1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 */ 26 27 /* 28 * Virtual Device Labels 29 * --------------------- 30 * 31 * The vdev label serves several distinct purposes: 32 * 33 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 34 * identity within the pool. 35 * 36 * 2. Verify that all the devices given in a configuration are present 37 * within the pool. 38 * 39 * 3. Determine the uberblock for the pool. 40 * 41 * 4. In case of an import operation, determine the configuration of the 42 * toplevel vdev of which it is a part. 43 * 44 * 5. If an import operation cannot find all the devices in the pool, 45 * provide enough information to the administrator to determine which 46 * devices are missing. 47 * 48 * It is important to note that while the kernel is responsible for writing the 49 * label, it only consumes the information in the first three cases. The 50 * latter information is only consumed in userland when determining the 51 * configuration to import a pool. 52 * 53 * 54 * Label Organization 55 * ------------------ 56 * 57 * Before describing the contents of the label, it's important to understand how 58 * the labels are written and updated with respect to the uberblock. 59 * 60 * When the pool configuration is altered, either because it was newly created 61 * or a device was added, we want to update all the labels such that we can deal 62 * with fatal failure at any point. To this end, each disk has two labels which 63 * are updated before and after the uberblock is synced. Assuming we have 64 * labels and an uberblock with the following transaction groups: 65 * 66 * L1 UB L2 67 * +------+ +------+ +------+ 68 * | | | | | | 69 * | t10 | | t10 | | t10 | 70 * | | | | | | 71 * +------+ +------+ +------+ 72 * 73 * In this stable state, the labels and the uberblock were all updated within 74 * the same transaction group (10). Each label is mirrored and checksummed, so 75 * that we can detect when we fail partway through writing the label. 76 * 77 * In order to identify which labels are valid, the labels are written in the 78 * following manner: 79 * 80 * 1. For each vdev, update 'L1' to the new label 81 * 2. Update the uberblock 82 * 3. For each vdev, update 'L2' to the new label 83 * 84 * Given arbitrary failure, we can determine the correct label to use based on 85 * the transaction group. If we fail after updating L1 but before updating the 86 * UB, we will notice that L1's transaction group is greater than the uberblock, 87 * so L2 must be valid. If we fail after writing the uberblock but before 88 * writing L2, we will notice that L2's transaction group is less than L1, and 89 * therefore L1 is valid. 90 * 91 * Another added complexity is that not every label is updated when the config 92 * is synced. If we add a single device, we do not want to have to re-write 93 * every label for every device in the pool. This means that both L1 and L2 may 94 * be older than the pool uberblock, because the necessary information is stored 95 * on another vdev. 96 * 97 * 98 * On-disk Format 99 * -------------- 100 * 101 * The vdev label consists of two distinct parts, and is wrapped within the 102 * vdev_label_t structure. The label includes 8k of padding to permit legacy 103 * VTOC disk labels, but is otherwise ignored. 104 * 105 * The first half of the label is a packed nvlist which contains pool wide 106 * properties, per-vdev properties, and configuration information. It is 107 * described in more detail below. 108 * 109 * The latter half of the label consists of a redundant array of uberblocks. 110 * These uberblocks are updated whenever a transaction group is committed, 111 * or when the configuration is updated. When a pool is loaded, we scan each 112 * vdev for the 'best' uberblock. 113 * 114 * 115 * Configuration Information 116 * ------------------------- 117 * 118 * The nvlist describing the pool and vdev contains the following elements: 119 * 120 * version ZFS on-disk version 121 * name Pool name 122 * state Pool state 123 * txg Transaction group in which this label was written 124 * pool_guid Unique identifier for this pool 125 * vdev_tree An nvlist describing vdev tree. 126 * features_for_read 127 * An nvlist of the features necessary for reading the MOS. 128 * 129 * Each leaf device label also contains the following: 130 * 131 * top_guid Unique ID for top-level vdev in which this is contained 132 * guid Unique ID for the leaf vdev 133 * 134 * The 'vs' configuration follows the format described in 'spa_config.c'. 135 */ 136 137 #include <sys/zfs_context.h> 138 #include <sys/spa.h> 139 #include <sys/spa_impl.h> 140 #include <sys/dmu.h> 141 #include <sys/zap.h> 142 #include <sys/vdev.h> 143 #include <sys/vdev_impl.h> 144 #include <sys/uberblock_impl.h> 145 #include <sys/metaslab.h> 146 #include <sys/zio.h> 147 #include <sys/dsl_scan.h> 148 #include <sys/fs/zfs.h> 149 150 /* 151 * Basic routines to read and write from a vdev label. 