1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 */ 25 26 /* 27 * ZFS control directory (a.k.a. ".zfs") 28 * 29 * This directory provides a common location for all ZFS meta-objects. 30 * Currently, this is only the 'snapshot' directory, but this may expand in the 31 * future. The elements are built using the GFS primitives, as the hierarchy 32 * does not actually exist on disk. 33 * 34 * For 'snapshot', we don't want to have all snapshots always mounted, because 35 * this would take up a huge amount of space in /etc/mnttab. We have three 36 * types of objects: 37 * 38 * ctldir ------> snapshotdir -------> snapshot 39 * | 40 * | 41 * V 42 * mounted fs 43 * 44 * The 'snapshot' node contains just enough information to lookup '..' and act 45 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we 46 * perform an automount of the underlying filesystem and return the 47 * corresponding vnode. 48 * 49 * All mounts are handled automatically by the kernel, but unmounts are 50 * (currently) handled from user land. The main reason is that there is no 51 * reliable way to auto-unmount the filesystem when it's "no longer in use". 52 * When the user unmounts a filesystem, we call zfsctl_unmount(), which 53 * unmounts any snapshots within the snapshot directory. 54 * 55 * The '.zfs', '.zfs/snapshot', and all directories created under 56 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') are all GFS nodes and 57 * share the same vfs_t as the head filesystem (what '.zfs' lives under). 58 * 59 * File systems mounted ontop of the GFS nodes '.zfs/snapshot/<snapname>' 60 * (ie: snapshots) are ZFS nodes and have their own unique vfs_t. 61 * However, vnodes within these mounted on file systems have their v_vfsp 62 * fields set to the head filesystem to make NFS happy (see 63 * zfsctl_snapdir_lookup()). We VFS_HOLD the head filesystem's vfs_t 64 * so that it cannot be freed until all snapshots have been unmounted. 65 */ 66 67 #include <fs/fs_subr.h> 68 #include <sys/zfs_ctldir.h> 69 #include <sys/zfs_ioctl.h> 70 #include <sys/zfs_vfsops.h> 71 #include <sys/vfs_opreg.h> 72 #include <sys/gfs.h> 73 #include <sys/stat.h> 74 #include <sys/dmu.h> 75 #include <sys/dsl_destroy.h> 76 #include <sys/dsl_deleg.h> 77 #include <sys/mount.h> 78 #include <sys/sunddi.h> 79 80 #include "zfs_namecheck.h" 81 82 typedef struct zfsctl_node { 83 gfs_dir_t zc_gfs_private; 84 uint64_t zc_id; 85 timestruc_t zc_cmtime; /* ctime and mtime, always the same */ 86 } zfsctl_node_t; 87 88 typedef struct zfsctl_snapdir { 89 zfsctl_node_t sd_node; 90 kmutex_t sd_lock; 91 avl_tree_t sd_snaps; 92 } zfsctl_snapdir_t; 93 94 typedef struct { 95 char *se_name; 96 vnode_t *se_root; 97 avl_node_t se_node; 98 } zfs_snapentry_t; 99 100 static int 101 snapentry_compare(const void *a, const void *b) 102 { 103 const zfs_snapentry_t *sa = a; 104 const zfs_snapentry_t *sb = b; 105 int ret = strcmp(sa->se_name, sb->se_name); 106 107 if (ret < 0) 108 return (-1); 109 else if (ret > 0) 110 return (1); 111 else 112 return (0); 113 } 114 115 vnodeops_t *zfsctl_ops_root; 116 vnodeops_t *zfsctl_ops_snapdir; 117 vnodeops_t *zfsctl_ops_snapshot; 118 vnodeops_t *zfsctl_ops_shares; 119 vnodeops_t *zfsctl_ops_shares_dir; 120 121 static const fs_operation_def_t zfsctl_tops_root[]; 122 static const fs_operation_def_t zfsctl_tops_snapdir[]; 123 static const fs_operation_def_t zfsctl_tops_snapshot[]; 124 static const fs_operation_def_t zfsctl_tops_shares[]; 125 126 static vnode_t *zfsctl_mknode_snapdir(vnode_t *); 127 static vnode_t *zfsctl_mknode_shares(vnode_t *); 128 static vnode_t *zfsctl_snapshot_mknode(vnode_t *, uint64_t objset); 129 static int zfsctl_unmount_snap(zfs_snapentry_t *, int, cred_t *); 130 131 static gfs_opsvec_t zfsctl_opsvec[] = { 132 { ".zfs", zfsctl_tops_root, &zfsctl_ops_root }, 133 { ".zfs/snapshot", zfsctl_tops_snapdir, &zfsctl_ops_snapdir }, 134 { ".zfs/snapshot/vnode", zfsctl_tops_snapshot, &zfsctl_ops_snapshot }, 135 { ".zfs/shares", zfsctl_tops_shares, &zfsctl_ops_shares_dir }, 136 { ".zfs/shares/vnode", zfsctl_tops_shares, &zfsctl_ops_shares }, 137 { NULL } 138 }; 139 140 /* 141 * Root directory elements. We only have two entries 142 * snapshot and shares. 143 */ 144 static gfs_dirent_t zfsctl_root_entries[] = { 145 { "snapshot", zfsctl_mknode_snapdir, GFS_CACHE_VNODE }, 146 { "shares", zfsctl_mknode_shares, GFS_CACHE_VNODE }, 147 { NULL } 148 }; 149 150 /* include . and .. in the calculation */ 151 #define NROOT_ENTRIES ((sizeof (zfsctl_root_entries) / \ 152 sizeof (gfs_dirent_t)) + 1) 153 154 155 /* 156 * Initialize the various GFS pieces we'll need to create and manipulate .zfs 157 * directories. This is called from the ZFS init routine, and initializes the 158 * vnode ops vectors that we'll be using. 