
new/usr/src/uts/common/fs/zfs/arc.c 1

**
 135192 Wed Apr 24 12:44:23 2013
new/usr/src/uts/common/fs/zfs/arc.c
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 */

27 /*
28 * DVA-based Adjustable Replacement Cache
29 *
30 * While much of the theory of operation used here is
31 * based on the self-tuning, low overhead replacement cache
32 * presented by Megiddo and Modha at FAST 2003, there are some
33 * significant differences:
34 *
35 * 1. The Megiddo and Modha model assumes any page is evictable.
36 * Pages in its cache cannot be "locked" into memory. This makes
37 * the eviction algorithm simple: evict the last page in the list.
38 * This also make the performance characteristics easy to reason
39 * about. Our cache is not so simple. At any given moment, some
40 * subset of the blocks in the cache are un-evictable because we
41 * have handed out a reference to them. Blocks are only evictable
42 * when there are no external references active. This makes
43 * eviction far more problematic: we choose to evict the evictable
44 * blocks that are the "lowest" in the list.
45 *
46 * There are times when it is not possible to evict the requested
47 * space. In these circumstances we are unable to adjust the cache
48 * size. To prevent the cache growing unbounded at these times we
49 * implement a "cache throttle" that slows the flow of new data
50 * into the cache until we can make space available.
51 *
52 * 2. The Megiddo and Modha model assumes a fixed cache size.
53 * Pages are evicted when the cache is full and there is a cache
54 * miss. Our model has a variable sized cache. It grows with
55 * high use, but also tries to react to memory pressure from the
56 * operating system: decreasing its size when system memory is

new/usr/src/uts/common/fs/zfs/arc.c 2

57 * tight.
58 *
59 * 3. The Megiddo and Modha model assumes a fixed page size. All
60 * elements of the cache are therefore exactly the same size. So
60 * elements of the cache are therefor exactly the same size. So
61 * when adjusting the cache size following a cache miss, its simply
62 * a matter of choosing a single page to evict. In our model, we
63 * have variable sized cache blocks (rangeing from 512 bytes to
64 * 128K bytes). We therefore choose a set of blocks to evict to make
64 * 128K bytes). We therefor choose a set of blocks to evict to make
65 * space for a cache miss that approximates as closely as possible
66 * the space used by the new block.
67 *
68 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
69 * by N. Megiddo & D. Modha, FAST 2003
70 */

72 /*
73 * The locking model:
74 *
75 * A new reference to a cache buffer can be obtained in two
76 * ways: 1) via a hash table lookup using the DVA as a key,
77 * or 2) via one of the ARC lists. The arc_read() interface
78 * uses method 1, while the internal arc algorithms for
79 * adjusting the cache use method 2. We therefore provide two
79 * adjusting the cache use method 2. We therefor provide two
80 * types of locks: 1) the hash table lock array, and 2) the
81 * arc list locks.
82 *
83 * Buffers do not have their own mutexes, rather they rely on the
84 * hash table mutexes for the bulk of their protection (i.e. most
85 * fields in the arc_buf_hdr_t are protected by these mutexes).
86 *
87 * buf_hash_find() returns the appropriate mutex (held) when it
88 * locates the requested buffer in the hash table. It returns
89 * NULL for the mutex if the buffer was not in the table.
90 *
91 * buf_hash_remove() expects the appropriate hash mutex to be
92 * already held before it is invoked.
93 *
94 * Each arc state also has a mutex which is used to protect the
95 * buffer list associated with the state. When attempting to
96 * obtain a hash table lock while holding an arc list lock you
97 * must use: mutex_tryenter() to avoid deadlock. Also note that
98 * the active state mutex must be held before the ghost state mutex.
99 *
100 * Arc buffers may have an associated eviction callback function.
101 * This function will be invoked prior to removing the buffer (e.g.
102 * in arc_do_user_evicts()). Note however that the data associated
103 * with the buffer may be evicted prior to the callback. The callback
104 * must be made with *no locks held* (to prevent deadlock). Additionally,
105 * the users of callbacks must ensure that their private data is
106 * protected from simultaneous callbacks from arc_buf_evict()
107 * and arc_do_user_evicts().
108 *
109 * Note that the majority of the performance stats are manipulated
110 * with atomic operations.
111 *
112 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
113 *
114 * - L2ARC buflist creation
115 * - L2ARC buflist eviction
116 * - L2ARC write completion, which walks L2ARC buflists
117 * - ARC header destruction, as it removes from L2ARC buflists
118 * - ARC header release, as it removes from L2ARC buflists
119 */

new/usr/src/uts/common/fs/zfs/arc.c 3

121 #include <sys/spa.h>
122 #include <sys/zio.h>
123 #include <sys/zfs_context.h>
124 #include <sys/arc.h>
125 #include <sys/refcount.h>
126 #include <sys/vdev.h>
127 #include <sys/vdev_impl.h>
128 #ifdef _KERNEL
129 #include <sys/vmsystm.h>
130 #include <vm/anon.h>
131 #include <sys/fs/swapnode.h>
132 #include <sys/dnlc.h>
133 #endif
134 #include <sys/callb.h>
135 #include <sys/kstat.h>
136 #include <zfs_fletcher.h>

138 #ifndef _KERNEL
139 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
140 boolean_t arc_watch = B_FALSE;
141 int arc_procfd;
142 #endif

144 static kmutex_t arc_reclaim_thr_lock;
145 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */
146 static uint8_t arc_thread_exit;

148 extern int zfs_write_limit_shift;
149 extern uint64_t zfs_write_limit_max;
150 extern kmutex_t zfs_write_limit_lock;

152 #define ARC_REDUCE_DNLC_PERCENT 3
153 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;

155 typedef enum arc_reclaim_strategy {
156 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */
157 ARC_RECLAIM_CONS /* Conservative reclaim strategy */
158 } arc_reclaim_strategy_t;

______unchanged_portion_omitted_

375 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)

377 #define ARCSTAT_INCR(stat, val) \
378 atomic_add_64(&arc_stats.stat.value.ui64, (val))
378 atomic_add_64(&arc_stats.stat.value.ui64, (val));

380 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
381 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)

383 #define ARCSTAT_MAX(stat, val) { \
384 uint64_t m; \
385 while ((val) > (m = arc_stats.stat.value.ui64) && \
386 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
387 continue; \
388 }

______unchanged_portion_omitted_

575 static buf_hash_table_t buf_hash_table;

577 #define BUF_HASH_INDEX(spa, dva, birth) \
578 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
579 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
580 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
581 #define HDR_LOCK(hdr) \
582 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))

new/usr/src/uts/common/fs/zfs/arc.c 4

584 uint64_t zfs_crc64_table[256];

586 /*
587 * Level 2 ARC
588 */

590 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
591 #define L2ARC_HEADROOM 2 /* num of writes */
592 #define L2ARC_FEED_SECS 1 /* caching interval secs */
593 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */

595 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
596 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)

598 /* L2ARC Performance Tunables */
598 /*
599 * L2ARC Performance Tunables
600 */
599 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */
600 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */
601 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */
602 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
603 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */
604 boolean_t l2arc_noprefetch = B_TRUE; /* don’t cache prefetch bufs */
605 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */
606 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */

608 /*
609 * L2ARC Internals
610 */
611 typedef struct l2arc_dev {
612 vdev_t *l2ad_vdev; /* vdev */
613 spa_t *l2ad_spa; /* spa */
614 uint64_t l2ad_hand; /* next write location */
615 uint64_t l2ad_write; /* desired write size, bytes */
616 uint64_t l2ad_boost; /* warmup write boost, bytes */
617 uint64_t l2ad_start; /* first addr on device */
618 uint64_t l2ad_end; /* last addr on device */
619 uint64_t l2ad_evict; /* last addr eviction reached */
620 boolean_t l2ad_first; /* first sweep through */
621 boolean_t l2ad_writing; /* currently writing */
622 list_t *l2ad_buflist; /* buffer list */
623 list_node_t l2ad_node; /* device list node */
624 } l2arc_dev_t;

______unchanged_portion_omitted_

3517 int
3518 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3519 {
3520 int error;
3521 uint64_t anon_size;

3523 #ifdef ZFS_DEBUG
3524 /*
3525 * Once in a while, fail for no reason. Everything should cope.
3526 */
3527 if (spa_get_random(10000) == 0) {
3528 dprintf("forcing random failure\n");
3529 return (SET_ERROR(ERESTART));
3530 }
3531 #endif
3532 if (reserve > arc_c/4 && !arc_no_grow)
3533 arc_c = MIN(arc_c_max, reserve * 4);
3534 if (reserve > arc_c)
3535 return (SET_ERROR(ENOMEM));

new/usr/src/uts/common/fs/zfs/arc.c 5

3537 /*
3538 * Don’t count loaned bufs as in flight dirty data to prevent long
3539 * network delays from blocking transactions that are ready to be
3540 * assigned to a txg.
3541 */
3542 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);

3544 /*
3545 * Writes will, almost always, require additional memory allocations
3546 * in order to compress/encrypt/etc the data. We therefore need to
3548 * in order to compress/encrypt/etc the data. We therefor need to
3547 * make sure that there is sufficient available memory for this.
3548 */
3549 if (error = arc_memory_throttle(reserve, anon_size, txg))
3550 return (error);

3552 /*
3553 * Throttle writes when the amount of dirty data in the cache
3554 * gets too large. We try to keep the cache less than half full
3555 * of dirty blocks so that our sync times don’t grow too large.
3556 * Note: if two requests come in concurrently, we might let them
3557 * both succeed, when one of them should fail. Not a huge deal.
3558 */

3560 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3561 anon_size > arc_c / 4) {
3562 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3563 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3564 arc_tempreserve>>10,
3565 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3566 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3567 reserve>>10, arc_c>>10);
3568 return (SET_ERROR(ERESTART));
3569 }
3570 atomic_add_64(&arc_tempreserve, reserve);
3571 return (0);
3572 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/bptree.c 1

**
 5987 Wed Apr 24 12:44:23 2013
new/usr/src/uts/common/fs/zfs/bptree.c
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 */

26 #include <sys/arc.h>
27 #include <sys/bptree.h>
28 #include <sys/dmu.h>
29 #include <sys/dmu_objset.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dmu_traverse.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_pool.h>
35 #include <sys/dnode.h>
36 #include <sys/refcount.h>
37 #include <sys/spa.h>

39 /*
40 * A bptree is a queue of root block pointers from destroyed datasets. When a
41 * dataset is destroyed its root block pointer is put on the end of the pool’s
42 * bptree queue so the dataset’s blocks can be freed asynchronously by
43 * dsl_scan_sync. This allows the delete operation to finish without traversing
44 * all the dataset’s blocks.
45 *
46 * Note that while bt_begin and bt_end are only ever incremented in this code,
46 * Note that while bt_begin and bt_end are only ever incremented in this code
47 * they are effectively reset to 0 every time the entire bptree is freed because
48 * the bptree’s object is destroyed and re-created.
49 */

51 struct bptree_args {
52 bptree_phys_t *ba_phys; /* data in bonus buffer, dirtied if freeing */
53 boolean_t ba_free; /* true if freeing during traversal */

55 bptree_itor_t *ba_func; /* function to call for each blockpointer */

new/usr/src/uts/common/fs/zfs/bptree.c 2

56 void *ba_arg; /* caller supplied argument to ba_func */
57 dmu_tx_t *ba_tx; /* caller supplied tx, NULL if not freeing */
58 } bptree_args_t;

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/dnode.c 1

**
 56489 Wed Apr 24 12:44:24 2013
new/usr/src/uts/common/fs/zfs/dnode.c
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

1805 /*
1806 * Scans a block at the indicated "level" looking for a hole or data,
1807 * depending on ’flags’.
1808 *
1809 * If level > 0, then we are scanning an indirect block looking at its
1810 * pointers. If level == 0, then we are looking at a block of dnodes.
1811 *
1812 * If we don’t find what we are looking for in the block, we return ESRCH.
1813 * Otherwise, return with *offset pointing to the beginning (if searching
1814 * forwards) or end (if searching backwards) of the range covered by the
1815 * block pointer we matched on (or dnode).
1806 * This function scans a block at the indicated "level" looking for
1807 * a hole or data (depending on ’flags’). If level > 0, then we are
1808 * scanning an indirect block looking at its pointers. If level == 0,
1809 * then we are looking at a block of dnodes. If we don’t find what we
1810 * are looking for in the block, we return ESRCH. Otherwise, return
1811 * with *offset pointing to the beginning (if searching forwards) or
1812 * end (if searching backwards) of the range covered by the block
1813 * pointer we matched on (or dnode).
1816 *
1817 * The basic search algorithm used below by dnode_next_offset() is to
1818 * use this function to search up the block tree (widen the search) until
1819 * we find something (i.e., we don’t return ESRCH) and then search back
1820 * down the tree (narrow the search) until we reach our original search
1821 * level.
1822 */
1823 static int
1824 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
1825 int lvl, uint64_t blkfill, uint64_t txg)
1826 {
1827 dmu_buf_impl_t *db = NULL;
1828 void *data = NULL;
1829 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
1830 uint64_t epb = 1ULL << epbs;
1831 uint64_t minfill, maxfill;
1832 boolean_t hole;
1833 int i, inc, error, span;

1835 dprintf("probing object %llu offset %llx level %d of %u\n",
1836 dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels);

1838 hole = ((flags & DNODE_FIND_HOLE) != 0);
1839 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
1840 ASSERT(txg == 0 || !hole);

1842 if (lvl == dn->dn_phys->dn_nlevels) {
1843 error = 0;
1844 epb = dn->dn_phys->dn_nblkptr;
1845 data = dn->dn_phys->dn_blkptr;
1846 } else {
1847 uint64_t blkid = dbuf_whichblock(dn, *offset) >> (epbs * lvl);
1848 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FTAG, &db);
1849 if (error) {
1850 if (error != ENOENT)

new/usr/src/uts/common/fs/zfs/dnode.c 2

1851 return (error);
1852 if (hole)
1853 return (0);
1854 /*
1855 * This can only happen when we are searching up
1856 * the block tree for data. We don’t really need to
1857 * adjust the offset, as we will just end up looking
1858 * at the pointer to this block in its parent, and its
1859 * going to be unallocated, so we will skip over it.
1860 */
1861 return (SET_ERROR(ESRCH));
1862 }
1863 error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT);
1864 if (error) {
1865 dbuf_rele(db, FTAG);
1866 return (error);
1867 }
1868 data = db->db.db_data;
1869 }

1871 if (db && txg &&
1872 (db->db_blkptr == NULL || db->db_blkptr->blk_birth <= txg)) {
1873 /*
1874 * This can only happen when we are searching up the tree
1875 * and these conditions mean that we need to keep climbing.
1876 */
1877 error = SET_ERROR(ESRCH);
1878 } else if (lvl == 0) {
1879 dnode_phys_t *dnp = data;
1880 span = DNODE_SHIFT;
1881 ASSERT(dn->dn_type == DMU_OT_DNODE);

1883 for (i = (*offset >> span) & (blkfill - 1);
1884 i >= 0 && i < blkfill; i += inc) {
1885 if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
1886 break;
1887 *offset += (1ULL << span) * inc;
1888 }
1889 if (i < 0 || i == blkfill)
1890 error = SET_ERROR(ESRCH);
1891 } else {
1892 blkptr_t *bp = data;
1893 uint64_t start = *offset;
1894 span = (lvl - 1) * epbs + dn->dn_datablkshift;
1895 minfill = 0;
1896 maxfill = blkfill << ((lvl - 1) * epbs);

1898 if (hole)
1899 maxfill--;
1900 else
1901 minfill++;

1903 *offset = *offset >> span;
1904 for (i = BF64_GET(*offset, 0, epbs);
1905 i >= 0 && i < epb; i += inc) {
1906 if (bp[i].blk_fill >= minfill &&
1907 bp[i].blk_fill <= maxfill &&
1908 (hole || bp[i].blk_birth > txg))
1909 break;
1910 if (inc > 0 || *offset > 0)
1911 *offset += inc;
1912 }
1913 *offset = *offset << span;
1914 if (inc < 0) {
1915 /* traversing backwards; position offset at the end */
1916 ASSERT3U(*offset, <=, start);

new/usr/src/uts/common/fs/zfs/dnode.c 3

1917 *offset = MIN(*offset + (1ULL << span) - 1, start);
1918 } else if (*offset < start) {
1919 *offset = start;
1920 }
1921 if (i < 0 || i >= epb)
1922 error = SET_ERROR(ESRCH);
1923 }

1925 if (db)
1926 dbuf_rele(db, FTAG);

1928 return (error);
1929 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/dnode_sync.c 1

**
 19318 Wed Apr 24 12:44:24 2013
new/usr/src/uts/common/fs/zfs/dnode_sync.c
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

304 /*
305 * Traverse the indicated range of the provided file
305 * free_range: Traverse the indicated range of the provided file
306 * and "free" all the blocks contained there.
307 */
308 static void
309 dnode_sync_free_range(dnode_t *dn, uint64_t blkid, uint64_t nblks, dmu_tx_t *tx)
310 {
311 blkptr_t *bp = dn->dn_phys->dn_blkptr;
312 dmu_buf_impl_t *db;
313 int trunc, start, end, shift, i, err;
314 int dnlevel = dn->dn_phys->dn_nlevels;

316 if (blkid > dn->dn_phys->dn_maxblkid)
317 return;

319 ASSERT(dn->dn_phys->dn_maxblkid < UINT64_MAX);
320 trunc = blkid + nblks > dn->dn_phys->dn_maxblkid;
321 if (trunc)
322 nblks = dn->dn_phys->dn_maxblkid - blkid + 1;

324 /* There are no indirect blocks in the object */
325 if (dnlevel == 1) {
326 if (blkid >= dn->dn_phys->dn_nblkptr) {
327 /* this range was never made persistent */
328 return;
329 }
330 ASSERT3U(blkid + nblks, <=, dn->dn_phys->dn_nblkptr);
331 (void) free_blocks(dn, bp + blkid, nblks, tx);
332 if (trunc) {
333 uint64_t off = (dn->dn_phys->dn_maxblkid + 1) *
334 (dn->dn_phys->dn_datablkszsec << SPA_MINBLOCKSHIFT);
335 dn->dn_phys->dn_maxblkid = (blkid ? blkid - 1 : 0);
336 ASSERT(off < dn->dn_phys->dn_maxblkid ||
337 dn->dn_phys->dn_maxblkid == 0 ||
338 dnode_next_offset(dn, 0, &off, 1, 1, 0) != 0);
339 }
340 return;
341 }

343 shift = (dnlevel - 1) * (dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT);
344 start = blkid >> shift;
345 ASSERT(start < dn->dn_phys->dn_nblkptr);
346 end = (blkid + nblks - 1) >> shift;
347 bp += start;
348 for (i = start; i <= end; i++, bp++) {
349 if (BP_IS_HOLE(bp))
350 continue;
351 rw_enter(&dn->dn_struct_rwlock, RW_READER);
352 err = dbuf_hold_impl(dn, dnlevel-1, i, TRUE, FTAG, &db);
353 ASSERT0(err);
354 rw_exit(&dn->dn_struct_rwlock);

356 if (free_children(db, blkid, nblks, trunc, tx) == ALL) {

new/usr/src/uts/common/fs/zfs/dnode_sync.c 2

357 ASSERT3P(db->db_blkptr, ==, bp);
358 (void) free_blocks(dn, bp, 1, tx);
359 }
360 dbuf_rele(db, FTAG);
361 }
362 if (trunc) {
363 uint64_t off = (dn->dn_phys->dn_maxblkid + 1) *
364 (dn->dn_phys->dn_datablkszsec << SPA_MINBLOCKSHIFT);
365 dn->dn_phys->dn_maxblkid = (blkid ? blkid - 1 : 0);
366 ASSERT(off < dn->dn_phys->dn_maxblkid ||
367 dn->dn_phys->dn_maxblkid == 0 ||
368 dnode_next_offset(dn, 0, &off, 1, 1, 0) != 0);
369 }
370 }

372 /*
373 * Try to kick all the dnode’s dbufs out of the cache...
373 * Try to kick all the dnodes dbufs out of the cache...
374 */
375 void
376 dnode_evict_dbufs(dnode_t *dn)
377 {
378 int progress;
379 int pass = 0;

381 do {
382 dmu_buf_impl_t *db, marker;
383 int evicting = FALSE;

385 progress = FALSE;
386 mutex_enter(&dn->dn_dbufs_mtx);
387 list_insert_tail(&dn->dn_dbufs, &marker);
388 db = list_head(&dn->dn_dbufs);
389 for (; db != ▮ db = list_head(&dn->dn_dbufs)) {
390 list_remove(&dn->dn_dbufs, db);
391 list_insert_tail(&dn->dn_dbufs, db);
392 #ifdef DEBUG
393 DB_DNODE_ENTER(db);
394 ASSERT3P(DB_DNODE(db), ==, dn);
395 DB_DNODE_EXIT(db);
396 #endif /* DEBUG */

398 mutex_enter(&db->db_mtx);
399 if (db->db_state == DB_EVICTING) {
400 progress = TRUE;
401 evicting = TRUE;
402 mutex_exit(&db->db_mtx);
403 } else if (refcount_is_zero(&db->db_holds)) {
404 progress = TRUE;
405 dbuf_clear(db); /* exits db_mtx for us */
406 } else {
407 mutex_exit(&db->db_mtx);
408 }

410 }
411 list_remove(&dn->dn_dbufs, &marker);
412 /*
413 * NB: we need to drop dn_dbufs_mtx between passes so
414 * that any DB_EVICTING dbufs can make progress.
415 * Ideally, we would have some cv we could wait on, but
416 * since we don’t, just wait a bit to give the other
417 * thread a chance to run.
418 */
419 mutex_exit(&dn->dn_dbufs_mtx);
420 if (evicting)
421 delay(1);

new/usr/src/uts/common/fs/zfs/dnode_sync.c 3

422 pass++;
423 ASSERT(pass < 100); /* sanity check */
424 } while (progress);

426 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
427 if (dn->dn_bonus && refcount_is_zero(&dn->dn_bonus->db_holds)) {
428 mutex_enter(&dn->dn_bonus->db_mtx);
429 dbuf_evict(dn->dn_bonus);
430 dn->dn_bonus = NULL;
431 }
432 rw_exit(&dn->dn_struct_rwlock);
433 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/dsl_prop.c 1

**
 29200 Wed Apr 24 12:44:24 2013
new/usr/src/uts/common/fs/zfs/dsl_prop.c
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

380 /*
381 * Unregister this callback. Return 0 on success, ENOENT if ddname is
382 * invalid, or ENOMSG if no matching callback registered.
382 * invalid, ENOMSG if no matching callback registered.
383 */
384 int
385 dsl_prop_unregister(dsl_dataset_t *ds, const char *propname,
386 dsl_prop_changed_cb_t *callback, void *cbarg)
387 {
388 dsl_dir_t *dd = ds->ds_dir;
389 dsl_prop_cb_record_t *cbr;

391 mutex_enter(&dd->dd_lock);
392 for (cbr = list_head(&dd->dd_prop_cbs);
393 cbr; cbr = list_next(&dd->dd_prop_cbs, cbr)) {
394 if (cbr->cbr_ds == ds &&
395 cbr->cbr_func == callback &&
396 cbr->cbr_arg == cbarg &&
397 strcmp(cbr->cbr_propname, propname) == 0)
398 break;
399 }

401 if (cbr == NULL) {
402 mutex_exit(&dd->dd_lock);
403 return (SET_ERROR(ENOMSG));
404 }

406 list_remove(&dd->dd_prop_cbs, cbr);
407 mutex_exit(&dd->dd_lock);
408 kmem_free((void*)cbr->cbr_propname, strlen(cbr->cbr_propname)+1);
409 kmem_free(cbr, sizeof (dsl_prop_cb_record_t));

411 return (0);
412 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/sa.c 1

**
 51577 Wed Apr 24 12:44:25 2013
new/usr/src/uts/common/fs/zfs/sa.c
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 * Portions Copyright 2011 iXsystems, Inc
25 * Copyright (c) 2013 by Delphix. All rights reserved.
26 */

28 #include <sys/zfs_context.h>
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/sysmacros.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dbuf.h>
37 #include <sys/dnode.h>
38 #include <sys/zap.h>
39 #include <sys/sa.h>
40 #include <sys/sunddi.h>
41 #include <sys/sa_impl.h>
42 #include <sys/dnode.h>
43 #include <sys/errno.h>
44 #include <sys/zfs_context.h>

46 /*
47 * ZFS System attributes:
48 *
49 * A generic mechanism to allow for arbitrary attributes
50 * to be stored in a dnode. The data will be stored in the bonus buffer of
51 * the dnode and if necessary a special "spill" block will be used to handle
52 * overflow situations. The spill block will be sized to fit the data
53 * from 512 - 128K. When a spill block is used the BP (blkptr_t) for the
54 * spill block is stored at the end of the current bonus buffer. Any
55 * attributes that would be in the way of the blkptr_t will be relocated
56 * into the spill block.

new/usr/src/uts/common/fs/zfs/sa.c 2

57 *
58 * Attribute registration:
59 *
60 * Stored persistently on a per dataset basis
61 * a mapping between attribute "string" names and their actual attribute
62 * numeric values, length, and byteswap function. The names are only used
63 * during registration. All attributes are known by their unique attribute
64 * id value. If an attribute can have a variable size then the value
65 * 0 will be used to indicate this.
66 *
67 * Attribute Layout:
68 *
69 * Attribute layouts are a way to compactly store multiple attributes, but
70 * without taking the overhead associated with managing each attribute
71 * individually. Since you will typically have the same set of attributes
72 * stored in the same order a single table will be used to represent that
73 * layout. The ZPL for example will usually have only about 10 different
74 * layouts (regular files, device files, symlinks,
75 * regular files + scanstamp, files/dir with extended attributes, and then
76 * you have the possibility of all of those minus ACL, because it would
77 * be kicked out into the spill block)
78 *
79 * Layouts are simply an array of the attributes and their
80 * ordering i.e. [0, 1, 4, 5, 2]
81 *
82 * Each distinct layout is given a unique layout number and that is whats
83 * stored in the header at the beginning of the SA data buffer.
84 *
85 * A layout only covers a single dbuf (bonus or spill). If a set of
86 * attributes is split up between the bonus buffer and a spill buffer then
87 * two different layouts will be used. This allows us to byteswap the
88 * spill without looking at the bonus buffer and keeps the on disk format of
89 * the bonus and spill buffer the same.
90 *
91 * Adding a single attribute will cause the entire set of attributes to
92 * be rewritten and could result in a new layout number being constructed
93 * as part of the rewrite if no such layout exists for the new set of
94 * attribues. The new attribute will be appended to the end of the already
95 * existing attributes.
96 *
97 * Both the attribute registration and attribute layout information are
98 * stored in normal ZAP attributes. Their should be a small number of
99 * known layouts and the set of attributes is assumed to typically be quite
100 * small.
101 *
102 * The registered attributes and layout "table" information is maintained
103 * in core and a special "sa_os_t" is attached to the objset_t.
104 *
105 * A special interface is provided to allow for quickly applying
106 * a large set of attributes at once. sa_replace_all_by_template() is
107 * used to set an array of attributes. This is used by the ZPL when
108 * creating a brand new file. The template that is passed into the function
109 * specifies the attribute, size for variable length attributes, location of
110 * data and special "data locator" function if the data isn’t in a contiguous
111 * location.
112 *
113 * Byteswap implications:
114 *
115 #endif /* ! codereview */
116 * Since the SA attributes are not entirely self describing we can’t do
117 * the normal byteswap processing. The special ZAP layout attribute and
118 * attribute registration attributes define the byteswap function and the
119 * size of the attributes, unless it is variable sized.
120 * The normal ZFS byteswapping infrastructure assumes you don’t need
121 * to read any objects in order to do the necessary byteswapping. Whereas
122 * SA attributes can only be properly byteswapped if the dataset is opened

new/usr/src/uts/common/fs/zfs/sa.c 3

123 * and the layout/attribute ZAP attributes are available. Because of this
124 * the SA attributes will be byteswapped when they are first accessed by
125 * the SA code that will read the SA data.
126 */

128 typedef void (sa_iterfunc_t)(void *hdr, void *addr, sa_attr_type_t,
129 uint16_t length, int length_idx, boolean_t, void *userp);

131 static int sa_build_index(sa_handle_t *hdl, sa_buf_type_t buftype);
132 static void sa_idx_tab_hold(objset_t *os, sa_idx_tab_t *idx_tab);
133 static void *sa_find_idx_tab(objset_t *os, dmu_object_type_t bonustype,
134 void *data);
135 static void sa_idx_tab_rele(objset_t *os, void *arg);
136 static void sa_copy_data(sa_data_locator_t *func, void *start, void *target,
137 int buflen);
138 static int sa_modify_attrs(sa_handle_t *hdl, sa_attr_type_t newattr,
139 sa_data_op_t action, sa_data_locator_t *locator, void *datastart,
140 uint16_t buflen, dmu_tx_t *tx);

142 arc_byteswap_func_t *sa_bswap_table[] = {
143 byteswap_uint64_array,
144 byteswap_uint32_array,
145 byteswap_uint16_array,
146 byteswap_uint8_array,
147 zfs_acl_byteswap,
148 };

150 #define SA_COPY_DATA(f, s, t, l) \
151 { \
152 if (f == NULL) { \
153 if (l == 8) { \
154 *(uint64_t *)t = *(uint64_t *)s; \
155 } else if (l == 16) { \
156 *(uint64_t *)t = *(uint64_t *)s; \
157 *(uint64_t *)((uintptr_t)t + 8) = \
158 *(uint64_t *)((uintptr_t)s + 8); \
159 } else { \
160 bcopy(s, t, l); \
161 } \
162 } else \
163 sa_copy_data(f, s, t, l); \
164 }

166 /*
167 * This table is fixed and cannot be changed. Its purpose is to
168 * allow the SA code to work with both old/new ZPL file systems.
169 * It contains the list of legacy attributes. These attributes aren’t
170 * stored in the "attribute" registry zap objects, since older ZPL file systems
171 * won’t have the registry. Only objsets of type ZFS_TYPE_FILESYSTEM will
172 * use this static table.
173 */
174 sa_attr_reg_t sa_legacy_attrs[] = {
175 {"ZPL_ATIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 0},
176 {"ZPL_MTIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 1},
177 {"ZPL_CTIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 2},
178 {"ZPL_CRTIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 3},
179 {"ZPL_GEN", sizeof (uint64_t), SA_UINT64_ARRAY, 4},
180 {"ZPL_MODE", sizeof (uint64_t), SA_UINT64_ARRAY, 5},
181 {"ZPL_SIZE", sizeof (uint64_t), SA_UINT64_ARRAY, 6},
182 {"ZPL_PARENT", sizeof (uint64_t), SA_UINT64_ARRAY, 7},
183 {"ZPL_LINKS", sizeof (uint64_t), SA_UINT64_ARRAY, 8},
184 {"ZPL_XATTR", sizeof (uint64_t), SA_UINT64_ARRAY, 9},
185 {"ZPL_RDEV", sizeof (uint64_t), SA_UINT64_ARRAY, 10},
186 {"ZPL_FLAGS", sizeof (uint64_t), SA_UINT64_ARRAY, 11},
187 {"ZPL_UID", sizeof (uint64_t), SA_UINT64_ARRAY, 12},
188 {"ZPL_GID", sizeof (uint64_t), SA_UINT64_ARRAY, 13},

new/usr/src/uts/common/fs/zfs/sa.c 4

189 {"ZPL_PAD", sizeof (uint64_t) * 4, SA_UINT64_ARRAY, 14},
190 {"ZPL_ZNODE_ACL", 88, SA_UINT8_ARRAY, 15},
191 };

193 /*
114 * ZPL legacy layout
194 * This is only used for objects of type DMU_OT_ZNODE
195 */
196 sa_attr_type_t sa_legacy_zpl_layout[] = {
197 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
198 };

200 /*
201 * Special dummy layout used for buffers with no attributes.
202 */

203 sa_attr_type_t sa_dummy_zpl_layout[] = { 0 };

205 static int sa_legacy_attr_count = 16;
206 static kmem_cache_t *sa_cache = NULL;

208 /*ARGSUSED*/
209 static int
210 sa_cache_constructor(void *buf, void *unused, int kmflag)
211 {
212 sa_handle_t *hdl = buf;

214 hdl->sa_bonus_tab = NULL;
215 hdl->sa_spill_tab = NULL;
216 hdl->sa_os = NULL;
217 hdl->sa_userp = NULL;
218 hdl->sa_bonus = NULL;
219 hdl->sa_spill = NULL;
220 mutex_init(&hdl->sa_lock, NULL, MUTEX_DEFAULT, NULL);
221 return (0);
222 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/spa.c 1

**
 174704 Wed Apr 24 12:44:25 2013
new/usr/src/uts/common/fs/zfs/spa.c
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

4517 /*
4518 * Detach a device from a mirror or replacing vdev.
4519 *
4520 #endif /* ! codereview */
4521 * If ’replace_done’ is specified, only detach if the parent
4522 * is a replacing vdev.
4523 */
4524 int
4525 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4526 {
4527 uint64_t txg;
4528 int error;
4529 vdev_t *rvd = spa->spa_root_vdev;
4530 vdev_t *vd, *pvd, *cvd, *tvd;
4531 boolean_t unspare = B_FALSE;
4532 uint64_t unspare_guid = 0;
4533 char *vdpath;

4535 ASSERT(spa_writeable(spa));

4537 txg = spa_vdev_enter(spa);

4539 vd = spa_lookup_by_guid(spa, guid, B_FALSE);

4541 if (vd == NULL)
4542 return (spa_vdev_exit(spa, NULL, txg, ENODEV));

4544 if (!vd->vdev_ops->vdev_op_leaf)
4545 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));

4547 pvd = vd->vdev_parent;

4549 /*
4550 * If the parent/child relationship is not as expected, don’t do it.
4551 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4552 * vdev that’s replacing B with C. The user’s intent in replacing
4553 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4554 * the replace by detaching C, the expected behavior is to end up
4555 * M(A,B). But suppose that right after deciding to detach C,
4556 * the replacement of B completes. We would have M(A,C), and then
4557 * ask to detach C, which would leave us with just A -- not what
4558 * the user wanted. To prevent this, we make sure that the
4559 * parent/child relationship hasn’t changed -- in this example,
4560 * that C’s parent is still the replacing vdev R.
4561 */
4562 if (pvd->vdev_guid != pguid && pguid != 0)
4563 return (spa_vdev_exit(spa, NULL, txg, EBUSY));

4565 /*
4566 * Only ’replacing’ or ’spare’ vdevs can be replaced.
4567 */
4568 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4569 pvd->vdev_ops != &vdev_spare_ops)
4570 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));

new/usr/src/uts/common/fs/zfs/spa.c 2

4572 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4573 spa_version(spa) >= SPA_VERSION_SPARES);

4575 /*
4576 * Only mirror, replacing, and spare vdevs support detach.
4577 */
4578 if (pvd->vdev_ops != &vdev_replacing_ops &&
4579 pvd->vdev_ops != &vdev_mirror_ops &&
4580 pvd->vdev_ops != &vdev_spare_ops)
4581 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));

4583 /*
4584 * If this device has the only valid copy of some data,
4585 * we cannot safely detach it.
4586 */
4587 if (vdev_dtl_required(vd))
4588 return (spa_vdev_exit(spa, NULL, txg, EBUSY));

4590 ASSERT(pvd->vdev_children >= 2);

4592 /*
4593 * If we are detaching the second disk from a replacing vdev, then
4594 * check to see if we changed the original vdev’s path to have "/old"
4595 * at the end in spa_vdev_attach(). If so, undo that change now.
4596 */
4597 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4598 vd->vdev_path != NULL) {
4599 size_t len = strlen(vd->vdev_path);

4601 for (int c = 0; c < pvd->vdev_children; c++) {
4602 cvd = pvd->vdev_child[c];

4604 if (cvd == vd || cvd->vdev_path == NULL)
4605 continue;

4607 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4608 strcmp(cvd->vdev_path + len, "/old") == 0) {
4609 spa_strfree(cvd->vdev_path);
4610 cvd->vdev_path = spa_strdup(vd->vdev_path);
4611 break;
4612 }
4613 }
4614 }

4616 /*
4617 * If we are detaching the original disk from a spare, then it implies
4618 * that the spare should become a real disk, and be removed from the
4619 * active spare list for the pool.
4620 */
4621 if (pvd->vdev_ops == &vdev_spare_ops &&
4622 vd->vdev_id == 0 &&
4623 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4624 unspare = B_TRUE;

4626 /*
4627 * Erase the disk labels so the disk can be used for other things.
4628 * This must be done after all other error cases are handled,
4629 * but before we disembowel vd (so we can still do I/O to it).
4630 * But if we can’t do it, don’t treat the error as fatal --
4631 * it may be that the unwritability of the disk is the reason
4632 * it’s being detached!
4633 */
4634 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);

4636 /*

new/usr/src/uts/common/fs/zfs/spa.c 3

4637 * Remove vd from its parent and compact the parent’s children.
4638 */
4639 vdev_remove_child(pvd, vd);
4640 vdev_compact_children(pvd);

4642 /*
4643 * Remember one of the remaining children so we can get tvd below.
4644 */
4645 cvd = pvd->vdev_child[pvd->vdev_children - 1];

4647 /*
4648 * If we need to remove the remaining child from the list of hot spares,
4649 * do it now, marking the vdev as no longer a spare in the process.
4650 * We must do this before vdev_remove_parent(), because that can
4651 * change the GUID if it creates a new toplevel GUID. For a similar
4652 * reason, we must remove the spare now, in the same txg as the detach;
4653 * otherwise someone could attach a new sibling, change the GUID, and
4654 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4655 */
4656 if (unspare) {
4657 ASSERT(cvd->vdev_isspare);
4658 spa_spare_remove(cvd);
4659 unspare_guid = cvd->vdev_guid;
4660 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4661 cvd->vdev_unspare = B_TRUE;
4662 }

4664 /*
4665 * If the parent mirror/replacing vdev only has one child,
4666 * the parent is no longer needed. Remove it from the tree.
4667 */
4668 if (pvd->vdev_children == 1) {
4669 if (pvd->vdev_ops == &vdev_spare_ops)
4670 cvd->vdev_unspare = B_FALSE;
4671 vdev_remove_parent(cvd);
4672 cvd->vdev_resilvering = B_FALSE;
4673 }

4676 /*
4677 * We don’t set tvd until now because the parent we just removed
4678 * may have been the previous top-level vdev.
4679 */
4680 tvd = cvd->vdev_top;
4681 ASSERT(tvd->vdev_parent == rvd);

4683 /*
4684 * Reevaluate the parent vdev state.
4685 */
4686 vdev_propagate_state(cvd);

4688 /*
4689 * If the ’autoexpand’ property is set on the pool then automatically
4690 * try to expand the size of the pool. For example if the device we
4691 * just detached was smaller than the others, it may be possible to
4692 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4693 * first so that we can obtain the updated sizes of the leaf vdevs.
4694 */
4695 if (spa->spa_autoexpand) {
4696 vdev_reopen(tvd);
4697 vdev_expand(tvd, txg);
4698 }

4700 vdev_config_dirty(tvd);

4702 /*

new/usr/src/uts/common/fs/zfs/spa.c 4

4703 * Mark vd’s DTL as dirty in this txg. vdev_dtl_sync() will see that
4704 * vd->vdev_detached is set and free vd’s DTL object in syncing context.
4705 * But first make sure we’re not on any *other* txg’s DTL list, to
4706 * prevent vd from being accessed after it’s freed.
4707 */
4708 vdpath = spa_strdup(vd->vdev_path);
4709 for (int t = 0; t < TXG_SIZE; t++)
4710 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4711 vd->vdev_detached = B_TRUE;
4712 vdev_dirty(tvd, VDD_DTL, vd, txg);

4714 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);

4716 /* hang on to the spa before we release the lock */
4717 spa_open_ref(spa, FTAG);

4719 error = spa_vdev_exit(spa, vd, txg, 0);

4721 spa_history_log_internal(spa, "detach", NULL,
4722 "vdev=%s", vdpath);
4723 spa_strfree(vdpath);

4725 /*
4726 * If this was the removal of the original device in a hot spare vdev,
4727 * then we want to go through and remove the device from the hot spare
4728 * list of every other pool.
4729 */
4730 if (unspare) {
4731 spa_t *altspa = NULL;

4733 mutex_enter(&spa_namespace_lock);
4734 while ((altspa = spa_next(altspa)) != NULL) {
4735 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4736 altspa == spa)
4737 continue;

4739 spa_open_ref(altspa, FTAG);
4740 mutex_exit(&spa_namespace_lock);
4741 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4742 mutex_enter(&spa_namespace_lock);
4743 spa_close(altspa, FTAG);
4744 }
4745 mutex_exit(&spa_namespace_lock);

4747 /* search the rest of the vdevs for spares to remove */
4748 spa_vdev_resilver_done(spa);
4749 }

4751 /* all done with the spa; OK to release */
4752 mutex_enter(&spa_namespace_lock);
4753 spa_close(spa, FTAG);
4754 mutex_exit(&spa_namespace_lock);

4756 return (error);
4757 }

4759 /*
4760 * Split a set of devices from their mirrors, and create a new pool from them.
4761 */
4762 int
4763 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4764 nvlist_t *props, boolean_t exp)
4765 {
4766 int error = 0;
4767 uint64_t txg, *glist;
4768 spa_t *newspa;

new/usr/src/uts/common/fs/zfs/spa.c 5

4769 uint_t c, children, lastlog;
4770 nvlist_t **child, *nvl, *tmp;
4771 dmu_tx_t *tx;
4772 char *altroot = NULL;
4773 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4774 boolean_t activate_slog;

4776 ASSERT(spa_writeable(spa));

4778 txg = spa_vdev_enter(spa);

4780 /* clear the log and flush everything up to now */
4781 activate_slog = spa_passivate_log(spa);
4782 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4783 error = spa_offline_log(spa);
4784 txg = spa_vdev_config_enter(spa);

4786 if (activate_slog)
4787 spa_activate_log(spa);

4789 if (error != 0)
4790 return (spa_vdev_exit(spa, NULL, txg, error));

4792 /* check new spa name before going any further */
4793 if (spa_lookup(newname) != NULL)
4794 return (spa_vdev_exit(spa, NULL, txg, EEXIST));

4796 /*
4797 * scan through all the children to ensure they’re all mirrors
4798 */
4799 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4800 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4801 &children) != 0)
4802 return (spa_vdev_exit(spa, NULL, txg, EINVAL));

4804 /* first, check to ensure we’ve got the right child count */
4805 rvd = spa->spa_root_vdev;
4806 lastlog = 0;
4807 for (c = 0; c < rvd->vdev_children; c++) {
4808 vdev_t *vd = rvd->vdev_child[c];

4810 /* don’t count the holes & logs as children */
4811 if (vd->vdev_islog || vd->vdev_ishole) {
4812 if (lastlog == 0)
4813 lastlog = c;
4814 continue;
4815 }

4817 lastlog = 0;
4818 }
4819 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4820 return (spa_vdev_exit(spa, NULL, txg, EINVAL));

4822 /* next, ensure no spare or cache devices are part of the split */
4823 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4824 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4825 return (spa_vdev_exit(spa, NULL, txg, EINVAL));

4827 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4828 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);

4830 /* then, loop over each vdev and validate it */
4831 for (c = 0; c < children; c++) {
4832 uint64_t is_hole = 0;

4834 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,

new/usr/src/uts/common/fs/zfs/spa.c 6

4835 &is_hole);

4837 if (is_hole != 0) {
4838 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4839 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4840 continue;
4841 } else {
4842 error = SET_ERROR(EINVAL);
4843 break;
4844 }
4845 }

4847 /* which disk is going to be split? */
4848 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4849 &glist[c]) != 0) {
4850 error = SET_ERROR(EINVAL);
4851 break;
4852 }

4854 /* look it up in the spa */
4855 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4856 if (vml[c] == NULL) {
4857 error = SET_ERROR(ENODEV);
4858 break;
4859 }

4861 /* make sure there’s nothing stopping the split */
4862 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4863 vml[c]->vdev_islog ||
4864 vml[c]->vdev_ishole ||
4865 vml[c]->vdev_isspare ||
4866 vml[c]->vdev_isl2cache ||
4867 !vdev_writeable(vml[c]) ||
4868 vml[c]->vdev_children != 0 ||
4869 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4870 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4871 error = SET_ERROR(EINVAL);
4872 break;
4873 }

4875 if (vdev_dtl_required(vml[c])) {
4876 error = SET_ERROR(EBUSY);
4877 break;
4878 }

4880 /* we need certain info from the top level */
4881 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4882 vml[c]->vdev_top->vdev_ms_array) == 0);
4883 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4884 vml[c]->vdev_top->vdev_ms_shift) == 0);
4885 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4886 vml[c]->vdev_top->vdev_asize) == 0);
4887 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4888 vml[c]->vdev_top->vdev_ashift) == 0);
4889 }

4891 if (error != 0) {
4892 kmem_free(vml, children * sizeof (vdev_t *));
4893 kmem_free(glist, children * sizeof (uint64_t));
4894 return (spa_vdev_exit(spa, NULL, txg, error));
4895 }

4897 /* stop writers from using the disks */
4898 for (c = 0; c < children; c++) {
4899 if (vml[c] != NULL)
4900 vml[c]->vdev_offline = B_TRUE;

new/usr/src/uts/common/fs/zfs/spa.c 7

4901 }
4902 vdev_reopen(spa->spa_root_vdev);

4904 /*
4905 * Temporarily record the splitting vdevs in the spa config. This
4906 * will disappear once the config is regenerated.
4907 */
4908 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4909 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4910 glist, children) == 0);
4911 kmem_free(glist, children * sizeof (uint64_t));

4913 mutex_enter(&spa->spa_props_lock);
4914 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4915 nvl) == 0);
4916 mutex_exit(&spa->spa_props_lock);
4917 spa->spa_config_splitting = nvl;
4918 vdev_config_dirty(spa->spa_root_vdev);

4920 /* configure and create the new pool */
4921 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4922 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4923 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4924 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4925 spa_version(spa)) == 0);
4926 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4927 spa->spa_config_txg) == 0);
4928 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4929 spa_generate_guid(NULL)) == 0);
4930 (void) nvlist_lookup_string(props,
4931 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);

4933 /* add the new pool to the namespace */
4934 newspa = spa_add(newname, config, altroot);
4935 newspa->spa_config_txg = spa->spa_config_txg;
4936 spa_set_log_state(newspa, SPA_LOG_CLEAR);

4938 /* release the spa config lock, retaining the namespace lock */
4939 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);

4941 if (zio_injection_enabled)
4942 zio_handle_panic_injection(spa, FTAG, 1);

4944 spa_activate(newspa, spa_mode_global);
4945 spa_async_suspend(newspa);

4947 /* create the new pool from the disks of the original pool */
4948 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4949 if (error)
4950 goto out;

4952 /* if that worked, generate a real config for the new pool */
4953 if (newspa->spa_root_vdev != NULL) {
4954 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4955 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4956 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4957 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4958 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4959 B_TRUE));
4960 }

4962 /* set the props */
4963 if (props != NULL) {
4964 spa_configfile_set(newspa, props, B_FALSE);
4965 error = spa_prop_set(newspa, props);
4966 if (error)

new/usr/src/uts/common/fs/zfs/spa.c 8

4967 goto out;
4968 }

4970 /* flush everything */
4971 txg = spa_vdev_config_enter(newspa);
4972 vdev_config_dirty(newspa->spa_root_vdev);
4973 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);

4975 if (zio_injection_enabled)
4976 zio_handle_panic_injection(spa, FTAG, 2);

4978 spa_async_resume(newspa);

4980 /* finally, update the original pool’s config */
4981 txg = spa_vdev_config_enter(spa);
4982 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4983 error = dmu_tx_assign(tx, TXG_WAIT);
4984 if (error != 0)
4985 dmu_tx_abort(tx);
4986 for (c = 0; c < children; c++) {
4987 if (vml[c] != NULL) {
4988 vdev_split(vml[c]);
4989 if (error == 0)
4990 spa_history_log_internal(spa, "detach", tx,
4991 "vdev=%s", vml[c]->vdev_path);
4992 vdev_free(vml[c]);
4993 }
4994 }
4995 vdev_config_dirty(spa->spa_root_vdev);
4996 spa->spa_config_splitting = NULL;
4997 nvlist_free(nvl);
4998 if (error == 0)
4999 dmu_tx_commit(tx);
5000 (void) spa_vdev_exit(spa, NULL, txg, 0);

5002 if (zio_injection_enabled)
5003 zio_handle_panic_injection(spa, FTAG, 3);

5005 /* split is complete; log a history record */
5006 spa_history_log_internal(newspa, "split", NULL,
5007 "from pool %s", spa_name(spa));

5009 kmem_free(vml, children * sizeof (vdev_t *));

5011 /* if we’re not going to mount the filesystems in userland, export */
5012 if (exp)
5013 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5014 B_FALSE, B_FALSE);

5016 return (error);

5018 out:
5019 spa_unload(newspa);
5020 spa_deactivate(newspa);
5021 spa_remove(newspa);

5023 txg = spa_vdev_config_enter(spa);

5025 /* re-online all offlined disks */
5026 for (c = 0; c < children; c++) {
5027 if (vml[c] != NULL)
5028 vml[c]->vdev_offline = B_FALSE;
5029 }
5030 vdev_reopen(spa->spa_root_vdev);

5032 nvlist_free(spa->spa_config_splitting);

new/usr/src/uts/common/fs/zfs/spa.c 9

5033 spa->spa_config_splitting = NULL;
5034 (void) spa_vdev_exit(spa, NULL, txg, error);

5036 kmem_free(vml, children * sizeof (vdev_t *));
5037 return (error);
5038 }

5040 static nvlist_t *
5041 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5042 {
5043 for (int i = 0; i < count; i++) {
5044 uint64_t guid;

5046 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5047 &guid) == 0);

5049 if (guid == target_guid)
5050 return (nvpp[i]);
5051 }

5053 return (NULL);
5054 }

5056 static void
5057 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5058 nvlist_t *dev_to_remove)
5059 {
5060 nvlist_t **newdev = NULL;

5062 if (count > 1)
5063 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);

5065 for (int i = 0, j = 0; i < count; i++) {
5066 if (dev[i] == dev_to_remove)
5067 continue;
5068 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5069 }

5071 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5072 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);

5074 for (int i = 0; i < count - 1; i++)
5075 nvlist_free(newdev[i]);

5077 if (count > 1)
5078 kmem_free(newdev, (count - 1) * sizeof (void *));
5079 }

5081 /*
5082 * Evacuate the device.
5083 */
5084 static int
5085 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5086 {
5087 uint64_t txg;
5088 int error = 0;

5090 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5091 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5092 ASSERT(vd == vd->vdev_top);

5094 /*
5095 * Evacuate the device. We don’t hold the config lock as writer
5096 * since we need to do I/O but we do keep the
5097 * spa_namespace_lock held. Once this completes the device
5098 * should no longer have any blocks allocated on it.

new/usr/src/uts/common/fs/zfs/spa.c 10

5099 */
5100 if (vd->vdev_islog) {
5101 if (vd->vdev_stat.vs_alloc != 0)
5102 error = spa_offline_log(spa);
5103 } else {
5104 error = SET_ERROR(ENOTSUP);
5105 }

5107 if (error)
5108 return (error);

5110 /*
5111 * The evacuation succeeded. Remove any remaining MOS metadata
5112 * associated with this vdev, and wait for these changes to sync.
5113 */
5114 ASSERT0(vd->vdev_stat.vs_alloc);
5115 txg = spa_vdev_config_enter(spa);
5116 vd->vdev_removing = B_TRUE;
5117 vdev_dirty(vd, 0, NULL, txg);
5118 vdev_config_dirty(vd);
5119 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);

5121 return (0);
5122 }

5124 /*
5125 * Complete the removal by cleaning up the namespace.
5126 */
5127 static void
5128 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5129 {
5130 vdev_t *rvd = spa->spa_root_vdev;
5131 uint64_t id = vd->vdev_id;
5132 boolean_t last_vdev = (id == (rvd->vdev_children - 1));

5134 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5135 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5136 ASSERT(vd == vd->vdev_top);

5138 /*
5139 * Only remove any devices which are empty.
5140 */
5141 if (vd->vdev_stat.vs_alloc != 0)
5142 return;

5144 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);

5146 if (list_link_active(&vd->vdev_state_dirty_node))
5147 vdev_state_clean(vd);
5148 if (list_link_active(&vd->vdev_config_dirty_node))
5149 vdev_config_clean(vd);

5151 vdev_free(vd);

5153 if (last_vdev) {
5154 vdev_compact_children(rvd);
5155 } else {
5156 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5157 vdev_add_child(rvd, vd);
5158 }
5159 vdev_config_dirty(rvd);

5161 /*
5162 * Reassess the health of our root vdev.
5163 */
5164 vdev_reopen(rvd);

new/usr/src/uts/common/fs/zfs/spa.c 11

5165 }

5167 /*
5168 * Remove a device from the pool -
5169 *
5170 * Removing a device from the vdev namespace requires several steps
5171 * and can take a significant amount of time. As a result we use
5172 * the spa_vdev_config_[enter/exit] functions which allow us to
5173 * grab and release the spa_config_lock while still holding the namespace
5174 * lock. During each step the configuration is synced out.
5175 *
5176 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5177 * devices.
4519 */

4521 /*
4522 * Remove a device from the pool. Currently, this supports removing only hot
4523 * spares, slogs, and level 2 ARC devices.
5178 */
5179 int
5180 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5181 {
5182 vdev_t *vd;
5183 metaslab_group_t *mg;
5184 nvlist_t **spares, **l2cache, *nv;
5185 uint64_t txg = 0;
5186 uint_t nspares, nl2cache;
5187 int error = 0;
5188 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);

5190 ASSERT(spa_writeable(spa));

5192 if (!locked)
5193 txg = spa_vdev_enter(spa);

5195 vd = spa_lookup_by_guid(spa, guid, B_FALSE);

5197 if (spa->spa_spares.sav_vdevs != NULL &&
5198 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5199 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5200 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5201 /*
5202 * Only remove the hot spare if it’s not currently in use
5203 * in this pool.
5204 */
5205 if (vd == NULL || unspare) {
5206 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5207 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5208 spa_load_spares(spa);
5209 spa->spa_spares.sav_sync = B_TRUE;
5210 } else {
5211 error = SET_ERROR(EBUSY);
5212 }
5213 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5214 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5215 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5216 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5217 /*
5218 * Cache devices can always be removed.
5219 */
5220 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5221 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5222 spa_load_l2cache(spa);
5223 spa->spa_l2cache.sav_sync = B_TRUE;
5224 } else if (vd != NULL && vd->vdev_islog) {
5225 ASSERT(!locked);

new/usr/src/uts/common/fs/zfs/spa.c 12

5226 ASSERT(vd == vd->vdev_top);

5228 /*
5229 * XXX - Once we have bp-rewrite this should
5230 * become the common case.
5231 */

5233 mg = vd->vdev_mg;

5235 /*
5236 * Stop allocating from this vdev.
5237 */
5238 metaslab_group_passivate(mg);

5240 /*
5241 * Wait for the youngest allocations and frees to sync,
5242 * and then wait for the deferral of those frees to finish.
5243 */
5244 spa_vdev_config_exit(spa, NULL,
5245 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);

5247 /*
5248 * Attempt to evacuate the vdev.
5249 */
5250 error = spa_vdev_remove_evacuate(spa, vd);

5252 txg = spa_vdev_config_enter(spa);

5254 /*
5255 * If we couldn’t evacuate the vdev, unwind.
5256 */
5257 if (error) {
5258 metaslab_group_activate(mg);
5259 return (spa_vdev_exit(spa, NULL, txg, error));
5260 }

5262 /*
5263 * Clean up the vdev namespace.
5264 */
5265 spa_vdev_remove_from_namespace(spa, vd);

5267 } else if (vd != NULL) {
5268 /*
5269 * Normal vdevs cannot be removed (yet).
5270 */
5271 error = SET_ERROR(ENOTSUP);
5272 } else {
5273 /*
5274 * There is no vdev of any kind with the specified guid.
5275 */
5276 error = SET_ERROR(ENOENT);
5277 }

5279 if (!locked)
5280 return (spa_vdev_exit(spa, NULL, txg, error));

5282 return (error);
5283 }

5285 /*
5286 * Find any device that’s done replacing, or a vdev marked ’unspare’ that’s
5287 * currently spared, so we can detach it.
4633 * current spared, so we can detach it.
5288 */
5289 static vdev_t *
5290 spa_vdev_resilver_done_hunt(vdev_t *vd)

new/usr/src/uts/common/fs/zfs/spa.c 13

5291 {
5292 vdev_t *newvd, *oldvd;

5294 for (int c = 0; c < vd->vdev_children; c++) {
5295 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5296 if (oldvd != NULL)
5297 return (oldvd);
5298 }

5300 /*
5301 * Check for a completed replacement. We always consider the first
5302 * vdev in the list to be the oldest vdev, and the last one to be
5303 * the newest (see spa_vdev_attach() for how that works). In
5304 * the case where the newest vdev is faulted, we will not automatically
5305 * remove it after a resilver completes. This is OK as it will require
5306 * user intervention to determine which disk the admin wishes to keep.
5307 */
5308 if (vd->vdev_ops == &vdev_replacing_ops) {
5309 ASSERT(vd->vdev_children > 1);

5311 newvd = vd->vdev_child[vd->vdev_children - 1];
5312 oldvd = vd->vdev_child[0];

5314 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5315 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5316 !vdev_dtl_required(oldvd))
5317 return (oldvd);
5318 }

5320 /*
5321 * Check for a completed resilver with the ’unspare’ flag set.
5322 */
5323 if (vd->vdev_ops == &vdev_spare_ops) {
5324 vdev_t *first = vd->vdev_child[0];
5325 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];

5327 if (last->vdev_unspare) {
5328 oldvd = first;
5329 newvd = last;
5330 } else if (first->vdev_unspare) {
5331 oldvd = last;
5332 newvd = first;
5333 } else {
5334 oldvd = NULL;
5335 }

5337 if (oldvd != NULL &&
5338 vdev_dtl_empty(newvd, DTL_MISSING) &&
5339 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5340 !vdev_dtl_required(oldvd))
5341 return (oldvd);

5343 /*
5344 * If there are more than two spares attached to a disk,
5345 * and those spares are not required, then we want to
5346 * attempt to free them up now so that they can be used
5347 * by other pools. Once we’re back down to a single
5348 * disk+spare, we stop removing them.
5349 */
5350 if (vd->vdev_children > 2) {
5351 newvd = vd->vdev_child[1];

5353 if (newvd->vdev_isspare && last->vdev_isspare &&
5354 vdev_dtl_empty(last, DTL_MISSING) &&
5355 vdev_dtl_empty(last, DTL_OUTAGE) &&
5356 !vdev_dtl_required(newvd))

new/usr/src/uts/common/fs/zfs/spa.c 14

5357 return (newvd);
5358 }
5359 }

5361 return (NULL);
5362 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/spa_config.c 1

**
 14351 Wed Apr 24 12:44:26 2013
new/usr/src/uts/common/fs/zfs/spa_config.c
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

318 /*
319 * Generate the pool’s configuration based on the current in-core state.
320 *
321 #endif /* ! codereview */
322 * We infer whether to generate a complete config or just one top-level config
323 * based on whether vd is the root vdev.
324 */
325 nvlist_t *
326 spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats)
327 {
328 nvlist_t *config, *nvroot;
329 vdev_t *rvd = spa->spa_root_vdev;
330 unsigned long hostid = 0;
331 boolean_t locked = B_FALSE;
332 uint64_t split_guid;

334 if (vd == NULL) {
335 vd = rvd;
336 locked = B_TRUE;
337 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
338 }

340 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
341 (SCL_CONFIG | SCL_STATE));

343 /*
344 * If txg is -1, report the current value of spa->spa_config_txg.
345 */
346 if (txg == -1ULL)
347 txg = spa->spa_config_txg;

349 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, KM_SLEEP) == 0);

351 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
352 spa_version(spa)) == 0);
353 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
354 spa_name(spa)) == 0);
355 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
356 spa_state(spa)) == 0);
357 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
358 txg) == 0);
359 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
360 spa_guid(spa)) == 0);
361 VERIFY(spa->spa_comment == NULL || nvlist_add_string(config,
362 ZPOOL_CONFIG_COMMENT, spa->spa_comment) == 0);

365 #ifdef _KERNEL
366 hostid = zone_get_hostid(NULL);
367 #else /* _KERNEL */
368 /*
369 * We’re emulating the system’s hostid in userland, so we can’t use
370 * zone_get_hostid().
371 */

new/usr/src/uts/common/fs/zfs/spa_config.c 2

372 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
373 #endif /* _KERNEL */
374 if (hostid != 0) {
375 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
376 hostid) == 0);
377 }
378 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
379 utsname.nodename) == 0);

381 if (vd != rvd) {
382 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TOP_GUID,
383 vd->vdev_top->vdev_guid) == 0);
384 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_GUID,
385 vd->vdev_guid) == 0);
386 if (vd->vdev_isspare)
387 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_SPARE,
388 1ULL) == 0);
389 if (vd->vdev_islog)
390 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_LOG,
391 1ULL) == 0);
392 vd = vd->vdev_top; /* label contains top config */
393 } else {
394 /*
395 * Only add the (potentially large) split information
396 * in the mos config, and not in the vdev labels
397 */
398 if (spa->spa_config_splitting != NULL)
399 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_SPLIT,
400 spa->spa_config_splitting) == 0);
401 }

403 /*
404 * Add the top-level config. We even add this on pools which
405 * don’t support holes in the namespace.
406 */
407 vdev_top_config_generate(spa, config);

409 /*
410 * If we’re splitting, record the original pool’s guid.
411 */
412 if (spa->spa_config_splitting != NULL &&
413 nvlist_lookup_uint64(spa->spa_config_splitting,
414 ZPOOL_CONFIG_SPLIT_GUID, &split_guid) == 0) {
415 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_SPLIT_GUID,
416 split_guid) == 0);
417 }

419 nvroot = vdev_config_generate(spa, vd, getstats, 0);
420 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
421 nvlist_free(nvroot);

423 /*
424 * Store what’s necessary for reading the MOS in the label.
425 */
426 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
427 spa->spa_label_features) == 0);