152 * Used throughout the rest of this file. 153 */ 154 uint64_t 155 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 156 { 157 ASSERT(offset < sizeof (vdev_label_t)); 158 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 159 160 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 161 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 162 } 163 164 /* 165 * Returns back the vdev label associated with the passed in offset. 166 */ 167 int 168 vdev_label_number(uint64_t psize, uint64_t offset) 169 { 170 int l; 171 172 if (offset >= psize - VDEV_LABEL_END_SIZE) { 173 offset -= psize - VDEV_LABEL_END_SIZE; 174 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 175 } 176 l = offset / sizeof (vdev_label_t); 177 return (l < VDEV_LABELS ? l : -1); 178 } 179 180 static void 181 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 182 uint64_t size, zio_done_func_t *done, void *private, int flags) 183 { 184 ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) == 185 SCL_STATE_ALL); 186 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 187 188 zio_nowait(zio_read_phys(zio, vd, 189 vdev_label_offset(vd->vdev_psize, l, offset), 190 size, buf, ZIO_CHECKSUM_LABEL, done, private, 191 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 192 } 193 194 static void 195 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 196 uint64_t size, zio_done_func_t *done, void *private, int flags) 197 { 198 ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL || 199 (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) == 200 (SCL_CONFIG | SCL_STATE) && 201 dsl_pool_sync_context(spa_get_dsl(zio->io_spa)))); 202 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 203 204 zio_nowait(zio_write_phys(zio, vd, 205 vdev_label_offset(vd->vdev_psize, l, offset), 206 size, buf, ZIO_CHECKSUM_LABEL, done, private, 207 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 208 } 209 210 /* 211 * Generate the nvlist representing this vdev's config. 212 */ 213 nvlist_t * 214 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 215 vdev_config_flag_t flags) 216 { 217 nvlist_t *nv = NULL; 218 219 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 220 221 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 222 vd->vdev_ops->vdev_op_type) == 0); 223 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) 224 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id) 225 == 0); 226 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); 227 228 if (vd->vdev_path != NULL) 229 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, 230 vd->vdev_path) == 0); 231 232 if (vd->vdev_devid != NULL) 233 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, 234 vd->vdev_devid) == 0); 235 236 if (vd->vdev_physpath != NULL) 237 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 238 vd->vdev_physpath) == 0); 239 240 if (vd->vdev_fru != NULL) 241 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU, 242 vd->vdev_fru) == 0); 243 244 if (vd->vdev_nparity != 0) { 245 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 246 VDEV_TYPE_RAIDZ) == 0); 247 248 /* 249 * Make sure someone hasn't managed to sneak a fancy new vdev 250 * into a crufty old storage pool. 251 */ 252 ASSERT(vd->vdev_nparity == 1 || 253 (vd->vdev_nparity <= 2 && 254 spa_version(spa) >= SPA_VERSION_RAIDZ2) || 255 (vd->vdev_nparity <= 3 && 256 spa_version(spa) >= SPA_VERSION_RAIDZ3)); 257 258 /* 259 * Note that we'll add the nparity tag even on storage pools 260 * that only support a single parity device -- older software 261 * will just ignore it. 262 */ 263 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, 264 vd->vdev_nparity) == 0); 265 } 266 267 if (vd->vdev_wholedisk != -1ULL) 268 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 269 vd->vdev_wholedisk) == 0); 270 271 if (vd->vdev_not_present) 272 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0); 273 274 if (vd->vdev_isspare) 275 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0); 276 277 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && 278 vd == vd->vdev_top) { 279 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 280 vd->vdev_ms_array) == 0); 281 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 282 vd->vdev_ms_shift) == 0); 283 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, 284 vd->vdev_ashift) == 0); 285 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 286 vd->vdev_asize) == 0); 287 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, 288 vd->vdev_islog) == 0); 289 if (vd->vdev_removing) 290 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, 291 vd->vdev_removing) == 0); 292 } 293 294 if (vd->vdev_dtl_smo.smo_object != 0) 295 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 296 vd->vdev_dtl_smo.smo_object) == 0); 297 298 if (vd->vdev_crtxg) 299 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 300 vd->vdev_crtxg) == 0); 301 302 if (getstats) { 303 vdev_stat_t vs; 304 