1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 /* 29 * This file contains all the routines used when modifying on-disk SPA state. 30 * This includes opening, importing, destroying, exporting a pool, and syncing a 31 * pool. 32 */ 33 34 #include <sys/zfs_context.h> 35 #include <sys/fm/fs/zfs.h> 36 #include <sys/spa_impl.h> 37 #include <sys/zio.h> 38 #include <sys/zio_checksum.h> 39 #include <sys/dmu.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/zap.h> 42 #include <sys/zil.h> 43 #include <sys/ddt.h> 44 #include <sys/vdev_impl.h> 45 #include <sys/metaslab.h> 46 #include <sys/metaslab_impl.h> 47 #include <sys/uberblock_impl.h> 48 #include <sys/txg.h> 49 #include <sys/avl.h> 50 #include <sys/dmu_traverse.h> 51 #include <sys/dmu_objset.h> 52 #include <sys/unique.h> 53 #include <sys/dsl_pool.h> 54 #include <sys/dsl_dataset.h> 55 #include <sys/dsl_dir.h> 56 #include <sys/dsl_prop.h> 57 #include <sys/dsl_synctask.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/arc.h> 60 #include <sys/callb.h> 61 #include <sys/systeminfo.h> 62 #include <sys/spa_boot.h> 63 #include <sys/zfs_ioctl.h> 64 #include <sys/dsl_scan.h> 65 #include <sys/zfeature.h> 66 #include <sys/dsl_destroy.h> 67 68 #ifdef _KERNEL 69 #include <sys/bootprops.h> 70 #include <sys/callb.h> 71 #include <sys/cpupart.h> 72 #include <sys/pool.h> 73 #include <sys/sysdc.h> 74 #include <sys/zone.h> 75 #endif /* _KERNEL */ 76 77 #include "zfs_prop.h" 78 #include "zfs_comutil.h" 79 80 typedef enum zti_modes { 81 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 82 ZTI_MODE_ONLINE_PERCENT, /* value is % of online CPUs */ 83 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 84 ZTI_MODE_NULL, /* don't create a taskq */ 85 ZTI_NMODES 86 } zti_modes_t; 87 88 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 89 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 } 90 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 91 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 92 93 #define ZTI_N(n) ZTI_P(n, 1) 94 #define ZTI_ONE ZTI_N(1) 95 96 typedef struct zio_taskq_info { 97 zti_modes_t zti_mode; 98 uint_t zti_value; 99 uint_t zti_count; 100 } zio_taskq_info_t; 101 102 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 103 "issue", "issue_high", "intr", "intr_high" 104 }; 105 106 /* 107 * This table defines the taskq settings for each ZFS I/O type. When 108 * initializing a pool, we use this table to create an appropriately sized 109 * taskq. Some operations are low volume and therefore have a small, static 110 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 111 * macros. Other operations process a large amount of data; the ZTI_BATCH 112 * macro causes us to create a taskq oriented for throughput. Some operations 113 * are so high frequency and short-lived that the taskq itself can become a a 114 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 115 * additional degree of parallelism specified by the number of threads per- 116 * taskq and the number of taskqs; when dispatching an event in this case, the 117 * particular taskq is chosen at random. 118 * 119 * The different taskq priorities are to handle the different contexts (issue 120 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 121 * need to be handled with minimum delay. 122 */ 123 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 124 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 125 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 126 { ZTI_N(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, /* READ */ 127 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 128 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 129 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 130 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 131 }; 132 133 static void spa_sync_version(void *arg, dmu_tx_t *tx); 134 static void spa_sync_props(void *arg, dmu_tx_t *tx); 135 static boolean_t spa_has_active_shared_spare(spa_t *spa); 136 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 137 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 138 char **ereport); 139 static void spa_vdev_resilver_done(spa_t *spa); 140 141 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */ 142 id_t zio_taskq_psrset_bind = PS_NONE; 143 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 144 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 145 146 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 147 extern int zfs_sync_pass_deferred_free; 148 149 /* 150 * This (illegal) pool name is used when temporarily importing a spa_t in order 151 * to get the vdev stats associated with the imported devices. 152 */ 153 #define TRYIMPORT_NAME "$import" 154 155 /* 156 * ========================================================================== 157 * SPA properties routines 158 * ========================================================================== 159 */ 160 161 /* 162 * Add a (source=src, propname=propval) list to an nvlist. 163 */ 164 static void 165 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 166 uint64_t intval, zprop_source_t src) 167 { 168 const char *propname = zpool_prop_to_name(prop); 169 nvlist_t *propval; 170 171 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 172 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 173 174 if (strval != NULL) 175 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 176 else 177 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 178 179 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 180 nvlist_free(propval); 181 } 182 183 /* 184 * Get property values from the spa configuration. 185 */ 186 static void 187 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 188 { 189 vdev_t *rvd = spa->spa_root_vdev; 190 dsl_pool_t *pool = spa->spa_dsl_pool; 191 uint64_t size; 192 uint64_t alloc; 193 uint64_t space; 194 uint64_t cap, version; 195 zprop_source_t src = ZPROP_SRC_NONE; 196 spa_config_dirent_t *dp; 197 198 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 199 200 if (rvd != NULL) { 201 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 202 size = metaslab_class_get_space(spa_normal_class(spa)); 203 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 204 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 205 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 206 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 207 size - alloc, src); 208 209 space = 0; 210 for (int c = 0; c < rvd->vdev_children; c++) { 211 vdev_t *tvd = rvd->vdev_child[c]; 212 space += tvd->vdev_max_asize - tvd->vdev_asize; 213 } 214 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space, 215 src); 216 217 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 218 (spa_mode(spa) == FREAD), src); 219 220 cap = (size == 0) ? 0 : (alloc * 100 / size); 221 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 222 223 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 224 ddt_get_pool_dedup_ratio(spa), src); 225 226 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 227 rvd->vdev_state, src); 228 229 version = spa_version(spa); 230 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 231 src = ZPROP_SRC_DEFAULT; 232 else 233 src = ZPROP_SRC_LOCAL; 234 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 235 } 236 237 if (pool != NULL) { 238 dsl_dir_t *freedir = pool->dp_free_dir; 239 240 /* 241 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 242 * when opening pools before this version freedir will be NULL. 243 */ 244 if (freedir != NULL) { 245 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 246 freedir->dd_phys->dd_used_bytes, src); 247 } else { 248 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 249 NULL, 0, src); 250 } 251 } 252 253 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 254 255 if (spa->spa_comment != NULL) { 256 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 257 0, ZPROP_SRC_LOCAL); 258 } 259 260 if (spa->spa_root != NULL) 261 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 262 0, ZPROP_SRC_LOCAL); 263 264 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 265 if (dp->scd_path == NULL) { 266 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 267 "none", 0, ZPROP_SRC_LOCAL); 268 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 269 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 270 dp->scd_path, 0, ZPROP_SRC_LOCAL); 271 } 272 } 273 } 274 275 /* 276 * Get zpool property values. 277 */ 278 int 279 spa_prop_get(spa_t *spa, nvlist_t **nvp) 280 { 281 objset_t *mos = spa->spa_meta_objset; 282 zap_cursor_t zc; 283 zap_attribute_t za; 284 int err; 285 286 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 287 288 mutex_enter(&spa->spa_props_lock); 289 290 /* 291 * Get properties from the spa config. 292 */ 293 spa_prop_get_config(spa, nvp); 294 295 /* If no pool property object, no more prop to get. */ 296 if (mos == NULL || spa->spa_pool_props_object == 0) { 297 mutex_exit(&spa->spa_props_lock); 298 return (0); 299 } 300 301 /* 302 * Get properties from the MOS pool property object. 303 */ 304 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 305 (err = zap_cursor_retrieve(&zc, &za)) == 0; 306 zap_cursor_advance(&zc)) { 307 uint64_t intval = 0; 308 char *strval = NULL; 309 zprop_source_t src = ZPROP_SRC_DEFAULT; 310 zpool_prop_t prop; 311 312 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 313 continue; 314 315 switch (za.za_integer_length) { 316 case 8: 317 /* integer property */ 318 if (za.za_first_integer != 319 zpool_prop_default_numeric(prop)) 320 src = ZPROP_SRC_LOCAL; 321 322 if (prop == ZPOOL_PROP_BOOTFS) { 323 dsl_pool_t *dp; 324 dsl_dataset_t *ds = NULL; 325 326 dp = spa_get_dsl(spa); 327 dsl_pool_config_enter(dp, FTAG); 328 if (err = dsl_dataset_hold_obj(dp, 329 za.za_first_integer, FTAG, &ds)) { 330 dsl_pool_config_exit(dp, FTAG); 331 break; 332 } 333 334 strval = kmem_alloc( 335 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 336 KM_SLEEP); 337 dsl_dataset_name(ds, strval); 338 dsl_dataset_rele(ds, FTAG); 339 dsl_pool_config_exit(dp, FTAG); 340 } else { 341 strval = NULL; 342 intval = za.za_first_integer; 343 } 344 345 spa_prop_add_list(*nvp, prop, strval, intval, src); 346 347 if (strval != NULL) 348 kmem_free(strval, 349 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 350 351 break; 352 353 case 1: 354 /* string property */ 355 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 356 err = zap_lookup(mos, spa->spa_pool_props_object, 357 za.za_name, 1, za.za_num_integers, strval); 358 if (err) { 359 kmem_free(strval, za.za_num_integers); 360 break; 361 } 362 spa_prop_add_list(*nvp, prop, strval, 0, src); 363 kmem_free(strval, za.za_num_integers); 364 break; 365 366 default: 367 break; 368 } 369 } 370 zap_cursor_fini(&zc); 371 mutex_exit(&spa->spa_props_lock); 372 out: 373 if (err && err != ENOENT) { 374 nvlist_free(*nvp); 375 *nvp = NULL; 376 return (err); 377 } 378 379 return (0); 380 } 381 382 /* 383 * Validate the given pool properties nvlist and modify the list 384 * for the property values to be set. 385 */ 386 static int 387 spa_prop_validate(spa_t *spa, nvlist_t *props) 388 { 389 nvpair_t *elem; 390 int error = 0, reset_bootfs = 0; 391 uint64_t objnum = 0; 392 boolean_t has_feature = B_FALSE; 393 394 elem = NULL; 395 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 396 uint64_t intval; 397 char *strval, *slash, *check, *fname; 398 const char *propname = nvpair_name(elem); 399 zpool_prop_t prop = zpool_name_to_prop(propname); 400 401 switch (prop) { 402 case ZPROP_INVAL: 403 if (!zpool_prop_feature(propname)) { 404 error = SET_ERROR(EINVAL); 405 break; 406 } 407 408 /* 409 * Sanitize the input. 410 */ 411 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 412 error = SET_ERROR(EINVAL); 413 break; 414 } 415 416 if (nvpair_value_uint64(elem, &intval) != 0) { 417 error = SET_ERROR(EINVAL); 418 break; 419 } 420 421 if (intval != 0) { 422 error = SET_ERROR(EINVAL); 423 break; 424 } 425 426 fname = strchr(propname, '@') + 1; 427 if (zfeature_lookup_name(fname, NULL) != 0) { 428 error = SET_ERROR(EINVAL); 429 break; 430 } 431 432 has_feature = B_TRUE; 433 break; 434 435 case ZPOOL_PROP_VERSION: 436 error = nvpair_value_uint64(elem, &intval); 437 if (!error && 438 (intval < spa_version(spa) || 439 intval > SPA_VERSION_BEFORE_FEATURES || 440 has_feature)) 441 error = SET_ERROR(EINVAL); 442 break; 443 444 case ZPOOL_PROP_DELEGATION: 445 case ZPOOL_PROP_AUTOREPLACE: 446 case ZPOOL_PROP_LISTSNAPS: 447 case ZPOOL_PROP_AUTOEXPAND: 448 error = nvpair_value_uint64(elem, &intval); 449 if (!error && intval > 1) 450 error = SET_ERROR(EINVAL); 451 break; 452 453 case ZPOOL_PROP_BOOTFS: 454 /* 455 * If the pool version is less than SPA_VERSION_BOOTFS, 456 * or the pool is still being created (version == 0), 457 * the bootfs property cannot be set. 458 */ 459 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 460 error = SET_ERROR(ENOTSUP); 461 break; 462 } 463 464 /* 465 * Make sure the vdev config is bootable 466 */ 467 if (!vdev_is_bootable(spa->spa_root_vdev)) { 468 error = SET_ERROR(ENOTSUP); 469 break; 470 } 471 472 reset_bootfs = 1; 473 474 error = nvpair_value_string(elem, &strval); 475 476 if (!error) { 477 objset_t *os; 478 uint64_t compress; 479 480 if (strval == NULL || strval[0] == '\0') { 481 objnum = zpool_prop_default_numeric( 482 ZPOOL_PROP_BOOTFS); 483 break; 484 } 485 486 if (error = dmu_objset_hold(strval, FTAG, &os)) 487 break; 488 489 /* Must be ZPL and not gzip compressed. */ 490 491 if (dmu_objset_type(os) != DMU_OST_ZFS) { 492 error = SET_ERROR(ENOTSUP); 493 } else if ((error = 494 dsl_prop_get_int_ds(dmu_objset_ds(os), 495 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 496 &compress)) == 0 && 497 !BOOTFS_COMPRESS_VALID(compress)) { 498 error = SET_ERROR(ENOTSUP); 499 } else { 500 objnum = dmu_objset_id(os); 501 } 502 dmu_objset_rele(os, FTAG); 503 } 504 break; 505 506 case ZPOOL_PROP_FAILUREMODE: 507 error = nvpair_value_uint64(elem, &intval); 508 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 509 intval > ZIO_FAILURE_MODE_PANIC)) 510 error = SET_ERROR(EINVAL); 511 512 /* 513 * This is a special case which only occurs when 514 * the pool has completely failed. This allows 515 * the user to change the in-core failmode property 516 * without syncing it out to disk (I/Os might 517 * currently be blocked). We do this by returning 518 * EIO to the caller (spa_prop_set) to trick it 519 * into thinking we encountered a property validation 520 * error. 521 */ 522 if (!error && spa_suspended(spa)) { 523 spa->spa_failmode = intval; 524 error = SET_ERROR(EIO); 525 } 526 break; 527 528 case ZPOOL_PROP_CACHEFILE: 529 if ((error = nvpair_value_string(elem, &strval)) != 0) 530 break; 531 532 if (strval[0] == '\0') 533 break; 534 535 if (strcmp(strval, "none") == 0) 536 break; 537 538 if (strval[0] != '/') { 539 error = SET_ERROR(EINVAL); 540 break; 541 } 542 543 slash = strrchr(strval, '/'); 544 ASSERT(slash != NULL); 545 546 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 547 strcmp(slash, "/..") == 0) 548 error = SET_ERROR(EINVAL); 549 break; 550 551 case ZPOOL_PROP_COMMENT: 552 if ((error = nvpair_value_string(elem, &strval)) != 0) 553 break; 554 for (check = strval; *check != '\0'; check++) { 555 /* 556 * The kernel doesn't have an easy isprint() 557 * check. For this kernel check, we merely 558 * check ASCII apart from DEL. Fix this if 559 * there is an easy-to-use kernel isprint(). 560 */ 561 if (*check >= 0x7f) { 562 error = SET_ERROR(EINVAL); 563 break; 564 } 565 check++; 566 } 567 if (strlen(strval) > ZPROP_MAX_COMMENT) 568 error = E2BIG; 569 break; 570 571 case ZPOOL_PROP_DEDUPDITTO: 572 if (spa_version(spa) < SPA_VERSION_DEDUP) 573 error = SET_ERROR(ENOTSUP); 574 else 575 error = nvpair_value_uint64(elem, &intval); 576 if (error == 0 && 577 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 578 error = SET_ERROR(EINVAL); 579 break; 580 } 581 582 if (error) 583 break; 584 } 585 586 if (!error && reset_bootfs) { 587 error = nvlist_remove(props, 588 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 589 590 if (!error) { 591 error = nvlist_add_uint64(props, 592 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 593 } 594 } 595 596 return (error); 597 } 598 599 void 600 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 601 { 602 char *cachefile; 603 spa_config_dirent_t *dp; 604 605 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 606 &cachefile) != 0) 607 return; 608 609 dp = kmem_alloc(sizeof (spa_config_dirent_t), 610 KM_SLEEP); 611 612 if (cachefile[0] == '\0') 613 dp->scd_path = spa_strdup(spa_config_path); 614 else if (strcmp(cachefile, "none") == 0) 615 dp->scd_path = NULL; 616 else 617 dp->scd_path = spa_strdup(cachefile); 618 619 list_insert_head(&spa->spa_config_list, dp); 620 if (need_sync) 621 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 622 } 623 624 int 625 spa_prop_set(spa_t *spa, nvlist_t *nvp) 626 { 627 int error; 628 nvpair_t *elem = NULL; 629 boolean_t need_sync = B_FALSE; 630 631 if ((error = spa_prop_validate(spa, nvp)) != 0) 632 return (error); 633 634 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 635 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 636 637 if (prop == ZPOOL_PROP_CACHEFILE || 638 prop == ZPOOL_PROP_ALTROOT || 639 prop == ZPOOL_PROP_READONLY) 640 continue; 641 642 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 643 uint64_t ver; 644 645 if (prop == ZPOOL_PROP_VERSION) { 646 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 647 } else { 648 ASSERT(zpool_prop_feature(nvpair_name(elem))); 649 ver = SPA_VERSION_FEATURES; 650 need_sync = B_TRUE; 651 } 652 653 /* Save time if the version is already set. */ 654 if (ver == spa_version(spa)) 655 continue; 656 657 /* 658 * In addition to the pool directory object, we might 659 * create the pool properties object, the features for 660 * read object, the features for write object, or the 661 * feature descriptions object. 