429 if (getstats && spa_load_state(spa) == SPA_LOAD_NONE) {
430 ddt_histogram_t *ddh;
431 ddt_stat_t *dds;
432 ddt_object_t *ddo;

434 ddh = kmem_zalloc(sizeof (ddt_histogram_t), KM_SLEEP);
435 ddt_get_dedup_histogram(spa, ddh);
436 VERIFY(nvlist_add_uint64_array(config,
437 ZPOOL_CONFIG_DDT_HISTOGRAM,

new/usr/src/uts/common/fs/zfs/spa_config.c 3

438 (uint64_t *)ddh, sizeof (*ddh) / sizeof (uint64_t)) == 0);
439 kmem_free(ddh, sizeof (ddt_histogram_t));

441 ddo = kmem_zalloc(sizeof (ddt_object_t), KM_SLEEP);
442 ddt_get_dedup_object_stats(spa, ddo);
443 VERIFY(nvlist_add_uint64_array(config,
444 ZPOOL_CONFIG_DDT_OBJ_STATS,
445 (uint64_t *)ddo, sizeof (*ddo) / sizeof (uint64_t)) == 0);
446 kmem_free(ddo, sizeof (ddt_object_t));

448 dds = kmem_zalloc(sizeof (ddt_stat_t), KM_SLEEP);
449 ddt_get_dedup_stats(spa, dds);
450 VERIFY(nvlist_add_uint64_array(config,
451 ZPOOL_CONFIG_DDT_STATS,
452 (uint64_t *)dds, sizeof (*dds) / sizeof (uint64_t)) == 0);
453 kmem_free(dds, sizeof (ddt_stat_t));
454 }

456 if (locked)
457 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);

459 return (config);
460 }

462 /*
463 * Update all disk labels, generate a fresh config based on the current
464 * in-core state, and sync the global config cache (do not sync the config
465 * cache if this is a booting rootpool).
466 */
467 void
468 spa_config_update(spa_t *spa, int what)
469 {
470 vdev_t *rvd = spa->spa_root_vdev;
471 uint64_t txg;
472 int c;

474 ASSERT(MUTEX_HELD(&spa_namespace_lock));

476 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
477 txg = spa_last_synced_txg(spa) + 1;
478 if (what == SPA_CONFIG_UPDATE_POOL) {
479 vdev_config_dirty(rvd);
480 } else {
481 /*
482 * If we have top-level vdevs that were added but have
483 * not yet been prepared for allocation, do that now.
484 * (It’s safe now because the config cache is up to date,
485 * so it will be able to translate the new DVAs.)
486 * See comments in spa_vdev_add() for full details.
487 */
488 for (c = 0; c < rvd->vdev_children; c++) {
489 vdev_t *tvd = rvd->vdev_child[c];
490 if (tvd->vdev_ms_array == 0)
491 vdev_metaslab_set_size(tvd);
492 vdev_expand(tvd, txg);
493 }
494 }
495 spa_config_exit(spa, SCL_ALL, FTAG);

497 /*
498 * Wait for the mosconfig to be regenerated and synced.
499 */
500 txg_wait_synced(spa->spa_dsl_pool, txg);

502 /*
503 * Update the global config cache to reflect the new mosconfig.

new/usr/src/uts/common/fs/zfs/spa_config.c 4

504 */
505 if (!spa->spa_is_root)
506 spa_config_sync(spa, B_FALSE, what != SPA_CONFIG_UPDATE_POOL);

508 if (what == SPA_CONFIG_UPDATE_POOL)
509 spa_config_update(spa, SPA_CONFIG_UPDATE_VDEVS);
510 }

new/usr/src/uts/common/fs/zfs/spa_misc.c 1

**
 45913 Wed Apr 24 12:44:26 2013
new/usr/src/uts/common/fs/zfs/spa_misc.c
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

1335 /*
1336 * This is a stripped-down version of strtoull, suitable only for converting
1337 * lowercase hexadecimal numbers that don’t overflow.
1337 * lowercase hexidecimal numbers that don’t overflow.
1338 */
1339 uint64_t
1340 strtonum(const char *str, char **nptr)
1341 {
1342 uint64_t val = 0;
1343 char c;
1344 int digit;

1346 while ((c = *str) != ’\0’) {
1347 if (c >= ’0’ && c <= ’9’)
1348 digit = c - ’0’;
1349 else if (c >= ’a’ && c <= ’f’)
1350 digit = 10 + c - ’a’;
1351 else
1352 break;

1354 val *= 16;
1355 val += digit;

1357 str++;
1358 }

1360 if (nptr)
1361 *nptr = (char *)str;

1363 return (val);
1364 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/sys/ddt.h 1

**
 7760 Wed Apr 24 12:44:26 2013
new/usr/src/uts/common/fs/zfs/sys/ddt.h
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

56 #define DDT_TYPE_CURRENT 0

58 #define DDT_COMPRESS_BYTEORDER_MASK 0x80
59 #define DDT_COMPRESS_FUNCTION_MASK 0x7f

61 /*
62 * On-disk ddt entry: key (name) and physical storage (value).
63 */
64 typedef struct ddt_key {
65 zio_cksum_t ddk_cksum; /* 256-bit block checksum */
66 /*
67 * Encoded with logical & physical size, and compression, as follows:
66 uint64_t ddk_prop; /* LSIZE, PSIZE, compression */
67 } ddt_key_t;

69 /*
70 * ddk_prop layout:
71 *
68 * +-------+-------+-------+-------+-------+-------+-------+-------+
69 * | 0 | 0 | 0 | comp | PSIZE | LSIZE |
70 * +-------+-------+-------+-------+-------+-------+-------+-------+
71 */
72 uint64_t ddk_prop;
73 } ddt_key_t;

75 #endif /* ! codereview */
76 #define DDK_GET_LSIZE(ddk) \
77 BF64_GET_SB((ddk)->ddk_prop, 0, 16, SPA_MINBLOCKSHIFT, 1)
78 #define DDK_SET_LSIZE(ddk, x) \
79 BF64_SET_SB((ddk)->ddk_prop, 0, 16, SPA_MINBLOCKSHIFT, 1, x)

81 #define DDK_GET_PSIZE(ddk) \
82 BF64_GET_SB((ddk)->ddk_prop, 16, 16, SPA_MINBLOCKSHIFT, 1)
83 #define DDK_SET_PSIZE(ddk, x) \
84 BF64_SET_SB((ddk)->ddk_prop, 16, 16, SPA_MINBLOCKSHIFT, 1, x)

86 #define DDK_GET_COMPRESS(ddk) BF64_GET((ddk)->ddk_prop, 32, 8)
87 #define DDK_SET_COMPRESS(ddk, x) BF64_SET((ddk)->ddk_prop, 32, 8, x)

89 #define DDT_KEY_WORDS (sizeof (ddt_key_t) / sizeof (uint64_t))

91 typedef struct ddt_phys {
92 dva_t ddp_dva[SPA_DVAS_PER_BP];
93 uint64_t ddp_refcnt;
94 uint64_t ddp_phys_birth;
95 } ddt_phys_t;

97 enum ddt_phys_type {
98 DDT_PHYS_DITTO = 0,
99 DDT_PHYS_SINGLE = 1,
100 DDT_PHYS_DOUBLE = 2,
101 DDT_PHYS_TRIPLE = 3,
102 DDT_PHYS_TYPES
103 };

new/usr/src/uts/common/fs/zfs/sys/ddt.h 2

105 /*
106 * In-core ddt entry
107 */
108 struct ddt_entry {
109 ddt_key_t dde_key;
110 ddt_phys_t dde_phys[DDT_PHYS_TYPES];
111 zio_t *dde_lead_zio[DDT_PHYS_TYPES];
112 void *dde_repair_data;
113 enum ddt_type dde_type;
114 enum ddt_class dde_class;
115 uint8_t dde_loading;
116 uint8_t dde_loaded;
117 kcondvar_t dde_cv;
118 avl_node_t dde_node;
119 };

121 /*
122 * In-core ddt
123 */
124 struct ddt {
125 kmutex_t ddt_lock;
126 avl_tree_t ddt_tree;
127 avl_tree_t ddt_repair_tree;
128 enum zio_checksum ddt_checksum;
129 spa_t *ddt_spa;
130 objset_t *ddt_os;
131 uint64_t ddt_stat_object;
132 uint64_t ddt_object[DDT_TYPES][DDT_CLASSES];
133 ddt_histogram_t ddt_histogram[DDT_TYPES][DDT_CLASSES];
134 ddt_histogram_t ddt_histogram_cache[DDT_TYPES][DDT_CLASSES];
135 ddt_object_t ddt_object_stats[DDT_TYPES][DDT_CLASSES];
136 avl_node_t ddt_node;
137 };

139 /*
140 * In-core and on-disk bookmark for DDT walks
141 */
142 typedef struct ddt_bookmark {
143 uint64_t ddb_class;
144 uint64_t ddb_type;
145 uint64_t ddb_checksum;
146 uint64_t ddb_cursor;
147 } ddt_bookmark_t;

149 /*
150 * Ops vector to access a specific DDT object type.
151 */
152 typedef struct ddt_ops {
153 char ddt_op_name[32];
154 int (*ddt_op_create)(objset_t *os, uint64_t *object, dmu_tx_t *tx,
155 boolean_t prehash);
156 int (*ddt_op_destroy)(objset_t *os, uint64_t object, dmu_tx_t *tx);
157 int (*ddt_op_lookup)(objset_t *os, uint64_t object, ddt_entry_t *dde);
158 void (*ddt_op_prefetch)(objset_t *os, uint64_t object,
159 ddt_entry_t *dde);
160 int (*ddt_op_update)(objset_t *os, uint64_t object, ddt_entry_t *dde,
161 dmu_tx_t *tx);
162 int (*ddt_op_remove)(objset_t *os, uint64_t object, ddt_entry_t *dde,
163 dmu_tx_t *tx);
164 int (*ddt_op_walk)(objset_t *os, uint64_t object, ddt_entry_t *dde,
165 uint64_t *walk);
166 uint64_t (*ddt_op_count)(objset_t *os, uint64_t object);
167 } ddt_ops_t;

169 #define DDT_NAMELEN 80

new/usr/src/uts/common/fs/zfs/sys/ddt.h 3

171 extern void ddt_object_name(ddt_t *ddt, enum ddt_type type,
172 enum ddt_class class, char *name);
173 extern int ddt_object_walk(ddt_t *ddt, enum ddt_type type,
174 enum ddt_class class, uint64_t *walk, ddt_entry_t *dde);
175 extern uint64_t ddt_object_count(ddt_t *ddt, enum ddt_type type,
176 enum ddt_class class);
177 extern int ddt_object_info(ddt_t *ddt, enum ddt_type type,
178 enum ddt_class class, dmu_object_info_t *);
179 extern boolean_t ddt_object_exists(ddt_t *ddt, enum ddt_type type,
180 enum ddt_class class);

182 extern void ddt_bp_fill(const ddt_phys_t *ddp, blkptr_t *bp,
183 uint64_t txg);
184 extern void ddt_bp_create(enum zio_checksum checksum, const ddt_key_t *ddk,
185 const ddt_phys_t *ddp, blkptr_t *bp);

187 extern void ddt_key_fill(ddt_key_t *ddk, const blkptr_t *bp);

189 extern void ddt_phys_fill(ddt_phys_t *ddp, const blkptr_t *bp);
190 extern void ddt_phys_clear(ddt_phys_t *ddp);
191 extern void ddt_phys_addref(ddt_phys_t *ddp);
192 extern void ddt_phys_decref(ddt_phys_t *ddp);
193 extern void ddt_phys_free(ddt_t *ddt, ddt_key_t *ddk, ddt_phys_t *ddp,
194 uint64_t txg);
195 extern ddt_phys_t *ddt_phys_select(const ddt_entry_t *dde, const blkptr_t *bp);
196 extern uint64_t ddt_phys_total_refcnt(const ddt_entry_t *dde);

198 extern void ddt_stat_add(ddt_stat_t *dst, const ddt_stat_t *src, uint64_t neg);

200 extern void ddt_histogram_add(ddt_histogram_t *dst, const ddt_histogram_t *src);
201 extern void ddt_histogram_stat(ddt_stat_t *dds, const ddt_histogram_t *ddh);
202 extern boolean_t ddt_histogram_empty(const ddt_histogram_t *ddh);
203 extern void ddt_get_dedup_object_stats(spa_t *spa, ddt_object_t *ddo);
204 extern void ddt_get_dedup_histogram(spa_t *spa, ddt_histogram_t *ddh);
205 extern void ddt_get_dedup_stats(spa_t *spa, ddt_stat_t *dds_total);

207 extern uint64_t ddt_get_dedup_dspace(spa_t *spa);
208 extern uint64_t ddt_get_pool_dedup_ratio(spa_t *spa);

210 extern int ddt_ditto_copies_needed(ddt_t *ddt, ddt_entry_t *dde,
211 ddt_phys_t *ddp_willref);
212 extern int ddt_ditto_copies_present(ddt_entry_t *dde);

214 extern size_t ddt_compress(void *src, uchar_t *dst, size_t s_len, size_t d_len);
215 extern void ddt_decompress(uchar_t *src, void *dst, size_t s_len, size_t d_len);

217 extern ddt_t *ddt_select(spa_t *spa, const blkptr_t *bp);
218 extern void ddt_enter(ddt_t *ddt);
219 extern void ddt_exit(ddt_t *ddt);
220 extern ddt_entry_t *ddt_lookup(ddt_t *ddt, const blkptr_t *bp, boolean_t add);
221 extern void ddt_prefetch(spa_t *spa, const blkptr_t *bp);
222 extern void ddt_remove(ddt_t *ddt, ddt_entry_t *dde);

224 extern boolean_t ddt_class_contains(spa_t *spa, enum ddt_class max_class,
225 const blkptr_t *bp);

227 extern ddt_entry_t *ddt_repair_start(ddt_t *ddt, const blkptr_t *bp);
228 extern void ddt_repair_done(ddt_t *ddt, ddt_entry_t *dde);

230 extern int ddt_entry_compare(const void *x1, const void *x2);

232 extern void ddt_create(spa_t *spa);
233 extern int ddt_load(spa_t *spa);
234 extern void ddt_unload(spa_t *spa);
235 extern void ddt_sync(spa_t *spa, uint64_t txg);

new/usr/src/uts/common/fs/zfs/sys/ddt.h 4

236 extern int ddt_walk(spa_t *spa, ddt_bookmark_t *ddb, ddt_entry_t *dde);
237 extern int ddt_object_update(ddt_t *ddt, enum ddt_type type,
238 enum ddt_class class, ddt_entry_t *dde, dmu_tx_t *tx);

240 extern const ddt_ops_t ddt_zap_ops;

242 #ifdef __cplusplus
243 }
244 #endif

246 #endif /* _SYS_DDT_H */

new/usr/src/uts/common/fs/zfs/sys/dnode.h 1

**
 10546 Wed Apr 24 12:44:26 2013
new/usr/src/uts/common/fs/zfs/sys/dnode.h
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

146 typedef struct dnode {
147 /*
148 * Protects the structure of the dnode, including the number of levels
149 * of indirection (dn_nlevels), dn_maxblkid, and dn_next_*
148 * dn_struct_rwlock protects the structure of the dnode,
149 * including the number of levels of indirection (dn_nlevels),
150 * dn_maxblkid, and dn_next_*
150 */
151 krwlock_t dn_struct_rwlock;

153 /* Our link on dn_objset->os_dnodes list; protected by os_lock. */
154 list_node_t dn_link;

156 /* immutable: */
157 struct objset *dn_objset;
158 uint64_t dn_object;
159 struct dmu_buf_impl *dn_dbuf;
160 struct dnode_handle *dn_handle;
161 dnode_phys_t *dn_phys; /* pointer into dn->dn_dbuf->db.db_data */

163 /*
164 * Copies of stuff in dn_phys. They’re valid in the open
165 * context (eg. even before the dnode is first synced).
166 * Where necessary, these are protected by dn_struct_rwlock.
167 */
168 dmu_object_type_t dn_type; /* object type */
169 uint16_t dn_bonuslen; /* bonus length */
170 uint8_t dn_bonustype; /* bonus type */
171 uint8_t dn_nblkptr; /* number of blkptrs (immutable) */
172 uint8_t dn_checksum; /* ZIO_CHECKSUM type */
173 uint8_t dn_compress; /* ZIO_COMPRESS type */
174 uint8_t dn_nlevels;
175 uint8_t dn_indblkshift;
176 uint8_t dn_datablkshift; /* zero if blksz not power of 2! */
177 uint8_t dn_moved; /* Has this dnode been moved? */
178 uint16_t dn_datablkszsec; /* in 512b sectors */
179 uint32_t dn_datablksz; /* in bytes */
180 uint64_t dn_maxblkid;
181 uint8_t dn_next_nblkptr[TXG_SIZE];
182 uint8_t dn_next_nlevels[TXG_SIZE];
183 uint8_t dn_next_indblkshift[TXG_SIZE];
184 uint8_t dn_next_bonustype[TXG_SIZE];
185 uint8_t dn_rm_spillblk[TXG_SIZE]; /* for removing spill blk */
186 uint16_t dn_next_bonuslen[TXG_SIZE];
187 uint32_t dn_next_blksz[TXG_SIZE]; /* next block size in bytes */

189 /* protected by dn_dbufs_mtx; declared here to fill 32-bit hole */
190 uint32_t dn_dbufs_count; /* count of dn_dbufs */

192 /* protected by os_lock: */
193 list_node_t dn_dirty_link[TXG_SIZE]; /* next on dataset’s dirty */

195 /* protected by dn_mtx: */
196 kmutex_t dn_mtx;

new/usr/src/uts/common/fs/zfs/sys/dnode.h 2

197 list_t dn_dirty_records[TXG_SIZE];
198 avl_tree_t dn_ranges[TXG_SIZE];
199 uint64_t dn_allocated_txg;
200 uint64_t dn_free_txg;
201 uint64_t dn_assigned_txg;
202 kcondvar_t dn_notxholds;
203 enum dnode_dirtycontext dn_dirtyctx;
204 uint8_t *dn_dirtyctx_firstset; /* dbg: contents meaningless */

206 /* protected by own devices */
207 refcount_t dn_tx_holds;
208 refcount_t dn_holds;

210 kmutex_t dn_dbufs_mtx;
211 list_t dn_dbufs; /* descendent dbufs */

213 /* protected by dn_struct_rwlock */
214 struct dmu_buf_impl *dn_bonus; /* bonus buffer dbuf */

216 boolean_t dn_have_spill; /* have spill or are spilling */

218 /* parent IO for current sync write */
219 zio_t *dn_zio;

221 /* used in syncing context */
222 uint64_t dn_oldused; /* old phys used bytes */
223 uint64_t dn_oldflags; /* old phys dn_flags */
224 uint64_t dn_olduid, dn_oldgid;
225 uint64_t dn_newuid, dn_newgid;
226 int dn_id_flags;

228 /* holds prefetch structure */
229 struct zfetch dn_zfetch;
230 } dnode_t;

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/sys/dsl_pool.h 1

**
 5201 Wed Apr 24 12:44:27 2013
new/usr/src/uts/common/fs/zfs/sys/dsl_pool.h
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

73 typedef struct dsl_pool {
74 /* Immutable */
75 spa_t *dp_spa;
76 struct objset *dp_meta_objset;
77 struct dsl_dir *dp_root_dir;
78 struct dsl_dir *dp_mos_dir;
79 struct dsl_dir *dp_free_dir;
80 struct dsl_dataset *dp_origin_snap;
81 uint64_t dp_root_dir_obj;
82 struct taskq *dp_vnrele_taskq;

84 /* No lock needed - sync context only */
85 blkptr_t dp_meta_rootbp;
86 hrtime_t dp_read_overhead;
87 uint64_t dp_throughput; /* bytes per millisec */
88 uint64_t dp_write_limit;
89 uint64_t dp_tmp_userrefs_obj;
90 bpobj_t dp_free_bpobj;
91 uint64_t dp_bptree_obj;
92 uint64_t dp_empty_bpobj;

94 struct dsl_scan *dp_scan;

96 /* Uses dp_lock */
97 kmutex_t dp_lock;
98 uint64_t dp_space_towrite[TXG_SIZE];
99 uint64_t dp_tempreserved[TXG_SIZE];
100 uint64_t dp_mos_used_delta;
101 uint64_t dp_mos_compressed_delta;
102 uint64_t dp_mos_uncompressed_delta;

104 /* Has its own locking */
105 tx_state_t dp_tx;
106 txg_list_t dp_dirty_datasets;
107 txg_list_t dp_dirty_zilogs;
108 txg_list_t dp_dirty_dirs;
109 txg_list_t dp_sync_tasks;

111 /*
112 * Protects administrative changes (properties, namespace)
113 *
114 #endif /* ! codereview */
115 * It is only held for write in syncing context. Therefore
116 * syncing context does not need to ever have it for read, since
117 * nobody else could possibly have it for write.
118 */
119 rrwlock_t dp_config_rwlock;

121 zfs_all_blkstats_t *dp_blkstats;
122 } dsl_pool_t;

124 int dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp);
125 int dsl_pool_open(dsl_pool_t *dp);

new/usr/src/uts/common/fs/zfs/sys/dsl_pool.h 2

126 void dsl_pool_close(dsl_pool_t *dp);
127 dsl_pool_t *dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg);
128 void dsl_pool_sync(dsl_pool_t *dp, uint64_t txg);
129 void dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg);
130 int dsl_pool_sync_context(dsl_pool_t *dp);
131 uint64_t dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree);
132 uint64_t dsl_pool_adjustedfree(dsl_pool_t *dp, boolean_t netfree);
133 int dsl_pool_tempreserve_space(dsl_pool_t *dp, uint64_t space, dmu_tx_t *tx);
134 void dsl_pool_tempreserve_clear(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx);
135 void dsl_pool_memory_pressure(dsl_pool_t *dp);
136 void dsl_pool_willuse_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx);
137 void dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp);
138 void dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg,
139 const blkptr_t *bpp);
140 void dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx);
141 void dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx);
142 void dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx);
143 void dsl_pool_mos_diduse_space(dsl_pool_t *dp,
144 int64_t used, int64_t comp, int64_t uncomp);
145 void dsl_pool_config_enter(dsl_pool_t *dp, void *tag);
146 void dsl_pool_config_exit(dsl_pool_t *dp, void *tag);
147 boolean_t dsl_pool_config_held(dsl_pool_t *dp);

149 taskq_t *dsl_pool_vnrele_taskq(dsl_pool_t *dp);

151 int dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj,
152 const char *tag, uint64_t now, dmu_tx_t *tx);
153 int dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj,
154 const char *tag, dmu_tx_t *tx);
155 void dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp);
156 int dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **);
157 int dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp);
158 void dsl_pool_rele(dsl_pool_t *dp, void *tag);

160 #ifdef __cplusplus
161 }
162 #endif

164 #endif /* _SYS_DSL_POOL_H */

new/usr/src/uts/common/fs/zfs/sys/sa_impl.h 1

**
 8379 Wed Apr 24 12:44:27 2013
new/usr/src/uts/common/fs/zfs/sys/sa_impl.h
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

151 /*
152 * header for all bonus and spill buffers.
153 *
154 #endif /* ! codereview */
155 * The header has a fixed portion with a variable number
156 * of "lengths" depending on the number of variable sized
157 * attribues which are determined by the "layout number"
158 */

160 #define SA_MAGIC 0x2F505A /* ZFS SA */
161 typedef struct sa_hdr_phys {
162 uint32_t sa_magic;
163 /*
164 * Encoded with hdrsize and layout number as follows:
153 uint16_t sa_layout_info; /* Encoded with hdrsize and layout number */
154 uint16_t sa_lengths[1]; /* optional sizes for variable length attrs */
155 /* ... Data follows the lengths. */
156 } sa_hdr_phys_t;

158 /*
159 * sa_hdr_phys -> sa_layout_info
160 *
165 * 16 10 0
166 * +--------+-------+
167 * | hdrsz |layout |
168 * +--------+-------+
169 *
170 * Bits 0-10 are the layout number
171 * Bits 11-16 are the size of the header.
172 * The hdrsize is the number * 8
173 *
174 * For example.
175 * hdrsz of 1 ==> 8 byte header
176 * 2 ==> 16 byte header
177 *
178 */
179 uint16_t sa_layout_info;
180 uint16_t sa_lengths[1]; /* optional sizes for variable length attrs */
181 /* ... Data follows the lengths. */
182 } sa_hdr_phys_t;
183 #endif /* ! codereview */

185 #define SA_HDR_LAYOUT_NUM(hdr) BF32_GET(hdr->sa_layout_info, 0, 10)
186 #define SA_HDR_SIZE(hdr) BF32_GET_SB(hdr->sa_layout_info, 10, 6, 3, 0)
187 #define SA_HDR_LAYOUT_INFO_ENCODE(x, num, size) \
188 { \
189 BF32_SET_SB(x, 10, 6, 3, 0, size); \
190 BF32_SET(x, 0, 10, num); \
191 }

193 typedef enum sa_buf_type {
194 SA_BONUS = 1,
195 SA_SPILL = 2
196 } sa_buf_type_t;

new/usr/src/uts/common/fs/zfs/sys/sa_impl.h 2

198 typedef enum sa_data_op {
199 SA_LOOKUP,
200 SA_UPDATE,
201 SA_ADD,
202 SA_REPLACE,
203 SA_REMOVE
204 } sa_data_op_t;

206 /*
207 * Opaque handle used for most sa functions
208 *
209 * This needs to be kept as small as possible.
210 */

212 struct sa_handle {
213 kmutex_t sa_lock;
214 dmu_buf_t *sa_bonus;
215 dmu_buf_t *sa_spill;
216 objset_t *sa_os;
217 void *sa_userp;
218 sa_idx_tab_t *sa_bonus_tab; /* idx of bonus */
219 sa_idx_tab_t *sa_spill_tab; /* only present if spill activated */
220 };

222 #define SA_GET_DB(hdl, type) \
223 (dmu_buf_impl_t *)((type == SA_BONUS) ? hdl->sa_bonus : hdl->sa_spill)

225 #define SA_GET_HDR(hdl, type) \
226 ((sa_hdr_phys_t *)((dmu_buf_impl_t *)(SA_GET_DB(hdl, \
227 type))->db.db_data))

229 #define SA_IDX_TAB_GET(hdl, type) \
230 (type == SA_BONUS ? hdl->sa_bonus_tab : hdl->sa_spill_tab)

232 #define IS_SA_BONUSTYPE(a) \
233 ((a == DMU_OT_SA) ? B_TRUE : B_FALSE)

235 #define SA_BONUSTYPE_FROM_DB(db) \
236 (dmu_get_bonustype((dmu_buf_t *)db))

238 #define SA_BLKPTR_SPACE (DN_MAX_BONUSLEN - sizeof (blkptr_t))

240 #define SA_LAYOUT_NUM(x, type) \
241 ((!IS_SA_BONUSTYPE(type) ? 0 : (((IS_SA_BONUSTYPE(type)) && \
242 ((SA_HDR_LAYOUT_NUM(x)) == 0)) ? 1 : SA_HDR_LAYOUT_NUM(x))))

245 #define SA_REGISTERED_LEN(sa, attr) sa->sa_attr_table[attr].sa_length

247 #define SA_ATTR_LEN(sa, idx, attr, hdr) ((SA_REGISTERED_LEN(sa, attr) == 0) ?\
248 hdr->sa_lengths[TOC_LEN_IDX(idx->sa_idx_tab[attr])] : \
249 SA_REGISTERED_LEN(sa, attr))

251 #define SA_SET_HDR(hdr, num, size) \
252 { \
253 hdr->sa_magic = SA_MAGIC; \
254 SA_HDR_LAYOUT_INFO_ENCODE(hdr->sa_layout_info, num, size); \
255 }

257 #define SA_ATTR_INFO(sa, idx, hdr, attr, bulk, type, hdl) \
258 { \
259 bulk.sa_size = SA_ATTR_LEN(sa, idx, attr, hdr); \
260 bulk.sa_buftype = type; \
261 bulk.sa_addr = \
262 (void *)((uintptr_t)TOC_OFF(idx->sa_idx_tab[attr]) + \

new/usr/src/uts/common/fs/zfs/sys/sa_impl.h 3

263 (uintptr_t)hdr); \
264 }

266 #define SA_HDR_SIZE_MATCH_LAYOUT(hdr, tb) \
267 (SA_HDR_SIZE(hdr) == (sizeof (sa_hdr_phys_t) + \
268 (tb->lot_var_sizes > 1 ? P2ROUNDUP((tb->lot_var_sizes - 1) * \
269 sizeof (uint16_t), 8) : 0)))

271 int sa_add_impl(sa_handle_t *, sa_attr_type_t,
272 uint32_t, sa_data_locator_t, void *, dmu_tx_t *);

274 void sa_register_update_callback_locked(objset_t *, sa_update_cb_t *);
275 int sa_size_locked(sa_handle_t *, sa_attr_type_t, int *);

277 void sa_default_locator(void **, uint32_t *, uint32_t, boolean_t, void *);
278 int sa_attr_size(sa_os_t *, sa_idx_tab_t *, sa_attr_type_t,
279 uint16_t *, sa_hdr_phys_t *);

281 #ifdef __cplusplus
282 extern "C" {
283 #endif

285 #ifdef __cplusplus
286 }
287 #endif

289 #endif /* _SYS_SA_IMPL_H */

new/usr/src/uts/common/fs/zfs/sys/spa_impl.h 1

**
 10869 Wed Apr 24 12:44:27 2013
new/usr/src/uts/common/fs/zfs/sys/spa_impl.h
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

115 struct spa {
116 /*
117 * Fields protected by spa_namespace_lock.
118 */
119 char spa_name[MAXNAMELEN]; /* pool name */
120 char *spa_comment; /* comment */
121 avl_node_t spa_avl; /* node in spa_namespace_avl */
122 nvlist_t *spa_config; /* last synced config */
123 nvlist_t *spa_config_syncing; /* currently syncing config */
124 nvlist_t *spa_config_splitting; /* config for splitting */
125 nvlist_t *spa_load_info; /* info and errors from load */
126 uint64_t spa_config_txg; /* txg of last config change */
127 int spa_sync_pass; /* iterate-to-convergence */
128 pool_state_t spa_state; /* pool state */
129 int spa_inject_ref; /* injection references */
130 uint8_t spa_sync_on; /* sync threads are running */
131 spa_load_state_t spa_load_state; /* current load operation */
132 uint64_t spa_import_flags; /* import specific flags */
133 spa_taskqs_t spa_zio_taskq[ZIO_TYPES][ZIO_TASKQ_TYPES];
134 dsl_pool_t *spa_dsl_pool;
135 boolean_t spa_is_initializing; /* true while opening pool */
136 metaslab_class_t *spa_normal_class; /* normal data class */
137 metaslab_class_t *spa_log_class; /* intent log data class */
138 uint64_t spa_first_txg; /* first txg after spa_open() */
139 uint64_t spa_final_txg; /* txg of export/destroy */
140 uint64_t spa_freeze_txg; /* freeze pool at this txg */
141 uint64_t spa_load_max_txg; /* best initial ub_txg */
142 uint64_t spa_claim_max_txg; /* highest claimed birth txg */
143 timespec_t spa_loaded_ts; /* 1st successful open time */
144 objset_t *spa_meta_objset; /* copy of dp->dp_meta_objset */
145 txg_list_t spa_vdev_txg_list; /* per-txg dirty vdev list */
146 vdev_t *spa_root_vdev; /* top-level vdev container */
147 uint64_t spa_config_guid; /* config pool guid */
148 uint64_t spa_load_guid; /* spa_load initialized guid */
149 uint64_t spa_last_synced_guid; /* last synced guid */
150 list_t spa_config_dirty_list; /* vdevs with dirty config */
151 list_t spa_state_dirty_list; /* vdevs with dirty state */
152 spa_aux_vdev_t spa_spares; /* hot spares */
153 spa_aux_vdev_t spa_l2cache; /* L2ARC cache devices */
154 nvlist_t *spa_label_features; /* Features for reading MOS */
155 uint64_t spa_config_object; /* MOS object for pool config */
156 uint64_t spa_config_generation; /* config generation number */
157 uint64_t spa_syncing_txg; /* txg currently syncing */
158 bpobj_t spa_deferred_bpobj; /* deferred-free bplist */
159 bplist_t spa_free_bplist[TXG_SIZE]; /* bplist of stuff to free */
160 uberblock_t spa_ubsync; /* last synced uberblock */
161 uberblock_t spa_uberblock; /* current uberblock */
162 boolean_t spa_extreme_rewind; /* rewind past deferred frees */
163 uint64_t spa_last_io; /* lbolt of last non-scan I/O */
164 kmutex_t spa_scrub_lock; /* resilver/scrub lock */
165 uint64_t spa_scrub_inflight; /* in-flight scrub I/Os */
166 kcondvar_t spa_scrub_io_cv; /* scrub I/O completion */
167 uint8_t spa_scrub_active; /* active or suspended? */
168 uint8_t spa_scrub_type; /* type of scrub we’re doing */

new/usr/src/uts/common/fs/zfs/sys/spa_impl.h 2

169 uint8_t spa_scrub_finished; /* indicator to rotate logs */
170 uint8_t spa_scrub_started; /* started since last boot */
171 uint8_t spa_scrub_reopen; /* scrub doing vdev_reopen */
172 uint64_t spa_scan_pass_start; /* start time per pass/reboot */
173 uint64_t spa_scan_pass_exam; /* examined bytes per pass */
174 kmutex_t spa_async_lock; /* protect async state */
175 kthread_t *spa_async_thread; /* thread doing async task */
176 int spa_async_suspended; /* async tasks suspended */
177 kcondvar_t spa_async_cv; /* wait for thread_exit() */
178 uint16_t spa_async_tasks; /* async task mask */
179 char *spa_root; /* alternate root directory */
180 uint64_t spa_ena; /* spa-wide ereport ENA */
181 int spa_last_open_failed; /* error if last open failed */
182 uint64_t spa_last_ubsync_txg; /* "best" uberblock txg */
183 uint64_t spa_last_ubsync_txg_ts; /* timestamp from that ub */
184 uint64_t spa_load_txg; /* ub txg that loaded */
185 uint64_t spa_load_txg_ts; /* timestamp from that ub */
186 uint64_t spa_load_meta_errors; /* verify metadata err count */
187 uint64_t spa_load_data_errors; /* verify data err count */
188 uint64_t spa_verify_min_txg; /* start txg of verify scrub */
189 kmutex_t spa_errlog_lock; /* error log lock */
190 uint64_t spa_errlog_last; /* last error log object */
191 uint64_t spa_errlog_scrub; /* scrub error log object */
192 kmutex_t spa_errlist_lock; /* error list/ereport lock */
193 avl_tree_t spa_errlist_last; /* last error list */
194 avl_tree_t spa_errlist_scrub; /* scrub error list */
195 uint64_t spa_deflate; /* should we deflate? */
196 uint64_t spa_history; /* history object */
197 kmutex_t spa_history_lock; /* history lock */
198 vdev_t *spa_pending_vdev; /* pending vdev additions */
199 kmutex_t spa_props_lock; /* property lock */
200 uint64_t spa_pool_props_object; /* object for properties */
201 uint64_t spa_bootfs; /* default boot filesystem */
202 uint64_t spa_failmode; /* failure mode for the pool */
203 uint64_t spa_delegation; /* delegation on/off */
204 list_t spa_config_list; /* previous cache file(s) */
205 zio_t *spa_async_zio_root; /* root of all async I/O */
206 zio_t *spa_suspend_zio_root; /* root of all suspended I/O */
207 kmutex_t spa_suspend_lock; /* protects suspend_zio_root */
208 kcondvar_t spa_suspend_cv; /* notification of resume */
209 uint8_t spa_suspended; /* pool is suspended */
210 uint8_t spa_claiming; /* pool is doing zil_claim() */
211 boolean_t spa_debug; /* debug enabled? */
212 boolean_t spa_is_root; /* pool is root */
213 int spa_minref; /* num refs when first opened */
214 int spa_mode; /* FREAD | FWRITE */
215 spa_log_state_t spa_log_state; /* log state */
216 uint64_t spa_autoexpand; /* lun expansion on/off */
217 ddt_t *spa_ddt[ZIO_CHECKSUM_FUNCTIONS]; /* in-core DDTs */
218 uint64_t spa_ddt_stat_object; /* DDT statistics */
219 uint64_t spa_dedup_ditto; /* dedup ditto threshold */
220 uint64_t spa_dedup_checksum; /* default dedup checksum */
221 uint64_t spa_dspace; /* dspace in normal class */
222 kmutex_t spa_vdev_top_lock; /* dueling offline/remove */
223 kmutex_t spa_proc_lock; /* protects spa_proc* */
224 kcondvar_t spa_proc_cv; /* spa_proc_state transitions */
225 spa_proc_state_t spa_proc_state; /* see definition */
226 struct proc *spa_proc; /* "zpool-poolname" process */
227 uint64_t spa_did; /* if procp != p0, did of t1 */
228 boolean_t spa_autoreplace; /* autoreplace set in open */
229 int spa_vdev_locks; /* locks grabbed */
230 uint64_t spa_creation_version; /* version at pool creation */
231 uint64_t spa_prev_software_version; /* See ub_software_version */
232 uint64_t spa_feat_for_write_obj; /* required to write to pool */
233 uint64_t spa_feat_for_read_obj; /* required to read from pool */
234 uint64_t spa_feat_desc_obj; /* Feature descriptions */

new/usr/src/uts/common/fs/zfs/sys/spa_impl.h 3

235 cyclic_id_t spa_deadman_cycid; /* cyclic id */
236 uint64_t spa_deadman_calls; /* number of deadman calls */
237 uint64_t spa_sync_starttime; /* starting time fo spa_sync */
238 uint64_t spa_deadman_synctime; /* deadman expiration timer */
239 kmutex_t spa_iokstat_lock; /* protects spa_iokstat_* */
240 struct kstat *spa_iokstat; /* kstat of io to this pool */
241 /*
242 * spa_refcount & spa_config_lock must be the last elements
242 * spa_refcnt & spa_config_lock must be the last elements
243 * because refcount_t changes size based on compilation options.
244 * In order for the MDB module to function correctly, the other
245 * fields must remain in the same location.
246 */
247 spa_config_lock_t spa_config_lock[SCL_LOCKS]; /* config changes */
248 refcount_t spa_refcount; /* number of opens */
249 };

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/sys/space_map.h 1

**
 6907 Wed Apr 24 12:44:28 2013
new/usr/src/uts/common/fs/zfs/sys/space_map.h
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

87 /*
88 * debug entry
89 *
90 * 1 3 10 50
91 * ,---+--------+------------+---------------------------------.
92 * | 1 | action | syncpass | txg (lower bits) |
93 * ‘---+--------+------------+---------------------------------’
94 * 63 62 60 59 50 49 0
95 *
96 *
97 *
97 * non-debug entry
98 *
99 * 1 47 1 15
100 * ,---.
101 * | 0 | offset (sm_shift units) | type | run |
102 * ‘---’
103 * 63 62 17 16 15 0
104 */

106 /* All this stuff takes and returns bytes */
107 #define SM_RUN_DECODE(x) (BF64_DECODE(x, 0, 15) + 1)
108 #define SM_RUN_ENCODE(x) BF64_ENCODE((x) - 1, 0, 15)
109 #define SM_TYPE_DECODE(x) BF64_DECODE(x, 15, 1)
110 #define SM_TYPE_ENCODE(x) BF64_ENCODE(x, 15, 1)
111 #define SM_OFFSET_DECODE(x) BF64_DECODE(x, 16, 47)
112 #define SM_OFFSET_ENCODE(x) BF64_ENCODE(x, 16, 47)
113 #define SM_DEBUG_DECODE(x) BF64_DECODE(x, 63, 1)
114 #define SM_DEBUG_ENCODE(x) BF64_ENCODE(x, 63, 1)

116 #define SM_DEBUG_ACTION_DECODE(x) BF64_DECODE(x, 60, 3)
117 #define SM_DEBUG_ACTION_ENCODE(x) BF64_ENCODE(x, 60, 3)

119 #define SM_DEBUG_SYNCPASS_DECODE(x) BF64_DECODE(x, 50, 10)
120 #define SM_DEBUG_SYNCPASS_ENCODE(x) BF64_ENCODE(x, 50, 10)

122 #define SM_DEBUG_TXG_DECODE(x) BF64_DECODE(x, 0, 50)
123 #define SM_DEBUG_TXG_ENCODE(x) BF64_ENCODE(x, 0, 50)

125 #define SM_RUN_MAX SM_RUN_DECODE(~0ULL)

127 #define SM_ALLOC 0x0
128 #define SM_FREE 0x1

130 /*
131 * The data for a given space map can be kept on blocks of any size.
132 * Larger blocks entail fewer i/o operations, but they also cause the
133 * DMU to keep more data in-core, and also to waste more i/o bandwidth
134 * when only a few blocks have changed since the last transaction group.
135 * This could use a lot more research, but for now, set the freelist
136 * block size to 4k (2^12).
137 */
138 #define SPACE_MAP_BLOCKSHIFT 12

new/usr/src/uts/common/fs/zfs/sys/space_map.h 2

140 typedef void space_map_func_t(space_map_t *sm, uint64_t start, uint64_t size);

142 extern void space_map_init(void);
143 extern void space_map_fini(void);
144 extern void space_map_create(space_map_t *sm, uint64_t start, uint64_t size,
145 uint8_t shift, kmutex_t *lp);
146 extern void space_map_destroy(space_map_t *sm);
147 extern void space_map_add(space_map_t *sm, uint64_t start, uint64_t size);
148 extern void space_map_remove(space_map_t *sm, uint64_t start, uint64_t size);
149 extern boolean_t space_map_contains(space_map_t *sm,
150 uint64_t start, uint64_t size);
151 extern space_seg_t *space_map_find(space_map_t *sm, uint64_t start,
152 uint64_t size, avl_index_t *wherep);
153 extern void space_map_swap(space_map_t **msrc, space_map_t **mdest);
154 extern void space_map_vacate(space_map_t *sm,
155 space_map_func_t *func, space_map_t *mdest);
156 extern void space_map_walk(space_map_t *sm,
157 space_map_func_t *func, space_map_t *mdest);

159 extern void space_map_load_wait(space_map_t *sm);
160 extern int space_map_load(space_map_t *sm, space_map_ops_t *ops,
161 uint8_t maptype, space_map_obj_t *smo, objset_t *os);
162 extern void space_map_unload(space_map_t *sm);

164 extern uint64_t space_map_alloc(space_map_t *sm, uint64_t size);
165 extern void space_map_claim(space_map_t *sm, uint64_t start, uint64_t size);
166 extern void space_map_free(space_map_t *sm, uint64_t start, uint64_t size);
167 extern uint64_t space_map_maxsize(space_map_t *sm);

169 extern void space_map_sync(space_map_t *sm, uint8_t maptype,
170 space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx);
171 extern void space_map_truncate(space_map_obj_t *smo,
172 objset_t *os, dmu_tx_t *tx);

174 extern void space_map_ref_create(avl_tree_t *t);
175 extern void space_map_ref_destroy(avl_tree_t *t);
176 extern void space_map_ref_add_seg(avl_tree_t *t,
177 uint64_t start, uint64_t end, int64_t refcnt);
178 extern void space_map_ref_add_map(avl_tree_t *t,
179 space_map_t *sm, int64_t refcnt);
180 extern void space_map_ref_generate_map(avl_tree_t *t,
181 space_map_t *sm, int64_t minref);

183 #ifdef __cplusplus
184 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/sys/unique.h 1

**
 1631 Wed Apr 24 12:44:28 2013
new/usr/src/uts/common/fs/zfs/sys/unique.h
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _SYS_UNIQUE_H
27 #define _SYS_UNIQUE_H

29 #pragma ident "%Z%%M% %I% %E% SMI"

31 #include <sys/zfs_context.h>

33 #ifdef __cplusplus
34 extern "C" {
35 #endif

37 /* The number of significant bits in each unique value. */
38 #define UNIQUE_BITS 56

40 void unique_init(void);
41 void unique_fini(void);

43 /*
44 * Return a new unique value (which will not be uniquified against until
45 * it is unique_insert()-ed).
45 * it is unique_insert()-ed.
46 */
47 uint64_t unique_create(void);

49 /* Return a unique value, which equals the one passed in if possible. */
50 uint64_t unique_insert(uint64_t value);

52 /* Indicate that this value no longer needs to be uniquified against. */
53 void unique_remove(uint64_t value);

55 #ifdef __cplusplus

new/usr/src/uts/common/fs/zfs/sys/unique.h 2

56 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/sys/vdev_impl.h 1

**
 11454 Wed Apr 24 12:44:28 2013
new/usr/src/uts/common/fs/zfs/sys/vdev_impl.h
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

242 /*
243 * vdev_dirty() flags
244 */
245 #define VDD_METASLAB 0x01
246 #define VDD_DTL 0x02

248 /* Offset of embedded boot loader region on each label */
249 #define VDEV_BOOT_OFFSET (2 * sizeof (vdev_label_t))
250 #endif /* ! codereview */
251 /*
252 * Size of embedded boot loader region on each label.
248 * Size and offset of embedded boot loader region on each label.
253 * The total size of the first two labels plus the boot area is 4MB.
254 */
251 #define VDEV_BOOT_OFFSET (2 * sizeof (vdev_label_t))
255 #define VDEV_BOOT_SIZE (7ULL << 19) /* 3.5M */

257 /*
258 * Size of label regions at the start and end of each leaf device.
259 */
260 #define VDEV_LABEL_START_SIZE (2 * sizeof (vdev_label_t) + VDEV_BOOT_SIZE)
261 #define VDEV_LABEL_END_SIZE (2 * sizeof (vdev_label_t))
262 #define VDEV_LABELS 4
263 #define VDEV_BEST_LABEL VDEV_LABELS

265 #define VDEV_ALLOC_LOAD 0
266 #define VDEV_ALLOC_ADD 1
267 #define VDEV_ALLOC_SPARE 2
268 #define VDEV_ALLOC_L2CACHE 3
269 #define VDEV_ALLOC_ROOTPOOL 4
270 #define VDEV_ALLOC_SPLIT 5
271 #define VDEV_ALLOC_ATTACH 6

273 /*
274 * Allocate or free a vdev
275 */
276 extern vdev_t *vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid,
277 vdev_ops_t *ops);
278 extern int vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *config,
279 vdev_t *parent, uint_t id, int alloctype);
280 extern void vdev_free(vdev_t *vd);

282 /*
283 * Add or remove children and parents
284 */
285 extern void vdev_add_child(vdev_t *pvd, vdev_t *cvd);
286 extern void vdev_remove_child(vdev_t *pvd, vdev_t *cvd);
287 extern void vdev_compact_children(vdev_t *pvd);
288 extern vdev_t *vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops);
289 extern void vdev_remove_parent(vdev_t *cvd);

291 /*
292 * vdev sync load and sync
293 */

new/usr/src/uts/common/fs/zfs/sys/vdev_impl.h 2

294 extern void vdev_load_log_state(vdev_t *nvd, vdev_t *ovd);
295 extern boolean_t vdev_log_state_valid(vdev_t *vd);
296 extern void vdev_load(vdev_t *vd);
297 extern void vdev_sync(vdev_t *vd, uint64_t txg);
298 extern void vdev_sync_done(vdev_t *vd, uint64_t txg);
299 extern void vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg);

301 /*
302 * Available vdev types.
303 */
304 extern vdev_ops_t vdev_root_ops;
305 extern vdev_ops_t vdev_mirror_ops;
306 extern vdev_ops_t vdev_replacing_ops;
307 extern vdev_ops_t vdev_raidz_ops;
308 extern vdev_ops_t vdev_disk_ops;
309 extern vdev_ops_t vdev_file_ops;
310 extern vdev_ops_t vdev_missing_ops;
311 extern vdev_ops_t vdev_hole_ops;
312 extern vdev_ops_t vdev_spare_ops;

314 /*
315 * Common size functions
316 */
317 extern uint64_t vdev_default_asize(vdev_t *vd, uint64_t psize);
318 extern uint64_t vdev_get_min_asize(vdev_t *vd);
319 extern void vdev_set_min_asize(vdev_t *vd);

321 /*
322 * Global variables
319 * zdb uses this tunable, so it must be declared here to make lint happy.
323 */
324 /* zdb uses this tunable, so it must be declared here to make lint happy. */
325 #endif /* ! codereview */
326 extern int zfs_vdev_cache_size;

328 /*
329 * The vdev_buf_t is used to translate between zio_t and buf_t, and back again.
330 */
331 typedef struct vdev_buf {
332 buf_t vb_buf; /* buffer that describes the io */
333 zio_t *vb_io; /* pointer back to the original zio_t */
334 } vdev_buf_t;

336 #ifdef __cplusplus
337 }
338 #endif

340 #endif /* _SYS_VDEV_IMPL_H */

new/usr/src/uts/common/fs/zfs/sys/zap.h 1

**
 17681 Wed Apr 24 12:44:28 2013
new/usr/src/uts/common/fs/zfs/sys/zap.h
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 */

26 #ifndef _SYS_ZAP_H
27 #define _SYS_ZAP_H

29 /*
30 * ZAP - ZFS Attribute Processor
31 *
32 * The ZAP is a module which sits on top of the DMU (Data Management
33 * Unit) and implements a higher-level storage primitive using DMU
34 * objects. Its primary consumer is the ZPL (ZFS Posix Layer).
35 *
36 * A "zapobj" is a DMU object which the ZAP uses to stores attributes.
37 * Users should use only zap routines to access a zapobj - they should
38 * not access the DMU object directly using DMU routines.
39 *
40 * The attributes stored in a zapobj are name-value pairs. The name is
41 * a zero-terminated string of up to ZAP_MAXNAMELEN bytes (including
42 * terminating NULL). The value is an array of integers, which may be
43 * 1, 2, 4, or 8 bytes long. The total space used by the array (number
44 * of integers * integer length) can be up to ZAP_MAXVALUELEN bytes.
45 * Note that an 8-byte integer value can be used to store the location
46 * (object number) of another dmu object (which may be itself a zapobj).
47 * Note that you can use a zero-length attribute to store a single bit
48 * of information - the attribute is present or not.
49 *
50 * The ZAP routines are thread-safe. However, you must observe the
51 * DMU’s restriction that a transaction may not be operated on
52 * concurrently.
53 *
54 * Any of the routines that return an int may return an I/O error (EIO
55 * or ECHECKSUM).
56 *

new/usr/src/uts/common/fs/zfs/sys/zap.h 2

57 *
58 * Implementation / Performance Notes:
59 *
60 * The ZAP is intended to operate most efficiently on attributes with
61 * short (49 bytes or less) names and single 8-byte values, for which
62 * the microzap will be used. The ZAP should be efficient enough so
63 * that the user does not need to cache these attributes.
64 *
65 * The ZAP’s locking scheme makes its routines thread-safe. Operations
66 * on different zapobjs will be processed concurrently. Operations on
67 * the same zapobj which only read data will be processed concurrently.
68 * Operations on the same zapobj which modify data will be processed
69 * concurrently when there are many attributes in the zapobj (because
70 * the ZAP uses per-block locking - more than 128 * (number of cpus)
71 * small attributes will suffice).
72 */

74 /*
75 * We’re using zero-terminated byte strings (ie. ASCII or UTF-8 C
76 * strings) for the names of attributes, rather than a byte string
77 * bounded by an explicit length. If some day we want to support names
78 * in character sets which have embedded zeros (eg. UTF-16, UTF-32),
79 * we’ll have to add routines for using length-bounded strings.
80 */

82 #include <sys/dmu.h>

84 #ifdef __cplusplus
85 extern "C" {
86 #endif

88 /*
89 * Specifies matching criteria for ZAP lookups.
89 * The matchtype specifies which entry will be accessed.
90 * MT_EXACT: only find an exact match (non-normalized)
91 * MT_FIRST: find the "first" normalized (case and Unicode
92 * form) match; the designated "first" match will not change as long
93 * as the set of entries with this normalization doesn’t change
94 * MT_BEST: if there is an exact match, find that, otherwise find the
95 * first normalized match
90 */
91 typedef enum matchtype
92 {
93 /* Only find an exact match (non-normalized) */
94 #endif /* ! codereview */
95 MT_EXACT,
96 /*
97 * If there is an exact match, find that, otherwise find the
98 * first normalized match.
99 */
100 #endif /* ! codereview */
101 MT_BEST,
102 /*
103 * Find the "first" normalized (case and Unicode form) match;
104 * the designated "first" match will not change as long as the
105 * set of entries with this normalization doesn’t change.
106 */
107 #endif /* ! codereview */
108 MT_FIRST
109 } matchtype_t;

111 typedef enum zap_flags {
112 /* Use 64-bit hash value (serialized cursors will always use 64-bits) */
113 ZAP_FLAG_HASH64 = 1 << 0,
114 /* Key is binary, not string (zap_add_uint64() can be used) */
115 ZAP_FLAG_UINT64_KEY = 1 << 1,

new/usr/src/uts/common/fs/zfs/sys/zap.h 3

116 /*
117 * First word of key (which must be an array of uint64) is
118 * already randomly distributed.
119 */
120 ZAP_FLAG_PRE_HASHED_KEY = 1 << 2,
121 } zap_flags_t;

123 /*
124 * Create a new zapobj with no attributes and return its object number.
125 * MT_EXACT will cause the zap object to only support MT_EXACT lookups,
126 * otherwise any matchtype can be used for lookups.
127 *
128 * normflags specifies what normalization will be done. values are:
129 * 0: no normalization (legacy on-disk format, supports MT_EXACT matching
130 * only)
131 * U8_TEXTPREP_TOLOWER: case normalization will be performed.
132 * MT_FIRST/MT_BEST matching will find entries that match without
133 * regard to case (eg. looking for "foo" can find an entry "Foo").
134 * Eventually, other flags will permit unicode normalization as well.
135 */
136 uint64_t zap_create(objset_t *ds, dmu_object_type_t ot,
137 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
138 uint64_t zap_create_norm(objset_t *ds, int normflags, dmu_object_type_t ot,
139 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
140 uint64_t zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
141 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
142 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
143 uint64_t zap_create_link(objset_t *os, dmu_object_type_t ot,
144 uint64_t parent_obj, const char *name, dmu_tx_t *tx);

146 /*
147 * Create a new zapobj with no attributes from the given (unallocated)
148 * object number.
149 */
150 int zap_create_claim(objset_t *ds, uint64_t obj, dmu_object_type_t ot,
151 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
152 int zap_create_claim_norm(objset_t *ds, uint64_t obj,
153 int normflags, dmu_object_type_t ot,
154 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);

156 /*
157 * The zapobj passed in must be a valid ZAP object for all of the
158 * following routines.
159 */

161 /*
162 * Destroy this zapobj and all its attributes.
163 *
164 * Frees the object number using dmu_object_free.
165 */
166 int zap_destroy(objset_t *ds, uint64_t zapobj, dmu_tx_t *tx);

168 /*
169 * Manipulate attributes.
170 *
171 * ’integer_size’ is in bytes, and must be 1, 2, 4, or 8.
172 */

174 /*
175 * Retrieve the contents of the attribute with the given name.
176 *
177 * If the requested attribute does not exist, the call will fail and
178 * return ENOENT.
179 *
180 * If ’integer_size’ is smaller than the attribute’s integer size, the
181 * call will fail and return EINVAL.

new/usr/src/uts/common/fs/zfs/sys/zap.h 4

182 *
183 * If ’integer_size’ is equal to or larger than the attribute’s integer
184 * size, the call will succeed and return 0.
185 *
186 * When converting to a larger integer size, the integers will be treated as
187 * unsigned (ie. no sign-extension will be performed).
99 * size, the call will succeed and return 0. * When converting to a
100 * larger integer size, the integers will be treated as unsigned (ie. no
101 * sign-extension will be performed).
188 *
189 * ’num_integers’ is the length (in integers) of ’buf’.
190 *
191 * If the attribute is longer than the buffer, as many integers as will
192 * fit will be transferred to ’buf’. If the entire attribute was not
193 * transferred, the call will return EOVERFLOW.
194 */
195 int zap_lookup(objset_t *ds, uint64_t zapobj, const char *name,
196 uint64_t integer_size, uint64_t num_integers, void *buf);

198 /*
108 *
199 * If rn_len is nonzero, realname will be set to the name of the found
200 * entry (which may be different from the requested name if matchtype is
201 * not MT_EXACT).
202 *
203 * If normalization_conflictp is not NULL, it will be set if there is
204 * another name with the same case/unicode normalized form.
205 */
116 int zap_lookup(objset_t *ds, uint64_t zapobj, const char *name,
117 uint64_t integer_size, uint64_t num_integers, void *buf);
206 int zap_lookup_norm(objset_t *ds, uint64_t zapobj, const char *name,
207 uint64_t integer_size, uint64_t num_integers, void *buf,
208 matchtype_t mt, char *realname, int rn_len,
209 boolean_t *normalization_conflictp);
210 int zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
211 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf);
212 int zap_contains(objset_t *ds, uint64_t zapobj, const char *name);
213 int zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
214 int key_numints);

216 int zap_count_write(objset_t *os, uint64_t zapobj, const char *name,
217 int add, uint64_t *towrite, uint64_t *tooverwrite);

219 /*
220 * Create an attribute with the given name and value.
221 *
222 * If an attribute with the given name already exists, the call will
223 * fail and return EEXIST.
224 */
225 int zap_add(objset_t *ds, uint64_t zapobj, const char *key,
226 int integer_size, uint64_t num_integers,
227 const void *val, dmu_tx_t *tx);
228 int zap_add_uint64(objset_t *ds, uint64_t zapobj, const uint64_t *key,
229 int key_numints, int integer_size, uint64_t num_integers,
230 const void *val, dmu_tx_t *tx);

232 /*
233 * Set the attribute with the given name to the given value. If an
234 * attribute with the given name does not exist, it will be created. If
235 * an attribute with the given name already exists, the previous value
236 * will be overwritten. The integer_size may be different from the
237 * existing attribute’s integer size, in which case the attribute’s
238 * integer size will be updated to the new value.
239 */
240 int zap_update(objset_t *ds, uint64_t zapobj, const char *name,
241 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);

new/usr/src/uts/common/fs/zfs/sys/zap.h 5

242 int zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
243 int key_numints,
244 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);

246 /*
247 * Get the length (in integers) and the integer size of the specified
248 * attribute.
249 *
250 * If the requested attribute does not exist, the call will fail and
251 * return ENOENT.
252 */
253 int zap_length(objset_t *ds, uint64_t zapobj, const char *name,
254 uint64_t *integer_size, uint64_t *num_integers);
255 int zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
256 int key_numints, uint64_t *integer_size, uint64_t *num_integers);

258 /*
259 * Remove the specified attribute.
260 *
261 * If the specified attribute does not exist, the call will fail and
262 * return ENOENT.
263 */
264 int zap_remove(objset_t *ds, uint64_t zapobj, const char *name, dmu_tx_t *tx);
265 int zap_remove_norm(objset_t *ds, uint64_t zapobj, const char *name,
266 matchtype_t mt, dmu_tx_t *tx);
267 int zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
268 int key_numints, dmu_tx_t *tx);

270 /*
271 * Returns (in *count) the number of attributes in the specified zap
272 * object.
273 */
274 int zap_count(objset_t *ds, uint64_t zapobj, uint64_t *count);

276 /*
277 * Returns (in name) the name of the entry whose (value & mask)
278 * (za_first_integer) is value, or ENOENT if not found. The string
279 * pointed to by name must be at least 256 bytes long. If mask==0, the
280 * match must be exact (ie, same as mask=-1ULL).
281 */
282 int zap_value_search(objset_t *os, uint64_t zapobj,
283 uint64_t value, uint64_t mask, char *name);

285 /*
286 * Transfer all the entries from fromobj into intoobj. Only works on
287 * int_size=8 num_integers=1 values. Fails if there are any duplicated
288 * entries.
289 */
290 int zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx);

292 /* Same as zap_join, but set the values to ’value’. */
293 int zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj,
294 uint64_t value, dmu_tx_t *tx);

296 /* Same as zap_join, but add together any duplicated entries. */
297 int zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj,
298 dmu_tx_t *tx);

300 /*
301 * Manipulate entries where the name + value are the "same" (the name is
302 * a stringified version of the value).
303 */
304 int zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
305 int zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
306 int zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value);
307 int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,

new/usr/src/uts/common/fs/zfs/sys/zap.h 6

308 dmu_tx_t *tx);

310 /* Here the key is an int and the value is a different int. */
311 int zap_add_int_key(objset_t *os, uint64_t obj,
312 uint64_t key, uint64_t value, dmu_tx_t *tx);
313 int zap_update_int_key(objset_t *os, uint64_t obj,
314 uint64_t key, uint64_t value, dmu_tx_t *tx);
315 int zap_lookup_int_key(objset_t *os, uint64_t obj,
316 uint64_t key, uint64_t *valuep);

318 int zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta,
319 dmu_tx_t *tx);

321 struct zap;
322 struct zap_leaf;
323 typedef struct zap_cursor {
324 /* This structure is opaque! */
325 objset_t *zc_objset;
326 struct zap *zc_zap;
327 struct zap_leaf *zc_leaf;
328 uint64_t zc_zapobj;
329 uint64_t zc_serialized;
330 uint64_t zc_hash;
331 uint32_t zc_cd;
332 } zap_cursor_t;

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/sys/zap_leaf.h 1

**
 7553 Wed Apr 24 12:44:29 2013
new/usr/src/uts/common/fs/zfs/sys/zap_leaf.h
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

96 #define ZLF_ENTRIES_CDSORTED (1<<0)

98 /*
99 * TAKE NOTE:
100 * If zap_leaf_phys_t is modified, zap_leaf_byteswap() must be modified.
101 */
102 typedef struct zap_leaf_phys {
103 struct zap_leaf_header {
104 /* Public to ZAP */
105 #endif /* ! codereview */
106 uint64_t lh_block_type; /* ZBT_LEAF */
107 uint64_t lh_pad1;
108 uint64_t lh_prefix; /* hash prefix of this leaf */
109 uint32_t lh_magic; /* ZAP_LEAF_MAGIC */
110 uint16_t lh_nfree; /* number free chunks */
111 uint16_t lh_nentries; /* number of entries */
112 uint16_t lh_prefix_len; /* num bits used to id this */

114 /* Private to zap_leaf */
104 /* above is accessable to zap, below is zap_leaf private */

115 uint16_t lh_freelist; /* chunk head of free list */
116 uint8_t lh_flags; /* ZLF_* flags */
117 uint8_t lh_pad2[11];
118 } l_hdr; /* 2 24-byte chunks */