pool_scan_stat_t ps; 305 306 vdev_get_stats(vd, &vs); 307 VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, 308 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0); 309 310 /* provide either current or previous scan information */ 311 if (spa_scan_get_stats(spa, &ps) == 0) { 312 VERIFY(nvlist_add_uint64_array(nv, 313 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, 314 sizeof (pool_scan_stat_t) / sizeof (uint64_t)) 315 == 0); 316 } 317 } 318 319 if (!vd->vdev_ops->vdev_op_leaf) { 320 nvlist_t **child; 321 int c, idx; 322 323 ASSERT(!vd->vdev_ishole); 324 325 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 326 KM_SLEEP); 327 328 for (c = 0, idx = 0; c < vd->vdev_children; c++) { 329 vdev_t *cvd = vd->vdev_child[c]; 330 331 /* 332 * If we're generating an nvlist of removing 333 * vdevs then skip over any device which is 334 * not being removed. 335 */ 336 if ((flags & VDEV_CONFIG_REMOVING) && 337 !cvd->vdev_removing) 338 continue; 339 340 child[idx++] = vdev_config_generate(spa, cvd, 341 getstats, flags); 342 } 343 344 if (idx) { 345 VERIFY(nvlist_add_nvlist_array(nv, 346 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 347 } 348 349 for (c = 0; c < idx; c++) 350 nvlist_free(child[c]); 351 352 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 353 354 } else { 355 const char *aux = NULL; 356 357 if (vd->vdev_offline && !vd->vdev_tmpoffline) 358 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, 359 B_TRUE) == 0); 360 if (vd->vdev_resilvering) 361 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVERING, 362 B_TRUE) == 0); 363 if (vd->vdev_faulted) 364 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, 365 B_TRUE) == 0); 366 if (vd->vdev_degraded) 367 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, 368 B_TRUE) == 0); 369 if (vd->vdev_removed) 370 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, 371 B_TRUE) == 0); 372 if (vd->vdev_unspare) 373 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, 374 B_TRUE) == 0); 375 if (vd->vdev_ishole) 376 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, 377 B_TRUE) == 0); 378 379 switch (vd->vdev_stat.vs_aux) { 380 case VDEV_AUX_ERR_EXCEEDED: 381 aux = "err_exceeded"; 382 break; 383 384 case VDEV_AUX_EXTERNAL: 385 aux = "external"; 386 break; 387 } 388 389 if (aux != NULL) 390 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, 391 aux) == 0); 392 393 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { 394 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, 395 vd->vdev_orig_guid) == 0); 396 } 397 } 398 399 return (nv); 400 } 401 402 /* 403 * Generate a view of the top-level vdevs. If we currently have holes 404 * in the namespace, then generate an array which contains a list of holey 405 * vdevs. Additionally, add the number of top-level children that currently 406 * exist. 407 */ 408 void 409 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 410 { 411 vdev_t *rvd = spa->spa_root_vdev; 412 uint64_t *array; 413 uint_t c, idx; 414 415 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 416 417 for (c = 0, idx = 0; c < rvd->vdev_children; c++) { 418 vdev_t *tvd = rvd->vdev_child[c]; 419 420 if (tvd->vdev_ishole) 421 array[idx++] = c; 422 } 423 424 if (idx) { 425 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, 426 array, idx) == 0); 427 } 428 429 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 430 rvd->vdev_children) == 0); 431 432 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 433 } 434 435 /* 436 * Returns the configuration from the label of the given vdev. For vdevs 437 * which don't have a txg value stored on their label (i.e. spares/cache) 438 * or have not been completely initialized (txg = 0) just return 439 * the configuration from the first valid label we find. Otherwise, 440 * find the most up-to-date label that does not exceed the specified 441 * 'txg' value. 442 */ 443 nvlist_t * 444 vdev_label_read_config(vdev_t *vd, uint64_t txg) 445 { 446 spa_t *spa = vd->vdev_spa; 447 nvlist_t *config = NULL; 448 vdev_phys_t *vp; 449 zio_t *zio; 450 uint64_t best_txg = 0; 451 int error = 0; 452 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 453 ZIO_FLAG_SPECULATIVE; 454 455 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 456 457 if (!vdev_readable(vd)) 458 return (NULL); 459 460 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 461 462 retry: 463 for (int l = 0; l < VDEV_LABELS; l++) { 464 nvlist_t *label = NULL; 465 466 zio = zio_root(spa, NULL, NULL, flags); 467 468 vdev_label_read(zio, vd, l, vp, 469 offsetof(vdev_label_t, vl_vdev_phys), 470 sizeof (vdev_phys_t), NULL, NULL, flags); 471 472 if (zio_wait(zio) == 0 && 473 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 474 &label, 0) == 0) { 475 uint64_t label_txg = 0; 476 477 /* 478 * Auxiliary vdevs won't have txg values in their 479 * labels and newly added vdevs may not have been 480 * completely initialized so just return the 481 * configuration from the first valid label we 482 * encounter. 