159 */ 160 void 161 zfsctl_init(void) 162 { 163 VERIFY(gfs_make_opsvec(zfsctl_opsvec) == 0); 164 } 165 166 void 167 zfsctl_fini(void) 168 { 169 /* 170 * Remove vfsctl vnode ops 171 */ 172 if (zfsctl_ops_root) 173 vn_freevnodeops(zfsctl_ops_root); 174 if (zfsctl_ops_snapdir) 175 vn_freevnodeops(zfsctl_ops_snapdir); 176 if (zfsctl_ops_snapshot) 177 vn_freevnodeops(zfsctl_ops_snapshot); 178 if (zfsctl_ops_shares) 179 vn_freevnodeops(zfsctl_ops_shares); 180 if (zfsctl_ops_shares_dir) 181 vn_freevnodeops(zfsctl_ops_shares_dir); 182 183 zfsctl_ops_root = NULL; 184 zfsctl_ops_snapdir = NULL; 185 zfsctl_ops_snapshot = NULL; 186 zfsctl_ops_shares = NULL; 187 zfsctl_ops_shares_dir = NULL; 188 } 189 190 boolean_t 191 zfsctl_is_node(vnode_t *vp) 192 { 193 return (vn_matchops(vp, zfsctl_ops_root) || 194 vn_matchops(vp, zfsctl_ops_snapdir) || 195 vn_matchops(vp, zfsctl_ops_snapshot) || 196 vn_matchops(vp, zfsctl_ops_shares) || 197 vn_matchops(vp, zfsctl_ops_shares_dir)); 198 199 } 200 201 /* 202 * Return the inode number associated with the 'snapshot' or 203 * 'shares' directory. 204 */ 205 /* ARGSUSED */ 206 static ino64_t 207 zfsctl_root_inode_cb(vnode_t *vp, int index) 208 { 209 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 210 211 ASSERT(index <= 2); 212 213 if (index == 0) 214 return (ZFSCTL_INO_SNAPDIR); 215 216 return (zfsvfs->z_shares_dir); 217 } 218 219 /* 220 * Create the '.zfs' directory. This directory is cached as part of the VFS 221 * structure. This results in a hold on the vfs_t. The code in zfs_umount() 222 * therefore checks against a vfs_count of 2 instead of 1. This reference 223 * is removed when the ctldir is destroyed in the unmount. 224 */ 225 void 226 zfsctl_create(zfsvfs_t *zfsvfs) 227 { 228 vnode_t *vp, *rvp; 229 zfsctl_node_t *zcp; 230 uint64_t crtime[2]; 231 232 ASSERT(zfsvfs->z_ctldir == NULL); 233 234 vp = gfs_root_create(sizeof (zfsctl_node_t), zfsvfs->z_vfs, 235 zfsctl_ops_root, ZFSCTL_INO_ROOT, zfsctl_root_entries, 236 zfsctl_root_inode_cb, MAXNAMELEN, NULL, NULL); 237 zcp = vp->v_data; 238 zcp->zc_id = ZFSCTL_INO_ROOT; 239 240 VERIFY(VFS_ROOT(zfsvfs->z_vfs, &rvp) == 0); 241 VERIFY(0 == sa_lookup(VTOZ(rvp)->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 242 &crtime, sizeof (crtime))); 243 ZFS_TIME_DECODE(&zcp->zc_cmtime, crtime); 244 VN_RELE(rvp); 245 246 /* 247 * We're only faking the fact that we have a root of a filesystem for 248 * the sake of the GFS interfaces. Undo the flag manipulation it did 249 * for us. 250 */ 251 vp->v_flag &= ~(VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT); 252 253 zfsvfs->z_ctldir = vp; 254 } 255 256 /* 257 * Destroy the '.zfs' directory. Only called when the filesystem is unmounted. 258 * There might still be more references if we were force unmounted, but only 259 * new zfs_inactive() calls can occur and they don't reference .zfs 260 */ 261 void 262 zfsctl_destroy(zfsvfs_t *zfsvfs) 263 { 264 VN_RELE(zfsvfs->z_ctldir); 265 zfsvfs->z_ctldir = NULL; 266 } 267 268 /* 269 * Given a root znode, retrieve the associated .zfs directory. 270 * Add a hold to the vnode and return it. 271 */ 272 vnode_t * 273 zfsctl_root(znode_t *zp) 274 { 275 ASSERT(zfs_has_ctldir(zp)); 276 VN_HOLD(zp->z_zfsvfs->z_ctldir); 277 return (zp->z_zfsvfs->z_ctldir); 278 } 279 280 /* 281 * Common open routine. Disallow any write access. 282 */ 283 /* ARGSUSED */ 284 static int 285 zfsctl_common_open(vnode_t **vpp, int flags, cred_t *cr, caller_context_t *ct) 286 { 287 if (flags & FWRITE) 288 return (SET_ERROR(EACCES)); 289 290 return (0); 291 } 292 293 /* 294 * Common close routine. Nothing to do here. 295 */ 296 /* ARGSUSED */ 297 static int 298 zfsctl_common_close(vnode_t *vpp, int flags, int count, offset_t off, 299 cred_t *cr, caller_context_t *ct) 300 { 301 return (0); 302 } 303 304 /* 305 * Common access routine. Disallow writes. 306 */ 307 /* ARGSUSED */ 308 static int 309 zfsctl_common_access(vnode_t *vp, int mode, int flags, cred_t *cr, 310 caller_context_t *ct) 311 { 312 if (flags & V_ACE_MASK) { 313 if (mode & ACE_ALL_WRITE_PERMS) 314 return (SET_ERROR(EACCES)); 315 } else { 316 if (mode & VWRITE) 317 return (SET_ERROR(EACCES)); 318 } 319 320 return (0); 321 } 322 323 /* 324 * Common getattr function. Fill in basic information. 325 */ 326 static void 327 zfsctl_common_getattr(vnode_t *vp, vattr_t *vap) 328 { 329 timestruc_t now; 330 331 vap->va_uid = 0; 332 vap->va_gid = 0; 333 vap->va_rdev = 0; 334 /* 335 * We are a purely virtual object, so we have no 336 * blocksize or allocated blocks. 