662 */ 663 error = dsl_sync_task(spa->spa_name, NULL, 664 spa_sync_version, &ver, 6); 665 if (error) 666 return (error); 667 continue; 668 } 669 670 need_sync = B_TRUE; 671 break; 672 } 673 674 if (need_sync) { 675 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 676 nvp, 6)); 677 } 678 679 return (0); 680 } 681 682 /* 683 * If the bootfs property value is dsobj, clear it. 684 */ 685 void 686 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 687 { 688 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 689 VERIFY(zap_remove(spa->spa_meta_objset, 690 spa->spa_pool_props_object, 691 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 692 spa->spa_bootfs = 0; 693 } 694 } 695 696 /*ARGSUSED*/ 697 static int 698 spa_change_guid_check(void *arg, dmu_tx_t *tx) 699 { 700 uint64_t *newguid = arg; 701 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 702 vdev_t *rvd = spa->spa_root_vdev; 703 uint64_t vdev_state; 704 705 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 706 vdev_state = rvd->vdev_state; 707 spa_config_exit(spa, SCL_STATE, FTAG); 708 709 if (vdev_state != VDEV_STATE_HEALTHY) 710 return (SET_ERROR(ENXIO)); 711 712 ASSERT3U(spa_guid(spa), !=, *newguid); 713 714 return (0); 715 } 716 717 static void 718 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 719 { 720 uint64_t *newguid = arg; 721 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 722 uint64_t oldguid; 723 vdev_t *rvd = spa->spa_root_vdev; 724 725 oldguid = spa_guid(spa); 726 727 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 728 rvd->vdev_guid = *newguid; 729 rvd->vdev_guid_sum += (*newguid - oldguid); 730 vdev_config_dirty(rvd); 731 spa_config_exit(spa, SCL_STATE, FTAG); 732 733 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 734 oldguid, *newguid); 735 } 736 737 /* 738 * Change the GUID for the pool. This is done so that we can later 739 * re-import a pool built from a clone of our own vdevs. We will modify 740 * the root vdev's guid, our own pool guid, and then mark all of our 741 * vdevs dirty. Note that we must make sure that all our vdevs are 742 * online when we do this, or else any vdevs that weren't present 743 * would be orphaned from our pool. We are also going to issue a 744 * sysevent to update any watchers. 745 */ 746 int 747 spa_change_guid(spa_t *spa) 748 { 749 int error; 750 uint64_t guid; 751 752 mutex_enter(&spa_namespace_lock); 753 guid = spa_generate_guid(NULL); 754 755 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 756 spa_change_guid_sync, &guid, 5); 757 758 if (error == 0) { 759 spa_config_sync(spa, B_FALSE, B_TRUE); 760 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 761 } 762 763 mutex_exit(&spa_namespace_lock); 764 765 return (error); 766 } 767 768 /* 769 * ========================================================================== 770 * SPA state manipulation (open/create/destroy/import/export) 771 * ========================================================================== 772 */ 773 774 static int 775 spa_error_entry_compare(const void *a, const void *b) 776 { 777 spa_error_entry_t *sa = (spa_error_entry_t *)a; 778 spa_error_entry_t *sb = (spa_error_entry_t *)b; 779 int ret; 780 781 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 782 sizeof (zbookmark_t)); 783 784 if (ret < 0) 785 return (-1); 786 else if (ret > 0) 787 return (1); 788 else 789 return (0); 790 } 791 792 /* 793 * Utility function which retrieves copies of the current logs and 794 * re-initializes them in the process. 795 */ 796 void 797 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 798 { 799 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 800 801 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 802 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 803 804 avl_create(&spa->spa_errlist_scrub, 805 spa_error_entry_compare, sizeof (spa_error_entry_t), 806 offsetof(spa_error_entry_t, se_avl)); 807 avl_create(&spa->spa_errlist_last, 808 spa_error_entry_compare, sizeof (spa_error_entry_t), 809 offsetof(spa_error_entry_t, se_avl)); 810 } 811 812 static void 813 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 814 { 815 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 816 enum zti_modes mode = ztip->zti_mode; 817 uint_t value = ztip->zti_value; 818 uint_t count = ztip->zti_count; 819 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 820 char name[32]; 821 uint_t flags = 0; 822 boolean_t batch = B_FALSE; 823 824 if (mode == ZTI_MODE_NULL) { 825 tqs->stqs_count = 0; 826 tqs->stqs_taskq = NULL; 827 return; 828 } 829 830 ASSERT3U(count, >, 0); 831 832 tqs->stqs_count = count; 833 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 834 835 for (uint_t i = 0; i < count; i++) { 836 taskq_t *tq; 837 838 switch (mode) { 839 case ZTI_MODE_FIXED: 840 ASSERT3U(value, >=, 1); 841 value = MAX(value, 1); 842 break; 843 844 case ZTI_MODE_BATCH: 845 batch = B_TRUE; 846 flags |= TASKQ_THREADS_CPU_PCT; 847 value = zio_taskq_batch_pct; 848 break; 849 850 case ZTI_MODE_ONLINE_PERCENT: 851 flags |= TASKQ_THREADS_CPU_PCT; 852 break; 853 854 default: 855 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 856 "spa_activate()", 857 zio_type_name[t], zio_taskq_types[q], mode, value); 858 break; 859 } 860 861 if (count > 1) { 862 (void) snprintf(name, sizeof (name), "%s_%s_%u", 863 zio_type_name[t], zio_taskq_types[q], i); 864 } else { 865 (void) snprintf(name, sizeof (name), "%s_%s", 866 zio_type_name[t], zio_taskq_types[q]); 867 } 868 869 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 870 if (batch) 871 flags |= TASKQ_DC_BATCH; 872 873 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 874 spa->spa_proc, zio_taskq_basedc, flags); 875 } else { 876 tq = taskq_create_proc(name, value, maxclsyspri, 50, 877 INT_MAX, spa->spa_proc, flags); 878 } 879 880 tqs->stqs_taskq[i] = tq; 881 } 882 } 883 884 static void 885 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 886 { 887 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 888 889 if (tqs->stqs_taskq == NULL) { 890 ASSERT0(tqs->stqs_count); 891 return; 892 } 893 894 for (uint_t i = 0; i < tqs->stqs_count; i++) { 895 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 896 taskq_destroy(tqs->stqs_taskq[i]); 897 } 898 899 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 900 tqs->stqs_taskq = NULL; 901 } 902 903 /* 904 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 905 * Note that a type may have multiple discrete taskqs to avoid lock contention 906 * on the taskq itself. In that case we choose which taskq at random by using 907 * the low bits of gethrtime(). 908 */ 909 void 910 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 911 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 912 { 913 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 914 taskq_t *tq; 915 916 ASSERT3P(tqs->stqs_taskq, !=, NULL); 917 ASSERT3U(tqs->stqs_count, !=, 0); 918 919 if (tqs->stqs_count == 1) { 920 tq = tqs->stqs_taskq[0]; 921 } else { 922 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 923 } 924 925 taskq_dispatch_ent(tq, func, arg, flags, ent); 926 } 927 928 static void 929 spa_create_zio_taskqs(spa_t *spa) 930 { 931 for (int t = 0; t < ZIO_TYPES; t++) { 932 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 933 spa_taskqs_init(spa, t, q); 934 } 935 } 936 } 937 938 #ifdef _KERNEL 939 static void 940 spa_thread(void *arg) 941 { 942 callb_cpr_t cprinfo; 943 944 spa_t *spa = arg; 945 user_t *pu = PTOU(curproc); 946 947 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 948 spa->spa_name); 949 950 ASSERT(curproc != &p0); 951 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 952 "zpool-%s", spa->spa_name); 953 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 954 955 /* bind this thread to the requested psrset */ 956 if (zio_taskq_psrset_bind != PS_NONE) { 957 pool_lock(); 958 mutex_enter(&cpu_lock); 959 mutex_enter(&pidlock); 960 mutex_enter(&curproc->p_lock); 961 962 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 963 0, NULL, NULL) == 0) { 964 curthread->t_bind_pset = zio_taskq_psrset_bind; 965 } else { 966 cmn_err(CE_WARN, 967 "Couldn't bind process for zfs pool \"%s\" to " 968 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 969 } 970 971 mutex_exit(&curproc->p_lock); 972 mutex_exit(&pidlock); 973 mutex_exit(&cpu_lock); 974 pool_unlock(); 975 } 976 977 if (zio_taskq_sysdc) { 978 sysdc_thread_enter(curthread, 100, 0); 979 } 980 981 spa->spa_proc = curproc; 982 spa->spa_did = curthread->t_did; 983 984 spa_create_zio_taskqs(spa); 985 986 mutex_enter(&spa->spa_proc_lock); 987 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 988 989 spa->spa_proc_state = SPA_PROC_ACTIVE; 990 cv_broadcast(&spa->spa_proc_cv); 991 992 CALLB_CPR_SAFE_BEGIN(&cprinfo); 993 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 994 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 995 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 996 997 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 998 spa->spa_proc_state = SPA_PROC_GONE; 999 spa->spa_proc = &p0; 1000 cv_broadcast(&spa->spa_proc_cv); 1001 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1002 1003 mutex_enter(&curproc->p_lock); 1004 lwp_exit(); 1005 } 1006 #endif 1007 1008 /* 1009 * Activate an uninitialized pool. 1010 */ 1011 static void 1012 spa_activate(spa_t *spa, int mode) 1013 { 1014 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1015 1016 spa->spa_state = POOL_STATE_ACTIVE; 1017 spa->spa_mode = mode; 1018 1019 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1020 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1021 1022 /* Try to create a covering process */ 1023 mutex_enter(&spa->spa_proc_lock); 1024 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1025 ASSERT(spa->spa_proc == &p0); 1026 spa->spa_did = 0; 1027 1028 /* Only create a process if we're going to be around a while. */ 1029 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1030 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1031 NULL, 0) == 0) { 1032 spa->spa_proc_state = SPA_PROC_CREATED; 1033 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1034 cv_wait(&spa->spa_proc_cv, 1035 &spa->spa_proc_lock); 1036 } 1037 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1038 ASSERT(spa->spa_proc != &p0); 1039 ASSERT(spa->spa_did != 0); 1040 } else { 1041 #ifdef _KERNEL 1042 cmn_err(CE_WARN, 1043 "Couldn't create process for zfs pool \"%s\"\n", 1044 spa->spa_name); 1045 #endif 1046 } 1047 } 1048 mutex_exit(&spa->spa_proc_lock); 1049 1050 /* If we didn't create a process, we need to create our taskqs. */ 1051 if (spa->spa_proc == &p0) { 1052 spa_create_zio_taskqs(spa); 1053 } 1054 1055 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1056 offsetof(vdev_t, vdev_config_dirty_node)); 1057 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1058 offsetof(vdev_t, vdev_state_dirty_node)); 1059 1060 txg_list_create(&spa->spa_vdev_txg_list, 1061 offsetof(struct vdev, vdev_txg_node)); 1062 1063 avl_create(&spa->spa_errlist_scrub, 1064 spa_error_entry_compare, sizeof (spa_error_entry_t), 1065 offsetof(spa_error_entry_t, se_avl)); 1066 avl_create(&spa->spa_errlist_last, 1067 spa_error_entry_compare, sizeof (spa_error_entry_t), 1068 offsetof(spa_error_entry_t, se_avl)); 1069 } 1070 1071 /* 1072 * Opposite of spa_activate(). 1073 */ 1074 static void 1075 spa_deactivate(spa_t *spa) 1076 { 1077 ASSERT(spa->spa_sync_on == B_FALSE); 1078 ASSERT(spa->spa_dsl_pool == NULL); 1079 ASSERT(spa->spa_root_vdev == NULL); 1080 ASSERT(spa->spa_async_zio_root == NULL); 1081 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1082 1083 txg_list_destroy(&spa->spa_vdev_txg_list); 1084 1085 list_destroy(&spa->spa_config_dirty_list); 1086 list_destroy(&spa->spa_state_dirty_list); 1087 1088 for (int t = 0; t < ZIO_TYPES; t++) { 1089 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1090 spa_taskqs_fini(spa, t, q); 1091 } 1092 } 1093 1094 metaslab_class_destroy(spa->spa_normal_class); 1095 spa->spa_normal_class = NULL; 1096 1097 metaslab_class_destroy(spa->spa_log_class); 1098 spa->spa_log_class = NULL; 1099 1100 /* 1101 * If this was part of an import or the open otherwise failed, we may 1102 * still have errors left in the queues. Empty them just in case. 1103 */ 1104 spa_errlog_drain(spa); 1105 1106 avl_destroy(&spa->spa_errlist_scrub); 1107 avl_destroy(&spa->spa_errlist_last); 1108 1109 spa->spa_state = POOL_STATE_UNINITIALIZED; 1110 1111 mutex_enter(&spa->spa_proc_lock); 1112 if (spa->spa_proc_state != SPA_PROC_NONE) { 1113 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1114 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1115 cv_broadcast(&spa->spa_proc_cv); 1116 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1117 ASSERT(spa->spa_proc != &p0); 1118 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1119 } 1120 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1121 spa->spa_proc_state = SPA_PROC_NONE; 1122 } 1123 ASSERT(spa->spa_proc == &p0); 1124 mutex_exit(&spa->spa_proc_lock); 1125 1126 /* 1127 * We want to make sure spa_thread() has actually exited the ZFS 1128 * module, so that the module can't be unloaded out from underneath 1129 * it. 1130 */ 1131 if (spa->spa_did != 0) { 1132 thread_join(spa->spa_did); 1133 spa->spa_did = 0; 1134 } 1135 } 1136 1137 /* 1138 * Verify a pool configuration, and construct the vdev tree appropriately. This 1139 * will create all the necessary vdevs in the appropriate layout, with each vdev 1140 * in the CLOSED state. This will prep the pool before open/creation/import. 1141 * All vdev validation is done by the vdev_alloc() routine. 1142 */ 1143 static int 1144 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1145 uint_t id, int atype) 1146 { 1147 nvlist_t **child; 1148 uint_t children; 1149 int error; 1150 1151 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1152 return (error); 1153 1154 if ((*vdp)->vdev_ops->vdev_op_leaf) 1155 return (0); 1156 1157 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1158 &child, &children); 1159 1160 if (error == ENOENT) 1161 return (0); 1162 1163 if (error) { 1164 vdev_free(*vdp); 1165 *vdp = NULL; 1166 return (SET_ERROR(EINVAL)); 1167 } 1168 1169 for (int c = 0; c < children; c++) { 1170 vdev_t *vd; 1171 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1172 atype)) != 0) { 1173 vdev_free(*vdp); 1174 *vdp = NULL; 1175 return (error); 1176 } 1177 } 1178 1179 ASSERT(*vdp != NULL); 1180 1181 return (0); 1182 } 1183 1184 /* 1185 * Opposite of spa_load(). 1186 */ 1187 static void 1188 spa_unload(spa_t *spa) 1189 { 1190 int i; 1191 1192 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1193 1194 /* 1195 * Stop async tasks. 1196 */ 1197 spa_async_suspend(spa); 1198 1199 /* 1200 * Stop syncing. 1201 */ 1202 if (spa->spa_sync_on) { 1203 txg_sync_stop(spa->spa_dsl_pool); 1204 spa->spa_sync_on = B_FALSE; 1205 } 1206 1207 /* 1208 * Wait for any outstanding async I/O to complete. 1209 */ 1210 if (spa->spa_async_zio_root != NULL) { 1211 (void) zio_wait(spa->spa_async_zio_root); 1212 spa->spa_async_zio_root = NULL; 1213 } 1214 1215 bpobj_close(&spa->spa_deferred_bpobj); 1216 1217 /* 1218 * Close the dsl pool. 1219 */ 1220 if (spa->spa_dsl_pool) { 1221 dsl_pool_close(spa->spa_dsl_pool); 1222 spa->spa_dsl_pool = NULL; 1223 spa->spa_meta_objset = NULL; 1224 } 1225 1226 ddt_unload(spa); 1227 1228 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1229 1230 /* 1231 * Drop and purge level 2 cache 1232 */ 1233 spa_l2cache_drop(spa); 1234 1235 /* 1236 * Close all vdevs. 