120 /*
121 * The header is followed by a hash table with
122 * ZAP_LEAF_HASH_NUMENTRIES(zap) entries. The hash table is
123 * followed by an array of ZAP_LEAF_NUMCHUNKS(zap)
124 * zap_leaf_chunk structures. These structures are accessed
125 * with the ZAP_LEAF_CHUNK() macro.
126 */

128 uint16_t l_hash[1];
129 } zap_leaf_phys_t;

______unchanged_portion_omitted_

164 typedef struct zap_entry_handle {
165 /* Set by zap_leaf and public to ZAP */
156 /* below is set by zap_leaf.c and is public to zap.c */
166 uint64_t zeh_num_integers;
167 uint64_t zeh_hash;
168 uint32_t zeh_cd;
169 uint8_t zeh_integer_size;

171 /* Private to zap_leaf */
162 /* below is private to zap_leaf.c */
172 uint16_t zeh_fakechunk;
173 uint16_t *zeh_chunkp;
174 zap_leaf_t *zeh_leaf;
175 } zap_entry_handle_t;

new/usr/src/uts/common/fs/zfs/sys/zap_leaf.h 2

177 /*
178 * Return a handle to the named entry, or ENOENT if not found. The hash
179 * value must equal zap_hash(name).
180 */
181 extern int zap_leaf_lookup(zap_leaf_t *l,
182 struct zap_name *zn, zap_entry_handle_t *zeh);

184 /*
185 * Return a handle to the entry with this hash+cd, or the entry with the
186 * next closest hash+cd.
187 */
188 extern int zap_leaf_lookup_closest(zap_leaf_t *l,
189 uint64_t hash, uint32_t cd, zap_entry_handle_t *zeh);

191 /*
192 * Read the first num_integers in the attribute. Integer size
193 * conversion will be done without sign extension. Return EINVAL if
194 * integer_size is too small. Return EOVERFLOW if there are more than
195 * num_integers in the attribute.
196 */
197 extern int zap_entry_read(const zap_entry_handle_t *zeh,
198 uint8_t integer_size, uint64_t num_integers, void *buf);

200 extern int zap_entry_read_name(struct zap *zap, const zap_entry_handle_t *zeh,
201 uint16_t buflen, char *buf);

203 /*
204 * Replace the value of an existing entry.
205 *
206 * May fail if it runs out of space (ENOSPC).
197 * zap_entry_update may fail if it runs out of space (ENOSPC).
207 */
208 extern int zap_entry_update(zap_entry_handle_t *zeh,
209 uint8_t integer_size, uint64_t num_integers, const void *buf);

211 /*
212 * Remove an entry.
213 */
214 extern void zap_entry_remove(zap_entry_handle_t *zeh);

216 /*
217 * Create an entry. An equal entry must not exist, and this entry must
218 * belong in this leaf (according to its hash value). Fills in the
219 * entry handle on success. Returns 0 on success or ENOSPC on failure.
220 */
221 extern int zap_entry_create(zap_leaf_t *l, struct zap_name *zn, uint32_t cd,
222 uint8_t integer_size, uint64_t num_integers, const void *buf,
223 zap_entry_handle_t *zeh);

225 /* Determine whether there is another entry with the same normalized form. */
216 /*
217 * Return true if there are additional entries with the same normalized
218 * form.
219 */
226 extern boolean_t zap_entry_normalization_conflict(zap_entry_handle_t *zeh,
227 struct zap_name *zn, const char *name, struct zap *zap);

229 /*
230 * Other stuff.
231 */

233 extern void zap_leaf_init(zap_leaf_t *l, boolean_t sort);
234 extern void zap_leaf_byteswap(zap_leaf_phys_t *buf, int len);
235 extern void zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort);
236 extern void zap_leaf_stats(struct zap *zap, zap_leaf_t *l,
237 struct zap_stats *zs);

new/usr/src/uts/common/fs/zfs/sys/zap_leaf.h 3

239 #ifdef __cplusplus
240 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/sys/zfs_acl.h 1

**
 8160 Wed Apr 24 12:44:29 2013
new/usr/src/uts/common/fs/zfs/sys/zfs_acl.h
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */

25 #ifndef _SYS_FS_ZFS_ACL_H
26 #define _SYS_FS_ZFS_ACL_H

28 #ifdef _KERNEL
29 #include <sys/isa_defs.h>
30 #include <sys/types32.h>
31 #endif
32 #include <sys/acl.h>
33 #include <sys/dmu.h>
34 #include <sys/zfs_fuid.h>
35 #include <sys/sa.h>

37 #ifdef __cplusplus
38 extern "C" {
39 #endif

41 struct znode_phys;

43 #define ACE_SLOT_CNT 6
44 #define ZFS_ACL_VERSION_INITIAL 0ULL
45 #define ZFS_ACL_VERSION_FUID 1ULL
46 #define ZFS_ACL_VERSION ZFS_ACL_VERSION_FUID

48 /*
49 * ZFS ACLs (Access Control Lists) are stored in various forms.
50 *
49 * ZFS ACLs are store in various forms.
51 * Files created with ACL version ZFS_ACL_VERSION_INITIAL
52 * will all be created with fixed length ACEs of type
53 * zfs_oldace_t.
54 *
55 * Files with ACL version ZFS_ACL_VERSION_FUID will be created

new/usr/src/uts/common/fs/zfs/sys/zfs_acl.h 2

56 * with various sized ACEs. The abstraction entries will utilize
57 * zfs_ace_hdr_t, normal user/group entries will use zfs_ace_t
58 * and some specialized CIFS ACEs will use zfs_object_ace_t.
59 */

61 /*
62 * All ACEs have a common hdr. For
63 * owner@, group@, and everyone@ this is all
64 * thats needed.
65 */
66 typedef struct zfs_ace_hdr {
67 uint16_t z_type;
68 uint16_t z_flags;
69 uint32_t z_access_mask;
70 } zfs_ace_hdr_t;

______unchanged_portion_omitted_

124 typedef struct acl_ops {
125 uint32_t (*ace_mask_get) (void *acep); /* get access mask */
126 void (*ace_mask_set) (void *acep,
127 uint32_t mask); /* set access mask */
128 uint16_t (*ace_flags_get) (void *acep); /* get flags */
129 void (*ace_flags_set) (void *acep,
130 uint16_t flags); /* set flags */
131 uint16_t (*ace_type_get)(void *acep); /* get type */
132 void (*ace_type_set)(void *acep,
133 uint16_t type); /* set type */
134 uint64_t (*ace_who_get)(void *acep); /* get who/fuid */
135 void (*ace_who_set)(void *acep,
136 uint64_t who); /* set who/fuid */
137 size_t (*ace_size)(void *acep); /* how big is this ace */
138 size_t (*ace_abstract_size)(void); /* sizeof abstract entry */
139 int (*ace_mask_off)(void); /* off of access mask in ace */
140 /* ptr to data if any */
141 #endif /* ! codereview */
142 int (*ace_data)(void *acep, void **datap);
139 /* ptr to data if any */
143 } acl_ops_t;

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/sys/zfs_rlock.h 1

**
 2620 Wed Apr 24 12:44:29 2013
new/usr/src/uts/common/fs/zfs/sys/zfs_rlock.h
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

59 /*
60 * Lock a range (offset, length) as either shared (RL_READER)
61 * or exclusive (RL_WRITER or RL_APPEND). RL_APPEND is a special type that
62 * is converted to RL_WRITER that specified to lock from the start of the
63 * end of file. Returns the range lock structure.
60 * Lock a range (offset, length) as either shared (READER)
61 * or exclusive (WRITER or APPEND). APPEND is a special type that
62 * is converted to WRITER that specified to lock from the start of the
63 * end of file. zfs_range_lock() returns the range lock structure.
64 */
65 rl_t *zfs_range_lock(znode_t *zp, uint64_t off, uint64_t len, rl_type_t type);

67 /* Unlock range and destroy range lock structure. */
67 /*
68 * Unlock range and destroy range lock structure.
69 */
68 void zfs_range_unlock(rl_t *rl);

70 /*
71 * Reduce range locked as RW_WRITER from whole file to specified range.
72 * Asserts the whole file was previously locked.
73 */
74 void zfs_range_reduce(rl_t *rl, uint64_t off, uint64_t len);

76 /*
77 * AVL comparison function used to order range locks
78 * Locks are ordered on the start offset of the range.
79 * AVL comparison function used to compare range locks
79 */
80 int zfs_range_compare(const void *arg1, const void *arg2);

82 #endif /* _KERNEL */

84 #ifdef __cplusplus
85 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/sys/zfs_znode.h 1

**
 13128 Wed Apr 24 12:44:29 2013
new/usr/src/uts/common/fs/zfs/sys/zfs_znode.h
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

77 /*
78 * Define special zfs pflags
79 */
80 #define ZFS_XATTR 0x1 /* is an extended attribute */
81 #define ZFS_INHERIT_ACE 0x2 /* ace has inheritable ACEs */
82 #define ZFS_ACL_TRIVIAL 0x4 /* files ACL is trivial */
83 #define ZFS_ACL_OBJ_ACE 0x8 /* ACL has CMPLX Object ACE */
84 #define ZFS_ACL_PROTECTED 0x10 /* ACL protected */
85 #define ZFS_ACL_DEFAULTED 0x20 /* ACL should be defaulted */
86 #define ZFS_ACL_AUTO_INHERIT 0x40 /* ACL should be inherited */
87 #define ZFS_BONUS_SCANSTAMP 0x80 /* Scanstamp in bonus area */
88 #define ZFS_NO_EXECS_DENIED 0x100 /* exec was given to everyone */

90 #define SA_ZPL_ATIME(z) z->z_attr_table[ZPL_ATIME]
91 #define SA_ZPL_MTIME(z) z->z_attr_table[ZPL_MTIME]
92 #define SA_ZPL_CTIME(z) z->z_attr_table[ZPL_CTIME]
93 #define SA_ZPL_CRTIME(z) z->z_attr_table[ZPL_CRTIME]
94 #define SA_ZPL_GEN(z) z->z_attr_table[ZPL_GEN]
95 #define SA_ZPL_DACL_ACES(z) z->z_attr_table[ZPL_DACL_ACES]
96 #define SA_ZPL_XATTR(z) z->z_attr_table[ZPL_XATTR]
97 #define SA_ZPL_SYMLINK(z) z->z_attr_table[ZPL_SYMLINK]
98 #define SA_ZPL_RDEV(z) z->z_attr_table[ZPL_RDEV]
99 #define SA_ZPL_SCANSTAMP(z) z->z_attr_table[ZPL_SCANSTAMP]
100 #define SA_ZPL_UID(z) z->z_attr_table[ZPL_UID]
101 #define SA_ZPL_GID(z) z->z_attr_table[ZPL_GID]
102 #define SA_ZPL_PARENT(z) z->z_attr_table[ZPL_PARENT]
103 #define SA_ZPL_LINKS(z) z->z_attr_table[ZPL_LINKS]
104 #define SA_ZPL_MODE(z) z->z_attr_table[ZPL_MODE]
105 #define SA_ZPL_DACL_COUNT(z) z->z_attr_table[ZPL_DACL_COUNT]
106 #define SA_ZPL_FLAGS(z) z->z_attr_table[ZPL_FLAGS]
107 #define SA_ZPL_SIZE(z) z->z_attr_table[ZPL_SIZE]
108 #define SA_ZPL_ZNODE_ACL(z) z->z_attr_table[ZPL_ZNODE_ACL]
109 #define SA_ZPL_PAD(z) z->z_attr_table[ZPL_PAD]

111 /*
112 * Is ID ephemeral?
113 */
114 #define IS_EPHEMERAL(x) (x > MAXUID)

116 /*
117 * Should we use FUIDs?
118 */
119 #define USE_FUIDS(version, os) (version >= ZPL_VERSION_FUID && \
120 spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID)
121 #define USE_SA(version, os) (version >= ZPL_VERSION_SA && \
122 spa_version(dmu_objset_spa(os)) >= SPA_VERSION_SA)

124 #define MASTER_NODE_OBJ 1

126 /*
127 * Special attributes for master node.
128 * "userquota@" and "groupquota@" are also valid (from
129 * zfs_userquota_prop_prefixes[]).
130 */

new/usr/src/uts/common/fs/zfs/sys/zfs_znode.h 2

131 #define ZFS_FSID "FSID"
132 #define ZFS_UNLINKED_SET "DELETE_QUEUE"
133 #define ZFS_ROOT_OBJ "ROOT"
134 #define ZPL_VERSION_STR "VERSION"
135 #define ZFS_FUID_TABLES "FUID"
136 #define ZFS_SHARES_DIR "SHARES"
137 #define ZFS_SA_ATTRS "SA_ATTRS"

139 #define ZFS_MAX_BLOCKSIZE (SPA_MAXBLOCKSIZE)

141 /* Path component length */
141 /*
142 * Path component length
143 *
144 #endif /* ! codereview */
145 * The generic fs code uses MAXNAMELEN to represent
146 * what the largest component length is. Unfortunately,
147 * this length includes the terminating NULL. ZFS needs
148 * to tell the users via pathconf() and statvfs() what the
149 * true maximum length of a component is, excluding the NULL.
150 */
151 #define ZFS_MAXNAMELEN (MAXNAMELEN - 1)

153 /*
154 * Convert mode bits (zp_mode) to BSD-style DT_* values for storing in
155 * the directory entries.
156 */
157 #define IFTODT(mode) (((mode) & S_IFMT) >> 12)

159 /*
160 * The directory entry has the type (currently unused on Solaris) in the
161 * top 4 bits, and the object number in the low 48 bits. The "middle"
162 * 12 bits are unused.
163 */
164 #define ZFS_DIRENT_TYPE(de) BF64_GET(de, 60, 4)
165 #define ZFS_DIRENT_OBJ(de) BF64_GET(de, 0, 48)

167 /*
168 * Directory entry locks control access to directory entries.
169 * They are used to protect creates, deletes, and renames.
170 * Each directory znode has a mutex and a list of locked names.
171 */
172 #ifdef _KERNEL
173 typedef struct zfs_dirlock {
174 char *dl_name; /* directory entry being locked */
175 uint32_t dl_sharecnt; /* 0 if exclusive, > 0 if shared */
176 uint8_t dl_namelock; /* 1 if z_name_lock is NOT held */
177 uint16_t dl_namesize; /* set if dl_name was allocated */
178 kcondvar_t dl_cv; /* wait for entry to be unlocked */
179 struct znode *dl_dzp; /* directory znode */
180 struct zfs_dirlock *dl_next; /* next in z_dirlocks list */
181 } zfs_dirlock_t;

183 typedef struct znode {
184 struct zfsvfs *z_zfsvfs;
185 vnode_t *z_vnode;
186 uint64_t z_id; /* object ID for this znode */
187 kmutex_t z_lock; /* znode modification lock */
188 krwlock_t z_parent_lock; /* parent lock for directories */
189 krwlock_t z_name_lock; /* "master" lock for dirent locks */
190 zfs_dirlock_t *z_dirlocks; /* directory entry lock list */
191 kmutex_t z_range_lock; /* protects changes to z_range_avl */
192 avl_tree_t z_range_avl; /* avl tree of file range locks */
193 uint8_t z_unlinked; /* file has been unlinked */
194 uint8_t z_atime_dirty; /* atime needs to be synced */
195 uint8_t z_zn_prefetch; /* Prefetch znodes? */

new/usr/src/uts/common/fs/zfs/sys/zfs_znode.h 3

196 uint8_t z_moved; /* Has this znode been moved? */
197 uint_t z_blksz; /* block size in bytes */
198 uint_t z_seq; /* modification sequence number */
199 uint64_t z_mapcnt; /* number of pages mapped to file */
200 uint64_t z_gen; /* generation (cached) */
201 uint64_t z_size; /* file size (cached) */
202 uint64_t z_atime[2]; /* atime (cached) */
203 uint64_t z_links; /* file links (cached) */
204 uint64_t z_pflags; /* pflags (cached) */
205 uint64_t z_uid; /* uid fuid (cached) */
206 uint64_t z_gid; /* gid fuid (cached) */
207 mode_t z_mode; /* mode (cached) */
208 uint32_t z_sync_cnt; /* synchronous open count */
209 kmutex_t z_acl_lock; /* acl data lock */
210 zfs_acl_t *z_acl_cached; /* cached acl */
211 list_node_t z_link_node; /* all znodes in fs link */
212 sa_handle_t *z_sa_hdl; /* handle to sa data */
213 boolean_t z_is_sa; /* are we native sa? */
214 } znode_t;

217 /*
218 * Range locking rules
219 * --------------------
220 * 1. When truncating a file (zfs_create, zfs_setattr, zfs_space) the whole
221 * file range needs to be locked as RL_WRITER. Only then can the pages be
222 * freed etc and zp_size reset. zp_size must be set within range lock.
223 * 2. For writes and punching holes (zfs_write & zfs_space) just the range
224 * being written or freed needs to be locked as RL_WRITER.
225 * Multiple writes at the end of the file must coordinate zp_size updates
226 * to ensure data isn’t lost. A compare and swap loop is currently used
227 * to ensure the file size is at least the offset last written.
228 * 3. For reads (zfs_read, zfs_get_data & zfs_putapage) just the range being
229 * read needs to be locked as RL_READER. A check against zp_size can then
230 * be made for reading beyond end of file.
231 */

233 /*
234 * Convert between znode pointers and vnode pointers
235 */
236 #define ZTOV(ZP) ((ZP)->z_vnode)
237 #define VTOZ(VP) ((znode_t *)(VP)->v_data)

239 /* Called on entry to each ZFS vnode and vfs operation */
143 /*
144 * ZFS_ENTER() is called on entry to each ZFS vnode and vfs operation.
145 * ZFS_EXIT() must be called before exitting the vop.
146 * ZFS_VERIFY_ZP() verifies the znode is valid.
147 */
240 #define ZFS_ENTER(zfsvfs) \
241 { \
242 rrw_enter_read(&(zfsvfs)->z_teardown_lock, FTAG); \
243 if ((zfsvfs)->z_unmounted) { \
244 ZFS_EXIT(zfsvfs); \
245 return (EIO); \
246 } \
247 }

249 /* Must be called before exiting the vop */
250 #endif /* ! codereview */
251 #define ZFS_EXIT(zfsvfs) rrw_exit(&(zfsvfs)->z_teardown_lock, FTAG)

253 /* Verifies the znode is valid */
254 #endif /* ! codereview */
255 #define ZFS_VERIFY_ZP(zp) \
256 if ((zp)->z_sa_hdl == NULL) { \

new/usr/src/uts/common/fs/zfs/sys/zfs_znode.h 4

257 ZFS_EXIT((zp)->z_zfsvfs); \
258 return (EIO); \
259 } \

261 /*
262 * Macros for dealing with dmu_buf_hold
263 */
264 #define ZFS_OBJ_HASH(obj_num) ((obj_num) & (ZFS_OBJ_MTX_SZ - 1))
265 #define ZFS_OBJ_MUTEX(zfsvfs, obj_num) \
266 (&(zfsvfs)->z_hold_mtx[ZFS_OBJ_HASH(obj_num)])
267 #define ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num) \
268 mutex_enter(ZFS_OBJ_MUTEX((zfsvfs), (obj_num)))
269 #define ZFS_OBJ_HOLD_TRYENTER(zfsvfs, obj_num) \
270 mutex_tryenter(ZFS_OBJ_MUTEX((zfsvfs), (obj_num)))
271 #define ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num) \
272 mutex_exit(ZFS_OBJ_MUTEX((zfsvfs), (obj_num)))

274 /* Encode ZFS stored time values from a struct timespec */
157 /*
158 * Macros to encode/decode ZFS stored time values from/to struct timespec
159 */
275 #define ZFS_TIME_ENCODE(tp, stmp) \
276 { \
277 (stmp)[0] = (uint64_t)(tp)->tv_sec; \
278 (stmp)[1] = (uint64_t)(tp)->tv_nsec; \
279 }

281 /* Decode ZFS stored time values to a struct timespec */
282 #endif /* ! codereview */
283 #define ZFS_TIME_DECODE(tp, stmp) \
284 { \
285 (tp)->tv_sec = (time_t)(stmp)[0]; \
286 (tp)->tv_nsec = (long)(stmp)[1]; \
287 }

289 /*
290 * Timestamp defines
291 */
292 #define ACCESSED (AT_ATIME)
293 #define STATE_CHANGED (AT_CTIME)
294 #define CONTENT_MODIFIED (AT_MTIME | AT_CTIME)

296 #define ZFS_ACCESSTIME_STAMP(zfsvfs, zp) \
297 if ((zfsvfs)->z_atime && !((zfsvfs)->z_vfs->vfs_flag & VFS_RDONLY)) \
298 zfs_tstamp_update_setup(zp, ACCESSED, NULL, NULL, B_FALSE);

300 extern int zfs_init_fs(zfsvfs_t *, znode_t **);
301 extern void zfs_set_dataprop(objset_t *);
302 extern void zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *,
303 dmu_tx_t *tx);
304 extern void zfs_tstamp_update_setup(znode_t *, uint_t, uint64_t [2],
305 uint64_t [2], boolean_t);
306 extern void zfs_grow_blocksize(znode_t *, uint64_t, dmu_tx_t *);
307 extern int zfs_freesp(znode_t *, uint64_t, uint64_t, int, boolean_t);
308 extern void zfs_znode_init(void);
309 extern void zfs_znode_fini(void);
310 extern int zfs_zget(zfsvfs_t *, uint64_t, znode_t **);
311 extern int zfs_rezget(znode_t *);
312 extern void zfs_zinactive(znode_t *);
313 extern void zfs_znode_delete(znode_t *, dmu_tx_t *);
314 extern void zfs_znode_free(znode_t *);
315 extern void zfs_remove_op_tables();
316 extern int zfs_create_op_tables();
317 extern int zfs_sync(vfs_t *vfsp, short flag, cred_t *cr);
318 extern dev_t zfs_cmpldev(uint64_t);
319 extern int zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value);

new/usr/src/uts/common/fs/zfs/sys/zfs_znode.h 5

320 extern int zfs_get_stats(objset_t *os, nvlist_t *nv);
321 extern void zfs_znode_dmu_fini(znode_t *);

323 extern void zfs_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype,
324 znode_t *dzp, znode_t *zp, char *name, vsecattr_t *, zfs_fuid_info_t *,
325 vattr_t *vap);
326 extern int zfs_log_create_txtype(zil_create_t, vsecattr_t *vsecp,
327 vattr_t *vap);
328 extern void zfs_log_remove(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype,
329 znode_t *dzp, char *name, uint64_t foid);
330 #define ZFS_NO_OBJECT 0 /* no object id */
331 extern void zfs_log_link(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype,
332 znode_t *dzp, znode_t *zp, char *name);
333 extern void zfs_log_symlink(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype,
334 znode_t *dzp, znode_t *zp, char *name, char *link);
335 extern void zfs_log_rename(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype,
336 znode_t *sdzp, char *sname, znode_t *tdzp, char *dname, znode_t *szp);
337 extern void zfs_log_write(zilog_t *zilog, dmu_tx_t *tx, int txtype,
338 znode_t *zp, offset_t off, ssize_t len, int ioflag);
339 extern void zfs_log_truncate(zilog_t *zilog, dmu_tx_t *tx, int txtype,
340 znode_t *zp, uint64_t off, uint64_t len);
341 extern void zfs_log_setattr(zilog_t *zilog, dmu_tx_t *tx, int txtype,
342 znode_t *zp, vattr_t *vap, uint_t mask_applied, zfs_fuid_info_t *fuidp);
343 extern void zfs_log_acl(zilog_t *zilog, dmu_tx_t *tx, znode_t *zp,
344 vsecattr_t *vsecp, zfs_fuid_info_t *fuidp);
345 extern void zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx);
346 extern void zfs_upgrade(zfsvfs_t *zfsvfs, dmu_tx_t *tx);
347 extern int zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx);

349 extern caddr_t zfs_map_page(page_t *, enum seg_rw);
350 extern void zfs_unmap_page(page_t *, caddr_t);

352 extern zil_get_data_t zfs_get_data;
353 extern zil_replay_func_t *zfs_replay_vector[TX_MAX_TYPE];
354 extern int zfsfstype;

356 #endif /* _KERNEL */

358 extern int zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len);

360 #ifdef __cplusplus
361 }
362 #endif

364 #endif /* _SYS_FS_ZFS_ZNODE_H */

new/usr/src/uts/common/fs/zfs/sys/zil.h 1

**
 15273 Wed Apr 24 12:44:30 2013
new/usr/src/uts/common/fs/zfs/sys/zil.h
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

229 /*
230 * FUID ACL record will be an array of ACEs from the original ACL.
231 * If this array includes ephemeral IDs, the record will also include
232 * an array of log-specific FUIDs to replace the ephemeral IDs.
233 * Only one copy of each unique domain will be present, so the log-specific
234 * FUIDs will use an index into a compressed domain table. On replay this
235 * information will be used to construct real FUIDs (and bypass idmap,
236 * since it may not be available).
237 */

239 /*
240 * Log record for creates with optional ACL
241 * This log record is also used for recording any FUID
242 * information needed for replaying the create. If the
243 * file doesn’t have any actual ACEs then the lr_aclcnt
244 * would be zero.
245 *
246 * After lr_acl_flags, there are a lr_acl_bytes number of variable sized ace’s.
247 * If create is also setting xvattr’s, then acl data follows xvattr.
248 * If ACE FUIDs are needed then they will follow the xvattr_t. Following
249 * the FUIDs will be the domain table information. The FUIDs for the owner
250 * and group will be in lr_create. Name follows ACL data.
251 #endif /* ! codereview */
252 */
253 typedef struct {
254 lr_create_t lr_create; /* common create portion */
255 uint64_t lr_aclcnt; /* number of ACEs in ACL */
256 uint64_t lr_domcnt; /* number of unique domains */
257 uint64_t lr_fuidcnt; /* number of real fuids */
258 uint64_t lr_acl_bytes; /* number of bytes in ACL */
259 uint64_t lr_acl_flags; /* ACL flags */
245 /* lr_acl_bytes number of variable sized ace’s follows */
246 /* if create is also setting xvattr’s, then acl data follows xvattr */
247 /* if ACE FUIDs are needed then they will follow the xvattr_t */
248 /* Following the FUIDs will be the domain table information. */
249 /* The FUIDs for the owner and group will be in the lr_create */
250 /* portion of the record. */
251 /* name follows ACL data */
260 } lr_acl_create_t;

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/sys/zio_compress.h 1

**
 2905 Wed Apr 24 12:44:30 2013
new/usr/src/uts/common/fs/zfs/sys/zio_compress.h
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26 /*
27 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
28 */

30 #ifndef _SYS_ZIO_COMPRESS_H
31 #define _SYS_ZIO_COMPRESS_H

33 #include <sys/zio.h>

35 #ifdef __cplusplus
36 extern "C" {
37 #endif

39 /* Common signature for all zio compress functions. */
39 /*
40 * Common signature for all zio compress/decompress functions.
41 */
40 typedef size_t zio_compress_func_t(void *src, void *dst,
41 size_t s_len, size_t d_len, int);
42 /* Common signature for all zio decompress functions. */
43 #endif /* ! codereview */
44 typedef int zio_decompress_func_t(void *src, void *dst,
45 size_t s_len, size_t d_len, int);

47 /*
48 * Information about each compression function.
49 */
50 typedef struct zio_compress_info {
51 zio_compress_func_t *ci_compress; /* compression function */
52 zio_decompress_func_t *ci_decompress; /* decompression function */
53 int ci_level; /* level parameter */

new/usr/src/uts/common/fs/zfs/sys/zio_compress.h 2

54 char *ci_name; /* algorithm name */
55 } zio_compress_info_t;

57 extern zio_compress_info_t zio_compress_table[ZIO_COMPRESS_FUNCTIONS];

59 /*
60 * Compression routines.
61 */
62 extern size_t lzjb_compress(void *src, void *dst, size_t s_len, size_t d_len,
63 int level);
64 extern int lzjb_decompress(void *src, void *dst, size_t s_len, size_t d_len,
65 int level);
66 extern size_t gzip_compress(void *src, void *dst, size_t s_len, size_t d_len,
67 int level);
68 extern int gzip_decompress(void *src, void *dst, size_t s_len, size_t d_len,
69 int level);
70 extern size_t zle_compress(void *src, void *dst, size_t s_len, size_t d_len,
71 int level);
72 extern int zle_decompress(void *src, void *dst, size_t s_len, size_t d_len,
73 int level);
74 extern size_t lz4_compress(void *src, void *dst, size_t s_len, size_t d_len,
75 int level);
76 extern int lz4_decompress(void *src, void *dst, size_t s_len, size_t d_len,
77 int level);

79 /*
80 * Compress and decompress data if necessary.
81 */
82 extern size_t zio_compress_data(enum zio_compress c, void *src, void *dst,
83 size_t s_len);
84 extern int zio_decompress_data(enum zio_compress c, void *src, void *dst,
85 size_t s_len, size_t d_len);

87 #ifdef __cplusplus
88 }
89 #endif

91 #endif /* _SYS_ZIO_COMPRESS_H */

new/usr/src/uts/common/fs/zfs/txg.c 1

**
 21961 Wed Apr 24 12:44:30 2013
new/usr/src/uts/common/fs/zfs/txg.c
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

564 /*
565 * Delay this thread by delay nanoseconds if we are still in the open
566 * transaction group and there is already a waiting txg quiescing or quiesced.
567 * Abort the delay if this txg stalls or enters the quiescing state.
566 * transaction group and there is already a waiting txg quiesing or quiesced.
567 * Abort the delay if this txg stalls or enters the quiesing state.
568 */
569 void
570 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution)
571 {
572 tx_state_t *tx = &dp->dp_tx;
573 hrtime_t start = gethrtime();

575 /* don’t delay if this txg could transition to quiescing immediately */
575 /* don’t delay if this txg could transition to quiesing immediately */
576 if (tx->tx_open_txg > txg ||
577 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
578 return;

580 mutex_enter(&tx->tx_sync_lock);
581 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
582 mutex_exit(&tx->tx_sync_lock);
583 return;
584 }

586 while (gethrtime() - start < delay &&
587 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) {
588 (void) cv_timedwait_hires(&tx->tx_quiesce_more_cv,
589 &tx->tx_sync_lock, delay, resolution, 0);
590 }

592 mutex_exit(&tx->tx_sync_lock);
593 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/vdev.c 1

**
 86358 Wed Apr 24 12:44:31 2013
new/usr/src/uts/common/fs/zfs/vdev.c
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

958 /*
959 * Determine whether this device is accessible.
960 *
961 * Read and write to several known locations: the pad regions of each
962 * vdev label but the first, which we leave alone in case it contains
963 * a VTOC.
959 * Determine whether this device is accessible by reading and writing
960 * to several known locations: the pad regions of each vdev label
961 * but the first (which we leave alone in case it contains a VTOC).
964 */
965 zio_t *
966 vdev_probe(vdev_t *vd, zio_t *zio)
967 {
968 spa_t *spa = vd->vdev_spa;
969 vdev_probe_stats_t *vps = NULL;
970 zio_t *pio;

972 ASSERT(vd->vdev_ops->vdev_op_leaf);

974 /*
975 * Don’t probe the probe.
976 */
977 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
978 return (NULL);

980 /*
981 * To prevent ’probe storms’ when a device fails, we create
982 * just one probe i/o at a time. All zios that want to probe
983 * this vdev will become parents of the probe io.
984 */
985 mutex_enter(&vd->vdev_probe_lock);

987 if ((pio = vd->vdev_probe_zio) == NULL) {
988 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);

990 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
991 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
992 ZIO_FLAG_TRYHARD;

994 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
995 /*
996 * vdev_cant_read and vdev_cant_write can only
997 * transition from TRUE to FALSE when we have the
998 * SCL_ZIO lock as writer; otherwise they can only
999 * transition from FALSE to TRUE. This ensures that

1000 * any zio looking at these values can assume that
1001 * failures persist for the life of the I/O. That’s
1002 * important because when a device has intermittent
1003 * connectivity problems, we want to ensure that
1004 * they’re ascribed to the device (ENXIO) and not
1005 * the zio (EIO).
1006 *
1007 * Since we hold SCL_ZIO as writer here, clear both
1008 * values so the probe can reevaluate from first

new/usr/src/uts/common/fs/zfs/vdev.c 2

1009 * principles.
1010 */
1011 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1012 vd->vdev_cant_read = B_FALSE;
1013 vd->vdev_cant_write = B_FALSE;
1014 }

1016 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1017 vdev_probe_done, vps,
1018 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);

1020 /*
1021 * We can’t change the vdev state in this context, so we
1022 * kick off an async task to do it on our behalf.
1023 */
1024 if (zio != NULL) {
1025 vd->vdev_probe_wanted = B_TRUE;
1026 spa_async_request(spa, SPA_ASYNC_PROBE);
1027 }
1028 }

1030 if (zio != NULL)
1031 zio_add_child(zio, pio);

1033 mutex_exit(&vd->vdev_probe_lock);

1035 if (vps == NULL) {
1036 ASSERT(zio != NULL);
1037 return (NULL);
1038 }

1040 for (int l = 1; l < VDEV_LABELS; l++) {
1041 zio_nowait(zio_read_phys(pio, vd,
1042 vdev_label_offset(vd->vdev_psize, l,
1043 offsetof(vdev_label_t, vl_pad2)),
1044 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1045 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1046 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1047 }

1049 if (zio == NULL)
1050 return (pio);

1052 zio_nowait(pio);
1053 return (NULL);
1054 }
______unchanged_portion_omitted_

2183 /*
2184 * Online the given vdev.
2185 *
2186 * If ’ZFS_ONLINE_UNSPARE’ is set, it implies two things. First, any attached
2187 * spare device should be detached when the device finishes resilvering.
2188 * Second, the online should be treated like a ’test’ online case, so no FMA
2189 * events are generated if the device fails to open.
2182 * Online the given vdev. If ’unspare’ is set, it implies two things. First,
2183 * any attached spare device should be detached when the device finishes
2184 * resilvering. Second, the online should be treated like a ’test’ online case,
2185 * so no FMA events are generated if the device fails to open.
2190 */
2191 int
2192 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2193 {
2194 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;

2196 spa_vdev_state_enter(spa, SCL_NONE);

new/usr/src/uts/common/fs/zfs/vdev.c 3

2198 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2199 return (spa_vdev_state_exit(spa, NULL, ENODEV));

2201 if (!vd->vdev_ops->vdev_op_leaf)
2202 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));

2204 tvd = vd->vdev_top;
2205 vd->vdev_offline = B_FALSE;
2206 vd->vdev_tmpoffline = B_FALSE;
2207 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2208 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);

2210 /* XXX - L2ARC 1.0 does not support expansion */
2211 if (!vd->vdev_aux) {
2212 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2213 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2214 }

2216 vdev_reopen(tvd);
2217 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;

2219 if (!vd->vdev_aux) {
2220 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2221 pvd->vdev_expanding = B_FALSE;
2222 }

2224 if (newstate)
2225 *newstate = vd->vdev_state;
2226 if ((flags & ZFS_ONLINE_UNSPARE) &&
2227 !vdev_is_dead(vd) && vd->vdev_parent &&
2228 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2229 vd->vdev_parent->vdev_child[0] == vd)
2230 vd->vdev_unspare = B_TRUE;

2232 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {

2234 /* XXX - L2ARC 1.0 does not support expansion */
2235 if (vd->vdev_aux)
2236 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2237 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2238 }
2239 return (spa_vdev_state_exit(spa, vd, 0));
2240 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/vdev_queue.c 1

**
 12090 Wed Apr 24 12:44:31 2013
new/usr/src/uts/common/fs/zfs/vdev_queue.c
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 /*
27 * Copyright (c) 2012 by Delphix. All rights reserved.
28 */

30 #include <sys/zfs_context.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/spa_impl.h>
33 #include <sys/zio.h>
34 #include <sys/avl.h>

36 /*
37 * These tunables are for performance analysis.
38 */

40 /* The maximum number of I/Os concurrently pending to each device. */
41 int zfs_vdev_max_pending = 10;

43 #endif /* ! codereview */
44 /*
45 * The initial number of I/Os pending to each device, before it starts ramping
46 * up to zfs_vdev_max_pending.
39 * zfs_vdev_max_pending is the maximum number of i/os concurrently
40 * pending to each device. zfs_vdev_min_pending is the initial number
41 * of i/os pending to each device (before it starts ramping up to
42 * max_pending).
47 */
44 int zfs_vdev_max_pending = 10;
48 int zfs_vdev_min_pending = 4;

50 /*
51 * The deadlines are grouped into buckets based on zfs_vdev_time_shift:

new/usr/src/uts/common/fs/zfs/vdev_queue.c 2

52 * deadline = pri + gethrtime() >> time_shift)
53 */
54 int zfs_vdev_time_shift = 29; /* each bucket is 0.537 seconds */

56 /* exponential I/O issue ramp-up rate */
57 int zfs_vdev_ramp_rate = 2;

59 /*
60 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
61 * For read I/Os, we also aggregate across small adjacency gaps; for writes
62 * we include spans of optional I/Os to aid aggregation at the disk even when
63 * they aren’t able to help us aggregate at this level.
64 */
65 int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE;
66 int zfs_vdev_read_gap_limit = 32 << 10;
67 int zfs_vdev_write_gap_limit = 4 << 10;

69 /*
70 * Virtual device vector for disk I/O scheduling.
71 */
72 int
73 vdev_queue_deadline_compare(const void *x1, const void *x2)
74 {
75 const zio_t *z1 = x1;
76 const zio_t *z2 = x2;

78 if (z1->io_deadline < z2->io_deadline)
79 return (-1);
80 if (z1->io_deadline > z2->io_deadline)
81 return (1);

83 if (z1->io_offset < z2->io_offset)
84 return (-1);
85 if (z1->io_offset > z2->io_offset)
86 return (1);

88 if (z1 < z2)
89 return (-1);
90 if (z1 > z2)
91 return (1);

93 return (0);
94 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 1

**
 64390 Wed Apr 24 12:44:31 2013
new/usr/src/uts/common/fs/zfs/vdev_raidz.c
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 */

27 #include <sys/zfs_context.h>
28 #include <sys/spa.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/zio.h>
31 #include <sys/zio_checksum.h>
32 #include <sys/fs/zfs.h>
33 #include <sys/fm/fs/zfs.h>

35 /*
36 * Virtual device vector for RAID-Z.
37 *
38 * This vdev supports single, double, and triple parity. For single parity,
39 * we use a simple XOR of all the data columns. For double or triple parity,
40 * we use a special case of Reed-Solomon coding. This extends the
41 * technique described in "The mathematics of RAID-6" by H. Peter Anvin by
42 * drawing on the system described in "A Tutorial on Reed-Solomon Coding for
43 * Fault-Tolerance in RAID-like Systems" by James S. Plank on which the
44 * former is also based. The latter is designed to provide higher performance
45 * for writes.
46 *
47 * Note that the Plank paper claimed to support arbitrary N+M, but was then
48 * amended six years later identifying a critical flaw that invalidates its
49 * claims. Nevertheless, the technique can be adapted to work for up to
50 * triple parity. For additional parity, the amendment "Note: Correction to
51 * the 1997 Tutorial on Reed-Solomon Coding" by James S. Plank and Ying Ding
52 * is viable, but the additional complexity means that write performance will
53 * suffer.
54 *
55 * All of the methods above operate on a Galois field, defined over the
56 * integers mod 2^N. In our case we choose N=8 for GF(8) so that all elements

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 2

57 * can be expressed with a single byte. Briefly, the operations on the
58 * field are defined as follows:
59 *
60 * o addition (+) is represented by a bitwise XOR
61 * o subtraction (-) is therefore identical to addition: A + B = A - B
62 * o multiplication of A by 2 is defined by the following bitwise expression:
63 *
64 #endif /* ! codereview */
65 * (A * 2)_7 = A_6
66 * (A * 2)_6 = A_5
67 * (A * 2)_5 = A_4
68 * (A * 2)_4 = A_3 + A_7
69 * (A * 2)_3 = A_2 + A_7
70 * (A * 2)_2 = A_1 + A_7
71 * (A * 2)_1 = A_0
72 * (A * 2)_0 = A_7
73 *
74 * In C, multiplying by 2 is therefore ((a << 1) ^ ((a & 0x80) ? 0x1d : 0)).
75 * As an aside, this multiplication is derived from the error correcting
76 * primitive polynomial x^8 + x^4 + x^3 + x^2 + 1.
77 *
78 * Observe that any number in the field (except for 0) can be expressed as a
79 * power of 2 -- a generator for the field. We store a table of the powers of
80 * 2 and logs base 2 for quick look ups, and exploit the fact that A * B can
81 * be rewritten as 2^(log_2(A) + log_2(B)) (where ’+’ is normal addition rather
82 * than field addition). The inverse of a field element A (A^-1) is therefore
83 * A ^ (255 - 1) = A^254.
84 *
85 * The up-to-three parity columns, P, Q, R over several data columns,
86 * D_0, ... D_n-1, can be expressed by field operations:
87 *
88 * P = D_0 + D_1 + ... + D_n-2 + D_n-1
89 * Q = 2^n-1 * D_0 + 2^n-2 * D_1 + ... + 2^1 * D_n-2 + 2^0 * D_n-1
90 * = ((...((D_0) * 2 + D_1) * 2 + ...) * 2 + D_n-2) * 2 + D_n-1
91 * R = 4^n-1 * D_0 + 4^n-2 * D_1 + ... + 4^1 * D_n-2 + 4^0 * D_n-1
92 * = ((...((D_0) * 4 + D_1) * 4 + ...) * 4 + D_n-2) * 4 + D_n-1
93 *
94 * We chose 1, 2, and 4 as our generators because 1 corresponds to the trival
95 * XOR operation, and 2 and 4 can be computed quickly and generate linearly-
96 * independent coefficients. (There are no additional coefficients that have
97 * this property which is why the uncorrected Plank method breaks down.)
98 *
99 * See the reconstruction code below for how P, Q and R can used individually
100 * or in concert to recover missing data columns.
101 */

103 typedef struct raidz_col {
104 uint64_t rc_devidx; /* child device index for I/O */
105 uint64_t rc_offset; /* device offset */
106 uint64_t rc_size; /* I/O size */
107 void *rc_data; /* I/O data */
108 void *rc_gdata; /* used to store the "good" version */
109 int rc_error; /* I/O error for this device */
110 uint8_t rc_tried; /* Did we attempt this I/O column? */
111 uint8_t rc_skipped; /* Did we skip this I/O column? */
112 } raidz_col_t;

114 typedef struct raidz_map {
115 uint64_t rm_cols; /* Regular column count */
116 uint64_t rm_scols; /* Count including skipped columns */
117 uint64_t rm_bigcols; /* Number of oversized columns */
118 uint64_t rm_asize; /* Actual total I/O size */
119 uint64_t rm_missingdata; /* Count of missing data devices */
120 uint64_t rm_missingparity; /* Count of missing parity devices */
121 uint64_t rm_firstdatacol; /* First data column/parity count */
122 uint64_t rm_nskip; /* Skipped sectors for padding */

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 3

123 uint64_t rm_skipstart; /* Column index of padding start */
124 void *rm_datacopy; /* rm_asize-buffer of copied data */
125 uintptr_t rm_reports; /* # of referencing checksum reports */
126 uint8_t rm_freed; /* map no longer has referencing ZIO */
127 uint8_t rm_ecksuminjected; /* checksum error was injected */
128 raidz_col_t rm_col[1]; /* Flexible array of I/O columns */
129 } raidz_map_t;

131 #define VDEV_RAIDZ_P 0
132 #define VDEV_RAIDZ_Q 1
133 #define VDEV_RAIDZ_R 2

135 #define VDEV_RAIDZ_MUL_2(x) (((x) << 1) ^ (((x) & 0x80) ? 0x1d : 0))
136 #define VDEV_RAIDZ_MUL_4(x) (VDEV_RAIDZ_MUL_2(VDEV_RAIDZ_MUL_2(x)))

138 /*
139 * We provide a mechanism to perform the field multiplication operation on a
140 * 64-bit value all at once rather than a byte at a time. This works by
141 * creating a mask from the top bit in each byte and using that to
142 * conditionally apply the XOR of 0x1d.
143 */
144 #define VDEV_RAIDZ_64MUL_2(x, mask) \
145 { \
146 (mask) = (x) & 0x8080808080808080ULL; \
147 (mask) = ((mask) << 1) - ((mask) >> 7); \
148 (x) = (((x) << 1) & 0xfefefefefefefefeULL) ^ \
149 ((mask) & 0x1d1d1d1d1d1d1d1d); \
150 }

152 #define VDEV_RAIDZ_64MUL_4(x, mask) \
153 { \
154 VDEV_RAIDZ_64MUL_2((x), mask); \
155 VDEV_RAIDZ_64MUL_2((x), mask); \
156 }

158 /*
159 * Force reconstruction to use the general purpose method.
160 */
161 int vdev_raidz_default_to_general;

163 /* Powers of 2 in the Galois field defined above. */
63 /*
64 * These two tables represent powers and logs of 2 in the Galois field defined
65 * above. These values were computed by repeatedly multiplying by 2 as above.
66 */
164 static const uint8_t vdev_raidz_pow2[256] = {
165 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
166 0x1d, 0x3a, 0x74, 0xe8, 0xcd, 0x87, 0x13, 0x26,
167 0x4c, 0x98, 0x2d, 0x5a, 0xb4, 0x75, 0xea, 0xc9,
168 0x8f, 0x03, 0x06, 0x0c, 0x18, 0x30, 0x60, 0xc0,
169 0x9d, 0x27, 0x4e, 0x9c, 0x25, 0x4a, 0x94, 0x35,
170 0x6a, 0xd4, 0xb5, 0x77, 0xee, 0xc1, 0x9f, 0x23,
171 0x46, 0x8c, 0x05, 0x0a, 0x14, 0x28, 0x50, 0xa0,
172 0x5d, 0xba, 0x69, 0xd2, 0xb9, 0x6f, 0xde, 0xa1,
173 0x5f, 0xbe, 0x61, 0xc2, 0x99, 0x2f, 0x5e, 0xbc,
174 0x65, 0xca, 0x89, 0x0f, 0x1e, 0x3c, 0x78, 0xf0,
175 0xfd, 0xe7, 0xd3, 0xbb, 0x6b, 0xd6, 0xb1, 0x7f,
176 0xfe, 0xe1, 0xdf, 0xa3, 0x5b, 0xb6, 0x71, 0xe2,
177 0xd9, 0xaf, 0x43, 0x86, 0x11, 0x22, 0x44, 0x88,
178 0x0d, 0x1a, 0x34, 0x68, 0xd0, 0xbd, 0x67, 0xce,
179 0x81, 0x1f, 0x3e, 0x7c, 0xf8, 0xed, 0xc7, 0x93,
180 0x3b, 0x76, 0xec, 0xc5, 0x97, 0x33, 0x66, 0xcc,
181 0x85, 0x17, 0x2e, 0x5c, 0xb8, 0x6d, 0xda, 0xa9,
182 0x4f, 0x9e, 0x21, 0x42, 0x84, 0x15, 0x2a, 0x54,
183 0xa8, 0x4d, 0x9a, 0x29, 0x52, 0xa4, 0x55, 0xaa,
184 0x49, 0x92, 0x39, 0x72, 0xe4, 0xd5, 0xb7, 0x73,

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 4

185 0xe6, 0xd1, 0xbf, 0x63, 0xc6, 0x91, 0x3f, 0x7e,
186 0xfc, 0xe5, 0xd7, 0xb3, 0x7b, 0xf6, 0xf1, 0xff,
187 0xe3, 0xdb, 0xab, 0x4b, 0x96, 0x31, 0x62, 0xc4,
188 0x95, 0x37, 0x6e, 0xdc, 0xa5, 0x57, 0xae, 0x41,
189 0x82, 0x19, 0x32, 0x64, 0xc8, 0x8d, 0x07, 0x0e,
190 0x1c, 0x38, 0x70, 0xe0, 0xdd, 0xa7, 0x53, 0xa6,
191 0x51, 0xa2, 0x59, 0xb2, 0x79, 0xf2, 0xf9, 0xef,
192 0xc3, 0x9b, 0x2b, 0x56, 0xac, 0x45, 0x8a, 0x09,
193 0x12, 0x24, 0x48, 0x90, 0x3d, 0x7a, 0xf4, 0xf5,
194 0xf7, 0xf3, 0xfb, 0xeb, 0xcb, 0x8b, 0x0b, 0x16,
195 0x2c, 0x58, 0xb0, 0x7d, 0xfa, 0xe9, 0xcf, 0x83,
196 0x1b, 0x36, 0x6c, 0xd8, 0xad, 0x47, 0x8e, 0x01
197 };
198 /* Logs of 2 in the Galois field defined above. */
199 #endif /* ! codereview */
200 static const uint8_t vdev_raidz_log2[256] = {
201 0x00, 0x00, 0x01, 0x19, 0x02, 0x32, 0x1a, 0xc6,
202 0x03, 0xdf, 0x33, 0xee, 0x1b, 0x68, 0xc7, 0x4b,
203 0x04, 0x64, 0xe0, 0x0e, 0x34, 0x8d, 0xef, 0x81,
204 0x1c, 0xc1, 0x69, 0xf8, 0xc8, 0x08, 0x4c, 0x71,
205 0x05, 0x8a, 0x65, 0x2f, 0xe1, 0x24, 0x0f, 0x21,
206 0x35, 0x93, 0x8e, 0xda, 0xf0, 0x12, 0x82, 0x45,
207 0x1d, 0xb5, 0xc2, 0x7d, 0x6a, 0x27, 0xf9, 0xb9,
208 0xc9, 0x9a, 0x09, 0x78, 0x4d, 0xe4, 0x72, 0xa6,
209 0x06, 0xbf, 0x8b, 0x62, 0x66, 0xdd, 0x30, 0xfd,
210 0xe2, 0x98, 0x25, 0xb3, 0x10, 0x91, 0x22, 0x88,
211 0x36, 0xd0, 0x94, 0xce, 0x8f, 0x96, 0xdb, 0xbd,
212 0xf1, 0xd2, 0x13, 0x5c, 0x83, 0x38, 0x46, 0x40,
213 0x1e, 0x42, 0xb6, 0xa3, 0xc3, 0x48, 0x7e, 0x6e,
214 0x6b, 0x3a, 0x28, 0x54, 0xfa, 0x85, 0xba, 0x3d,
215 0xca, 0x5e, 0x9b, 0x9f, 0x0a, 0x15, 0x79, 0x2b,
216 0x4e, 0xd4, 0xe5, 0xac, 0x73, 0xf3, 0xa7, 0x57,
217 0x07, 0x70, 0xc0, 0xf7, 0x8c, 0x80, 0x63, 0x0d,
218 0x67, 0x4a, 0xde, 0xed, 0x31, 0xc5, 0xfe, 0x18,
219 0xe3, 0xa5, 0x99, 0x77, 0x26, 0xb8, 0xb4, 0x7c,
220 0x11, 0x44, 0x92, 0xd9, 0x23, 0x20, 0x89, 0x2e,
221 0x37, 0x3f, 0xd1, 0x5b, 0x95, 0xbc, 0xcf, 0xcd,
222 0x90, 0x87, 0x97, 0xb2, 0xdc, 0xfc, 0xbe, 0x61,
223 0xf2, 0x56, 0xd3, 0xab, 0x14, 0x2a, 0x5d, 0x9e,
224 0x84, 0x3c, 0x39, 0x53, 0x47, 0x6d, 0x41, 0xa2,
225 0x1f, 0x2d, 0x43, 0xd8, 0xb7, 0x7b, 0xa4, 0x76,
226 0xc4, 0x17, 0x49, 0xec, 0x7f, 0x0c, 0x6f, 0xf6,
227 0x6c, 0xa1, 0x3b, 0x52, 0x29, 0x9d, 0x55, 0xaa,
228 0xfb, 0x60, 0x86, 0xb1, 0xbb, 0xcc, 0x3e, 0x5a,
229 0xcb, 0x59, 0x5f, 0xb0, 0x9c, 0xa9, 0xa0, 0x51,
230 0x0b, 0xf5, 0x16, 0xeb, 0x7a, 0x75, 0x2c, 0xd7,
231 0x4f, 0xae, 0xd5, 0xe9, 0xe6, 0xe7, 0xad, 0xe8,
232 0x74, 0xd6, 0xf4, 0xea, 0xa8, 0x50, 0x58, 0xaf,
233 };

235 static void vdev_raidz_generate_parity(raidz_map_t *rm);

237 /*
238 * Multiply a given number by 2 raised to the given power.
239 */
240 static uint8_t
241 vdev_raidz_exp2(uint_t a, int exp)
242 {
243 if (a == 0)
244 return (0);

246 ASSERT(exp >= 0);
247 ASSERT(vdev_raidz_log2[a] > 0 || a == 1);

249 exp += vdev_raidz_log2[a];
250 if (exp > 255)

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 5

251 exp -= 255;

253 return (vdev_raidz_pow2[exp]);
254 }

256 static void
257 vdev_raidz_map_free(raidz_map_t *rm)
258 {
259 int c;
260 size_t size;

262 for (c = 0; c < rm->rm_firstdatacol; c++) {
263 zio_buf_free(rm->rm_col[c].rc_data, rm->rm_col[c].rc_size);

265 if (rm->rm_col[c].rc_gdata != NULL)
266 zio_buf_free(rm->rm_col[c].rc_gdata,
267 rm->rm_col[c].rc_size);
268 }

270 size = 0;
271 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++)
272 size += rm->rm_col[c].rc_size;

274 if (rm->rm_datacopy != NULL)
275 zio_buf_free(rm->rm_datacopy, size);

277 kmem_free(rm, offsetof(raidz_map_t, rm_col[rm->rm_scols]));
278 }

280 static void
281 vdev_raidz_map_free_vsd(zio_t *zio)
282 {
283 raidz_map_t *rm = zio->io_vsd;

285 ASSERT0(rm->rm_freed);
286 rm->rm_freed = 1;

288 if (rm->rm_reports == 0)
289 vdev_raidz_map_free(rm);
290 }

292 /*ARGSUSED*/
293 static void
294 vdev_raidz_cksum_free(void *arg, size_t ignored)
295 {
296 raidz_map_t *rm = arg;

298 ASSERT3U(rm->rm_reports, >, 0);

300 if (--rm->rm_reports == 0 && rm->rm_freed != 0)
301 vdev_raidz_map_free(rm);
302 }

304 static void
305 vdev_raidz_cksum_finish(zio_cksum_report_t *zcr, const void *good_data)
306 {
307 raidz_map_t *rm = zcr->zcr_cbdata;
308 size_t c = zcr->zcr_cbinfo;
309 size_t x;

311 const char *good = NULL;
312 const char *bad = rm->rm_col[c].rc_data;

314 if (good_data == NULL) {
315 zfs_ereport_finish_checksum(zcr, NULL, NULL, B_FALSE);
316 return;

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 6

317 }

319 if (c < rm->rm_firstdatacol) {
320 /*
321 * The first time through, calculate the parity blocks for
322 * the good data (this relies on the fact that the good
323 * data never changes for a given logical ZIO)
324 */
325 if (rm->rm_col[0].rc_gdata == NULL) {
326 char *bad_parity[VDEV_RAIDZ_MAXPARITY];
327 char *buf;

329 /*
330 * Set up the rm_col[]s to generate the parity for
331 * good_data, first saving the parity bufs and
332 * replacing them with buffers to hold the result.
333 */
334 for (x = 0; x < rm->rm_firstdatacol; x++) {
335 bad_parity[x] = rm->rm_col[x].rc_data;
336 rm->rm_col[x].rc_data = rm->rm_col[x].rc_gdata =
337 zio_buf_alloc(rm->rm_col[x].rc_size);
338 }

340 /* fill in the data columns from good_data */
341 buf = (char *)good_data;
342 for (; x < rm->rm_cols; x++) {
343 rm->rm_col[x].rc_data = buf;
344 buf += rm->rm_col[x].rc_size;
345 }

347 /*
348 * Construct the parity from the good data.
349 */
350 vdev_raidz_generate_parity(rm);

352 /* restore everything back to its original state */
353 for (x = 0; x < rm->rm_firstdatacol; x++)
354 rm->rm_col[x].rc_data = bad_parity[x];

356 buf = rm->rm_datacopy;
357 for (x = rm->rm_firstdatacol; x < rm->rm_cols; x++) {
358 rm->rm_col[x].rc_data = buf;
359 buf += rm->rm_col[x].rc_size;
360 }
361 }

363 ASSERT3P(rm->rm_col[c].rc_gdata, !=, NULL);
364 good = rm->rm_col[c].rc_gdata;
365 } else {
366 /* adjust good_data to point at the start of our column */
367 good = good_data;

369 for (x = rm->rm_firstdatacol; x < c; x++)
370 good += rm->rm_col[x].rc_size;
371 }

373 /* we drop the ereport if it ends up that the data was good */
374 zfs_ereport_finish_checksum(zcr, good, bad, B_TRUE);
375 }

377 /*
378 * Invoked indirectly by zfs_ereport_start_checksum(), called
379 * below when our read operation fails completely. The main point
380 * is to keep a copy of everything we read from disk, so that at
381 * vdev_raidz_cksum_finish() time we can compare it with the good data.
382 */

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 7

383 static void
384 vdev_raidz_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *arg)
385 {
386 size_t c = (size_t)(uintptr_t)arg;
387 caddr_t buf;

389 raidz_map_t *rm = zio->io_vsd;
390 size_t size;

392 /* set up the report and bump the refcount */
393 zcr->zcr_cbdata = rm;
394 zcr->zcr_cbinfo = c;
395 zcr->zcr_finish = vdev_raidz_cksum_finish;
396 zcr->zcr_free = vdev_raidz_cksum_free;

398 rm->rm_reports++;
399 ASSERT3U(rm->rm_reports, >, 0);

401 if (rm->rm_datacopy != NULL)
402 return;

404 /*
405 * It’s the first time we’re called for this raidz_map_t, so we need
406 * to copy the data aside; there’s no guarantee that our zio’s buffer
407 * won’t be re-used for something else.
408 *
409 * Our parity data is already in separate buffers, so there’s no need
410 * to copy them.
411 */

413 size = 0;
414 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++)
415 size += rm->rm_col[c].rc_size;

417 buf = rm->rm_datacopy = zio_buf_alloc(size);

419 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
420 raidz_col_t *col = &rm->rm_col[c];

422 bcopy(col->rc_data, buf, col->rc_size);
423 col->rc_data = buf;

425 buf += col->rc_size;
426 }
427 ASSERT3P(buf - (caddr_t)rm->rm_datacopy, ==, size);
428 }

430 static const zio_vsd_ops_t vdev_raidz_vsd_ops = {
431 vdev_raidz_map_free_vsd,
432 vdev_raidz_cksum_report
433 };

435 /*
436 * Divides the IO evenly across all child vdevs; usually, dcols is
437 * the number of children in the target vdev.
438 */
439 static raidz_map_t *
440 vdev_raidz_map_alloc(zio_t *zio, uint64_t unit_shift, uint64_t dcols,
441 uint64_t nparity)
442 {
443 raidz_map_t *rm;
444 /* The starting RAIDZ (parent) vdev sector of the block. */
445 uint64_t b = zio->io_offset >> unit_shift;
446 /* The zio’s size in units of the vdev’s minimum sector size */
447 uint64_t s = zio->io_size >> unit_shift;
448 /* The first column for this stripe. */

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 8

449 uint64_t f = b % dcols;
450 /* The starting byte offset on each child vdev. */
451 uint64_t o = (b / dcols) << unit_shift;
452 uint64_t q, r, c, bc, col, acols, scols, coff, devidx, asize, tot;

454 /*
455 * "Quotient": The number of data sectors for this stripe on all but
456 * the "big column" child vdevs that also contain "remainder" data.
457 */
458 q = s / (dcols - nparity);

460 /*
461 * "Remainder": The number of partial stripe data sectors in this I/O.
462 * This will add a sector to some, but not all, child vdevs.
463 */
464 r = s - q * (dcols - nparity);

466 /* The number of "big columns" - those which contain remainder data. */
467 bc = (r == 0 ? 0 : r + nparity);

469 /*
470 * The total number of data and parity sectors associated with
471 * this I/O.
472 */
473 tot = s + nparity * (q + (r == 0 ? 0 : 1));

475 /* acols: The columns that will be accessed. */
476 /* scols: The columns that will be accessed or skipped. */
477 if (q == 0) {
478 /* Our I/O request doesn’t span all child vdevs. */
479 acols = bc;
480 scols = MIN(dcols, roundup(bc, nparity + 1));
481 } else {
482 acols = dcols;
483 scols = dcols;
484 }

486 ASSERT3U(acols, <=, scols);

488 rm = kmem_alloc(offsetof(raidz_map_t, rm_col[scols]), KM_SLEEP);

490 rm->rm_cols = acols;
491 rm->rm_scols = scols;
492 rm->rm_bigcols = bc;
493 rm->rm_skipstart = bc;
494 rm->rm_missingdata = 0;
495 rm->rm_missingparity = 0;
496 rm->rm_firstdatacol = nparity;
497 rm->rm_datacopy = NULL;
498 rm->rm_reports = 0;
499 rm->rm_freed = 0;
500 rm->rm_ecksuminjected = 0;

502 asize = 0;

504 for (c = 0; c < scols; c++) {
505 col = f + c;
506 coff = o;
507 if (col >= dcols) {
508 col -= dcols;
509 coff += 1ULL << unit_shift;
510 }
511 rm->rm_col[c].rc_devidx = col;
512 rm->rm_col[c].rc_offset = coff;
513 rm->rm_col[c].rc_data = NULL;
514 rm->rm_col[c].rc_gdata = NULL;

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 9

515 rm->rm_col[c].rc_error = 0;
516 rm->rm_col[c].rc_tried = 0;
517 rm->rm_col[c].rc_skipped = 0;

519 if (c >= acols)
520 rm->rm_col[c].rc_size = 0;
521 else if (c < bc)
522 rm->rm_col[c].rc_size = (q + 1) << unit_shift;
523 else
524 rm->rm_col[c].rc_size = q << unit_shift;

526 asize += rm->rm_col[c].rc_size;
527 }

529 ASSERT3U(asize, ==, tot << unit_shift);
530 rm->rm_asize = roundup(asize, (nparity + 1) << unit_shift);
531 rm->rm_nskip = roundup(tot, nparity + 1) - tot;
532 ASSERT3U(rm->rm_asize - asize, ==, rm->rm_nskip << unit_shift);
533 ASSERT3U(rm->rm_nskip, <=, nparity);

