1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Portions Copyright 2011 Martin Matuska 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/txg_impl.h> 29 #include <sys/dmu_impl.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/dsl_pool.h> 32 #include <sys/dsl_scan.h> 33 #include <sys/callb.h> 34 35 /* 36 * ZFS Transaction Groups 37 * ---------------------- 38 * 39 * ZFS transaction groups are, as the name implies, groups of transactions 40 * that act on persistent state. ZFS asserts consistency at the granularity of 41 * these transaction groups. Each successive transaction group (txg) is 42 * assigned a 64-bit consecutive identifier. There are three active 43 * transaction group states: open, quiescing, or syncing. At any given time, 44 * there may be an active txg associated with each state; each active txg may 45 * either be processing, or blocked waiting to enter the next state. There may 46 * be up to three active txgs, and there is always a txg in the open state 47 * (though it may be blocked waiting to enter the quiescing state). In broad 48 * strokes, transactions — operations that change in-memory structures — are 49 * accepted into the txg in the open state, and are completed while the txg is 50 * in the open or quiescing states. The accumulated changes are written to 51 * disk in the syncing state. 52 * 53 * Open 54 * 55 * When a new txg becomes active, it first enters the open state. New 56 * transactions — updates to in-memory structures — are assigned to the 57 * currently open txg. There is always a txg in the open state so that ZFS can 58 * accept new changes (though the txg may refuse new changes if it has hit 59 * some limit). ZFS advances the open txg to the next state for a variety of 60 * reasons such as it hitting a time or size threshold, or the execution of an 61 * administrative action that must be completed in the syncing state. 62 * 63 * Quiescing 64 * 65 * After a txg exits the open state, it enters the quiescing state. The 66 * quiescing state is intended to provide a buffer between accepting new 67 * transactions in the open state and writing them out to stable storage in 68 * the syncing state. While quiescing, transactions can continue their 69 * operation without delaying either of the other states. Typically, a txg is 70 * in the quiescing state very briefly since the operations are bounded by 71 * software latencies rather than, say, slower I/O latencies. After all 72 * transactions complete, the txg is ready to enter the next state. 73 * 74 * Syncing 75 * 76 * In the syncing state, the in-memory state built up during the open and (to 77 * a lesser degree) the quiescing states is written to stable storage. The 78 * process of writing out modified data can, in turn modify more data. For 79 * example when we write new blocks, we need to allocate space for them; those 80 * allocations modify metadata (space maps)... which themselves must be 81 * written to stable storage. During the sync state, ZFS iterates, writing out 82 * data until it converges and all in-memory changes have been written out. 83 * The first such pass is the largest as it encompasses all the modified user 84 * data (as opposed to filesystem metadata). Subsequent passes typically have 85 * far less data to write as they consist exclusively of filesystem metadata. 86 * 87 * To ensure convergence, after a certain number of passes ZFS begins 88 * overwriting locations on stable storage that had been allocated earlier in 89 * the syncing state (and subsequently freed). ZFS usually allocates new 90 * blocks to optimize for large, continuous, writes. For the syncing state to 91 * converge however it must complete a pass where no new blocks are allocated 92 * since each allocation requires a modification of persistent metadata. 