337 */ 338 vap->va_blksize = 0; 339 vap->va_nblocks = 0; 340 vap->va_seq = 0; 341 vap->va_fsid = vp->v_vfsp->vfs_dev; 342 vap->va_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | 343 S_IROTH | S_IXOTH; 344 vap->va_type = VDIR; 345 /* 346 * We live in the now (for atime). 347 */ 348 gethrestime(&now); 349 vap->va_atime = now; 350 } 351 352 /*ARGSUSED*/ 353 static int 354 zfsctl_common_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 355 { 356 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 357 zfsctl_node_t *zcp = vp->v_data; 358 uint64_t object = zcp->zc_id; 359 zfid_short_t *zfid; 360 int i; 361 362 ZFS_ENTER(zfsvfs); 363 364 if (fidp->fid_len < SHORT_FID_LEN) { 365 fidp->fid_len = SHORT_FID_LEN; 366 ZFS_EXIT(zfsvfs); 367 return (SET_ERROR(ENOSPC)); 368 } 369 370 zfid = (zfid_short_t *)fidp; 371 372 zfid->zf_len = SHORT_FID_LEN; 373 374 for (i = 0; i < sizeof (zfid->zf_object); i++) 375 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 376 377 /* .zfs znodes always have a generation number of 0 */ 378 for (i = 0; i < sizeof (zfid->zf_gen); i++) 379 zfid->zf_gen[i] = 0; 380 381 ZFS_EXIT(zfsvfs); 382 return (0); 383 } 384 385 386 /*ARGSUSED*/ 387 static int 388 zfsctl_shares_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 389 { 390 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 391 znode_t *dzp; 392 int error; 393 394 ZFS_ENTER(zfsvfs); 395 396 if (zfsvfs->z_shares_dir == 0) { 397 ZFS_EXIT(zfsvfs); 398 return (SET_ERROR(ENOTSUP)); 399 } 400 401 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) { 402 error = VOP_FID(ZTOV(dzp), fidp, ct); 403 VN_RELE(ZTOV(dzp)); 404 } 405 406 ZFS_EXIT(zfsvfs); 407 return (error); 408 } 409 /* 410 * .zfs inode namespace 411 * 412 * We need to generate unique inode numbers for all files and directories 413 * within the .zfs pseudo-filesystem. We use the following scheme: 414 * 415 * ENTRY ZFSCTL_INODE 416 * .zfs 1 417 * .zfs/snapshot 2 418 * .zfs/snapshot/<snap> objectid(snap) 419 */ 420 421 #define ZFSCTL_INO_SNAP(id) (id) 422 423 /* 424 * Get root directory attributes. 425 */ 426 /* ARGSUSED */ 427 static int 428 zfsctl_root_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 429 caller_context_t *ct) 430 { 431 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 432 zfsctl_node_t *zcp = vp->v_data; 433 434 ZFS_ENTER(zfsvfs); 435 vap->va_nodeid = ZFSCTL_INO_ROOT; 436 vap->va_nlink = vap->va_size = NROOT_ENTRIES; 437 vap->va_mtime = vap->va_ctime = zcp->zc_cmtime; 438 439 zfsctl_common_getattr(vp, vap); 440 ZFS_EXIT(zfsvfs); 441 442 return (0); 443 } 444 445 /* 446 * Special case the handling of "..". 447 */ 448 /* ARGSUSED */ 449 int 450 zfsctl_root_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 451 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 452 int *direntflags, pathname_t *realpnp) 453 { 454 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 455 int err; 456 457 /* 458 * No extended attributes allowed under .zfs 459 */ 460 if (flags & LOOKUP_XATTR) 461 return (SET_ERROR(EINVAL)); 462 463 ZFS_ENTER(zfsvfs); 464 465 if (strcmp(nm, "..") == 0) { 466 err = VFS_ROOT(dvp->v_vfsp, vpp); 467 } else { 468 err = gfs_vop_lookup(dvp, nm, vpp, pnp, flags, rdir, 469 cr, ct, direntflags, realpnp); 470 } 471 472 ZFS_EXIT(zfsvfs); 473 474 return (err); 475 } 476 477 static int 478 zfsctl_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 479 caller_context_t *ct) 480 { 481 /* 482 * We only care about ACL_ENABLED so that libsec can 483 * display ACL correctly and not default to POSIX draft. 484 */ 485 if (cmd == _PC_ACL_ENABLED) { 486 *valp = _ACL_ACE_ENABLED; 487 return (0); 488 } 489 490 return (fs_pathconf(vp, cmd, valp, cr, ct)); 491 } 492 493 static const fs_operation_def_t zfsctl_tops_root[] = { 494 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 495 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 496 { VOPNAME_IOCTL, { .error = fs_inval } }, 497 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_root_getattr } }, 498 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 499 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } }, 500 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_root_lookup } }, 501 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 502 { VOPNAME_INACTIVE, { .vop_inactive = gfs_vop_inactive } }, 503 { VOPNAME_PATHCONF, { .vop_pathconf = zfsctl_pathconf } }, 504 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } }, 505 { NULL } 506 }; 507 508 static int 509 zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname) 510 { 511 objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os; 512 513 if (snapshot_namecheck(name, NULL, NULL) != 0) 514 return (SET_ERROR(EILSEQ)); 515 dmu_objset_name(os, zname); 516 if (strlen(zname) + 1 + strlen(name) >= len) 517 return (SET_ERROR(ENAMETOOLONG)); 518 (void) strcat(zname, "@"); 519 (void) strcat(zname, name); 520 return (0); 521 } 522 523 static int 524 zfsctl_unmount_snap(zfs_snapentry_t *sep, int fflags, cred_t *cr) 525 { 526 vnode_t *svp = sep->se_root; 527 int error; 528 529 ASSERT(vn_ismntpt(svp)); 530 531 /* this will be dropped by dounmount() */ 532 if ((error = vn_vfswlock(svp)) != 0) 533 return (error); 534 535 VN_HOLD(svp); 536 error = dounmount(vn_mountedvfs(svp), fflags, cr); 537 if (error) { 538 VN_RELE(svp); 539 return (error); 540 } 541 542 /* 543 * We can't use VN_RELE(), as that will try to invoke 544 * zfsctl_snapdir_inactive(), which would cause us to destroy 545 * the sd_lock mutex held by our caller. 546 */ 547 ASSERT(svp->v_count == 1); 548 gfs_vop_inactive(svp, cr, NULL); 549 550 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 551 kmem_free(sep, sizeof (zfs_snapentry_t)); 552 553 return (0); 554 } 555 556 static void 557 zfsctl_rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char *nm) 558 { 559 avl_index_t where; 560 vfs_t *vfsp; 561 refstr_t *pathref; 562 char newpath[MAXNAMELEN]; 563 char *tail; 564 565 ASSERT(MUTEX_HELD(&sdp->sd_lock)); 566 ASSERT(sep != NULL); 567 568 vfsp = vn_mountedvfs(sep->se_root); 569 ASSERT(vfsp != NULL); 570 571 vfs_lock_wait(vfsp); 572 573 /* 574 * Change the name in the AVL tree. 575 */ 576 avl_remove(&sdp->sd_snaps, sep); 577 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 578 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 579 (void) strcpy(sep->se_name, nm); 580 VERIFY(avl_find(&sdp->sd_snaps, sep, &where) == NULL); 581 avl_insert(&sdp->sd_snaps, sep, where); 582 583 /* 584 * Change the current mountpoint info: 585 * - update the tail of the mntpoint path 586 * - update the tail of the resource path 587 */ 588 pathref = vfs_getmntpoint(vfsp); 589 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath)); 590 VERIFY((tail = strrchr(newpath, '/')) != NULL); 591 *(tail+1) = '\0'; 592 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath)); 593 (void) strcat(newpath, nm); 594 refstr_rele(pathref); 595 vfs_setmntpoint(vfsp, newpath, 0); 596 597 pathref = vfs_getresource(vfsp); 598 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath)); 599 VERIFY((tail = strrchr(newpath, '@')) != NULL); 600 *(tail+1) = '\0'; 601 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath)); 602 (void) strcat(newpath, nm); 603 refstr_rele(pathref); 604 vfs_setresource(vfsp, newpath, 0); 605 606 vfs_unlock(vfsp); 607 } 608 609 /*ARGSUSED*/ 610 static int 611 zfsctl_snapdir_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, 612 cred_t *cr, caller_context_t *ct, int flags) 613 { 614 zfsctl_snapdir_t *sdp = sdvp->v_data; 615 zfs_snapentry_t search, *sep; 616 zfsvfs_t *zfsvfs; 617 avl_index_t where; 618 char from[MAXNAMELEN], to[MAXNAMELEN]; 619 char real[MAXNAMELEN], fsname[MAXNAMELEN]; 620 int err; 621 622 zfsvfs = sdvp->v_vfsp->vfs_data; 623 ZFS_ENTER(zfsvfs); 624 625 if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 626 err = dmu_snapshot_realname(zfsvfs->z_os, snm, real, 627 MAXNAMELEN, NULL); 628 if (err == 0) { 629 snm = real; 630 } else if (err != ENOTSUP) { 631 ZFS_EXIT(zfsvfs); 632 return (err); 633 } 634 } 635 636 ZFS_EXIT(zfsvfs); 637 638 dmu_objset_name(zfsvfs->z_os, fsname); 639 640 err = zfsctl_snapshot_zname(sdvp, snm, MAXNAMELEN, from); 641 if (err == 0) 642 err = zfsctl_snapshot_zname(tdvp, tnm, MAXNAMELEN, to); 643 if (err == 0) 644 err = zfs_secpolicy_rename_perms(from, to, cr); 645 if (err != 0) 646 return (err); 647 648 /* 649 * Cannot move snapshots out of the snapdir. 650 */ 651 if (sdvp != tdvp) 652 return (SET_ERROR(EINVAL)); 653 654 if (strcmp(snm, tnm) == 0) 655 return (0); 656 657 mutex_enter(&sdp->sd_lock); 658 659 search.se_name = (char *)snm; 660 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) { 661 mutex_exit(&sdp->sd_lock); 662 return (SET_ERROR(ENOENT)); 663 } 664 665 err = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE); 666 if (err == 0) 667 zfsctl_rename_snap(sdp, sep, tnm); 668 669 mutex_exit(&sdp->sd_lock); 670 671 return (err); 672 } 673 674 /* ARGSUSED */ 675 static int 676 zfsctl_snapdir_remove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 677 caller_context_t *ct, int flags) 678 { 679 zfsctl_snapdir_t *sdp = dvp->v_data; 680 zfs_snapentry_t *sep; 681 zfs_snapentry_t search; 682 zfsvfs_t *zfsvfs; 683 char snapname[MAXNAMELEN]; 684 char real[MAXNAMELEN]; 685 int err; 686 687 zfsvfs = dvp->v_vfsp->vfs_data; 688 ZFS_ENTER(zfsvfs); 689 690 if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 691 692 err = dmu_snapshot_realname(zfsvfs->z_os, name, real, 