535 for (c = 0; c < rm->rm_firstdatacol; c++)
536 rm->rm_col[c].rc_data = zio_buf_alloc(rm->rm_col[c].rc_size);

538 rm->rm_col[c].rc_data = zio->io_data;

540 for (c = c + 1; c < acols; c++)
541 rm->rm_col[c].rc_data = (char *)rm->rm_col[c - 1].rc_data +
542 rm->rm_col[c - 1].rc_size;

544 /*
545 * If all data stored spans all columns, there’s a danger that parity
546 * will always be on the same device and, since parity isn’t read
547 * during normal operation, that that device’s I/O bandwidth won’t be
548 * used effectively. We therefore switch the parity every 1MB.
549 *
550 * ... at least that was, ostensibly, the theory. As a practical
551 * matter unless we juggle the parity between all devices evenly, we
552 * won’t see any benefit. Further, occasional writes that aren’t a
553 * multiple of the LCM of the number of children and the minimum
554 * stripe width are sufficient to avoid pessimal behavior.
555 * Unfortunately, this decision created an implicit on-disk format
556 * requirement that we need to support for all eternity, but only
557 * for single-parity RAID-Z.
558 *
559 * If we intend to skip a sector in the zeroth column for padding
560 * we must make sure to note this swap. We will never intend to
561 * skip the first column since at least one data and one parity
562 * column must appear in each row.
563 */
564 ASSERT(rm->rm_cols >= 2);
565 ASSERT(rm->rm_col[0].rc_size == rm->rm_col[1].rc_size);

567 if (rm->rm_firstdatacol == 1 && (zio->io_offset & (1ULL << 20))) {
568 devidx = rm->rm_col[0].rc_devidx;
569 o = rm->rm_col[0].rc_offset;
570 rm->rm_col[0].rc_devidx = rm->rm_col[1].rc_devidx;
571 rm->rm_col[0].rc_offset = rm->rm_col[1].rc_offset;
572 rm->rm_col[1].rc_devidx = devidx;
573 rm->rm_col[1].rc_offset = o;

575 if (rm->rm_skipstart == 0)
576 rm->rm_skipstart = 1;
577 }

579 zio->io_vsd = rm;
580 zio->io_vsd_ops = &vdev_raidz_vsd_ops;

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 10

581 return (rm);
582 }

584 static void
585 vdev_raidz_generate_parity_p(raidz_map_t *rm)
586 {
587 uint64_t *p, *src, pcount, ccount, i;
588 int c;

590 pcount = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]);

592 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
593 src = rm->rm_col[c].rc_data;
594 p = rm->rm_col[VDEV_RAIDZ_P].rc_data;
595 ccount = rm->rm_col[c].rc_size / sizeof (src[0]);

597 if (c == rm->rm_firstdatacol) {
598 ASSERT(ccount == pcount);
599 for (i = 0; i < ccount; i++, src++, p++) {
600 *p = *src;
601 }
602 } else {
603 ASSERT(ccount <= pcount);
604 for (i = 0; i < ccount; i++, src++, p++) {
605 *p ^= *src;
606 }
607 }
608 }
609 }

611 static void
612 vdev_raidz_generate_parity_pq(raidz_map_t *rm)
613 {
614 uint64_t *p, *q, *src, pcnt, ccnt, mask, i;
615 int c;

617 pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]);
618 ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
619 rm->rm_col[VDEV_RAIDZ_Q].rc_size);

621 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
622 src = rm->rm_col[c].rc_data;
623 p = rm->rm_col[VDEV_RAIDZ_P].rc_data;
624 q = rm->rm_col[VDEV_RAIDZ_Q].rc_data;

626 ccnt = rm->rm_col[c].rc_size / sizeof (src[0]);

628 if (c == rm->rm_firstdatacol) {
629 ASSERT(ccnt == pcnt || ccnt == 0);
630 for (i = 0; i < ccnt; i++, src++, p++, q++) {
631 *p = *src;
632 *q = *src;
633 }
634 for (; i < pcnt; i++, src++, p++, q++) {
635 *p = 0;
636 *q = 0;
637 }
638 } else {
639 ASSERT(ccnt <= pcnt);

641 /*
642 * Apply the algorithm described above by multiplying
643 * the previous result and adding in the new value.
644 */
645 for (i = 0; i < ccnt; i++, src++, p++, q++) {
646 *p ^= *src;

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 11

648 VDEV_RAIDZ_64MUL_2(*q, mask);
649 *q ^= *src;
650 }

652 /*
653 * Treat short columns as though they are full of 0s.
654 * Note that there’s therefore nothing needed for P.
655 */
656 for (; i < pcnt; i++, q++) {
657 VDEV_RAIDZ_64MUL_2(*q, mask);
658 }
659 }
660 }
661 }

663 static void
664 vdev_raidz_generate_parity_pqr(raidz_map_t *rm)
665 {
666 uint64_t *p, *q, *r, *src, pcnt, ccnt, mask, i;
667 int c;

669 pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]);
670 ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
671 rm->rm_col[VDEV_RAIDZ_Q].rc_size);
672 ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
673 rm->rm_col[VDEV_RAIDZ_R].rc_size);

675 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
676 src = rm->rm_col[c].rc_data;
677 p = rm->rm_col[VDEV_RAIDZ_P].rc_data;
678 q = rm->rm_col[VDEV_RAIDZ_Q].rc_data;
679 r = rm->rm_col[VDEV_RAIDZ_R].rc_data;

681 ccnt = rm->rm_col[c].rc_size / sizeof (src[0]);

683 if (c == rm->rm_firstdatacol) {
684 ASSERT(ccnt == pcnt || ccnt == 0);
685 for (i = 0; i < ccnt; i++, src++, p++, q++, r++) {
686 *p = *src;
687 *q = *src;
688 *r = *src;
689 }
690 for (; i < pcnt; i++, src++, p++, q++, r++) {
691 *p = 0;
692 *q = 0;
693 *r = 0;
694 }
695 } else {
696 ASSERT(ccnt <= pcnt);

698 /*
699 * Apply the algorithm described above by multiplying
700 * the previous result and adding in the new value.
701 */
702 for (i = 0; i < ccnt; i++, src++, p++, q++, r++) {
703 *p ^= *src;

705 VDEV_RAIDZ_64MUL_2(*q, mask);
706 *q ^= *src;

708 VDEV_RAIDZ_64MUL_4(*r, mask);
709 *r ^= *src;
710 }

712 /*

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 12

713 * Treat short columns as though they are full of 0s.
714 * Note that there’s therefore nothing needed for P.
715 */
716 for (; i < pcnt; i++, q++, r++) {
717 VDEV_RAIDZ_64MUL_2(*q, mask);
718 VDEV_RAIDZ_64MUL_4(*r, mask);
719 }
720 }
721 }
722 }

724 /*
725 * Generate RAID parity in the first virtual columns according to the number of
726 * parity columns available.
727 */
728 static void
729 vdev_raidz_generate_parity(raidz_map_t *rm)
730 {
731 switch (rm->rm_firstdatacol) {
732 case 1:
733 vdev_raidz_generate_parity_p(rm);
734 break;
735 case 2:
736 vdev_raidz_generate_parity_pq(rm);
737 break;
738 case 3:
739 vdev_raidz_generate_parity_pqr(rm);
740 break;
741 default:
742 cmn_err(CE_PANIC, "invalid RAID-Z configuration");
743 }
744 }

746 static int
747 vdev_raidz_reconstruct_p(raidz_map_t *rm, int *tgts, int ntgts)
748 {
749 uint64_t *dst, *src, xcount, ccount, count, i;
750 int x = tgts[0];
751 int c;

753 ASSERT(ntgts == 1);
754 ASSERT(x >= rm->rm_firstdatacol);
755 ASSERT(x < rm->rm_cols);

757 xcount = rm->rm_col[x].rc_size / sizeof (src[0]);
758 ASSERT(xcount <= rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]));
759 ASSERT(xcount > 0);

761 src = rm->rm_col[VDEV_RAIDZ_P].rc_data;
762 dst = rm->rm_col[x].rc_data;
763 for (i = 0; i < xcount; i++, dst++, src++) {
764 *dst = *src;
765 }

767 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
768 src = rm->rm_col[c].rc_data;
769 dst = rm->rm_col[x].rc_data;

771 if (c == x)
772 continue;

774 ccount = rm->rm_col[c].rc_size / sizeof (src[0]);
775 count = MIN(ccount, xcount);

777 for (i = 0; i < count; i++, dst++, src++) {
778 *dst ^= *src;

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 13

779 }
780 }

782 return (1 << VDEV_RAIDZ_P);
783 }

785 static int
786 vdev_raidz_reconstruct_q(raidz_map_t *rm, int *tgts, int ntgts)
787 {
788 uint64_t *dst, *src, xcount, ccount, count, mask, i;
789 uint8_t *b;
790 int x = tgts[0];
791 int c, j, exp;

793 ASSERT(ntgts == 1);

795 xcount = rm->rm_col[x].rc_size / sizeof (src[0]);
796 ASSERT(xcount <= rm->rm_col[VDEV_RAIDZ_Q].rc_size / sizeof (src[0]));

798 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
799 src = rm->rm_col[c].rc_data;
800 dst = rm->rm_col[x].rc_data;

802 if (c == x)
803 ccount = 0;
804 else
805 ccount = rm->rm_col[c].rc_size / sizeof (src[0]);

807 count = MIN(ccount, xcount);

809 if (c == rm->rm_firstdatacol) {
810 for (i = 0; i < count; i++, dst++, src++) {
811 *dst = *src;
812 }
813 for (; i < xcount; i++, dst++) {
814 *dst = 0;
815 }

817 } else {
818 for (i = 0; i < count; i++, dst++, src++) {
819 VDEV_RAIDZ_64MUL_2(*dst, mask);
820 *dst ^= *src;
821 }

823 for (; i < xcount; i++, dst++) {
824 VDEV_RAIDZ_64MUL_2(*dst, mask);
825 }
826 }
827 }

829 src = rm->rm_col[VDEV_RAIDZ_Q].rc_data;
830 dst = rm->rm_col[x].rc_data;
831 exp = 255 - (rm->rm_cols - 1 - x);

833 for (i = 0; i < xcount; i++, dst++, src++) {
834 *dst ^= *src;
835 for (j = 0, b = (uint8_t *)dst; j < 8; j++, b++) {
836 *b = vdev_raidz_exp2(*b, exp);
837 }
838 }

840 return (1 << VDEV_RAIDZ_Q);
841 }

843 static int
844 vdev_raidz_reconstruct_pq(raidz_map_t *rm, int *tgts, int ntgts)

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 14

845 {
846 uint8_t *p, *q, *pxy, *qxy, *xd, *yd, tmp, a, b, aexp, bexp;
847 void *pdata, *qdata;
848 uint64_t xsize, ysize, i;
849 int x = tgts[0];
850 int y = tgts[1];

852 ASSERT(ntgts == 2);
853 ASSERT(x < y);
854 ASSERT(x >= rm->rm_firstdatacol);
855 ASSERT(y < rm->rm_cols);

857 ASSERT(rm->rm_col[x].rc_size >= rm->rm_col[y].rc_size);

859 /*
860 * Move the parity data aside -- we’re going to compute parity as
861 * though columns x and y were full of zeros -- Pxy and Qxy. We want to
862 * reuse the parity generation mechanism without trashing the actual
863 * parity so we make those columns appear to be full of zeros by
864 * setting their lengths to zero.
865 */
866 pdata = rm->rm_col[VDEV_RAIDZ_P].rc_data;
867 qdata = rm->rm_col[VDEV_RAIDZ_Q].rc_data;
868 xsize = rm->rm_col[x].rc_size;
869 ysize = rm->rm_col[y].rc_size;

871 rm->rm_col[VDEV_RAIDZ_P].rc_data =
872 zio_buf_alloc(rm->rm_col[VDEV_RAIDZ_P].rc_size);
873 rm->rm_col[VDEV_RAIDZ_Q].rc_data =
874 zio_buf_alloc(rm->rm_col[VDEV_RAIDZ_Q].rc_size);
875 rm->rm_col[x].rc_size = 0;
876 rm->rm_col[y].rc_size = 0;

878 vdev_raidz_generate_parity_pq(rm);

880 rm->rm_col[x].rc_size = xsize;
881 rm->rm_col[y].rc_size = ysize;

883 p = pdata;
884 q = qdata;
885 pxy = rm->rm_col[VDEV_RAIDZ_P].rc_data;
886 qxy = rm->rm_col[VDEV_RAIDZ_Q].rc_data;
887 xd = rm->rm_col[x].rc_data;
888 yd = rm->rm_col[y].rc_data;

890 /*
891 * We now have:
892 * Pxy = P + D_x + D_y
893 * Qxy = Q + 2^(ndevs - 1 - x) * D_x + 2^(ndevs - 1 - y) * D_y
894 *
895 * We can then solve for D_x:
896 * D_x = A * (P + Pxy) + B * (Q + Qxy)
897 * where
898 * A = 2^(x - y) * (2^(x - y) + 1)^-1
899 * B = 2^(ndevs - 1 - x) * (2^(x - y) + 1)^-1
900 *
901 * With D_x in hand, we can easily solve for D_y:
902 * D_y = P + Pxy + D_x
903 */

905 a = vdev_raidz_pow2[255 + x - y];
906 b = vdev_raidz_pow2[255 - (rm->rm_cols - 1 - x)];
907 tmp = 255 - vdev_raidz_log2[a ^ 1];

909 aexp = vdev_raidz_log2[vdev_raidz_exp2(a, tmp)];
910 bexp = vdev_raidz_log2[vdev_raidz_exp2(b, tmp)];

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 15

912 for (i = 0; i < xsize; i++, p++, q++, pxy++, qxy++, xd++, yd++) {
913 *xd = vdev_raidz_exp2(*p ^ *pxy, aexp) ^
914 vdev_raidz_exp2(*q ^ *qxy, bexp);

916 if (i < ysize)
917 *yd = *p ^ *pxy ^ *xd;
918 }

920 zio_buf_free(rm->rm_col[VDEV_RAIDZ_P].rc_data,
921 rm->rm_col[VDEV_RAIDZ_P].rc_size);
922 zio_buf_free(rm->rm_col[VDEV_RAIDZ_Q].rc_data,
923 rm->rm_col[VDEV_RAIDZ_Q].rc_size);

925 /*
926 * Restore the saved parity data.
927 */
928 rm->rm_col[VDEV_RAIDZ_P].rc_data = pdata;
929 rm->rm_col[VDEV_RAIDZ_Q].rc_data = qdata;

931 return ((1 << VDEV_RAIDZ_P) | (1 << VDEV_RAIDZ_Q));
932 }

934 /* BEGIN CSTYLED */
935 /*
936 * In the general case of reconstruction, we must solve the system of linear
937 * equations defined by the coeffecients used to generate parity as well as
938 * the contents of the data and parity disks. This can be expressed with
939 * vectors for the original data (D) and the actual data (d) and parity (p)
940 * and a matrix composed of the identity matrix (I) and a dispersal matrix (V):
941 *
942 * __ __ __ __
943 * | | __ __ | p_0 |
944 * | V | | D_0 | | p_m-1 |
945 * | | x | : | = | d_0 |
946 * | I | | D_n-1 | | : |
947 * | | ~~ ~~ | d_n-1 |
948 * ~~ ~~ ~~ ~~
949 *
950 * I is simply a square identity matrix of size n, and V is a vandermonde
951 * matrix defined by the coeffecients we chose for the various parity columns
952 * (1, 2, 4). Note that these values were chosen both for simplicity, speedy
953 * computation as well as linear separability.
954 *
955 * __ __ __ __
956 * | 1 .. 1 1 1 | | p_0 |
957 * | 2^n-1 .. 4 2 1 | __ __ | : |
958 * | 4^n-1 .. 16 4 1 | | D_0 | | p_m-1 |
959 * | 1 .. 0 0 0 | | D_1 | | d_0 |
960 * | 0 .. 0 0 0 | x | D_2 | = | d_1 |
961 * | : : : : | | : | | d_2 |
962 * | 0 .. 1 0 0 | | D_n-1 | | : |
963 * | 0 .. 0 1 0 | ~~ ~~ | : |
964 * | 0 .. 0 0 1 | | d_n-1 |
965 * ~~ ~~ ~~ ~~
966 *
967 * Note that I, V, d, and p are known. To compute D, we must invert the
968 * matrix and use the known data and parity values to reconstruct the unknown
969 * data values. We begin by removing the rows in V|I and d|p that correspond
970 * to failed or missing columns; we then make V|I square (n x n) and d|p
971 * sized n by removing rows corresponding to unused parity from the bottom up
972 * to generate (V|I)’ and (d|p)’. We can then generate the inverse of (V|I)’
973 * using Gauss-Jordan elimination. In the example below we use m=3 parity
974 * columns, n=8 data columns, with errors in d_1, d_2, and p_1:
975 * __ __
976 * | 1 1 1 1 1 1 1 1 |

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 16

977 * | 128 64 32 16 8 4 2 1 | <-----+-+-- missing disks
978 * | 19 205 116 29 64 16 4 1 | / /
979 * | 1 0 0 0 0 0 0 0 | / /
980 * | 0 1 0 0 0 0 0 0 | <--’ /
981 * (V|I) = | 0 0 1 0 0 0 0 0 | <---’
982 * | 0 0 0 1 0 0 0 0 |
983 * | 0 0 0 0 1 0 0 0 |
984 * | 0 0 0 0 0 1 0 0 |
985 * | 0 0 0 0 0 0 1 0 |
986 * | 0 0 0 0 0 0 0 1 |
987 * ~~ ~~
988 * __ __
989 * | 1 1 1 1 1 1 1 1 |
990 * | 128 64 32 16 8 4 2 1 |
991 * | 19 205 116 29 64 16 4 1 |
992 * | 1 0 0 0 0 0 0 0 |
993 * | 0 1 0 0 0 0 0 0 |
994 * (V|I)’ = | 0 0 1 0 0 0 0 0 |
995 * | 0 0 0 1 0 0 0 0 |
996 * | 0 0 0 0 1 0 0 0 |
997 * | 0 0 0 0 0 1 0 0 |
998 * | 0 0 0 0 0 0 1 0 |
999 * | 0 0 0 0 0 0 0 1 |

1000 * ~~ ~~
1001 *
1002 * Here we employ Gauss-Jordan elimination to find the inverse of (V|I)’. We
1003 * have carefully chosen the seed values 1, 2, and 4 to ensure that this
1004 * matrix is not singular.
1005 * __ __
1006 * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 |
1007 * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 |
1008 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1009 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1010 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1011 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1012 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1013 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1014 * ~~ ~~
1015 * __ __
1016 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1017 * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 |
1018 * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 |
1019 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1020 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1021 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1022 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1023 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1024 * ~~ ~~
1025 * __ __
1026 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1027 * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
1028 * | 0 205 116 0 0 0 0 0 0 1 19 29 64 16 4 1 |
1029 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1030 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1031 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1032 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1033 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1034 * ~~ ~~
1035 * __ __
1036 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1037 * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
1038 * | 0 0 185 0 0 0 0 0 205 1 222 208 141 221 201 204 |
1039 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1040 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1041 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1042 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 17

1043 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1044 * ~~ ~~
1045 * __ __
1046 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1047 * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
1048 * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 |
1049 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1050 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1051 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1052 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1053 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1054 * ~~ ~~
1055 * __ __
1056 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1057 * | 0 1 0 0 0 0 0 0 167 100 5 41 159 169 217 208 |
1058 * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 |
1059 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1060 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1061 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1062 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1063 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1064 * ~~ ~~
1065 * __ __
1066 * | 0 0 1 0 0 0 0 0 |
1067 * | 167 100 5 41 159 169 217 208 |
1068 * | 166 100 4 40 158 168 216 209 |
1069 * (V|I)’^-1 = | 0 0 0 1 0 0 0 0 |
1070 * | 0 0 0 0 1 0 0 0 |
1071 * | 0 0 0 0 0 1 0 0 |
1072 * | 0 0 0 0 0 0 1 0 |
1073 * | 0 0 0 0 0 0 0 1 |
1074 * ~~ ~~
1075 *
1076 * We can then simply compute D = (V|I)’^-1 x (d|p)’ to discover the values
1077 * of the missing data.
1078 *
1079 * As is apparent from the example above, the only non-trivial rows in the
1080 * inverse matrix correspond to the data disks that we’re trying to
1081 * reconstruct. Indeed, those are the only rows we need as the others would
1082 * only be useful for reconstructing data known or assumed to be valid. For
1083 * that reason, we only build the coefficients in the rows that correspond to
1084 * targeted columns.
1085 */
1086 /* END CSTYLED */

1088 static void
1089 vdev_raidz_matrix_init(raidz_map_t *rm, int n, int nmap, int *map,
1090 uint8_t **rows)
1091 {
1092 int i, j;
1093 int pow;

1095 ASSERT(n == rm->rm_cols - rm->rm_firstdatacol);

1097 /*
1098 * Fill in the missing rows of interest.
1099 */
1100 for (i = 0; i < nmap; i++) {
1101 ASSERT3S(0, <=, map[i]);
1102 ASSERT3S(map[i], <=, 2);

1104 pow = map[i] * n;
1105 if (pow > 255)
1106 pow -= 255;
1107 ASSERT(pow <= 255);

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 18

1109 for (j = 0; j < n; j++) {
1110 pow -= map[i];
1111 if (pow < 0)
1112 pow += 255;
1113 rows[i][j] = vdev_raidz_pow2[pow];
1114 }
1115 }
1116 }

1118 static void
1119 vdev_raidz_matrix_invert(raidz_map_t *rm, int n, int nmissing, int *missing,
1120 uint8_t **rows, uint8_t **invrows, const uint8_t *used)
1121 {
1122 int i, j, ii, jj;
1123 uint8_t log;

1125 /*
1126 * Assert that the first nmissing entries from the array of used
1127 * columns correspond to parity columns and that subsequent entries
1128 * correspond to data columns.
1129 */
1130 for (i = 0; i < nmissing; i++) {
1131 ASSERT3S(used[i], <, rm->rm_firstdatacol);
1132 }
1133 for (; i < n; i++) {
1134 ASSERT3S(used[i], >=, rm->rm_firstdatacol);
1135 }

1137 /*
1138 * First initialize the storage where we’ll compute the inverse rows.
1139 */
1140 for (i = 0; i < nmissing; i++) {
1141 for (j = 0; j < n; j++) {
1142 invrows[i][j] = (i == j) ? 1 : 0;
1143 }
1144 }

1146 /*
1147 * Subtract all trivial rows from the rows of consequence.
1148 */
1149 for (i = 0; i < nmissing; i++) {
1150 for (j = nmissing; j < n; j++) {
1151 ASSERT3U(used[j], >=, rm->rm_firstdatacol);
1152 jj = used[j] - rm->rm_firstdatacol;
1153 ASSERT3S(jj, <, n);
1154 invrows[i][j] = rows[i][jj];
1155 rows[i][jj] = 0;
1156 }
1157 }

1159 /*
1160 * For each of the rows of interest, we must normalize it and subtract
1161 * a multiple of it from the other rows.
1162 */
1163 for (i = 0; i < nmissing; i++) {
1164 for (j = 0; j < missing[i]; j++) {
1165 ASSERT0(rows[i][j]);
1166 }
1167 ASSERT3U(rows[i][missing[i]], !=, 0);

1169 /*
1170 * Compute the inverse of the first element and multiply each
1171 * element in the row by that value.
1172 */
1173 log = 255 - vdev_raidz_log2[rows[i][missing[i]]];

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 19

1175 for (j = 0; j < n; j++) {
1176 rows[i][j] = vdev_raidz_exp2(rows[i][j], log);
1177 invrows[i][j] = vdev_raidz_exp2(invrows[i][j], log);
1178 }

1180 for (ii = 0; ii < nmissing; ii++) {
1181 if (i == ii)
1182 continue;

1184 ASSERT3U(rows[ii][missing[i]], !=, 0);

1186 log = vdev_raidz_log2[rows[ii][missing[i]]];

1188 for (j = 0; j < n; j++) {
1189 rows[ii][j] ^=
1190 vdev_raidz_exp2(rows[i][j], log);
1191 invrows[ii][j] ^=
1192 vdev_raidz_exp2(invrows[i][j], log);
1193 }
1194 }
1195 }

1197 /*
1198 * Verify that the data that is left in the rows are properly part of
1199 * an identity matrix.
1200 */
1201 for (i = 0; i < nmissing; i++) {
1202 for (j = 0; j < n; j++) {
1203 if (j == missing[i]) {
1204 ASSERT3U(rows[i][j], ==, 1);
1205 } else {
1206 ASSERT0(rows[i][j]);
1207 }
1208 }
1209 }
1210 }

1212 static void
1213 vdev_raidz_matrix_reconstruct(raidz_map_t *rm, int n, int nmissing,
1214 int *missing, uint8_t **invrows, const uint8_t *used)
1215 {
1216 int i, j, x, cc, c;
1217 uint8_t *src;
1218 uint64_t ccount;
1219 uint8_t *dst[VDEV_RAIDZ_MAXPARITY];
1220 uint64_t dcount[VDEV_RAIDZ_MAXPARITY];
1221 uint8_t log = 0;
1222 uint8_t val;
1223 int ll;
1224 uint8_t *invlog[VDEV_RAIDZ_MAXPARITY];
1225 uint8_t *p, *pp;
1226 size_t psize;

1228 psize = sizeof (invlog[0][0]) * n * nmissing;
1229 p = kmem_alloc(psize, KM_SLEEP);

1231 for (pp = p, i = 0; i < nmissing; i++) {
1232 invlog[i] = pp;
1233 pp += n;
1234 }

1236 for (i = 0; i < nmissing; i++) {
1237 for (j = 0; j < n; j++) {
1238 ASSERT3U(invrows[i][j], !=, 0);
1239 invlog[i][j] = vdev_raidz_log2[invrows[i][j]];
1240 }

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 20

1241 }

1243 for (i = 0; i < n; i++) {
1244 c = used[i];
1245 ASSERT3U(c, <, rm->rm_cols);

1247 src = rm->rm_col[c].rc_data;
1248 ccount = rm->rm_col[c].rc_size;
1249 for (j = 0; j < nmissing; j++) {
1250 cc = missing[j] + rm->rm_firstdatacol;
1251 ASSERT3U(cc, >=, rm->rm_firstdatacol);
1252 ASSERT3U(cc, <, rm->rm_cols);
1253 ASSERT3U(cc, !=, c);

1255 dst[j] = rm->rm_col[cc].rc_data;
1256 dcount[j] = rm->rm_col[cc].rc_size;
1257 }

1259 ASSERT(ccount >= rm->rm_col[missing[0]].rc_size || i > 0);

1261 for (x = 0; x < ccount; x++, src++) {
1262 if (*src != 0)
1263 log = vdev_raidz_log2[*src];

1265 for (cc = 0; cc < nmissing; cc++) {
1266 if (x >= dcount[cc])
1267 continue;

1269 if (*src == 0) {
1270 val = 0;
1271 } else {
1272 if ((ll = log + invlog[cc][i]) >= 255)
1273 ll -= 255;
1274 val = vdev_raidz_pow2[ll];
1275 }

1277 if (i == 0)
1278 dst[cc][x] = val;
1279 else
1280 dst[cc][x] ^= val;
1281 }
1282 }
1283 }

1285 kmem_free(p, psize);
1286 }

1288 static int
1289 vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts)
1290 {
1291 int n, i, c, t, tt;
1292 int nmissing_rows;
1293 int missing_rows[VDEV_RAIDZ_MAXPARITY];
1294 int parity_map[VDEV_RAIDZ_MAXPARITY];

1296 uint8_t *p, *pp;
1297 size_t psize;

1299 uint8_t *rows[VDEV_RAIDZ_MAXPARITY];
1300 uint8_t *invrows[VDEV_RAIDZ_MAXPARITY];
1301 uint8_t *used;

1303 int code = 0;

1306 n = rm->rm_cols - rm->rm_firstdatacol;

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 21

1308 /*
1309 * Figure out which data columns are missing.
1310 */
1311 nmissing_rows = 0;
1312 for (t = 0; t < ntgts; t++) {
1313 if (tgts[t] >= rm->rm_firstdatacol) {
1314 missing_rows[nmissing_rows++] =
1315 tgts[t] - rm->rm_firstdatacol;
1316 }
1317 }

1319 /*
1320 * Figure out which parity columns to use to help generate the missing
1321 * data columns.
1322 */
1323 for (tt = 0, c = 0, i = 0; i < nmissing_rows; c++) {
1324 ASSERT(tt < ntgts);
1325 ASSERT(c < rm->rm_firstdatacol);

1327 /*
1328 * Skip any targeted parity columns.
1329 */
1330 if (c == tgts[tt]) {
1331 tt++;
1332 continue;
1333 }

1335 code |= 1 << c;

1337 parity_map[i] = c;
1338 i++;
1339 }

1341 ASSERT(code != 0);
1342 ASSERT3U(code, <, 1 << VDEV_RAIDZ_MAXPARITY);

1344 psize = (sizeof (rows[0][0]) + sizeof (invrows[0][0])) *
1345 nmissing_rows * n + sizeof (used[0]) * n;
1346 p = kmem_alloc(psize, KM_SLEEP);

1348 for (pp = p, i = 0; i < nmissing_rows; i++) {
1349 rows[i] = pp;
1350 pp += n;
1351 invrows[i] = pp;
1352 pp += n;
1353 }
1354 used = pp;

1356 for (i = 0; i < nmissing_rows; i++) {
1357 used[i] = parity_map[i];
1358 }

1360 for (tt = 0, c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
1361 if (tt < nmissing_rows &&
1362 c == missing_rows[tt] + rm->rm_firstdatacol) {
1363 tt++;
1364 continue;
1365 }

1367 ASSERT3S(i, <, n);
1368 used[i] = c;
1369 i++;
1370 }

1372 /*

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 22

1373 * Initialize the interesting rows of the matrix.
1374 */
1375 vdev_raidz_matrix_init(rm, n, nmissing_rows, parity_map, rows);

1377 /*
1378 * Invert the matrix.
1379 */
1380 vdev_raidz_matrix_invert(rm, n, nmissing_rows, missing_rows, rows,
1381 invrows, used);

1383 /*
1384 * Reconstruct the missing data using the generated matrix.
1385 */
1386 vdev_raidz_matrix_reconstruct(rm, n, nmissing_rows, missing_rows,
1387 invrows, used);

1389 kmem_free(p, psize);

1391 return (code);
1392 }

1394 static int
1395 vdev_raidz_reconstruct(raidz_map_t *rm, int *t, int nt)
1396 {
1397 int tgts[VDEV_RAIDZ_MAXPARITY], *dt;
1398 int ntgts;
1399 int i, c;
1400 int code;
1401 int nbadparity, nbaddata;
1402 int parity_valid[VDEV_RAIDZ_MAXPARITY];

1404 /*
1405 * The tgts list must already be sorted.
1406 */
1407 for (i = 1; i < nt; i++) {
1408 ASSERT(t[i] > t[i - 1]);
1409 }

1411 nbadparity = rm->rm_firstdatacol;
1412 nbaddata = rm->rm_cols - nbadparity;
1413 ntgts = 0;
1414 for (i = 0, c = 0; c < rm->rm_cols; c++) {
1415 if (c < rm->rm_firstdatacol)
1416 parity_valid[c] = B_FALSE;

1418 if (i < nt && c == t[i]) {
1419 tgts[ntgts++] = c;
1420 i++;
1421 } else if (rm->rm_col[c].rc_error != 0) {
1422 tgts[ntgts++] = c;
1423 } else if (c >= rm->rm_firstdatacol) {
1424 nbaddata--;
1425 } else {
1426 parity_valid[c] = B_TRUE;
1427 nbadparity--;
1428 }
1429 }

1431 ASSERT(ntgts >= nt);
1432 ASSERT(nbaddata >= 0);
1433 ASSERT(nbaddata + nbadparity == ntgts);

1435 dt = &tgts[nbadparity];

1437 /*
1438 * See if we can use any of our optimized reconstruction routines.

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 23

1439 */
1440 if (!vdev_raidz_default_to_general) {
1441 switch (nbaddata) {
1442 case 1:
1443 if (parity_valid[VDEV_RAIDZ_P])
1444 return (vdev_raidz_reconstruct_p(rm, dt, 1));

1446 ASSERT(rm->rm_firstdatacol > 1);

1448 if (parity_valid[VDEV_RAIDZ_Q])
1449 return (vdev_raidz_reconstruct_q(rm, dt, 1));

1451 ASSERT(rm->rm_firstdatacol > 2);
1452 break;

1454 case 2:
1455 ASSERT(rm->rm_firstdatacol > 1);

1457 if (parity_valid[VDEV_RAIDZ_P] &&
1458 parity_valid[VDEV_RAIDZ_Q])
1459 return (vdev_raidz_reconstruct_pq(rm, dt, 2));

1461 ASSERT(rm->rm_firstdatacol > 2);

1463 break;
1464 }
1465 }

1467 code = vdev_raidz_reconstruct_general(rm, tgts, ntgts);
1468 ASSERT(code < (1 << VDEV_RAIDZ_MAXPARITY));
1469 ASSERT(code > 0);
1470 return (code);
1471 }

1473 static int
1474 vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
1475 uint64_t *ashift)
1476 {
1477 vdev_t *cvd;
1478 uint64_t nparity = vd->vdev_nparity;
1479 int c;
1480 int lasterror = 0;
1481 int numerrors = 0;

1483 ASSERT(nparity > 0);

1485 if (nparity > VDEV_RAIDZ_MAXPARITY ||
1486 vd->vdev_children < nparity + 1) {
1487 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
1488 return (SET_ERROR(EINVAL));
1489 }

1491 vdev_open_children(vd);

1493 for (c = 0; c < vd->vdev_children; c++) {
1494 cvd = vd->vdev_child[c];

1496 if (cvd->vdev_open_error != 0) {
1497 lasterror = cvd->vdev_open_error;
1498 numerrors++;
1499 continue;
1500 }

1502 *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
1503 *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
1504 *ashift = MAX(*ashift, cvd->vdev_ashift);

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 24

1505 }

1507 *asize *= vd->vdev_children;
1508 *max_asize *= vd->vdev_children;

1510 if (numerrors > nparity) {
1511 vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
1512 return (lasterror);
1513 }

1515 return (0);
1516 }

1518 static void
1519 vdev_raidz_close(vdev_t *vd)
1520 {
1521 int c;

1523 for (c = 0; c < vd->vdev_children; c++)
1524 vdev_close(vd->vdev_child[c]);
1525 }

1527 static uint64_t
1528 vdev_raidz_asize(vdev_t *vd, uint64_t psize)
1529 {
1530 uint64_t asize;
1531 uint64_t ashift = vd->vdev_top->vdev_ashift;
1532 uint64_t cols = vd->vdev_children;
1533 uint64_t nparity = vd->vdev_nparity;

1535 asize = ((psize - 1) >> ashift) + 1;
1536 asize += nparity * ((asize + cols - nparity - 1) / (cols - nparity));
1537 asize = roundup(asize, nparity + 1) << ashift;

1539 return (asize);
1540 }

1542 static void
1543 vdev_raidz_child_done(zio_t *zio)
1544 {
1545 raidz_col_t *rc = zio->io_private;

1547 rc->rc_error = zio->io_error;
1548 rc->rc_tried = 1;
1549 rc->rc_skipped = 0;
1550 }

1552 /*
1553 * Start an IO operation on a RAIDZ VDev
1554 *
1555 * Outline:
1556 * - For write operations:
1557 * 1. Generate the parity data
1558 * 2. Create child zio write operations to each column’s vdev, for both
1559 * data and parity.
1560 * 3. If the column skips any sectors for padding, create optional dummy
1561 * write zio children for those areas to improve aggregation continuity.
1562 * - For read operations:
1563 * 1. Create child zio read operations to each data column’s vdev to read
1564 * the range of data required for zio.
1565 * 2. If this is a scrub or resilver operation, or if any of the data
1566 * vdevs have had errors, then create zio read operations to the parity
1567 * columns’ VDevs as well.
1568 */
1569 static int
1570 vdev_raidz_io_start(zio_t *zio)

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 25

1571 {
1572 vdev_t *vd = zio->io_vd;
1573 vdev_t *tvd = vd->vdev_top;
1574 vdev_t *cvd;
1575 raidz_map_t *rm;
1576 raidz_col_t *rc;
1577 int c, i;

1579 rm = vdev_raidz_map_alloc(zio, tvd->vdev_ashift, vd->vdev_children,
1580 vd->vdev_nparity);

1582 ASSERT3U(rm->rm_asize, ==, vdev_psize_to_asize(vd, zio->io_size));

1584 if (zio->io_type == ZIO_TYPE_WRITE) {
1585 vdev_raidz_generate_parity(rm);

1587 for (c = 0; c < rm->rm_cols; c++) {
1588 rc = &rm->rm_col[c];
1589 cvd = vd->vdev_child[rc->rc_devidx];
1590 zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
1591 rc->rc_offset, rc->rc_data, rc->rc_size,
1592 zio->io_type, zio->io_priority, 0,
1593 vdev_raidz_child_done, rc));
1594 }

1596 /*
1597 * Generate optional I/Os for any skipped sectors to improve
1598 * aggregation contiguity.
1599 */
1600 for (c = rm->rm_skipstart, i = 0; i < rm->rm_nskip; c++, i++) {
1601 ASSERT(c <= rm->rm_scols);
1602 if (c == rm->rm_scols)
1603 c = 0;
1604 rc = &rm->rm_col[c];
1605 cvd = vd->vdev_child[rc->rc_devidx];
1606 zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
1607 rc->rc_offset + rc->rc_size, NULL,
1608 1 << tvd->vdev_ashift,
1609 zio->io_type, zio->io_priority,
1610 ZIO_FLAG_NODATA | ZIO_FLAG_OPTIONAL, NULL, NULL));
1611 }

1613 return (ZIO_PIPELINE_CONTINUE);
1614 }

1616 ASSERT(zio->io_type == ZIO_TYPE_READ);

1618 /*
1619 * Iterate over the columns in reverse order so that we hit the parity
1620 * last -- any errors along the way will force us to read the parity.
1621 */
1622 for (c = rm->rm_cols - 1; c >= 0; c--) {
1623 rc = &rm->rm_col[c];
1624 cvd = vd->vdev_child[rc->rc_devidx];
1625 if (!vdev_readable(cvd)) {
1626 if (c >= rm->rm_firstdatacol)
1627 rm->rm_missingdata++;
1628 else
1629 rm->rm_missingparity++;
1630 rc->rc_error = SET_ERROR(ENXIO);
1631 rc->rc_tried = 1; /* don’t even try */
1632 rc->rc_skipped = 1;
1633 continue;
1634 }
1635 if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) {
1636 if (c >= rm->rm_firstdatacol)

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 26

1637 rm->rm_missingdata++;
1638 else
1639 rm->rm_missingparity++;
1640 rc->rc_error = SET_ERROR(ESTALE);
1641 rc->rc_skipped = 1;
1642 continue;
1643 }
1644 if (c >= rm->rm_firstdatacol || rm->rm_missingdata > 0 ||
1645 (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
1646 zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
1647 rc->rc_offset, rc->rc_data, rc->rc_size,
1648 zio->io_type, zio->io_priority, 0,
1649 vdev_raidz_child_done, rc));
1650 }
1651 }

1653 return (ZIO_PIPELINE_CONTINUE);
1654 }

1657 /*
1658 * Report a checksum error for a child of a RAID-Z device.
1659 */
1660 static void
1661 raidz_checksum_error(zio_t *zio, raidz_col_t *rc, void *bad_data)
1662 {
1663 vdev_t *vd = zio->io_vd->vdev_child[rc->rc_devidx];

1665 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
1666 zio_bad_cksum_t zbc;
1667 raidz_map_t *rm = zio->io_vsd;

1669 mutex_enter(&vd->vdev_stat_lock);
1670 vd->vdev_stat.vs_checksum_errors++;
1671 mutex_exit(&vd->vdev_stat_lock);

1673 zbc.zbc_has_cksum = 0;
1674 zbc.zbc_injected = rm->rm_ecksuminjected;

1676 zfs_ereport_post_checksum(zio->io_spa, vd, zio,
1677 rc->rc_offset, rc->rc_size, rc->rc_data, bad_data,
1678 &zbc);
1679 }
1680 }

1682 /*
1683 * We keep track of whether or not there were any injected errors, so that
1684 * any ereports we generate can note it.
1685 */
1686 static int
1687 raidz_checksum_verify(zio_t *zio)
1688 {
1689 zio_bad_cksum_t zbc;
1690 raidz_map_t *rm = zio->io_vsd;

1692 int ret = zio_checksum_error(zio, &zbc);
1693 if (ret != 0 && zbc.zbc_injected != 0)
1694 rm->rm_ecksuminjected = 1;

1696 return (ret);
1697 }

1699 /*
1700 * Generate the parity from the data columns. If we tried and were able to
1701 * read the parity without error, verify that the generated parity matches the
1702 * data we read. If it doesn’t, we fire off a checksum error. Return the

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 27

1703 * number such failures.
1704 */
1705 static int
1706 raidz_parity_verify(zio_t *zio, raidz_map_t *rm)
1707 {
1708 void *orig[VDEV_RAIDZ_MAXPARITY];
1709 int c, ret = 0;
1710 raidz_col_t *rc;

1712 for (c = 0; c < rm->rm_firstdatacol; c++) {
1713 rc = &rm->rm_col[c];
1714 if (!rc->rc_tried || rc->rc_error != 0)
1715 continue;
1716 orig[c] = zio_buf_alloc(rc->rc_size);
1717 bcopy(rc->rc_data, orig[c], rc->rc_size);
1718 }

1720 vdev_raidz_generate_parity(rm);

1722 for (c = 0; c < rm->rm_firstdatacol; c++) {
1723 rc = &rm->rm_col[c];
1724 if (!rc->rc_tried || rc->rc_error != 0)
1725 continue;
1726 if (bcmp(orig[c], rc->rc_data, rc->rc_size) != 0) {
1727 raidz_checksum_error(zio, rc, orig[c]);
1728 rc->rc_error = SET_ERROR(ECKSUM);
1729 ret++;
1730 }
1731 zio_buf_free(orig[c], rc->rc_size);
1732 }

1734 return (ret);
1735 }

1737 /*
1738 * Keep statistics on all the ways that we used parity to correct data.
1739 */
1740 static uint64_t raidz_corrected[1 << VDEV_RAIDZ_MAXPARITY];

1742 static int
1743 vdev_raidz_worst_error(raidz_map_t *rm)
1744 {
1745 int error = 0;

1747 for (int c = 0; c < rm->rm_cols; c++)
1748 error = zio_worst_error(error, rm->rm_col[c].rc_error);

1750 return (error);
1751 }

1753 /*
1754 * Iterate over all combinations of bad data and attempt a reconstruction.
1755 * Note that the algorithm below is non-optimal because it doesn’t take into
1756 * account how reconstruction is actually performed. For example, with
1757 * triple-parity RAID-Z the reconstruction procedure is the same if column 4
1758 * is targeted as invalid as if columns 1 and 4 are targeted since in both
1759 * cases we’d only use parity information in column 0.
1760 */
1761 static int
1762 vdev_raidz_combrec(zio_t *zio, int total_errors, int data_errors)
1763 {
1764 raidz_map_t *rm = zio->io_vsd;
1765 raidz_col_t *rc;
1766 void *orig[VDEV_RAIDZ_MAXPARITY];
1767 int tstore[VDEV_RAIDZ_MAXPARITY + 2];
1768 int *tgts = &tstore[1];

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 28

1769 int current, next, i, c, n;
1770 int code, ret = 0;

1772 ASSERT(total_errors < rm->rm_firstdatacol);

1774 /*
1775 * This simplifies one edge condition.
1776 */
1777 tgts[-1] = -1;

1779 for (n = 1; n <= rm->rm_firstdatacol - total_errors; n++) {
1780 /*
1781 * Initialize the targets array by finding the first n columns
1782 * that contain no error.
1783 *
1784 * If there were no data errors, we need to ensure that we’re
1785 * always explicitly attempting to reconstruct at least one
1786 * data column. To do this, we simply push the highest target
1787 * up into the data columns.
1788 */
1789 for (c = 0, i = 0; i < n; i++) {
1790 if (i == n - 1 && data_errors == 0 &&
1791 c < rm->rm_firstdatacol) {
1792 c = rm->rm_firstdatacol;
1793 }

1795 while (rm->rm_col[c].rc_error != 0) {
1796 c++;
1797 ASSERT3S(c, <, rm->rm_cols);
1798 }

1800 tgts[i] = c++;
1801 }

1803 /*
1804 * Setting tgts[n] simplifies the other edge condition.
1805 */
1806 tgts[n] = rm->rm_cols;

1808 /*
1809 * These buffers were allocated in previous iterations.
1810 */
1811 for (i = 0; i < n - 1; i++) {
1812 ASSERT(orig[i] != NULL);
1813 }

1815 orig[n - 1] = zio_buf_alloc(rm->rm_col[0].rc_size);

1817 current = 0;
1818 next = tgts[current];

1820 while (current != n) {
1821 tgts[current] = next;
1822 current = 0;

1824 /*
1825 * Save off the original data that we’re going to
1826 * attempt to reconstruct.
1827 */
1828 for (i = 0; i < n; i++) {
1829 ASSERT(orig[i] != NULL);
1830 c = tgts[i];
1831 ASSERT3S(c, >=, 0);
1832 ASSERT3S(c, <, rm->rm_cols);
1833 rc = &rm->rm_col[c];
1834 bcopy(rc->rc_data, orig[i], rc->rc_size);

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 29

1835 }

1837 /*
1838 * Attempt a reconstruction and exit the outer loop on
1839 * success.
1840 */
1841 code = vdev_raidz_reconstruct(rm, tgts, n);
1842 if (raidz_checksum_verify(zio) == 0) {
1843 atomic_inc_64(&raidz_corrected[code]);

1845 for (i = 0; i < n; i++) {
1846 c = tgts[i];
1847 rc = &rm->rm_col[c];
1848 ASSERT(rc->rc_error == 0);
1849 if (rc->rc_tried)
1850 raidz_checksum_error(zio, rc,
1851 orig[i]);
1852 rc->rc_error = SET_ERROR(ECKSUM);
1853 }

1855 ret = code;
1856 goto done;
1857 }

1859 /*
1860 * Restore the original data.
1861 */
1862 for (i = 0; i < n; i++) {
1863 c = tgts[i];
1864 rc = &rm->rm_col[c];
1865 bcopy(orig[i], rc->rc_data, rc->rc_size);
1866 }

1868 do {
1869 /*
1870 * Find the next valid column after the current
1871 * position..
1872 */
1873 for (next = tgts[current] + 1;
1874 next < rm->rm_cols &&
1875 rm->rm_col[next].rc_error != 0; next++)
1876 continue;

1878 ASSERT(next <= tgts[current + 1]);

1880 /*
1881 * If that spot is available, we’re done here.
1882 */
1883 if (next != tgts[current + 1])
1884 break;

1886 /*
1887 * Otherwise, find the next valid column after
1888 * the previous position.
1889 */
1890 for (c = tgts[current - 1] + 1;
1891 rm->rm_col[c].rc_error != 0; c++)
1892 continue;

1894 tgts[current] = c;
1895 current++;

1897 } while (current != n);
1898 }
1899 }
1900 n--;

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 30

1901 done:
1902 for (i = 0; i < n; i++) {
1903 zio_buf_free(orig[i], rm->rm_col[0].rc_size);
1904 }

1906 return (ret);
1907 }

1909 /*
1910 * Complete an IO operation on a RAIDZ VDev
1911 *
1912 * Outline:
1913 * - For write operations:
1914 * 1. Check for errors on the child IOs.
1915 * 2. Return, setting an error code if too few child VDevs were written
1916 * to reconstruct the data later. Note that partial writes are
1917 * considered successful if they can be reconstructed at all.
1918 * - For read operations:
1919 * 1. Check for errors on the child IOs.
1920 * 2. If data errors occurred:
1921 * a. Try to reassemble the data from the parity available.
1922 * b. If we haven’t yet read the parity drives, read them now.
1923 * c. If all parity drives have been read but the data still doesn’t
1924 * reassemble with a correct checksum, then try combinatorial
1925 * reconstruction.
1926 * d. If that doesn’t work, return an error.
1927 * 3. If there were unexpected errors or this is a resilver operation,
1928 * rewrite the vdevs that had errors.
1929 */
1930 static void
1931 vdev_raidz_io_done(zio_t *zio)
1932 {
1933 vdev_t *vd = zio->io_vd;
1934 vdev_t *cvd;
1935 raidz_map_t *rm = zio->io_vsd;
1936 raidz_col_t *rc;
1937 int unexpected_errors = 0;
1938 int parity_errors = 0;
1939 int parity_untried = 0;
1940 int data_errors = 0;
1941 int total_errors = 0;
1942 int n, c;
1943 int tgts[VDEV_RAIDZ_MAXPARITY];
1944 int code;

1946 ASSERT(zio->io_bp != NULL); /* XXX need to add code to enforce this */

1948 ASSERT(rm->rm_missingparity <= rm->rm_firstdatacol);
1949 ASSERT(rm->rm_missingdata <= rm->rm_cols - rm->rm_firstdatacol);

1951 for (c = 0; c < rm->rm_cols; c++) {
1952 rc = &rm->rm_col[c];

1954 if (rc->rc_error) {
1955 ASSERT(rc->rc_error != ECKSUM); /* child has no bp */

1957 if (c < rm->rm_firstdatacol)
1958 parity_errors++;
1959 else
1960 data_errors++;

1962 if (!rc->rc_skipped)
1963 unexpected_errors++;

1965 total_errors++;
1966 } else if (c < rm->rm_firstdatacol && !rc->rc_tried) {

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 31

1967 parity_untried++;
1968 }
1969 }

1971 if (zio->io_type == ZIO_TYPE_WRITE) {
1972 /*
1973 * XXX -- for now, treat partial writes as a success.
1974 * (If we couldn’t write enough columns to reconstruct
1975 * the data, the I/O failed. Otherwise, good enough.)
1976 *
1977 * Now that we support write reallocation, it would be better
1978 * to treat partial failure as real failure unless there are
1979 * no non-degraded top-level vdevs left, and not update DTLs
1980 * if we intend to reallocate.
1981 */
1982 /* XXPOLICY */
1983 if (total_errors > rm->rm_firstdatacol)
1984 zio->io_error = vdev_raidz_worst_error(rm);

1986 return;
1987 }

1989 ASSERT(zio->io_type == ZIO_TYPE_READ);
1990 /*
1991 * There are three potential phases for a read:
1992 * 1. produce valid data from the columns read
1993 * 2. read all disks and try again
1994 * 3. perform combinatorial reconstruction
1995 *
1996 * Each phase is progressively both more expensive and less likely to
1997 * occur. If we encounter more errors than we can repair or all phases
1998 * fail, we have no choice but to return an error.
1999 */

2001 /*
2002 * If the number of errors we saw was correctable -- less than or equal
2003 * to the number of parity disks read -- attempt to produce data that
2004 * has a valid checksum. Naturally, this case applies in the absence of
2005 * any errors.
2006 */
2007 if (total_errors <= rm->rm_firstdatacol - parity_untried) {
2008 if (data_errors == 0) {
2009 if (raidz_checksum_verify(zio) == 0) {
2010 /*
2011 * If we read parity information (unnecessarily
2012 * as it happens since no reconstruction was
2013 * needed) regenerate and verify the parity.
2014 * We also regenerate parity when resilvering
2015 * so we can write it out to the failed device
2016 * later.
2017 */
2018 if (parity_errors + parity_untried <
2019 rm->rm_firstdatacol ||
2020 (zio->io_flags & ZIO_FLAG_RESILVER)) {
2021 n = raidz_parity_verify(zio, rm);
2022 unexpected_errors += n;
2023 ASSERT(parity_errors + n <=
2024 rm->rm_firstdatacol);
2025 }
2026 goto done;
2027 }
2028 } else {
2029 /*
2030 * We either attempt to read all the parity columns or
2031 * none of them. If we didn’t try to read parity, we
2032 * wouldn’t be here in the correctable case. There must

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 32

2033 * also have been fewer parity errors than parity
2034 * columns or, again, we wouldn’t be in this code path.
2035 */
2036 ASSERT(parity_untried == 0);
2037 ASSERT(parity_errors < rm->rm_firstdatacol);

2039 /*
2040 * Identify the data columns that reported an error.
2041 */
2042 n = 0;
2043 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
2044 rc = &rm->rm_col[c];
2045 if (rc->rc_error != 0) {
2046 ASSERT(n < VDEV_RAIDZ_MAXPARITY);
2047 tgts[n++] = c;
2048 }
2049 }

2051 ASSERT(rm->rm_firstdatacol >= n);

2053 code = vdev_raidz_reconstruct(rm, tgts, n);

2055 if (raidz_checksum_verify(zio) == 0) {
2056 atomic_inc_64(&raidz_corrected[code]);

2058 /*
2059 * If we read more parity disks than were used
2060 * for reconstruction, confirm that the other
2061 * parity disks produced correct data. This
2062 * routine is suboptimal in that it regenerates
2063 * the parity that we already used in addition
2064 * to the parity that we’re attempting to
2065 * verify, but this should be a relatively
2066 * uncommon case, and can be optimized if it
2067 * becomes a problem. Note that we regenerate
2068 * parity when resilvering so we can write it
2069 * out to failed devices later.
2070 */
2071 if (parity_errors < rm->rm_firstdatacol - n ||
2072 (zio->io_flags & ZIO_FLAG_RESILVER)) {
2073 n = raidz_parity_verify(zio, rm);
2074 unexpected_errors += n;
2075 ASSERT(parity_errors + n <=
2076 rm->rm_firstdatacol);
2077 }

2079 goto done;
2080 }
2081 }
2082 }

2084 /*
2085 * This isn’t a typical situation -- either we got a read error or
2086 * a child silently returned bad data. Read every block so we can
2087 * try again with as much data and parity as we can track down. If
2088 * we’ve already been through once before, all children will be marked
2089 * as tried so we’ll proceed to combinatorial reconstruction.
2090 */
2091 unexpected_errors = 1;
2092 rm->rm_missingdata = 0;
2093 rm->rm_missingparity = 0;

2095 for (c = 0; c < rm->rm_cols; c++) {
2096 if (rm->rm_col[c].rc_tried)
2097 continue;

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 33

2099 zio_vdev_io_redone(zio);
2100 do {
2101 rc = &rm->rm_col[c];
2102 if (rc->rc_tried)
2103 continue;
2104 zio_nowait(zio_vdev_child_io(zio, NULL,
2105 vd->vdev_child[rc->rc_devidx],
2106 rc->rc_offset, rc->rc_data, rc->rc_size,
2107 zio->io_type, zio->io_priority, 0,
2108 vdev_raidz_child_done, rc));
2109 } while (++c < rm->rm_cols);

2111 return;
2112 }

2114 /*
2115 * At this point we’ve attempted to reconstruct the data given the
2116 * errors we detected, and we’ve attempted to read all columns. There
2117 * must, therefore, be one or more additional problems -- silent errors
2118 * resulting in invalid data rather than explicit I/O errors resulting
2119 * in absent data. We check if there is enough additional data to
2120 * possibly reconstruct the data and then perform combinatorial
2121 * reconstruction over all possible combinations. If that fails,
2122 * we’re cooked.
2123 */
2124 if (total_errors > rm->rm_firstdatacol) {
2125 zio->io_error = vdev_raidz_worst_error(rm);

2127 } else if (total_errors < rm->rm_firstdatacol &&
2128 (code = vdev_raidz_combrec(zio, total_errors, data_errors)) != 0) {
2129 /*
2130 * If we didn’t use all the available parity for the
2131 * combinatorial reconstruction, verify that the remaining
2132 * parity is correct.
2133 */
2134 if (code != (1 << rm->rm_firstdatacol) - 1)
2135 (void) raidz_parity_verify(zio, rm);
2136 } else {
2137 /*
2138 * We’re here because either:
2139 *
2140 * total_errors == rm_first_datacol, or
2141 * vdev_raidz_combrec() failed
2142 *
2143 * In either case, there is enough bad data to prevent
2144 * reconstruction.
2145 *
2146 * Start checksum ereports for all children which haven’t
2147 * failed, and the IO wasn’t speculative.
2148 */
2149 zio->io_error = SET_ERROR(ECKSUM);

2151 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2152 for (c = 0; c < rm->rm_cols; c++) {
2153 rc = &rm->rm_col[c];
2154 if (rc->rc_error == 0) {
2155 zio_bad_cksum_t zbc;
2156 zbc.zbc_has_cksum = 0;
2157 zbc.zbc_injected =
2158 rm->rm_ecksuminjected;

2160 zfs_ereport_start_checksum(
2161 zio->io_spa,
2162 vd->vdev_child[rc->rc_devidx],
2163 zio, rc->rc_offset, rc->rc_size,
2164 (void *)(uintptr_t)c, &zbc);

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 34

2165 }
2166 }
2167 }
2168 }

2170 done:
2171 zio_checksum_verified(zio);

2173 if (zio->io_error == 0 && spa_writeable(zio->io_spa) &&
2174 (unexpected_errors || (zio->io_flags & ZIO_FLAG_RESILVER))) {
2175 /*
2176 * Use the good data we have in hand to repair damaged children.
2177 */
2178 for (c = 0; c < rm->rm_cols; c++) {
2179 rc = &rm->rm_col[c];
2180 cvd = vd->vdev_child[rc->rc_devidx];

2182 if (rc->rc_error == 0)
2183 continue;

2185 zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2186 rc->rc_offset, rc->rc_data, rc->rc_size,
2187 ZIO_TYPE_WRITE, zio->io_priority,
2188 ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
2189 ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
2190 }
2191 }
2192 }

2194 static void
2195 vdev_raidz_state_change(vdev_t *vd, int faulted, int degraded)
2196 {
2197 if (faulted > vd->vdev_nparity)
2198 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2199 VDEV_AUX_NO_REPLICAS);
2200 else if (degraded + faulted != 0)
2201 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
2202 else
2203 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
2204 }

2206 vdev_ops_t vdev_raidz_ops = {
2207 vdev_raidz_open,
2208 vdev_raidz_close,
2209 vdev_raidz_asize,
2210 vdev_raidz_io_start,
2211 vdev_raidz_io_done,
2212 vdev_raidz_state_change,
2213 NULL,
2214 NULL,
2215 VDEV_TYPE_RAIDZ, /* name of this vdev type */
2216 B_FALSE /* not a leaf vdev */
2217 };

new/usr/src/uts/common/fs/zfs/zfs_acl.c 1

**
 67493 Wed Apr 24 12:44:32 2013
new/usr/src/uts/common/fs/zfs/zfs_acl.c
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

1335 static void
1336 zfs_acl_chmod(vtype_t vtype, uint64_t mode, boolean_t trim, zfs_acl_t *aclp)
1337 {
1338 void *acep = NULL;
1339 uint64_t who;
1340 int new_count, new_bytes;
1341 int ace_size;
1342 int entry_type;
1343 uint16_t iflags, type;
1344 uint32_t access_mask;
1345 zfs_acl_node_t *newnode;
1346 size_t abstract_size = aclp->z_ops.ace_abstract_size();
1347 void *zacep;
1348 boolean_t isdir;
1349 trivial_acl_t masks;

1351 new_count = new_bytes = 0;

1353 isdir = (vtype == VDIR);

1355 acl_trivial_access_masks((mode_t)mode, isdir, &masks);

1357 newnode = zfs_acl_node_alloc((abstract_size * 6) + aclp->z_acl_bytes);

1359 zacep = newnode->z_acldata;
1360 if (masks.allow0) {
1361 zfs_set_ace(aclp, zacep, masks.allow0, ALLOW, -1, ACE_OWNER);
1362 zacep = (void *)((uintptr_t)zacep + abstract_size);
1363 new_count++;
1364 new_bytes += abstract_size;
1365 }
1366 if (masks.deny1) {
1365 } if (masks.deny1) {
1367 zfs_set_ace(aclp, zacep, masks.deny1, DENY, -1, ACE_OWNER);
1368 zacep = (void *)((uintptr_t)zacep + abstract_size);
1369 new_count++;
1370 new_bytes += abstract_size;
1371 }
1372 if (masks.deny2) {
1373 zfs_set_ace(aclp, zacep, masks.deny2, DENY, -1, OWNING_GROUP);
1374 zacep = (void *)((uintptr_t)zacep + abstract_size);
1375 new_count++;
1376 new_bytes += abstract_size;
1377 }

1379 while (acep = zfs_acl_next_ace(aclp, acep, &who, &access_mask,
1380 &iflags, &type)) {
1381 uint16_t inherit_flags;

1383 entry_type = (iflags & ACE_TYPE_FLAGS);
1384 inherit_flags = (iflags & ALL_INHERIT);

1386 if ((entry_type == ACE_OWNER || entry_type == ACE_EVERYONE ||
1387 (entry_type == OWNING_GROUP)) &&

new/usr/src/uts/common/fs/zfs/zfs_acl.c 2

1388 ((inherit_flags & ACE_INHERIT_ONLY_ACE) == 0)) {
1389 continue;
1390 }

1392 /*
1393 * If this ACL has any inheritable ACEs, mark that in
1394 * the hints (which are later masked into the pflags)
1395 * so create knows to do inheritance.
1396 */
1397 if (isdir && (inherit_flags &
1398 (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
1399 aclp->z_hints |= ZFS_INHERIT_ACE;

1401 if ((type != ALLOW && type != DENY) ||
1402 (inherit_flags & ACE_INHERIT_ONLY_ACE)) {
1403 switch (type) {
1404 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
1405 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
1406 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
1407 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
1408 aclp->z_hints |= ZFS_ACL_OBJ_ACE;
1409 break;
1410 }
1411 } else {

1413 /*
1414 * Limit permissions to be no greater than
1415 * group permissions.
1416 * The "aclinherit" and "aclmode" properties
1417 * affect policy for create and chmod(2),
1418 * respectively.
1419 */
1420 if ((type == ALLOW) && trim)
1421 access_mask &= masks.group;
1422 }
1423 zfs_set_ace(aclp, zacep, access_mask, type, who, iflags);
1424 ace_size = aclp->z_ops.ace_size(acep);
1425 zacep = (void *)((uintptr_t)zacep + ace_size);
1426 new_count++;
1427 new_bytes += ace_size;
1428 }
1429 zfs_set_ace(aclp, zacep, masks.owner, 0, -1, ACE_OWNER);
1430 zacep = (void *)((uintptr_t)zacep + abstract_size);
1431 zfs_set_ace(aclp, zacep, masks.group, 0, -1, OWNING_GROUP);
1432 zacep = (void *)((uintptr_t)zacep + abstract_size);
1433 zfs_set_ace(aclp, zacep, masks.everyone, 0, -1, ACE_EVERYONE);