93 * Further, to hasten convergence, after a prescribed number of passes, ZFS 94 * also defers frees, and stops compressing. 95 * 96 * In addition to writing out user data, we must also execute synctasks during 97 * the syncing context. A synctask is the mechanism by which some 98 * administrative activities work such as creating and destroying snapshots or 99 * datasets. Note that when a synctask is initiated it enters the open txg, 100 * and ZFS then pushes that txg as quickly as possible to completion of the 101 * syncing state in order to reduce the latency of the administrative 102 * activity. To complete the syncing state, ZFS writes out a new uberblock, 103 * the root of the tree of blocks that comprise all state stored on the ZFS 104 * pool. Finally, if there is a quiesced txg waiting, we signal that it can 105 * now transition to the syncing state. 106 */ 107 108 static void txg_sync_thread(dsl_pool_t *dp); 109 static void txg_quiesce_thread(dsl_pool_t *dp); 110 111 int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */ 112 113 /* 114 * Prepare the txg subsystem. 115 */ 116 void 117 txg_init(dsl_pool_t *dp, uint64_t txg) 118 { 119 tx_state_t *tx = &dp->dp_tx; 120 int c; 121 bzero(tx, sizeof (tx_state_t)); 122 123 tx->tx_cpu = kmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP); 124 125 for (c = 0; c < max_ncpus; c++) { 126 int i; 127 128 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL); 129 for (i = 0; i < TXG_SIZE; i++) { 130 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT, 131 NULL); 132 list_create(&tx->tx_cpu[c].tc_callbacks[i], 133 sizeof (dmu_tx_callback_t), 134 offsetof(dmu_tx_callback_t, dcb_node)); 135 } 136 } 137 138 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL); 139 140 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL); 141 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL); 142 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL); 143 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL); 144 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL); 145 146 tx->tx_open_txg = txg; 147 } 148 149 /* 150 * Close down the txg subsystem. 151 */ 152 void 153 txg_fini(dsl_pool_t *dp) 154 { 155 tx_state_t *tx = &dp->dp_tx; 156 int c; 157 158 ASSERT(tx->tx_threads == 0); 159 160 mutex_destroy(&tx->tx_sync_lock); 161 162 cv_destroy(&tx->tx_sync_more_cv); 163 cv_destroy(&tx->tx_sync_done_cv); 164 cv_destroy(&tx->tx_quiesce_more_cv); 165 cv_destroy(&tx->tx_quiesce_done_cv); 166 cv_destroy(&tx->tx_exit_cv); 167 168 for (c = 0; c < max_ncpus; c++) { 169 int i; 170 171 mutex_destroy(&tx->tx_cpu[c].tc_lock); 172 for (i = 0; i < TXG_SIZE; i++) { 173 cv_destroy(&tx->tx_cpu[c].tc_cv[i]); 174 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]); 175 } 176 } 177 178 if (tx->tx_commit_cb_taskq != NULL) 179 taskq_destroy(tx->tx_commit_cb_taskq); 180 181 kmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t)); 182 183 bzero(tx, sizeof (tx_state_t)); 184 } 185 186 /* 187 * Start syncing transaction groups. 188 */ 189 void 190 txg_sync_start(dsl_pool_t *dp) 191 { 192 tx_state_t *tx = &dp->dp_tx; 193 194 mutex_enter(&tx->tx_sync_lock); 195 196 dprintf("pool %p\n", dp); 197 198 ASSERT(tx->tx_threads == 0); 199 200 tx->tx_threads = 2; 201 202 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread, 203 dp, 0, &p0, TS_RUN, minclsyspri); 204 205 /* 206 * The sync thread can need a larger-than-default stack size on 207 * 32-bit x86. This is due in part to nested pools and 208 * scrub_visitbp() recursion. 