1237 */ 1238 if (spa->spa_root_vdev) 1239 vdev_free(spa->spa_root_vdev); 1240 ASSERT(spa->spa_root_vdev == NULL); 1241 1242 for (i = 0; i < spa->spa_spares.sav_count; i++) 1243 vdev_free(spa->spa_spares.sav_vdevs[i]); 1244 if (spa->spa_spares.sav_vdevs) { 1245 kmem_free(spa->spa_spares.sav_vdevs, 1246 spa->spa_spares.sav_count * sizeof (void *)); 1247 spa->spa_spares.sav_vdevs = NULL; 1248 } 1249 if (spa->spa_spares.sav_config) { 1250 nvlist_free(spa->spa_spares.sav_config); 1251 spa->spa_spares.sav_config = NULL; 1252 } 1253 spa->spa_spares.sav_count = 0; 1254 1255 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1256 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1257 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1258 } 1259 if (spa->spa_l2cache.sav_vdevs) { 1260 kmem_free(spa->spa_l2cache.sav_vdevs, 1261 spa->spa_l2cache.sav_count * sizeof (void *)); 1262 spa->spa_l2cache.sav_vdevs = NULL; 1263 } 1264 if (spa->spa_l2cache.sav_config) { 1265 nvlist_free(spa->spa_l2cache.sav_config); 1266 spa->spa_l2cache.sav_config = NULL; 1267 } 1268 spa->spa_l2cache.sav_count = 0; 1269 1270 spa->spa_async_suspended = 0; 1271 1272 if (spa->spa_comment != NULL) { 1273 spa_strfree(spa->spa_comment); 1274 spa->spa_comment = NULL; 1275 } 1276 1277 spa_config_exit(spa, SCL_ALL, FTAG); 1278 } 1279 1280 /* 1281 * Load (or re-load) the current list of vdevs describing the active spares for 1282 * this pool. When this is called, we have some form of basic information in 1283 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1284 * then re-generate a more complete list including status information. 1285 */ 1286 static void 1287 spa_load_spares(spa_t *spa) 1288 { 1289 nvlist_t **spares; 1290 uint_t nspares; 1291 int i; 1292 vdev_t *vd, *tvd; 1293 1294 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1295 1296 /* 1297 * First, close and free any existing spare vdevs. 1298 */ 1299 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1300 vd = spa->spa_spares.sav_vdevs[i]; 1301 1302 /* Undo the call to spa_activate() below */ 1303 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1304 B_FALSE)) != NULL && tvd->vdev_isspare) 1305 spa_spare_remove(tvd); 1306 vdev_close(vd); 1307 vdev_free(vd); 1308 } 1309 1310 if (spa->spa_spares.sav_vdevs) 1311 kmem_free(spa->spa_spares.sav_vdevs, 1312 spa->spa_spares.sav_count * sizeof (void *)); 1313 1314 if (spa->spa_spares.sav_config == NULL) 1315 nspares = 0; 1316 else 1317 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1318 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1319 1320 spa->spa_spares.sav_count = (int)nspares; 1321 spa->spa_spares.sav_vdevs = NULL; 1322 1323 if (nspares == 0) 1324 return; 1325 1326 /* 1327 * Construct the array of vdevs, opening them to get status in the 1328 * process. For each spare, there is potentially two different vdev_t 1329 * structures associated with it: one in the list of spares (used only 1330 * for basic validation purposes) and one in the active vdev 1331 * configuration (if it's spared in). During this phase we open and 1332 * validate each vdev on the spare list. If the vdev also exists in the 1333 * active configuration, then we also mark this vdev as an active spare. 1334 */ 1335 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1336 KM_SLEEP); 1337 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1338 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1339 VDEV_ALLOC_SPARE) == 0); 1340 ASSERT(vd != NULL); 1341 1342 spa->spa_spares.sav_vdevs[i] = vd; 1343 1344 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1345 B_FALSE)) != NULL) { 1346 if (!tvd->vdev_isspare) 1347 spa_spare_add(tvd); 1348 1349 /* 1350 * We only mark the spare active if we were successfully 1351 * able to load the vdev. Otherwise, importing a pool 1352 * with a bad active spare would result in strange 1353 * behavior, because multiple pool would think the spare 1354 * is actively in use. 1355 * 1356 * There is a vulnerability here to an equally bizarre 1357 * circumstance, where a dead active spare is later 1358 * brought back to life (onlined or otherwise). Given 1359 * the rarity of this scenario, and the extra complexity 1360 * it adds, we ignore the possibility. 1361 */ 1362 if (!vdev_is_dead(tvd)) 1363 spa_spare_activate(tvd); 1364 } 1365 1366 vd->vdev_top = vd; 1367 vd->vdev_aux = &spa->spa_spares; 1368 1369 if (vdev_open(vd) != 0) 1370 continue; 1371 1372 if (vdev_validate_aux(vd) == 0) 1373 spa_spare_add(vd); 1374 } 1375 1376 /* 1377 * Recompute the stashed list of spares, with status information 1378 * this time. 1379 */ 1380 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1381 DATA_TYPE_NVLIST_ARRAY) == 0); 1382 1383 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1384 KM_SLEEP); 1385 for (i = 0; i < spa->spa_spares.sav_count; i++) 1386 spares[i] = vdev_config_generate(spa, 1387 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1388 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1389 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1390 for (i = 0; i < spa->spa_spares.sav_count; i++) 1391 nvlist_free(spares[i]); 1392 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1393 } 1394 1395 /* 1396 * Load (or re-load) the current list of vdevs describing the active l2cache for 1397 * this pool. When this is called, we have some form of basic information in 1398 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1399 * then re-generate a more complete list including status information. 1400 * Devices which are already active have their details maintained, and are 1401 * not re-opened. 1402 */ 1403 static void 1404 spa_load_l2cache(spa_t *spa) 1405 { 1406 nvlist_t **l2cache; 1407 uint_t nl2cache; 1408 int i, j, oldnvdevs; 1409 uint64_t guid; 1410 vdev_t *vd, **oldvdevs, **newvdevs; 1411 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1412 1413 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1414 1415 if (sav->sav_config != NULL) { 1416 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1417 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1418 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1419 } else { 1420 nl2cache = 0; 1421 newvdevs = NULL; 1422 } 1423 1424 oldvdevs = sav->sav_vdevs; 1425 oldnvdevs = sav->sav_count; 1426 sav->sav_vdevs = NULL; 1427 sav->sav_count = 0; 1428 1429 /* 1430 * Process new nvlist of vdevs. 1431 */ 1432 for (i = 0; i < nl2cache; i++) { 1433 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1434 &guid) == 0); 1435 1436 newvdevs[i] = NULL; 1437 for (j = 0; j < oldnvdevs; j++) { 1438 vd = oldvdevs[j]; 1439 if (vd != NULL && guid == vd->vdev_guid) { 1440 /* 1441 * Retain previous vdev for add/remove ops. 1442 */ 1443 newvdevs[i] = vd; 1444 oldvdevs[j] = NULL; 1445 break; 1446 } 1447 } 1448 1449 if (newvdevs[i] == NULL) { 1450 /* 1451 * Create new vdev 1452 */ 1453 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1454 VDEV_ALLOC_L2CACHE) == 0); 1455 ASSERT(vd != NULL); 1456 newvdevs[i] = vd; 1457 1458 /* 1459 * Commit this vdev as an l2cache device, 1460 * even if it fails to open. 1461 */ 1462 spa_l2cache_add(vd); 1463 1464 vd->vdev_top = vd; 1465 vd->vdev_aux = sav; 1466 1467 spa_l2cache_activate(vd); 1468 1469 if (vdev_open(vd) != 0) 1470 continue; 1471 1472 (void) vdev_validate_aux(vd); 1473 1474 if (!vdev_is_dead(vd)) 1475 l2arc_add_vdev(spa, vd); 1476 } 1477 } 1478 1479 /* 1480 * Purge vdevs that were dropped 1481 */ 1482 for (i = 0; i < oldnvdevs; i++) { 1483 uint64_t pool; 1484 1485 vd = oldvdevs[i]; 1486 if (vd != NULL) { 1487 ASSERT(vd->vdev_isl2cache); 1488 1489 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1490 pool != 0ULL && l2arc_vdev_present(vd)) 1491 l2arc_remove_vdev(vd); 1492 vdev_clear_stats(vd); 1493 vdev_free(vd); 1494 } 1495 } 1496 1497 if (oldvdevs) 1498 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1499 1500 if (sav->sav_config == NULL) 1501 goto out; 1502 1503 sav->sav_vdevs = newvdevs; 1504 sav->sav_count = (int)nl2cache; 1505 1506 /* 1507 * Recompute the stashed list of l2cache devices, with status 1508 * information this time. 1509 */ 1510 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1511 DATA_TYPE_NVLIST_ARRAY) == 0); 1512 1513 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1514 for (i = 0; i < sav->sav_count; i++) 1515 l2cache[i] = vdev_config_generate(spa, 1516 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1517 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1518 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1519 out: 1520 for (i = 0; i < sav->sav_count; i++) 1521 nvlist_free(l2cache[i]); 1522 if (sav->sav_count) 1523 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1524 } 1525 1526 static int 1527 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1528 { 1529 dmu_buf_t *db; 1530 char *packed = NULL; 1531 size_t nvsize = 0; 1532 int error; 1533 *value = NULL; 1534 1535 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1536 nvsize = *(uint64_t *)db->db_data; 1537 dmu_buf_rele(db, FTAG); 1538 1539 packed = kmem_alloc(nvsize, KM_SLEEP); 1540 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1541 DMU_READ_PREFETCH); 1542 if (error == 0) 1543 error = nvlist_unpack(packed, nvsize, value, 0); 1544 kmem_free(packed, nvsize); 1545 1546 return (error); 1547 } 1548 1549 /* 1550 * Checks to see if the given vdev could not be opened, in which case we post a 1551 * sysevent to notify the autoreplace code that the device has been removed. 1552 */ 1553 static void 1554 spa_check_removed(vdev_t *vd) 1555 { 1556 for (int c = 0; c < vd->vdev_children; c++) 1557 spa_check_removed(vd->vdev_child[c]); 1558 1559 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1560 !vd->vdev_ishole) { 1561 zfs_post_autoreplace(vd->vdev_spa, vd); 1562 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1563 } 1564 } 1565 1566 /* 1567 * Validate the current config against the MOS config 1568 */ 1569 static boolean_t 1570 spa_config_valid(spa_t *spa, nvlist_t *config) 1571 { 1572 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1573 nvlist_t *nv; 1574 1575 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1576 1577 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1578 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1579 1580 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1581 1582 /* 1583 * If we're doing a normal import, then build up any additional 1584 * diagnostic information about missing devices in this config. 1585 * We'll pass this up to the user for further processing. 1586 */ 1587 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1588 nvlist_t **child, *nv; 1589 uint64_t idx = 0; 1590 1591 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1592 KM_SLEEP); 1593 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1594 1595 for (int c = 0; c < rvd->vdev_children; c++) { 1596 vdev_t *tvd = rvd->vdev_child[c]; 1597 vdev_t *mtvd = mrvd->vdev_child[c]; 1598 1599 if (tvd->vdev_ops == &vdev_missing_ops && 1600 mtvd->vdev_ops != &vdev_missing_ops && 1601 mtvd->vdev_islog) 1602 child[idx++] = vdev_config_generate(spa, mtvd, 1603 B_FALSE, 0); 1604 } 1605 1606 if (idx) { 1607 VERIFY(nvlist_add_nvlist_array(nv, 1608 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1609 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1610 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1611 1612 for (int i = 0; i < idx; i++) 1613 nvlist_free(child[i]); 1614 } 1615 nvlist_free(nv); 1616 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1617 } 1618 1619 /* 1620 * Compare the root vdev tree with the information we have 1621 * from the MOS config (mrvd). Check each top-level vdev 1622 * with the corresponding MOS config top-level (mtvd). 1623 */ 1624 for (int c = 0; c < rvd->vdev_children; c++) { 1625 vdev_t *tvd = rvd->vdev_child[c]; 1626 vdev_t *mtvd = mrvd->vdev_child[c]; 1627 1628 /* 1629 * Resolve any "missing" vdevs in the current configuration. 1630 * If we find that the MOS config has more accurate information 1631 * about the top-level vdev then use that vdev instead. 1632 */ 1633 if (tvd->vdev_ops == &vdev_missing_ops && 1634 mtvd->vdev_ops != &vdev_missing_ops) { 1635 1636 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1637 continue; 1638 1639 /* 1640 * Device specific actions. 1641 */ 1642 if (mtvd->vdev_islog) { 1643 spa_set_log_state(spa, SPA_LOG_CLEAR); 1644 } else { 1645 /* 1646 * XXX - once we have 'readonly' pool 1647 * support we should be able to handle 1648 * missing data devices by transitioning 1649 * the pool to readonly. 1650 */ 1651 continue; 1652 } 1653 1654 /* 1655 * Swap the missing vdev with the data we were 1656 * able to obtain from the MOS config. 1657 */ 1658 vdev_remove_child(rvd, tvd); 1659 vdev_remove_child(mrvd, mtvd); 1660 1661 vdev_add_child(rvd, mtvd); 1662 vdev_add_child(mrvd, tvd); 1663 1664 spa_config_exit(spa, SCL_ALL, FTAG); 1665 vdev_load(mtvd); 1666 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1667 1668 vdev_reopen(rvd); 1669 } else if (mtvd->vdev_islog) { 1670 /* 1671 * Load the slog device's state from the MOS config 1672 * since it's possible that the label does not 1673 * contain the most up-to-date information. 1674 */ 1675 vdev_load_log_state(tvd, mtvd); 1676 vdev_reopen(tvd); 1677 } 1678 } 1679 vdev_free(mrvd); 1680 spa_config_exit(spa, SCL_ALL, FTAG); 1681 1682 /* 1683 * Ensure we were able to validate the config. 1684 */ 1685 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1686 } 1687 1688 /* 1689 * Check for missing log devices 1690 */ 1691 static boolean_t 1692 spa_check_logs(spa_t *spa) 1693 { 1694 boolean_t rv = B_FALSE; 1695 1696 switch (spa->spa_log_state) { 1697 case SPA_LOG_MISSING: 1698 /* need to recheck in case slog has been restored */ 1699 case SPA_LOG_UNKNOWN: 1700 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain, 1701 NULL, DS_FIND_CHILDREN) != 0); 1702 if (rv) 1703 spa_set_log_state(spa, SPA_LOG_MISSING); 1704 break; 1705 } 1706 return (rv); 1707 } 1708 1709 static boolean_t 1710 spa_passivate_log(spa_t *spa) 1711 { 1712 vdev_t *rvd = spa->spa_root_vdev; 1713 boolean_t slog_found = B_FALSE; 1714 1715 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1716 1717 if (!spa_has_slogs(spa)) 1718 return (B_FALSE); 1719 1720 for (int c = 0; c < rvd->vdev_children; c++) { 1721 vdev_t *tvd = rvd->vdev_child[c]; 1722 metaslab_group_t *mg = tvd->vdev_mg; 1723 1724 if (tvd->vdev_islog) { 1725 metaslab_group_passivate(mg); 1726 slog_found = B_TRUE; 1727 } 1728 } 1729 1730 return (slog_found); 1731 } 1732 1733 static void 1734 spa_activate_log(spa_t *spa) 1735 { 1736 vdev_t *rvd = spa->spa_root_vdev; 1737 1738 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1739 1740 for (int c = 0; c < rvd->vdev_children; c++) { 1741 vdev_t *tvd = rvd->vdev_child[c]; 1742 metaslab_group_t *mg = tvd->vdev_mg; 1743 1744 if (tvd->vdev_islog) 1745 metaslab_group_activate(mg); 1746 } 1747 } 1748 1749 int 1750 spa_offline_log(spa_t *spa) 1751 { 1752 int error; 1753 1754 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1755 NULL, DS_FIND_CHILDREN); 1756 if (error == 0) { 1757 /* 1758 * We successfully offlined the log device, sync out the 1759 * current txg so that the "stubby" block can be removed 1760 * by zil_sync(). 1761 */ 1762 txg_wait_synced(spa->spa_dsl_pool, 0); 1763 } 1764 return (error); 1765 } 1766 1767 static void 1768 spa_aux_check_removed(spa_aux_vdev_t *sav) 1769 { 1770 for (int i = 0; i < sav->sav_count; i++) 1771 spa_check_removed(sav->sav_vdevs[i]); 1772 } 1773 1774 void 1775 spa_claim_notify(zio_t *zio) 1776 { 1777 spa_t *spa = zio->io_spa; 1778 1779 if (zio->io_error) 1780 return; 1781 1782 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1783 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1784 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1785 mutex_exit(&spa->spa_props_lock); 1786 } 1787 1788 typedef struct spa_load_error { 1789 uint64_t sle_meta_count; 1790 uint64_t sle_data_count; 1791 } spa_load_error_t; 1792 1793 static void 1794 spa_load_verify_done(zio_t *zio) 1795 { 1796 blkptr_t *bp = zio->io_bp; 1797 spa_load_error_t *sle = zio->io_private; 1798 dmu_object_type_t type = BP_GET_TYPE(bp); 1799 int error = zio->io_error; 1800 1801 if (error) { 1802 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1803 type != DMU_OT_INTENT_LOG) 1804 atomic_add_64(&sle->sle_meta_count, 1); 1805 else 1806 atomic_add_64(&sle->sle_data_count, 1); 1807 } 1808 zio_data_buf_free(zio->io_data, zio->io_size); 1809 } 1810 1811 /*ARGSUSED*/ 1812 static int 1813 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1814 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1815 { 1816 if (bp != NULL) { 1817 zio_t *rio = arg; 1818 size_t size = BP_GET_PSIZE(bp); 1819 void *data = zio_data_buf_alloc(size); 1820 1821 zio_nowait(zio_read(rio, spa, bp, data, size, 1822 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1823 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1824 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1825 } 1826 return (0); 1827 } 1828 1829 static int 1830 spa_load_verify(spa_t *spa) 1831 { 1832 zio_t *rio; 1833 spa_load_error_t sle = { 0 }; 1834 zpool_rewind_policy_t policy; 1835 boolean_t verify_ok = B_FALSE; 1836 int error; 1837 1838 zpool_get_rewind_policy(spa->spa_config, &policy); 1839 1840 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1841 return (0); 1842 1843 rio = zio_root(spa, NULL, &sle, 1844 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1845 1846 error = traverse_pool(spa, spa->spa_verify_min_txg, 1847 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1848 1849 (void) zio_wait(rio); 1850 1851 spa->spa_load_meta_errors = sle.sle_meta_count; 1852 spa->spa_load_data_errors = sle.sle_data_count; 1853 1854 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1855 sle.sle_data_count <= policy.zrp_maxdata) { 1856 int64_t loss = 0; 1857 1858 verify_ok = B_TRUE; 1859 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1860 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1861 1862 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1863 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1864 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1865 VERIFY(nvlist_add_int64(spa->spa_load_info, 1866 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1867 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1868 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1869 } else { 1870 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1871 } 1872 1873 if (error) { 1874 if (error != ENXIO && error != EIO) 1875 error = SET_ERROR(EIO); 1876 return (error); 1877 } 1878 1879 return (verify_ok ? 