1435 new_count += 3;
1436 new_bytes += abstract_size * 3;
1437 zfs_acl_release_nodes(aclp);
1438 aclp->z_acl_count = new_count;
1439 aclp->z_acl_bytes = new_bytes;
1440 newnode->z_ace_count = new_count;
1441 newnode->z_size = new_bytes;
1442 list_insert_tail(&aclp->z_acl, newnode);
1443 }
______unchanged_portion_omitted_

1769 /*
1770 * Retrieve a file’s ACL
1769 * Retrieve a files ACL
1771 */
1772 int
1773 zfs_getacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr)
1774 {
1775 zfs_acl_t *aclp;

new/usr/src/uts/common/fs/zfs/zfs_acl.c 3

1776 ulong_t mask;
1777 int error;
1778 int count = 0;
1779 int largeace = 0;

1781 mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT |
1782 VSA_ACE_ACLFLAGS | VSA_ACE_ALLTYPES);

1784 if (mask == 0)
1785 return (SET_ERROR(ENOSYS));

1787 if (error = zfs_zaccess(zp, ACE_READ_ACL, 0, skipaclchk, cr))
1788 return (error);

1790 mutex_enter(&zp->z_acl_lock);

1792 error = zfs_acl_node_read(zp, B_FALSE, &aclp, B_FALSE);
1793 if (error != 0) {
1794 mutex_exit(&zp->z_acl_lock);
1795 return (error);
1796 }

1798 /*
1799 * Scan ACL to determine number of ACEs
1800 */
1801 if ((zp->z_pflags & ZFS_ACL_OBJ_ACE) && !(mask & VSA_ACE_ALLTYPES)) {
1802 void *zacep = NULL;
1803 uint64_t who;
1804 uint32_t access_mask;
1805 uint16_t type, iflags;

1807 while (zacep = zfs_acl_next_ace(aclp, zacep,
1808 &who, &access_mask, &iflags, &type)) {
1809 switch (type) {
1810 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
1811 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
1812 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
1813 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
1814 largeace++;
1815 continue;
1816 default:
1817 count++;
1818 }
1819 }
1820 vsecp->vsa_aclcnt = count;
1821 } else
1822 count = (int)aclp->z_acl_count;

1824 if (mask & VSA_ACECNT) {
1825 vsecp->vsa_aclcnt = count;
1826 }

1828 if (mask & VSA_ACE) {
1829 size_t aclsz;

1831 aclsz = count * sizeof (ace_t) +
1832 sizeof (ace_object_t) * largeace;

1834 vsecp->vsa_aclentp = kmem_alloc(aclsz, KM_SLEEP);
1835 vsecp->vsa_aclentsz = aclsz;

1837 if (aclp->z_version == ZFS_ACL_VERSION_FUID)
1838 zfs_copy_fuid_2_ace(zp->z_zfsvfs, aclp, cr,
1839 vsecp->vsa_aclentp, !(mask & VSA_ACE_ALLTYPES));
1840 else {
1841 zfs_acl_node_t *aclnode;

new/usr/src/uts/common/fs/zfs/zfs_acl.c 4

1842 void *start = vsecp->vsa_aclentp;

1844 for (aclnode = list_head(&aclp->z_acl); aclnode;
1845 aclnode = list_next(&aclp->z_acl, aclnode)) {
1846 bcopy(aclnode->z_acldata, start,
1847 aclnode->z_size);
1848 start = (caddr_t)start + aclnode->z_size;
1849 }
1850 ASSERT((caddr_t)start - (caddr_t)vsecp->vsa_aclentp ==
1851 aclp->z_acl_bytes);
1852 }
1853 }
1854 if (mask & VSA_ACE_ACLFLAGS) {
1855 vsecp->vsa_aclflags = 0;
1856 if (zp->z_pflags & ZFS_ACL_DEFAULTED)
1857 vsecp->vsa_aclflags |= ACL_DEFAULTED;
1858 if (zp->z_pflags & ZFS_ACL_PROTECTED)
1859 vsecp->vsa_aclflags |= ACL_PROTECTED;
1860 if (zp->z_pflags & ZFS_ACL_AUTO_INHERIT)
1861 vsecp->vsa_aclflags |= ACL_AUTO_INHERIT;
1862 }

1864 mutex_exit(&zp->z_acl_lock);

1866 return (0);
1867 }
______unchanged_portion_omitted_

1924 /*
1925 * Set a file’s ACL
1924 * Set a files ACL
1926 */
1927 int
1928 zfs_setacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr)
1929 {
1930 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1931 zilog_t *zilog = zfsvfs->z_log;
1932 ulong_t mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT);
1933 dmu_tx_t *tx;
1934 int error;
1935 zfs_acl_t *aclp;
1936 zfs_fuid_info_t *fuidp = NULL;
1937 boolean_t fuid_dirtied;
1938 uint64_t acl_obj;

1940 if (mask == 0)
1941 return (SET_ERROR(ENOSYS));

1943 if (zp->z_pflags & ZFS_IMMUTABLE)
1944 return (SET_ERROR(EPERM));

1946 if (error = zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr))
1947 return (error);

1949 error = zfs_vsec_2_aclp(zfsvfs, ZTOV(zp)->v_type, vsecp, cr, &fuidp,
1950 &aclp);
1951 if (error)
1952 return (error);

1954 /*
1955 * If ACL wide flags aren’t being set then preserve any
1956 * existing flags.
1957 */
1958 if (!(vsecp->vsa_mask & VSA_ACE_ACLFLAGS)) {
1959 aclp->z_hints |=
1960 (zp->z_pflags & V4_ACL_WIDE_FLAGS);

new/usr/src/uts/common/fs/zfs/zfs_acl.c 5

1961 }
1962 top:
1963 mutex_enter(&zp->z_acl_lock);
1964 mutex_enter(&zp->z_lock);

1966 tx = dmu_tx_create(zfsvfs->z_os);

1968 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);

1970 fuid_dirtied = zfsvfs->z_fuid_dirty;
1971 if (fuid_dirtied)
1972 zfs_fuid_txhold(zfsvfs, tx);

1974 /*
1975 * If old version and ACL won’t fit in bonus and we aren’t
1976 * upgrading then take out necessary DMU holds
1977 */

1979 if ((acl_obj = zfs_external_acl(zp)) != 0) {
1980 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
1981 zfs_znode_acl_version(zp) <= ZFS_ACL_VERSION_INITIAL) {
1982 dmu_tx_hold_free(tx, acl_obj, 0,
1983 DMU_OBJECT_END);
1984 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1985 aclp->z_acl_bytes);
1986 } else {
1987 dmu_tx_hold_write(tx, acl_obj, 0, aclp->z_acl_bytes);
1988 }
1989 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1990 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, aclp->z_acl_bytes);
1991 }

1993 zfs_sa_upgrade_txholds(tx, zp);
1994 error = dmu_tx_assign(tx, TXG_NOWAIT);
1995 if (error) {
1996 mutex_exit(&zp->z_acl_lock);
1997 mutex_exit(&zp->z_lock);

1999 if (error == ERESTART) {
2000 dmu_tx_wait(tx);
2001 dmu_tx_abort(tx);
2002 goto top;
2003 }
2004 dmu_tx_abort(tx);
2005 zfs_acl_free(aclp);
2006 return (error);
2007 }

2009 error = zfs_aclset_common(zp, aclp, cr, tx);
2010 ASSERT(error == 0);
2011 ASSERT(zp->z_acl_cached == NULL);
2012 zp->z_acl_cached = aclp;

2014 if (fuid_dirtied)
2015 zfs_fuid_sync(zfsvfs, tx);

2017 zfs_log_acl(zilog, tx, zp, vsecp, fuidp);

2019 if (fuidp)
2020 zfs_fuid_info_free(fuidp);
2021 dmu_tx_commit(tx);
2022 done:
2023 mutex_exit(&zp->z_lock);
2024 mutex_exit(&zp->z_acl_lock);

2026 return (error);

new/usr/src/uts/common/fs/zfs/zfs_acl.c 6

2027 }
______unchanged_portion_omitted_

2344 /*
2345 * Determine whether Access should be granted/denied.
2346 *
2347 #endif /* ! codereview */
2348 * The least priv subsytem is always consulted as a basic privilege
2349 * can define any form of access.
2350 */
2351 int
2352 zfs_zaccess(znode_t *zp, int mode, int flags, boolean_t skipaclchk, cred_t *cr)
2353 {
2354 uint32_t working_mode;
2355 int error;
2356 int is_attr;
2357 boolean_t check_privs;
2358 znode_t *xzp;
2359 znode_t *check_zp = zp;
2360 mode_t needed_bits;
2361 uid_t owner;

2363 is_attr = ((zp->z_pflags & ZFS_XATTR) && (ZTOV(zp)->v_type == VDIR));

2365 /*
2366 * If attribute then validate against base file
2367 */
2368 if (is_attr) {
2369 uint64_t parent;

2371 if ((error = sa_lookup(zp->z_sa_hdl,
2372 SA_ZPL_PARENT(zp->z_zfsvfs), &parent,
2373 sizeof (parent))) != 0)
2374 return (error);

2376 if ((error = zfs_zget(zp->z_zfsvfs,
2377 parent, &xzp)) != 0) {
2378 return (error);
2379 }

2381 check_zp = xzp;

2383 /*
2384 * fixup mode to map to xattr perms
2385 */

2387 if (mode & (ACE_WRITE_DATA|ACE_APPEND_DATA)) {
2388 mode &= ~(ACE_WRITE_DATA|ACE_APPEND_DATA);
2389 mode |= ACE_WRITE_NAMED_ATTRS;
2390 }

2392 if (mode & (ACE_READ_DATA|ACE_EXECUTE)) {
2393 mode &= ~(ACE_READ_DATA|ACE_EXECUTE);
2394 mode |= ACE_READ_NAMED_ATTRS;
2395 }
2396 }

2398 owner = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER);
2399 /*
2400 * Map the bits required to the standard vnode flags VREAD|VWRITE|VEXEC
2401 * in needed_bits. Map the bits mapped by working_mode (currently
2402 * missing) in missing_bits.
2403 * Call secpolicy_vnode_access2() with (needed_bits & ~checkmode),
2404 * needed_bits.
2405 */
2406 needed_bits = 0;

new/usr/src/uts/common/fs/zfs/zfs_acl.c 7

2408 working_mode = mode;
2409 if ((working_mode & (ACE_READ_ACL|ACE_READ_ATTRIBUTES)) &&
2410 owner == crgetuid(cr))
2411 working_mode &= ~(ACE_READ_ACL|ACE_READ_ATTRIBUTES);

2413 if (working_mode & (ACE_READ_DATA|ACE_READ_NAMED_ATTRS|
2414 ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_SYNCHRONIZE))
2415 needed_bits |= VREAD;
2416 if (working_mode & (ACE_WRITE_DATA|ACE_WRITE_NAMED_ATTRS|
2417 ACE_APPEND_DATA|ACE_WRITE_ATTRIBUTES|ACE_SYNCHRONIZE))
2418 needed_bits |= VWRITE;
2419 if (working_mode & ACE_EXECUTE)
2420 needed_bits |= VEXEC;

2422 if ((error = zfs_zaccess_common(check_zp, mode, &working_mode,
2423 &check_privs, skipaclchk, cr)) == 0) {
2424 if (is_attr)
2425 VN_RELE(ZTOV(xzp));
2426 return (secpolicy_vnode_access2(cr, ZTOV(zp), owner,
2427 needed_bits, needed_bits));
2428 }

2430 if (error && !check_privs) {
2431 if (is_attr)
2432 VN_RELE(ZTOV(xzp));
2433 return (error);
2434 }

2436 if (error && (flags & V_APPEND)) {
2437 error = zfs_zaccess_append(zp, &working_mode, &check_privs, cr);
2438 }

2440 if (error && check_privs) {
2441 mode_t checkmode = 0;

2443 /*
2444 * First check for implicit owner permission on
2445 * read_acl/read_attributes
2446 */

2448 error = 0;
2449 ASSERT(working_mode != 0);

2451 if ((working_mode & (ACE_READ_ACL|ACE_READ_ATTRIBUTES) &&
2452 owner == crgetuid(cr)))
2453 working_mode &= ~(ACE_READ_ACL|ACE_READ_ATTRIBUTES);

2455 if (working_mode & (ACE_READ_DATA|ACE_READ_NAMED_ATTRS|
2456 ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_SYNCHRONIZE))
2457 checkmode |= VREAD;
2458 if (working_mode & (ACE_WRITE_DATA|ACE_WRITE_NAMED_ATTRS|
2459 ACE_APPEND_DATA|ACE_WRITE_ATTRIBUTES|ACE_SYNCHRONIZE))
2460 checkmode |= VWRITE;
2461 if (working_mode & ACE_EXECUTE)
2462 checkmode |= VEXEC;

2464 error = secpolicy_vnode_access2(cr, ZTOV(check_zp), owner,
2465 needed_bits & ~checkmode, needed_bits);

2467 if (error == 0 && (working_mode & ACE_WRITE_OWNER))
2468 error = secpolicy_vnode_chown(cr, owner);
2469 if (error == 0 && (working_mode & ACE_WRITE_ACL))
2470 error = secpolicy_vnode_setdac(cr, owner);

2472 if (error == 0 && (working_mode &

new/usr/src/uts/common/fs/zfs/zfs_acl.c 8

2473 (ACE_DELETE|ACE_DELETE_CHILD)))
2474 error = secpolicy_vnode_remove(cr);

2476 if (error == 0 && (working_mode & ACE_SYNCHRONIZE)) {
2477 error = secpolicy_vnode_chown(cr, owner);
2478 }
2479 if (error == 0) {
2480 /*
2481 * See if any bits other than those already checked
2482 * for are still present. If so then return EACCES
2483 */
2484 if (working_mode & ~(ZFS_CHECKED_MASKS)) {
2485 error = SET_ERROR(EACCES);
2486 }
2487 }
2488 } else if (error == 0) {
2489 error = secpolicy_vnode_access2(cr, ZTOV(zp), owner,
2490 needed_bits, needed_bits);
2491 }

2494 if (is_attr)
2495 VN_RELE(ZTOV(xzp));

2497 return (error);
2498 }

2500 /*
2501 * Translate traditional unix VREAD/VWRITE/VEXEC mode into
2502 * native ACL format and call zfs_zaccess()
2503 */
2504 int
2505 zfs_zaccess_rwx(znode_t *zp, mode_t mode, int flags, cred_t *cr)
2506 {
2507 return (zfs_zaccess(zp, zfs_unix_to_v4(mode >> 6), flags, B_FALSE, cr));
2508 }

2510 /*
2511 * Access function for secpolicy_vnode_setattr
2512 */
2513 int
2514 zfs_zaccess_unix(znode_t *zp, mode_t mode, cred_t *cr)
2515 {
2516 int v4_mode = zfs_unix_to_v4(mode >> 6);

2518 return (zfs_zaccess(zp, v4_mode, 0, B_FALSE, cr));
2519 }

2521 static int
2522 zfs_delete_final_check(znode_t *zp, znode_t *dzp,
2523 mode_t available_perms, cred_t *cr)
2524 {
2525 int error;
2526 uid_t downer;

2528 downer = zfs_fuid_map_id(dzp->z_zfsvfs, dzp->z_uid, cr, ZFS_OWNER);

2530 error = secpolicy_vnode_access2(cr, ZTOV(dzp),
2531 downer, available_perms, VWRITE|VEXEC);

2533 if (error == 0)
2534 error = zfs_sticky_remove_access(dzp, zp, cr);

2536 return (error);
2537 }

new/usr/src/uts/common/fs/zfs/zfs_acl.c 9

2539 /*
2540 * Determine whether Access should be granted/deny, without
2541 * consulting least priv subsystem.
2542 *
2345 *
2543 * The following chart is the recommended NFSv4 enforcement for
2544 * ability to delete an object.
2545 *
2546 * ---
2547 * | Parent Dir | Target Object Permissions |
2548 * | permissions | |
2549 * ---
2550 * | | ACL Allows | ACL Denies| Delete |
2551 * | | Delete | Delete | unspecified|
2552 * ---
2553 * | ACL Allows | Permit | Permit | Permit |
2554 * | DELETE_CHILD | |
2555 * ---
2556 * | ACL Denies | Permit | Deny | Deny |
2557 * | DELETE_CHILD | | | |
2558 * ---
2559 * | ACL specifies | | | |
2560 * | only allow | Permit | Permit | Permit |
2561 * | write and | | | |
2562 * | execute | | | |
2563 * ---
2564 * | ACL denies | | | |
2565 * | write and | Permit | Deny | Deny |
2566 * | execute | | | |
2567 * ---
2568 * ^
2569 * |
2570 * No search privilege, can’t even look up file?
2571 *
2572 */
2573 int
2574 zfs_zaccess_delete(znode_t *dzp, znode_t *zp, cred_t *cr)
2575 {
2576 uint32_t dzp_working_mode = 0;
2577 uint32_t zp_working_mode = 0;
2578 int dzp_error, zp_error;
2579 mode_t available_perms;
2580 boolean_t dzpcheck_privs = B_TRUE;
2581 boolean_t zpcheck_privs = B_TRUE;

2583 /*
2584 * We want specific DELETE permissions to
2585 * take precedence over WRITE/EXECUTE. We don’t
2586 * want an ACL such as this to mess us up.
2587 * user:joe:write_data:deny,user:joe:delete:allow
2588 *
2589 * However, deny permissions may ultimately be overridden
2590 * by secpolicy_vnode_access().
2591 *
2592 * We will ask for all of the necessary permissions and then
2593 * look at the working modes from the directory and target object
2594 * to determine what was found.
2595 */

2597 if (zp->z_pflags & (ZFS_IMMUTABLE | ZFS_NOUNLINK))
2598 return (SET_ERROR(EPERM));

2600 /*
2601 * First row
2602 * If the directory permissions allow the delete, we are done.
2603 */

new/usr/src/uts/common/fs/zfs/zfs_acl.c 10

2604 if ((dzp_error = zfs_zaccess_common(dzp, ACE_DELETE_CHILD,
2605 &dzp_working_mode, &dzpcheck_privs, B_FALSE, cr)) == 0)
2606 return (0);

2608 /*
2609 * If target object has delete permission then we are done
2610 */
2611 if ((zp_error = zfs_zaccess_common(zp, ACE_DELETE, &zp_working_mode,
2612 &zpcheck_privs, B_FALSE, cr)) == 0)
2613 return (0);

2615 ASSERT(dzp_error && zp_error);

2617 if (!dzpcheck_privs)
2618 return (dzp_error);
2619 if (!zpcheck_privs)
2620 return (zp_error);

2622 /*
2623 * Second row
2624 *
2625 * If directory returns EACCES then delete_child was denied
2626 * due to deny delete_child. In this case send the request through
2627 * secpolicy_vnode_remove(). We don’t use zfs_delete_final_check()
2628 * since that *could* allow the delete based on write/execute permission
2629 * and we want delete permissions to override write/execute.
2630 */

2632 if (dzp_error == EACCES)
2633 return (secpolicy_vnode_remove(cr));

2635 /*
2636 * Third Row
2637 * only need to see if we have write/execute on directory.
2638 */

2640 dzp_error = zfs_zaccess_common(dzp, ACE_EXECUTE|ACE_WRITE_DATA,
2641 &dzp_working_mode, &dzpcheck_privs, B_FALSE, cr);

2643 if (dzp_error != 0 && !dzpcheck_privs)
2644 return (dzp_error);

2646 /*
2647 * Fourth row
2648 */

2650 available_perms = (dzp_working_mode & ACE_WRITE_DATA) ? 0 : VWRITE;
2651 available_perms |= (dzp_working_mode & ACE_EXECUTE) ? 0 : VEXEC;

2653 return (zfs_delete_final_check(zp, dzp, available_perms, cr));

2655 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/zfs_ctldir.c 1

**
 34539 Wed Apr 24 12:44:32 2013
new/usr/src/uts/common/fs/zfs/zfs_ctldir.c
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

1052 /*
1053 * pvp is the ’.zfs’ directory (zfsctl_node_t).
1054 *
1055 #endif /* ! codereview */
1056 * Creates vp, which is ’.zfs/snapshot’ (zfsctl_snapdir_t).
1057 *
1058 * This function is the callback to create a GFS vnode for ’.zfs/snapshot’
1059 * when a lookup is performed on .zfs for "snapshot".
1060 */
1061 vnode_t *
1062 zfsctl_mknode_snapdir(vnode_t *pvp)
1063 {
1064 vnode_t *vp;
1065 zfsctl_snapdir_t *sdp;

1067 vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp,
1068 zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN,
1069 zfsctl_snapdir_readdir_cb, NULL);
1070 sdp = vp->v_data;
1071 sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR;
1072 sdp->sd_node.zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime;
1073 mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
1074 avl_create(&sdp->sd_snaps, snapentry_compare,
1075 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node));
1076 return (vp);
1077 }

1079 vnode_t *
1080 zfsctl_mknode_shares(vnode_t *pvp)
1081 {
1082 vnode_t *vp;
1083 zfsctl_node_t *sdp;

1085 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp,
1086 zfsctl_ops_shares, NULL, NULL, MAXNAMELEN,
1087 NULL, NULL);
1088 sdp = vp->v_data;
1089 sdp->zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime;
1090 return (vp);

1092 }

1094 /* ARGSUSED */
1095 static int
1096 zfsctl_shares_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
1097 caller_context_t *ct)
1098 {
1099 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1100 znode_t *dzp;
1101 int error;

1103 ZFS_ENTER(zfsvfs);
1104 if (zfsvfs->z_shares_dir == 0) {
1105 ZFS_EXIT(zfsvfs);

new/usr/src/uts/common/fs/zfs/zfs_ctldir.c 2

1106 return (SET_ERROR(ENOTSUP));
1107 }
1108 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
1109 error = VOP_GETATTR(ZTOV(dzp), vap, flags, cr, ct);
1110 VN_RELE(ZTOV(dzp));
1111 }
1112 ZFS_EXIT(zfsvfs);
1113 return (error);

1116 }

1118 /* ARGSUSED */
1119 static int
1120 zfsctl_snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
1121 caller_context_t *ct)
1122 {
1123 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1124 zfsctl_snapdir_t *sdp = vp->v_data;

1126 ZFS_ENTER(zfsvfs);
1127 zfsctl_common_getattr(vp, vap);
1128 vap->va_nodeid = gfs_file_inode(vp);
1129 vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2;
1130 vap->va_ctime = vap->va_mtime = dmu_objset_snap_cmtime(zfsvfs->z_os);
1131 ZFS_EXIT(zfsvfs);

1133 return (0);
1134 }

1136 /* ARGSUSED */
1137 static void
1138 zfsctl_snapdir_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1139 {
1140 zfsctl_snapdir_t *sdp = vp->v_data;
1141 void *private;

1143 private = gfs_dir_inactive(vp);
1144 if (private != NULL) {
1145 ASSERT(avl_numnodes(&sdp->sd_snaps) == 0);
1146 mutex_destroy(&sdp->sd_lock);
1147 avl_destroy(&sdp->sd_snaps);
1148 kmem_free(private, sizeof (zfsctl_snapdir_t));
1149 }
1150 }

1152 static const fs_operation_def_t zfsctl_tops_snapdir[] = {
1153 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } },
1154 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } },
1155 { VOPNAME_IOCTL, { .error = fs_inval } },
1156 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_snapdir_getattr } },
1157 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } },
1158 { VOPNAME_RENAME, { .vop_rename = zfsctl_snapdir_rename } },
1159 { VOPNAME_RMDIR, { .vop_rmdir = zfsctl_snapdir_remove } },
1160 { VOPNAME_MKDIR, { .vop_mkdir = zfsctl_snapdir_mkdir } },
1161 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } },
1162 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_snapdir_lookup } },
1163 { VOPNAME_SEEK, { .vop_seek = fs_seek } },
1164 { VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapdir_inactive } },
1165 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } },
1166 { NULL }
1167 };

1169 static const fs_operation_def_t zfsctl_tops_shares[] = {
1170 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } },
1171 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } },

new/usr/src/uts/common/fs/zfs/zfs_ctldir.c 3

1172 { VOPNAME_IOCTL, { .error = fs_inval } },
1173 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_shares_getattr } },
1174 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } },
1175 { VOPNAME_READDIR, { .vop_readdir = zfsctl_shares_readdir } },
1176 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_shares_lookup } },
1177 { VOPNAME_SEEK, { .vop_seek = fs_seek } },
1178 { VOPNAME_INACTIVE, { .vop_inactive = gfs_vop_inactive } },
1179 { VOPNAME_FID, { .vop_fid = zfsctl_shares_fid } },
1180 { NULL }
1181 };

1183 /*
1184 * pvp is the GFS vnode ’.zfs/snapshot’.
1185 *
1186 * This creates a GFS node under ’.zfs/snapshot’ representing each
1187 * snapshot. This newly created GFS node is what we mount snapshot
1188 * vfs_t’s ontop of.
1189 */
1190 static vnode_t *
1191 zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset)
1192 {
1193 vnode_t *vp;
1194 zfsctl_node_t *zcp;

1196 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp,
1197 zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL);
1198 zcp = vp->v_data;
1199 zcp->zc_id = objset;

1201 return (vp);
1202 }

1204 static void
1205 zfsctl_snapshot_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1206 {
1207 zfsctl_snapdir_t *sdp;
1208 zfs_snapentry_t *sep, *next;
1209 vnode_t *dvp;

1211 VERIFY(gfs_dir_lookup(vp, "..", &dvp, cr, 0, NULL, NULL) == 0);
1212 sdp = dvp->v_data;

1214 mutex_enter(&sdp->sd_lock);

1216 if (vp->v_count > 1) {
1217 mutex_exit(&sdp->sd_lock);
1218 return;
1219 }
1220 ASSERT(!vn_ismntpt(vp));

1222 sep = avl_first(&sdp->sd_snaps);
1223 while (sep != NULL) {
1224 next = AVL_NEXT(&sdp->sd_snaps, sep);

1226 if (sep->se_root == vp) {
1227 avl_remove(&sdp->sd_snaps, sep);
1228 kmem_free(sep->se_name, strlen(sep->se_name) + 1);
1229 kmem_free(sep, sizeof (zfs_snapentry_t));
1230 break;
1231 }
1232 sep = next;
1233 }
1234 ASSERT(sep != NULL);

1236 mutex_exit(&sdp->sd_lock);
1237 VN_RELE(dvp);

new/usr/src/uts/common/fs/zfs/zfs_ctldir.c 4

1239 /*
1240 * Dispose of the vnode for the snapshot mount point.
1241 * This is safe to do because once this entry has been removed
1242 * from the AVL tree, it can’t be found again, so cannot become
1243 * "active". If we lookup the same name again we will end up
1244 * creating a new vnode.
1245 */
1246 gfs_vop_inactive(vp, cr, ct);
1247 }

1250 /*
1251 * These VP’s should never see the light of day. They should always
1252 * be covered.
1253 */
1254 static const fs_operation_def_t zfsctl_tops_snapshot[] = {
1255 VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapshot_inactive },
1256 NULL, NULL
1257 };

1259 int
1260 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp)
1261 {
1262 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1263 vnode_t *dvp, *vp;
1264 zfsctl_snapdir_t *sdp;
1265 zfsctl_node_t *zcp;
1266 zfs_snapentry_t *sep;
1267 int error;

1269 ASSERT(zfsvfs->z_ctldir != NULL);
1270 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp,
1271 NULL, 0, NULL, kcred, NULL, NULL, NULL);
1272 if (error != 0)
1273 return (error);
1274 sdp = dvp->v_data;

1276 mutex_enter(&sdp->sd_lock);
1277 sep = avl_first(&sdp->sd_snaps);
1278 while (sep != NULL) {
1279 vp = sep->se_root;
1280 zcp = vp->v_data;
1281 if (zcp->zc_id == objsetid)
1282 break;

1284 sep = AVL_NEXT(&sdp->sd_snaps, sep);
1285 }

1287 if (sep != NULL) {
1288 VN_HOLD(vp);
1289 /*
1290 * Return the mounted root rather than the covered mount point.
1291 * Takes the GFS vnode at .zfs/snapshot/<snapshot objsetid>
1292 * and returns the ZFS vnode mounted on top of the GFS node.
1293 * This ZFS vnode is the root of the vfs for objset ’objsetid’.
1294 */
1295 error = traverse(&vp);
1296 if (error == 0) {
1297 if (vp == sep->se_root)
1298 error = SET_ERROR(EINVAL);
1299 else
1300 *zfsvfsp = VTOZ(vp)->z_zfsvfs;
1301 }
1302 mutex_exit(&sdp->sd_lock);
1303 VN_RELE(vp);

new/usr/src/uts/common/fs/zfs/zfs_ctldir.c 5

1304 } else {
1305 error = SET_ERROR(EINVAL);
1306 mutex_exit(&sdp->sd_lock);
1307 }

1309 VN_RELE(dvp);

1311 return (error);
1312 }

1314 /*
1315 * Unmount any snapshots for the given filesystem. This is called from
1316 * zfs_umount() - if we have a ctldir, then go through and unmount all the
1317 * snapshots.
1318 */
1319 int
1320 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr)
1321 {
1322 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1323 vnode_t *dvp;
1324 zfsctl_snapdir_t *sdp;
1325 zfs_snapentry_t *sep, *next;
1326 int error;

1328 ASSERT(zfsvfs->z_ctldir != NULL);
1329 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp,
1330 NULL, 0, NULL, cr, NULL, NULL, NULL);
1331 if (error != 0)
1332 return (error);
1333 sdp = dvp->v_data;

1335 mutex_enter(&sdp->sd_lock);

1337 sep = avl_first(&sdp->sd_snaps);
1338 while (sep != NULL) {
1339 next = AVL_NEXT(&sdp->sd_snaps, sep);

1341 /*
1342 * If this snapshot is not mounted, then it must
1343 * have just been unmounted by somebody else, and
1344 * will be cleaned up by zfsctl_snapdir_inactive().
1345 */
1346 if (vn_ismntpt(sep->se_root)) {
1347 avl_remove(&sdp->sd_snaps, sep);
1348 error = zfsctl_unmount_snap(sep, fflags, cr);
1349 if (error) {
1350 avl_add(&sdp->sd_snaps, sep);
1351 break;
1352 }
1353 }
1354 sep = next;
1355 }

1357 mutex_exit(&sdp->sd_lock);
1358 VN_RELE(dvp);

1360 return (error);
1361 }

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 1

**
 144076 Wed Apr 24 12:44:32 2013
new/usr/src/uts/common/fs/zfs/zfs_ioctl.c
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

325 /*
326 * zfs_earlier_version
327 *
326 * Return non-zero if the spa version is less than requested version.
327 */
328 static int
329 zfs_earlier_version(const char *name, int version)
330 {
331 spa_t *spa;

333 if (spa_open(name, &spa, FTAG) == 0) {
334 if (spa_version(spa) < version) {
335 spa_close(spa, FTAG);
336 return (1);
337 }
338 spa_close(spa, FTAG);
339 }
340 return (0);
341 }

343 /*
346 * zpl_earlier_version
347 *
344 * Return TRUE if the ZPL version is less than requested version.
345 */
346 static boolean_t
347 zpl_earlier_version(const char *name, int version)
348 {
349 objset_t *os;
350 boolean_t rc = B_TRUE;

352 if (dmu_objset_hold(name, FTAG, &os) == 0) {
353 uint64_t zplversion;

355 if (dmu_objset_type(os) != DMU_OST_ZFS) {
356 dmu_objset_rele(os, FTAG);
357 return (B_TRUE);
358 }
359 /* XXX reading from non-owned objset */
360 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &zplversion) == 0)
361 rc = zplversion < version;
362 dmu_objset_rele(os, FTAG);
363 }
364 return (rc);
365 }

______unchanged_portion_omitted_

2950 #define ZFS_PROP_UNDEFINED ((uint64_t)-1)

2952 /*
2953 * inputs:
2954 * os parent objset pointer (NULL if root fs)
2955 * fuids_ok fuids allowed in this version of the spa?
2956 * sa_ok SAs allowed in this version of the spa?

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 2

2957 #endif /* ! codereview */
2958 * createprops list of properties requested by creator
2958 * default_zplver zpl version to use if unspecified in createprops
2959 * fuids_ok fuids allowed in this version of the spa?
2960 * os parent objset pointer (NULL if root fs)
2959 *
2960 * outputs:
2961 * zplprops values for the zplprops we attach to the master node object
2962 * is_ci true if requested file system will be purely case-insensitive
2963 *
2964 * Determine the settings for utf8only, normalization and
2965 * casesensitivity. Specific values may have been requested by the
2966 * creator and/or we can inherit values from the parent dataset. If
2967 * the file system is of too early a vintage, a creator can not
2968 * request settings for these properties, even if the requested
2969 * setting is the default value. We don’t actually want to create dsl
2970 * properties for these, so remove them from the source nvlist after
2971 * processing.
2972 */
2973 static int
2974 zfs_fill_zplprops_impl(objset_t *os, uint64_t zplver,
2975 boolean_t fuids_ok, boolean_t sa_ok, nvlist_t *createprops,
2976 nvlist_t *zplprops, boolean_t *is_ci)
2977 {
2978 uint64_t sense = ZFS_PROP_UNDEFINED;
2979 uint64_t norm = ZFS_PROP_UNDEFINED;
2980 uint64_t u8 = ZFS_PROP_UNDEFINED;

2982 ASSERT(zplprops != NULL);

2984 /*
2985 * Pull out creator prop choices, if any.
2986 */
2987 if (createprops) {
2988 (void) nvlist_lookup_uint64(createprops,
2989 zfs_prop_to_name(ZFS_PROP_VERSION), &zplver);
2990 (void) nvlist_lookup_uint64(createprops,
2991 zfs_prop_to_name(ZFS_PROP_NORMALIZE), &norm);
2992 (void) nvlist_remove_all(createprops,
2993 zfs_prop_to_name(ZFS_PROP_NORMALIZE));
2994 (void) nvlist_lookup_uint64(createprops,
2995 zfs_prop_to_name(ZFS_PROP_UTF8ONLY), &u8);
2996 (void) nvlist_remove_all(createprops,
2997 zfs_prop_to_name(ZFS_PROP_UTF8ONLY));
2998 (void) nvlist_lookup_uint64(createprops,
2999 zfs_prop_to_name(ZFS_PROP_CASE), &sense);
3000 (void) nvlist_remove_all(createprops,
3001 zfs_prop_to_name(ZFS_PROP_CASE));
3002 }

3004 /*
3005 * If the zpl version requested is whacky or the file system
3006 * or pool is version is too "young" to support normalization
3007 * and the creator tried to set a value for one of the props,
3008 * error out.
3009 */
3010 if ((zplver < ZPL_VERSION_INITIAL || zplver > ZPL_VERSION) ||
3011 (zplver >= ZPL_VERSION_FUID && !fuids_ok) ||
3012 (zplver >= ZPL_VERSION_SA && !sa_ok) ||
3013 (zplver < ZPL_VERSION_NORMALIZATION &&
3014 (norm != ZFS_PROP_UNDEFINED || u8 != ZFS_PROP_UNDEFINED ||
3015 sense != ZFS_PROP_UNDEFINED)))
3016 return (SET_ERROR(ENOTSUP));

3018 /*
3019 * Put the version in the zplprops

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 3

3020 */
3021 VERIFY(nvlist_add_uint64(zplprops,
3022 zfs_prop_to_name(ZFS_PROP_VERSION), zplver) == 0);

3024 if (norm == ZFS_PROP_UNDEFINED)
3025 VERIFY(zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &norm) == 0);
3026 VERIFY(nvlist_add_uint64(zplprops,
3027 zfs_prop_to_name(ZFS_PROP_NORMALIZE), norm) == 0);

3029 /*
3030 * If we’re normalizing, names must always be valid UTF-8 strings.
3031 */
3032 if (norm)
3033 u8 = 1;
3034 if (u8 == ZFS_PROP_UNDEFINED)
3035 VERIFY(zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &u8) == 0);
3036 VERIFY(nvlist_add_uint64(zplprops,
3037 zfs_prop_to_name(ZFS_PROP_UTF8ONLY), u8) == 0);

3039 if (sense == ZFS_PROP_UNDEFINED)
3040 VERIFY(zfs_get_zplprop(os, ZFS_PROP_CASE, &sense) == 0);
3041 VERIFY(nvlist_add_uint64(zplprops,
3042 zfs_prop_to_name(ZFS_PROP_CASE), sense) == 0);

3044 if (is_ci)
3045 *is_ci = (sense == ZFS_CASE_INSENSITIVE);

3047 return (0);
3048 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/zfs_log.c 1

**
 17962 Wed Apr 24 12:44:33 2013
new/usr/src/uts/common/fs/zfs/zfs_log.c
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

213 /*
214 * Handles TX_CREATE, TX_CREATE_ATTR, TX_MKDIR, TX_MKDIR_ATTR and
215 * TK_MKXATTR transactions.
214 * zfs_log_create() is used to handle TX_CREATE, TX_CREATE_ATTR, TX_MKDIR,
215 * TX_MKDIR_ATTR and TX_MKXATTR
216 * transactions.
216 *
217 * TX_CREATE and TX_MKDIR are standard creates, but they may have FUID
218 * domain information appended prior to the name. In this case the
219 * uid/gid in the log record will be a log centric FUID.
220 *
221 * TX_CREATE_ACL_ATTR and TX_MKDIR_ACL_ATTR handle special creates that
222 * may contain attributes, ACL and optional fuid information.
223 *
224 * TX_CREATE_ACL and TX_MKDIR_ACL handle special creates that specify
225 * and ACL and normal users/groups in the ACEs.
226 *
227 * There may be an optional xvattr attribute information similar
228 * to zfs_log_setattr.
229 *
230 * Also, after the file name "domain" strings may be appended.
231 */
232 void
233 zfs_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype,
234 znode_t *dzp, znode_t *zp, char *name, vsecattr_t *vsecp,
235 zfs_fuid_info_t *fuidp, vattr_t *vap)
236 {
237 itx_t *itx;
238 lr_create_t *lr;
239 lr_acl_create_t *lracl;
240 size_t aclsize = (vsecp != NULL) ? vsecp->vsa_aclentsz : 0;
241 size_t xvatsize = 0;
242 size_t txsize;
243 xvattr_t *xvap = (xvattr_t *)vap;
244 void *end;
245 size_t lrsize;
246 size_t namesize = strlen(name) + 1;
247 size_t fuidsz = 0;

249 if (zil_replaying(zilog, tx))
250 return;

252 /*
253 * If we have FUIDs present then add in space for
254 * domains and ACE fuid’s if any.
255 */
256 if (fuidp) {
257 fuidsz += fuidp->z_domain_str_sz;
258 fuidsz += fuidp->z_fuid_cnt * sizeof (uint64_t);
259 }

261 if (vap->va_mask & AT_XVATTR)
262 xvatsize = ZIL_XVAT_SIZE(xvap->xva_mapsize);

new/usr/src/uts/common/fs/zfs/zfs_log.c 2

264 if ((int)txtype == TX_CREATE_ATTR || (int)txtype == TX_MKDIR_ATTR ||
265 (int)txtype == TX_CREATE || (int)txtype == TX_MKDIR ||
266 (int)txtype == TX_MKXATTR) {
267 txsize = sizeof (*lr) + namesize + fuidsz + xvatsize;
268 lrsize = sizeof (*lr);
269 } else {
270 txsize =
271 sizeof (lr_acl_create_t) + namesize + fuidsz +
272 ZIL_ACE_LENGTH(aclsize) + xvatsize;
273 lrsize = sizeof (lr_acl_create_t);
274 }

276 itx = zil_itx_create(txtype, txsize);

278 lr = (lr_create_t *)&itx->itx_lr;
279 lr->lr_doid = dzp->z_id;
280 lr->lr_foid = zp->z_id;
281 lr->lr_mode = zp->z_mode;
282 if (!IS_EPHEMERAL(zp->z_uid)) {
283 lr->lr_uid = (uint64_t)zp->z_uid;
284 } else {
285 lr->lr_uid = fuidp->z_fuid_owner;
286 }
287 if (!IS_EPHEMERAL(zp->z_gid)) {
288 lr->lr_gid = (uint64_t)zp->z_gid;
289 } else {
290 lr->lr_gid = fuidp->z_fuid_group;
291 }
292 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zp->z_zfsvfs), &lr->lr_gen,
293 sizeof (uint64_t));
294 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs),
295 lr->lr_crtime, sizeof (uint64_t) * 2);

297 if (sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zp->z_zfsvfs), &lr->lr_rdev,
298 sizeof (lr->lr_rdev)) != 0)
299 lr->lr_rdev = 0;

301 /*
302 * Fill in xvattr info if any
303 */
304 if (vap->va_mask & AT_XVATTR) {
305 zfs_log_xvattr((lr_attr_t *)((caddr_t)lr + lrsize), xvap);
306 end = (caddr_t)lr + lrsize + xvatsize;
307 } else {
308 end = (caddr_t)lr + lrsize;
309 }

311 /* Now fill in any ACL info */

313 if (vsecp) {
314 lracl = (lr_acl_create_t *)&itx->itx_lr;
315 lracl->lr_aclcnt = vsecp->vsa_aclcnt;
316 lracl->lr_acl_bytes = aclsize;
317 lracl->lr_domcnt = fuidp ? fuidp->z_domain_cnt : 0;
318 lracl->lr_fuidcnt = fuidp ? fuidp->z_fuid_cnt : 0;
319 if (vsecp->vsa_aclflags & VSA_ACE_ACLFLAGS)
320 lracl->lr_acl_flags = (uint64_t)vsecp->vsa_aclflags;
321 else
322 lracl->lr_acl_flags = 0;

324 bcopy(vsecp->vsa_aclentp, end, aclsize);
325 end = (caddr_t)end + ZIL_ACE_LENGTH(aclsize);
326 }

328 /* drop in FUID info */
329 if (fuidp) {

new/usr/src/uts/common/fs/zfs/zfs_log.c 3

330 end = zfs_log_fuid_ids(fuidp, end);
331 end = zfs_log_fuid_domains(fuidp, end);
332 }
333 /*
334 * Now place file name in log record
335 */
336 bcopy(name, end, namesize);

338 zil_itx_assign(zilog, itx, tx);
339 }

341 /*
342 * Handles both TX_REMOVE and TX_RMDIR transactions.
343 * zfs_log_remove() handles both TX_REMOVE and TX_RMDIR transactions.
343 */
344 void
345 zfs_log_remove(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype,
346 znode_t *dzp, char *name, uint64_t foid)
347 {
348 itx_t *itx;
349 lr_remove_t *lr;
350 size_t namesize = strlen(name) + 1;

352 if (zil_replaying(zilog, tx))
353 return;

355 itx = zil_itx_create(txtype, sizeof (*lr) + namesize);
356 lr = (lr_remove_t *)&itx->itx_lr;
357 lr->lr_doid = dzp->z_id;
358 bcopy(name, (char *)(lr + 1), namesize);

360 itx->itx_oid = foid;

362 zil_itx_assign(zilog, itx, tx);
363 }

365 /*
366 * Handles TX_LINK transactions.
367 * zfs_log_link() handles TX_LINK transactions.
367 */
368 void
369 zfs_log_link(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype,
370 znode_t *dzp, znode_t *zp, char *name)
371 {
372 itx_t *itx;
373 lr_link_t *lr;
374 size_t namesize = strlen(name) + 1;

376 if (zil_replaying(zilog, tx))
377 return;

379 itx = zil_itx_create(txtype, sizeof (*lr) + namesize);
380 lr = (lr_link_t *)&itx->itx_lr;
381 lr->lr_doid = dzp->z_id;
382 lr->lr_link_obj = zp->z_id;
383 bcopy(name, (char *)(lr + 1), namesize);

385 zil_itx_assign(zilog, itx, tx);
386 }

388 /*
389 * Handles TX_SYMLINK transactions.
390 * zfs_log_symlink() handles TX_SYMLINK transactions.
390 */
391 void
392 zfs_log_symlink(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype,

new/usr/src/uts/common/fs/zfs/zfs_log.c 4

393 znode_t *dzp, znode_t *zp, char *name, char *link)
394 {
395 itx_t *itx;
396 lr_create_t *lr;
397 size_t namesize = strlen(name) + 1;
398 size_t linksize = strlen(link) + 1;

400 if (zil_replaying(zilog, tx))
401 return;

403 itx = zil_itx_create(txtype, sizeof (*lr) + namesize + linksize);
404 lr = (lr_create_t *)&itx->itx_lr;
405 lr->lr_doid = dzp->z_id;
406 lr->lr_foid = zp->z_id;
407 lr->lr_uid = zp->z_uid;
408 lr->lr_gid = zp->z_gid;
409 lr->lr_mode = zp->z_mode;
410 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zp->z_zfsvfs), &lr->lr_gen,
411 sizeof (uint64_t));
412 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs),
413 lr->lr_crtime, sizeof (uint64_t) * 2);
414 bcopy(name, (char *)(lr + 1), namesize);
415 bcopy(link, (char *)(lr + 1) + namesize, linksize);

417 zil_itx_assign(zilog, itx, tx);
418 }

420 /*
421 * Handles TX_RENAME transactions.
422 * zfs_log_rename() handles TX_RENAME transactions.
422 */
423 void
424 zfs_log_rename(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype,
425 znode_t *sdzp, char *sname, znode_t *tdzp, char *dname, znode_t *szp)
426 {
427 itx_t *itx;
428 lr_rename_t *lr;
429 size_t snamesize = strlen(sname) + 1;
430 size_t dnamesize = strlen(dname) + 1;

432 if (zil_replaying(zilog, tx))
433 return;

435 itx = zil_itx_create(txtype, sizeof (*lr) + snamesize + dnamesize);
436 lr = (lr_rename_t *)&itx->itx_lr;
437 lr->lr_sdoid = sdzp->z_id;
438 lr->lr_tdoid = tdzp->z_id;
439 bcopy(sname, (char *)(lr + 1), snamesize);
440 bcopy(dname, (char *)(lr + 1) + snamesize, dnamesize);
441 itx->itx_oid = szp->z_id;

443 zil_itx_assign(zilog, itx, tx);
444 }

446 /*
447 * Handles TX_WRITE transactions.
448 * zfs_log_write() handles TX_WRITE transactions.
448 */
449 ssize_t zfs_immediate_write_sz = 32768;

451 void
452 zfs_log_write(zilog_t *zilog, dmu_tx_t *tx, int txtype,
453 znode_t *zp, offset_t off, ssize_t resid, int ioflag)
454 {
455 itx_wr_state_t write_state;
456 boolean_t slogging;

new/usr/src/uts/common/fs/zfs/zfs_log.c 5

457 uintptr_t fsync_cnt;
458 ssize_t immediate_write_sz;

460 if (zil_replaying(zilog, tx) || zp->z_unlinked)
461 return;

463 immediate_write_sz = (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
464 ? 0 : zfs_immediate_write_sz;

466 slogging = spa_has_slogs(zilog->zl_spa) &&
467 (zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
468 if (resid > immediate_write_sz && !slogging && resid <= zp->z_blksz)
469 write_state = WR_INDIRECT;
470 else if (ioflag & (FSYNC | FDSYNC))
471 write_state = WR_COPIED;
472 else
473 write_state = WR_NEED_COPY;

475 if ((fsync_cnt = (uintptr_t)tsd_get(zfs_fsyncer_key)) != 0) {
476 (void) tsd_set(zfs_fsyncer_key, (void *)(fsync_cnt - 1));
477 }

479 while (resid) {
480 itx_t *itx;
481 lr_write_t *lr;
482 ssize_t len;

484 /*
485 * If the write would overflow the largest block then split it.
486 */
487 if (write_state != WR_INDIRECT && resid > ZIL_MAX_LOG_DATA)
488 len = SPA_MAXBLOCKSIZE >> 1;
489 else
490 len = resid;

492 itx = zil_itx_create(txtype, sizeof (*lr) +
493 (write_state == WR_COPIED ? len : 0));
494 lr = (lr_write_t *)&itx->itx_lr;
495 if (write_state == WR_COPIED && dmu_read(zp->z_zfsvfs->z_os,
496 zp->z_id, off, len, lr + 1, DMU_READ_NO_PREFETCH) != 0) {
497 zil_itx_destroy(itx);
498 itx = zil_itx_create(txtype, sizeof (*lr));
499 lr = (lr_write_t *)&itx->itx_lr;
500 write_state = WR_NEED_COPY;
501 }

503 itx->itx_wr_state = write_state;
504 if (write_state == WR_NEED_COPY)
505 itx->itx_sod += len;
506 lr->lr_foid = zp->z_id;
507 lr->lr_offset = off;
508 lr->lr_length = len;
509 lr->lr_blkoff = 0;
510 BP_ZERO(&lr->lr_blkptr);

512 itx->itx_private = zp->z_zfsvfs;

514 if (!(ioflag & (FSYNC | FDSYNC)) && (zp->z_sync_cnt == 0) &&
515 (fsync_cnt == 0))
516 itx->itx_sync = B_FALSE;

518 zil_itx_assign(zilog, itx, tx);

520 off += len;
521 resid -= len;
522 }

new/usr/src/uts/common/fs/zfs/zfs_log.c 6

523 }

525 /*
526 * Handles TX_TRUNCATE transactions.
527 * zfs_log_truncate() handles TX_TRUNCATE transactions.
527 */
528 void
529 zfs_log_truncate(zilog_t *zilog, dmu_tx_t *tx, int txtype,
530 znode_t *zp, uint64_t off, uint64_t len)
531 {
532 itx_t *itx;
533 lr_truncate_t *lr;

535 if (zil_replaying(zilog, tx) || zp->z_unlinked)
536 return;

538 itx = zil_itx_create(txtype, sizeof (*lr));
539 lr = (lr_truncate_t *)&itx->itx_lr;
540 lr->lr_foid = zp->z_id;
541 lr->lr_offset = off;
542 lr->lr_length = len;

544 itx->itx_sync = (zp->z_sync_cnt != 0);
545 zil_itx_assign(zilog, itx, tx);
546 }

548 /*
549 * Handles TX_SETATTR transactions.
550 * zfs_log_setattr() handles TX_SETATTR transactions.
550 */
551 void
552 zfs_log_setattr(zilog_t *zilog, dmu_tx_t *tx, int txtype,
553 znode_t *zp, vattr_t *vap, uint_t mask_applied, zfs_fuid_info_t *fuidp)
554 {
555 itx_t *itx;
556 lr_setattr_t *lr;
557 xvattr_t *xvap = (xvattr_t *)vap;
558 size_t recsize = sizeof (lr_setattr_t);
559 void *start;

561 if (zil_replaying(zilog, tx) || zp->z_unlinked)
562 return;

564 /*
565 * If XVATTR set, then log record size needs to allow
566 * for lr_attr_t + xvattr mask, mapsize and create time
567 * plus actual attribute values
568 */
569 if (vap->va_mask & AT_XVATTR)
570 recsize = sizeof (*lr) + ZIL_XVAT_SIZE(xvap->xva_mapsize);

572 if (fuidp)
573 recsize += fuidp->z_domain_str_sz;

575 itx = zil_itx_create(txtype, recsize);
576 lr = (lr_setattr_t *)&itx->itx_lr;
577 lr->lr_foid = zp->z_id;
578 lr->lr_mask = (uint64_t)mask_applied;
579 lr->lr_mode = (uint64_t)vap->va_mode;
580 if ((mask_applied & AT_UID) && IS_EPHEMERAL(vap->va_uid))
581 lr->lr_uid = fuidp->z_fuid_owner;
582 else
583 lr->lr_uid = (uint64_t)vap->va_uid;

585 if ((mask_applied & AT_GID) && IS_EPHEMERAL(vap->va_gid))
586 lr->lr_gid = fuidp->z_fuid_group;

new/usr/src/uts/common/fs/zfs/zfs_log.c 7

587 else
588 lr->lr_gid = (uint64_t)vap->va_gid;

590 lr->lr_size = (uint64_t)vap->va_size;
591 ZFS_TIME_ENCODE(&vap->va_atime, lr->lr_atime);
592 ZFS_TIME_ENCODE(&vap->va_mtime, lr->lr_mtime);
593 start = (lr_setattr_t *)(lr + 1);
594 if (vap->va_mask & AT_XVATTR) {
595 zfs_log_xvattr((lr_attr_t *)start, xvap);
596 start = (caddr_t)start + ZIL_XVAT_SIZE(xvap->xva_mapsize);
597 }

599 /*
600 * Now stick on domain information if any on end
601 */

603 if (fuidp)
604 (void) zfs_log_fuid_domains(fuidp, start);

606 itx->itx_sync = (zp->z_sync_cnt != 0);
607 zil_itx_assign(zilog, itx, tx);
608 }

610 /*
611 * Handles TX_ACL transactions.
612 * zfs_log_acl() handles TX_ACL transactions.
612 */
613 void
614 zfs_log_acl(zilog_t *zilog, dmu_tx_t *tx, znode_t *zp,
615 vsecattr_t *vsecp, zfs_fuid_info_t *fuidp)
616 {
617 itx_t *itx;
618 lr_acl_v0_t *lrv0;
619 lr_acl_t *lr;
620 int txtype;
621 int lrsize;
622 size_t txsize;
623 size_t aclbytes = vsecp->vsa_aclentsz;

625 if (zil_replaying(zilog, tx) || zp->z_unlinked)
626 return;

628 txtype = (zp->z_zfsvfs->z_version < ZPL_VERSION_FUID) ?
629 TX_ACL_V0 : TX_ACL;

631 if (txtype == TX_ACL)
632 lrsize = sizeof (*lr);
633 else
634 lrsize = sizeof (*lrv0);

636 txsize = lrsize +
637 ((txtype == TX_ACL) ? ZIL_ACE_LENGTH(aclbytes) : aclbytes) +
638 (fuidp ? fuidp->z_domain_str_sz : 0) +
639 sizeof (uint64_t) * (fuidp ? fuidp->z_fuid_cnt : 0);

641 itx = zil_itx_create(txtype, txsize);

643 lr = (lr_acl_t *)&itx->itx_lr;
644 lr->lr_foid = zp->z_id;
645 if (txtype == TX_ACL) {
646 lr->lr_acl_bytes = aclbytes;
647 lr->lr_domcnt = fuidp ? fuidp->z_domain_cnt : 0;
648 lr->lr_fuidcnt = fuidp ? fuidp->z_fuid_cnt : 0;
649 if (vsecp->vsa_mask & VSA_ACE_ACLFLAGS)
650 lr->lr_acl_flags = (uint64_t)vsecp->vsa_aclflags;
651 else

new/usr/src/uts/common/fs/zfs/zfs_log.c 8

652 lr->lr_acl_flags = 0;
653 }
654 lr->lr_aclcnt = (uint64_t)vsecp->vsa_aclcnt;

656 if (txtype == TX_ACL_V0) {
657 lrv0 = (lr_acl_v0_t *)lr;
658 bcopy(vsecp->vsa_aclentp, (ace_t *)(lrv0 + 1), aclbytes);
659 } else {
660 void *start = (ace_t *)(lr + 1);

662 bcopy(vsecp->vsa_aclentp, start, aclbytes);

664 start = (caddr_t)start + ZIL_ACE_LENGTH(aclbytes);

666 if (fuidp) {
667 start = zfs_log_fuid_ids(fuidp, start);
668 (void) zfs_log_fuid_domains(fuidp, start);
669 }
670 }

672 itx->itx_sync = (zp->z_sync_cnt != 0);
673 zil_itx_assign(zilog, itx, tx);
674 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/zfs_rlock.c 1

**
 17062 Wed Apr 24 12:44:33 2013
new/usr/src/uts/common/fs/zfs/zfs_rlock.c
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright (c) 2012 by Delphix. All rights reserved.
27 */

29 /*
30 * This file contains the code to implement file range locking in
31 * ZFS, although there isn’t much specific to ZFS (all that comes to mind is
31 * ZFS, although there isn’t much specific to ZFS (all that comes to mind
32 * support for growing the blocksize).
33 *
34 * Interface
35 * ---------
36 * Defined in zfs_rlock.h but essentially:
37 * rl = zfs_range_lock(zp, off, len, lock_type);
38 * zfs_range_unlock(rl);
39 * zfs_range_reduce(rl, off, len);
40 *
41 * AVL tree
42 * --------
43 * An AVL tree is used to maintain the state of the existing ranges
44 * that are locked for exclusive (writer) or shared (reader) use.
45 * The starting range offset is used for searching and sorting the tree.
46 *
47 * Common case
48 * -----------
49 * The (hopefully) usual case is of no overlaps or contention for
50 * locks. On entry to zfs_lock_range() a rl_t is allocated; the tree
51 * searched that finds no overlap, and *this* rl_t is placed in the tree.
52 *
53 * Overlaps/Reference counting/Proxy locks
54 * ---------------------------------------
55 * The avl code only allows one node at a particular offset. Also it’s very

new/usr/src/uts/common/fs/zfs/zfs_rlock.c 2

56 * inefficient to search through all previous entries looking for overlaps
57 * (because the very 1st in the ordered list might be at offset 0 but
58 * cover the whole file).
59 * So this implementation uses reference counts and proxy range locks.
60 * Firstly, only reader locks use reference counts and proxy locks,
61 * because writer locks are exclusive.
62 * When a reader lock overlaps with another then a proxy lock is created
63 * for that range and replaces the original lock. If the overlap
64 * is exact then the reference count of the proxy is simply incremented.
65 * Otherwise, the proxy lock is split into smaller lock ranges and
66 * new proxy locks created for non overlapping ranges.
67 * The reference counts are adjusted accordingly.
68 * Meanwhile, the orginal lock is kept around (this is the callers handle)
69 * and its offset and length are used when releasing the lock.
70 *
71 * Thread coordination
72 * -------------------
73 * In order to make wakeups efficient and to ensure multiple continuous
74 * readers on a range don’t starve a writer for the same range lock,
75 * two condition variables are allocated in each rl_t.
76 * If a writer (or reader) can’t get a range it initialises the writer
77 * (or reader) cv; sets a flag saying there’s a writer (or reader) waiting;
78 * and waits on that cv. When a thread unlocks that range it wakes up all
79 * writers then all readers before destroying the lock.
80 *
81 * Append mode writes
82 * ------------------
83 * Append mode writes need to lock a range at the end of a file.
84 * The offset of the end of the file is determined under the
85 * range locking mutex, and the lock type converted from RL_APPEND to
86 * RL_WRITER and the range locked.
87 *
88 * Grow block handling
89 * -------------------
90 * ZFS supports multiple block sizes currently upto 128K. The smallest
91 * block size is used for the file which is grown as needed. During this
92 * growth all other writers and readers must be excluded.
93 * So if the block size needs to be grown then the whole file is
94 * exclusively locked, then later the caller will reduce the lock
95 * range to just the range to be written using zfs_reduce_range.
96 */

98 #include <sys/zfs_rlock.h>

100 /*
101 * Check if a write lock can be grabbed, or wait and recheck until available.
102 */
103 static void
104 zfs_range_lock_writer(znode_t *zp, rl_t *new)
105 {
106 avl_tree_t *tree = &zp->z_range_avl;
107 rl_t *rl;
108 avl_index_t where;
109 uint64_t end_size;
110 uint64_t off = new->r_off;
111 uint64_t len = new->r_len;

113 for (;;) {
114 /*
115 * Range locking is also used by zvol and uses a
116 * dummied up znode. However, for zvol, we don’t need to
117 * append or grow blocksize, and besides we don’t have
118 * a "sa" data or z_zfsvfs - so skip that processing.
119 *
120 * Yes, this is ugly, and would be solved by not handling
121 * grow or append in range lock code. If that was done then

new/usr/src/uts/common/fs/zfs/zfs_rlock.c 3

122 * we could make the range locking code generically available
123 * to other non-zfs consumers.
124 */
125 if (zp->z_vnode) { /* caller is ZPL */
126 /*
127 * If in append mode pick up the current end of file.
128 * This is done under z_range_lock to avoid races.
129 */
130 if (new->r_type == RL_APPEND)
131 new->r_off = zp->z_size;

133 /*
134 * If we need to grow the block size then grab the whole
135 * file range. This is also done under z_range_lock to
136 * avoid races.
137 */
138 end_size = MAX(zp->z_size, new->r_off + len);
139 if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) ||
140 zp->z_blksz < zp->z_zfsvfs->z_max_blksz)) {
141 new->r_off = 0;
142 new->r_len = UINT64_MAX;
143 }
144 }

146 /*
147 * First check for the usual case of no locks
148 */
149 if (avl_numnodes(tree) == 0) {
150 new->r_type = RL_WRITER; /* convert to writer */
151 avl_add(tree, new);
152 return;
153 }

155 /*
156 * Look for any locks in the range.
157 */
158 rl = avl_find(tree, new, &where);
159 if (rl)
160 goto wait; /* already locked at same offset */

162 rl = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
163 if (rl && (rl->r_off < new->r_off + new->r_len))
164 goto wait;

166 rl = (rl_t *)avl_nearest(tree, where, AVL_BEFORE);
167 if (rl && rl->r_off + rl->r_len > new->r_off)
168 goto wait;

170 new->r_type = RL_WRITER; /* convert possible RL_APPEND */
171 avl_insert(tree, new, where);
172 return;
173 wait:
174 if (!rl->r_write_wanted) {
175 cv_init(&rl->r_wr_cv, NULL, CV_DEFAULT, NULL);
176 rl->r_write_wanted = B_TRUE;
177 }
178 cv_wait(&rl->r_wr_cv, &zp->z_range_lock);

180 /* reset to original */
181 new->r_off = off;
182 new->r_len = len;
183 }
184 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/zfs_sa.c 1

**
 10532 Wed Apr 24 12:44:34 2013
new/usr/src/uts/common/fs/zfs/zfs_sa.c
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

187 /*
188 * I’m not convinced we should do any of this upgrade.
189 * since the SA code can read both old/new znode formats
190 * with probably little to no performance difference.
190 * with probably little to know performance difference.
191 *
192 * All new files will be created with the new format.
193 */