209 */ 210 tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread, 211 dp, 0, &p0, TS_RUN, minclsyspri); 212 213 mutex_exit(&tx->tx_sync_lock); 214 } 215 216 static void 217 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr) 218 { 219 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG); 220 mutex_enter(&tx->tx_sync_lock); 221 } 222 223 static void 224 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp) 225 { 226 ASSERT(*tpp != NULL); 227 *tpp = NULL; 228 tx->tx_threads--; 229 cv_broadcast(&tx->tx_exit_cv); 230 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */ 231 thread_exit(); 232 } 233 234 static void 235 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time) 236 { 237 CALLB_CPR_SAFE_BEGIN(cpr); 238 239 if (time) 240 (void) cv_timedwait(cv, &tx->tx_sync_lock, 241 ddi_get_lbolt() + time); 242 else 243 cv_wait(cv, &tx->tx_sync_lock); 244 245 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock); 246 } 247 248 /* 249 * Stop syncing transaction groups. 250 */ 251 void 252 txg_sync_stop(dsl_pool_t *dp) 253 { 254 tx_state_t *tx = &dp->dp_tx; 255 256 dprintf("pool %p\n", dp); 257 /* 258 * Finish off any work in progress. 259 */ 260 ASSERT(tx->tx_threads == 2); 261 262 /* 263 * We need to ensure that we've vacated the deferred space_maps. 264 */ 265 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE); 266 267 /* 268 * Wake all sync threads and wait for them to die. 269 */ 270 mutex_enter(&tx->tx_sync_lock); 271 272 ASSERT(tx->tx_threads == 2); 273 274 tx->tx_exiting = 1; 275 276 cv_broadcast(&tx->tx_quiesce_more_cv); 277 cv_broadcast(&tx->tx_quiesce_done_cv); 278 cv_broadcast(&tx->tx_sync_more_cv); 279 280 while (tx->tx_threads != 0) 281 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock); 282 283 tx->tx_exiting = 0; 284 285 mutex_exit(&tx->tx_sync_lock); 286 } 287 288 uint64_t 289 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th) 290 { 291 tx_state_t *tx = &dp->dp_tx; 292 tx_cpu_t *tc = &tx->tx_cpu[CPU_SEQID]; 293 uint64_t txg; 294 295 mutex_enter(&tc->tc_lock); 296 297 txg = tx->tx_open_txg; 298 tc->tc_count[txg & TXG_MASK]++; 299 300 th->th_cpu = tc; 301 th->th_txg = txg; 302 303 return (txg); 304 } 305 306 void 307 txg_rele_to_quiesce(txg_handle_t *th) 308 { 309 tx_cpu_t *tc = th->th_cpu; 310 311 mutex_exit(&tc->tc_lock); 312 } 313 314 void 315 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks) 316 { 317 tx_cpu_t *tc = th->th_cpu; 318 int g = th->th_txg & TXG_MASK; 319 320 mutex_enter(&tc->tc_lock); 321 list_move_tail(&tc->tc_callbacks[g], tx_callbacks); 322 mutex_exit(&tc->tc_lock); 323 } 324 325 void 326 txg_rele_to_sync(txg_handle_t *th) 327 { 328 tx_cpu_t *tc = th->th_cpu; 329 int g = th->th_txg & TXG_MASK; 330 331 mutex_enter(&tc->tc_lock); 332 ASSERT(tc->tc_count[g] != 0); 333 if (--tc->tc_count[g] == 0) 334 cv_broadcast(&tc->tc_cv[g]); 335 mutex_exit(&tc->tc_lock); 336 337 th->th_cpu = NULL; /* defensive */ 338 } 339 340 /* 341 * Quiesce, v.: to render temporarily inactive or disabled 342 * 343 * Blocks until all transactions in the group are committed. 344 * 345 * On return, the transaction group has reached a stable state in which it can 346 * then be passed off to the syncing context. 347 */ 348 static void 349 txg_quiesce(dsl_pool_t *dp, uint64_t txg) 350 { 351 tx_state_t *tx = &dp->dp_tx; 352 int g = txg & TXG_MASK; 353 int c; 354 355 /* 356 * Grab all tx_cpu locks so nobody else can get into this txg. 357 */ 358 for (c = 0; c < max_ncpus; c++) 359 mutex_enter(&tx->tx_cpu[c].tc_lock); 360 361 ASSERT(txg == tx->tx_open_txg); 362 tx->tx_open_txg++; 363 364 DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg); 365 DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg); 366 367 /* 368 * Now that we've incremented tx_open_txg, we can let threads 369 * enter the next transaction group. 370 */ 371 for (c = 0; c < max_ncpus; c++) 372 mutex_exit(&tx->tx_cpu[c].tc_lock); 373 374 /* 375 * Quiesce the transaction group by waiting for everyone to txg_exit(). 376 */ 377 for (c = 0; c < max_ncpus; c++) { 378 tx_cpu_t *tc = &tx->tx_cpu[c]; 379 mutex_enter(&tc->tc_lock); 380 while (tc->tc_count[g] != 0) 381 cv_wait(&tc->tc_cv[g], &tc->tc_lock); 382 mutex_exit(&tc->tc_lock); 383 } 384 } 385 386 static void 387 txg_do_callbacks(list_t *cb_list) 388 { 389 dmu_tx_do_callbacks(cb_list, 0); 390 391 list_destroy(cb_list); 392 393 kmem_free(cb_list, sizeof (list_t)); 394 } 395 396 /* 397 * Dispatch the commit callbacks registered on this txg to worker threads. 