483 */ 484 error = nvlist_lookup_uint64(label, 485 ZPOOL_CONFIG_POOL_TXG, &label_txg); 486 if ((error || label_txg == 0) && !config) { 487 config = label; 488 break; 489 } else if (label_txg <= txg && label_txg > best_txg) { 490 best_txg = label_txg; 491 nvlist_free(config); 492 config = fnvlist_dup(label); 493 } 494 } 495 496 if (label != NULL) { 497 nvlist_free(label); 498 label = NULL; 499 } 500 } 501 502 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 503 flags |= ZIO_FLAG_TRYHARD; 504 goto retry; 505 } 506 507 zio_buf_free(vp, sizeof (vdev_phys_t)); 508 509 return (config); 510 } 511 512 /* 513 * Determine if a device is in use. The 'spare_guid' parameter will be filled 514 * in with the device guid if this spare is active elsewhere on the system. 515 */ 516 static boolean_t 517 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 518 uint64_t *spare_guid, uint64_t *l2cache_guid) 519 { 520 spa_t *spa = vd->vdev_spa; 521 uint64_t state, pool_guid, device_guid, txg, spare_pool; 522 uint64_t vdtxg = 0; 523 nvlist_t *label; 524 525 if (spare_guid) 526 *spare_guid = 0ULL; 527 if (l2cache_guid) 528 *l2cache_guid = 0ULL; 529 530 /* 531 * Read the label, if any, and perform some basic sanity checks. 532 */ 533 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) 534 return (B_FALSE); 535 536 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 537 &vdtxg); 538 539 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 540 &state) != 0 || 541 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 542 &device_guid) != 0) { 543 nvlist_free(label); 544 return (B_FALSE); 545 } 546 547 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 548 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 549 &pool_guid) != 0 || 550 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 551 &txg) != 0)) { 552 nvlist_free(label); 553 return (B_FALSE); 554 } 555 556 nvlist_free(label); 557 558 /* 559 * Check to see if this device indeed belongs to the pool it claims to 560 * be a part of. The only way this is allowed is if the device is a hot 561 * spare (which we check for later on). 562 */ 563 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 564 !spa_guid_exists(pool_guid, device_guid) && 565 !spa_spare_exists(device_guid, NULL, NULL) && 566 !spa_l2cache_exists(device_guid, NULL)) 567 return (B_FALSE); 568 569 /* 570 * If the transaction group is zero, then this an initialized (but 571 * unused) label. This is only an error if the create transaction 572 * on-disk is the same as the one we're using now, in which case the 573 * user has attempted to add the same vdev multiple times in the same 574 * transaction. 575 */ 576 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 577 txg == 0 && vdtxg == crtxg) 578 return (B_TRUE); 579 580 /* 581 * Check to see if this is a spare device. We do an explicit check for 582 * spa_has_spare() here because it may be on our pending list of spares 583 * to add. We also check if it is an l2cache device. 584 */ 585 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 586 spa_has_spare(spa, device_guid)) { 587 if (spare_guid) 588 *spare_guid = device_guid; 589 590 switch (reason) { 591 case VDEV_LABEL_CREATE: 592 case VDEV_LABEL_L2CACHE: 593 return (B_TRUE); 594 595 case VDEV_LABEL_REPLACE: 596 return (!spa_has_spare(spa, device_guid) || 597 spare_pool != 0ULL); 598 599 case VDEV_LABEL_SPARE: 600 return (spa_has_spare(spa, device_guid)); 601 } 602 } 603 604 /* 605 * Check to see if this is an l2cache device. 606 */ 607 if (spa_l2cache_exists(device_guid, NULL)) 608 return (B_TRUE); 609 610 /* 611 * We can't rely on a pool's state if it's been imported 612 * read-only. Instead we look to see if the pools is marked 613 * read-only in the namespace and set the state to active. 614 */ 615 if ((spa = spa_by_guid(pool_guid, device_guid)) != NULL && 616 spa_mode(spa) == FREAD) 617 state = POOL_STATE_ACTIVE; 618 619 /* 620 * If the device is marked ACTIVE, then this device is in use by another 621 * pool on the system. 622 */ 623 return (state == POOL_STATE_ACTIVE); 624 } 625 626 /* 627 * Initialize a vdev label. We check to make sure each leaf device is not in 628 * use, and writable. We put down an initial label which we will later 629 * overwrite with a complete label. Note that it's important to do this 630 * sequentially, not in parallel, so that we catch cases of multiple use of the 631 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 632 * itself. 633 */ 634 int 635 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 636 { 637 spa_t *spa = vd->vdev_spa; 638 nvlist_t *label; 639 vdev_phys_t *vp; 640 char *pad2; 641 uberblock_t *ub; 642 zio_t *zio; 643 char *buf; 644 size_t buflen; 645 int error; 646 uint64_t spare_guid, l2cache_guid; 647 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 648 649 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 650 651 for (int c = 0; c < vd->vdev_children; c++) 652 if ((error = vdev_label_init(vd->vdev_child[c], 653 crtxg, reason)) != 0) 654 return (error); 655 656 /* Track the creation time for this vdev */ 657 vd->vdev_crtxg = crtxg; 658 659 if (!vd->vdev_ops->vdev_op_leaf) 660 return (0); 661 662 /* 663 * Dead vdevs cannot be initialized. 