195 void
196 zfs_sa_upgrade(sa_handle_t *hdl, dmu_tx_t *tx)
197 {
198 dmu_buf_t *db = sa_get_db(hdl);
199 znode_t *zp = sa_get_userdata(hdl);
200 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
201 sa_bulk_attr_t bulk[20];
202 int count = 0;
203 sa_bulk_attr_t sa_attrs[20] = { 0 };
204 zfs_acl_locator_cb_t locate = { 0 };
205 uint64_t uid, gid, mode, rdev, xattr, parent;
206 uint64_t crtime[2], mtime[2], ctime[2];
207 zfs_acl_phys_t znode_acl;
208 char scanstamp[AV_SCANSTAMP_SZ];
209 boolean_t drop_lock = B_FALSE;

211 /*
212 * No upgrade if ACL isn’t cached
213 * since we won’t know which locks are held
214 * and ready the ACL would require special "locked"
215 * interfaces that would be messy
216 */
217 if (zp->z_acl_cached == NULL || ZTOV(zp)->v_type == VLNK)
218 return;

220 /*
221 * If the z_lock is held and we aren’t the owner
222 * the just return since we don’t want to deadlock
223 * trying to update the status of z_is_sa. This
224 * file can then be upgraded at a later time.
225 *
226 * Otherwise, we know we are doing the
227 * sa_update() that caused us to enter this function.
228 */
229 if (mutex_owner(&zp->z_lock) != curthread) {
230 if (mutex_tryenter(&zp->z_lock) == 0)
231 return;
232 else
233 drop_lock = B_TRUE;
234 }

236 /* First do a bulk query of the attributes that aren’t cached */
237 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
238 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
239 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &crtime, 16);

new/usr/src/uts/common/fs/zfs/zfs_sa.c 2

240 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
241 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8);
242 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_XATTR(zfsvfs), NULL, &xattr, 8);
243 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_RDEV(zfsvfs), NULL, &rdev, 8);
244 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, &uid, 8);
245 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, &gid, 8);
246 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
247 &znode_acl, 88);

249 if (sa_bulk_lookup_locked(hdl, bulk, count) != 0)
250 goto done;

253 /*
254 * While the order here doesn’t matter its best to try and organize
255 * it is such a way to pick up an already existing layout number
256 */
257 count = 0;
258 SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
259 SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_SIZE(zfsvfs), NULL,
260 &zp->z_size, 8);
261 SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_GEN(zfsvfs),
262 NULL, &zp->z_gen, 8);
263 SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_UID(zfsvfs), NULL, &uid, 8);
264 SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_GID(zfsvfs), NULL, &gid, 8);
265 SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_PARENT(zfsvfs),
266 NULL, &parent, 8);
267 SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_FLAGS(zfsvfs), NULL,
268 &zp->z_pflags, 8);
269 SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_ATIME(zfsvfs), NULL,
270 zp->z_atime, 16);
271 SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_MTIME(zfsvfs), NULL,
272 &mtime, 16);
273 SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_CTIME(zfsvfs), NULL,
274 &ctime, 16);
275 SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_CRTIME(zfsvfs), NULL,
276 &crtime, 16);
277 SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_LINKS(zfsvfs), NULL,
278 &zp->z_links, 8);
279 if (zp->z_vnode->v_type == VBLK || zp->z_vnode->v_type == VCHR)
280 SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_RDEV(zfsvfs), NULL,
281 &rdev, 8);
282 SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_DACL_COUNT(zfsvfs), NULL,
283 &zp->z_acl_cached->z_acl_count, 8);

285 if (zp->z_acl_cached->z_version < ZFS_ACL_VERSION_FUID)
286 zfs_acl_xform(zp, zp->z_acl_cached, CRED());

288 locate.cb_aclp = zp->z_acl_cached;
289 SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_DACL_ACES(zfsvfs),
290 zfs_acl_data_locator, &locate, zp->z_acl_cached->z_acl_bytes);

292 if (xattr)
293 SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_XATTR(zfsvfs),
294 NULL, &xattr, 8);

296 /* if scanstamp then add scanstamp */

298 if (zp->z_pflags & ZFS_BONUS_SCANSTAMP) {
299 bcopy((caddr_t)db->db_data + ZFS_OLD_ZNODE_PHYS_SIZE,
300 scanstamp, AV_SCANSTAMP_SZ);
301 SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_SCANSTAMP(zfsvfs),
302 NULL, scanstamp, AV_SCANSTAMP_SZ);
303 zp->z_pflags &= ~ZFS_BONUS_SCANSTAMP;
304 }

new/usr/src/uts/common/fs/zfs/zfs_sa.c 3

306 VERIFY(dmu_set_bonustype(db, DMU_OT_SA, tx) == 0);
307 VERIFY(sa_replace_all_by_template_locked(hdl, sa_attrs,
308 count, tx) == 0);
309 if (znode_acl.z_acl_extern_obj)
310 VERIFY(0 == dmu_object_free(zfsvfs->z_os,
311 znode_acl.z_acl_extern_obj, tx));

313 zp->z_is_sa = B_TRUE;
314 done:
315 if (drop_lock)
316 mutex_exit(&zp->z_lock);
317 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/zfs_vfsops.c 1

**
 60200 Wed Apr 24 12:44:34 2013
new/usr/src/uts/common/fs/zfs/zfs_vfsops.c
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

1350 /*
1351 * Check that the hex label string is appropriate for the dataset being
1352 * mounted into the global_zone proper.
1351 * zfs_check_global_label:
1352 * Check that the hex label string is appropriate for the dataset
1353 * being mounted into the global_zone proper.
1353 *
1354 * Return an error if the hex label string is not default or
1355 * admin_low/admin_high. For admin_low labels, the corresponding
1356 * dataset must be readonly.
1357 */
1358 int
1359 zfs_check_global_label(const char *dsname, const char *hexsl)
1360 {
1361 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1362 return (0);
1363 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1364 return (0);
1365 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1366 /* must be readonly */
1367 uint64_t rdonly;

1369 if (dsl_prop_get_integer(dsname,
1370 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1371 return (SET_ERROR(EACCES));
1372 return (rdonly ? 0 : EACCES);
1373 }
1374 return (SET_ERROR(EACCES));
1375 }

1377 /*
1379 * zfs_mount_label_policy:
1378 * Determine whether the mount is allowed according to MAC check.
1379 * by comparing (where appropriate) label of the dataset against
1380 * the label of the zone being mounted into. If the dataset has
1381 * no label, create one.
1382 *
1383 * Returns 0 if access allowed, error otherwise (e.g. EACCES)
1385 * Returns:
1386 * 0 : access allowed
1387 * >0 : error code, such as EACCES
1384 */
1385 static int
1386 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1387 {
1388 int error, retv;
1389 zone_t *mntzone = NULL;
1390 ts_label_t *mnt_tsl;
1391 bslabel_t *mnt_sl;
1392 bslabel_t ds_sl;
1393 char ds_hexsl[MAXNAMELEN];

1395 retv = EACCES; /* assume the worst */

new/usr/src/uts/common/fs/zfs/zfs_vfsops.c 2

1397 /*
1398 * Start by getting the dataset label if it exists.
1399 */
1400 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1401 1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1402 if (error)
1403 return (SET_ERROR(EACCES));

1405 /*
1406 * If labeling is NOT enabled, then disallow the mount of datasets
1407 * which have a non-default label already. No other label checks
1408 * are needed.
1409 */
1410 if (!is_system_labeled()) {
1411 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1412 return (0);
1413 return (SET_ERROR(EACCES));
1414 }

1416 /*
1417 * Get the label of the mountpoint. If mounting into the global
1418 * zone (i.e. mountpoint is not within an active zone and the
1419 * zoned property is off), the label must be default or
1420 * admin_low/admin_high only; no other checks are needed.
1421 */
1422 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1423 if (mntzone->zone_id == GLOBAL_ZONEID) {
1424 uint64_t zoned;

1426 zone_rele(mntzone);

1428 if (dsl_prop_get_integer(osname,
1429 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1430 return (SET_ERROR(EACCES));
1431 if (!zoned)
1432 return (zfs_check_global_label(osname, ds_hexsl));
1433 else
1434 /*
1435 * This is the case of a zone dataset being mounted
1436 * initially, before the zone has been fully created;
1437 * allow this mount into global zone.
1438 */
1439 return (0);
1440 }

1442 mnt_tsl = mntzone->zone_slabel;
1443 ASSERT(mnt_tsl != NULL);
1444 label_hold(mnt_tsl);
1445 mnt_sl = label2bslabel(mnt_tsl);

1447 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1448 /*
1449 * The dataset doesn’t have a real label, so fabricate one.
1450 */
1451 char *str = NULL;

1453 if (l_to_str_internal(mnt_sl, &str) == 0 &&
1454 dsl_prop_set_string(osname,
1455 zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1456 ZPROP_SRC_LOCAL, str) == 0)
1457 retv = 0;
1458 if (str != NULL)
1459 kmem_free(str, strlen(str) + 1);
1460 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1461 /*
1462 * Now compare labels to complete the MAC check. If the

new/usr/src/uts/common/fs/zfs/zfs_vfsops.c 3

1463 * labels are equal then allow access. If the mountpoint
1464 * label dominates the dataset label, allow readonly access.
1465 * Otherwise, access is denied.
1466 */
1467 if (blequal(mnt_sl, &ds_sl))
1468 retv = 0;
1469 else if (bldominates(mnt_sl, &ds_sl)) {
1470 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1471 retv = 0;
1472 }
1473 }

1475 label_rele(mnt_tsl);
1476 zone_rele(mntzone);
1477 return (retv);
1478 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 1

**
 130563 Wed Apr 24 12:44:34 2013
new/usr/src/uts/common/fs/zfs/zfs_vnops.c
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

422 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */

424 /*
425 * Read bytes from specified file into supplied buffer.
426 *
427 * IN: vp - vnode of file to be read from.
428 * uio - structure supplying read location, range info,
429 * and return buffer.
430 * ioflag - SYNC flags; used to provide FRSYNC semantics.
431 * cr - credentials of caller.
432 * ct - caller context
433 *
434 * OUT: uio - updated offset and range, buffer filled.
435 *
436 * RETURN: 0 on success, error code on failure.
436 * RETURN: 0 if success
437 * error code if failure
437 *
438 * Side Effects:
439 * vp - atime updated if byte count > 0
440 */
441 /* ARGSUSED */
442 static int
443 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
444 {
445 znode_t *zp = VTOZ(vp);
446 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
447 objset_t *os;
448 ssize_t n, nbytes;
449 int error = 0;
450 rl_t *rl;
451 xuio_t *xuio = NULL;

453 ZFS_ENTER(zfsvfs);
454 ZFS_VERIFY_ZP(zp);
455 os = zfsvfs->z_os;

457 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
458 ZFS_EXIT(zfsvfs);
459 return (SET_ERROR(EACCES));
460 }

462 /*
463 * Validate file offset
464 */
465 if (uio->uio_loffset < (offset_t)0) {
466 ZFS_EXIT(zfsvfs);
467 return (SET_ERROR(EINVAL));
468 }

470 /*
471 * Fasttrack empty reads
472 */
473 if (uio->uio_resid == 0) {

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 2

474 ZFS_EXIT(zfsvfs);
475 return (0);
476 }

478 /*
479 * Check for mandatory locks
480 */
481 if (MANDMODE(zp->z_mode)) {
482 if (error = chklock(vp, FREAD,
483 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
484 ZFS_EXIT(zfsvfs);
485 return (error);
486 }
487 }

489 /*
490 * If we’re in FRSYNC mode, sync out this znode before reading it.
491 */
492 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
493 zil_commit(zfsvfs->z_log, zp->z_id);

495 /*
496 * Lock the range against changes.
497 */
498 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);

500 /*
501 * If we are reading past end-of-file we can skip
502 * to the end; but we might still need to set atime.
503 */
504 if (uio->uio_loffset >= zp->z_size) {
505 error = 0;
506 goto out;
507 }

509 ASSERT(uio->uio_loffset < zp->z_size);
510 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);

512 if ((uio->uio_extflg == UIO_XUIO) &&
513 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
514 int nblk;
515 int blksz = zp->z_blksz;
516 uint64_t offset = uio->uio_loffset;

518 xuio = (xuio_t *)uio;
519 if ((ISP2(blksz))) {
520 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
521 blksz)) / blksz;
522 } else {
523 ASSERT(offset + n <= blksz);
524 nblk = 1;
525 }
526 (void) dmu_xuio_init(xuio, nblk);

528 if (vn_has_cached_data(vp)) {
529 /*
530 * For simplicity, we always allocate a full buffer
531 * even if we only expect to read a portion of a block.
532 */
533 while (--nblk >= 0) {
534 (void) dmu_xuio_add(xuio,
535 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
536 blksz), 0, blksz);
537 }
538 }
539 }

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 3

541 while (n > 0) {
542 nbytes = MIN(n, zfs_read_chunk_size -
543 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));

545 if (vn_has_cached_data(vp))
546 error = mappedread(vp, nbytes, uio);
547 else
548 error = dmu_read_uio(os, zp->z_id, uio, nbytes);
549 if (error) {
550 /* convert checksum errors into IO errors */
551 if (error == ECKSUM)
552 error = SET_ERROR(EIO);
553 break;
554 }

556 n -= nbytes;
557 }
558 out:
559 zfs_range_unlock(rl);

561 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
562 ZFS_EXIT(zfsvfs);
563 return (error);
564 }

566 /*
567 * Write the bytes to a file.
568 *
569 * IN: vp - vnode of file to be written to.
570 * uio - structure supplying write location, range info,
571 * and data buffer.
572 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is
573 * set if in append mode.
573 * ioflag - FAPPEND flag set if in append mode.
574 * cr - credentials of caller.
575 * ct - caller context (NFS/CIFS fem monitor only)
576 *
577 * OUT: uio - updated offset and range.
578 *
579 * RETURN: 0 on success, error code on failure.
579 * RETURN: 0 if success
580 * error code if failure
580 *
581 * Timestamps:
582 * vp - ctime|mtime updated if byte count > 0
583 */

585 /* ARGSUSED */
586 static int
587 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
588 {
589 znode_t *zp = VTOZ(vp);
590 rlim64_t limit = uio->uio_llimit;
591 ssize_t start_resid = uio->uio_resid;
592 ssize_t tx_bytes;
593 uint64_t end_size;
594 dmu_tx_t *tx;
595 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
596 zilog_t *zilog;
597 offset_t woff;
598 ssize_t n, nbytes;
599 rl_t *rl;
600 int max_blksz = zfsvfs->z_max_blksz;
601 int error = 0;
602 arc_buf_t *abuf;

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 4

603 iovec_t *aiov = NULL;
604 xuio_t *xuio = NULL;
605 int i_iov = 0;
606 int iovcnt = uio->uio_iovcnt;
607 iovec_t *iovp = uio->uio_iov;
608 int write_eof;
609 int count = 0;
610 sa_bulk_attr_t bulk[4];
611 uint64_t mtime[2], ctime[2];

613 /*
614 * Fasttrack empty write
615 */
616 n = start_resid;
617 if (n == 0)
618 return (0);

620 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
621 limit = MAXOFFSET_T;

623 ZFS_ENTER(zfsvfs);
624 ZFS_VERIFY_ZP(zp);

626 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
627 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
628 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
629 &zp->z_size, 8);
630 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
631 &zp->z_pflags, 8);

633 /*
634 * If immutable or not appending then return EPERM
635 */
636 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
637 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
638 (uio->uio_loffset < zp->z_size))) {
639 ZFS_EXIT(zfsvfs);
640 return (SET_ERROR(EPERM));
641 }

643 zilog = zfsvfs->z_log;

645 /*
646 * Validate file offset
647 */
648 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
649 if (woff < 0) {
650 ZFS_EXIT(zfsvfs);
651 return (SET_ERROR(EINVAL));
652 }

654 /*
655 * Check for mandatory locks before calling zfs_range_lock()
656 * in order to prevent a deadlock with locks set via fcntl().
657 */
658 if (MANDMODE((mode_t)zp->z_mode) &&
659 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
660 ZFS_EXIT(zfsvfs);
661 return (error);
662 }

664 /*
665 * Pre-fault the pages to ensure slow (eg NFS) pages
666 * don’t hold up txg.
667 * Skip this if uio contains loaned arc_buf.
668 */

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 5

669 if ((uio->uio_extflg == UIO_XUIO) &&
670 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
671 xuio = (xuio_t *)uio;
672 else
673 uio_prefaultpages(MIN(n, max_blksz), uio);

675 /*
676 * If in append mode, set the io offset pointer to eof.
677 */
678 if (ioflag & FAPPEND) {
679 /*
680 * Obtain an appending range lock to guarantee file append
681 * semantics. We reset the write offset once we have the lock.
682 */
683 rl = zfs_range_lock(zp, 0, n, RL_APPEND);
684 woff = rl->r_off;
685 if (rl->r_len == UINT64_MAX) {
686 /*
687 * We overlocked the file because this write will cause
688 * the file block size to increase.
689 * Note that zp_size cannot change with this lock held.
690 */
691 woff = zp->z_size;
692 }
693 uio->uio_loffset = woff;
694 } else {
695 /*
696 * Note that if the file block size will change as a result of
697 * this write, then this range lock will lock the entire file
698 * so that we can re-write the block safely.
699 */
700 rl = zfs_range_lock(zp, woff, n, RL_WRITER);
701 }

703 if (woff >= limit) {
704 zfs_range_unlock(rl);
705 ZFS_EXIT(zfsvfs);
706 return (SET_ERROR(EFBIG));
707 }

709 if ((woff + n) > limit || woff > (limit - n))
710 n = limit - woff;

712 /* Will this write extend the file length? */
713 write_eof = (woff + n > zp->z_size);

715 end_size = MAX(zp->z_size, woff + n);

717 /*
718 * Write the file in reasonable size chunks. Each chunk is written
719 * in a separate transaction; this keeps the intent log records small
720 * and allows us to do more fine-grained space accounting.
721 */
722 while (n > 0) {
723 abuf = NULL;
724 woff = uio->uio_loffset;
725 again:
726 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
727 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
728 if (abuf != NULL)
729 dmu_return_arcbuf(abuf);
730 error = SET_ERROR(EDQUOT);
731 break;
732 }

734 if (xuio && abuf == NULL) {

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 6

735 ASSERT(i_iov < iovcnt);
736 aiov = &iovp[i_iov];
737 abuf = dmu_xuio_arcbuf(xuio, i_iov);
738 dmu_xuio_clear(xuio, i_iov);
739 DTRACE_PROBE3(zfs_cp_write, int, i_iov,
740 iovec_t *, aiov, arc_buf_t *, abuf);
741 ASSERT((aiov->iov_base == abuf->b_data) ||
742 ((char *)aiov->iov_base - (char *)abuf->b_data +
743 aiov->iov_len == arc_buf_size(abuf)));
744 i_iov++;
745 } else if (abuf == NULL && n >= max_blksz &&
746 woff >= zp->z_size &&
747 P2PHASE(woff, max_blksz) == 0 &&
748 zp->z_blksz == max_blksz) {
749 /*
750 * This write covers a full block. "Borrow" a buffer
751 * from the dmu so that we can fill it before we enter
752 * a transaction. This avoids the possibility of
753 * holding up the transaction if the data copy hangs
754 * up on a pagefault (e.g., from an NFS server mapping).
755 */
756 size_t cbytes;

758 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
759 max_blksz);
760 ASSERT(abuf != NULL);
761 ASSERT(arc_buf_size(abuf) == max_blksz);
762 if (error = uiocopy(abuf->b_data, max_blksz,
763 UIO_WRITE, uio, &cbytes)) {
764 dmu_return_arcbuf(abuf);
765 break;
766 }
767 ASSERT(cbytes == max_blksz);
768 }

770 /*
771 * Start a transaction.
772 */
773 tx = dmu_tx_create(zfsvfs->z_os);
774 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
775 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
776 zfs_sa_upgrade_txholds(tx, zp);
777 error = dmu_tx_assign(tx, TXG_NOWAIT);
778 if (error) {
779 if (error == ERESTART) {
780 dmu_tx_wait(tx);
781 dmu_tx_abort(tx);
782 goto again;
783 }
784 dmu_tx_abort(tx);
785 if (abuf != NULL)
786 dmu_return_arcbuf(abuf);
787 break;
788 }

790 /*
791 * If zfs_range_lock() over-locked we grow the blocksize
792 * and then reduce the lock range. This will only happen
793 * on the first iteration since zfs_range_reduce() will
794 * shrink down r_len to the appropriate size.
795 */
796 if (rl->r_len == UINT64_MAX) {
797 uint64_t new_blksz;

799 if (zp->z_blksz > max_blksz) {
800 ASSERT(!ISP2(zp->z_blksz));

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 7

801 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
802 } else {
803 new_blksz = MIN(end_size, max_blksz);
804 }
805 zfs_grow_blocksize(zp, new_blksz, tx);
806 zfs_range_reduce(rl, woff, n);
807 }

809 /*
810 * XXX - should we really limit each write to z_max_blksz?
811 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
812 */
813 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));

815 if (abuf == NULL) {
816 tx_bytes = uio->uio_resid;
817 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
818 uio, nbytes, tx);
819 tx_bytes -= uio->uio_resid;
820 } else {
821 tx_bytes = nbytes;
822 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
823 /*
824 * If this is not a full block write, but we are
825 * extending the file past EOF and this data starts
826 * block-aligned, use assign_arcbuf(). Otherwise,
827 * write via dmu_write().
828 */
829 if (tx_bytes < max_blksz && (!write_eof ||
830 aiov->iov_base != abuf->b_data)) {
831 ASSERT(xuio);
832 dmu_write(zfsvfs->z_os, zp->z_id, woff,
833 aiov->iov_len, aiov->iov_base, tx);
834 dmu_return_arcbuf(abuf);
835 xuio_stat_wbuf_copied();
836 } else {
837 ASSERT(xuio || tx_bytes == max_blksz);
838 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
839 woff, abuf, tx);
840 }
841 ASSERT(tx_bytes <= uio->uio_resid);
842 uioskip(uio, tx_bytes);
843 }
844 if (tx_bytes && vn_has_cached_data(vp)) {
845 update_pages(vp, woff,
846 tx_bytes, zfsvfs->z_os, zp->z_id);
847 }

849 /*
850 * If we made no progress, we’re done. If we made even
851 * partial progress, update the znode and ZIL accordingly.
852 */
853 if (tx_bytes == 0) {
854 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
855 (void *)&zp->z_size, sizeof (uint64_t), tx);
856 dmu_tx_commit(tx);
857 ASSERT(error != 0);
858 break;
859 }

861 /*
862 * Clear Set-UID/Set-GID bits on successful write if not
863 * privileged and at least one of the excute bits is set.
864 *
865 * It would be nice to to this after all writes have
866 * been done, but that would still expose the ISUID/ISGID

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 8

867 * to another app after the partial write is committed.
868 *
869 * Note: we don’t call zfs_fuid_map_id() here because
870 * user 0 is not an ephemeral uid.
871 */
872 mutex_enter(&zp->z_acl_lock);
873 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
874 (S_IXUSR >> 6))) != 0 &&
875 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
876 secpolicy_vnode_setid_retain(cr,
877 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
878 uint64_t newmode;
879 zp->z_mode &= ~(S_ISUID | S_ISGID);
880 newmode = zp->z_mode;
881 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
882 (void *)&newmode, sizeof (uint64_t), tx);
883 }
884 mutex_exit(&zp->z_acl_lock);

886 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
887 B_TRUE);

889 /*
890 * Update the file size (zp_size) if it has changed;
891 * account for possible concurrent updates.
892 */
893 while ((end_size = zp->z_size) < uio->uio_loffset) {
894 (void) atomic_cas_64(&zp->z_size, end_size,
895 uio->uio_loffset);
896 ASSERT(error == 0);
897 }
898 /*
899 * If we are replaying and eof is non zero then force
900 * the file size to the specified eof. Note, there’s no
901 * concurrency during replay.
902 */
903 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
904 zp->z_size = zfsvfs->z_replay_eof;

906 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);

908 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
909 dmu_tx_commit(tx);

911 if (error != 0)
912 break;
913 ASSERT(tx_bytes == nbytes);
914 n -= nbytes;

916 if (!xuio && n > 0)
917 uio_prefaultpages(MIN(n, max_blksz), uio);
918 }

920 zfs_range_unlock(rl);

922 /*
923 * If we’re in replay mode, or we made no progress, return error.
924 * Otherwise, it’s at least a partial write, so it’s successful.
925 */
926 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
927 ZFS_EXIT(zfsvfs);
928 return (error);
929 }

931 if (ioflag & (FSYNC | FDSYNC) ||
932 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 9

933 zil_commit(zilog, zp->z_id);

935 ZFS_EXIT(zfsvfs);
936 return (0);
937 }

______unchanged_portion_omitted_

1134 /*
1135 * Lookup an entry in a directory, or an extended attribute directory.
1136 * If it exists, return a held vnode reference for it.
1137 *
1138 * IN: dvp - vnode of directory to search.
1139 * nm - name of entry to lookup.
1140 * pnp - full pathname to lookup [UNUSED].
1141 * flags - LOOKUP_XATTR set if looking for an attribute.
1142 * rdir - root directory vnode [UNUSED].
1143 * cr - credentials of caller.
1144 * ct - caller context
1145 * direntflags - directory lookup flags
1146 * realpnp - returned pathname.
1147 *
1148 * OUT: vpp - vnode of located entry, NULL if not found.
1149 *
1150 * RETURN: 0 on success, error code on failure.
1151 * RETURN: 0 if success
1152 * error code if failure
1151 *
1152 * Timestamps:
1153 * NA
1154 */
1155 /* ARGSUSED */
1156 static int
1157 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1158 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1159 int *direntflags, pathname_t *realpnp)
1160 {
1161 znode_t *zdp = VTOZ(dvp);
1162 zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1163 int error = 0;

1165 /* fast path */
1166 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {

1168 if (dvp->v_type != VDIR) {
1169 return (SET_ERROR(ENOTDIR));
1170 } else if (zdp->z_sa_hdl == NULL) {
1171 return (SET_ERROR(EIO));
1172 }

1174 if (nm[0] == 0 || (nm[0] == ’.’ && nm[1] == ’\0’)) {
1175 error = zfs_fastaccesschk_execute(zdp, cr);
1176 if (!error) {
1177 *vpp = dvp;
1178 VN_HOLD(*vpp);
1179 return (0);
1180 }
1181 return (error);
1182 } else {
1183 vnode_t *tvp = dnlc_lookup(dvp, nm);

1185 if (tvp) {
1186 error = zfs_fastaccesschk_execute(zdp, cr);
1187 if (error) {
1188 VN_RELE(tvp);
1189 return (error);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 10

1190 }
1191 if (tvp == DNLC_NO_VNODE) {
1192 VN_RELE(tvp);
1193 return (SET_ERROR(ENOENT));
1194 } else {
1195 *vpp = tvp;
1196 return (specvp_check(vpp, cr));
1197 }
1198 }
1199 }
1200 }

1202 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);

1204 ZFS_ENTER(zfsvfs);
1205 ZFS_VERIFY_ZP(zdp);

1207 *vpp = NULL;

1209 if (flags & LOOKUP_XATTR) {
1210 /*
1211 * If the xattr property is off, refuse the lookup request.
1212 */
1213 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1214 ZFS_EXIT(zfsvfs);
1215 return (SET_ERROR(EINVAL));
1216 }

1218 /*
1219 * We don’t allow recursive attributes..
1220 * Maybe someday we will.
1221 */
1222 if (zdp->z_pflags & ZFS_XATTR) {
1223 ZFS_EXIT(zfsvfs);
1224 return (SET_ERROR(EINVAL));
1225 }

1227 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1228 ZFS_EXIT(zfsvfs);
1229 return (error);
1230 }

1232 /*
1233 * Do we have permission to get into attribute directory?
1234 */

1236 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1237 B_FALSE, cr)) {
1238 VN_RELE(*vpp);
1239 *vpp = NULL;
1240 }

1242 ZFS_EXIT(zfsvfs);
1243 return (error);
1244 }

1246 if (dvp->v_type != VDIR) {
1247 ZFS_EXIT(zfsvfs);
1248 return (SET_ERROR(ENOTDIR));
1249 }

1251 /*
1252 * Check accessibility of directory.
1253 */

1255 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 11

1256 ZFS_EXIT(zfsvfs);
1257 return (error);
1258 }

1260 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1261 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1262 ZFS_EXIT(zfsvfs);
1263 return (SET_ERROR(EILSEQ));
1264 }

1266 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1267 if (error == 0)
1268 error = specvp_check(vpp, cr);

1270 ZFS_EXIT(zfsvfs);
1271 return (error);
1272 }

1274 /*
1275 * Attempt to create a new entry in a directory. If the entry
1276 * already exists, truncate the file if permissible, else return
1277 * an error. Return the vp of the created or trunc’d file.
1278 *
1279 * IN: dvp - vnode of directory to put new file entry in.
1280 * name - name of new file entry.
1281 * vap - attributes of new file.
1282 * excl - flag indicating exclusive or non-exclusive mode.
1283 * mode - mode to open file with.
1284 * cr - credentials of caller.
1285 * flag - large file flag [UNUSED].
1286 * ct - caller context
1287 * vsecp - ACL to be set
1288 *
1289 * OUT: vpp - vnode of created or trunc’d entry.
1290 *
1291 * RETURN: 0 on success, error code on failure.
1293 * RETURN: 0 if success
1294 * error code if failure
1292 *
1293 * Timestamps:
1294 * dvp - ctime|mtime updated if new entry created
1295 * vp - ctime|mtime always, atime if new
1296 */

1298 /* ARGSUSED */
1299 static int
1300 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1301 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1302 vsecattr_t *vsecp)
1303 {
1304 znode_t *zp, *dzp = VTOZ(dvp);
1305 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1306 zilog_t *zilog;
1307 objset_t *os;
1308 zfs_dirlock_t *dl;
1309 dmu_tx_t *tx;
1310 int error;
1311 ksid_t *ksid;
1312 uid_t uid;
1313 gid_t gid = crgetgid(cr);
1314 zfs_acl_ids_t acl_ids;
1315 boolean_t fuid_dirtied;
1316 boolean_t have_acl = B_FALSE;

1318 /*
1319 * If we have an ephemeral id, ACL, or XVATTR then

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 12

1320 * make sure file system is at proper version
1321 */

1323 ksid = crgetsid(cr, KSID_OWNER);
1324 if (ksid)
1325 uid = ksid_getid(ksid);
1326 else
1327 uid = crgetuid(cr);

1329 if (zfsvfs->z_use_fuids == B_FALSE &&
1330 (vsecp || (vap->va_mask & AT_XVATTR) ||
1331 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1332 return (SET_ERROR(EINVAL));

1334 ZFS_ENTER(zfsvfs);
1335 ZFS_VERIFY_ZP(dzp);
1336 os = zfsvfs->z_os;
1337 zilog = zfsvfs->z_log;

1339 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1340 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1341 ZFS_EXIT(zfsvfs);
1342 return (SET_ERROR(EILSEQ));
1343 }

1345 if (vap->va_mask & AT_XVATTR) {
1346 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1347 crgetuid(cr), cr, vap->va_type)) != 0) {
1348 ZFS_EXIT(zfsvfs);
1349 return (error);
1350 }
1351 }
1352 top:
1353 *vpp = NULL;

1355 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1356 vap->va_mode &= ~VSVTX;

1358 if (*name == ’\0’) {
1359 /*
1360 * Null component name refers to the directory itself.
1361 */
1362 VN_HOLD(dvp);
1363 zp = dzp;
1364 dl = NULL;
1365 error = 0;
1366 } else {
1367 /* possible VN_HOLD(zp) */
1368 int zflg = 0;

1370 if (flag & FIGNORECASE)
1371 zflg |= ZCILOOK;

1373 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1374 NULL, NULL);
1375 if (error) {
1376 if (have_acl)
1377 zfs_acl_ids_free(&acl_ids);
1378 if (strcmp(name, "..") == 0)
1379 error = SET_ERROR(EISDIR);
1380 ZFS_EXIT(zfsvfs);
1381 return (error);
1382 }
1383 }

1385 if (zp == NULL) {

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 13

1386 uint64_t txtype;

1388 /*
1389 * Create a new file object and update the directory
1390 * to reference it.
1391 */
1392 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1393 if (have_acl)
1394 zfs_acl_ids_free(&acl_ids);
1395 goto out;
1396 }

1398 /*
1399 * We only support the creation of regular files in
1400 * extended attribute directories.
1401 */

1403 if ((dzp->z_pflags & ZFS_XATTR) &&
1404 (vap->va_type != VREG)) {
1405 if (have_acl)
1406 zfs_acl_ids_free(&acl_ids);
1407 error = SET_ERROR(EINVAL);
1408 goto out;
1409 }

1411 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1412 cr, vsecp, &acl_ids)) != 0)
1413 goto out;
1414 have_acl = B_TRUE;

1416 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1417 zfs_acl_ids_free(&acl_ids);
1418 error = SET_ERROR(EDQUOT);
1419 goto out;
1420 }

1422 tx = dmu_tx_create(os);

1424 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1425 ZFS_SA_BASE_ATTR_SIZE);

1427 fuid_dirtied = zfsvfs->z_fuid_dirty;
1428 if (fuid_dirtied)
1429 zfs_fuid_txhold(zfsvfs, tx);
1430 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1431 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1432 if (!zfsvfs->z_use_sa &&
1433 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1434 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1435 0, acl_ids.z_aclp->z_acl_bytes);
1436 }
1437 error = dmu_tx_assign(tx, TXG_NOWAIT);
1438 if (error) {
1439 zfs_dirent_unlock(dl);
1440 if (error == ERESTART) {
1441 dmu_tx_wait(tx);
1442 dmu_tx_abort(tx);
1443 goto top;
1444 }
1445 zfs_acl_ids_free(&acl_ids);
1446 dmu_tx_abort(tx);
1447 ZFS_EXIT(zfsvfs);
1448 return (error);
1449 }
1450 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 14

1452 if (fuid_dirtied)
1453 zfs_fuid_sync(zfsvfs, tx);

1455 (void) zfs_link_create(dl, zp, tx, ZNEW);
1456 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1457 if (flag & FIGNORECASE)
1458 txtype |= TX_CI;
1459 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1460 vsecp, acl_ids.z_fuidp, vap);
1461 zfs_acl_ids_free(&acl_ids);
1462 dmu_tx_commit(tx);
1463 } else {
1464 int aflags = (flag & FAPPEND) ? V_APPEND : 0;

1466 if (have_acl)
1467 zfs_acl_ids_free(&acl_ids);
1468 have_acl = B_FALSE;

1470 /*
1471 * A directory entry already exists for this name.
1472 */
1473 /*
1474 * Can’t truncate an existing file if in exclusive mode.
1475 */
1476 if (excl == EXCL) {
1477 error = SET_ERROR(EEXIST);
1478 goto out;
1479 }
1480 /*
1481 * Can’t open a directory for writing.
1482 */
1483 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1484 error = SET_ERROR(EISDIR);
1485 goto out;
1486 }
1487 /*
1488 * Verify requested access to file.
1489 */
1490 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1491 goto out;
1492 }

1494 mutex_enter(&dzp->z_lock);
1495 dzp->z_seq++;
1496 mutex_exit(&dzp->z_lock);

1498 /*
1499 * Truncate regular files if requested.
1500 */
1501 if ((ZTOV(zp)->v_type == VREG) &&
1502 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1503 /* we can’t hold any locks when calling zfs_freesp() */
1504 zfs_dirent_unlock(dl);
1505 dl = NULL;
1506 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1507 if (error == 0) {
1508 vnevent_create(ZTOV(zp), ct);
1509 }
1510 }
1511 }
1512 out:

1514 if (dl)
1515 zfs_dirent_unlock(dl);

1517 if (error) {

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 15

1518 if (zp)
1519 VN_RELE(ZTOV(zp));
1520 } else {
1521 *vpp = ZTOV(zp);
1522 error = specvp_check(vpp, cr);
1523 }

1525 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1526 zil_commit(zilog, 0);

1528 ZFS_EXIT(zfsvfs);
1529 return (error);
1530 }

1532 /*
1533 * Remove an entry from a directory.
1534 *
1535 * IN: dvp - vnode of directory to remove entry from.
1536 * name - name of entry to remove.
1537 * cr - credentials of caller.
1538 * ct - caller context
1539 * flags - case flags
1540 *
1541 * RETURN: 0 on success, error code on failure.
1544 * RETURN: 0 if success
1545 * error code if failure
1542 *
1543 * Timestamps:
1544 * dvp - ctime|mtime
1545 * vp - ctime (if nlink > 0)
1546 */

1548 uint64_t null_xattr = 0;

1550 /*ARGSUSED*/
1551 static int
1552 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1553 int flags)
1554 {
1555 znode_t *zp, *dzp = VTOZ(dvp);
1556 znode_t *xzp;
1557 vnode_t *vp;
1558 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1559 zilog_t *zilog;
1560 uint64_t acl_obj, xattr_obj;
1561 uint64_t xattr_obj_unlinked = 0;
1562 uint64_t obj = 0;
1563 zfs_dirlock_t *dl;
1564 dmu_tx_t *tx;
1565 boolean_t may_delete_now, delete_now = FALSE;
1566 boolean_t unlinked, toobig = FALSE;
1567 uint64_t txtype;
1568 pathname_t *realnmp = NULL;
1569 pathname_t realnm;
1570 int error;
1571 int zflg = ZEXISTS;

1573 ZFS_ENTER(zfsvfs);
1574 ZFS_VERIFY_ZP(dzp);
1575 zilog = zfsvfs->z_log;

1577 if (flags & FIGNORECASE) {
1578 zflg |= ZCILOOK;
1579 pn_alloc(&realnm);
1580 realnmp = &realnm;
1581 }

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 16

1583 top:
1584 xattr_obj = 0;
1585 xzp = NULL;
1586 /*
1587 * Attempt to lock directory; fail if entry doesn’t exist.
1588 */
1589 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1590 NULL, realnmp)) {
1591 if (realnmp)
1592 pn_free(realnmp);
1593 ZFS_EXIT(zfsvfs);
1594 return (error);
1595 }

1597 vp = ZTOV(zp);

1599 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1600 goto out;
1601 }

1603 /*
1604 * Need to use rmdir for removing directories.
1605 */
1606 if (vp->v_type == VDIR) {
1607 error = SET_ERROR(EPERM);
1608 goto out;
1609 }

1611 vnevent_remove(vp, dvp, name, ct);

1613 if (realnmp)
1614 dnlc_remove(dvp, realnmp->pn_buf);
1615 else
1616 dnlc_remove(dvp, name);

1618 mutex_enter(&vp->v_lock);
1619 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1620 mutex_exit(&vp->v_lock);

1622 /*
1623 * We may delete the znode now, or we may put it in the unlinked set;
1624 * it depends on whether we’re the last link, and on whether there are
1625 * other holds on the vnode. So we dmu_tx_hold() the right things to
1626 * allow for either case.
1627 */
1628 obj = zp->z_id;
1629 tx = dmu_tx_create(zfsvfs->z_os);
1630 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1631 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1632 zfs_sa_upgrade_txholds(tx, zp);
1633 zfs_sa_upgrade_txholds(tx, dzp);
1634 if (may_delete_now) {
1635 toobig =
1636 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1637 /* if the file is too big, only hold_free a token amount */
1638 dmu_tx_hold_free(tx, zp->z_id, 0,
1639 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1640 }

1642 /* are there any extended attributes? */
1643 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1644 &xattr_obj, sizeof (xattr_obj));
1645 if (error == 0 && xattr_obj) {
1646 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1647 ASSERT0(error);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 17

1648 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1649 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1650 }

1652 mutex_enter(&zp->z_lock);
1653 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1654 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1655 mutex_exit(&zp->z_lock);

1657 /* charge as an update -- would be nice not to charge at all */
1658 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);

1660 error = dmu_tx_assign(tx, TXG_NOWAIT);
1661 if (error) {
1662 zfs_dirent_unlock(dl);
1663 VN_RELE(vp);
1664 if (xzp)
1665 VN_RELE(ZTOV(xzp));
1666 if (error == ERESTART) {
1667 dmu_tx_wait(tx);
1668 dmu_tx_abort(tx);
1669 goto top;
1670 }
1671 if (realnmp)
1672 pn_free(realnmp);
1673 dmu_tx_abort(tx);
1674 ZFS_EXIT(zfsvfs);
1675 return (error);
1676 }

1678 /*
1679 * Remove the directory entry.
1680 */
1681 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);

1683 if (error) {
1684 dmu_tx_commit(tx);
1685 goto out;
1686 }

1688 if (unlinked) {

1690 /*
1691 * Hold z_lock so that we can make sure that the ACL obj
1692 * hasn’t changed. Could have been deleted due to
1693 * zfs_sa_upgrade().
1694 */
1695 mutex_enter(&zp->z_lock);
1696 mutex_enter(&vp->v_lock);
1697 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1698 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1699 delete_now = may_delete_now && !toobig &&
1700 vp->v_count == 1 && !vn_has_cached_data(vp) &&
1701 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1702 acl_obj;
1703 mutex_exit(&vp->v_lock);
1704 }

1706 if (delete_now) {
1707 if (xattr_obj_unlinked) {
1708 ASSERT3U(xzp->z_links, ==, 2);
1709 mutex_enter(&xzp->z_lock);
1710 xzp->z_unlinked = 1;
1711 xzp->z_links = 0;
1712 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1713 &xzp->z_links, sizeof (xzp->z_links), tx);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 18

1714 ASSERT3U(error, ==, 0);
1715 mutex_exit(&xzp->z_lock);
1716 zfs_unlinked_add(xzp, tx);

1718 if (zp->z_is_sa)
1719 error = sa_remove(zp->z_sa_hdl,
1720 SA_ZPL_XATTR(zfsvfs), tx);
1721 else
1722 error = sa_update(zp->z_sa_hdl,
1723 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1724 sizeof (uint64_t), tx);
1725 ASSERT0(error);
1726 }
1727 mutex_enter(&vp->v_lock);
1728 vp->v_count--;
1729 ASSERT0(vp->v_count);
1730 mutex_exit(&vp->v_lock);
1731 mutex_exit(&zp->z_lock);
1732 zfs_znode_delete(zp, tx);
1733 } else if (unlinked) {
1734 mutex_exit(&zp->z_lock);
1735 zfs_unlinked_add(zp, tx);
1736 }

1738 txtype = TX_REMOVE;
1739 if (flags & FIGNORECASE)
1740 txtype |= TX_CI;
1741 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);

1743 dmu_tx_commit(tx);
1744 out:
1745 if (realnmp)
1746 pn_free(realnmp);

1748 zfs_dirent_unlock(dl);

1750 if (!delete_now)
1751 VN_RELE(vp);
1752 if (xzp)
1753 VN_RELE(ZTOV(xzp));

1755 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1756 zil_commit(zilog, 0);

1758 ZFS_EXIT(zfsvfs);
1759 return (error);
1760 }

1762 /*
1763 * Create a new directory and insert it into dvp using the name
1764 * provided. Return a pointer to the inserted directory.
1765 *
1766 * IN: dvp - vnode of directory to add subdir to.
1767 * dirname - name of new directory.
1768 * vap - attributes of new directory.
1769 * cr - credentials of caller.
1770 * ct - caller context
1771 * flags - case flags
1772 #endif /* ! codereview */
1773 * vsecp - ACL to be set
1774 *
1775 * OUT: vpp - vnode of created directory.
1776 *
1777 * RETURN: 0 on success, error code on failure.
1775 * RETURN: 0 if success
1776 * error code if failure

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 19

1778 *
1779 * Timestamps:
1780 * dvp - ctime|mtime updated
1781 * vp - ctime|mtime|atime updated
1782 */
1783 /*ARGSUSED*/
1784 static int
1785 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1786 caller_context_t *ct, int flags, vsecattr_t *vsecp)
1787 {
1788 znode_t *zp, *dzp = VTOZ(dvp);
1789 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1790 zilog_t *zilog;
1791 zfs_dirlock_t *dl;
1792 uint64_t txtype;
1793 dmu_tx_t *tx;
1794 int error;
1795 int zf = ZNEW;
1796 ksid_t *ksid;
1797 uid_t uid;
1798 gid_t gid = crgetgid(cr);
1799 zfs_acl_ids_t acl_ids;
1800 boolean_t fuid_dirtied;

1802 ASSERT(vap->va_type == VDIR);

1804 /*
1805 * If we have an ephemeral id, ACL, or XVATTR then
1806 * make sure file system is at proper version
1807 */

1809 ksid = crgetsid(cr, KSID_OWNER);
1810 if (ksid)
1811 uid = ksid_getid(ksid);
1812 else
1813 uid = crgetuid(cr);
1814 if (zfsvfs->z_use_fuids == B_FALSE &&
1815 (vsecp || (vap->va_mask & AT_XVATTR) ||
1816 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1817 return (SET_ERROR(EINVAL));

1819 ZFS_ENTER(zfsvfs);
1820 ZFS_VERIFY_ZP(dzp);
1821 zilog = zfsvfs->z_log;

1823 if (dzp->z_pflags & ZFS_XATTR) {
1824 ZFS_EXIT(zfsvfs);
1825 return (SET_ERROR(EINVAL));
1826 }

1828 if (zfsvfs->z_utf8 && u8_validate(dirname,
1829 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1830 ZFS_EXIT(zfsvfs);
1831 return (SET_ERROR(EILSEQ));
1832 }
1833 if (flags & FIGNORECASE)
1834 zf |= ZCILOOK;

1836 if (vap->va_mask & AT_XVATTR) {
1837 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1838 crgetuid(cr), cr, vap->va_type)) != 0) {
1839 ZFS_EXIT(zfsvfs);
1840 return (error);
1841 }
1842 }

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 20

1844 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1845 vsecp, &acl_ids)) != 0) {
1846 ZFS_EXIT(zfsvfs);
1847 return (error);
1848 }
1849 /*
1850 * First make sure the new directory doesn’t exist.
1851 *
1852 * Existence is checked first to make sure we don’t return
1853 * EACCES instead of EEXIST which can cause some applications
1854 * to fail.
1855 */
1856 top:
1857 *vpp = NULL;

1859 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1860 NULL, NULL)) {
1861 zfs_acl_ids_free(&acl_ids);
1862 ZFS_EXIT(zfsvfs);
1863 return (error);
1864 }

1866 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1867 zfs_acl_ids_free(&acl_ids);
1868 zfs_dirent_unlock(dl);
1869 ZFS_EXIT(zfsvfs);
1870 return (error);
1871 }

1873 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1874 zfs_acl_ids_free(&acl_ids);
1875 zfs_dirent_unlock(dl);
1876 ZFS_EXIT(zfsvfs);
1877 return (SET_ERROR(EDQUOT));
1878 }

1880 /*
1881 * Add a new entry to the directory.
1882 */
1883 tx = dmu_tx_create(zfsvfs->z_os);
1884 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1885 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1886 fuid_dirtied = zfsvfs->z_fuid_dirty;
1887 if (fuid_dirtied)
1888 zfs_fuid_txhold(zfsvfs, tx);
1889 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1890 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1891 acl_ids.z_aclp->z_acl_bytes);
1892 }

1894 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1895 ZFS_SA_BASE_ATTR_SIZE);

1897 error = dmu_tx_assign(tx, TXG_NOWAIT);
1898 if (error) {
1899 zfs_dirent_unlock(dl);
1900 if (error == ERESTART) {
1901 dmu_tx_wait(tx);
1902 dmu_tx_abort(tx);
1903 goto top;
1904 }
1905 zfs_acl_ids_free(&acl_ids);
1906 dmu_tx_abort(tx);
1907 ZFS_EXIT(zfsvfs);
1908 return (error);
1909 }

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 21

1911 /*
1912 * Create new node.
1913 */
1914 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);

1916 if (fuid_dirtied)
1917 zfs_fuid_sync(zfsvfs, tx);

1919 /*
1920 * Now put new name in parent dir.
1921 */
1922 (void) zfs_link_create(dl, zp, tx, ZNEW);

1924 *vpp = ZTOV(zp);

1926 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1927 if (flags & FIGNORECASE)
1928 txtype |= TX_CI;
1929 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1930 acl_ids.z_fuidp, vap);

1932 zfs_acl_ids_free(&acl_ids);

1934 dmu_tx_commit(tx);

1936 zfs_dirent_unlock(dl);

1938 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1939 zil_commit(zilog, 0);

1941 ZFS_EXIT(zfsvfs);
1942 return (0);
1943 }

1945 /*
1946 * Remove a directory subdir entry. If the current working
1947 * directory is the same as the subdir to be removed, the
1948 * remove will fail.
1949 *
1950 * IN: dvp - vnode of directory to remove from.
1951 * name - name of directory to be removed.
1952 * cwd - vnode of current working directory.
1953 * cr - credentials of caller.
1954 * ct - caller context
1955 * flags - case flags
1956 *
1957 * RETURN: 0 on success, error code on failure.
1956 * RETURN: 0 if success
1957 * error code if failure
1958 *
1959 * Timestamps:
1960 * dvp - ctime|mtime updated
1961 */
1962 /*ARGSUSED*/
1963 static int
1964 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
1965 caller_context_t *ct, int flags)
1966 {
1967 znode_t *dzp = VTOZ(dvp);
1968 znode_t *zp;
1969 vnode_t *vp;
1970 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1971 zilog_t *zilog;
1972 zfs_dirlock_t *dl;
1973 dmu_tx_t *tx;

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 22

1974 int error;
1975 int zflg = ZEXISTS;

1977 ZFS_ENTER(zfsvfs);
1978 ZFS_VERIFY_ZP(dzp);
1979 zilog = zfsvfs->z_log;

1981 if (flags & FIGNORECASE)
1982 zflg |= ZCILOOK;
1983 top:
1984 zp = NULL;

1986 /*
1987 * Attempt to lock directory; fail if entry doesn’t exist.
1988 */
1989 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1990 NULL, NULL)) {
1991 ZFS_EXIT(zfsvfs);
1992 return (error);
1993 }

1995 vp = ZTOV(zp);

1997 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1998 goto out;
1999 }

2001 if (vp->v_type != VDIR) {
2002 error = SET_ERROR(ENOTDIR);
2003 goto out;
2004 }

2006 if (vp == cwd) {
2007 error = SET_ERROR(EINVAL);
2008 goto out;
2009 }

2011 vnevent_rmdir(vp, dvp, name, ct);

2013 /*
2014 * Grab a lock on the directory to make sure that noone is
2015 * trying to add (or lookup) entries while we are removing it.
2016 */
2017 rw_enter(&zp->z_name_lock, RW_WRITER);

2019 /*
2020 * Grab a lock on the parent pointer to make sure we play well
2021 * with the treewalk and directory rename code.
2022 */
2023 rw_enter(&zp->z_parent_lock, RW_WRITER);

2025 tx = dmu_tx_create(zfsvfs->z_os);
2026 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2027 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2028 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2029 zfs_sa_upgrade_txholds(tx, zp);
2030 zfs_sa_upgrade_txholds(tx, dzp);
2031 error = dmu_tx_assign(tx, TXG_NOWAIT);
2032 if (error) {
2033 rw_exit(&zp->z_parent_lock);
2034 rw_exit(&zp->z_name_lock);
2035 zfs_dirent_unlock(dl);
2036 VN_RELE(vp);
2037 if (error == ERESTART) {
2038 dmu_tx_wait(tx);
2039 dmu_tx_abort(tx);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 23

2040 goto top;
2041 }
2042 dmu_tx_abort(tx);
2043 ZFS_EXIT(zfsvfs);
2044 return (error);
2045 }

2047 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);

2049 if (error == 0) {
2050 uint64_t txtype = TX_RMDIR;
2051 if (flags & FIGNORECASE)
2052 txtype |= TX_CI;
2053 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2054 }

2056 dmu_tx_commit(tx);

2058 rw_exit(&zp->z_parent_lock);
2059 rw_exit(&zp->z_name_lock);
2060 out:
2061 zfs_dirent_unlock(dl);

2063 VN_RELE(vp);

2065 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2066 zil_commit(zilog, 0);

2068 ZFS_EXIT(zfsvfs);
2069 return (error);
2070 }

2072 /*
2073 * Read as many directory entries as will fit into the provided
2074 * buffer from the given directory cursor position (specified in
2075 * the uio structure).
2075 * the uio structure.
2076 *
2077 * IN: vp - vnode of directory to read.
2078 * uio - structure supplying read location, range info,
2079 * and return buffer.
2080 * cr - credentials of caller.
2081 * ct - caller context
2082 * flags - case flags
2083 *
2084 * OUT: uio - updated offset and range, buffer filled.
2085 * eofp - set to true if end-of-file detected.
2086 *
2087 * RETURN: 0 on success, error code on failure.
2087 * RETURN: 0 if success
2088 * error code if failure
2088 *
2089 * Timestamps:
2090 * vp - atime updated
2091 *
2092 * Note that the low 4 bits of the cookie returned by zap is always zero.
2093 * This allows us to use the low range for "special" directory entries:
2094 * We use 0 for ’.’, and 1 for ’..’. If this is the root of the filesystem,
2095 * we use the offset 2 for the ’.zfs’ directory.
2096 */
2097 /* ARGSUSED */
2098 static int
2099 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2100 caller_context_t *ct, int flags)
2101 {
2102 znode_t *zp = VTOZ(vp);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 24

2103 iovec_t *iovp;
2104 edirent_t *eodp;
2105 dirent64_t *odp;
2106 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2107 objset_t *os;
2108 caddr_t outbuf;
2109 size_t bufsize;
2110 zap_cursor_t zc;
2111 zap_attribute_t zap;
2112 uint_t bytes_wanted;
2113 uint64_t offset; /* must be unsigned; checks for < 1 */
2114 uint64_t parent;
2115 int local_eof;
2116 int outcount;
2117 int error;
2118 uint8_t prefetch;
2119 boolean_t check_sysattrs;

2121 ZFS_ENTER(zfsvfs);
2122 ZFS_VERIFY_ZP(zp);

2124 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2125 &parent, sizeof (parent))) != 0) {
2126 ZFS_EXIT(zfsvfs);
2127 return (error);
2128 }

2130 /*
2131 * If we are not given an eof variable,
2132 * use a local one.
2133 */
2134 if (eofp == NULL)
2135 eofp = &local_eof;

2137 /*
2138 * Check for valid iov_len.
2139 */
2140 if (uio->uio_iov->iov_len <= 0) {
2141 ZFS_EXIT(zfsvfs);
2142 return (SET_ERROR(EINVAL));
2143 }

2145 /*
2146 * Quit if directory has been removed (posix)
2147 */
2148 if ((*eofp = zp->z_unlinked) != 0) {
2149 ZFS_EXIT(zfsvfs);
2150 return (0);
2151 }

2153 error = 0;
2154 os = zfsvfs->z_os;
2155 offset = uio->uio_loffset;
2156 prefetch = zp->z_zn_prefetch;

2158 /*
2159 * Initialize the iterator cursor.
2160 */
2161 if (offset <= 3) {
2162 /*
2163 * Start iteration from the beginning of the directory.
2164 */
2165 zap_cursor_init(&zc, os, zp->z_id);
2166 } else {
2167 /*
2168 * The offset is a serialized cursor.