398 * 399 * If no callbacks are registered for a given TXG, nothing happens. 400 * This function creates a taskq for the associated pool, if needed. 401 */ 402 static void 403 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg) 404 { 405 int c; 406 tx_state_t *tx = &dp->dp_tx; 407 list_t *cb_list; 408 409 for (c = 0; c < max_ncpus; c++) { 410 tx_cpu_t *tc = &tx->tx_cpu[c]; 411 /* 412 * No need to lock tx_cpu_t at this point, since this can 413 * only be called once a txg has been synced. 414 */ 415 416 int g = txg & TXG_MASK; 417 418 if (list_is_empty(&tc->tc_callbacks[g])) 419 continue; 420 421 if (tx->tx_commit_cb_taskq == NULL) { 422 /* 423 * Commit callback taskq hasn't been created yet. 424 */ 425 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb", 426 max_ncpus, minclsyspri, max_ncpus, max_ncpus * 2, 427 TASKQ_PREPOPULATE); 428 } 429 430 cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 431 list_create(cb_list, sizeof (dmu_tx_callback_t), 432 offsetof(dmu_tx_callback_t, dcb_node)); 433 434 list_move_tail(&tc->tc_callbacks[g], cb_list); 435 436 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *) 437 txg_do_callbacks, cb_list, TQ_SLEEP); 438 } 439 } 440 441 static void 442 txg_sync_thread(dsl_pool_t *dp) 443 { 444 spa_t *spa = dp->dp_spa; 445 tx_state_t *tx = &dp->dp_tx; 446 callb_cpr_t cpr; 447 uint64_t start, delta; 448 449 txg_thread_enter(tx, &cpr); 450 451 start = delta = 0; 452 for (;;) { 453 uint64_t timer, timeout = zfs_txg_timeout * hz; 454 uint64_t txg; 455 456 /* 457 * We sync when we're scanning, there's someone waiting 458 * on us, or the quiesce thread has handed off a txg to 459 * us, or we have reached our timeout. 460 */ 461 timer = (delta >= timeout ? 0 : timeout - delta); 462 while (!dsl_scan_active(dp->dp_scan) && 463 !tx->tx_exiting && timer > 0 && 464 tx->tx_synced_txg >= tx->tx_sync_txg_waiting && 465 tx->tx_quiesced_txg == 0) { 466 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n", 467 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 468 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer); 469 delta = ddi_get_lbolt() - start; 470 timer = (delta > timeout ? 0 : timeout - delta); 471 } 472 473 /* 474 * Wait until the quiesce thread hands off a txg to us, 475 * prompting it to do so if necessary. 476 */ 477 while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) { 478 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1) 479 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1; 480 cv_broadcast(&tx->tx_quiesce_more_cv); 481 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0); 482 } 483 484 if (tx->tx_exiting) 485 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread); 486 487 /* 488 * Consume the quiesced txg which has been handed off to 489 * us. This may cause the quiescing thread to now be 490 * able to quiesce another txg, so we must signal it. 491 */ 492 txg = tx->tx_quiesced_txg; 493 tx->tx_quiesced_txg = 0; 494 tx->tx_syncing_txg = txg; 495 DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg); 496 cv_broadcast(&tx->tx_quiesce_more_cv); 497 498 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 499 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 500 mutex_exit(&tx->tx_sync_lock); 501 502 start = ddi_get_lbolt(); 503 spa_sync(spa, txg); 504 delta = ddi_get_lbolt() - start; 505 506 mutex_enter(&tx->tx_sync_lock); 507 tx->tx_synced_txg = txg; 508 tx->tx_syncing_txg = 0; 509 DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg); 510 cv_broadcast(&tx->tx_sync_done_cv); 511 512 /* 513 * Dispatch commit callbacks to worker threads. 