664 */ 665 if (vdev_is_dead(vd)) 666 return (SET_ERROR(EIO)); 667 668 /* 669 * Determine if the vdev is in use. 670 */ 671 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && 672 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 673 return (SET_ERROR(EBUSY)); 674 675 /* 676 * If this is a request to add or replace a spare or l2cache device 677 * that is in use elsewhere on the system, then we must update the 678 * guid (which was initialized to a random value) to reflect the 679 * actual GUID (which is shared between multiple pools). 680 */ 681 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 682 spare_guid != 0ULL) { 683 uint64_t guid_delta = spare_guid - vd->vdev_guid; 684 685 vd->vdev_guid += guid_delta; 686 687 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 688 pvd->vdev_guid_sum += guid_delta; 689 690 /* 691 * If this is a replacement, then we want to fallthrough to the 692 * rest of the code. If we're adding a spare, then it's already 693 * labeled appropriately and we can just return. 694 */ 695 if (reason == VDEV_LABEL_SPARE) 696 return (0); 697 ASSERT(reason == VDEV_LABEL_REPLACE || 698 reason == VDEV_LABEL_SPLIT); 699 } 700 701 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 702 l2cache_guid != 0ULL) { 703 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 704 705 vd->vdev_guid += guid_delta; 706 707 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 708 pvd->vdev_guid_sum += guid_delta; 709 710 /* 711 * If this is a replacement, then we want to fallthrough to the 712 * rest of the code. If we're adding an l2cache, then it's 713 * already labeled appropriately and we can just return. 714 */ 715 if (reason == VDEV_LABEL_L2CACHE) 716 return (0); 717 ASSERT(reason == VDEV_LABEL_REPLACE); 718 } 719 720 /* 721 * Initialize its label. 722 */ 723 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 724 bzero(vp, sizeof (vdev_phys_t)); 725 726 /* 727 * Generate a label describing the pool and our top-level vdev. 728 * We mark it as being from txg 0 to indicate that it's not 729 * really part of an active pool just yet. The labels will 730 * be written again with a meaningful txg by spa_sync(). 731 */ 732 if (reason == VDEV_LABEL_SPARE || 733 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 734 /* 735 * For inactive hot spares, we generate a special label that 736 * identifies as a mutually shared hot spare. We write the 737 * label if we are adding a hot spare, or if we are removing an 738 * active hot spare (in which case we want to revert the 739 * labels). 740 */ 741 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 742 743 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 744 spa_version(spa)) == 0); 745 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 746 POOL_STATE_SPARE) == 0); 747 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 748 vd->vdev_guid) == 0); 749 } else if (reason == VDEV_LABEL_L2CACHE || 750 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 751 /* 752 * For level 2 ARC devices, add a special label. 753 */ 754 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 755 756 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 757 spa_version(spa)) == 0); 758 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 759 POOL_STATE_L2CACHE) == 0); 760 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 761 vd->vdev_guid) == 0); 762 } else { 763 uint64_t txg = 0ULL; 764 765 if (reason == VDEV_LABEL_SPLIT) 766 txg = spa->spa_uberblock.ub_txg; 767 label = spa_config_generate(spa, vd, txg, B_FALSE); 768 769 /* 770 * Add our creation time. This allows us to detect multiple 771 * vdev uses as described above, and automatically expires if we 772 * fail. 773 */ 774 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 775 crtxg) == 0); 776 } 777 778 buf = vp->vp_nvlist; 779 buflen = sizeof (vp->vp_nvlist); 780 781 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 782 if (error != 0) { 783 nvlist_free(label); 784 zio_buf_free(vp, sizeof (vdev_phys_t)); 785 /* EFAULT means nvlist_pack ran out of room */ 786 return (error == EFAULT ? ENAMETOOLONG : EINVAL); 787 } 788 789 /* 790 * Initialize uberblock template. 791 */ 792 ub = zio_buf_alloc(VDEV_UBERBLOCK_RING); 793 bzero(ub, VDEV_UBERBLOCK_RING); 794 *ub = spa->spa_uberblock; 795 ub->ub_txg = 0; 796 797 /* Initialize the 2nd padding area. */ 798 pad2 = zio_buf_alloc(VDEV_PAD_SIZE); 799 bzero(pad2, VDEV_PAD_SIZE); 800 801 /* 802 * Write everything in parallel. 