0 : EIO); 1880 } 1881 1882 /* 1883 * Find a value in the pool props object. 1884 */ 1885 static void 1886 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1887 { 1888 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1889 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1890 } 1891 1892 /* 1893 * Find a value in the pool directory object. 1894 */ 1895 static int 1896 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1897 { 1898 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1899 name, sizeof (uint64_t), 1, val)); 1900 } 1901 1902 static int 1903 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1904 { 1905 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1906 return (err); 1907 } 1908 1909 /* 1910 * Fix up config after a partly-completed split. This is done with the 1911 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1912 * pool have that entry in their config, but only the splitting one contains 1913 * a list of all the guids of the vdevs that are being split off. 1914 * 1915 * This function determines what to do with that list: either rejoin 1916 * all the disks to the pool, or complete the splitting process. To attempt 1917 * the rejoin, each disk that is offlined is marked online again, and 1918 * we do a reopen() call. If the vdev label for every disk that was 1919 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1920 * then we call vdev_split() on each disk, and complete the split. 1921 * 1922 * Otherwise we leave the config alone, with all the vdevs in place in 1923 * the original pool. 1924 */ 1925 static void 1926 spa_try_repair(spa_t *spa, nvlist_t *config) 1927 { 1928 uint_t extracted; 1929 uint64_t *glist; 1930 uint_t i, gcount; 1931 nvlist_t *nvl; 1932 vdev_t **vd; 1933 boolean_t attempt_reopen; 1934 1935 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1936 return; 1937 1938 /* check that the config is complete */ 1939 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1940 &glist, &gcount) != 0) 1941 return; 1942 1943 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1944 1945 /* attempt to online all the vdevs & validate */ 1946 attempt_reopen = B_TRUE; 1947 for (i = 0; i < gcount; i++) { 1948 if (glist[i] == 0) /* vdev is hole */ 1949 continue; 1950 1951 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1952 if (vd[i] == NULL) { 1953 /* 1954 * Don't bother attempting to reopen the disks; 1955 * just do the split. 1956 */ 1957 attempt_reopen = B_FALSE; 1958 } else { 1959 /* attempt to re-online it */ 1960 vd[i]->vdev_offline = B_FALSE; 1961 } 1962 } 1963 1964 if (attempt_reopen) { 1965 vdev_reopen(spa->spa_root_vdev); 1966 1967 /* check each device to see what state it's in */ 1968 for (extracted = 0, i = 0; i < gcount; i++) { 1969 if (vd[i] != NULL && 1970 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1971 break; 1972 ++extracted; 1973 } 1974 } 1975 1976 /* 1977 * If every disk has been moved to the new pool, or if we never 1978 * even attempted to look at them, then we split them off for 1979 * good. 1980 */ 1981 if (!attempt_reopen || gcount == extracted) { 1982 for (i = 0; i < gcount; i++) 1983 if (vd[i] != NULL) 1984 vdev_split(vd[i]); 1985 vdev_reopen(spa->spa_root_vdev); 1986 } 1987 1988 kmem_free(vd, gcount * sizeof (vdev_t *)); 1989 } 1990 1991 static int 1992 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 1993 boolean_t mosconfig) 1994 { 1995 nvlist_t *config = spa->spa_config; 1996 char *ereport = FM_EREPORT_ZFS_POOL; 1997 char *comment; 1998 int error; 1999 uint64_t pool_guid; 2000 nvlist_t *nvl; 2001 2002 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2003 return (SET_ERROR(EINVAL)); 2004 2005 ASSERT(spa->spa_comment == NULL); 2006 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2007 spa->spa_comment = spa_strdup(comment); 2008 2009 /* 2010 * Versioning wasn't explicitly added to the label until later, so if 2011 * it's not present treat it as the initial version. 2012 */ 2013 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2014 &spa->spa_ubsync.ub_version) != 0) 2015 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2016 2017 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2018 &spa->spa_config_txg); 2019 2020 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2021 spa_guid_exists(pool_guid, 0)) { 2022 error = SET_ERROR(EEXIST); 2023 } else { 2024 spa->spa_config_guid = pool_guid; 2025 2026 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2027 &nvl) == 0) { 2028 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2029 KM_SLEEP) == 0); 2030 } 2031 2032 nvlist_free(spa->spa_load_info); 2033 spa->spa_load_info = fnvlist_alloc(); 2034 2035 gethrestime(&spa->spa_loaded_ts); 2036 error = spa_load_impl(spa, pool_guid, config, state, type, 2037 mosconfig, &ereport); 2038 } 2039 2040 spa->spa_minref = refcount_count(&spa->spa_refcount); 2041 if (error) { 2042 if (error != EEXIST) { 2043 spa->spa_loaded_ts.tv_sec = 0; 2044 spa->spa_loaded_ts.tv_nsec = 0; 2045 } 2046 if (error != EBADF) { 2047 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2048 } 2049 } 2050 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2051 spa->spa_ena = 0; 2052 2053 return (error); 2054 } 2055 2056 /* 2057 * Load an existing storage pool, using the pool's builtin spa_config as a 2058 * source of configuration information. 2059 */ 2060 static int 2061 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2062 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2063 char **ereport) 2064 { 2065 int error = 0; 2066 nvlist_t *nvroot = NULL; 2067 nvlist_t *label; 2068 vdev_t *rvd; 2069 uberblock_t *ub = &spa->spa_uberblock; 2070 uint64_t children, config_cache_txg = spa->spa_config_txg; 2071 int orig_mode = spa->spa_mode; 2072 int parse; 2073 uint64_t obj; 2074 boolean_t missing_feat_write = B_FALSE; 2075 2076 /* 2077 * If this is an untrusted config, access the pool in read-only mode. 2078 * This prevents things like resilvering recently removed devices. 2079 */ 2080 if (!mosconfig) 2081 spa->spa_mode = FREAD; 2082 2083 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2084 2085 spa->spa_load_state = state; 2086 2087 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2088 return (SET_ERROR(EINVAL)); 2089 2090 parse = (type == SPA_IMPORT_EXISTING ? 2091 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2092 2093 /* 2094 * Create "The Godfather" zio to hold all async IOs 2095 */ 2096 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2097 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2098 2099 /* 2100 * Parse the configuration into a vdev tree. We explicitly set the 2101 * value that will be returned by spa_version() since parsing the 2102 * configuration requires knowing the version number. 2103 */ 2104 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2105 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2106 spa_config_exit(spa, SCL_ALL, FTAG); 2107 2108 if (error != 0) 2109 return (error); 2110 2111 ASSERT(spa->spa_root_vdev == rvd); 2112 2113 if (type != SPA_IMPORT_ASSEMBLE) { 2114 ASSERT(spa_guid(spa) == pool_guid); 2115 } 2116 2117 /* 2118 * Try to open all vdevs, loading each label in the process. 2119 */ 2120 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2121 error = vdev_open(rvd); 2122 spa_config_exit(spa, SCL_ALL, FTAG); 2123 if (error != 0) 2124 return (error); 2125 2126 /* 2127 * We need to validate the vdev labels against the configuration that 2128 * we have in hand, which is dependent on the setting of mosconfig. If 2129 * mosconfig is true then we're validating the vdev labels based on 2130 * that config. Otherwise, we're validating against the cached config 2131 * (zpool.cache) that was read when we loaded the zfs module, and then 2132 * later we will recursively call spa_load() and validate against 2133 * the vdev config. 2134 * 2135 * If we're assembling a new pool that's been split off from an 2136 * existing pool, the labels haven't yet been updated so we skip 2137 * validation for now. 2138 */ 2139 if (type != SPA_IMPORT_ASSEMBLE) { 2140 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2141 error = vdev_validate(rvd, mosconfig); 2142 spa_config_exit(spa, SCL_ALL, FTAG); 2143 2144 if (error != 0) 2145 return (error); 2146 2147 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2148 return (SET_ERROR(ENXIO)); 2149 } 2150 2151 /* 2152 * Find the best uberblock. 2153 */ 2154 vdev_uberblock_load(rvd, ub, &label); 2155 2156 /* 2157 * If we weren't able to find a single valid uberblock, return failure. 2158 */ 2159 if (ub->ub_txg == 0) { 2160 nvlist_free(label); 2161 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2162 } 2163 2164 /* 2165 * If the pool has an unsupported version we can't open it. 2166 */ 2167 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2168 nvlist_free(label); 2169 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2170 } 2171 2172 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2173 nvlist_t *features; 2174 2175 /* 2176 * If we weren't able to find what's necessary for reading the 2177 * MOS in the label, return failure. 2178 */ 2179 if (label == NULL || nvlist_lookup_nvlist(label, 2180 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2181 nvlist_free(label); 2182 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2183 ENXIO)); 2184 } 2185 2186 /* 2187 * Update our in-core representation with the definitive values 2188 * from the label. 2189 */ 2190 nvlist_free(spa->spa_label_features); 2191 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2192 } 2193 2194 nvlist_free(label); 2195 2196 /* 2197 * Look through entries in the label nvlist's features_for_read. If 2198 * there is a feature listed there which we don't understand then we 2199 * cannot open a pool. 2200 */ 2201 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2202 nvlist_t *unsup_feat; 2203 2204 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2205 0); 2206 2207 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2208 NULL); nvp != NULL; 2209 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2210 if (!zfeature_is_supported(nvpair_name(nvp))) { 2211 VERIFY(nvlist_add_string(unsup_feat, 2212 nvpair_name(nvp), "") == 0); 2213 } 2214 } 2215 2216 if (!nvlist_empty(unsup_feat)) { 2217 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2218 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2219 nvlist_free(unsup_feat); 2220 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2221 ENOTSUP)); 2222 } 2223 2224 nvlist_free(unsup_feat); 2225 } 2226 2227 /* 2228 * If the vdev guid sum doesn't match the uberblock, we have an 2229 * incomplete configuration. We first check to see if the pool 2230 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2231 * If it is, defer the vdev_guid_sum check till later so we 2232 * can handle missing vdevs. 2233 */ 2234 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2235 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2236 rvd->vdev_guid_sum != ub->ub_guid_sum) 2237 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2238 2239 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2240 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2241 spa_try_repair(spa, config); 2242 spa_config_exit(spa, SCL_ALL, FTAG); 2243 nvlist_free(spa->spa_config_splitting); 2244 spa->spa_config_splitting = NULL; 2245 } 2246 2247 /* 2248 * Initialize internal SPA structures. 2249 */ 2250 spa->spa_state = POOL_STATE_ACTIVE; 2251 spa->spa_ubsync = spa->spa_uberblock; 2252 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2253 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2254 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2255 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2256 spa->spa_claim_max_txg = spa->spa_first_txg; 2257 spa->spa_prev_software_version = ub->ub_software_version; 2258 2259 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2260 if (error) 2261 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2262 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2263 2264 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2265 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2266 2267 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2268 boolean_t missing_feat_read = B_FALSE; 2269 nvlist_t *unsup_feat, *enabled_feat; 2270 2271 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2272 &spa->spa_feat_for_read_obj) != 0) { 2273 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2274 } 2275 2276 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2277 &spa->spa_feat_for_write_obj) != 0) { 2278 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2279 } 2280 2281 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2282 &spa->spa_feat_desc_obj) != 0) { 2283 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2284 } 2285 2286 enabled_feat = fnvlist_alloc(); 2287 unsup_feat = fnvlist_alloc(); 2288 2289 if (!feature_is_supported(spa->spa_meta_objset, 2290 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj, 2291 unsup_feat, enabled_feat)) 2292 missing_feat_read = B_TRUE; 2293 2294 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2295 if (!feature_is_supported(spa->spa_meta_objset, 2296 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj, 2297 unsup_feat, enabled_feat)) { 2298 missing_feat_write = B_TRUE; 2299 } 2300 } 2301 2302 fnvlist_add_nvlist(spa->spa_load_info, 2303 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2304 2305 if (!nvlist_empty(unsup_feat)) { 2306 fnvlist_add_nvlist(spa->spa_load_info, 2307 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2308 } 2309 2310 fnvlist_free(enabled_feat); 2311 fnvlist_free(unsup_feat); 2312 2313 if (!missing_feat_read) { 2314 fnvlist_add_boolean(spa->spa_load_info, 2315 ZPOOL_CONFIG_CAN_RDONLY); 2316 } 2317 2318 /* 2319 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2320 * twofold: to determine whether the pool is available for 2321 * import in read-write mode and (if it is not) whether the 2322 * pool is available for import in read-only mode. If the pool 2323 * is available for import in read-write mode, it is displayed 2324 * as available in userland; if it is not available for import 2325 * in read-only mode, it is displayed as unavailable in 2326 * userland. If the pool is available for import in read-only 2327 * mode but not read-write mode, it is displayed as unavailable 2328 * in userland with a special note that the pool is actually 2329 * available for open in read-only mode. 2330 * 2331 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2332 * missing a feature for write, we must first determine whether 2333 * the pool can be opened read-only before returning to 2334 * userland in order to know whether to display the 2335 * abovementioned note. 2336 */ 2337 if (missing_feat_read || (missing_feat_write && 2338 spa_writeable(spa))) { 2339 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2340 ENOTSUP)); 2341 } 2342 } 2343 2344 spa->spa_is_initializing = B_TRUE; 2345 error = dsl_pool_open(spa->spa_dsl_pool); 2346 spa->spa_is_initializing = B_FALSE; 2347 if (error != 0) 2348 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2349 2350 if (!mosconfig) { 2351 uint64_t hostid; 2352 nvlist_t *policy = NULL, *nvconfig; 2353 2354 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2355 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2356 2357 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2358 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2359 char *hostname; 2360 unsigned long myhostid = 0; 2361 2362 VERIFY(nvlist_lookup_string(nvconfig, 2363 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2364 2365 #ifdef _KERNEL 2366 myhostid = zone_get_hostid(NULL); 2367 #else /* _KERNEL */ 2368 /* 2369 * We're emulating the system's hostid in userland, so 2370 * we can't use zone_get_hostid(). 