514 */ 515 txg_dispatch_callbacks(dp, txg); 516 } 517 } 518 519 static void 520 txg_quiesce_thread(dsl_pool_t *dp) 521 { 522 tx_state_t *tx = &dp->dp_tx; 523 callb_cpr_t cpr; 524 525 txg_thread_enter(tx, &cpr); 526 527 for (;;) { 528 uint64_t txg; 529 530 /* 531 * We quiesce when there's someone waiting on us. 532 * However, we can only have one txg in "quiescing" or 533 * "quiesced, waiting to sync" state. So we wait until 534 * the "quiesced, waiting to sync" txg has been consumed 535 * by the sync thread. 536 */ 537 while (!tx->tx_exiting && 538 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting || 539 tx->tx_quiesced_txg != 0)) 540 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0); 541 542 if (tx->tx_exiting) 543 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread); 544 545 txg = tx->tx_open_txg; 546 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 547 txg, tx->tx_quiesce_txg_waiting, 548 tx->tx_sync_txg_waiting); 549 mutex_exit(&tx->tx_sync_lock); 550 txg_quiesce(dp, txg); 551 mutex_enter(&tx->tx_sync_lock); 552 553 /* 554 * Hand this txg off to the sync thread. 555 */ 556 dprintf("quiesce done, handing off txg %llu\n", txg); 557 tx->tx_quiesced_txg = txg; 558 DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg); 559 cv_broadcast(&tx->tx_sync_more_cv); 560 cv_broadcast(&tx->tx_quiesce_done_cv); 561 } 562 } 563 564 /* 565 * Delay this thread by delay nanoseconds if we are still in the open 566 * transaction group and there is already a waiting txg quiesing or quiesced. 567 * Abort the delay if this txg stalls or enters the quiesing state. 568 */ 569 void 570 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution) 571 { 572 tx_state_t *tx = &dp->dp_tx; 573 hrtime_t start = gethrtime(); 574 575 /* don't delay if this txg could transition to quiesing immediately */ 576 if (tx->tx_open_txg > txg || 577 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1) 578 return; 579 580 mutex_enter(&tx->tx_sync_lock); 581 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) { 582 mutex_exit(&tx->tx_sync_lock); 583 return; 584 } 585 586 while (gethrtime() - start < delay && 587 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) { 588 (void) cv_timedwait_hires(&tx->tx_quiesce_more_cv, 589 &tx->tx_sync_lock, delay, resolution, 0); 590 } 591 592 mutex_exit(&tx->tx_sync_lock); 593 } 594 595 void 596 txg_wait_synced(dsl_pool_t *dp, uint64_t txg) 597 { 598 tx_state_t *tx = &dp->dp_tx; 599 600 ASSERT(!dsl_pool_config_held(dp)); 601 602 mutex_enter(&tx->tx_sync_lock); 603 ASSERT(tx->tx_threads == 2); 604 if (txg == 0) 605 txg = tx->tx_open_txg + TXG_DEFER_SIZE; 606 if (tx->tx_sync_txg_waiting < txg) 607 tx->tx_sync_txg_waiting = txg; 608 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 609 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 610 while (tx->tx_synced_txg < txg) { 611 dprintf("broadcasting sync more " 612 "tx_synced=%llu waiting=%llu dp=%p\n", 613 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 614 cv_broadcast(&tx->tx_sync_more_cv); 615 cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock); 616 } 617 mutex_exit(&tx->tx_sync_lock); 618 } 619 620 void 621 txg_wait_open(dsl_pool_t *dp, uint64_t txg) 622 { 623 tx_state_t *tx = &dp->dp_tx; 624 625 ASSERT(!dsl_pool_config_held(dp)); 626 627 mutex_enter(&tx->tx_sync_lock); 628 ASSERT(tx->tx_threads == 2); 629 if (txg == 0) 630 txg = tx->tx_open_txg + 1; 631 if (tx->tx_quiesce_txg_waiting < txg) 632 tx->tx_quiesce_txg_waiting = txg; 633 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 634 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 635 while (tx->tx_open_txg < txg) { 636 cv_broadcast(&tx->tx_quiesce_more_cv); 637 cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock); 638 } 639 mutex_exit(&tx->tx_sync_lock); 640 } 641 642 boolean_t 643 txg_stalled(dsl_pool_t *dp) 644 { 645 tx_state_t *tx = &dp->dp_tx; 646 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg); 647 } 648 649 boolean_t 650 txg_sync_waiting(dsl_pool_t *dp) 651 { 652 tx_state_t *tx = &dp->dp_tx; 653 654 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting || 655 tx->tx_quiesced_txg != 0); 656 } 657 658 /* 659 * Per-txg object lists. 