803 */ 804 retry: 805 zio = zio_root(spa, NULL, NULL, flags); 806 807 for (int l = 0; l < VDEV_LABELS; l++) { 808 809 vdev_label_write(zio, vd, l, vp, 810 offsetof(vdev_label_t, vl_vdev_phys), 811 sizeof (vdev_phys_t), NULL, NULL, flags); 812 813 /* 814 * Skip the 1st padding area. 815 * Zero out the 2nd padding area where it might have 816 * left over data from previous filesystem format. 817 */ 818 vdev_label_write(zio, vd, l, pad2, 819 offsetof(vdev_label_t, vl_pad2), 820 VDEV_PAD_SIZE, NULL, NULL, flags); 821 822 vdev_label_write(zio, vd, l, ub, 823 offsetof(vdev_label_t, vl_uberblock), 824 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 825 } 826 827 error = zio_wait(zio); 828 829 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 830 flags |= ZIO_FLAG_TRYHARD; 831 goto retry; 832 } 833 834 nvlist_free(label); 835 zio_buf_free(pad2, VDEV_PAD_SIZE); 836 zio_buf_free(ub, VDEV_UBERBLOCK_RING); 837 zio_buf_free(vp, sizeof (vdev_phys_t)); 838 839 /* 840 * If this vdev hasn't been previously identified as a spare, then we 841 * mark it as such only if a) we are labeling it as a spare, or b) it 842 * exists as a spare elsewhere in the system. Do the same for 843 * level 2 ARC devices. 844 */ 845 if (error == 0 && !vd->vdev_isspare && 846 (reason == VDEV_LABEL_SPARE || 847 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 848 spa_spare_add(vd); 849 850 if (error == 0 && !vd->vdev_isl2cache && 851 (reason == VDEV_LABEL_L2CACHE || 852 spa_l2cache_exists(vd->vdev_guid, NULL))) 853 spa_l2cache_add(vd); 854 855 return (error); 856 } 857 858 /* 859 * ========================================================================== 860 * uberblock load/sync 861 * ========================================================================== 862 */ 863 864 /* 865 * Consider the following situation: txg is safely synced to disk. We've 866 * written the first uberblock for txg + 1, and then we lose power. When we 867 * come back up, we fail to see the uberblock for txg + 1 because, say, 868 * it was on a mirrored device and the replica to which we wrote txg + 1 869 * is now offline. If we then make some changes and sync txg + 1, and then 870 * the missing replica comes back, then for a few seconds we'll have two 871 * conflicting uberblocks on disk with the same txg. The solution is simple: 872 * among uberblocks with equal txg, choose the one with the latest timestamp. 873 */ 874 static int 875 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 876 { 877 if (ub1->ub_txg < ub2->ub_txg) 878 return (-1); 879 if (ub1->ub_txg > ub2->ub_txg) 880 return (1); 881 882 if (ub1->ub_timestamp < ub2->ub_timestamp) 883 return (-1); 884 if (ub1->ub_timestamp > ub2->ub_timestamp) 885 return (1); 886 887 return (0); 888 } 889 890 struct ubl_cbdata { 891 uberblock_t *ubl_ubbest; /* Best uberblock */ 892 vdev_t *ubl_vd; /* vdev associated with the above */ 893 }; 894 895 static void 896 vdev_uberblock_load_done(zio_t *zio) 897 { 898 vdev_t *vd = zio->io_vd; 899 spa_t *spa = zio->io_spa; 900 zio_t *rio = zio->io_private; 901 uberblock_t *ub = zio->io_data; 902 struct ubl_cbdata *cbp = rio->io_private; 903 904 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); 905 906 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 907 mutex_enter(&rio->io_lock); 908 if (ub->ub_txg <= spa->spa_load_max_txg && 909 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { 910 /* 911 * Keep track of the vdev in which this uberblock 912 * was found. We will use this information later 913 * to obtain the config nvlist associated with 914 * this uberblock. 915 */ 916 *cbp->ubl_ubbest = *ub; 917 cbp->ubl_vd = vd; 918 } 919 mutex_exit(&rio->io_lock); 920 } 921 922 zio_buf_free(zio->io_data, zio->io_size); 923 } 924 925 static void 926 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, 927 struct ubl_cbdata *cbp) 928 { 929 for (int c = 0; c < vd->vdev_children; c++) 930 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); 931 932 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 933 for (int l = 0; l < VDEV_LABELS; l++) { 934 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 935 vdev_label_read(zio, vd, l, 936 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)), 937 VDEV_UBERBLOCK_OFFSET(vd, n), 938 VDEV_UBERBLOCK_SIZE(vd), 939 vdev_uberblock_load_done, zio, flags); 940 } 941 } 942 } 943 } 944 945 /* 946 * Reads the 'best' uberblock from disk along with its associated 947 * configuration. First, we read the uberblock array of each label of each 948 * vdev, keeping track of the uberblock with the highest txg in each array. 949 * Then, we read the configuration from the same vdev as the best uberblock. 