2371 */ 2372 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2373 #endif /* _KERNEL */ 2374 if (hostid != 0 && myhostid != 0 && 2375 hostid != myhostid) { 2376 nvlist_free(nvconfig); 2377 cmn_err(CE_WARN, "pool '%s' could not be " 2378 "loaded as it was last accessed by " 2379 "another system (host: %s hostid: 0x%lx). " 2380 "See: http://illumos.org/msg/ZFS-8000-EY", 2381 spa_name(spa), hostname, 2382 (unsigned long)hostid); 2383 return (SET_ERROR(EBADF)); 2384 } 2385 } 2386 if (nvlist_lookup_nvlist(spa->spa_config, 2387 ZPOOL_REWIND_POLICY, &policy) == 0) 2388 VERIFY(nvlist_add_nvlist(nvconfig, 2389 ZPOOL_REWIND_POLICY, policy) == 0); 2390 2391 spa_config_set(spa, nvconfig); 2392 spa_unload(spa); 2393 spa_deactivate(spa); 2394 spa_activate(spa, orig_mode); 2395 2396 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2397 } 2398 2399 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2400 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2401 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2402 if (error != 0) 2403 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2404 2405 /* 2406 * Load the bit that tells us to use the new accounting function 2407 * (raid-z deflation). If we have an older pool, this will not 2408 * be present. 2409 */ 2410 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2411 if (error != 0 && error != ENOENT) 2412 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2413 2414 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2415 &spa->spa_creation_version); 2416 if (error != 0 && error != ENOENT) 2417 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2418 2419 /* 2420 * Load the persistent error log. If we have an older pool, this will 2421 * not be present. 2422 */ 2423 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2424 if (error != 0 && error != ENOENT) 2425 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2426 2427 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2428 &spa->spa_errlog_scrub); 2429 if (error != 0 && error != ENOENT) 2430 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2431 2432 /* 2433 * Load the history object. If we have an older pool, this 2434 * will not be present. 2435 */ 2436 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2437 if (error != 0 && error != ENOENT) 2438 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2439 2440 /* 2441 * If we're assembling the pool from the split-off vdevs of 2442 * an existing pool, we don't want to attach the spares & cache 2443 * devices. 2444 */ 2445 2446 /* 2447 * Load any hot spares for this pool. 2448 */ 2449 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2450 if (error != 0 && error != ENOENT) 2451 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2452 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2453 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2454 if (load_nvlist(spa, spa->spa_spares.sav_object, 2455 &spa->spa_spares.sav_config) != 0) 2456 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2457 2458 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2459 spa_load_spares(spa); 2460 spa_config_exit(spa, SCL_ALL, FTAG); 2461 } else if (error == 0) { 2462 spa->spa_spares.sav_sync = B_TRUE; 2463 } 2464 2465 /* 2466 * Load any level 2 ARC devices for this pool. 2467 */ 2468 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2469 &spa->spa_l2cache.sav_object); 2470 if (error != 0 && error != ENOENT) 2471 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2472 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2473 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2474 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2475 &spa->spa_l2cache.sav_config) != 0) 2476 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2477 2478 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2479 spa_load_l2cache(spa); 2480 spa_config_exit(spa, SCL_ALL, FTAG); 2481 } else if (error == 0) { 2482 spa->spa_l2cache.sav_sync = B_TRUE; 2483 } 2484 2485 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2486 2487 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2488 if (error && error != ENOENT) 2489 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2490 2491 if (error == 0) { 2492 uint64_t autoreplace; 2493 2494 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2495 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2496 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2497 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2498 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2499 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2500 &spa->spa_dedup_ditto); 2501 2502 spa->spa_autoreplace = (autoreplace != 0); 2503 } 2504 2505 /* 2506 * If the 'autoreplace' property is set, then post a resource notifying 2507 * the ZFS DE that it should not issue any faults for unopenable 2508 * devices. We also iterate over the vdevs, and post a sysevent for any 2509 * unopenable vdevs so that the normal autoreplace handler can take 2510 * over. 2511 */ 2512 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2513 spa_check_removed(spa->spa_root_vdev); 2514 /* 2515 * For the import case, this is done in spa_import(), because 2516 * at this point we're using the spare definitions from 2517 * the MOS config, not necessarily from the userland config. 2518 */ 2519 if (state != SPA_LOAD_IMPORT) { 2520 spa_aux_check_removed(&spa->spa_spares); 2521 spa_aux_check_removed(&spa->spa_l2cache); 2522 } 2523 } 2524 2525 /* 2526 * Load the vdev state for all toplevel vdevs. 2527 */ 2528 vdev_load(rvd); 2529 2530 /* 2531 * Propagate the leaf DTLs we just loaded all the way up the tree. 2532 */ 2533 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2534 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2535 spa_config_exit(spa, SCL_ALL, FTAG); 2536 2537 /* 2538 * Load the DDTs (dedup tables). 2539 */ 2540 error = ddt_load(spa); 2541 if (error != 0) 2542 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2543 2544 spa_update_dspace(spa); 2545 2546 /* 2547 * Validate the config, using the MOS config to fill in any 2548 * information which might be missing. If we fail to validate 2549 * the config then declare the pool unfit for use. If we're 2550 * assembling a pool from a split, the log is not transferred 2551 * over. 2552 */ 2553 if (type != SPA_IMPORT_ASSEMBLE) { 2554 nvlist_t *nvconfig; 2555 2556 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2557 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2558 2559 if (!spa_config_valid(spa, nvconfig)) { 2560 nvlist_free(nvconfig); 2561 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2562 ENXIO)); 2563 } 2564 nvlist_free(nvconfig); 2565 2566 /* 2567 * Now that we've validated the config, check the state of the 2568 * root vdev. If it can't be opened, it indicates one or 2569 * more toplevel vdevs are faulted. 2570 */ 2571 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2572 return (SET_ERROR(ENXIO)); 2573 2574 if (spa_check_logs(spa)) { 2575 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2576 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2577 } 2578 } 2579 2580 if (missing_feat_write) { 2581 ASSERT(state == SPA_LOAD_TRYIMPORT); 2582 2583 /* 2584 * At this point, we know that we can open the pool in 2585 * read-only mode but not read-write mode. We now have enough 2586 * information and can return to userland. 2587 */ 2588 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2589 } 2590 2591 /* 2592 * We've successfully opened the pool, verify that we're ready 2593 * to start pushing transactions. 2594 */ 2595 if (state != SPA_LOAD_TRYIMPORT) { 2596 if (error = spa_load_verify(spa)) 2597 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2598 error)); 2599 } 2600 2601 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2602 spa->spa_load_max_txg == UINT64_MAX)) { 2603 dmu_tx_t *tx; 2604 int need_update = B_FALSE; 2605 2606 ASSERT(state != SPA_LOAD_TRYIMPORT); 2607 2608 /* 2609 * Claim log blocks that haven't been committed yet. 2610 * This must all happen in a single txg. 2611 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2612 * invoked from zil_claim_log_block()'s i/o done callback. 2613 * Price of rollback is that we abandon the log. 2614 */ 2615 spa->spa_claiming = B_TRUE; 2616 2617 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2618 spa_first_txg(spa)); 2619 (void) dmu_objset_find(spa_name(spa), 2620 zil_claim, tx, DS_FIND_CHILDREN); 2621 dmu_tx_commit(tx); 2622 2623 spa->spa_claiming = B_FALSE; 2624 2625 spa_set_log_state(spa, SPA_LOG_GOOD); 2626 spa->spa_sync_on = B_TRUE; 2627 txg_sync_start(spa->spa_dsl_pool); 2628 2629 /* 2630 * Wait for all claims to sync. We sync up to the highest 2631 * claimed log block birth time so that claimed log blocks 2632 * don't appear to be from the future. spa_claim_max_txg 2633 * will have been set for us by either zil_check_log_chain() 2634 * (invoked from spa_check_logs()) or zil_claim() above. 2635 */ 2636 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2637 2638 /* 2639 * If the config cache is stale, or we have uninitialized 2640 * metaslabs (see spa_vdev_add()), then update the config. 2641 * 2642 * If this is a verbatim import, trust the current 2643 * in-core spa_config and update the disk labels. 2644 */ 2645 if (config_cache_txg != spa->spa_config_txg || 2646 state == SPA_LOAD_IMPORT || 2647 state == SPA_LOAD_RECOVER || 2648 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2649 need_update = B_TRUE; 2650 2651 for (int c = 0; c < rvd->vdev_children; c++) 2652 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2653 need_update = B_TRUE; 2654 2655 /* 2656 * Update the config cache asychronously in case we're the 2657 * root pool, in which case the config cache isn't writable yet. 2658 */ 2659 if (need_update) 2660 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2661 2662 /* 2663 * Check all DTLs to see if anything needs resilvering. 2664 */ 2665 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2666 vdev_resilver_needed(rvd, NULL, NULL)) 2667 spa_async_request(spa, SPA_ASYNC_RESILVER); 2668 2669 /* 2670 * Log the fact that we booted up (so that we can detect if 2671 * we rebooted in the middle of an operation). 2672 */ 2673 spa_history_log_version(spa, "open"); 2674 2675 /* 2676 * Delete any inconsistent datasets. 2677 */ 2678 (void) dmu_objset_find(spa_name(spa), 2679 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2680 2681 /* 2682 * Clean up any stale temporary dataset userrefs. 2683 */ 2684 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2685 } 2686 2687 return (0); 2688 } 2689 2690 static int 2691 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2692 { 2693 int mode = spa->spa_mode; 2694 2695 spa_unload(spa); 2696 spa_deactivate(spa); 2697 2698 spa->spa_load_max_txg--; 2699 2700 spa_activate(spa, mode); 2701 spa_async_suspend(spa); 2702 2703 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2704 } 2705 2706 /* 2707 * If spa_load() fails this function will try loading prior txg's. If 2708 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2709 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2710 * function will not rewind the pool and will return the same error as 2711 * spa_load(). 2712 */ 2713 static int 2714 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2715 uint64_t max_request, int rewind_flags) 2716 { 2717 nvlist_t *loadinfo = NULL; 2718 nvlist_t *config = NULL; 2719 int load_error, rewind_error; 2720 uint64_t safe_rewind_txg; 2721 uint64_t min_txg; 2722 2723 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2724 spa->spa_load_max_txg = spa->spa_load_txg; 2725 spa_set_log_state(spa, SPA_LOG_CLEAR); 2726 } else { 2727 spa->spa_load_max_txg = max_request; 2728 } 2729 2730 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2731 mosconfig); 2732 if (load_error == 0) 2733 return (0); 2734 2735 if (spa->spa_root_vdev != NULL) 2736 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2737 2738 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2739 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2740 2741 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2742 nvlist_free(config); 2743 return (load_error); 2744 } 2745 2746 if (state == SPA_LOAD_RECOVER) { 2747 /* Price of rolling back is discarding txgs, including log */ 2748 spa_set_log_state(spa, SPA_LOG_CLEAR); 2749 } else { 2750 /* 2751 * If we aren't rolling back save the load info from our first 2752 * import attempt so that we can restore it after attempting 2753 * to rewind. 2754 */ 2755 loadinfo = spa->spa_load_info; 2756 spa->spa_load_info = fnvlist_alloc(); 2757 } 2758 2759 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2760 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2761 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2762 TXG_INITIAL : safe_rewind_txg; 2763 2764 /* 2765 * Continue as long as we're finding errors, we're still within 2766 * the acceptable rewind range, and we're still finding uberblocks 2767 */ 2768 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2769 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2770 if (spa->spa_load_max_txg < safe_rewind_txg) 2771 spa->spa_extreme_rewind = B_TRUE; 2772 rewind_error = spa_load_retry(spa, state, mosconfig); 2773 } 2774 2775 spa->spa_extreme_rewind = B_FALSE; 2776 spa->spa_load_max_txg = UINT64_MAX; 2777 2778 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2779 spa_config_set(spa, config); 2780 2781 if (state == SPA_LOAD_RECOVER) { 2782 ASSERT3P(loadinfo, ==, NULL); 2783 return (rewind_error); 2784 } else { 2785 /* Store the rewind info as part of the initial load info */ 2786 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2787 spa->spa_load_info); 2788 2789 /* Restore the initial load info */ 2790 fnvlist_free(spa->spa_load_info); 2791 spa->spa_load_info = loadinfo; 2792 2793 return (load_error); 2794 } 2795 } 2796 2797 /* 2798 * Pool Open/Import 2799 * 2800 * The import case is identical to an open except that the configuration is sent 2801 * down from userland, instead of grabbed from the configuration cache. For the 2802 * case of an open, the pool configuration will exist in the 2803 * POOL_STATE_UNINITIALIZED state. 2804 * 2805 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2806 * the same time open the pool, without having to keep around the spa_t in some 2807 * ambiguous state. 2808 */ 2809 static int 2810 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2811 nvlist_t **config) 2812 { 2813 spa_t *spa; 2814 spa_load_state_t state = SPA_LOAD_OPEN; 2815 int error; 2816 int locked = B_FALSE; 2817 2818 *spapp = NULL; 2819 2820 /* 2821 * As disgusting as this is, we need to support recursive calls to this 2822 * function because dsl_dir_open() is called during spa_load(), and ends 2823 * up calling spa_open() again. The real fix is to figure out how to 2824 * avoid dsl_dir_open() calling this in the first place. 2825 */ 2826 if (mutex_owner(&spa_namespace_lock) != curthread) { 2827 mutex_enter(&spa_namespace_lock); 2828 locked = B_TRUE; 2829 } 2830 2831 if ((spa = spa_lookup(pool)) == NULL) { 2832 if (locked) 2833 mutex_exit(&spa_namespace_lock); 2834 return (SET_ERROR(ENOENT)); 2835 } 2836 2837 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2838 zpool_rewind_policy_t policy; 2839 2840 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2841 &policy); 2842 if (policy.zrp_request & ZPOOL_DO_REWIND) 2843 state = SPA_LOAD_RECOVER; 2844 2845 spa_activate(spa, spa_mode_global); 2846 2847 if (state != SPA_LOAD_RECOVER) 2848 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2849 2850 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2851 policy.zrp_request); 2852 2853 if (error == EBADF) { 2854 /* 2855 * If vdev_validate() returns failure (indicated by 2856 * EBADF), it indicates that one of the vdevs indicates 2857 * that the pool has been exported or destroyed. If 2858 * this is the case, the config cache is out of sync and 2859 * we should remove the pool from the namespace. 