693 MAXNAMELEN, NULL); 694 if (err == 0) { 695 name = real; 696 } else if (err != ENOTSUP) { 697 ZFS_EXIT(zfsvfs); 698 return (err); 699 } 700 } 701 702 ZFS_EXIT(zfsvfs); 703 704 err = zfsctl_snapshot_zname(dvp, name, MAXNAMELEN, snapname); 705 if (err == 0) 706 err = zfs_secpolicy_destroy_perms(snapname, cr); 707 if (err != 0) 708 return (err); 709 710 mutex_enter(&sdp->sd_lock); 711 712 search.se_name = name; 713 sep = avl_find(&sdp->sd_snaps, &search, NULL); 714 if (sep) { 715 avl_remove(&sdp->sd_snaps, sep); 716 err = zfsctl_unmount_snap(sep, MS_FORCE, cr); 717 if (err != 0) 718 avl_add(&sdp->sd_snaps, sep); 719 else 720 err = dsl_destroy_snapshot(snapname, B_FALSE); 721 } else { 722 err = SET_ERROR(ENOENT); 723 } 724 725 mutex_exit(&sdp->sd_lock); 726 727 return (err); 728 } 729 730 /* 731 * This creates a snapshot under '.zfs/snapshot'. 732 */ 733 /* ARGSUSED */ 734 static int 735 zfsctl_snapdir_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, 736 cred_t *cr, caller_context_t *cc, int flags, vsecattr_t *vsecp) 737 { 738 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 739 char name[MAXNAMELEN]; 740 int err; 741 static enum symfollow follow = NO_FOLLOW; 742 static enum uio_seg seg = UIO_SYSSPACE; 743 744 if (snapshot_namecheck(dirname, NULL, NULL) != 0) 745 return (SET_ERROR(EILSEQ)); 746 747 dmu_objset_name(zfsvfs->z_os, name); 748 749 *vpp = NULL; 750 751 err = zfs_secpolicy_snapshot_perms(name, cr); 752 if (err != 0) 753 return (err); 754 755 if (err == 0) { 756 err = dmu_objset_snapshot_one(name, dirname); 757 if (err != 0) 758 return (err); 759 err = lookupnameat(dirname, seg, follow, NULL, vpp, dvp); 760 } 761 762 return (err); 763 } 764 765 /* 766 * Lookup entry point for the 'snapshot' directory. Try to open the 767 * snapshot if it exist, creating the pseudo filesystem vnode as necessary. 768 * Perform a mount of the associated dataset on top of the vnode. 769 */ 770 /* ARGSUSED */ 771 static int 772 zfsctl_snapdir_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 773 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 774 int *direntflags, pathname_t *realpnp) 775 { 776 zfsctl_snapdir_t *sdp = dvp->v_data; 777 objset_t *snap; 778 char snapname[MAXNAMELEN]; 779 char real[MAXNAMELEN]; 780 char *mountpoint; 781 zfs_snapentry_t *sep, search; 782 struct mounta margs; 783 vfs_t *vfsp; 784 size_t mountpoint_len; 785 avl_index_t where; 786 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 787 int err; 788 789 /* 790 * No extended attributes allowed under .zfs 791 */ 792 if (flags & LOOKUP_XATTR) 793 return (SET_ERROR(EINVAL)); 794 795 ASSERT(dvp->v_type == VDIR); 796 797 /* 798 * If we get a recursive call, that means we got called 799 * from the domount() code while it was trying to look up the 800 * spec (which looks like a local path for zfs). We need to 801 * add some flag to domount() to tell it not to do this lookup. 802 */ 803 if (MUTEX_HELD(&sdp->sd_lock)) 804 return (SET_ERROR(ENOENT)); 805 806 ZFS_ENTER(zfsvfs); 807 808 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) { 809 ZFS_EXIT(zfsvfs); 810 return (0); 811 } 812 813 if (flags & FIGNORECASE) { 814 boolean_t conflict = B_FALSE; 815 816 err = dmu_snapshot_realname(zfsvfs->z_os, nm, real, 817 MAXNAMELEN, &conflict); 818 if (err == 0) { 819 nm = real; 820 } else if (err != ENOTSUP) { 821 ZFS_EXIT(zfsvfs); 822 return (err); 823 } 824 if (realpnp) 825 (void) strlcpy(realpnp->pn_buf, nm, 826 realpnp->pn_bufsize); 827 if (conflict && direntflags) 828 *direntflags = ED_CASE_CONFLICT; 829 } 830 831 mutex_enter(&sdp->sd_lock); 832 search.se_name = (char *)nm; 833 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) { 834 *vpp = sep->se_root; 835 VN_HOLD(*vpp); 836 err = traverse(vpp); 837 if (err != 0) { 838 VN_RELE(*vpp); 839 *vpp = NULL; 840 } else if (*vpp == sep->se_root) { 841 /* 842 * The snapshot was unmounted behind our backs, 843 * try to remount it. 844 */ 845 goto domount; 846 } else { 847 /* 848 * VROOT was set during the traverse call. We need 849 * to clear it since we're pretending to be part 850 * of our parent's vfs. 851 */ 852 (*vpp)->v_flag &= ~VROOT; 853 } 854 mutex_exit(&sdp->sd_lock); 855 ZFS_EXIT(zfsvfs); 856 return (err); 857 } 858 859 /* 860 * The requested snapshot is not currently mounted, look it up. 861 */ 862 err = zfsctl_snapshot_zname(dvp, nm, MAXNAMELEN, snapname); 863 if (err != 0) { 864 mutex_exit(&sdp->sd_lock); 865 ZFS_EXIT(zfsvfs); 866 /* 867 * handle "ls *" or "?" in a graceful manner, 868 * forcing EILSEQ to ENOENT. 