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 25

2169 */
2170 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2171 }

2173 /*
2174 * Get space to change directory entries into fs independent format.
2175 */
2176 iovp = uio->uio_iov;
2177 bytes_wanted = iovp->iov_len;
2178 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2179 bufsize = bytes_wanted;
2180 outbuf = kmem_alloc(bufsize, KM_SLEEP);
2181 odp = (struct dirent64 *)outbuf;
2182 } else {
2183 bufsize = bytes_wanted;
2184 outbuf = NULL;
2185 odp = (struct dirent64 *)iovp->iov_base;
2186 }
2187 eodp = (struct edirent *)odp;

2189 /*
2190 * If this VFS supports the system attribute view interface; and
2191 * we’re looking at an extended attribute directory; and we care
2192 * about normalization conflicts on this vfs; then we must check
2193 * for normalization conflicts with the sysattr name space.
2194 */
2195 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2196 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2197 (flags & V_RDDIR_ENTFLAGS);

2199 /*
2200 * Transform to file-system independent format
2201 */
2202 outcount = 0;
2203 while (outcount < bytes_wanted) {
2204 ino64_t objnum;
2205 ushort_t reclen;
2206 off64_t *next = NULL;

2208 /*
2209 * Special case ‘.’, ‘..’, and ‘.zfs’.
2210 */
2211 if (offset == 0) {
2212 (void) strcpy(zap.za_name, ".");
2213 zap.za_normalization_conflict = 0;
2214 objnum = zp->z_id;
2215 } else if (offset == 1) {
2216 (void) strcpy(zap.za_name, "..");
2217 zap.za_normalization_conflict = 0;
2218 objnum = parent;
2219 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2220 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2221 zap.za_normalization_conflict = 0;
2222 objnum = ZFSCTL_INO_ROOT;
2223 } else {
2224 /*
2225 * Grab next entry.
2226 */
2227 if (error = zap_cursor_retrieve(&zc, &zap)) {
2228 if ((*eofp = (error == ENOENT)) != 0)
2229 break;
2230 else
2231 goto update;
2232 }

2234 if (zap.za_integer_length != 8 ||

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 26

2235 zap.za_num_integers != 1) {
2236 cmn_err(CE_WARN, "zap_readdir: bad directory "
2237 "entry, obj = %lld, offset = %lld\n",
2238 (u_longlong_t)zp->z_id,
2239 (u_longlong_t)offset);
2240 error = SET_ERROR(ENXIO);
2241 goto update;
2242 }

2244 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2245 /*
2246 * MacOS X can extract the object type here such as:
2247 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2248 */

2250 if (check_sysattrs && !zap.za_normalization_conflict) {
2251 zap.za_normalization_conflict =
2252 xattr_sysattr_casechk(zap.za_name);
2253 }
2254 }

2256 if (flags & V_RDDIR_ACCFILTER) {
2257 /*
2258 * If we have no access at all, don’t include
2259 * this entry in the returned information
2260 */
2261 znode_t *ezp;
2262 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2263 goto skip_entry;
2264 if (!zfs_has_access(ezp, cr)) {
2265 VN_RELE(ZTOV(ezp));
2266 goto skip_entry;
2267 }
2268 VN_RELE(ZTOV(ezp));
2269 }

2271 if (flags & V_RDDIR_ENTFLAGS)
2272 reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2273 else
2274 reclen = DIRENT64_RECLEN(strlen(zap.za_name));

2276 /*
2277 * Will this entry fit in the buffer?
2278 */
2279 if (outcount + reclen > bufsize) {
2280 /*
2281 * Did we manage to fit anything in the buffer?
2282 */
2283 if (!outcount) {
2284 error = SET_ERROR(EINVAL);
2285 goto update;
2286 }
2287 break;
2288 }
2289 if (flags & V_RDDIR_ENTFLAGS) {
2290 /*
2291 * Add extended flag entry:
2292 */
2293 eodp->ed_ino = objnum;
2294 eodp->ed_reclen = reclen;
2295 /* NOTE: ed_off is the offset for the *next* entry */
2296 next = &(eodp->ed_off);
2297 eodp->ed_eflags = zap.za_normalization_conflict ?
2298 ED_CASE_CONFLICT : 0;
2299 (void) strncpy(eodp->ed_name, zap.za_name,
2300 EDIRENT_NAMELEN(reclen));

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 27

2301 eodp = (edirent_t *)((intptr_t)eodp + reclen);
2302 } else {
2303 /*
2304 * Add normal entry:
2305 */
2306 odp->d_ino = objnum;
2307 odp->d_reclen = reclen;
2308 /* NOTE: d_off is the offset for the *next* entry */
2309 next = &(odp->d_off);
2310 (void) strncpy(odp->d_name, zap.za_name,
2311 DIRENT64_NAMELEN(reclen));
2312 odp = (dirent64_t *)((intptr_t)odp + reclen);
2313 }
2314 outcount += reclen;

2316 ASSERT(outcount <= bufsize);

2318 /* Prefetch znode */
2319 if (prefetch)
2320 dmu_prefetch(os, objnum, 0, 0);

2322 skip_entry:
2323 /*
2324 * Move to the next entry, fill in the previous offset.
2325 */
2326 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2327 zap_cursor_advance(&zc);
2328 offset = zap_cursor_serialize(&zc);
2329 } else {
2330 offset += 1;
2331 }
2332 if (next)
2333 *next = offset;
2334 }
2335 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */

2337 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2338 iovp->iov_base += outcount;
2339 iovp->iov_len -= outcount;
2340 uio->uio_resid -= outcount;
2341 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2342 /*
2343 * Reset the pointer.
2344 */
2345 offset = uio->uio_loffset;
2346 }

2348 update:
2349 zap_cursor_fini(&zc);
2350 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2351 kmem_free(outbuf, bufsize);

2353 if (error == ENOENT)
2354 error = 0;

2356 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);

2358 uio->uio_loffset = offset;
2359 ZFS_EXIT(zfsvfs);
2360 return (error);
2361 }
______unchanged_portion_omitted_

2393 /*
2394 * Get the requested file attributes and place them in the provided

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 28

2395 * vattr structure.
2396 *
2397 * IN: vp - vnode of file.
2398 * vap - va_mask identifies requested attributes.
2399 * If AT_XVATTR set, then optional attrs are requested
2400 * flags - ATTR_NOACLCHECK (CIFS server context)
2401 * cr - credentials of caller.
2402 * ct - caller context
2403 *
2404 * OUT: vap - attribute values.
2405 *
2406 * RETURN: 0 (always succeeds).
2407 * RETURN: 0 (always succeeds)
2407 */
2408 /* ARGSUSED */
2409 static int
2410 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2411 caller_context_t *ct)
2412 {
2413 znode_t *zp = VTOZ(vp);
2414 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2415 int error = 0;
2416 uint64_t links;
2417 uint64_t mtime[2], ctime[2];
2418 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2419 xoptattr_t *xoap = NULL;
2420 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2421 sa_bulk_attr_t bulk[2];
2422 int count = 0;

2424 ZFS_ENTER(zfsvfs);
2425 ZFS_VERIFY_ZP(zp);

2427 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);

2429 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2430 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);

2432 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2433 ZFS_EXIT(zfsvfs);
2434 return (error);
2435 }

2437 /*
2438 * If ACL is trivial don’t bother looking for ACE_READ_ATTRIBUTES.
2439 * Also, if we are the owner don’t bother, since owner should
2440 * always be allowed to read basic attributes of file.
2441 */
2442 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2443 (vap->va_uid != crgetuid(cr))) {
2444 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2445 skipaclchk, cr)) {
2446 ZFS_EXIT(zfsvfs);
2447 return (error);
2448 }
2449 }

2451 /*
2452 * Return all attributes. It’s cheaper to provide the answer
2453 * than to determine whether we were asked the question.
2454 */

2456 mutex_enter(&zp->z_lock);
2457 vap->va_type = vp->v_type;
2458 vap->va_mode = zp->z_mode & MODEMASK;
2459 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 29

2460 vap->va_nodeid = zp->z_id;
2461 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2462 links = zp->z_links + 1;
2463 else
2464 links = zp->z_links;
2465 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */
2466 vap->va_size = zp->z_size;
2467 vap->va_rdev = vp->v_rdev;
2468 vap->va_seq = zp->z_seq;

2470 /*
2471 * Add in any requested optional attributes and the create time.
2472 * Also set the corresponding bits in the returned attribute bitmap.
2473 */
2474 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2475 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2476 xoap->xoa_archive =
2477 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2478 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2479 }

2481 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2482 xoap->xoa_readonly =
2483 ((zp->z_pflags & ZFS_READONLY) != 0);
2484 XVA_SET_RTN(xvap, XAT_READONLY);
2485 }

2487 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2488 xoap->xoa_system =
2489 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2490 XVA_SET_RTN(xvap, XAT_SYSTEM);
2491 }

2493 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2494 xoap->xoa_hidden =
2495 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2496 XVA_SET_RTN(xvap, XAT_HIDDEN);
2497 }

2499 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2500 xoap->xoa_nounlink =
2501 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2502 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2503 }

2505 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2506 xoap->xoa_immutable =
2507 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2508 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2509 }

2511 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2512 xoap->xoa_appendonly =
2513 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2514 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2515 }

2517 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2518 xoap->xoa_nodump =
2519 ((zp->z_pflags & ZFS_NODUMP) != 0);
2520 XVA_SET_RTN(xvap, XAT_NODUMP);
2521 }

2523 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2524 xoap->xoa_opaque =
2525 ((zp->z_pflags & ZFS_OPAQUE) != 0);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 30

2526 XVA_SET_RTN(xvap, XAT_OPAQUE);
2527 }

2529 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2530 xoap->xoa_av_quarantined =
2531 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2532 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2533 }

2535 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2536 xoap->xoa_av_modified =
2537 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2538 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2539 }

2541 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2542 vp->v_type == VREG) {
2543 zfs_sa_get_scanstamp(zp, xvap);
2544 }

2546 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2547 uint64_t times[2];

2549 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2550 times, sizeof (times));
2551 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2552 XVA_SET_RTN(xvap, XAT_CREATETIME);
2553 }

2555 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2556 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2557 XVA_SET_RTN(xvap, XAT_REPARSE);
2558 }
2559 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2560 xoap->xoa_generation = zp->z_gen;
2561 XVA_SET_RTN(xvap, XAT_GEN);
2562 }

2564 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2565 xoap->xoa_offline =
2566 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2567 XVA_SET_RTN(xvap, XAT_OFFLINE);
2568 }

2570 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2571 xoap->xoa_sparse =
2572 ((zp->z_pflags & ZFS_SPARSE) != 0);
2573 XVA_SET_RTN(xvap, XAT_SPARSE);
2574 }
2575 }

2577 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2578 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2579 ZFS_TIME_DECODE(&vap->va_ctime, ctime);

2581 mutex_exit(&zp->z_lock);

2583 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);

2585 if (zp->z_blksz == 0) {
2586 /*
2587 * Block size hasn’t been set; suggest maximal I/O transfers.
2588 */
2589 vap->va_blksize = zfsvfs->z_max_blksz;
2590 }

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 31

2592 ZFS_EXIT(zfsvfs);
2593 return (0);
2594 }

2596 /*
2597 * Set the file attributes to the values contained in the
2598 * vattr structure.
2599 *
2600 * IN: vp - vnode of file to be modified.
2601 * vap - new attribute values.
2602 * If AT_XVATTR set, then optional attrs are being set
2603 * flags - ATTR_UTIME set if non-default time values provided.
2604 * - ATTR_NOACLCHECK (CIFS context only).
2605 * cr - credentials of caller.
2606 * ct - caller context
2607 *
2608 * RETURN: 0 on success, error code on failure.
2609 * RETURN: 0 if success
2610 * error code if failure
2609 *
2610 * Timestamps:
2611 * vp - ctime updated, mtime updated if size changed.
2612 */
2613 /* ARGSUSED */
2614 static int
2615 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2616 caller_context_t *ct)
2617 {
2618 znode_t *zp = VTOZ(vp);
2619 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2620 zilog_t *zilog;
2621 dmu_tx_t *tx;
2622 vattr_t oldva;
2623 xvattr_t tmpxvattr;
2624 uint_t mask = vap->va_mask;
2625 uint_t saved_mask = 0;
2626 int trim_mask = 0;
2627 uint64_t new_mode;
2628 uint64_t new_uid, new_gid;
2629 uint64_t xattr_obj;
2630 uint64_t mtime[2], ctime[2];
2631 znode_t *attrzp;
2632 int need_policy = FALSE;
2633 int err, err2;
2634 zfs_fuid_info_t *fuidp = NULL;
2635 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2636 xoptattr_t *xoap;
2637 zfs_acl_t *aclp;
2638 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2639 boolean_t fuid_dirtied = B_FALSE;
2640 sa_bulk_attr_t bulk[7], xattr_bulk[7];
2641 int count = 0, xattr_count = 0;

2643 if (mask == 0)
2644 return (0);

2646 if (mask & AT_NOSET)
2647 return (SET_ERROR(EINVAL));

2649 ZFS_ENTER(zfsvfs);
2650 ZFS_VERIFY_ZP(zp);

2652 zilog = zfsvfs->z_log;

2654 /*
2655 * Make sure that if we have ephemeral uid/gid or xvattr specified

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 32

2656 * that file system is at proper version level
2657 */

2659 if (zfsvfs->z_use_fuids == B_FALSE &&
2660 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2661 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2662 (mask & AT_XVATTR))) {
2663 ZFS_EXIT(zfsvfs);
2664 return (SET_ERROR(EINVAL));
2665 }

2667 if (mask & AT_SIZE && vp->v_type == VDIR) {
2668 ZFS_EXIT(zfsvfs);
2669 return (SET_ERROR(EISDIR));
2670 }

2672 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2673 ZFS_EXIT(zfsvfs);
2674 return (SET_ERROR(EINVAL));
2675 }

2677 /*
2678 * If this is an xvattr_t, then get a pointer to the structure of
2679 * optional attributes. If this is NULL, then we have a vattr_t.
2680 */
2681 xoap = xva_getxoptattr(xvap);

2683 xva_init(&tmpxvattr);

2685 /*
2686 * Immutable files can only alter immutable bit and atime
2687 */
2688 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2689 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2690 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2691 ZFS_EXIT(zfsvfs);
2692 return (SET_ERROR(EPERM));
2693 }

2695 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2696 ZFS_EXIT(zfsvfs);
2697 return (SET_ERROR(EPERM));
2698 }

2700 /*
2701 * Verify timestamps doesn’t overflow 32 bits.
2702 * ZFS can handle large timestamps, but 32bit syscalls can’t
2703 * handle times greater than 2039. This check should be removed
2704 * once large timestamps are fully supported.
2705 */
2706 if (mask & (AT_ATIME | AT_MTIME)) {
2707 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2708 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2709 ZFS_EXIT(zfsvfs);
2710 return (SET_ERROR(EOVERFLOW));
2711 }
2712 }

2714 top:
2715 attrzp = NULL;
2716 aclp = NULL;

2718 /* Can this be moved to before the top label? */
2719 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2720 ZFS_EXIT(zfsvfs);
2721 return (SET_ERROR(EROFS));

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 33

2722 }

2724 /*
2725 * First validate permissions
2726 */

2728 if (mask & AT_SIZE) {
2729 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2730 if (err) {
2731 ZFS_EXIT(zfsvfs);
2732 return (err);
2733 }
2734 /*
2735 * XXX - Note, we are not providing any open
2736 * mode flags here (like FNDELAY), so we may
2737 * block if there are locks present... this
2738 * should be addressed in openat().
2739 */
2740 /* XXX - would it be OK to generate a log record here? */
2741 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2742 if (err) {
2743 ZFS_EXIT(zfsvfs);
2744 return (err);
2745 }
2746 }

2748 if (mask & (AT_ATIME|AT_MTIME) ||
2749 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2750 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2751 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2752 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2753 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2754 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2755 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2756 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2757 skipaclchk, cr);
2758 }

2760 if (mask & (AT_UID|AT_GID)) {
2761 int idmask = (mask & (AT_UID|AT_GID));
2762 int take_owner;
2763 int take_group;

2765 /*
2766 * NOTE: even if a new mode is being set,
2767 * we may clear S_ISUID/S_ISGID bits.
2768 */

2770 if (!(mask & AT_MODE))
2771 vap->va_mode = zp->z_mode;

2773 /*
2774 * Take ownership or chgrp to group we are a member of
2775 */

2777 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2778 take_group = (mask & AT_GID) &&
2779 zfs_groupmember(zfsvfs, vap->va_gid, cr);

2781 /*
2782 * If both AT_UID and AT_GID are set then take_owner and
2783 * take_group must both be set in order to allow taking
2784 * ownership.
2785 *
2786 * Otherwise, send the check through secpolicy_vnode_setattr()
2787 *

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 34

2788 */

2790 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2791 ((idmask == AT_UID) && take_owner) ||
2792 ((idmask == AT_GID) && take_group)) {
2793 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2794 skipaclchk, cr) == 0) {
2795 /*
2796 * Remove setuid/setgid for non-privileged users
2797 */
2798 secpolicy_setid_clear(vap, cr);
2799 trim_mask = (mask & (AT_UID|AT_GID));
2800 } else {
2801 need_policy = TRUE;
2802 }
2803 } else {
2804 need_policy = TRUE;
2805 }
2806 }

2808 mutex_enter(&zp->z_lock);
2809 oldva.va_mode = zp->z_mode;
2810 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2811 if (mask & AT_XVATTR) {
2812 /*
2813 * Update xvattr mask to include only those attributes
2814 * that are actually changing.
2815 *
2816 * the bits will be restored prior to actually setting
2817 * the attributes so the caller thinks they were set.
2818 */
2819 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2820 if (xoap->xoa_appendonly !=
2821 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2822 need_policy = TRUE;
2823 } else {
2824 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2825 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2826 }
2827 }

2829 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2830 if (xoap->xoa_nounlink !=
2831 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2832 need_policy = TRUE;
2833 } else {
2834 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2835 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2836 }
2837 }

2839 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2840 if (xoap->xoa_immutable !=
2841 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2842 need_policy = TRUE;
2843 } else {
2844 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2845 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2846 }
2847 }

2849 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2850 if (xoap->xoa_nodump !=
2851 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2852 need_policy = TRUE;
2853 } else {

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 35

2854 XVA_CLR_REQ(xvap, XAT_NODUMP);
2855 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2856 }
2857 }

2859 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2860 if (xoap->xoa_av_modified !=
2861 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2862 need_policy = TRUE;
2863 } else {
2864 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2865 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2866 }
2867 }

2869 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2870 if ((vp->v_type != VREG &&
2871 xoap->xoa_av_quarantined) ||
2872 xoap->xoa_av_quarantined !=
2873 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2874 need_policy = TRUE;
2875 } else {
2876 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2877 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2878 }
2879 }

2881 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2882 mutex_exit(&zp->z_lock);
2883 ZFS_EXIT(zfsvfs);
2884 return (SET_ERROR(EPERM));
2885 }

2887 if (need_policy == FALSE &&
2888 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2889 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2890 need_policy = TRUE;
2891 }
2892 }

2894 mutex_exit(&zp->z_lock);

2896 if (mask & AT_MODE) {
2897 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2898 err = secpolicy_setid_setsticky_clear(vp, vap,
2899 &oldva, cr);
2900 if (err) {
2901 ZFS_EXIT(zfsvfs);
2902 return (err);
2903 }
2904 trim_mask |= AT_MODE;
2905 } else {
2906 need_policy = TRUE;
2907 }
2908 }

2910 if (need_policy) {
2911 /*
2912 * If trim_mask is set then take ownership
2913 * has been granted or write_acl is present and user
2914 * has the ability to modify mode. In that case remove
2915 * UID|GID and or MODE from mask so that
2916 * secpolicy_vnode_setattr() doesn’t revoke it.
2917 */

2919 if (trim_mask) {

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 36

2920 saved_mask = vap->va_mask;
2921 vap->va_mask &= ~trim_mask;
2922 }
2923 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2924 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2925 if (err) {
2926 ZFS_EXIT(zfsvfs);
2927 return (err);
2928 }

2930 if (trim_mask)
2931 vap->va_mask |= saved_mask;
2932 }

2934 /*
2935 * secpolicy_vnode_setattr, or take ownership may have
2936 * changed va_mask
2937 */
2938 mask = vap->va_mask;

2940 if ((mask & (AT_UID | AT_GID))) {
2941 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2942 &xattr_obj, sizeof (xattr_obj));

2944 if (err == 0 && xattr_obj) {
2945 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
2946 if (err)
2947 goto out2;
2948 }
2949 if (mask & AT_UID) {
2950 new_uid = zfs_fuid_create(zfsvfs,
2951 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2952 if (new_uid != zp->z_uid &&
2953 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
2954 if (attrzp)
2955 VN_RELE(ZTOV(attrzp));
2956 err = SET_ERROR(EDQUOT);
2957 goto out2;
2958 }
2959 }

2961 if (mask & AT_GID) {
2962 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
2963 cr, ZFS_GROUP, &fuidp);
2964 if (new_gid != zp->z_gid &&
2965 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
2966 if (attrzp)
2967 VN_RELE(ZTOV(attrzp));
2968 err = SET_ERROR(EDQUOT);
2969 goto out2;
2970 }
2971 }
2972 }
2973 tx = dmu_tx_create(zfsvfs->z_os);

2975 if (mask & AT_MODE) {
2976 uint64_t pmode = zp->z_mode;
2977 uint64_t acl_obj;
2978 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);

2980 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
2981 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
2982 err = SET_ERROR(EPERM);
2983 goto out;
2984 }

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 37

2986 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
2987 goto out;

2989 mutex_enter(&zp->z_lock);
2990 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2991 /*
2992 * Are we upgrading ACL from old V0 format
2993 * to V1 format?
2994 */
2995 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2996 zfs_znode_acl_version(zp) ==
2997 ZFS_ACL_VERSION_INITIAL) {
2998 dmu_tx_hold_free(tx, acl_obj, 0,
2999 DMU_OBJECT_END);
3000 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3001 0, aclp->z_acl_bytes);
3002 } else {
3003 dmu_tx_hold_write(tx, acl_obj, 0,
3004 aclp->z_acl_bytes);
3005 }
3006 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3007 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3008 0, aclp->z_acl_bytes);
3009 }
3010 mutex_exit(&zp->z_lock);
3011 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3012 } else {
3013 if ((mask & AT_XVATTR) &&
3014 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3015 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3016 else
3017 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3018 }

3020 if (attrzp) {
3021 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3022 }

3024 fuid_dirtied = zfsvfs->z_fuid_dirty;
3025 if (fuid_dirtied)
3026 zfs_fuid_txhold(zfsvfs, tx);

3028 zfs_sa_upgrade_txholds(tx, zp);

3030 err = dmu_tx_assign(tx, TXG_NOWAIT);
3031 if (err) {
3032 if (err == ERESTART)
3033 dmu_tx_wait(tx);
3034 goto out;
3035 }

3037 count = 0;
3038 /*
3039 * Set each attribute requested.
3040 * We group settings according to the locks they need to acquire.
3041 *
3042 * Note: you cannot set ctime directly, although it will be
3043 * updated as a side-effect of calling this function.
3044 */

3047 if (mask & (AT_UID|AT_GID|AT_MODE))
3048 mutex_enter(&zp->z_acl_lock);
3049 mutex_enter(&zp->z_lock);

3051 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 38

3052 &zp->z_pflags, sizeof (zp->z_pflags));

3054 if (attrzp) {
3055 if (mask & (AT_UID|AT_GID|AT_MODE))
3056 mutex_enter(&attrzp->z_acl_lock);
3057 mutex_enter(&attrzp->z_lock);
3058 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3059 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3060 sizeof (attrzp->z_pflags));
3061 }

3063 if (mask & (AT_UID|AT_GID)) {

3065 if (mask & AT_UID) {
3066 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3067 &new_uid, sizeof (new_uid));
3068 zp->z_uid = new_uid;
3069 if (attrzp) {
3070 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3071 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3072 sizeof (new_uid));
3073 attrzp->z_uid = new_uid;
3074 }
3075 }

3077 if (mask & AT_GID) {
3078 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3079 NULL, &new_gid, sizeof (new_gid));
3080 zp->z_gid = new_gid;
3081 if (attrzp) {
3082 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3083 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3084 sizeof (new_gid));
3085 attrzp->z_gid = new_gid;
3086 }
3087 }
3088 if (!(mask & AT_MODE)) {
3089 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3090 NULL, &new_mode, sizeof (new_mode));
3091 new_mode = zp->z_mode;
3092 }
3093 err = zfs_acl_chown_setattr(zp);
3094 ASSERT(err == 0);
3095 if (attrzp) {
3096 err = zfs_acl_chown_setattr(attrzp);
3097 ASSERT(err == 0);
3098 }
3099 }

3101 if (mask & AT_MODE) {
3102 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3103 &new_mode, sizeof (new_mode));
3104 zp->z_mode = new_mode;
3105 ASSERT3U((uintptr_t)aclp, !=, NULL);
3106 err = zfs_aclset_common(zp, aclp, cr, tx);
3107 ASSERT0(err);
3108 if (zp->z_acl_cached)
3109 zfs_acl_free(zp->z_acl_cached);
3110 zp->z_acl_cached = aclp;
3111 aclp = NULL;
3112 }

3115 if (mask & AT_ATIME) {
3116 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3117 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 39

3118 &zp->z_atime, sizeof (zp->z_atime));
3119 }

3121 if (mask & AT_MTIME) {
3122 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3123 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3124 mtime, sizeof (mtime));
3125 }

3127 /* XXX - shouldn’t this be done *before* the ATIME/MTIME checks? */
3128 if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3129 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3130 NULL, mtime, sizeof (mtime));
3131 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3132 &ctime, sizeof (ctime));
3133 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3134 B_TRUE);
3135 } else if (mask != 0) {
3136 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3137 &ctime, sizeof (ctime));
3138 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3139 B_TRUE);
3140 if (attrzp) {
3141 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3142 SA_ZPL_CTIME(zfsvfs), NULL,
3143 &ctime, sizeof (ctime));
3144 zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3145 mtime, ctime, B_TRUE);
3146 }
3147 }
3148 /*
3149 * Do this after setting timestamps to prevent timestamp
3150 * update from toggling bit
3151 */

3153 if (xoap && (mask & AT_XVATTR)) {

3155 /*
3156 * restore trimmed off masks
3157 * so that return masks can be set for caller.
3158 */

3160 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3161 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3162 }
3163 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3164 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3165 }
3166 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3167 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3168 }
3169 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3170 XVA_SET_REQ(xvap, XAT_NODUMP);
3171 }
3172 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3173 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3174 }
3175 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3176 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3177 }

3179 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3180 ASSERT(vp->v_type == VREG);

3182 zfs_xvattr_set(zp, xvap, tx);
3183 }

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 40

3185 if (fuid_dirtied)
3186 zfs_fuid_sync(zfsvfs, tx);

3188 if (mask != 0)
3189 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);

3191 mutex_exit(&zp->z_lock);
3192 if (mask & (AT_UID|AT_GID|AT_MODE))
3193 mutex_exit(&zp->z_acl_lock);

3195 if (attrzp) {
3196 if (mask & (AT_UID|AT_GID|AT_MODE))
3197 mutex_exit(&attrzp->z_acl_lock);
3198 mutex_exit(&attrzp->z_lock);
3199 }
3200 out:
3201 if (err == 0 && attrzp) {
3202 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3203 xattr_count, tx);
3204 ASSERT(err2 == 0);
3205 }

3207 if (attrzp)
3208 VN_RELE(ZTOV(attrzp));

3210 #endif /* ! codereview */
3211 if (aclp)
3212 zfs_acl_free(aclp);

3214 if (fuidp) {
3215 zfs_fuid_info_free(fuidp);
3216 fuidp = NULL;
3217 }

3219 if (err) {
3220 dmu_tx_abort(tx);
3221 if (err == ERESTART)
3222 goto top;
3223 } else {
3224 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3225 dmu_tx_commit(tx);
3226 }

3228 out2:
3229 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3230 zil_commit(zilog, 0);

3232 ZFS_EXIT(zfsvfs);
3233 return (err);
3234 }

3236 typedef struct zfs_zlock {
3237 krwlock_t *zl_rwlock; /* lock we acquired */
3238 znode_t *zl_znode; /* znode we held */
3239 struct zfs_zlock *zl_next; /* next in list */
3240 } zfs_zlock_t;

3242 /*
3243 * Drop locks and release vnodes that were held by zfs_rename_lock().
3244 */
3245 static void
3246 zfs_rename_unlock(zfs_zlock_t **zlpp)
3247 {
3248 zfs_zlock_t *zl;

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 41

3250 while ((zl = *zlpp) != NULL) {
3251 if (zl->zl_znode != NULL)
3252 VN_RELE(ZTOV(zl->zl_znode));
3253 rw_exit(zl->zl_rwlock);
3254 *zlpp = zl->zl_next;
3255 kmem_free(zl, sizeof (*zl));
3256 }
3257 }

3259 /*
3260 * Search back through the directory tree, using the ".." entries.
3261 * Lock each directory in the chain to prevent concurrent renames.
3262 * Fail any attempt to move a directory into one of its own descendants.
3263 * XXX - z_parent_lock can overlap with map or grow locks
3264 */
3265 static int
3266 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3267 {
3268 zfs_zlock_t *zl;
3269 znode_t *zp = tdzp;
3270 uint64_t rootid = zp->z_zfsvfs->z_root;
3271 uint64_t oidp = zp->z_id;
3272 krwlock_t *rwlp = &szp->z_parent_lock;
3273 krw_t rw = RW_WRITER;

3275 /*
3276 * First pass write-locks szp and compares to zp->z_id.
3277 * Later passes read-lock zp and compare to zp->z_parent.
3278 */
3279 do {
3280 if (!rw_tryenter(rwlp, rw)) {
3281 /*
3282 * Another thread is renaming in this path.
3283 * Note that if we are a WRITER, we don’t have any
3284 * parent_locks held yet.
3285 */
3286 if (rw == RW_READER && zp->z_id > szp->z_id) {
3287 /*
3288 * Drop our locks and restart
3289 */
3290 zfs_rename_unlock(&zl);
3291 *zlpp = NULL;
3292 zp = tdzp;
3293 oidp = zp->z_id;
3294 rwlp = &szp->z_parent_lock;
3295 rw = RW_WRITER;
3296 continue;
3297 } else {
3298 /*
3299 * Wait for other thread to drop its locks
3300 */
3301 rw_enter(rwlp, rw);
3302 }
3303 }

3305 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3306 zl->zl_rwlock = rwlp;
3307 zl->zl_znode = NULL;
3308 zl->zl_next = *zlpp;
3309 *zlpp = zl;

3311 if (oidp == szp->z_id) /* We’re a descendant of szp */
3312 return (SET_ERROR(EINVAL));

3314 if (oidp == rootid) /* We’ve hit the top */
3315 return (0);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 42

3317 if (rw == RW_READER) { /* i.e. not the first pass */
3318 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3319 if (error)
3320 return (error);
3321 zl->zl_znode = zp;
3322 }
3323 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3324 &oidp, sizeof (oidp));
3325 rwlp = &zp->z_parent_lock;
3326 rw = RW_READER;

3328 } while (zp->z_id != sdzp->z_id);

3330 return (0);
3331 }

3333 /*
3334 * Move an entry from the provided source directory to the target
3335 * directory. Change the entry name as indicated.
3336 *
3337 * IN: sdvp - Source directory containing the "old entry".
3338 * snm - Old entry name.
3339 * tdvp - Target directory to contain the "new entry".
3340 * tnm - New entry name.
3341 * cr - credentials of caller.
3342 * ct - caller context
3343 * flags - case flags
3344 *
3345 * RETURN: 0 on success, error code on failure.
3211 * RETURN: 0 if success
3212 * error code if failure
3346 *
3347 * Timestamps:
3348 * sdvp,tdvp - ctime|mtime updated
3349 */
3350 /*ARGSUSED*/
3351 static int
3352 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3353 caller_context_t *ct, int flags)
3354 {
3355 znode_t *tdzp, *szp, *tzp;
3356 znode_t *sdzp = VTOZ(sdvp);
3357 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs;
3358 zilog_t *zilog;
3359 vnode_t *realvp;
3360 zfs_dirlock_t *sdl, *tdl;
3361 dmu_tx_t *tx;
3362 zfs_zlock_t *zl;
3363 int cmp, serr, terr;
3364 int error = 0;
3365 int zflg = 0;

3367 ZFS_ENTER(zfsvfs);
3368 ZFS_VERIFY_ZP(sdzp);
3369 zilog = zfsvfs->z_log;

3371 /*
3372 * Make sure we have the real vp for the target directory.
3373 */
3374 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3375 tdvp = realvp;

3377 if (tdvp->v_vfsp != sdvp->v_vfsp || zfsctl_is_node(tdvp)) {
3378 ZFS_EXIT(zfsvfs);
3379 return (SET_ERROR(EXDEV));

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 43

3380 }

3382 tdzp = VTOZ(tdvp);
3383 ZFS_VERIFY_ZP(tdzp);
3384 if (zfsvfs->z_utf8 && u8_validate(tnm,
3385 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3386 ZFS_EXIT(zfsvfs);
3387 return (SET_ERROR(EILSEQ));
3388 }

3390 if (flags & FIGNORECASE)
3391 zflg |= ZCILOOK;

3393 top:
3394 szp = NULL;
3395 tzp = NULL;
3396 zl = NULL;

3398 /*
3399 * This is to prevent the creation of links into attribute space
3400 * by renaming a linked file into/outof an attribute directory.
3401 * See the comment in zfs_link() for why this is considered bad.
3402 */
3403 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3404 ZFS_EXIT(zfsvfs);
3405 return (SET_ERROR(EINVAL));
3406 }

3408 /*
3409 * Lock source and target directory entries. To prevent deadlock,
3410 * a lock ordering must be defined. We lock the directory with
3411 * the smallest object id first, or if it’s a tie, the one with
3412 * the lexically first name.
3413 */
3414 if (sdzp->z_id < tdzp->z_id) {
3415 cmp = -1;
3416 } else if (sdzp->z_id > tdzp->z_id) {
3417 cmp = 1;
3418 } else {
3419 /*
3420 * First compare the two name arguments without
3421 * considering any case folding.
3422 */
3423 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);

3425 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3426 ASSERT(error == 0 || !zfsvfs->z_utf8);
3427 if (cmp == 0) {
3428 /*
3429 * POSIX: "If the old argument and the new argument
3430 * both refer to links to the same existing file,
3431 * the rename() function shall return successfully
3432 * and perform no other action."
3433 */
3434 ZFS_EXIT(zfsvfs);
3435 return (0);
3436 }
3437 /*
3438 * If the file system is case-folding, then we may
3439 * have some more checking to do. A case-folding file
3440 * system is either supporting mixed case sensitivity
3441 * access or is completely case-insensitive. Note
3442 * that the file system is always case preserving.
3443 *
3444 * In mixed sensitivity mode case sensitive behavior
3445 * is the default. FIGNORECASE must be used to

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 44

3446 * explicitly request case insensitive behavior.
3447 *
3448 * If the source and target names provided differ only
3449 * by case (e.g., a request to rename ’tim’ to ’Tim’),
3450 * we will treat this as a special case in the
3451 * case-insensitive mode: as long as the source name
3452 * is an exact match, we will allow this to proceed as
3453 * a name-change request.
3454 */
3455 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3456 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3457 flags & FIGNORECASE)) &&
3458 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3459 &error) == 0) {
3460 /*
3461 * case preserving rename request, require exact
3462 * name matches
3463 */
3464 zflg |= ZCIEXACT;
3465 zflg &= ~ZCILOOK;
3466 }
3467 }

3469 /*
3470 * If the source and destination directories are the same, we should
3471 * grab the z_name_lock of that directory only once.
3472 */
3473 if (sdzp == tdzp) {
3474 zflg |= ZHAVELOCK;
3475 rw_enter(&sdzp->z_name_lock, RW_READER);
3476 }

3478 if (cmp < 0) {
3479 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3480 ZEXISTS | zflg, NULL, NULL);
3481 terr = zfs_dirent_lock(&tdl,
3482 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3483 } else {
3484 terr = zfs_dirent_lock(&tdl,
3485 tdzp, tnm, &tzp, zflg, NULL, NULL);
3486 serr = zfs_dirent_lock(&sdl,
3487 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3488 NULL, NULL);
3489 }

3491 if (serr) {
3492 /*
3493 * Source entry invalid or not there.
3494 */
3495 if (!terr) {
3496 zfs_dirent_unlock(tdl);
3497 if (tzp)
3498 VN_RELE(ZTOV(tzp));
3499 }

3501 if (sdzp == tdzp)
3502 rw_exit(&sdzp->z_name_lock);

3504 if (strcmp(snm, "..") == 0)
3505 serr = SET_ERROR(EINVAL);
3506 ZFS_EXIT(zfsvfs);
3507 return (serr);
3508 }
3509 if (terr) {
3510 zfs_dirent_unlock(sdl);
3511 VN_RELE(ZTOV(szp));

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 45

3513 if (sdzp == tdzp)
3514 rw_exit(&sdzp->z_name_lock);

3516 if (strcmp(tnm, "..") == 0)
3517 terr = SET_ERROR(EINVAL);
3518 ZFS_EXIT(zfsvfs);
3519 return (terr);
3520 }

3522 /*
3523 * Must have write access at the source to remove the old entry
3524 * and write access at the target to create the new entry.
3525 * Note that if target and source are the same, this can be
3526 * done in a single check.
3527 */

3529 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3530 goto out;

3532 if (ZTOV(szp)->v_type == VDIR) {
3533 /*
3534 * Check to make sure rename is valid.
3535 * Can’t do a move like this: /usr/a/b to /usr/a/b/c/d
3536 */
3537 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3538 goto out;
3539 }

3541 /*
3542 * Does target exist?
3543 */
3544 if (tzp) {
3545 /*
3546 * Source and target must be the same type.
3547 */
3548 if (ZTOV(szp)->v_type == VDIR) {
3549 if (ZTOV(tzp)->v_type != VDIR) {
3550 error = SET_ERROR(ENOTDIR);
3551 goto out;
3552 }
3553 } else {
3554 if (ZTOV(tzp)->v_type == VDIR) {
3555 error = SET_ERROR(EISDIR);
3556 goto out;
3557 }
3558 }
3559 /*
3560 * POSIX dictates that when the source and target
3561 * entries refer to the same file object, rename
3562 * must do nothing and exit without error.
3563 */
3564 if (szp->z_id == tzp->z_id) {
3565 error = 0;
3566 goto out;
3567 }
3568 }

3570 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3571 if (tzp)
3572 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);

3574 /*
3575 * notify the target directory if it is not the same
3576 * as source directory.
3577 */

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 46

3578 if (tdvp != sdvp) {
3579 vnevent_rename_dest_dir(tdvp, ct);
3580 }

3582 tx = dmu_tx_create(zfsvfs->z_os);
3583 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3584 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3585 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3586 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3587 if (sdzp != tdzp) {
3588 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3589 zfs_sa_upgrade_txholds(tx, tdzp);
3590 }
3591 if (tzp) {
3592 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3593 zfs_sa_upgrade_txholds(tx, tzp);
3594 }

3596 zfs_sa_upgrade_txholds(tx, szp);
3597 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3598 error = dmu_tx_assign(tx, TXG_NOWAIT);
3599 if (error) {
3600 if (zl != NULL)
3601 zfs_rename_unlock(&zl);
3602 zfs_dirent_unlock(sdl);
3603 zfs_dirent_unlock(tdl);

3605 if (sdzp == tdzp)
3606 rw_exit(&sdzp->z_name_lock);

3608 VN_RELE(ZTOV(szp));
3609 if (tzp)
3610 VN_RELE(ZTOV(tzp));
3611 if (error == ERESTART) {
3612 dmu_tx_wait(tx);
3613 dmu_tx_abort(tx);
3614 goto top;
3615 }
3616 dmu_tx_abort(tx);
3617 ZFS_EXIT(zfsvfs);
3618 return (error);
3619 }

3621 if (tzp) /* Attempt to remove the existing target */
3622 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);

3624 if (error == 0) {
3625 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3626 if (error == 0) {
3627 szp->z_pflags |= ZFS_AV_MODIFIED;

3629 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3630 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3631 ASSERT0(error);

3633 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3634 if (error == 0) {
3635 zfs_log_rename(zilog, tx, TX_RENAME |
3636 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3637 sdl->dl_name, tdzp, tdl->dl_name, szp);

3639 /*
3640 * Update path information for the target vnode
3641 */
3642 vn_renamepath(tdvp, ZTOV(szp), tnm,
3643 strlen(tnm));

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 47

3644 } else {
3645 /*
3646 * At this point, we have successfully created
3647 * the target name, but have failed to remove
3648 * the source name. Since the create was done
3649 * with the ZRENAMING flag, there are
3650 * complications; for one, the link count is
3651 * wrong. The easiest way to deal with this
3652 * is to remove the newly created target, and
3653 * return the original error. This must
3654 * succeed; fortunately, it is very unlikely to
3655 * fail, since we just created it.
3656 */
3657 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3658 ZRENAMING, NULL), ==, 0);
3659 }
3660 }
3661 }

3663 dmu_tx_commit(tx);
3664 out:
3665 if (zl != NULL)
3666 zfs_rename_unlock(&zl);

3668 zfs_dirent_unlock(sdl);
3669 zfs_dirent_unlock(tdl);

3671 if (sdzp == tdzp)
3672 rw_exit(&sdzp->z_name_lock);

3675 VN_RELE(ZTOV(szp));
3676 if (tzp)
3677 VN_RELE(ZTOV(tzp));

3679 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3680 zil_commit(zilog, 0);

3682 ZFS_EXIT(zfsvfs);
3683 return (error);
3684 }

3686 /*
3687 * Insert the indicated symbolic reference entry into the directory.
3688 *
3689 * IN: dvp - Directory to contain new symbolic link.
3690 * link - Name for new symlink entry.
3691 * vap - Attributes of new entry.
3559 * target - Target path of new symlink.
3692 * cr - credentials of caller.
3693 * ct - caller context
3694 * flags - case flags
3695 *
3696 * RETURN: 0 on success, error code on failure.
3564 * RETURN: 0 if success
3565 * error code if failure
3697 *
3698 * Timestamps:
3699 * dvp - ctime|mtime updated
3700 */
3701 /*ARGSUSED*/
3702 static int
3703 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3704 caller_context_t *ct, int flags)
3705 {
3706 znode_t *zp, *dzp = VTOZ(dvp);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 48

3707 zfs_dirlock_t *dl;
3708 dmu_tx_t *tx;
3709 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3710 zilog_t *zilog;
3711 uint64_t len = strlen(link);
3712 int error;
3713 int zflg = ZNEW;
3714 zfs_acl_ids_t acl_ids;
3715 boolean_t fuid_dirtied;
3716 uint64_t txtype = TX_SYMLINK;

3718 ASSERT(vap->va_type == VLNK);

3720 ZFS_ENTER(zfsvfs);
3721 ZFS_VERIFY_ZP(dzp);
3722 zilog = zfsvfs->z_log;

3724 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3725 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3726 ZFS_EXIT(zfsvfs);
3727 return (SET_ERROR(EILSEQ));
3728 }
3729 if (flags & FIGNORECASE)
3730 zflg |= ZCILOOK;

3732 if (len > MAXPATHLEN) {
3733 ZFS_EXIT(zfsvfs);
3734 return (SET_ERROR(ENAMETOOLONG));
3735 }

3737 if ((error = zfs_acl_ids_create(dzp, 0,
3738 vap, cr, NULL, &acl_ids)) != 0) {
3739 ZFS_EXIT(zfsvfs);
3740 return (error);
3741 }
3742 top:
3743 /*
3744 * Attempt to lock directory; fail if entry already exists.
3745 */
3746 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3747 if (error) {
3748 zfs_acl_ids_free(&acl_ids);
3749 ZFS_EXIT(zfsvfs);
3750 return (error);
3751 }

3753 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3754 zfs_acl_ids_free(&acl_ids);
3755 zfs_dirent_unlock(dl);
3756 ZFS_EXIT(zfsvfs);
3757 return (error);
3758 }

3760 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3761 zfs_acl_ids_free(&acl_ids);
3762 zfs_dirent_unlock(dl);
3763 ZFS_EXIT(zfsvfs);
3764 return (SET_ERROR(EDQUOT));
3765 }
3766 tx = dmu_tx_create(zfsvfs->z_os);
3767 fuid_dirtied = zfsvfs->z_fuid_dirty;
3768 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3769 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3770 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3771 ZFS_SA_BASE_ATTR_SIZE + len);
3772 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 49

3773 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3774 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3775 acl_ids.z_aclp->z_acl_bytes);
3776 }
3777 if (fuid_dirtied)
3778 zfs_fuid_txhold(zfsvfs, tx);
3779 error = dmu_tx_assign(tx, TXG_NOWAIT);
3780 if (error) {
3781 zfs_dirent_unlock(dl);
3782 if (error == ERESTART) {
3783 dmu_tx_wait(tx);
3784 dmu_tx_abort(tx);
3785 goto top;
3786 }
3787 zfs_acl_ids_free(&acl_ids);
3788 dmu_tx_abort(tx);
3789 ZFS_EXIT(zfsvfs);
3790 return (error);
3791 }

3793 /*
3794 * Create a new object for the symlink.
3795 * for version 4 ZPL datsets the symlink will be an SA attribute
3796 */
3797 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);

3799 if (fuid_dirtied)
3800 zfs_fuid_sync(zfsvfs, tx);

3802 mutex_enter(&zp->z_lock);
3803 if (zp->z_is_sa)
3804 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3805 link, len, tx);
3806 else
3807 zfs_sa_symlink(zp, link, len, tx);
3808 mutex_exit(&zp->z_lock);

3810 zp->z_size = len;
3811 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3812 &zp->z_size, sizeof (zp->z_size), tx);
3813 /*
3814 * Insert the new object into the directory.
3815 */
3816 (void) zfs_link_create(dl, zp, tx, ZNEW);

3818 if (flags & FIGNORECASE)
3819 txtype |= TX_CI;
3820 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);

3822 zfs_acl_ids_free(&acl_ids);

3824 dmu_tx_commit(tx);

3826 zfs_dirent_unlock(dl);

3828 VN_RELE(ZTOV(zp));

3830 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3831 zil_commit(zilog, 0);

3833 ZFS_EXIT(zfsvfs);
3834 return (error);
3835 }

3837 /*
3838 * Return, in the buffer contained in the provided uio structure,

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 50

3839 * the symbolic path referred to by vp.
3840 *
3841 * IN: vp - vnode of symbolic link.
3842 * uio - structure to contain the link path.
3711 * uoip - structure to contain the link path.
3843 * cr - credentials of caller.
3844 * ct - caller context
3845 *
3846 * OUT: uio - structure containing the link path.
3715 * OUT: uio - structure to contain the link path.
3847 *
3848 * RETURN: 0 on success, error code on failure.
3717 * RETURN: 0 if success
3718 * error code if failure
3849 *
3850 * Timestamps:
3851 * vp - atime updated
3852 */
3853 /* ARGSUSED */
3854 static int
3855 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3856 {
3857 znode_t *zp = VTOZ(vp);
3858 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3859 int error;

3861 ZFS_ENTER(zfsvfs);
3862 ZFS_VERIFY_ZP(zp);

3864 mutex_enter(&zp->z_lock);
3865 if (zp->z_is_sa)
3866 error = sa_lookup_uio(zp->z_sa_hdl,
3867 SA_ZPL_SYMLINK(zfsvfs), uio);
3868 else
3869 error = zfs_sa_readlink(zp, uio);
3870 mutex_exit(&zp->z_lock);

3872 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);

3874 ZFS_EXIT(zfsvfs);
3875 return (error);
3876 }

3878 /*
3879 * Insert a new entry into directory tdvp referencing svp.
3880 *
3881 * IN: tdvp - Directory to contain new entry.
3882 * svp - vnode of new entry.
3883 * name - name of new entry.
3884 * cr - credentials of caller.
3885 * ct - caller context
3886 *
3887 * RETURN: 0 on success, error code on failure.
3757 * RETURN: 0 if success
3758 * error code if failure
3888 *
3889 * Timestamps:
3890 * tdvp - ctime|mtime updated
3891 * svp - ctime updated
3892 */
3893 /* ARGSUSED */
3894 static int
3895 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3896 caller_context_t *ct, int flags)
3897 {
3898 znode_t *dzp = VTOZ(tdvp);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 51

3899 znode_t *tzp, *szp;
3900 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3901 zilog_t *zilog;
3902 zfs_dirlock_t *dl;
3903 dmu_tx_t *tx;
3904 vnode_t *realvp;
3905 int error;
3906 int zf = ZNEW;
3907 uint64_t parent;
3908 uid_t owner;

3910 ASSERT(tdvp->v_type == VDIR);

3912 ZFS_ENTER(zfsvfs);
3913 ZFS_VERIFY_ZP(dzp);
3914 zilog = zfsvfs->z_log;

3916 if (VOP_REALVP(svp, &realvp, ct) == 0)
3917 svp = realvp;

3919 /*
3920 * POSIX dictates that we return EPERM here.
3921 * Better choices include ENOTSUP or EISDIR.
3922 */
3923 if (svp->v_type == VDIR) {
3924 ZFS_EXIT(zfsvfs);
3925 return (SET_ERROR(EPERM));
3926 }

3928 if (svp->v_vfsp != tdvp->v_vfsp || zfsctl_is_node(svp)) {
3929 ZFS_EXIT(zfsvfs);
3930 return (SET_ERROR(EXDEV));
3931 }

3933 szp = VTOZ(svp);
3934 ZFS_VERIFY_ZP(szp);

3936 /* Prevent links to .zfs/shares files */

3938 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3939 &parent, sizeof (uint64_t))) != 0) {
3940 ZFS_EXIT(zfsvfs);
3941 return (error);
3942 }
3943 if (parent == zfsvfs->z_shares_dir) {
3944 ZFS_EXIT(zfsvfs);
3945 return (SET_ERROR(EPERM));
3946 }

3948 if (zfsvfs->z_utf8 && u8_validate(name,
3949 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3950 ZFS_EXIT(zfsvfs);
3951 return (SET_ERROR(EILSEQ));
3952 }
3953 if (flags & FIGNORECASE)
3954 zf |= ZCILOOK;

3956 /*
3957 * We do not support links between attributes and non-attributes
3958 * because of the potential security risk of creating links
3959 * into "normal" file space in order to circumvent restrictions
3960 * imposed in attribute space.
3961 */
3962 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
3963 ZFS_EXIT(zfsvfs);
3964 return (SET_ERROR(EINVAL));

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 52

3965 }

3968 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
3969 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3970 ZFS_EXIT(zfsvfs);
3971 return (SET_ERROR(EPERM));
3972 }

3974 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3975 ZFS_EXIT(zfsvfs);
3976 return (error);
3977 }

3979 top:
3980 /*
3981 * Attempt to lock directory; fail if entry already exists.
3982 */
3983 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
3984 if (error) {
3985 ZFS_EXIT(zfsvfs);
3986 return (error);
3987 }

3989 tx = dmu_tx_create(zfsvfs->z_os);
3990 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3991 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3992 zfs_sa_upgrade_txholds(tx, szp);
3993 zfs_sa_upgrade_txholds(tx, dzp);
3994 error = dmu_tx_assign(tx, TXG_NOWAIT);
3995 if (error) {
3996 zfs_dirent_unlock(dl);
3997 if (error == ERESTART) {
3998 dmu_tx_wait(tx);
3999 dmu_tx_abort(tx);
4000 goto top;
4001 }
4002 dmu_tx_abort(tx);
4003 ZFS_EXIT(zfsvfs);
4004 return (error);
4005 }

4007 error = zfs_link_create(dl, szp, tx, 0);

4009 if (error == 0) {
4010 uint64_t txtype = TX_LINK;
4011 if (flags & FIGNORECASE)
4012 txtype |= TX_CI;
4013 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4014 }

4016 dmu_tx_commit(tx);

4018 zfs_dirent_unlock(dl);

4020 if (error == 0) {
4021 vnevent_link(svp, ct);
4022 }

4024 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4025 zil_commit(zilog, 0);

4027 ZFS_EXIT(zfsvfs);
4028 return (error);
4029 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 53

4044 /*
4045 * Push a page out to disk, klustering if possible.
4046 *
4047 * IN: vp - file to push page to.
4048 * pp - page to push.
4049 * flags - additional flags.
4050 * cr - credentials of caller.
4051 *
4052 * OUT: offp - start of range pushed.
4053 * lenp - len of range pushed.
4054 *
4055 * RETURN: 0 on success, error code on failure.
3926 * RETURN: 0 if success
3927 * error code if failure
4056 *
4057 * NOTE: callers must have locked the page to be pushed. On
4058 * exit, the page (and all other pages in the kluster) must be
4059 * unlocked.
4060 */
4061 /* ARGSUSED */
4062 static int
4063 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4064 size_t *lenp, int flags, cred_t *cr)
4065 {
4066 znode_t *zp = VTOZ(vp);
4067 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4068 dmu_tx_t *tx;
4069 u_offset_t off, koff;
4070 size_t len, klen;
4071 int err;

4073 off = pp->p_offset;
4074 len = PAGESIZE;
4075 /*
4076 * If our blocksize is bigger than the page size, try to kluster
4077 * multiple pages so that we write a full block (thus avoiding
4078 * a read-modify-write).
4079 */
4080 if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4081 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4082 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4083 ASSERT(koff <= zp->z_size);
4084 if (koff + klen > zp->z_size)
4085 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4086 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4087 }
4088 ASSERT3U(btop(len), ==, btopr(len));

4090 /*
4091 * Can’t push pages past end-of-file.
4092 */
4093 if (off >= zp->z_size) {
4094 /* ignore all pages */
4095 err = 0;
4096 goto out;
4097 } else if (off + len > zp->z_size) {
4098 int npages = btopr(zp->z_size - off);
4099 page_t *trunc;

4101 page_list_break(&pp, &trunc, npages);
4102 /* ignore pages past end of file */
4103 if (trunc)
4104 pvn_write_done(trunc, flags);
4105 len = zp->z_size - off;
4106 }

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 54

4108 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4109 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4110 err = SET_ERROR(EDQUOT);
4111 goto out;
4112 }
4113 top:
4114 tx = dmu_tx_create(zfsvfs->z_os);
4115 dmu_tx_hold_write(tx, zp->z_id, off, len);

4117 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4118 zfs_sa_upgrade_txholds(tx, zp);
4119 err = dmu_tx_assign(tx, TXG_NOWAIT);
4120 if (err != 0) {
4121 if (err == ERESTART) {
4122 dmu_tx_wait(tx);
4123 dmu_tx_abort(tx);
4124 goto top;
4125 }
4126 dmu_tx_abort(tx);
4127 goto out;
4128 }

4130 if (zp->z_blksz <= PAGESIZE) {
4131 caddr_t va = zfs_map_page(pp, S_READ);
4132 ASSERT3U(len, <=, PAGESIZE);
4133 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4134 zfs_unmap_page(pp, va);
4135 } else {
4136 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4137 }

4139 if (err == 0) {
4140 uint64_t mtime[2], ctime[2];
4141 sa_bulk_attr_t bulk[3];
4142 int count = 0;

4144 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4145 &mtime, 16);
4146 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4147 &ctime, 16);
4148 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4149 &zp->z_pflags, 8);
4150 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4151 B_TRUE);
4152 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4153 }
4154 dmu_tx_commit(tx);

4156 out:
4157 pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4158 if (offp)
4159 *offp = off;
4160 if (lenp)
4161 *lenp = len;

4163 return (err);
4164 }

4166 /*
4167 * Copy the portion of the file indicated from pages into the file.
4168 * The pages are stored in a page list attached to the files vnode.
4169 *
4170 * IN: vp - vnode of file to push page data to.
4171 * off - position in file to put data.
4172 * len - amount of data to write.

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 55

4173 * flags - flags to control the operation.
4174 * cr - credentials of caller.
4175 * ct - caller context.
4176 *
4177 * RETURN: 0 on success, error code on failure.
4049 * RETURN: 0 if success
4050 * error code if failure
4178 *
4179 * Timestamps:
4180 * vp - ctime|mtime updated
4181 */
4182 /*ARGSUSED*/
4183 static int
4184 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4185 caller_context_t *ct)
4186 {
4187 znode_t *zp = VTOZ(vp);
4188 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4189 page_t *pp;
4190 size_t io_len;
4191 u_offset_t io_off;
4192 uint_t blksz;
4193 rl_t *rl;
4194 int error = 0;

4196 ZFS_ENTER(zfsvfs);
4197 ZFS_VERIFY_ZP(zp);

4199 /*
4200 * There’s nothing to do if no data is cached.
4201 */
4202 if (!vn_has_cached_data(vp)) {
4203 ZFS_EXIT(zfsvfs);
4204 return (0);
4205 }

4207 /*
4208 * Align this request to the file block size in case we kluster.
4209 * XXX - this can result in pretty aggresive locking, which can
4210 * impact simultanious read/write access. One option might be
4211 * to break up long requests (len == 0) into block-by-block
4212 * operations to get narrower locking.
4213 */
4214 blksz = zp->z_blksz;
4215 if (ISP2(blksz))
4216 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4217 else
4218 io_off = 0;
4219 if (len > 0 && ISP2(blksz))
4220 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4221 else
4222 io_len = 0;

4224 if (io_len == 0) {
4225 /*
4226 * Search the entire vp list for pages >= io_off.
4227 */
4228 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4229 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4230 goto out;
4231 }
4232 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);

4234 if (off > zp->z_size) {
4235 /* past end of file */
4236 zfs_range_unlock(rl);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 56

4237 ZFS_EXIT(zfsvfs);
4238 return (0);
4239 }

4241 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);

4243 for (off = io_off; io_off < off + len; io_off += io_len) {
4244 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4245 pp = page_lookup(vp, io_off,
4246 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4247 } else {
4248 pp = page_lookup_nowait(vp, io_off,
4249 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4250 }

4252 if (pp != NULL && pvn_getdirty(pp, flags)) {
4253 int err;

4255 /*
4256 * Found a dirty page to push
4257 */
4258 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4259 if (err)
4260 error = err;
4261 } else {
4262 io_len = PAGESIZE;
4263 }
4264 }
4265 out:
4266 zfs_range_unlock(rl);
4267 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4268 zil_commit(zfsvfs->z_log, zp->z_id);
4269 ZFS_EXIT(zfsvfs);
4270 return (error);
4271 }
______unchanged_portion_omitted_

4334 /*
4335 * Bounds-check the seek operation.
4336 *
4337 * IN: vp - vnode seeking within
4338 * ooff - old file offset
4339 * noffp - pointer to new file offset
4340 * ct - caller context
4341 *
4342 * RETURN: 0 on success, EINVAL if new offset invalid.
4215 * RETURN: 0 if success
4216 * EINVAL if new offset invalid
4343 */
4344 /* ARGSUSED */
4345 static int
4346 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4347 caller_context_t *ct)
4348 {
4349 if (vp->v_type == VDIR)
4350 return (0);
4351 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4352 }
______unchanged_portion_omitted_

4457 /*
4458 * Return pointers to the pages for the file region [off, off + len]
4459 * in the pl array. If plsz is greater than len, this function may
4460 * also return page pointers from after the specified region
4461 * (i.e. the region [off, off + plsz]). These additional pages are
4462 * only returned if they are already in the cache, or were created as

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 57

4463 * part of a klustered read.
4464 *
4465 * IN: vp - vnode of file to get data from.
4466 * off - position in file to get data from.
4467 * len - amount of data to retrieve.
4468 * plsz - length of provided page list.
4469 * seg - segment to obtain pages for.
4470 * addr - virtual address of fault.
4471 * rw - mode of created pages.
4472 * cr - credentials of caller.
4473 * ct - caller context.
4474 *
4475 * OUT: protp - protection mode of created pages.
4476 * pl - list of pages created.
4477 *
4478 * RETURN: 0 on success, error code on failure.
4352 * RETURN: 0 if success
4353 * error code if failure
4479 *
4480 * Timestamps:
4481 * vp - atime updated
4482 */
4483 /* ARGSUSED */
4484 static int
4485 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4486 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4487 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4488 {
4489 znode_t *zp = VTOZ(vp);
4490 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4491 page_t **pl0 = pl;
4492 int err = 0;

4494 /* we do our own caching, faultahead is unnecessary */
4495 if (pl == NULL)
4496 return (0);
4497 else if (len > plsz)
4498 len = plsz;
4499 else
4500 len = P2ROUNDUP(len, PAGESIZE);
4501 ASSERT(plsz >= len);

4503 ZFS_ENTER(zfsvfs);
4504 ZFS_VERIFY_ZP(zp);

4506 if (protp)
4507 *protp = PROT_ALL;

4509 /*
4510 * Loop through the requested range [off, off + len) looking
4511 * for pages. If we don’t find a page, we will need to create
4512 * a new page and fill it with data from the file.
4513 */
4514 while (len > 0) {
4515 if (*pl = page_lookup(vp, off, SE_SHARED))
4516 *(pl+1) = NULL;
4517 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4518 goto out;
4519 while (*pl) {
4520 ASSERT3U((*pl)->p_offset, ==, off);
4521 off += PAGESIZE;
4522 addr += PAGESIZE;
4523 if (len > 0) {
4524 ASSERT3U(len, >=, PAGESIZE);
4525 len -= PAGESIZE;
4526 }

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 58

4527 ASSERT3U(plsz, >=, PAGESIZE);
4528 plsz -= PAGESIZE;
4529 pl++;
4530 }
4531 }

4533 /*
4534 * Fill out the page array with any pages already in the cache.
4535 */
4536 while (plsz > 0 &&
4537 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4538 off += PAGESIZE;
4539 plsz -= PAGESIZE;
4540 }
4541 out:
4542 if (err) {
4543 /*
4544 * Release any pages we have previously locked.
4545 */
4546 while (pl > pl0)
4547 page_unlock(*--pl);
4548 } else {
4549 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4550 }

4552 *pl = NULL;

4554 ZFS_EXIT(zfsvfs);
4555 return (err);
4556 }

4558 /*
4559 * Request a memory map for a section of a file. This code interacts
4560 * with common code and the VM system as follows:
4561 *
4562 * - common code calls mmap(), which ends up in smmap_common()
4563 * - this calls VOP_MAP(), which takes you into (say) zfs
4564 * - zfs_map() calls as_map(), passing segvn_create() as the callback
4565 * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4566 * - zfs_addmap() updates z_mapcnt
4437 * common code calls mmap(), which ends up in smmap_common()
4438 *
4439 * this calls VOP_MAP(), which takes you into (say) zfs
4440 *
4441 * zfs_map() calls as_map(), passing segvn_create() as the callback
4442 *
4443 * segvn_create() creates the new segment and calls VOP_ADDMAP()
4444 *
4445 * zfs_addmap() updates z_mapcnt
4567 */
4568 /*ARGSUSED*/
4569 static int
4570 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4571 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4572 caller_context_t *ct)
4573 {
4574 znode_t *zp = VTOZ(vp);
4575 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4576 segvn_crargs_t vn_a;
4577 int error;

4579 ZFS_ENTER(zfsvfs);
4580 ZFS_VERIFY_ZP(zp);

4582 if ((prot & PROT_WRITE) && (zp->z_pflags &
4583 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 59

4584 ZFS_EXIT(zfsvfs);
4585 return (SET_ERROR(EPERM));
4586 }

4588 if ((prot & (PROT_READ | PROT_EXEC)) &&
4589 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4590 ZFS_EXIT(zfsvfs);
4591 return (SET_ERROR(EACCES));
4592 }

4594 if (vp->v_flag & VNOMAP) {
4595 ZFS_EXIT(zfsvfs);
4596 return (SET_ERROR(ENOSYS));
4597 }

4599 if (off < 0 || len > MAXOFFSET_T - off) {
4600 ZFS_EXIT(zfsvfs);
4601 return (SET_ERROR(ENXIO));
4602 }

4604 if (vp->v_type != VREG) {
4605 ZFS_EXIT(zfsvfs);
4606 return (SET_ERROR(ENODEV));
4607 }

4609 /*
4610 * If file is locked, disallow mapping.
4611 */
4612 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4613 ZFS_EXIT(zfsvfs);
4614 return (SET_ERROR(EAGAIN));
4615 }

4617 as_rangelock(as);
4618 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4619 if (error != 0) {
4620 as_rangeunlock(as);
4621 ZFS_EXIT(zfsvfs);
4622 return (error);
4623 }

4625 vn_a.vp = vp;
4626 vn_a.offset = (u_offset_t)off;
4627 vn_a.type = flags & MAP_TYPE;
4628 vn_a.prot = prot;
4629 vn_a.maxprot = maxprot;
4630 vn_a.cred = cr;
4631 vn_a.amp = NULL;
4632 vn_a.flags = flags & ~MAP_TYPE;
4633 vn_a.szc = 0;
4634 vn_a.lgrp_mem_policy_flags = 0;

4636 error = as_map(as, *addrp, len, segvn_create, &vn_a);

4638 as_rangeunlock(as);
4639 ZFS_EXIT(zfsvfs);
4640 return (error);
4641 }
______unchanged_portion_omitted_

4694 /*
4695 * Free or allocate space in a file. Currently, this function only
4696 * supports the ‘F_FREESP’ command. However, this command is somewhat
4697 * misnamed, as its functionality includes the ability to allocate as
4698 * well as free space.
4699 *

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 60

4700 * IN: vp - vnode of file to free data in.
4701 * cmd - action to take (only F_FREESP supported).
4702 * bfp - section of file to free/alloc.
4703 * flag - current file open mode flags.
4704 * offset - current file offset.
4705 * cr - credentials of caller [UNUSED].
4706 * ct - caller context.
4707 *
4708 * RETURN: 0 on success, error code on failure.
4587 * RETURN: 0 if success
4588 * error code if failure
4709 *
4710 * Timestamps:
4711 * vp - ctime|mtime updated
4712 */
4713 /* ARGSUSED */
4714 static int
4715 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4716 offset_t offset, cred_t *cr, caller_context_t *ct)
4717 {
4718 znode_t *zp = VTOZ(vp);
4719 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4720 uint64_t off, len;
4721 int error;

4723 ZFS_ENTER(zfsvfs);
4724 ZFS_VERIFY_ZP(zp);

4726 if (cmd != F_FREESP) {
4727 ZFS_EXIT(zfsvfs);
4728 return (SET_ERROR(EINVAL));
4729 }

4731 if (error = convoff(vp, bfp, 0, offset)) {
4732 ZFS_EXIT(zfsvfs);
4733 return (error);
4734 }

4736 if (bfp->l_len < 0) {
4737 ZFS_EXIT(zfsvfs);
4738 return (SET_ERROR(EINVAL));
4739 }

4741 off = bfp->l_start;
4742 len = bfp->l_len; /* 0 means from off to end of file */

4744 error = zfs_freesp(zp, off, len, flag, TRUE);

4746 ZFS_EXIT(zfsvfs);
4747 return (error);
4748 }
______unchanged_portion_omitted_

4922 /*
4923 * The smallest read we may consider to loan out an arcbuf.
4924 * This must be a power of 2.
4803 * Tunable, both must be a power of 2.
4804 *
4805 * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf
4806 * zcr_blksz_max: if set to less than the file block size, allow loaning out of
4807 * an arcbuf for a partial block read
4925 */
4926 int zcr_blksz_min = (1 << 10); /* 1K */
4927 /*
4928 * If set to less than the file block size, allow loaning out of an
4929 * arcbuf for a partial block read. This must be a power of 2.