2860 */ 2861 spa_unload(spa); 2862 spa_deactivate(spa); 2863 spa_config_sync(spa, B_TRUE, B_TRUE); 2864 spa_remove(spa); 2865 if (locked) 2866 mutex_exit(&spa_namespace_lock); 2867 return (SET_ERROR(ENOENT)); 2868 } 2869 2870 if (error) { 2871 /* 2872 * We can't open the pool, but we still have useful 2873 * information: the state of each vdev after the 2874 * attempted vdev_open(). Return this to the user. 2875 */ 2876 if (config != NULL && spa->spa_config) { 2877 VERIFY(nvlist_dup(spa->spa_config, config, 2878 KM_SLEEP) == 0); 2879 VERIFY(nvlist_add_nvlist(*config, 2880 ZPOOL_CONFIG_LOAD_INFO, 2881 spa->spa_load_info) == 0); 2882 } 2883 spa_unload(spa); 2884 spa_deactivate(spa); 2885 spa->spa_last_open_failed = error; 2886 if (locked) 2887 mutex_exit(&spa_namespace_lock); 2888 *spapp = NULL; 2889 return (error); 2890 } 2891 } 2892 2893 spa_open_ref(spa, tag); 2894 2895 if (config != NULL) 2896 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2897 2898 /* 2899 * If we've recovered the pool, pass back any information we 2900 * gathered while doing the load. 2901 */ 2902 if (state == SPA_LOAD_RECOVER) { 2903 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 2904 spa->spa_load_info) == 0); 2905 } 2906 2907 if (locked) { 2908 spa->spa_last_open_failed = 0; 2909 spa->spa_last_ubsync_txg = 0; 2910 spa->spa_load_txg = 0; 2911 mutex_exit(&spa_namespace_lock); 2912 } 2913 2914 *spapp = spa; 2915 2916 return (0); 2917 } 2918 2919 int 2920 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2921 nvlist_t **config) 2922 { 2923 return (spa_open_common(name, spapp, tag, policy, config)); 2924 } 2925 2926 int 2927 spa_open(const char *name, spa_t **spapp, void *tag) 2928 { 2929 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2930 } 2931 2932 /* 2933 * Lookup the given spa_t, incrementing the inject count in the process, 2934 * preventing it from being exported or destroyed. 2935 */ 2936 spa_t * 2937 spa_inject_addref(char *name) 2938 { 2939 spa_t *spa; 2940 2941 mutex_enter(&spa_namespace_lock); 2942 if ((spa = spa_lookup(name)) == NULL) { 2943 mutex_exit(&spa_namespace_lock); 2944 return (NULL); 2945 } 2946 spa->spa_inject_ref++; 2947 mutex_exit(&spa_namespace_lock); 2948 2949 return (spa); 2950 } 2951 2952 void 2953 spa_inject_delref(spa_t *spa) 2954 { 2955 mutex_enter(&spa_namespace_lock); 2956 spa->spa_inject_ref--; 2957 mutex_exit(&spa_namespace_lock); 2958 } 2959 2960 /* 2961 * Add spares device information to the nvlist. 2962 */ 2963 static void 2964 spa_add_spares(spa_t *spa, nvlist_t *config) 2965 { 2966 nvlist_t **spares; 2967 uint_t i, nspares; 2968 nvlist_t *nvroot; 2969 uint64_t guid; 2970 vdev_stat_t *vs; 2971 uint_t vsc; 2972 uint64_t pool; 2973 2974 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2975 2976 if (spa->spa_spares.sav_count == 0) 2977 return; 2978 2979 VERIFY(nvlist_lookup_nvlist(config, 2980 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2981 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2982 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2983 if (nspares != 0) { 2984 VERIFY(nvlist_add_nvlist_array(nvroot, 2985 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2986 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2987 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2988 2989 /* 2990 * Go through and find any spares which have since been 2991 * repurposed as an active spare. If this is the case, update 2992 * their status appropriately. 2993 */ 2994 for (i = 0; i < nspares; i++) { 2995 VERIFY(nvlist_lookup_uint64(spares[i], 2996 ZPOOL_CONFIG_GUID, &guid) == 0); 2997 if (spa_spare_exists(guid, &pool, NULL) && 2998 pool != 0ULL) { 2999 VERIFY(nvlist_lookup_uint64_array( 3000 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3001 (uint64_t **)&vs, &vsc) == 0); 3002 vs->vs_state = VDEV_STATE_CANT_OPEN; 3003 vs->vs_aux = VDEV_AUX_SPARED; 3004 } 3005 } 3006 } 3007 } 3008 3009 /* 3010 * Add l2cache device information to the nvlist, including vdev stats. 3011 */ 3012 static void 3013 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3014 { 3015 nvlist_t **l2cache; 3016 uint_t i, j, nl2cache; 3017 nvlist_t *nvroot; 3018 uint64_t guid; 3019 vdev_t *vd; 3020 vdev_stat_t *vs; 3021 uint_t vsc; 3022 3023 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3024 3025 if (spa->spa_l2cache.sav_count == 0) 3026 return; 3027 3028 VERIFY(nvlist_lookup_nvlist(config, 3029 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3030 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3031 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3032 if (nl2cache != 0) { 3033 VERIFY(nvlist_add_nvlist_array(nvroot, 3034 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3035 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3036 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3037 3038 /* 3039 * Update level 2 cache device stats. 3040 */ 3041 3042 for (i = 0; i < nl2cache; i++) { 3043 VERIFY(nvlist_lookup_uint64(l2cache[i], 3044 ZPOOL_CONFIG_GUID, &guid) == 0); 3045 3046 vd = NULL; 3047 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3048 if (guid == 3049 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3050 vd = spa->spa_l2cache.sav_vdevs[j]; 3051 break; 3052 } 3053 } 3054 ASSERT(vd != NULL); 3055 3056 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3057 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3058 == 0); 3059 vdev_get_stats(vd, vs); 3060 } 3061 } 3062 } 3063 3064 static void 3065 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3066 { 3067 nvlist_t *features; 3068 zap_cursor_t zc; 3069 zap_attribute_t za; 3070 3071 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3072 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3073 3074 if (spa->spa_feat_for_read_obj != 0) { 3075 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3076 spa->spa_feat_for_read_obj); 3077 zap_cursor_retrieve(&zc, &za) == 0; 3078 zap_cursor_advance(&zc)) { 3079 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3080 za.za_num_integers == 1); 3081 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3082 za.za_first_integer)); 3083 } 3084 zap_cursor_fini(&zc); 3085 } 3086 3087 if (spa->spa_feat_for_write_obj != 0) { 3088 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3089 spa->spa_feat_for_write_obj); 3090 zap_cursor_retrieve(&zc, &za) == 0; 3091 zap_cursor_advance(&zc)) { 3092 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3093 za.za_num_integers == 1); 3094 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3095 za.za_first_integer)); 3096 } 3097 zap_cursor_fini(&zc); 3098 } 3099 3100 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3101 features) == 0); 3102 nvlist_free(features); 3103 } 3104 3105 int 3106 spa_get_stats(const char *name, nvlist_t **config, 3107 char *altroot, size_t buflen) 3108 { 3109 int error; 3110 spa_t *spa; 3111 3112 *config = NULL; 3113 error = spa_open_common(name, &spa, FTAG, NULL, config); 3114 3115 if (spa != NULL) { 3116 /* 3117 * This still leaves a window of inconsistency where the spares 3118 * or l2cache devices could change and the config would be 3119 * self-inconsistent. 3120 */ 3121 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3122 3123 if (*config != NULL) { 3124 uint64_t loadtimes[2]; 3125 3126 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3127 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3128 VERIFY(nvlist_add_uint64_array(*config, 3129 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3130 3131 VERIFY(nvlist_add_uint64(*config, 3132 ZPOOL_CONFIG_ERRCOUNT, 3133 spa_get_errlog_size(spa)) == 0); 3134 3135 if (spa_suspended(spa)) 3136 VERIFY(nvlist_add_uint64(*config, 3137 ZPOOL_CONFIG_SUSPENDED, 3138 spa->spa_failmode) == 0); 3139 3140 spa_add_spares(spa, *config); 3141 spa_add_l2cache(spa, *config); 3142 spa_add_feature_stats(spa, *config); 3143 } 3144 } 3145 3146 /* 3147 * We want to get the alternate root even for faulted pools, so we cheat 3148 * and call spa_lookup() directly. 3149 */ 3150 if (altroot) { 3151 if (spa == NULL) { 3152 mutex_enter(&spa_namespace_lock); 3153 spa = spa_lookup(name); 3154 if (spa) 3155 spa_altroot(spa, altroot, buflen); 3156 else 3157 altroot[0] = '\0'; 3158 spa = NULL; 3159 mutex_exit(&spa_namespace_lock); 3160 } else { 3161 spa_altroot(spa, altroot, buflen); 3162 } 3163 } 3164 3165 if (spa != NULL) { 3166 spa_config_exit(spa, SCL_CONFIG, FTAG); 3167 spa_close(spa, FTAG); 3168 } 3169 3170 return (error); 3171 } 3172 3173 /* 3174 * Validate that the auxiliary device array is well formed. We must have an 3175 * array of nvlists, each which describes a valid leaf vdev. If this is an 3176 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3177 * specified, as long as they are well-formed. 3178 */ 3179 static int 3180 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3181 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3182 vdev_labeltype_t label) 3183 { 3184 nvlist_t **dev; 3185 uint_t i, ndev; 3186 vdev_t *vd; 3187 int error; 3188 3189 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3190 3191 /* 3192 * It's acceptable to have no devs specified. 3193 */ 3194 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3195 return (0); 3196 3197 if (ndev == 0) 3198 return (SET_ERROR(EINVAL)); 3199 3200 /* 3201 * Make sure the pool is formatted with a version that supports this 3202 * device type. 3203 */ 3204 if (spa_version(spa) < version) 3205 return (SET_ERROR(ENOTSUP)); 3206 3207 /* 3208 * Set the pending device list so we correctly handle device in-use 3209 * checking. 3210 */ 3211 sav->sav_pending = dev; 3212 sav->sav_npending = ndev; 3213 3214 for (i = 0; i < ndev; i++) { 3215 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3216 mode)) != 0) 3217 goto out; 3218 3219 if (!vd->vdev_ops->vdev_op_leaf) { 3220 vdev_free(vd); 3221 error = SET_ERROR(EINVAL); 3222 goto out; 3223 } 3224 3225 /* 3226 * The L2ARC currently only supports disk devices in 3227 * kernel context. For user-level testing, we allow it. 3228 */ 3229 #ifdef _KERNEL 3230 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3231 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3232 error = SET_ERROR(ENOTBLK); 3233 vdev_free(vd); 3234 goto out; 3235 } 3236 #endif 3237 vd->vdev_top = vd; 3238 3239 if ((error = vdev_open(vd)) == 0 && 3240 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3241 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3242 vd->vdev_guid) == 0); 3243 } 3244 3245 vdev_free(vd); 3246 3247 if (error && 3248 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3249 goto out; 3250 else 3251 error = 0; 3252 } 3253 3254 out: 3255 sav->sav_pending = NULL; 3256 sav->sav_npending = 0; 3257 return (error); 3258 } 3259 3260 static int 3261 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3262 { 3263 int error; 3264 3265 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3266 3267 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3268 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3269 VDEV_LABEL_SPARE)) != 0) { 3270 return (error); 3271 } 3272 3273 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3274 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3275 VDEV_LABEL_L2CACHE)); 3276 } 3277 3278 static void 3279 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3280 const char *config) 3281 { 3282 int i; 3283 3284 if (sav->sav_config != NULL) { 3285 nvlist_t **olddevs; 3286 uint_t oldndevs; 3287 nvlist_t **newdevs; 3288 3289 /* 3290 * Generate new dev list by concatentating with the 3291 * current dev list. 3292 */ 3293 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3294 &olddevs, &oldndevs) == 0); 3295 3296 newdevs = kmem_alloc(sizeof (void *) * 3297 (ndevs + oldndevs), KM_SLEEP); 3298 for (i = 0; i < oldndevs; i++) 3299 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3300 KM_SLEEP) == 0); 3301 for (i = 0; i < ndevs; i++) 3302 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3303 KM_SLEEP) == 0); 3304 3305 VERIFY(nvlist_remove(sav->sav_config, config, 3306 DATA_TYPE_NVLIST_ARRAY) == 0); 3307 3308 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3309 config, newdevs, ndevs + oldndevs) == 0); 3310 for (i = 0; i < oldndevs + ndevs; i++) 3311 nvlist_free(newdevs[i]); 3312 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3313 } else { 3314 /* 3315 * Generate a new dev list. 3316 */ 3317 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3318 KM_SLEEP) == 0); 3319 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3320 devs, ndevs) == 0); 3321 } 3322 } 3323 3324 /* 3325 * Stop and drop level 2 ARC devices 3326 */ 3327 void 3328 spa_l2cache_drop(spa_t *spa) 3329 { 3330 vdev_t *vd; 3331 int i; 3332 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3333 3334 for (i = 0; i < sav->sav_count; i++) { 3335 uint64_t pool; 3336 3337 vd = sav->sav_vdevs[i]; 3338 ASSERT(vd != NULL); 3339 3340 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3341 pool != 0ULL && l2arc_vdev_present(vd)) 3342 l2arc_remove_vdev(vd); 3343 } 3344 } 3345 3346 /* 3347 * Pool Creation 3348 */ 3349 int 3350 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3351 nvlist_t *zplprops) 3352 { 3353 spa_t *spa; 3354 char *altroot = NULL; 3355 vdev_t *rvd; 3356 dsl_pool_t *dp; 3357 dmu_tx_t *tx; 3358 int error = 0; 3359 uint64_t txg = TXG_INITIAL; 3360 nvlist_t **spares, **l2cache; 3361 uint_t nspares, nl2cache; 3362 uint64_t version, obj; 3363 boolean_t has_features; 3364 3365 /* 3366 * If this pool already exists, return failure. 3367 */ 3368 mutex_enter(&spa_namespace_lock); 3369 if (spa_lookup(pool) != NULL) { 3370 mutex_exit(&spa_namespace_lock); 3371 return (SET_ERROR(EEXIST)); 3372 } 3373 3374 /* 3375 * Allocate a new spa_t structure. 3376 */ 3377 (void) nvlist_lookup_string(props, 3378 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3379 spa = spa_add(pool, NULL, altroot); 3380 spa_activate(spa, spa_mode_global); 3381 3382 if (props && (error = spa_prop_validate(spa, props))) { 3383 spa_deactivate(spa); 3384 spa_remove(spa); 3385 mutex_exit(&spa_namespace_lock); 3386 return (error); 3387 } 3388 3389 has_features = B_FALSE; 3390 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3391 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3392 if (zpool_prop_feature(nvpair_name(elem))) 3393 has_features = B_TRUE; 3394 } 3395 3396 if (has_features || nvlist_lookup_uint64(props, 3397 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3398 version = SPA_VERSION; 3399 } 3400 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3401 3402 spa->spa_first_txg = txg; 3403 spa->spa_uberblock.ub_txg = txg - 1; 3404 spa->spa_uberblock.ub_version = version; 3405 spa->spa_ubsync = spa->spa_uberblock; 3406 3407 /* 3408 * Create "The Godfather" zio to hold all async IOs 3409 */ 3410 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 3411 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 3412 3413 /* 3414 * Create the root vdev. 3415 */ 3416 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3417 3418 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3419 3420 ASSERT(error != 0 || rvd != NULL); 3421 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3422 3423 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3424 error = SET_ERROR(EINVAL); 3425 3426 if (error == 0 && 3427 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3428 (error = spa_validate_aux(spa, nvroot, txg, 3429 VDEV_ALLOC_ADD)) == 0) { 3430 for (int c = 0; c < rvd->vdev_children; c++) { 3431 vdev_metaslab_set_size(rvd->vdev_child[c]); 3432 vdev_expand(rvd->vdev_child[c], txg); 3433 } 3434 } 3435 3436 spa_config_exit(spa, SCL_ALL, FTAG); 3437 3438 if (error != 0) { 3439 spa_unload(spa); 3440 spa_deactivate(spa); 3441 spa_remove(spa); 3442 mutex_exit(&spa_namespace_lock); 3443 return (error); 3444 } 3445 3446 /* 3447 * Get the list of spares, if specified. 3448 */ 3449 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3450 &spares, &nspares) == 0) { 3451 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3452 KM_SLEEP) == 0); 3453 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3454 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3455 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3456 spa_load_spares(spa); 3457 spa_config_exit(spa, SCL_ALL, FTAG); 3458 spa->spa_spares.sav_sync = B_TRUE; 3459 } 3460 3461 /* 3462 * Get the list of level 2 cache devices, if specified. 3463 */ 3464 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3465 &l2cache, &nl2cache) == 0) { 3466 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3467 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3468 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3469 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3470 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3471 spa_load_l2cache(spa); 3472 spa_config_exit(spa, SCL_ALL, FTAG); 3473 spa->spa_l2cache.sav_sync = B_TRUE; 3474 } 3475 3476 spa->spa_is_initializing = B_TRUE; 3477 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3478 spa->spa_meta_objset = dp->dp_meta_objset; 3479 spa->spa_is_initializing = B_FALSE; 3480 3481 /* 3482 * Create DDTs (dedup tables). 