950 */ 951 void 952 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) 953 { 954 zio_t *zio; 955 spa_t *spa = rvd->vdev_spa; 956 struct ubl_cbdata cb; 957 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 958 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 959 960 ASSERT(ub); 961 ASSERT(config); 962 963 bzero(ub, sizeof (uberblock_t)); 964 *config = NULL; 965 966 cb.ubl_ubbest = ub; 967 cb.ubl_vd = NULL; 968 969 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 970 zio = zio_root(spa, NULL, &cb, flags); 971 vdev_uberblock_load_impl(zio, rvd, flags, &cb); 972 (void) zio_wait(zio); 973 974 /* 975 * It's possible that the best uberblock was discovered on a label 976 * that has a configuration which was written in a future txg. 977 * Search all labels on this vdev to find the configuration that 978 * matches the txg for our uberblock. 979 */ 980 if (cb.ubl_vd != NULL) 981 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg); 982 spa_config_exit(spa, SCL_ALL, FTAG); 983 } 984 985 /* 986 * On success, increment root zio's count of good writes. 987 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 988 */ 989 static void 990 vdev_uberblock_sync_done(zio_t *zio) 991 { 992 uint64_t *good_writes = zio->io_private; 993 994 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 995 atomic_add_64(good_writes, 1); 996 } 997 998 /* 999 * Write the uberblock to all labels of all leaves of the specified vdev. 1000 */ 1001 static void 1002 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags) 1003 { 1004 uberblock_t *ubbuf; 1005 int n; 1006 1007 for (int c = 0; c < vd->vdev_children; c++) 1008 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags); 1009 1010 if (!vd->vdev_ops->vdev_op_leaf) 1011 return; 1012 1013 if (!vdev_writeable(vd)) 1014 return; 1015 1016 n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); 1017 1018 ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); 1019 bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 1020 *ubbuf = *ub; 1021 1022 for (int l = 0; l < VDEV_LABELS; l++) 1023 vdev_label_write(zio, vd, l, ubbuf, 1024 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1025 vdev_uberblock_sync_done, zio->io_private, 1026 flags | ZIO_FLAG_DONT_PROPAGATE); 1027 1028 zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 1029 } 1030 1031 int 1032 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 1033 { 1034 spa_t *spa = svd[0]->vdev_spa; 1035 zio_t *zio; 1036 uint64_t good_writes = 0; 1037 1038 zio = zio_root(spa, NULL, &good_writes, flags); 1039 1040 for (int v = 0; v < svdcount; v++) 1041 vdev_uberblock_sync(zio, ub, svd[v], flags); 1042 1043 (void) zio_wait(zio); 1044 1045 /* 1046 * Flush the uberblocks to disk. This ensures that the odd labels 1047 * are no longer needed (because the new uberblocks and the even 1048 * labels are safely on disk), so it is safe to overwrite them. 1049 */ 1050 zio = zio_root(spa, NULL, NULL, flags); 1051 1052 for (int v = 0; v < svdcount; v++) 1053 zio_flush(zio, svd[v]); 1054 1055 (void) zio_wait(zio); 1056 1057 return (good_writes >= 1 ? 0 : EIO); 1058 } 1059 1060 /* 1061 * On success, increment the count of good writes for our top-level vdev. 1062 */ 1063 static void 1064 vdev_label_sync_done(zio_t *zio) 1065 { 1066 uint64_t *good_writes = zio->io_private; 1067 1068 if (zio->io_error == 0) 1069 atomic_add_64(good_writes, 1); 1070 } 1071 1072 /* 1073 * If there weren't enough good writes, indicate failure to the parent. 1074 */ 1075 static void 1076 vdev_label_sync_top_done(zio_t *zio) 1077 { 1078 uint64_t *good_writes = zio->io_private; 1079 1080 if (*good_writes == 0) 1081 zio->io_error = SET_ERROR(EIO); 1082 1083 kmem_free(good_writes, sizeof (uint64_t)); 1084 } 1085 1086 /* 1087 * We ignore errors for log and cache devices, simply free the private data. 1088 */ 1089 static void 1090 vdev_label_sync_ignore_done(zio_t *zio) 1091 { 1092 kmem_free(zio->io_private, sizeof (uint64_t)); 1093 } 1094 1095 /* 1096 * Write all even or odd labels to all leaves of the specified vdev. 1097 */ 1098 static void 1099 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags) 1100 { 1101 nvlist_t *label; 1102 vdev_phys_t *vp; 1103 char *buf; 1104 size_t buflen; 1105 1106 for (int c = 0; c < vd->vdev_children; c++) 1107 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags); 1108 1109 if (!vd->vdev_ops->vdev_op_leaf) 1110 return; 1111 1112 if (!vdev_writeable(vd)) 1113 return; 1114 1115 /* 1116 * Generate a label describing the top-level config to which we belong. 1117 */ 1118 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 1119 1120 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 1121 bzero(vp, sizeof (vdev_phys_t)); 1122 1123 buf = vp->vp_nvlist; 1124 buflen = sizeof (vp->vp_nvlist); 1125 1126 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) { 1127 for (; l < VDEV_LABELS; l += 2) { 1128 vdev_label_write(zio, vd, l, vp, 1129 offsetof(vdev_label_t, vl_vdev_phys), 1130 sizeof (vdev_phys_t), 1131 vdev_label_sync_done, zio->io_private, 1132 flags | ZIO_FLAG_DONT_PROPAGATE); 1133 } 1134 } 1135 1136 zio_buf_free(vp, sizeof (vdev_phys_t)); 1137 nvlist_free(label); 1138 } 1139 1140 int 1141 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 1142 { 1143 list_t *dl = &spa->spa_config_dirty_list; 1144 vdev_t *vd; 1145 zio_t *zio; 1146 int error; 1147 1148 /* 1149 * Write the new labels to disk. 1150 */ 1151 zio = zio_root(spa, NULL, NULL, flags); 1152 1153 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 1154 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t), 1155 KM_SLEEP); 1156 1157 ASSERT(!vd->vdev_ishole); 1158 1159 zio_t *vio = zio_null(zio, spa, NULL, 1160 (vd->vdev_islog || vd->vdev_aux != NULL) ? 