1853 dnu_obj set _rel e(os, suspend_tag);

1854 return (SET_ERROR(EBUSY));

1855 1

1857 /*

1858 * Don't put a long hold in the cases where we can avoid it. This
1859 * is when there is no cookie so we are doing a suspend & resune
1860 * (i.e. called fromzil_vdev_offline()), and there’s nothing to do
1861 */for the suspend because it’s already suspended, or there’'s no ZIL.
1862 *

1863 if (cookiep == NULL && !zil og->zl _suspendi ng &&

1864 (zilog->zl _suspend > 0 || BP_IS HOLE(&zh->zh_log))) {

1865 mut ex_exi t (&i | og->zl _I ock);

1866 dnu_obj set _rel e(os, suspendft ag);

1867 return (0);

1868 1

1870 dsl _dat aset _| ong_hol d(dnu_obj set _ds(os), suspend_tag);

1871 dsl _pool _rel e(dnu_obj set _pool (os), suspend_tag);

1873 zi | 0g- >zl _suspend++;

new usr/src/uts/comon/fs/zfs/zil.c

1875
1876
1877
1878
1879

1881
1882
1883

1885
1886
1887
1888
1889
1890

1892
1893
1894
1895
1896
1897
1898

1900
1901
1902
1903

1905
1906

1908
1910

1912
1913
1914
1915

1917
1918
1919
1920
1921
1922

1924
1925

}

voi d
zi |

1926 {

1927
1928

1930
1931
1932
1933
1934
1935
1936

1938
1939

}
t ypedef

if(

}

/*
*
* b
* ot
S

if (

}

zilo
nut e

zil
zil
mt e
zilo

cv_b
nut e

if (
el se

retu

obj s
zilo

mut e

ASSERT( zi | og- >zl

zilo
nut e
dsl
dsl

stru
zil

zi | og- >z| _suspend > 1) {
/*
* Soneone else is already suspending it.
* Just wait for themto finish.
*/

while (zilog->zl _suspendi ng)
cv_wai t (&zi | og- >zl _cv_suspend, &zil og- >zl
mut ex_exi t (&i | og- >zl _| ock);

_lock);

if (cookiep == NULL)

zi |l _resune(os);
el se

*cooki ep = os;
return (0);

f there is no pointer to an on-disk block, this ZIL nust not

e active (e.g. filesystemnot nounted), so there’ s nothing
o clean up.
BP_I S_HOLE( &zh->zh_l 0g)) {

ASSERT(cookiep !'="NULL); /* fast path already handled */

*cooki ep = os;

mut ex_exi t (&i | og- >zl _| ock);
return (0);
g- >zl _suspendi ng = B_TRUE;
x_exit(&zil og->zl _| ock);
_commit(zilog, 0);
_destroy(zilog, B_FALSE);
x_enter (&zi |l og->zl _I| ock);
g- >zl _suspendi ng = B_FALSE;
roadcast (&zi |l og- >zl _cv_suspend);
x_exi t (&zil og->zl _| ock);

cooki ep NULL)
zil _resune(o0s);

*cooki ep = os;
rn (0);

_resune(void *cooki e)

et _t *os = cooki e;
g_t *zilog = dmu_objset_zil (o0s);

x_enter (&zi |l og- >zl _| ock);
_suspend != 0);
g- >zl _suspend- - ;

x_exit(&zil og- >zl _lock);

dat aset _| ong_rel e(dmu_ ob] set _ds(os), suspend_tag);
“dat aset _rel e(drmu_obj set _ds(o0s), suspend_t ag) ;

ct zil_replay_arg {

_replay_func_t **zr_repl ay;