3483 */ 3484 ddt_create(spa); 3485 3486 spa_update_dspace(spa); 3487 3488 tx = dmu_tx_create_assigned(dp, txg); 3489 3490 /* 3491 * Create the pool config object. 3492 */ 3493 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3494 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3495 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3496 3497 if (zap_add(spa->spa_meta_objset, 3498 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3499 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3500 cmn_err(CE_PANIC, "failed to add pool config"); 3501 } 3502 3503 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3504 spa_feature_create_zap_objects(spa, tx); 3505 3506 if (zap_add(spa->spa_meta_objset, 3507 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3508 sizeof (uint64_t), 1, &version, tx) != 0) { 3509 cmn_err(CE_PANIC, "failed to add pool version"); 3510 } 3511 3512 /* Newly created pools with the right version are always deflated. */ 3513 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3514 spa->spa_deflate = TRUE; 3515 if (zap_add(spa->spa_meta_objset, 3516 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3517 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3518 cmn_err(CE_PANIC, "failed to add deflate"); 3519 } 3520 } 3521 3522 /* 3523 * Create the deferred-free bpobj. Turn off compression 3524 * because sync-to-convergence takes longer if the blocksize 3525 * keeps changing. 3526 */ 3527 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3528 dmu_object_set_compress(spa->spa_meta_objset, obj, 3529 ZIO_COMPRESS_OFF, tx); 3530 if (zap_add(spa->spa_meta_objset, 3531 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3532 sizeof (uint64_t), 1, &obj, tx) != 0) { 3533 cmn_err(CE_PANIC, "failed to add bpobj"); 3534 } 3535 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3536 spa->spa_meta_objset, obj)); 3537 3538 /* 3539 * Create the pool's history object. 3540 */ 3541 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3542 spa_history_create_obj(spa, tx); 3543 3544 /* 3545 * Set pool properties. 3546 */ 3547 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3548 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3549 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3550 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3551 3552 if (props != NULL) { 3553 spa_configfile_set(spa, props, B_FALSE); 3554 spa_sync_props(props, tx); 3555 } 3556 3557 dmu_tx_commit(tx); 3558 3559 spa->spa_sync_on = B_TRUE; 3560 txg_sync_start(spa->spa_dsl_pool); 3561 3562 /* 3563 * We explicitly wait for the first transaction to complete so that our 3564 * bean counters are appropriately updated. 3565 */ 3566 txg_wait_synced(spa->spa_dsl_pool, txg); 3567 3568 spa_config_sync(spa, B_FALSE, B_TRUE); 3569 3570 spa_history_log_version(spa, "create"); 3571 3572 spa->spa_minref = refcount_count(&spa->spa_refcount); 3573 3574 mutex_exit(&spa_namespace_lock); 3575 3576 return (0); 3577 } 3578 3579 #ifdef _KERNEL 3580 /* 3581 * Get the root pool information from the root disk, then import the root pool 3582 * during the system boot up time. 3583 */ 3584 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3585 3586 static nvlist_t * 3587 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3588 { 3589 nvlist_t *config; 3590 nvlist_t *nvtop, *nvroot; 3591 uint64_t pgid; 3592 3593 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3594 return (NULL); 3595 3596 /* 3597 * Add this top-level vdev to the child array. 3598 */ 3599 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3600 &nvtop) == 0); 3601 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3602 &pgid) == 0); 3603 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3604 3605 /* 3606 * Put this pool's top-level vdevs into a root vdev. 3607 */ 3608 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3609 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3610 VDEV_TYPE_ROOT) == 0); 3611 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3612 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3613 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3614 &nvtop, 1) == 0); 3615 3616 /* 3617 * Replace the existing vdev_tree with the new root vdev in 3618 * this pool's configuration (remove the old, add the new). 3619 */ 3620 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3621 nvlist_free(nvroot); 3622 return (config); 3623 } 3624 3625 /* 3626 * Walk the vdev tree and see if we can find a device with "better" 3627 * configuration. A configuration is "better" if the label on that 3628 * device has a more recent txg. 3629 */ 3630 static void 3631 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3632 { 3633 for (int c = 0; c < vd->vdev_children; c++) 3634 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3635 3636 if (vd->vdev_ops->vdev_op_leaf) { 3637 nvlist_t *label; 3638 uint64_t label_txg; 3639 3640 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3641 &label) != 0) 3642 return; 3643 3644 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3645 &label_txg) == 0); 3646 3647 /* 3648 * Do we have a better boot device? 3649 */ 3650 if (label_txg > *txg) { 3651 *txg = label_txg; 3652 *avd = vd; 3653 } 3654 nvlist_free(label); 3655 } 3656 } 3657 3658 /* 3659 * Import a root pool. 3660 * 3661 * For x86. devpath_list will consist of devid and/or physpath name of 3662 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3663 * The GRUB "findroot" command will return the vdev we should boot. 3664 * 3665 * For Sparc, devpath_list consists the physpath name of the booting device 3666 * no matter the rootpool is a single device pool or a mirrored pool. 3667 * e.g. 3668 * "/pci@1f,0/ide@d/disk@0,0:a" 3669 */ 3670 int 3671 spa_import_rootpool(char *devpath, char *devid) 3672 { 3673 spa_t *spa; 3674 vdev_t *rvd, *bvd, *avd = NULL; 3675 nvlist_t *config, *nvtop; 3676 uint64_t guid, txg; 3677 char *pname; 3678 int error; 3679 3680 /* 3681 * Read the label from the boot device and generate a configuration. 3682 */ 3683 config = spa_generate_rootconf(devpath, devid, &guid); 3684 #if defined(_OBP) && defined(_KERNEL) 3685 if (config == NULL) { 3686 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3687 /* iscsi boot */ 3688 get_iscsi_bootpath_phy(devpath); 3689 config = spa_generate_rootconf(devpath, devid, &guid); 3690 } 3691 } 3692 #endif 3693 if (config == NULL) { 3694 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3695 devpath); 3696 return (SET_ERROR(EIO)); 3697 } 3698 3699 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3700 &pname) == 0); 3701 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3702 3703 mutex_enter(&spa_namespace_lock); 3704 if ((spa = spa_lookup(pname)) != NULL) { 3705 /* 3706 * Remove the existing root pool from the namespace so that we 3707 * can replace it with the correct config we just read in. 3708 */ 3709 spa_remove(spa); 3710 } 3711 3712 spa = spa_add(pname, config, NULL); 3713 spa->spa_is_root = B_TRUE; 3714 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3715 3716 /* 3717 * Build up a vdev tree based on the boot device's label config. 3718 */ 3719 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3720 &nvtop) == 0); 3721 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3722 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3723 VDEV_ALLOC_ROOTPOOL); 3724 spa_config_exit(spa, SCL_ALL, FTAG); 3725 if (error) { 3726 mutex_exit(&spa_namespace_lock); 3727 nvlist_free(config); 3728 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3729 pname); 3730 return (error); 3731 } 3732 3733 /* 3734 * Get the boot vdev. 3735 */ 3736 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3737 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3738 (u_longlong_t)guid); 3739 error = SET_ERROR(ENOENT); 3740 goto out; 3741 } 3742 3743 /* 3744 * Determine if there is a better boot device. 3745 */ 3746 avd = bvd; 3747 spa_alt_rootvdev(rvd, &avd, &txg); 3748 if (avd != bvd) { 3749 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3750 "try booting from '%s'", avd->vdev_path); 3751 error = SET_ERROR(EINVAL); 3752 goto out; 3753 } 3754 3755 /* 3756 * If the boot device is part of a spare vdev then ensure that 3757 * we're booting off the active spare. 3758 */ 3759 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3760 !bvd->vdev_isspare) { 3761 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3762 "try booting from '%s'", 3763 bvd->vdev_parent-> 3764 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3765 error = SET_ERROR(EINVAL); 3766 goto out; 3767 } 3768 3769 error = 0; 3770 out: 3771 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3772 vdev_free(rvd); 3773 spa_config_exit(spa, SCL_ALL, FTAG); 3774 mutex_exit(&spa_namespace_lock); 3775 3776 nvlist_free(config); 3777 return (error); 3778 } 3779 3780 #endif 3781 3782 /* 3783 * Import a non-root pool into the system. 3784 */ 3785 int 3786 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3787 { 3788 spa_t *spa; 3789 char *altroot = NULL; 3790 spa_load_state_t state = SPA_LOAD_IMPORT; 3791 zpool_rewind_policy_t policy; 3792 uint64_t mode = spa_mode_global; 3793 uint64_t readonly = B_FALSE; 3794 int error; 3795 nvlist_t *nvroot; 3796 nvlist_t **spares, **l2cache; 3797 uint_t nspares, nl2cache; 3798 3799 /* 3800 * If a pool with this name exists, return failure. 3801 */ 3802 mutex_enter(&spa_namespace_lock); 3803 if (spa_lookup(pool) != NULL) { 3804 mutex_exit(&spa_namespace_lock); 3805 return (SET_ERROR(EEXIST)); 3806 } 3807 3808 /* 3809 * Create and initialize the spa structure. 3810 */ 3811 (void) nvlist_lookup_string(props, 3812 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3813 (void) nvlist_lookup_uint64(props, 3814 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3815 if (readonly) 3816 mode = FREAD; 3817 spa = spa_add(pool, config, altroot); 3818 spa->spa_import_flags = flags; 3819 3820 /* 3821 * Verbatim import - Take a pool and insert it into the namespace 3822 * as if it had been loaded at boot. 3823 */ 3824 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3825 if (props != NULL) 3826 spa_configfile_set(spa, props, B_FALSE); 3827 3828 spa_config_sync(spa, B_FALSE, B_TRUE); 3829 3830 mutex_exit(&spa_namespace_lock); 3831 spa_history_log_version(spa, "import"); 3832 3833 return (0); 3834 } 3835 3836 spa_activate(spa, mode); 3837 3838 /* 3839 * Don't start async tasks until we know everything is healthy. 3840 */ 3841 spa_async_suspend(spa); 3842 3843 zpool_get_rewind_policy(config, &policy); 3844 if (policy.zrp_request & ZPOOL_DO_REWIND) 3845 state = SPA_LOAD_RECOVER; 3846 3847 /* 3848 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3849 * because the user-supplied config is actually the one to trust when 3850 * doing an import. 3851 */ 3852 if (state != SPA_LOAD_RECOVER) 3853 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3854 3855 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3856 policy.zrp_request); 3857 3858 /* 3859 * Propagate anything learned while loading the pool and pass it 3860 * back to caller (i.e. rewind info, missing devices, etc). 3861 */ 3862 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3863 spa->spa_load_info) == 0); 3864 3865 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3866 /* 3867 * Toss any existing sparelist, as it doesn't have any validity 3868 * anymore, and conflicts with spa_has_spare(). 3869 */ 3870 if (spa->spa_spares.sav_config) { 3871 nvlist_free(spa->spa_spares.sav_config); 3872 spa->spa_spares.sav_config = NULL; 3873 spa_load_spares(spa); 3874 } 3875 if (spa->spa_l2cache.sav_config) { 3876 nvlist_free(spa->spa_l2cache.sav_config); 3877 spa->spa_l2cache.sav_config = NULL; 3878 spa_load_l2cache(spa); 3879 } 3880 3881 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3882 &nvroot) == 0); 3883 if (error == 0) 3884 error = spa_validate_aux(spa, nvroot, -1ULL, 3885 VDEV_ALLOC_SPARE); 3886 if (error == 0) 3887 error = spa_validate_aux(spa, nvroot, -1ULL, 3888 VDEV_ALLOC_L2CACHE); 3889 spa_config_exit(spa, SCL_ALL, FTAG); 3890 3891 if (props != NULL) 3892 spa_configfile_set(spa, props, B_FALSE); 3893 3894 if (error != 0 || (props && spa_writeable(spa) && 3895 (error = spa_prop_set(spa, props)))) { 3896 spa_unload(spa); 3897 spa_deactivate(spa); 3898 spa_remove(spa); 3899 mutex_exit(&spa_namespace_lock); 3900 return (error); 3901 } 3902 3903 spa_async_resume(spa); 3904 3905 /* 3906 * Override any spares and level 2 cache devices as specified by 3907 * the user, as these may have correct device names/devids, etc. 3908 */ 3909 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3910 &spares, &nspares) == 0) { 3911 if (spa->spa_spares.sav_config) 3912 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3913 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3914 else 3915 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3916 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3917 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3918 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3919 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3920 spa_load_spares(spa); 3921 spa_config_exit(spa, SCL_ALL, FTAG); 3922 spa->spa_spares.sav_sync = B_TRUE; 3923 } 3924 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3925 &l2cache, &nl2cache) == 0) { 3926 if (spa->spa_l2cache.sav_config) 3927 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3928 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3929 else 3930 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3931 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3932 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3933 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3934 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3935 spa_load_l2cache(spa); 3936 spa_config_exit(spa, SCL_ALL, FTAG); 3937 spa->spa_l2cache.sav_sync = B_TRUE; 3938 } 3939 3940 /* 3941 * Check for any removed devices. 3942 */ 3943 if (spa->spa_autoreplace) { 3944 spa_aux_check_removed(&spa->spa_spares); 3945 spa_aux_check_removed(&spa->spa_l2cache); 3946 } 3947 3948 if (spa_writeable(spa)) { 3949 /* 3950 * Update the config cache to include the newly-imported pool. 3951 */ 3952 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3953 } 3954 3955 /* 3956 * It's possible that the pool was expanded while it was exported. 3957 * We kick off an async task to handle this for us. 3958 */ 3959 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3960 3961 mutex_exit(&spa_namespace_lock); 3962 spa_history_log_version(spa, "import"); 3963 3964 return (0); 3965 } 3966 3967 nvlist_t * 3968 spa_tryimport(nvlist_t *tryconfig) 3969 { 3970 nvlist_t *config = NULL; 3971 char *poolname; 3972 spa_t *spa; 3973 uint64_t state; 3974 int error; 3975 3976 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3977 return (NULL); 3978 3979 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3980 return (NULL); 3981 3982 /* 3983 * Create and initialize the spa structure. 3984 */ 3985 mutex_enter(&spa_namespace_lock); 3986 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 3987 spa_activate(spa, FREAD); 3988 3989 /* 3990 * Pass off the heavy lifting to spa_load(). 3991 * Pass TRUE for mosconfig because the user-supplied config 3992 * is actually the one to trust when doing an import. 3993 */ 3994 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 3995 3996 /* 3997 * If 'tryconfig' was at least parsable, return the current config. 3998 */ 3999 if (spa->spa_root_vdev != NULL) { 4000 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4001 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4002 poolname) == 0); 4003 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4004 state) == 0); 4005 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4006 spa->spa_uberblock.ub_timestamp) == 0); 4007 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4008 spa->spa_load_info) == 0); 4009 4010 /* 4011 * If the bootfs property exists on this pool then we 4012 * copy it out so that external consumers can tell which 4013 * pools are bootable. 4014 */ 4015 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4016 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4017 4018 /* 4019 * We have to play games with the name since the 4020 * pool was opened as TRYIMPORT_NAME. 4021 */ 4022 if (dsl_dsobj_to_dsname(spa_name(spa), 4023 spa->spa_bootfs, tmpname) == 0) { 4024 char *cp; 4025 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4026 4027 cp = strchr(tmpname, '/'); 4028 if (cp == NULL) { 4029 (void) strlcpy(dsname, tmpname, 4030 MAXPATHLEN); 4031 } else { 4032 (void) snprintf(dsname, MAXPATHLEN, 4033 "%s/%s", poolname, ++cp); 4034 } 4035 VERIFY(nvlist_add_string(config, 4036 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4037 kmem_free(dsname, MAXPATHLEN); 4038 } 4039 kmem_free(tmpname, MAXPATHLEN); 4040 } 4041 4042 /* 4043 * Add the list of hot spares and level 2 cache devices. 