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 61

4930 */
4931 #endif /* ! codereview */
4932 int zcr_blksz_max = (1 << 17); /* 128K */

4934 /*ARGSUSED*/
4935 static int
4936 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
4937 caller_context_t *ct)
4938 {
4939 znode_t *zp = VTOZ(vp);
4940 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4941 int max_blksz = zfsvfs->z_max_blksz;
4942 uio_t *uio = &xuio->xu_uio;
4943 ssize_t size = uio->uio_resid;
4944 offset_t offset = uio->uio_loffset;
4945 int blksz;
4946 int fullblk, i;
4947 arc_buf_t *abuf;
4948 ssize_t maxsize;
4949 int preamble, postamble;

4951 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
4952 return (SET_ERROR(EINVAL));

4954 ZFS_ENTER(zfsvfs);
4955 ZFS_VERIFY_ZP(zp);
4956 switch (ioflag) {
4957 case UIO_WRITE:
4958 /*
4959 * Loan out an arc_buf for write if write size is bigger than
4960 * max_blksz, and the file’s block size is also max_blksz.
4961 */
4962 blksz = max_blksz;
4963 if (size < blksz || zp->z_blksz != blksz) {
4964 ZFS_EXIT(zfsvfs);
4965 return (SET_ERROR(EINVAL));
4966 }
4967 /*
4968 * Caller requests buffers for write before knowing where the
4969 * write offset might be (e.g. NFS TCP write).
4970 */
4971 if (offset == -1) {
4972 preamble = 0;
4973 } else {
4974 preamble = P2PHASE(offset, blksz);
4975 if (preamble) {
4976 preamble = blksz - preamble;
4977 size -= preamble;
4978 }
4979 }

4981 postamble = P2PHASE(size, blksz);
4982 size -= postamble;

4984 fullblk = size / blksz;
4985 (void) dmu_xuio_init(xuio,
4986 (preamble != 0) + fullblk + (postamble != 0));
4987 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
4988 int, postamble, int,
4989 (preamble != 0) + fullblk + (postamble != 0));

4991 /*
4992 * Have to fix iov base/len for partial buffers. They
4993 * currently represent full arc_buf’s.
4994 */
4995 if (preamble) {

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 62

4996 /* data begins in the middle of the arc_buf */
4997 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4998 blksz);
4999 ASSERT(abuf);
5000 (void) dmu_xuio_add(xuio, abuf,
5001 blksz - preamble, preamble);
5002 }

5004 for (i = 0; i < fullblk; i++) {
5005 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5006 blksz);
5007 ASSERT(abuf);
5008 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5009 }

5011 if (postamble) {
5012 /* data ends in the middle of the arc_buf */
5013 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5014 blksz);
5015 ASSERT(abuf);
5016 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5017 }
5018 break;
5019 case UIO_READ:
5020 /*
5021 * Loan out an arc_buf for read if the read size is larger than
5022 * the current file block size. Block alignment is not
5023 * considered. Partial arc_buf will be loaned out for read.
5024 */
5025 blksz = zp->z_blksz;
5026 if (blksz < zcr_blksz_min)
5027 blksz = zcr_blksz_min;
5028 if (blksz > zcr_blksz_max)
5029 blksz = zcr_blksz_max;
5030 /* avoid potential complexity of dealing with it */
5031 if (blksz > max_blksz) {
5032 ZFS_EXIT(zfsvfs);
5033 return (SET_ERROR(EINVAL));
5034 }

5036 maxsize = zp->z_size - uio->uio_loffset;
5037 if (size > maxsize)
5038 size = maxsize;

5040 if (size < blksz || vn_has_cached_data(vp)) {
5041 ZFS_EXIT(zfsvfs);
5042 return (SET_ERROR(EINVAL));
5043 }
5044 break;
5045 default:
5046 ZFS_EXIT(zfsvfs);
5047 return (SET_ERROR(EINVAL));
5048 }

5050 uio->uio_extflg = UIO_XUIO;
5051 XUIO_XUZC_RW(xuio) = ioflag;
5052 ZFS_EXIT(zfsvfs);
5053 return (0);
5054 }

5056 /*ARGSUSED*/
5057 static int
5058 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5059 {
5060 int i;
5061 arc_buf_t *abuf;

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 63

5062 int ioflag = XUIO_XUZC_RW(xuio);

5064 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);

5066 i = dmu_xuio_cnt(xuio);
5067 while (i-- > 0) {
5068 abuf = dmu_xuio_arcbuf(xuio, i);
5069 /*
5070 * if abuf == NULL, it must be a write buffer
5071 * that has been returned in zfs_write().
5072 */
5073 if (abuf)
5074 dmu_return_arcbuf(abuf);
5075 ASSERT(abuf || ioflag == UIO_WRITE);
5076 }

5078 dmu_xuio_fini(xuio);
5079 return (0);
5080 }

5082 /*
5083 * Predeclare these here so that the compiler assumes that
5084 * this is an "old style" function declaration that does
5085 * not include arguments => we won’t get type mismatch errors
5086 * in the initializations that follow.
5087 */
5088 static int zfs_inval();
5089 static int zfs_isdir();

5091 static int
5092 zfs_inval()
5093 {
5094 return (SET_ERROR(EINVAL));
5095 }

5097 static int
5098 zfs_isdir()
5099 {
5100 return (SET_ERROR(EISDIR));
5101 }
5102 /*
5103 * Directory vnode operations template
5104 */
5105 vnodeops_t *zfs_dvnodeops;
5106 const fs_operation_def_t zfs_dvnodeops_template[] = {
5107 VOPNAME_OPEN, { .vop_open = zfs_open },
5108 VOPNAME_CLOSE, { .vop_close = zfs_close },
5109 VOPNAME_READ, { .error = zfs_isdir },
5110 VOPNAME_WRITE, { .error = zfs_isdir },
5111 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5112 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5113 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5114 VOPNAME_ACCESS, { .vop_access = zfs_access },
5115 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5116 VOPNAME_CREATE, { .vop_create = zfs_create },
5117 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5118 VOPNAME_LINK, { .vop_link = zfs_link },
5119 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5120 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir },
5121 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5122 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5123 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink },
5124 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5125 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5126 VOPNAME_FID, { .vop_fid = zfs_fid },
5127 VOPNAME_SEEK, { .vop_seek = zfs_seek },

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 64

5128 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5129 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5130 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5131 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5132 NULL, NULL
5133 };

5135 /*
5136 * Regular file vnode operations template
5137 */
5138 vnodeops_t *zfs_fvnodeops;
5139 const fs_operation_def_t zfs_fvnodeops_template[] = {
5140 VOPNAME_OPEN, { .vop_open = zfs_open },
5141 VOPNAME_CLOSE, { .vop_close = zfs_close },
5142 VOPNAME_READ, { .vop_read = zfs_read },
5143 VOPNAME_WRITE, { .vop_write = zfs_write },
5144 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5145 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5146 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5147 VOPNAME_ACCESS, { .vop_access = zfs_access },
5148 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5149 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5150 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5151 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5152 VOPNAME_FID, { .vop_fid = zfs_fid },
5153 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5154 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock },
5155 VOPNAME_SPACE, { .vop_space = zfs_space },
5156 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage },
5157 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage },
5158 VOPNAME_MAP, { .vop_map = zfs_map },
5159 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap },
5160 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap },
5161 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5162 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5163 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5164 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5165 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf },
5166 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf },
5167 NULL, NULL
5168 };

5170 /*
5171 * Symbolic link vnode operations template
5172 */
5173 vnodeops_t *zfs_symvnodeops;
5174 const fs_operation_def_t zfs_symvnodeops_template[] = {
5175 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5176 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5177 VOPNAME_ACCESS, { .vop_access = zfs_access },
5178 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5179 VOPNAME_READLINK, { .vop_readlink = zfs_readlink },
5180 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5181 VOPNAME_FID, { .vop_fid = zfs_fid },
5182 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5183 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5184 NULL, NULL
5185 };

5187 /*
5188 * special share hidden files vnode operations template
5189 */
5190 vnodeops_t *zfs_sharevnodeops;
5191 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5192 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5193 VOPNAME_ACCESS, { .vop_access = zfs_access },

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 65

5194 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5195 VOPNAME_FID, { .vop_fid = zfs_fid },
5196 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5197 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5198 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5199 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5200 NULL, NULL
5201 };

5203 /*
5204 * Extended attribute directory vnode operations template
5205 *
5206 #endif /* ! codereview */
5207 * This template is identical to the directory vnodes
5208 * operation template except for restricted operations:
5209 * VOP_MKDIR()
5210 * VOP_SYMLINK()
5211 *
5212 #endif /* ! codereview */
5213 * Note that there are other restrictions embedded in:
5214 * zfs_create() - restrict type to VREG
5215 * zfs_link() - no links into/out of attribute space
5216 * zfs_rename() - no moves into/out of attribute space
5217 */
5218 vnodeops_t *zfs_xdvnodeops;
5219 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5220 VOPNAME_OPEN, { .vop_open = zfs_open },
5221 VOPNAME_CLOSE, { .vop_close = zfs_close },
5222 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5223 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5224 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5225 VOPNAME_ACCESS, { .vop_access = zfs_access },
5226 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5227 VOPNAME_CREATE, { .vop_create = zfs_create },
5228 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5229 VOPNAME_LINK, { .vop_link = zfs_link },
5230 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5231 VOPNAME_MKDIR, { .error = zfs_inval },
5232 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5233 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5234 VOPNAME_SYMLINK, { .error = zfs_inval },
5235 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5236 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5237 VOPNAME_FID, { .vop_fid = zfs_fid },
5238 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5239 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5240 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5241 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5242 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5243 NULL, NULL
5244 };

5246 /*
5247 * Error vnode operations template
5248 */
5249 vnodeops_t *zfs_evnodeops;
5250 const fs_operation_def_t zfs_evnodeops_template[] = {
5251 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5252 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5253 NULL, NULL
5254 };

new/usr/src/uts/common/fs/zfs/zfs_znode.c 1

**
 53484 Wed Apr 24 12:44:35 2013
new/usr/src/uts/common/fs/zfs/zfs_znode.c
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

1008 /*
1009 * Update in-core attributes. It is assumed the caller will be doing an
1010 * sa_bulk_update to push the changes out.
1009 * zfs_xvattr_set only updates the in-core attributes
1010 * it is assumed the caller will be doing an sa_bulk_update
1011 * to push the changes out
1011 */
1012 void
1013 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx)
1014 {
1015 xoptattr_t *xoap;

1017 xoap = xva_getxoptattr(xvap);
1018 ASSERT(xoap);

1020 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
1021 uint64_t times[2];
1022 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times);
1023 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs),
1024 ×, sizeof (times), tx);
1025 XVA_SET_RTN(xvap, XAT_CREATETIME);
1026 }
1027 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
1028 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly,
1029 zp->z_pflags, tx);
1030 XVA_SET_RTN(xvap, XAT_READONLY);
1031 }
1032 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
1033 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden,
1034 zp->z_pflags, tx);
1035 XVA_SET_RTN(xvap, XAT_HIDDEN);
1036 }
1037 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
1038 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system,
1039 zp->z_pflags, tx);
1040 XVA_SET_RTN(xvap, XAT_SYSTEM);
1041 }
1042 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
1043 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive,
1044 zp->z_pflags, tx);
1045 XVA_SET_RTN(xvap, XAT_ARCHIVE);
1046 }
1047 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
1048 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable,
1049 zp->z_pflags, tx);
1050 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
1051 }
1052 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
1053 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink,
1054 zp->z_pflags, tx);
1055 XVA_SET_RTN(xvap, XAT_NOUNLINK);
1056 }
1057 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
1058 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly,

new/usr/src/uts/common/fs/zfs/zfs_znode.c 2

1059 zp->z_pflags, tx);
1060 XVA_SET_RTN(xvap, XAT_APPENDONLY);
1061 }
1062 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
1063 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump,
1064 zp->z_pflags, tx);
1065 XVA_SET_RTN(xvap, XAT_NODUMP);
1066 }
1067 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
1068 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque,
1069 zp->z_pflags, tx);
1070 XVA_SET_RTN(xvap, XAT_OPAQUE);
1071 }
1072 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
1073 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
1074 xoap->xoa_av_quarantined, zp->z_pflags, tx);
1075 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
1076 }
1077 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
1078 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified,
1079 zp->z_pflags, tx);
1080 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
1081 }
1082 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
1083 zfs_sa_set_scanstamp(zp, xvap, tx);
1084 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
1085 }
1086 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
1087 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse,
1088 zp->z_pflags, tx);
1089 XVA_SET_RTN(xvap, XAT_REPARSE);
1090 }
1091 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
1092 ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline,
1093 zp->z_pflags, tx);
1094 XVA_SET_RTN(xvap, XAT_OFFLINE);
1095 }
1096 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
1097 ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse,
1098 zp->z_pflags, tx);
1099 XVA_SET_RTN(xvap, XAT_SPARSE);
1100 }
1101 }
______unchanged_portion_omitted_

1443 /*
1444 * Increase the file length
1445 *
1446 * IN: zp - znode of file to free data in.
1447 * end - new end-of-file
1448 *
1449 * RETURN: 0 on success, error code on failure
1450 * RETURN: 0 if success
1451 * error code if failure
1450 */
1451 static int
1452 zfs_extend(znode_t *zp, uint64_t end)
1453 {
1454 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1455 dmu_tx_t *tx;
1456 rl_t *rl;
1457 uint64_t newblksz;
1458 int error;

1460 /*
1461 * We will change zp_size, lock the whole file.

new/usr/src/uts/common/fs/zfs/zfs_znode.c 3

1462 */
1463 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);

1465 /*
1466 * Nothing to do if file already at desired length.
1467 */
1468 if (end <= zp->z_size) {
1469 zfs_range_unlock(rl);
1470 return (0);
1471 }
1472 top:
1473 tx = dmu_tx_create(zfsvfs->z_os);
1474 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1475 zfs_sa_upgrade_txholds(tx, zp);
1476 if (end > zp->z_blksz &&
1477 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1478 /*
1479 * We are growing the file past the current block size.
1480 */
1481 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
1482 ASSERT(!ISP2(zp->z_blksz));
1483 newblksz = MIN(end, SPA_MAXBLOCKSIZE);
1484 } else {
1485 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
1486 }
1487 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1488 } else {
1489 newblksz = 0;
1490 }

1492 error = dmu_tx_assign(tx, TXG_NOWAIT);
1493 if (error) {
1494 if (error == ERESTART) {
1495 dmu_tx_wait(tx);
1496 dmu_tx_abort(tx);
1497 goto top;
1498 }
1499 dmu_tx_abort(tx);
1500 zfs_range_unlock(rl);
1501 return (error);
1502 }

1504 if (newblksz)
1505 zfs_grow_blocksize(zp, newblksz, tx);

1507 zp->z_size = end;

1509 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs),
1510 &zp->z_size, sizeof (zp->z_size), tx));

1512 zfs_range_unlock(rl);

1514 dmu_tx_commit(tx);

1516 return (0);
1517 }

1519 /*
1520 * Free space in a file.
1521 *
1522 * IN: zp - znode of file to free data in.
1523 * off - start of section to free.
1524 * len - length of section to free.
1525 *
1526 * RETURN: 0 on success, error code on failure
1528 * RETURN: 0 if success

new/usr/src/uts/common/fs/zfs/zfs_znode.c 4

1529 * error code if failure
1527 */
1528 static int
1529 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1530 {
1531 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1532 rl_t *rl;
1533 int error;

1535 /*
1536 * Lock the range being freed.
1537 */
1538 rl = zfs_range_lock(zp, off, len, RL_WRITER);

1540 /*
1541 * Nothing to do if file already at desired length.
1542 */
1543 if (off >= zp->z_size) {
1544 zfs_range_unlock(rl);
1545 return (0);
1546 }

1548 if (off + len > zp->z_size)
1549 len = zp->z_size - off;

1551 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);

1553 zfs_range_unlock(rl);

1555 return (error);
1556 }

1558 /*
1559 * Truncate a file
1560 *
1561 * IN: zp - znode of file to free data in.
1562 * end - new end-of-file.
1563 *
1564 * RETURN: 0 on success, error code on failure
1567 * RETURN: 0 if success
1568 * error code if failure
1565 */
1566 static int
1567 zfs_trunc(znode_t *zp, uint64_t end)
1568 {
1569 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1570 vnode_t *vp = ZTOV(zp);
1571 dmu_tx_t *tx;
1572 rl_t *rl;
1573 int error;
1574 sa_bulk_attr_t bulk[2];
1575 int count = 0;

1577 /*
1578 * We will change zp_size, lock the whole file.
1579 */
1580 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);

1582 /*
1583 * Nothing to do if file already at desired length.
1584 */
1585 if (end >= zp->z_size) {
1586 zfs_range_unlock(rl);
1587 return (0);
1588 }

new/usr/src/uts/common/fs/zfs/zfs_znode.c 5

1590 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1);
1591 if (error) {
1592 zfs_range_unlock(rl);
1593 return (error);
1594 }
1595 top:
1596 tx = dmu_tx_create(zfsvfs->z_os);
1597 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1598 zfs_sa_upgrade_txholds(tx, zp);
1599 error = dmu_tx_assign(tx, TXG_NOWAIT);
1600 if (error) {
1601 if (error == ERESTART) {
1602 dmu_tx_wait(tx);
1603 dmu_tx_abort(tx);
1604 goto top;
1605 }
1606 dmu_tx_abort(tx);
1607 zfs_range_unlock(rl);
1608 return (error);
1609 }

1611 zp->z_size = end;
1612 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
1613 NULL, &zp->z_size, sizeof (zp->z_size));

1615 if (end == 0) {
1616 zp->z_pflags &= ~ZFS_SPARSE;
1617 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1618 NULL, &zp->z_pflags, 8);
1619 }
1620 VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0);

1622 dmu_tx_commit(tx);

1624 /*
1625 * Clear any mapped pages in the truncated region. This has to
1626 * happen outside of the transaction to avoid the possibility of
1627 * a deadlock with someone trying to push a page that we are
1628 * about to invalidate.
1629 */
1630 if (vn_has_cached_data(vp)) {
1631 page_t *pp;
1632 uint64_t start = end & PAGEMASK;
1633 int poff = end & PAGEOFFSET;

1635 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) {
1636 /*
1637 * We need to zero a partial page.
1638 */
1639 pagezero(pp, poff, PAGESIZE - poff);
1640 start += PAGESIZE;
1641 page_unlock(pp);
1642 }
1643 error = pvn_vplist_dirty(vp, start, zfs_no_putpage,
1644 B_INVAL | B_TRUNC, NULL);
1645 ASSERT(error == 0);
1646 }

1648 zfs_range_unlock(rl);

1650 return (0);
1651 }

1653 /*
1654 * Free space in a file
1655 *

new/usr/src/uts/common/fs/zfs/zfs_znode.c 6

1656 * IN: zp - znode of file to free data in.
1657 * off - start of range
1658 * len - end of range (0 => EOF)
1659 * flag - current file open mode flags.
1660 * log - TRUE if this action should be logged
1661 *
1662 * RETURN: 0 on success, error code on failure
1666 * RETURN: 0 if success
1667 * error code if failure
1663 */
1664 int
1665 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1666 {
1667 vnode_t *vp = ZTOV(zp);
1668 dmu_tx_t *tx;
1669 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1670 zilog_t *zilog = zfsvfs->z_log;
1671 uint64_t mode;
1672 uint64_t mtime[2], ctime[2];
1673 sa_bulk_attr_t bulk[3];
1674 int count = 0;
1675 int error;

1677 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode,
1678 sizeof (mode))) != 0)
1679 return (error);

1681 if (off > zp->z_size) {
1682 error = zfs_extend(zp, off+len);
1683 if (error == 0 && log)
1684 goto log;
1685 else
1686 return (error);
1687 }

1689 /*
1690 * Check for any locks in the region to be freed.
1691 */

1693 if (MANDLOCK(vp, (mode_t)mode)) {
1694 uint64_t length = (len ? len : zp->z_size - off);
1695 if (error = chklock(vp, FWRITE, off, length, flag, NULL))
1696 return (error);
1697 }

1699 if (len == 0) {
1700 error = zfs_trunc(zp, off);
1701 } else {
1702 if ((error = zfs_free_range(zp, off, len)) == 0 &&
1703 off + len > zp->z_size)
1704 error = zfs_extend(zp, off+len);
1705 }
1706 if (error || !log)
1707 return (error);
1708 log:
1709 tx = dmu_tx_create(zfsvfs->z_os);
1710 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1711 zfs_sa_upgrade_txholds(tx, zp);
1712 error = dmu_tx_assign(tx, TXG_NOWAIT);
1713 if (error) {
1714 if (error == ERESTART) {
1715 dmu_tx_wait(tx);
1716 dmu_tx_abort(tx);
1717 goto log;
1718 }
1719 dmu_tx_abort(tx);

new/usr/src/uts/common/fs/zfs/zfs_znode.c 7

1720 return (error);
1721 }

1723 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16);
1724 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16);
1725 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1726 NULL, &zp->z_pflags, 8);
1727 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE);
1728 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1729 ASSERT(error == 0);

1731 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);

1733 dmu_tx_commit(tx);
1734 return (0);
1735 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/zil.c 1

**
 57657 Wed Apr 24 12:44:35 2013
new/usr/src/uts/common/fs/zfs/zil.c
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 */

26 /* Portions Copyright 2010 Robert Milkowski */

28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/dmu.h>
31 #include <sys/zap.h>
32 #include <sys/arc.h>
33 #include <sys/stat.h>
34 #include <sys/resource.h>
35 #include <sys/zil.h>
36 #include <sys/zil_impl.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/vdev_impl.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/dsl_pool.h>

42 /*
43 * The zfs intent log (ZIL) saves transaction records of system calls
44 * that change the file system in memory with enough information
45 * to be able to replay them. These are stored in memory until
46 * either the DMU transaction group (txg) commits them to the stable pool
47 * and they can be discarded, or they are flushed to the stable log
48 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
49 * requirement. In the event of a panic or power fail then those log
50 * records (transactions) are replayed.
51 *
52 * There is one ZIL per file system. Its on-disk (pool) format consists
53 * of 3 parts:
54 *
55 * - ZIL header
56 * - ZIL blocks

new/usr/src/uts/common/fs/zfs/zil.c 2

57 * - ZIL records
58 *
59 * A log record holds a system call transaction. Log blocks can
60 * hold many log records and the blocks are chained together.
61 * Each ZIL block contains a block pointer (blkptr_t) to the next
62 * ZIL block in the chain. The ZIL header points to the first
63 * block in the chain. Note there is not a fixed place in the pool
64 * to hold blocks. They are dynamically allocated and freed as
65 * needed from the blocks available. Figure X shows the ZIL structure:
66 */

68 /*
69 * Disable intent logging replay. This global ZIL switch affects all pools.
69 * This global ZIL switch affects all pools
70 */
71 int zil_replay_disable = 0;
71 int zil_replay_disable = 0; /* disable intent logging replay */

73 /*
74 * Tunable parameter for debugging or performance analysis. Setting
75 * zfs_nocacheflush will cause corruption on power loss if a volatile
76 * out-of-order write cache is enabled.
77 */
78 boolean_t zfs_nocacheflush = B_FALSE;

80 static kmem_cache_t *zil_lwb_cache;

82 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);

84 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
85 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))

88 /*
89 * ziltest is by and large an ugly hack, but very useful in
90 * checking replay without tedious work.
91 * When running ziltest we want to keep all itx’s and so maintain
92 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
93 * We subtract TXG_CONCURRENT_STATES to allow for common code.
94 */
95 #define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)

97 static int
98 zil_bp_compare(const void *x1, const void *x2)
99 {
100 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
101 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;

103 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
104 return (-1);
105 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
106 return (1);

108 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
109 return (-1);
110 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
111 return (1);

113 return (0);
114 }

______unchanged_portion_omitted_

880 /*
881 * Define a limited set of intent log block sizes.
882 *
883 #endif /* ! codereview */

new/usr/src/uts/common/fs/zfs/zil.c 3

884 * These must be a multiple of 4KB. Note only the amount used (again
885 * aligned to 4KB) actually gets written. However, we can’t always just
886 * allocate SPA_MAXBLOCKSIZE as the slog space could be exhausted.
887 */
888 uint64_t zil_block_buckets[] = {
889 4096, /* non TX_WRITE */
890 8192+4096, /* data base */
891 32*1024 + 4096, /* NFS writes */
892 UINT64_MAX
893 };

895 /*
896 * Use the slog as long as the logbias is ’latency’ and the current commit size
897 * is less than the limit or the total list size is less than 2X the limit.
898 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
899 */
900 uint64_t zil_slog_limit = 1024 * 1024;
901 #define USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
902 (((zilog)->zl_cur_used < zil_slog_limit) || \
903 ((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))

905 /*
906 * Start a log block write and advance to the next log block.
907 * Calls are serialized.
908 */
909 static lwb_t *
910 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
911 {
912 lwb_t *nlwb = NULL;
913 zil_chain_t *zilc;
914 spa_t *spa = zilog->zl_spa;
915 blkptr_t *bp;
916 dmu_tx_t *tx;
917 uint64_t txg;
918 uint64_t zil_blksz, wsz;
919 int i, error;

921 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
922 zilc = (zil_chain_t *)lwb->lwb_buf;
923 bp = &zilc->zc_next_blk;
924 } else {
925 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
926 bp = &zilc->zc_next_blk;
927 }

929 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);

931 /*
932 * Allocate the next block and save its address in this block
933 * before writing it in order to establish the log chain.
934 * Note that if the allocation of nlwb synced before we wrote
935 * the block that points at it (lwb), we’d leak it if we crashed.
936 * Therefore, we don’t do dmu_tx_commit() until zil_lwb_write_done().
937 * We dirty the dataset to ensure that zil_sync() will be called
938 * to clean up in the event of allocation failure or I/O failure.
939 */
940 tx = dmu_tx_create(zilog->zl_os);
941 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
942 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
943 txg = dmu_tx_get_txg(tx);

945 lwb->lwb_tx = tx;

947 /*
948 * Log blocks are pre-allocated. Here we select the size of the next
949 * block, based on size used in the last block.

new/usr/src/uts/common/fs/zfs/zil.c 4

950 * - first find the smallest bucket that will fit the block from a
951 * limited set of block sizes. This is because it’s faster to write
952 * blocks allocated from the same metaslab as they are adjacent or
953 * close.
954 * - next find the maximum from the new suggested size and an array of
955 * previous sizes. This lessens a picket fence effect of wrongly
956 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
957 * requests.
958 *
959 * Note we only write what is used, but we can’t just allocate
960 * the maximum block size because we can exhaust the available
961 * pool log space.
962 */
963 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
964 for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
965 continue;
966 zil_blksz = zil_block_buckets[i];
967 if (zil_blksz == UINT64_MAX)
968 zil_blksz = SPA_MAXBLOCKSIZE;
969 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
970 for (i = 0; i < ZIL_PREV_BLKS; i++)
971 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
972 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);

974 BP_ZERO(bp);
975 /* pass the old blkptr in order to spread log blocks across devs */
976 error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
977 USE_SLOG(zilog));
978 if (error == 0) {
979 ASSERT3U(bp->blk_birth, ==, txg);
980 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
981 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;

983 /*
984 * Allocate a new log write buffer (lwb).
985 */
986 nlwb = zil_alloc_lwb(zilog, bp, txg);

988 /* Record the block for later vdev flushing */
989 zil_add_block(zilog, &lwb->lwb_blk);
990 }

992 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
993 /* For Slim ZIL only write what is used. */
994 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
995 ASSERT3U(wsz, <=, lwb->lwb_sz);
996 zio_shrink(lwb->lwb_zio, wsz);

998 } else {
999 wsz = lwb->lwb_sz;

1000 }

1002 zilc->zc_pad = 0;
1003 zilc->zc_nused = lwb->lwb_nused;
1004 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;

1006 /*
1007 * clear unused data for security
1008 */
1009 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);

1011 zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */

1013 /*
1014 * If there was an allocation failure then nlwb will be null which
1015 * forces a txg_wait_synced().

new/usr/src/uts/common/fs/zfs/zil.c 5

1016 */
1017 return (nlwb);
1018 }

1020 static lwb_t *
1021 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1022 {
1023 lr_t *lrc = &itx->itx_lr; /* common log record */
1024 lr_write_t *lrw = (lr_write_t *)lrc;
1025 char *lr_buf;
1026 uint64_t txg = lrc->lrc_txg;
1027 uint64_t reclen = lrc->lrc_reclen;
1028 uint64_t dlen = 0;

1030 if (lwb == NULL)
1031 return (NULL);

1033 ASSERT(lwb->lwb_buf != NULL);
1034 ASSERT(zilog_is_dirty(zilog) ||
1035 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);

1037 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1038 dlen = P2ROUNDUP_TYPED(
1039 lrw->lr_length, sizeof (uint64_t), uint64_t);

1041 zilog->zl_cur_used += (reclen + dlen);

1043 zil_lwb_write_init(zilog, lwb);

1045 /*
1046 * If this record won’t fit in the current log block, start a new one.
1047 */
1048 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1049 lwb = zil_lwb_write_start(zilog, lwb);
1050 if (lwb == NULL)
1051 return (NULL);
1052 zil_lwb_write_init(zilog, lwb);
1053 ASSERT(LWB_EMPTY(lwb));
1054 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1055 txg_wait_synced(zilog->zl_dmu_pool, txg);
1056 return (lwb);
1057 }
1058 }

1060 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1061 bcopy(lrc, lr_buf, reclen);
1062 lrc = (lr_t *)lr_buf;
1063 lrw = (lr_write_t *)lrc;

1065 /*
1066 * If it’s a write, fetch the data or get its blkptr as appropriate.
1067 */
1068 if (lrc->lrc_txtype == TX_WRITE) {
1069 if (txg > spa_freeze_txg(zilog->zl_spa))
1070 txg_wait_synced(zilog->zl_dmu_pool, txg);
1071 if (itx->itx_wr_state != WR_COPIED) {
1072 char *dbuf;
1073 int error;

1075 if (dlen) {
1076 ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1077 dbuf = lr_buf + reclen;
1078 lrw->lr_common.lrc_reclen += dlen;
1079 } else {
1080 ASSERT(itx->itx_wr_state == WR_INDIRECT);
1081 dbuf = NULL;

new/usr/src/uts/common/fs/zfs/zil.c 6

1082 }
1083 error = zilog->zl_get_data(
1084 itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1085 if (error == EIO) {
1086 txg_wait_synced(zilog->zl_dmu_pool, txg);
1087 return (lwb);
1088 }
1089 if (error != 0) {
1090 ASSERT(error == ENOENT || error == EEXIST ||
1091 error == EALREADY);
1092 return (lwb);
1093 }
1094 }
1095 }

1097 /*
1098 * We’re actually making an entry, so update lrc_seq to be the
1099 * log record sequence number. Note that this is generally not
1100 * equal to the itx sequence number because not all transactions
1101 * are synchronous, and sometimes spa_sync() gets there first.
1102 */
1103 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1104 lwb->lwb_nused += reclen + dlen;
1105 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1106 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1107 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));

1109 return (lwb);
1110 }

1112 itx_t *
1113 zil_itx_create(uint64_t txtype, size_t lrsize)
1114 {
1115 itx_t *itx;

1117 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);

1119 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1120 itx->itx_lr.lrc_txtype = txtype;
1121 itx->itx_lr.lrc_reclen = lrsize;
1122 itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1123 itx->itx_lr.lrc_seq = 0; /* defensive */
1124 itx->itx_sync = B_TRUE; /* default is synchronous */

1126 return (itx);
1127 }

1129 void
1130 zil_itx_destroy(itx_t *itx)
1131 {
1132 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1133 }

1135 /*
1136 * Free up the sync and async itxs. The itxs_t has already been detached
1137 * so no locks are needed.
1138 */
1139 static void
1140 zil_itxg_clean(itxs_t *itxs)
1141 {
1142 itx_t *itx;
1143 list_t *list;
1144 avl_tree_t *t;
1145 void *cookie;
1146 itx_async_node_t *ian;

new/usr/src/uts/common/fs/zfs/zil.c 7

1148 list = &itxs->i_sync_list;
1149 while ((itx = list_head(list)) != NULL) {
1150 list_remove(list, itx);
1151 kmem_free(itx, offsetof(itx_t, itx_lr) +
1152 itx->itx_lr.lrc_reclen);
1153 }

1155 cookie = NULL;
1156 t = &itxs->i_async_tree;
1157 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1158 list = &ian->ia_list;
1159 while ((itx = list_head(list)) != NULL) {
1160 list_remove(list, itx);
1161 kmem_free(itx, offsetof(itx_t, itx_lr) +
1162 itx->itx_lr.lrc_reclen);
1163 }
1164 list_destroy(list);
1165 kmem_free(ian, sizeof (itx_async_node_t));
1166 }
1167 avl_destroy(t);

1169 kmem_free(itxs, sizeof (itxs_t));
1170 }

1172 static int
1173 zil_aitx_compare(const void *x1, const void *x2)
1174 {
1175 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1176 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;

1178 if (o1 < o2)
1179 return (-1);
1180 if (o1 > o2)
1181 return (1);

1183 return (0);
1184 }

1186 /*
1187 * Remove all async itx with the given oid.
1188 */
1189 static void
1190 zil_remove_async(zilog_t *zilog, uint64_t oid)
1191 {
1192 uint64_t otxg, txg;
1193 itx_async_node_t *ian;
1194 avl_tree_t *t;
1195 avl_index_t where;
1196 list_t clean_list;
1197 itx_t *itx;

1199 ASSERT(oid != 0);
1200 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));

1202 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1203 otxg = ZILTEST_TXG;
1204 else
1205 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;

1207 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1208 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];

1210 mutex_enter(&itxg->itxg_lock);
1211 if (itxg->itxg_txg != txg) {
1212 mutex_exit(&itxg->itxg_lock);
1213 continue;

new/usr/src/uts/common/fs/zfs/zil.c 8

1214 }

1216 /*
1217 * Locate the object node and append its list.
1218 */
1219 t = &itxg->itxg_itxs->i_async_tree;
1220 ian = avl_find(t, &oid, &where);
1221 if (ian != NULL)
1222 list_move_tail(&clean_list, &ian->ia_list);
1223 mutex_exit(&itxg->itxg_lock);
1224 }
1225 while ((itx = list_head(&clean_list)) != NULL) {
1226 list_remove(&clean_list, itx);
1227 kmem_free(itx, offsetof(itx_t, itx_lr) +
1228 itx->itx_lr.lrc_reclen);
1229 }
1230 list_destroy(&clean_list);
1231 }

1233 void
1234 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1235 {
1236 uint64_t txg;
1237 itxg_t *itxg;
1238 itxs_t *itxs, *clean = NULL;

1240 /*
1241 * Object ids can be re-instantiated in the next txg so
1242 * remove any async transactions to avoid future leaks.
1243 * This can happen if a fsync occurs on the re-instantiated
1244 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1245 * the new file data and flushes a write record for the old object.
1246 */
1247 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1248 zil_remove_async(zilog, itx->itx_oid);

1250 /*
1251 * Ensure the data of a renamed file is committed before the rename.
1252 */
1253 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1254 zil_async_to_sync(zilog, itx->itx_oid);

1256 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1257 txg = ZILTEST_TXG;
1258 else
1259 txg = dmu_tx_get_txg(tx);

1261 itxg = &zilog->zl_itxg[txg & TXG_MASK];
1262 mutex_enter(&itxg->itxg_lock);
1263 itxs = itxg->itxg_itxs;
1264 if (itxg->itxg_txg != txg) {
1265 if (itxs != NULL) {
1266 /*
1267 * The zil_clean callback hasn’t got around to cleaning
1268 * this itxg. Save the itxs for release below.
1269 * This should be rare.
1270 */
1271 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1272 itxg->itxg_sod = 0;
1273 clean = itxg->itxg_itxs;
1274 }
1275 ASSERT(itxg->itxg_sod == 0);
1276 itxg->itxg_txg = txg;
1277 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);

1279 list_create(&itxs->i_sync_list, sizeof (itx_t),

new/usr/src/uts/common/fs/zfs/zil.c 9

1280 offsetof(itx_t, itx_node));
1281 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1282 sizeof (itx_async_node_t),
1283 offsetof(itx_async_node_t, ia_node));
1284 }
1285 if (itx->itx_sync) {
1286 list_insert_tail(&itxs->i_sync_list, itx);
1287 atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1288 itxg->itxg_sod += itx->itx_sod;
1289 } else {
1290 avl_tree_t *t = &itxs->i_async_tree;
1291 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1292 itx_async_node_t *ian;
1293 avl_index_t where;

1295 ian = avl_find(t, &foid, &where);
1296 if (ian == NULL) {
1297 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1298 list_create(&ian->ia_list, sizeof (itx_t),
1299 offsetof(itx_t, itx_node));
1300 ian->ia_foid = foid;
1301 avl_insert(t, ian, where);
1302 }
1303 list_insert_tail(&ian->ia_list, itx);
1304 }

1306 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1307 zilog_dirty(zilog, txg);
1308 mutex_exit(&itxg->itxg_lock);

1310 /* Release the old itxs now we’ve dropped the lock */
1311 if (clean != NULL)
1312 zil_itxg_clean(clean);
1313 }

1315 /*
1316 * If there are any in-memory intent log transactions which have now been
1317 * synced then start up a taskq to free them. We should only do this after we
1318 * have written out the uberblocks (i.e. txg has been comitted) so that
1319 * don’t inadvertently clean out in-memory log records that would be required
1320 * by zil_commit().
1321 */
1322 void
1323 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1324 {
1325 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1326 itxs_t *clean_me;

1328 mutex_enter(&itxg->itxg_lock);
1329 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1330 mutex_exit(&itxg->itxg_lock);
1331 return;
1332 }
1333 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1334 ASSERT(itxg->itxg_txg != 0);
1335 ASSERT(zilog->zl_clean_taskq != NULL);
1336 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1337 itxg->itxg_sod = 0;
1338 clean_me = itxg->itxg_itxs;
1339 itxg->itxg_itxs = NULL;
1340 itxg->itxg_txg = 0;
1341 mutex_exit(&itxg->itxg_lock);
1342 /*
1343 * Preferably start a task queue to free up the old itxs but
1344 * if taskq_dispatch can’t allocate resources to do that then
1345 * free it in-line. This should be rare. Note, using TQ_SLEEP

new/usr/src/uts/common/fs/zfs/zil.c 10

1346 * created a bad performance problem.
1347 */
1348 if (taskq_dispatch(zilog->zl_clean_taskq,
1349 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL)
1350 zil_itxg_clean(clean_me);
1351 }

1353 /*
1354 * Get the list of itxs to commit into zl_itx_commit_list.
1355 */
1356 static void
1357 zil_get_commit_list(zilog_t *zilog)
1358 {
1359 uint64_t otxg, txg;
1360 list_t *commit_list = &zilog->zl_itx_commit_list;
1361 uint64_t push_sod = 0;

1363 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1364 otxg = ZILTEST_TXG;
1365 else
1366 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;

1368 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1369 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];

1371 mutex_enter(&itxg->itxg_lock);
1372 if (itxg->itxg_txg != txg) {
1373 mutex_exit(&itxg->itxg_lock);
1374 continue;
1375 }

1377 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1378 push_sod += itxg->itxg_sod;
1379 itxg->itxg_sod = 0;

1381 mutex_exit(&itxg->itxg_lock);
1382 }
1383 atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1384 }

1386 /*
1387 * Move the async itxs for a specified object to commit into sync lists.
1388 */
1389 static void
1390 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1391 {
1392 uint64_t otxg, txg;
1393 itx_async_node_t *ian;
1394 avl_tree_t *t;
1395 avl_index_t where;

1397 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1398 otxg = ZILTEST_TXG;
1399 else
1400 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;

1402 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1403 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];

1405 mutex_enter(&itxg->itxg_lock);
1406 if (itxg->itxg_txg != txg) {
1407 mutex_exit(&itxg->itxg_lock);
1408 continue;
1409 }

1411 /*

new/usr/src/uts/common/fs/zfs/zil.c 11

1412 * If a foid is specified then find that node and append its
1413 * list. Otherwise walk the tree appending all the lists
1414 * to the sync list. We add to the end rather than the
1415 * beginning to ensure the create has happened.
1416 */
1417 t = &itxg->itxg_itxs->i_async_tree;
1418 if (foid != 0) {
1419 ian = avl_find(t, &foid, &where);
1420 if (ian != NULL) {
1421 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1422 &ian->ia_list);
1423 }
1424 } else {
1425 void *cookie = NULL;

1427 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1428 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1429 &ian->ia_list);
1430 list_destroy(&ian->ia_list);
1431 kmem_free(ian, sizeof (itx_async_node_t));
1432 }
1433 }
1434 mutex_exit(&itxg->itxg_lock);
1435 }
1436 }

1438 static void
1439 zil_commit_writer(zilog_t *zilog)
1440 {
1441 uint64_t txg;
1442 itx_t *itx;
1443 lwb_t *lwb;
1444 spa_t *spa = zilog->zl_spa;
1445 int error = 0;

1447 ASSERT(zilog->zl_root_zio == NULL);

1449 mutex_exit(&zilog->zl_lock);

1451 zil_get_commit_list(zilog);

1453 /*
1454 * Return if there’s nothing to commit before we dirty the fs by
1455 * calling zil_create().
1456 */
1457 if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1458 mutex_enter(&zilog->zl_lock);
1459 return;
1460 }

1462 if (zilog->zl_suspend) {
1463 lwb = NULL;
1464 } else {
1465 lwb = list_tail(&zilog->zl_lwb_list);
1466 if (lwb == NULL)
1467 lwb = zil_create(zilog);
1468 }

1470 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1471 while (itx = list_head(&zilog->zl_itx_commit_list)) {
1472 txg = itx->itx_lr.lrc_txg;
1473 ASSERT(txg);

1475 if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1476 lwb = zil_lwb_commit(zilog, itx, lwb);
1477 list_remove(&zilog->zl_itx_commit_list, itx);

new/usr/src/uts/common/fs/zfs/zil.c 12

1478 kmem_free(itx, offsetof(itx_t, itx_lr)
1479 + itx->itx_lr.lrc_reclen);
1480 }
1481 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);

1483 /* write the last block out */
1484 if (lwb != NULL && lwb->lwb_zio != NULL)
1485 lwb = zil_lwb_write_start(zilog, lwb);

1487 zilog->zl_cur_used = 0;

1489 /*
1490 * Wait if necessary for the log blocks to be on stable storage.
1491 */
1492 if (zilog->zl_root_zio) {
1493 error = zio_wait(zilog->zl_root_zio);
1494 zilog->zl_root_zio = NULL;
1495 zil_flush_vdevs(zilog);
1496 }

1498 if (error || lwb == NULL)
1499 txg_wait_synced(zilog->zl_dmu_pool, 0);

1501 mutex_enter(&zilog->zl_lock);

1503 /*
1504 * Remember the highest committed log sequence number for ztest.
1505 * We only update this value when all the log writes succeeded,
1506 * because ztest wants to ASSERT that it got the whole log chain.
1507 */
1508 if (error == 0 && lwb != NULL)
1509 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1510 }

1512 /*
1513 * Commit zfs transactions to stable storage.
1514 * If foid is 0 push out all transactions, otherwise push only those
1515 * for that object or might reference that object.
1516 *
1517 * itxs are committed in batches. In a heavily stressed zil there will be
1518 * a commit writer thread who is writing out a bunch of itxs to the log
1519 * for a set of committing threads (cthreads) in the same batch as the writer.
1520 * Those cthreads are all waiting on the same cv for that batch.
1521 *
1522 * There will also be a different and growing batch of threads that are
1523 * waiting to commit (qthreads). When the committing batch completes
1524 * a transition occurs such that the cthreads exit and the qthreads become
1525 * cthreads. One of the new cthreads becomes the writer thread for the
1526 * batch. Any new threads arriving become new qthreads.
1527 *
1528 * Only 2 condition variables are needed and there’s no transition
1529 * between the two cvs needed. They just flip-flop between qthreads
1530 * and cthreads.
1531 *
1532 * Using this scheme we can efficiently wakeup up only those threads
1533 * that have been committed.
1534 */
1535 void
1536 zil_commit(zilog_t *zilog, uint64_t foid)
1537 {
1538 uint64_t mybatch;

1540 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1541 return;

1543 /* move the async itxs for the foid to the sync queues */

new/usr/src/uts/common/fs/zfs/zil.c 13

1544 zil_async_to_sync(zilog, foid);

1546 mutex_enter(&zilog->zl_lock);
1547 mybatch = zilog->zl_next_batch;
1548 while (zilog->zl_writer) {
1549 cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1550 if (mybatch <= zilog->zl_com_batch) {
1551 mutex_exit(&zilog->zl_lock);
1552 return;
1553 }
1554 }

1556 zilog->zl_next_batch++;
1557 zilog->zl_writer = B_TRUE;
1558 zil_commit_writer(zilog);
1559 zilog->zl_com_batch = mybatch;
1560 zilog->zl_writer = B_FALSE;
1561 mutex_exit(&zilog->zl_lock);

1563 /* wake up one thread to become the next writer */
1564 cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);

1566 /* wake up all threads waiting for this batch to be committed */
1567 cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1568 }

1570 /*
1571 * Called in syncing context to free committed log blocks and update log header.
1572 */
1573 void
1574 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1575 {
1576 zil_header_t *zh = zil_header_in_syncing_context(zilog);
1577 uint64_t txg = dmu_tx_get_txg(tx);
1578 spa_t *spa = zilog->zl_spa;
1579 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1580 lwb_t *lwb;

1582 /*
1583 * We don’t zero out zl_destroy_txg, so make sure we don’t try
1584 * to destroy it twice.
1585 */
1586 if (spa_sync_pass(spa) != 1)
1587 return;

1589 mutex_enter(&zilog->zl_lock);

1591 ASSERT(zilog->zl_stop_sync == 0);

1593 if (*replayed_seq != 0) {
1594 ASSERT(zh->zh_replay_seq < *replayed_seq);
1595 zh->zh_replay_seq = *replayed_seq;
1596 *replayed_seq = 0;
1597 }

1599 if (zilog->zl_destroy_txg == txg) {
1600 blkptr_t blk = zh->zh_log;

1602 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);

1604 bzero(zh, sizeof (zil_header_t));
1605 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));

1607 if (zilog->zl_keep_first) {
1608 /*
1609 * If this block was part of log chain that couldn’t

new/usr/src/uts/common/fs/zfs/zil.c 14

1610 * be claimed because a device was missing during
1611 * zil_claim(), but that device later returns,
1612 * then this block could erroneously appear valid.
1613 * To guard against this, assign a new GUID to the new
1614 * log chain so it doesn’t matter what blk points to.
1615 */
1616 zil_init_log_chain(zilog, &blk);
1617 zh->zh_log = blk;
1618 }
1619 }

1621 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1622 zh->zh_log = lwb->lwb_blk;
1623 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1624 break;
1625 list_remove(&zilog->zl_lwb_list, lwb);
1626 zio_free_zil(spa, txg, &lwb->lwb_blk);
1627 kmem_cache_free(zil_lwb_cache, lwb);

1629 /*
1630 * If we don’t have anything left in the lwb list then
1631 * we’ve had an allocation failure and we need to zero
1632 * out the zil_header blkptr so that we don’t end
1633 * up freeing the same block twice.
1634 */
1635 if (list_head(&zilog->zl_lwb_list) == NULL)
1636 BP_ZERO(&zh->zh_log);
1637 }
1638 mutex_exit(&zilog->zl_lock);
1639 }

1641 void
1642 zil_init(void)
1643 {
1644 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1645 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1646 }

1648 void
1649 zil_fini(void)
1650 {
1651 kmem_cache_destroy(zil_lwb_cache);
1652 }

1654 void
1655 zil_set_sync(zilog_t *zilog, uint64_t sync)
1656 {
1657 zilog->zl_sync = sync;
1658 }

1660 void
1661 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1662 {
1663 zilog->zl_logbias = logbias;
1664 }

1666 zilog_t *
1667 zil_alloc(objset_t *os, zil_header_t *zh_phys)
1668 {
1669 zilog_t *zilog;

1671 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);

1673 zilog->zl_header = zh_phys;
1674 zilog->zl_os = os;
1675 zilog->zl_spa = dmu_objset_spa(os);

new/usr/src/uts/common/fs/zfs/zil.c 15

1676 zilog->zl_dmu_pool = dmu_objset_pool(os);
1677 zilog->zl_destroy_txg = TXG_INITIAL - 1;
1678 zilog->zl_logbias = dmu_objset_logbias(os);
1679 zilog->zl_sync = dmu_objset_syncprop(os);
1680 zilog->zl_next_batch = 1;

1682 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);

1684 for (int i = 0; i < TXG_SIZE; i++) {
1685 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1686 MUTEX_DEFAULT, NULL);
1687 }

1689 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1690 offsetof(lwb_t, lwb_node));

1692 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1693 offsetof(itx_t, itx_node));

1695 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);

1697 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1698 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));

1700 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1701 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1702 cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1703 cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);

1705 return (zilog);
1706 }

1708 void
1709 zil_free(zilog_t *zilog)
1710 {
1711 zilog->zl_stop_sync = 1;

1713 ASSERT0(zilog->zl_suspend);
1714 ASSERT0(zilog->zl_suspending);

1716 ASSERT(list_is_empty(&zilog->zl_lwb_list));
1717 list_destroy(&zilog->zl_lwb_list);

1719 avl_destroy(&zilog->zl_vdev_tree);
1720 mutex_destroy(&zilog->zl_vdev_lock);

1722 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1723 list_destroy(&zilog->zl_itx_commit_list);

1725 for (int i = 0; i < TXG_SIZE; i++) {
1726 /*
1727 * It’s possible for an itx to be generated that doesn’t dirty
1728 * a txg (e.g. ztest TX_TRUNCATE). So there’s no zil_clean()
1729 * callback to remove the entry. We remove those here.
1730 *
1731 * Also free up the ziltest itxs.
1732 */
1733 if (zilog->zl_itxg[i].itxg_itxs)
1734 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1735 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1736 }

1738 mutex_destroy(&zilog->zl_lock);

1740 cv_destroy(&zilog->zl_cv_writer);
1741 cv_destroy(&zilog->zl_cv_suspend);

new/usr/src/uts/common/fs/zfs/zil.c 16

1742 cv_destroy(&zilog->zl_cv_batch[0]);
1743 cv_destroy(&zilog->zl_cv_batch[1]);

1745 kmem_free(zilog, sizeof (zilog_t));
1746 }

1748 /*
1749 * Open an intent log.
1750 */
1751 zilog_t *
1752 zil_open(objset_t *os, zil_get_data_t *get_data)
1753 {
1754 zilog_t *zilog = dmu_objset_zil(os);

1756 ASSERT(zilog->zl_clean_taskq == NULL);
1757 ASSERT(zilog->zl_get_data == NULL);
1758 ASSERT(list_is_empty(&zilog->zl_lwb_list));

1760 zilog->zl_get_data = get_data;
1761 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1762 2, 2, TASKQ_PREPOPULATE);

1764 return (zilog);
1765 }

1767 /*
1768 * Close an intent log.
1769 */
1770 void
1771 zil_close(zilog_t *zilog)
1772 {
1773 lwb_t *lwb;
1774 uint64_t txg = 0;

1776 zil_commit(zilog, 0); /* commit all itx */

1778 /*
1779 * The lwb_max_txg for the stubby lwb will reflect the last activity
1780 * for the zil. After a txg_wait_synced() on the txg we know all the
1781 * callbacks have occurred that may clean the zil. Only then can we
1782 * destroy the zl_clean_taskq.
1783 */
1784 mutex_enter(&zilog->zl_lock);
1785 lwb = list_tail(&zilog->zl_lwb_list);
1786 if (lwb != NULL)
1787 txg = lwb->lwb_max_txg;
1788 mutex_exit(&zilog->zl_lock);
1789 if (txg)
1790 txg_wait_synced(zilog->zl_dmu_pool, txg);
1791 ASSERT(!zilog_is_dirty(zilog));

1793 taskq_destroy(zilog->zl_clean_taskq);
1794 zilog->zl_clean_taskq = NULL;
1795 zilog->zl_get_data = NULL;

1797 /*
1798 * We should have only one LWB left on the list; remove it now.
1799 */
1800 mutex_enter(&zilog->zl_lock);
1801 lwb = list_head(&zilog->zl_lwb_list);
1802 if (lwb != NULL) {
1803 ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1804 list_remove(&zilog->zl_lwb_list, lwb);
1805 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1806 kmem_cache_free(zil_lwb_cache, lwb);
1807 }

new/usr/src/uts/common/fs/zfs/zil.c 17

1808 mutex_exit(&zilog->zl_lock);
1809 }

1811 static char *suspend_tag = "zil suspending";

1813 /*
1814 * Suspend an intent log. While in suspended mode, we still honor
1815 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1816 * On old version pools, we suspend the log briefly when taking a
1817 * snapshot so that it will have an empty intent log.
1818 *
1819 * Long holds are not really intended to be used the way we do here --
1820 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
1821 * could fail. Therefore we take pains to only put a long hold if it is
1822 * actually necessary. Fortunately, it will only be necessary if the
1823 * objset is currently mounted (or the ZVOL equivalent). In that case it
1824 * will already have a long hold, so we are not really making things any worse.
1825 *
1826 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1827 * zvol_state_t), and use their mechanism to prevent their hold from being
1828 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
1829 * very little gain.
1830 *
1831 * if cookiep == NULL, this does both the suspend & resume.
1832 * Otherwise, it returns with the dataset "long held", and the cookie
1833 * should be passed into zil_resume().
1834 */
1835 int
1836 zil_suspend(const char *osname, void **cookiep)
1837 {
1838 objset_t *os;
1839 zilog_t *zilog;
1840 const zil_header_t *zh;
1841 int error;

1843 error = dmu_objset_hold(osname, suspend_tag, &os);
1844 if (error != 0)
1845 return (error);
1846 zilog = dmu_objset_zil(os);

1848 mutex_enter(&zilog->zl_lock);
1849 zh = zilog->zl_header;

1851 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
1852 mutex_exit(&zilog->zl_lock);
1853 dmu_objset_rele(os, suspend_tag);
1854 return (SET_ERROR(EBUSY));
1855 }

1857 /*
1858 * Don’t put a long hold in the cases where we can avoid it. This
1859 * is when there is no cookie so we are doing a suspend & resume
1860 * (i.e. called from zil_vdev_offline()), and there’s nothing to do
1861 * for the suspend because it’s already suspended, or there’s no ZIL.
1862 */
1863 if (cookiep == NULL && !zilog->zl_suspending &&
1864 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1865 mutex_exit(&zilog->zl_lock);
1866 dmu_objset_rele(os, suspend_tag);
1867 return (0);
1868 }

1870 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1871 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);

1873 zilog->zl_suspend++;

new/usr/src/uts/common/fs/zfs/zil.c 18

1875 if (zilog->zl_suspend > 1) {
1876 /*
1877 * Someone else is already suspending it.
1878 * Just wait for them to finish.
1879 */

1881 while (zilog->zl_suspending)
1882 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1883 mutex_exit(&zilog->zl_lock);

1885 if (cookiep == NULL)
1886 zil_resume(os);
1887 else
1888 *cookiep = os;
1889 return (0);
1890 }

1892 /*
1893 * If there is no pointer to an on-disk block, this ZIL must not
1894 * be active (e.g. filesystem not mounted), so there’s nothing
1895 * to clean up.
1896 */
1897 if (BP_IS_HOLE(&zh->zh_log)) {
1898 ASSERT(cookiep != NULL); /* fast path already handled */

1900 *cookiep = os;
1901 mutex_exit(&zilog->zl_lock);
1902 return (0);
1903 }

1905 zilog->zl_suspending = B_TRUE;
1906 mutex_exit(&zilog->zl_lock);

1908 zil_commit(zilog, 0);

1910 zil_destroy(zilog, B_FALSE);

1912 mutex_enter(&zilog->zl_lock);
1913 zilog->zl_suspending = B_FALSE;
1914 cv_broadcast(&zilog->zl_cv_suspend);
1915 mutex_exit(&zilog->zl_lock);

1917 if (cookiep == NULL)
1918 zil_resume(os);
1919 else
1920 *cookiep = os;
1921 return (0);
1922 }

1924 void
1925 zil_resume(void *cookie)
1926 {
1927 objset_t *os = cookie;
1928 zilog_t *zilog = dmu_objset_zil(os);

1930 mutex_enter(&zilog->zl_lock);
1931 ASSERT(zilog->zl_suspend != 0);
1932 zilog->zl_suspend--;
1933 mutex_exit(&zilog->zl_lock);
1934 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
1935 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
1936 }

1938 typedef struct zil_replay_arg {
1939 zil_replay_func_t **zr_replay;

new/usr/src/uts/common/fs/zfs/zil.c 19

1940 void *zr_arg;
1941 boolean_t zr_byteswap;
1942 char *zr_lr;
1943 } zil_replay_arg_t;

1945 static int
1946 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
1947 {
1948 char name[MAXNAMELEN];

1950 zilog->zl_replaying_seq--; /* didn’t actually replay this one */

1952 dmu_objset_name(zilog->zl_os, name);

1954 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1955 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
1956 (u_longlong_t)lr->lrc_seq,
1957 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
1958 (lr->lrc_txtype & TX_CI) ? "CI" : "");

1960 return (error);
1961 }

1963 static int
1964 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1965 {
1966 zil_replay_arg_t *zr = zra;
1967 const zil_header_t *zh = zilog->zl_header;
1968 uint64_t reclen = lr->lrc_reclen;
1969 uint64_t txtype = lr->lrc_txtype;
1970 int error = 0;

1972 zilog->zl_replaying_seq = lr->lrc_seq;

1974 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
1975 return (0);

1977 if (lr->lrc_txg < claim_txg) /* already committed */
1978 return (0);

1980 /* Strip case-insensitive bit, still present in log record */
1981 txtype &= ~TX_CI;

1983 if (txtype == 0 || txtype >= TX_MAX_TYPE)
1984 return (zil_replay_error(zilog, lr, EINVAL));

1986 /*
1987 * If this record type can be logged out of order, the object
1988 * (lr_foid) may no longer exist. That’s legitimate, not an error.
1989 */
1990 if (TX_OOO(txtype)) {
1991 error = dmu_object_info(zilog->zl_os,
1992 ((lr_ooo_t *)lr)->lr_foid, NULL);
1993 if (error == ENOENT || error == EEXIST)
1994 return (0);
1995 }

1997 /*
1998 * Make a copy of the data so we can revise and extend it.
1999 */
2000 bcopy(lr, zr->zr_lr, reclen);

2002 /*
2003 * If this is a TX_WRITE with a blkptr, suck in the data.
2004 */
2005 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {

new/usr/src/uts/common/fs/zfs/zil.c 20

2006 error = zil_read_log_data(zilog, (lr_write_t *)lr,
2007 zr->zr_lr + reclen);
2008 if (error != 0)
2009 return (zil_replay_error(zilog, lr, error));
2010 }

2012 /*
2013 * The log block containing this lr may have been byteswapped
2014 * so that we can easily examine common fields like lrc_txtype.
2015 * However, the log is a mix of different record types, and only the
2016 * replay vectors know how to byteswap their records. Therefore, if
2017 * the lr was byteswapped, undo it before invoking the replay vector.
2018 */
2019 if (zr->zr_byteswap)
2020 byteswap_uint64_array(zr->zr_lr, reclen);

2022 /*
2023 * We must now do two things atomically: replay this log record,
2024 * and update the log header sequence number to reflect the fact that
2025 * we did so. At the end of each replay function the sequence number
2026 * is updated if we are in replay mode.
2027 */
2028 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2029 if (error != 0) {
2030 /*
2031 * The DMU’s dnode layer doesn’t see removes until the txg
2032 * commits, so a subsequent claim can spuriously fail with
2033 * EEXIST. So if we receive any error we try syncing out
2034 * any removes then retry the transaction. Note that we
2035 * specify B_FALSE for byteswap now, so we don’t do it twice.
2036 */
2037 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2038 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2039 if (error != 0)
2040 return (zil_replay_error(zilog, lr, error));
2041 }
2042 return (0);
2043 }

2045 /* ARGSUSED */
2046 static int
2047 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2048 {
2049 zilog->zl_replay_blks++;

2051 return (0);
2052 }

2054 /*
2055 * If this dataset has a non-empty intent log, replay it and destroy it.
2056 */
2057 void
2058 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2059 {
2060 zilog_t *zilog = dmu_objset_zil(os);
2061 const zil_header_t *zh = zilog->zl_header;
2062 zil_replay_arg_t zr;

2064 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2065 zil_destroy(zilog, B_TRUE);
2066 return;
2067 }

2069 zr.zr_replay = replay_func;
2070 zr.zr_arg = arg;
2071 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);

new/usr/src/uts/common/fs/zfs/zil.c 21

2072 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);

2074 /*
2075 * Wait for in-progress removes to sync before starting replay.
2076 */
2077 txg_wait_synced(zilog->zl_dmu_pool, 0);

2079 zilog->zl_replay = B_TRUE;
2080 zilog->zl_replay_time = ddi_get_lbolt();
2081 ASSERT(zilog->zl_replay_blks == 0);
2082 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2083 zh->zh_claim_txg);
2084 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);

2086 zil_destroy(zilog, B_FALSE);
2087 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2088 zilog->zl_replay = B_FALSE;
2089 }

2091 boolean_t
2092 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2093 {
2094 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2095 return (B_TRUE);

2097 if (zilog->zl_replay) {
2098 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2099 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2100 zilog->zl_replaying_seq;
2101 return (B_TRUE);
2102 }

2104 return (B_FALSE);
2105 }

2107 /* ARGSUSED */
2108 int
2109 zil_vdev_offline(const char *osname, void *arg)
2110 {
2111 int error;

2113 error = zil_suspend(osname, NULL);
2114 if (error != 0)
2115 return (SET_ERROR(EEXIST));
2116 return (0);
2117 }

new/usr/src/uts/common/fs/zfs/zio.c 1

**
 89624 Wed Apr 24 12:44:35 2013
new/usr/src/uts/common/fs/zfs/zio.c
3742 zfs comments need cleaner, more consistent style
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

1185 /*
1186 * Execute the I/O pipeline until one of the following occurs:
1187 *
1188 * (1) the I/O completes
1189 * (2) the pipeline stalls waiting for dependent child I/Os
1190 * (3) the I/O issues, so we’re waiting for an I/O completion interrupt
1191 * (4) the I/O is delegated by vdev-level caching or aggregation
1192 * (5) the I/O is deferred due to vdev-level queueing
1193 * (6) the I/O is handed off to another thread.
1194 *
1195 * In all cases, the pipeline stops whenever there’s no CPU work; it never
1196 * burns a thread in cv_wait().
1187 * (1) the I/O completes; (2) the pipeline stalls waiting for
1188 * dependent child I/Os; (3) the I/O issues, so we’re waiting
1189 * for an I/O completion interrupt; (4) the I/O is delegated by
1190 * vdev-level caching or aggregation; (5) the I/O is deferred
1191 * due to vdev-level queueing; (6) the I/O is handed off to
1192 * another thread. In all cases, the pipeline stops whenever
1193 * there’s no CPU work; it never burns a thread in cv_wait().
1197 *
1198 * There’s no locking on io_stage because there’s no legitimate way
1199 * for multiple threads to be attempting to process the same I/O.
1200 */
1201 static zio_pipe_stage_t *zio_pipeline[];

1203 void
1204 zio_execute(zio_t *zio)
1205 {
1206 zio->io_executor = curthread;

1208 while (zio->io_stage < ZIO_STAGE_DONE) {
1209 enum zio_stage pipeline = zio->io_pipeline;
1210 enum zio_stage stage = zio->io_stage;
1211 int rv;

1213 ASSERT(!MUTEX_HELD(&zio->io_lock));
1214 ASSERT(ISP2(stage));
1215 ASSERT(zio->io_stall == NULL);

1217 do {
1218 stage <<= 1;
1219 } while ((stage & pipeline) == 0);

1221 ASSERT(stage <= ZIO_STAGE_DONE);

1223 /*
1224 * If we are in interrupt context and this pipeline stage
1225 * will grab a config lock that is held across I/O,
1226 * or may wait for an I/O that needs an interrupt thread
1227 * to complete, issue async to avoid deadlock.
1228 *
1229 * For VDEV_IO_START, we cut in line so that the io will
1230 * be sent to disk promptly.
1231 */

new/usr/src/uts/common/fs/zfs/zio.c 2

1232 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1233 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1234 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1235 zio_requeue_io_start_cut_in_line : B_FALSE;
1236 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1237 return;
1238 }

1240 zio->io_stage = stage;
1241 rv = zio_pipeline[highbit(stage) - 1](zio);

1243 if (rv == ZIO_PIPELINE_STOP)
1244 return;

1246 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1247 }
1248 }
______unchanged_portion_omitted_