869 * Since shell ultimately passes "*" or "?" as name to lookup 870 */ 871 return (err == EILSEQ ? ENOENT : err); 872 } 873 if (dmu_objset_hold(snapname, FTAG, &snap) != 0) { 874 mutex_exit(&sdp->sd_lock); 875 ZFS_EXIT(zfsvfs); 876 return (SET_ERROR(ENOENT)); 877 } 878 879 sep = kmem_alloc(sizeof (zfs_snapentry_t), KM_SLEEP); 880 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 881 (void) strcpy(sep->se_name, nm); 882 *vpp = sep->se_root = zfsctl_snapshot_mknode(dvp, dmu_objset_id(snap)); 883 avl_insert(&sdp->sd_snaps, sep, where); 884 885 dmu_objset_rele(snap, FTAG); 886 domount: 887 mountpoint_len = strlen(refstr_value(dvp->v_vfsp->vfs_mntpt)) + 888 strlen("/.zfs/snapshot/") + strlen(nm) + 1; 889 mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP); 890 (void) snprintf(mountpoint, mountpoint_len, "%s/.zfs/snapshot/%s", 891 refstr_value(dvp->v_vfsp->vfs_mntpt), nm); 892 893 margs.spec = snapname; 894 margs.dir = mountpoint; 895 margs.flags = MS_SYSSPACE | MS_NOMNTTAB; 896 margs.fstype = "zfs"; 897 margs.dataptr = NULL; 898 margs.datalen = 0; 899 margs.optptr = NULL; 900 margs.optlen = 0; 901 902 err = domount("zfs", &margs, *vpp, kcred, &vfsp); 903 kmem_free(mountpoint, mountpoint_len); 904 905 if (err == 0) { 906 /* 907 * Return the mounted root rather than the covered mount point. 908 * Takes the GFS vnode at .zfs/snapshot/<snapname> and returns 909 * the ZFS vnode mounted on top of the GFS node. This ZFS 910 * vnode is the root of the newly created vfsp. 911 */ 912 VFS_RELE(vfsp); 913 err = traverse(vpp); 914 } 915 916 if (err == 0) { 917 /* 918 * Fix up the root vnode mounted on .zfs/snapshot/<snapname>. 919 * 920 * This is where we lie about our v_vfsp in order to 921 * make .zfs/snapshot/<snapname> accessible over NFS 922 * without requiring manual mounts of <snapname>. 923 */ 924 ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs); 925 VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs; 926 (*vpp)->v_vfsp = zfsvfs->z_vfs; 927 (*vpp)->v_flag &= ~VROOT; 928 } 929 mutex_exit(&sdp->sd_lock); 930 ZFS_EXIT(zfsvfs); 931 932 /* 933 * If we had an error, drop our hold on the vnode and 934 * zfsctl_snapshot_inactive() will clean up. 935 */ 936 if (err != 0) { 937 VN_RELE(*vpp); 938 *vpp = NULL; 939 } 940 return (err); 941 } 942 943 /* ARGSUSED */ 944 static int 945 zfsctl_shares_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 946 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 947 int *direntflags, pathname_t *realpnp) 948 { 949 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 950 znode_t *dzp; 951 int error; 952 953 ZFS_ENTER(zfsvfs); 954 955 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) { 956 ZFS_EXIT(zfsvfs); 957 return (0); 958 } 959 960 if (zfsvfs->z_shares_dir == 0) { 961 ZFS_EXIT(zfsvfs); 962 return (SET_ERROR(ENOTSUP)); 963 } 964 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) 965 error = VOP_LOOKUP(ZTOV(dzp), nm, vpp, pnp, 966 flags, rdir, cr, ct, direntflags, realpnp); 967 968 VN_RELE(ZTOV(dzp)); 969 ZFS_EXIT(zfsvfs); 970 971 return (error); 972 } 973 974 /* ARGSUSED */ 975 static int 976 zfsctl_snapdir_readdir_cb(vnode_t *vp, void *dp, int *eofp, 977 offset_t *offp, offset_t *nextp, void *data, int flags) 978 { 979 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 980 char snapname[MAXNAMELEN]; 981 uint64_t id, cookie; 982 boolean_t case_conflict; 983 int error; 984 985 ZFS_ENTER(zfsvfs); 986 987 cookie = *offp; 988 dsl_pool_config_enter(dmu_objset_pool(zfsvfs->z_os), FTAG); 989 error = dmu_snapshot_list_next(zfsvfs->z_os, MAXNAMELEN, snapname, &id, 990 &cookie, &case_conflict); 991 dsl_pool_config_exit(dmu_objset_pool(zfsvfs->z_os), FTAG); 992 if (error) { 993 ZFS_EXIT(zfsvfs); 994 if (error == ENOENT) { 995 *eofp = 1; 996 return (0); 997 } 998 return (error); 999 } 1000 1001 if (flags & V_RDDIR_ENTFLAGS) { 1002 edirent_t *eodp = dp; 1003 1004 (void) strcpy(eodp->ed_name, snapname); 1005 eodp->ed_ino = ZFSCTL_INO_SNAP(id); 1006 eodp->ed_eflags = case_conflict ? ED_CASE_CONFLICT : 0; 1007 } else { 1008 struct dirent64 *odp = dp; 1009 1010 (void) strcpy(odp->d_name, snapname); 1011 odp->d_ino = ZFSCTL_INO_SNAP(id); 1012 } 1013 *nextp = cookie; 1014 1015 ZFS_EXIT(zfsvfs); 1016 1017 return (0); 1018 } 1019 1020 /* ARGSUSED */ 1021 static int 1022 zfsctl_shares_readdir(vnode_t *vp, uio_t *uiop, cred_t *cr, int *eofp, 1023 caller_context_t *ct, int flags) 1024 { 1025 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 1026 znode_t *dzp; 1027 int error; 1028 1029 ZFS_ENTER(zfsvfs); 1030 1031 if (zfsvfs->z_shares_dir == 0) { 1032 ZFS_EXIT(zfsvfs); 1033 return (SET_ERROR(ENOTSUP)); 1034 } 1035 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) { 1036 error = VOP_READDIR(ZTOV(dzp), uiop, cr, eofp, ct, flags); 1037 VN_RELE(ZTOV(dzp)); 1038 } else { 1039 *eofp = 1; 1040 error = SET_ERROR(ENOENT); 1041 } 1042 1043 ZFS_EXIT(zfsvfs); 1044 return (error); 1045 } 1046 1047 /* 1048 * pvp is the '.zfs' directory (zfsctl_node_t). 