new usr/src/uts/comon/fs/zfs/zil.c 19 new usr/src/uts/comon/fs/zfs/zil.c 20

1940 voi d *zr_arg; 2006 error = zil _read Iog data(zilog, (lr_wite_t *)lr,
1941 bool ean_t zr _byt eswap; 2007 zr->zr _Ir + reclien);
1942 char *zr_lr; 2008 if (error 1=0)
1943 } zil _replay_arg_t; 2009 ) return (zil _replay_error(zilog, Ir, error));
2010
1945 static int
1946 zil _replay_error(zilog_t *zilog, Ir_t *lr, int error) 2012 /*
1947 { 2013 * The log block containing this Ir may have been byt eswapped
1948 char nanme[ MAXNAMELEN] ; 2014 * so that we can easily exam ne common fields like Irc_txtype.
2015 * However, the log is a mx of different record types, and only the
1950 zi | og- >zl _repl ayi ng_seq--; /* didn't actually replay this one */ 2016 * repl ay vectors know how to byteswap their records. Therefore, if
2017 * the Ir was byteswapped, undo it before invoking the replay vector.
1952 dmu_obj set _nane(zi |l og- >zl _os, nane); 2018 */
2019 if (zr->zr_byteswap)
1954 crm_err (CE_WARN, "ZFS replay transaction error %, " 2020 byt eswap_ui nt 64_array(zr->zr_lr, reclen);
1955 "dataset %, seq Ox%|x, txtype %lu %\n", error, nane,
1956 (u_longlong_t)lr->lrc_seq, 2022 /*
1957 (u_l Ionglongt)(lr—>lrctxtype&~TX a), 2023 * W nust now do two things atomically: replay this |log record,
1958 (Ir->lrc_txtype & TX_ Cl) ? "C" ") 2024 * and update the | og header sequence nunber to reflect the fact that
2025 * we did so. At the end of each replay function the sequence nunber
1960 return (error); 2026 * is updated if we are in replay node.
1961 } 2027 *
2028 error = zr->zr_replay[txtype] (zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
1963 static int 2029 if (error '=0) {
1964 zil _replay_log_record(zilog_t *zilog, Ir_t *lr, void *zra, uint64_t claimtxg) 2030 *
1965 { 2031 * The DMJ s dnode | ayer doesn't see renoves until the txg
1966 zil _replay_arg_t *zr = zra; 2032 * commits, so a subsequent claimcan spuriously fail with
1967 const zil_header_t *zh = zil og->zl _header; 2033 * EEXIST. So if we receive any error we try syncing out
1968 uint64_t reclen = Ir->lrc_reclen; 2034 * any renpves then retry the transaction. Note that we
1969 uint64_t txtype = Ir->lrc_txtype; 2035 * specify B_FALSE for byteswap now, so we don’t do it twice.
1970 int error = 0; 2036 */
2037 t xg_wai t _synced(spa_get _dsl (zil og->zl _spa), 0);
1972 zi l og->zl _repl ayi ng_seq = Ir->lrc_seq; 2038 error = zr->zr_replay[txtype] (zr->zr_arg, zr->zr_|lr, B_FALSE);
2039 if (error 1= 0)
1974 if (Ir->lrc_seq <= zh->zh_repl ay_seq) /* already replayed */ 2040 return (zil _replay_error(zilog, Ir, error));
1975 return (0); 2041 }
2042 return (0);
1977 if (Ir->rc_txg < claimtxg) /* already conmitted */ 2043 }
1978 return (0);
2045 /* ARGSUSED */
1980 /* Strip case-insensitive bit, still present in log record */ 2046 static int
1981 txtype & ~TX C; 2047 zil _incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claimtxg)
2048 {
1983 if (txtype == 0 || txtype >= TX_MAX_TYPE) 2049 zi | og- >zl _repl ay_bl ks++;
1984 return (zil_replay_error(ziTog, Ir, EINVAL));
2051 return (0);
1986 /* 2052 }
1987 * If this record type can be |ogged out of order, the object
1988 * (Ir_foid) nay no longer exist. That’'s legitimte, not an error. 2054 | *
1989 */ 2055 * |f this dataset has a non-enpty intent log, replay it and destroy it.
1990 if (TX COO(txtype)) { 2056 */
1991 error = dnu_obj ect _i nfo(zil og->zl _os, 2057 void
1992 ((rr 000_| t *)lr)->lr_foid, NULL); 2058 zil _replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[ TX_MAX_TYPE])
1993 if (error == ENOCENT || error == EEXI ST) 2059 {
1994 return (0); 2060 zilog_t *zilog = dnu_objset_zil (os);
1995 } 2061 const zil_header_t *zh = zil og->zl _header;
2062 zil _replay_arg_t zr;
1997 /*
1998 * Make a copy of the data so we can revise and extend it. 2064 if ((zh->zh_flags & ZI L_REPLAY_NEEDED) == 0) {
1999 */ 2065 zi| _destroy(zilog, B_TRUE);
2000 bcopy(lr, zr->zr_lr, reclen); 2066 return;
2067 }
2002 /*
2003 * If thisis a TX WRITE with a blkptr, suck in the data. 2069 zr.zr_repl ay repl ay_func;
2004 */ 2070 zr.zr_arg =

g,
2005 if (txtype == TX_ WRITE && reclen == sizeof (lr_wite_t)) { 2071 zr.zr _byteswap = BP_SHOULD_BYTESWAP( &zh->zh_I og);




new usr/src/uts/comon/fs/zfs/zil.c

2072 zr.zr_lr = kmem al l oc(2 * SPA_MAXBLOCKSI ZE, KM SLEEP);

2074 /*

2075 * Wait for in-progress renpves to sync before starting replay.
2076 */

2077 t xg_wai t _synced(zi | og- >zl _dmu_pool, 0);

2079 zi l og->z| _replay = B_TRUE;

2080 zilog->z| _replay_tinme = ddi_get_lbolt();

2081 ASSERT( zi | og- >zl _repl ay_bl ks == 0);

2082 (void) zil_parse(zilog, zil_incr_blks, zil _replay_log record, &zr,
2083 zh->zh_cl ai m t xg);

2084 kmem free(zr.zr_Ir, 2 * SPA_MAXBLOCKSI ZE);

2086 zi|l _destroy(zilog, B _FALSE);