1161 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 1162 good_writes, flags); 1163 vdev_label_sync(vio, vd, l, txg, flags); 1164 zio_nowait(vio); 1165 } 1166 1167 error = zio_wait(zio); 1168 1169 /* 1170 * Flush the new labels to disk. 1171 */ 1172 zio = zio_root(spa, NULL, NULL, flags); 1173 1174 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 1175 zio_flush(zio, vd); 1176 1177 (void) zio_wait(zio); 1178 1179 return (error); 1180 } 1181 1182 /* 1183 * Sync the uberblock and any changes to the vdev configuration. 1184 * 1185 * The order of operations is carefully crafted to ensure that 1186 * if the system panics or loses power at any time, the state on disk 1187 * is still transactionally consistent. The in-line comments below 1188 * describe the failure semantics at each stage. 1189 * 1190 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 1191 * at any time, you can just call it again, and it will resume its work. 1192 */ 1193 int 1194 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard) 1195 { 1196 spa_t *spa = svd[0]->vdev_spa; 1197 uberblock_t *ub = &spa->spa_uberblock; 1198 vdev_t *vd; 1199 zio_t *zio; 1200 int error; 1201 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1202 1203 /* 1204 * Normally, we don't want to try too hard to write every label and 1205 * uberblock. If there is a flaky disk, we don't want the rest of the 1206 * sync process to block while we retry. But if we can't write a 1207 * single label out, we should retry with ZIO_FLAG_TRYHARD before 1208 * bailing out and declaring the pool faulted. 1209 */ 1210 if (tryhard) 1211 flags |= ZIO_FLAG_TRYHARD; 1212 1213 ASSERT(ub->ub_txg <= txg); 1214 1215 /* 1216 * If this isn't a resync due to I/O errors, 1217 * and nothing changed in this transaction group, 1218 * and the vdev configuration hasn't changed, 1219 * then there's nothing to do. 1220 */ 1221 if (ub->ub_txg < txg && 1222 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE && 1223 list_is_empty(&spa->spa_config_dirty_list)) 1224 return (0); 1225 1226 if (txg > spa_freeze_txg(spa)) 1227 return (0); 1228 1229 ASSERT(txg <= spa->spa_final_txg); 1230 1231 /* 1232 * Flush the write cache of every disk that's been written to 1233 * in this transaction group. This ensures that all blocks 1234 * written in this txg will be committed to stable storage 1235 * before any uberblock that references them. 1236 */ 1237 zio = zio_root(spa, NULL, NULL, flags); 1238 1239 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; 1240 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1241 zio_flush(zio, vd); 1242 1243 (void) zio_wait(zio); 1244 1245 /* 1246 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1247 * system dies in the middle of this process, that's OK: all of the 1248 * even labels that made it to disk will be newer than any uberblock, 1249 * and will therefore be considered invalid. The odd labels (L1, L3), 1250 * which have not yet been touched, will still be valid. We flush 1251 * the new labels to disk to ensure that all even-label updates 1252 * are committed to stable storage before the uberblock update. 1253 */ 1254 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) 1255 return (error); 1256 1257 /* 1258 * Sync the uberblocks to all vdevs in svd[]. 1259 * If the system dies in the middle of this step, there are two cases 1260 * to consider, and the on-disk state is consistent either way: 1261 * 1262 * (1) If none of the new uberblocks made it to disk, then the 1263 * previous uberblock will be the newest, and the odd labels 1264 * (which had not yet been touched) will be valid with respect 1265 * to that uberblock. 1266 * 1267 * (2) If one or more new uberblocks made it to disk, then they 1268 * will be the newest, and the even labels (which had all 1269 * been successfully committed) will be valid with respect 1270 * to the new uberblocks. 1271 */ 1272 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) 1273 return (error); 1274 1275 /* 1276 * Sync out odd labels for every dirty vdev. If the system dies 1277 * in the middle of this process, the even labels and the new 1278 * uberblocks will suffice to open the pool. The next time 1279 * the pool is opened, the first thing we'll do -- before any 1280 * user data is modified -- is mark every vdev dirty so that 1281 * all labels will be brought up to date. We flush the new labels 1282 * to disk to ensure that all odd-label updates are committed to 1283 * stable storage before the next transaction group begins. 1284 */ 1285 return (vdev_label_sync_list(spa, 1, txg, flags)); 1286 }