660 */ 661 void 662 txg_list_create(txg_list_t *tl, size_t offset) 663 { 664 int t; 665 666 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL); 667 668 tl->tl_offset = offset; 669 670 for (t = 0; t < TXG_SIZE; t++) 671 tl->tl_head[t] = NULL; 672 } 673 674 void 675 txg_list_destroy(txg_list_t *tl) 676 { 677 int t; 678 679 for (t = 0; t < TXG_SIZE; t++) 680 ASSERT(txg_list_empty(tl, t)); 681 682 mutex_destroy(&tl->tl_lock); 683 } 684 685 boolean_t 686 txg_list_empty(txg_list_t *tl, uint64_t txg) 687 { 688 return (tl->tl_head[txg & TXG_MASK] == NULL); 689 } 690 691 /* 692 * Add an entry to the list (unless it's already on the list). 693 * Returns B_TRUE if it was actually added. 694 */ 695 boolean_t 696 txg_list_add(txg_list_t *tl, void *p, uint64_t txg) 697 { 698 int t = txg & TXG_MASK; 699 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 700 boolean_t add; 701 702 mutex_enter(&tl->tl_lock); 703 add = (tn->tn_member[t] == 0); 704 if (add) { 705 tn->tn_member[t] = 1; 706 tn->tn_next[t] = tl->tl_head[t]; 707 tl->tl_head[t] = tn; 708 } 709 mutex_exit(&tl->tl_lock); 710 711 return (add); 712 } 713 714 /* 715 * Add an entry to the end of the list, unless it's already on the list. 716 * (walks list to find end) 717 * Returns B_TRUE if it was actually added. 718 */ 719 boolean_t 720 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg) 721 { 722 int t = txg & TXG_MASK; 723 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 724 boolean_t add; 725 726 mutex_enter(&tl->tl_lock); 727 add = (tn->tn_member[t] == 0); 728 if (add) { 729 txg_node_t **tp; 730 731 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t]) 732 continue; 733 734 tn->tn_member[t] = 1; 735 tn->tn_next[t] = NULL; 736 *tp = tn; 737 } 738 mutex_exit(&tl->tl_lock); 739 740 return (add); 741 } 742 743 /* 744 * Remove the head of the list and return it. 745 */ 746 void * 747 txg_list_remove(txg_list_t *tl, uint64_t txg) 748 { 749 int t = txg & TXG_MASK; 750 txg_node_t *tn; 751 void *p = NULL; 752 753 mutex_enter(&tl->tl_lock); 754 if ((tn = tl->tl_head[t]) != NULL) { 755 p = (char *)tn - tl->tl_offset; 756 tl->tl_head[t] = tn->tn_next[t]; 757 tn->tn_next[t] = NULL; 758 tn->tn_member[t] = 0; 759 } 760 mutex_exit(&tl->tl_lock); 761 762 return (p); 763 } 764 765 /* 766 * Remove a specific item from the list and return it. 767 */ 768 void * 769 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg) 770 { 771 int t = txg & TXG_MASK; 772 txg_node_t *tn, **tp; 773 774 mutex_enter(&tl->tl_lock); 775 776 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) { 777 if ((char *)tn - tl->tl_offset == p) { 778 *tp = tn->tn_next[t]; 779 tn->tn_next[t] = NULL; 780 tn->tn_member[t] = 0; 781 mutex_exit(&tl->tl_lock); 782 return (p); 783 } 784 } 785 786 mutex_exit(&tl->tl_lock); 787 788 return (NULL); 789 } 790 791 boolean_t 792 txg_list_member(txg_list_t *tl, void *p, uint64_t txg) 793 { 794 int t = txg & TXG_MASK; 795 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 796 797 return (tn->tn_member[t] != 0); 798 } 799 800 /* 801 * Walk a txg list -- only safe if you know it's not changing. 802 */ 803 void * 804 txg_list_head(txg_list_t *tl, uint64_t txg) 805 { 806 int t = txg & TXG_MASK; 807 txg_node_t *tn = tl->tl_head[t]; 808 809 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 810 } 811 812 void * 813 txg_list_next(txg_list_t *tl, void *p, uint64_t txg) 814 { 815 int t = txg & TXG_MASK; 816 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 817 818 tn = tn->tn_next[t]; 819 820 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 821 }