1049 * Creates vp, which is '.zfs/snapshot' (zfsctl_snapdir_t). 1050 * 1051 * This function is the callback to create a GFS vnode for '.zfs/snapshot' 1052 * when a lookup is performed on .zfs for "snapshot". 1053 */ 1054 vnode_t * 1055 zfsctl_mknode_snapdir(vnode_t *pvp) 1056 { 1057 vnode_t *vp; 1058 zfsctl_snapdir_t *sdp; 1059 1060 vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp, 1061 zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN, 1062 zfsctl_snapdir_readdir_cb, NULL); 1063 sdp = vp->v_data; 1064 sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR; 1065 sdp->sd_node.zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime; 1066 mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL); 1067 avl_create(&sdp->sd_snaps, snapentry_compare, 1068 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node)); 1069 return (vp); 1070 } 1071 1072 vnode_t * 1073 zfsctl_mknode_shares(vnode_t *pvp) 1074 { 1075 vnode_t *vp; 1076 zfsctl_node_t *sdp; 1077 1078 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, 1079 zfsctl_ops_shares, NULL, NULL, MAXNAMELEN, 1080 NULL, NULL); 1081 sdp = vp->v_data; 1082 sdp->zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime; 1083 return (vp); 1084 1085 } 1086 1087 /* ARGSUSED */ 1088 static int 1089 zfsctl_shares_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 1090 caller_context_t *ct) 1091 { 1092 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 1093 znode_t *dzp; 1094 int error; 1095 1096 ZFS_ENTER(zfsvfs); 1097 if (zfsvfs->z_shares_dir == 0) { 1098 ZFS_EXIT(zfsvfs); 1099 return (SET_ERROR(ENOTSUP)); 1100 } 1101 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) { 1102 error = VOP_GETATTR(ZTOV(dzp), vap, flags, cr, ct); 1103 VN_RELE(ZTOV(dzp)); 1104 } 1105 ZFS_EXIT(zfsvfs); 1106 return (error); 1107 1108 1109 } 1110 1111 /* ARGSUSED */ 1112 static int 1113 zfsctl_snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 1114 caller_context_t *ct) 1115 { 1116 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 1117 zfsctl_snapdir_t *sdp = vp->v_data; 1118 1119 ZFS_ENTER(zfsvfs); 1120 zfsctl_common_getattr(vp, vap); 1121 vap->va_nodeid = gfs_file_inode(vp); 1122 vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2; 1123 vap->va_ctime = vap->va_mtime = dmu_objset_snap_cmtime(zfsvfs->z_os); 1124 ZFS_EXIT(zfsvfs); 1125 1126 return (0); 1127 } 1128 1129 /* ARGSUSED */ 1130 static void 1131 zfsctl_snapdir_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1132 { 1133 zfsctl_snapdir_t *sdp = vp->v_data; 1134 void *private; 1135 1136 private = gfs_dir_inactive(vp); 1137 if (private != NULL) { 1138 ASSERT(avl_numnodes(&sdp->sd_snaps) == 0); 1139 mutex_destroy(&sdp->sd_lock); 1140 avl_destroy(&sdp->sd_snaps); 1141 kmem_free(private, sizeof (zfsctl_snapdir_t)); 1142 } 1143 } 1144 1145 static const fs_operation_def_t zfsctl_tops_snapdir[] = { 1146 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 1147 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 1148 { VOPNAME_IOCTL, { .error = fs_inval } }, 1149 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_snapdir_getattr } }, 1150 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 1151 { VOPNAME_RENAME, { .vop_rename = zfsctl_snapdir_rename } }, 1152 { VOPNAME_RMDIR, { .vop_rmdir = zfsctl_snapdir_remove } }, 1153 { VOPNAME_MKDIR, { .vop_mkdir = zfsctl_snapdir_mkdir } }, 1154 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } }, 1155 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_snapdir_lookup } }, 1156 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 1157 { VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapdir_inactive } }, 1158 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } }, 1159 { NULL } 1160 }; 1161 1162 static const fs_operation_def_t zfsctl_tops_shares[] = { 1163 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 1164 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 1165 { VOPNAME_IOCTL, { .error = fs_inval } }, 1166 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_shares_getattr } }, 1167 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 1168 { VOPNAME_READDIR, { .vop_readdir = zfsctl_shares_readdir } }, 1169 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_shares_lookup } }, 1170 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 1171 { VOPNAME_INACTIVE, { .vop_inactive = gfs_vop_inactive } }, 1172 { VOPNAME_FID, { .vop_fid = zfsctl_shares_fid } }, 1173 { NULL } 1174 }; 1175 1176 /* 1177 * pvp is the GFS vnode '.zfs/snapshot'. 