2087 txg_wai t _synced(zil og->zl _dmu_pool, zilog->zl_destroy_txg);
2088 zi l og- >zl _replay = B_FALSE;

2089 }

2091 bool ean_t
2092 zil _replaying(zilog_t *zilog, dnu_tx_t *tx)

2093

2094 if (zilog->zl _sync == ZFS_SYNC_DI SABLED)

2095 return (B_TRUE);

2097 if (zilog->zl _replay) {

2098 dsl _dat aset _di rty(dmu_obj set _ds(zil og->zl _os), tx);
2099 zi |l og- >zl _repl ayed_seq[drmu_t x_get _txg(tx) & TXG _MASK] =
2100 zi | og- >zI _repl ayi ng_seq;

2101 return (B_TRUE);

2102 }

2104 return (B_FALSE);

2105 }

2107 /* ARGSUSED */

2108 int

2109 zil _vdev_offline(const char *osname, void *arg)

2110 {

2111 int error;

2113 error = zil _suspend(osnanme, NULL);

2114 if (error 1= 0)

2115 return (SET_ERROR(EEXI ST));

2116 return (0);

2117 }




new usr/src/uts/comon/fs/zfs/zio.c 1

R R R R

89624 Wed Apr 24 12:44:35 2013
new usr/src/uts/comon/fs/zfs/zio.c
3742 zfs comments need cleaner, nore consistent style
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>

Submi tted by: Al an Soners <al ans@pectral ogi c. con>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con»

Revi ewed by: George W son <george.w | son@lel phi x. con»
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. con>

LR

__unchanged_portion_onitted_

1185 /*
1186 * Execute the |/ O pipeline until one of the follow ng occurs:
1187 *
1188 * (1) the 1/ 0O conpl etes
1189 * (2) the pipeline stalls waltlngfor dependent child 1/ Cs
1190 * (3) the /O issues, so we’'re waiting for an 1/0O conpl etion interrupt
1191 * (4) the I/Ois del egat ed by vdev-level caching or aggregation
1192 * (5) the 1/Ois deferred due to vdev-I|evel queueing
1193 * (6) the 1/0Ois handed off to another thread.
1194 *
1195 * In all cases, the pipeline stops whenever there’'s no CPU work; it never
1196 * burns a thread in cv_wait().
1187 * (1) theI/Ocoanetes, (2) the pipeline stalls waltlngfor
1188 * dependent child I/GCs; (3) the I/0O issues, so we're walting
1189 * for an I/ O conpletion interrupt; (4) the 1/0Ois del egated by
1190 * vdev-level caching or aggregation; (5) the 1/Ois deferred
1191 * due to vdev-level queueing; (6) the I/Ois handed off to
1192 * another thread. |In all cases, the pipeline stops whenever
1193 * there’s no CPU work; it never burns a thread in cv_wait().
1197 *
1198 * There's no locking on io_stage because there’s no |legiti mte way
1199 * for multiple threads to be attenpting to process the same |1/Q
1200 */
1201 static zio_pipe_stage_t *zio_pipeline[];
1203 voi d
1204 zi o_execute(zio_t *zio)
1205 {
1206 zi 0->i o_executor = curthread;
1208 whil e (zio->i o_stage < ZI O STAGE_DONE)
1209 enum zi o_stage pipeline = zio->io_pipeline;
1210 enum zi o_stage stage = zi o->i o_stage;
1211 int rv;
1213 ASSERT( ! MUTEX_HELD( &zi o- >i 0_| ock));
1214 ASSERT( | SP2(stage)) ;
1215 ASSERT( zi 0- >i o_st al | == NULL) ;
1217 do {
1218 stage <<= 1;
1219 } while ((stage & pipeline) == 0);
1221 ASSERT(stage <= ZI O STAGE_DONE) ;
1223 /*
1224 * |f we are in interrupt context and this pipeline stage
1225 * will grab a config lock that is held across 1/0
1226 * or may wait for an 1/0O that needs an interrupt thread
1227 * to conplete, issue async to avoid deadl ock.
1228 *
1229 * For VDEV_I O START, we cut in line so that the io wll
1230 * be sent to disk pronptly.
*

1231 /

new usr/src/uts/comon/fs/zfs/zio.c

1232 if ((stage & ZI O_BLOCKI NG_STAGES) && zio->io_vd == NULL &&
1233 zi o_t askg_nmenber ( 2| o, ZIO TASKQI NTERRUPT))

1234 bool ean_t cut (st age == Z|I O_STAGE_VDEV_| O START) ?
1235 zio requeue io_start_cut_in_line : B_FALSE
1236 zi o_taskq_di spatch(zi o, ZI O TASKQ | SSUE, cut);

1237 return;

1238 }

1240 zi 0->i o_stage = stage

1241 rv = zio_pipeline[hi ghblt(stage) - 1] (zio);

1243 if (rv == ZI O_PI PELI NE_STOP)

1244 return;

1246 ASSERT(rv == ZI O_PI PELI NE_CONTI NUE) ;

1247 }

1248 }

__unchanged_portion_onitted_