1178 * 1179 * This creates a GFS node under '.zfs/snapshot' representing each 1180 * snapshot. This newly created GFS node is what we mount snapshot 1181 * vfs_t's ontop of. 1182 */ 1183 static vnode_t * 1184 zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset) 1185 { 1186 vnode_t *vp; 1187 zfsctl_node_t *zcp; 1188 1189 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, 1190 zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL); 1191 zcp = vp->v_data; 1192 zcp->zc_id = objset; 1193 1194 return (vp); 1195 } 1196 1197 static void 1198 zfsctl_snapshot_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1199 { 1200 zfsctl_snapdir_t *sdp; 1201 zfs_snapentry_t *sep, *next; 1202 vnode_t *dvp; 1203 1204 VERIFY(gfs_dir_lookup(vp, "..", &dvp, cr, 0, NULL, NULL) == 0); 1205 sdp = dvp->v_data; 1206 1207 mutex_enter(&sdp->sd_lock); 1208 1209 if (vp->v_count > 1) { 1210 mutex_exit(&sdp->sd_lock); 1211 return; 1212 } 1213 ASSERT(!vn_ismntpt(vp)); 1214 1215 sep = avl_first(&sdp->sd_snaps); 1216 while (sep != NULL) { 1217 next = AVL_NEXT(&sdp->sd_snaps, sep); 1218 1219 if (sep->se_root == vp) { 1220 avl_remove(&sdp->sd_snaps, sep); 1221 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 1222 kmem_free(sep, sizeof (zfs_snapentry_t)); 1223 break; 1224 } 1225 sep = next; 1226 } 1227 ASSERT(sep != NULL); 1228 1229 mutex_exit(&sdp->sd_lock); 1230 VN_RELE(dvp); 1231 1232 /* 1233 * Dispose of the vnode for the snapshot mount point. 1234 * This is safe to do because once this entry has been removed 1235 * from the AVL tree, it can't be found again, so cannot become 1236 * "active". If we lookup the same name again we will end up 1237 * creating a new vnode. 1238 */ 1239 gfs_vop_inactive(vp, cr, ct); 1240 } 1241 1242 1243 /* 1244 * These VP's should never see the light of day. They should always 1245 * be covered. 1246 */ 1247 static const fs_operation_def_t zfsctl_tops_snapshot[] = { 1248 VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapshot_inactive }, 1249 NULL, NULL 1250 }; 1251 1252 int 1253 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp) 1254 { 1255 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1256 vnode_t *dvp, *vp; 1257 zfsctl_snapdir_t *sdp; 1258 zfsctl_node_t *zcp; 1259 zfs_snapentry_t *sep; 1260 int error; 1261 1262 ASSERT(zfsvfs->z_ctldir != NULL); 1263 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 1264 NULL, 0, NULL, kcred, NULL, NULL, NULL); 1265 if (error != 0) 1266 return (error); 1267 sdp = dvp->v_data; 1268 1269 mutex_enter(&sdp->sd_lock); 1270 sep = avl_first(&sdp->sd_snaps); 1271 while (sep != NULL) { 1272 vp = sep->se_root; 1273 zcp = vp->v_data; 1274 if (zcp->zc_id == objsetid) 1275 break; 1276 1277 sep = AVL_NEXT(&sdp->sd_snaps, sep); 1278 } 1279 1280 if (sep != NULL) { 1281 VN_HOLD(vp); 1282 /* 1283 * Return the mounted root rather than the covered mount point. 1284 * Takes the GFS vnode at .zfs/snapshot/<snapshot objsetid> 1285 * and returns the ZFS vnode mounted on top of the GFS node. 1286 * This ZFS vnode is the root of the vfs for objset 'objsetid'. 1287 */ 1288 error = traverse(&vp); 1289 if (error == 0) { 1290 if (vp == sep->se_root) 1291 error = SET_ERROR(EINVAL); 1292 else 1293 *zfsvfsp = VTOZ(vp)->z_zfsvfs; 1294 } 1295 mutex_exit(&sdp->sd_lock); 1296 VN_RELE(vp); 1297 } else { 1298 error = SET_ERROR(EINVAL); 1299 mutex_exit(&sdp->sd_lock); 1300 } 1301 1302 VN_RELE(dvp); 1303 1304 return (error); 1305 } 1306 1307 /* 1308 * Unmount any snapshots for the given filesystem. This is called from 1309 * zfs_umount() - if we have a ctldir, then go through and unmount all the 1310 * snapshots. 1311 */ 1312 int 1313 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr) 1314 { 1315 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1316 vnode_t *dvp; 1317 zfsctl_snapdir_t *sdp; 1318 zfs_snapentry_t *sep, *next; 1319 int error; 1320 1321 ASSERT(zfsvfs->z_ctldir != NULL); 1322 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 1323 NULL, 0, NULL, cr, NULL, NULL, NULL); 1324 if (error != 0) 1325 return (error); 1326 sdp = dvp->v_data; 1327 1328 mutex_enter(&sdp->sd_lock); 1329 1330 sep = avl_first(&sdp->sd_snaps); 1331 while (sep != NULL) { 1332 next = AVL_NEXT(&sdp->sd_snaps, sep); 1333 1334 /* 1335 * If this snapshot is not mounted, then it must 1336 * have just been unmounted by somebody else, and 1337 * will be cleaned up by zfsctl_snapdir_inactive(). 1338 */ 1339 if (vn_ismntpt(sep->se_root)) { 1340 avl_remove(&sdp->sd_snaps, sep); 1341 error = zfsctl_unmount_snap(sep, fflags, cr); 1342 if (error) { 1343 avl_add(&sdp->sd_snaps, sep); 1344 break; 1345 } 1346 } 1347 sep = next; 1348 } 1349 1350 mutex_exit(&sdp->sd_lock); 1351 VN_RELE(dvp); 1352 1353 return (error); 1354 }