4044 */ 4045 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4046 spa_add_spares(spa, config); 4047 spa_add_l2cache(spa, config); 4048 spa_config_exit(spa, SCL_CONFIG, FTAG); 4049 } 4050 4051 spa_unload(spa); 4052 spa_deactivate(spa); 4053 spa_remove(spa); 4054 mutex_exit(&spa_namespace_lock); 4055 4056 return (config); 4057 } 4058 4059 /* 4060 * Pool export/destroy 4061 * 4062 * The act of destroying or exporting a pool is very simple. We make sure there 4063 * is no more pending I/O and any references to the pool are gone. Then, we 4064 * update the pool state and sync all the labels to disk, removing the 4065 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4066 * we don't sync the labels or remove the configuration cache. 4067 */ 4068 static int 4069 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4070 boolean_t force, boolean_t hardforce) 4071 { 4072 spa_t *spa; 4073 4074 if (oldconfig) 4075 *oldconfig = NULL; 4076 4077 if (!(spa_mode_global & FWRITE)) 4078 return (SET_ERROR(EROFS)); 4079 4080 mutex_enter(&spa_namespace_lock); 4081 if ((spa = spa_lookup(pool)) == NULL) { 4082 mutex_exit(&spa_namespace_lock); 4083 return (SET_ERROR(ENOENT)); 4084 } 4085 4086 /* 4087 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4088 * reacquire the namespace lock, and see if we can export. 4089 */ 4090 spa_open_ref(spa, FTAG); 4091 mutex_exit(&spa_namespace_lock); 4092 spa_async_suspend(spa); 4093 mutex_enter(&spa_namespace_lock); 4094 spa_close(spa, FTAG); 4095 4096 /* 4097 * The pool will be in core if it's openable, 4098 * in which case we can modify its state. 4099 */ 4100 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4101 /* 4102 * Objsets may be open only because they're dirty, so we 4103 * have to force it to sync before checking spa_refcnt. 4104 */ 4105 txg_wait_synced(spa->spa_dsl_pool, 0); 4106 4107 /* 4108 * A pool cannot be exported or destroyed if there are active 4109 * references. If we are resetting a pool, allow references by 4110 * fault injection handlers. 4111 */ 4112 if (!spa_refcount_zero(spa) || 4113 (spa->spa_inject_ref != 0 && 4114 new_state != POOL_STATE_UNINITIALIZED)) { 4115 spa_async_resume(spa); 4116 mutex_exit(&spa_namespace_lock); 4117 return (SET_ERROR(EBUSY)); 4118 } 4119 4120 /* 4121 * A pool cannot be exported if it has an active shared spare. 4122 * This is to prevent other pools stealing the active spare 4123 * from an exported pool. At user's own will, such pool can 4124 * be forcedly exported. 4125 */ 4126 if (!force && new_state == POOL_STATE_EXPORTED && 4127 spa_has_active_shared_spare(spa)) { 4128 spa_async_resume(spa); 4129 mutex_exit(&spa_namespace_lock); 4130 return (SET_ERROR(EXDEV)); 4131 } 4132 4133 /* 4134 * We want this to be reflected on every label, 4135 * so mark them all dirty. spa_unload() will do the 4136 * final sync that pushes these changes out. 4137 */ 4138 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4139 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4140 spa->spa_state = new_state; 4141 spa->spa_final_txg = spa_last_synced_txg(spa) + 4142 TXG_DEFER_SIZE + 1; 4143 vdev_config_dirty(spa->spa_root_vdev); 4144 spa_config_exit(spa, SCL_ALL, FTAG); 4145 } 4146 } 4147 4148 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4149 4150 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4151 spa_unload(spa); 4152 spa_deactivate(spa); 4153 } 4154 4155 if (oldconfig && spa->spa_config) 4156 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4157 4158 if (new_state != POOL_STATE_UNINITIALIZED) { 4159 if (!hardforce) 4160 spa_config_sync(spa, B_TRUE, B_TRUE); 4161 spa_remove(spa); 4162 } 4163 mutex_exit(&spa_namespace_lock); 4164 4165 return (0); 4166 } 4167 4168 /* 4169 * Destroy a storage pool. 4170 */ 4171 int 4172 spa_destroy(char *pool) 4173 { 4174 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4175 B_FALSE, B_FALSE)); 4176 } 4177 4178 /* 4179 * Export a storage pool. 4180 */ 4181 int 4182 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4183 boolean_t hardforce) 4184 { 4185 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4186 force, hardforce)); 4187 } 4188 4189 /* 4190 * Similar to spa_export(), this unloads the spa_t without actually removing it 4191 * from the namespace in any way. 4192 */ 4193 int 4194 spa_reset(char *pool) 4195 { 4196 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4197 B_FALSE, B_FALSE)); 4198 } 4199 4200 /* 4201 * ========================================================================== 4202 * Device manipulation 4203 * ========================================================================== 4204 */ 4205 4206 /* 4207 * Add a device to a storage pool. 4208 */ 4209 int 4210 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4211 { 4212 uint64_t txg, id; 4213 int error; 4214 vdev_t *rvd = spa->spa_root_vdev; 4215 vdev_t *vd, *tvd; 4216 nvlist_t **spares, **l2cache; 4217 uint_t nspares, nl2cache; 4218 4219 ASSERT(spa_writeable(spa)); 4220 4221 txg = spa_vdev_enter(spa); 4222 4223 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4224 VDEV_ALLOC_ADD)) != 0) 4225 return (spa_vdev_exit(spa, NULL, txg, error)); 4226 4227 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4228 4229 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4230 &nspares) != 0) 4231 nspares = 0; 4232 4233 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4234 &nl2cache) != 0) 4235 nl2cache = 0; 4236 4237 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4238 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4239 4240 if (vd->vdev_children != 0 && 4241 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4242 return (spa_vdev_exit(spa, vd, txg, error)); 4243 4244 /* 4245 * We must validate the spares and l2cache devices after checking the 4246 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4247 */ 4248 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4249 return (spa_vdev_exit(spa, vd, txg, error)); 4250 4251 /* 4252 * Transfer each new top-level vdev from vd to rvd. 4253 */ 4254 for (int c = 0; c < vd->vdev_children; c++) { 4255 4256 /* 4257 * Set the vdev id to the first hole, if one exists. 4258 */ 4259 for (id = 0; id < rvd->vdev_children; id++) { 4260 if (rvd->vdev_child[id]->vdev_ishole) { 4261 vdev_free(rvd->vdev_child[id]); 4262 break; 4263 } 4264 } 4265 tvd = vd->vdev_child[c]; 4266 vdev_remove_child(vd, tvd); 4267 tvd->vdev_id = id; 4268 vdev_add_child(rvd, tvd); 4269 vdev_config_dirty(tvd); 4270 } 4271 4272 if (nspares != 0) { 4273 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4274 ZPOOL_CONFIG_SPARES); 4275 spa_load_spares(spa); 4276 spa->spa_spares.sav_sync = B_TRUE; 4277 } 4278 4279 if (nl2cache != 0) { 4280 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4281 ZPOOL_CONFIG_L2CACHE); 4282 spa_load_l2cache(spa); 4283 spa->spa_l2cache.sav_sync = B_TRUE; 4284 } 4285 4286 /* 4287 * We have to be careful when adding new vdevs to an existing pool. 4288 * If other threads start allocating from these vdevs before we 4289 * sync the config cache, and we lose power, then upon reboot we may 4290 * fail to open the pool because there are DVAs that the config cache 4291 * can't translate. Therefore, we first add the vdevs without 4292 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4293 * and then let spa_config_update() initialize the new metaslabs. 4294 * 4295 * spa_load() checks for added-but-not-initialized vdevs, so that 4296 * if we lose power at any point in this sequence, the remaining 4297 * steps will be completed the next time we load the pool. 4298 */ 4299 (void) spa_vdev_exit(spa, vd, txg, 0); 4300 4301 mutex_enter(&spa_namespace_lock); 4302 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4303 mutex_exit(&spa_namespace_lock); 4304 4305 return (0); 4306 } 4307 4308 /* 4309 * Attach a device to a mirror. The arguments are the path to any device 4310 * in the mirror, and the nvroot for the new device. If the path specifies 4311 * a device that is not mirrored, we automatically insert the mirror vdev. 4312 * 4313 * If 'replacing' is specified, the new device is intended to replace the 4314 * existing device; in this case the two devices are made into their own 4315 * mirror using the 'replacing' vdev, which is functionally identical to 4316 * the mirror vdev (it actually reuses all the same ops) but has a few 4317 * extra rules: you can't attach to it after it's been created, and upon 4318 * completion of resilvering, the first disk (the one being replaced) 4319 * is automatically detached. 4320 */ 4321 int 4322 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4323 { 4324 uint64_t txg, dtl_max_txg; 4325 vdev_t *rvd = spa->spa_root_vdev; 4326 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4327 vdev_ops_t *pvops; 4328 char *oldvdpath, *newvdpath; 4329 int newvd_isspare; 4330 int error; 4331 4332 ASSERT(spa_writeable(spa)); 4333 4334 txg = spa_vdev_enter(spa); 4335 4336 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4337 4338 if (oldvd == NULL) 4339 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4340 4341 if (!oldvd->vdev_ops->vdev_op_leaf) 4342 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4343 4344 pvd = oldvd->vdev_parent; 4345 4346 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4347 VDEV_ALLOC_ATTACH)) != 0) 4348 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4349 4350 if (newrootvd->vdev_children != 1) 4351 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4352 4353 newvd = newrootvd->vdev_child[0]; 4354 4355 if (!newvd->vdev_ops->vdev_op_leaf) 4356 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4357 4358 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4359 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4360 4361 /* 4362 * Spares can't replace logs 4363 */ 4364 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4365 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4366 4367 if (!replacing) { 4368 /* 4369 * For attach, the only allowable parent is a mirror or the root 4370 * vdev. 4371 */ 4372 if (pvd->vdev_ops != &vdev_mirror_ops && 4373 pvd->vdev_ops != &vdev_root_ops) 4374 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4375 4376 pvops = &vdev_mirror_ops; 4377 } else { 4378 /* 4379 * Active hot spares can only be replaced by inactive hot 4380 * spares. 4381 */ 4382 if (pvd->vdev_ops == &vdev_spare_ops && 4383 oldvd->vdev_isspare && 4384 !spa_has_spare(spa, newvd->vdev_guid)) 4385 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4386 4387 /* 4388 * If the source is a hot spare, and the parent isn't already a 4389 * spare, then we want to create a new hot spare. Otherwise, we 4390 * want to create a replacing vdev. The user is not allowed to 4391 * attach to a spared vdev child unless the 'isspare' state is 4392 * the same (spare replaces spare, non-spare replaces 4393 * non-spare). 4394 */ 4395 if (pvd->vdev_ops == &vdev_replacing_ops && 4396 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4397 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4398 } else if (pvd->vdev_ops == &vdev_spare_ops && 4399 newvd->vdev_isspare != oldvd->vdev_isspare) { 4400 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4401 } 4402 4403 if (newvd->vdev_isspare) 4404 pvops = &vdev_spare_ops; 4405 else 4406 pvops = &vdev_replacing_ops; 4407 } 4408 4409 /* 4410 * Make sure the new device is big enough. 4411 */ 4412 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4413 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4414 4415 /* 4416 * The new device cannot have a higher alignment requirement 4417 * than the top-level vdev. 4418 */ 4419 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4420 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4421 4422 /* 4423 * If this is an in-place replacement, update oldvd's path and devid 4424 * to make it distinguishable from newvd, and unopenable from now on. 4425 */ 4426 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4427 spa_strfree(oldvd->vdev_path); 4428 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4429 KM_SLEEP); 4430 (void) sprintf(oldvd->vdev_path, "%s/%s", 4431 newvd->vdev_path, "old"); 4432 if (oldvd->vdev_devid != NULL) { 4433 spa_strfree(oldvd->vdev_devid); 4434 oldvd->vdev_devid = NULL; 4435 } 4436 } 4437 4438 /* mark the device being resilvered */ 4439 newvd->vdev_resilvering = B_TRUE; 4440 4441 /* 4442 * If the parent is not a mirror, or if we're replacing, insert the new 4443 * mirror/replacing/spare vdev above oldvd. 4444 */ 4445 if (pvd->vdev_ops != pvops) 4446 pvd = vdev_add_parent(oldvd, pvops); 4447 4448 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4449 ASSERT(pvd->vdev_ops == pvops); 4450 ASSERT(oldvd->vdev_parent == pvd); 4451 4452 /* 4453 * Extract the new device from its root and add it to pvd. 4454 */ 4455 vdev_remove_child(newrootvd, newvd); 4456 newvd->vdev_id = pvd->vdev_children; 4457 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4458 vdev_add_child(pvd, newvd); 4459 4460 tvd = newvd->vdev_top; 4461 ASSERT(pvd->vdev_top == tvd); 4462 ASSERT(tvd->vdev_parent == rvd); 4463 4464 vdev_config_dirty(tvd); 4465 4466 /* 4467 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4468 * for any dmu_sync-ed blocks. It will propagate upward when 4469 * spa_vdev_exit() calls vdev_dtl_reassess(). 4470 */ 4471 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4472 4473 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4474 dtl_max_txg - TXG_INITIAL); 4475 4476 if (newvd->vdev_isspare) { 4477 spa_spare_activate(newvd); 4478 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4479 } 4480 4481 oldvdpath = spa_strdup(oldvd->vdev_path); 4482 newvdpath = spa_strdup(newvd->vdev_path); 4483 newvd_isspare = newvd->vdev_isspare; 4484 4485 /* 4486 * Mark newvd's DTL dirty in this txg. 4487 */ 4488 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4489 4490 /* 4491 * Restart the resilver 4492 */ 4493 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4494 4495 /* 4496 * Commit the config 4497 */ 4498 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4499 4500 spa_history_log_internal(spa, "vdev attach", NULL, 4501 "%s vdev=%s %s vdev=%s", 4502 replacing && newvd_isspare ? "spare in" : 4503 replacing ? "replace" : "attach", newvdpath, 4504 replacing ? "for" : "to", oldvdpath); 4505 4506 spa_strfree(oldvdpath); 4507 spa_strfree(newvdpath); 4508 4509 if (spa->spa_bootfs) 4510 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4511 4512 return (0); 4513 } 4514 4515 /* 4516 * Detach a device from a mirror or replacing vdev. 4517 * If 'replace_done' is specified, only detach if the parent 4518 * is a replacing vdev. 4519 */ 4520 int 4521 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4522 { 4523 uint64_t txg; 4524 int error; 4525 vdev_t *rvd = spa->spa_root_vdev; 4526 vdev_t *vd, *pvd, *cvd, *tvd; 4527 boolean_t unspare = B_FALSE; 4528 uint64_t unspare_guid = 0; 4529 char *vdpath; 4530 4531 ASSERT(spa_writeable(spa)); 4532 4533 txg = spa_vdev_enter(spa); 4534 4535 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4536 4537 if (vd == NULL) 4538 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4539 4540 if (!vd->vdev_ops->vdev_op_leaf) 4541 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4542 4543 pvd = vd->vdev_parent; 4544 4545 /* 4546 * If the parent/child relationship is not as expected, don't do it. 4547 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4548 * vdev that's replacing B with C. The user's intent in replacing 4549 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4550 * the replace by detaching C, the expected behavior is to end up 4551 * M(A,B). But suppose that right after deciding to detach C, 4552 * the replacement of B completes. We would have M(A,C), and then 4553 * ask to detach C, which would leave us with just A -- not what 4554 * the user wanted. To prevent this, we make sure that the 4555 * parent/child relationship hasn't changed -- in this example, 4556 * that C's parent is still the replacing vdev R. 4557 */ 4558 if (pvd->vdev_guid != pguid && pguid != 0) 4559 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4560 4561 /* 4562 * Only 'replacing' or 'spare' vdevs can be replaced. 4563 */ 4564 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4565 pvd->vdev_ops != &vdev_spare_ops) 4566 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4567 4568 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4569 spa_version(spa) >= SPA_VERSION_SPARES); 4570 4571 /* 4572 * Only mirror, replacing, and spare vdevs support detach. 4573 */ 4574 if (pvd->vdev_ops != &vdev_replacing_ops && 4575 pvd->vdev_ops != &vdev_mirror_ops && 4576 pvd->vdev_ops != &vdev_spare_ops) 4577 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4578 4579 /* 4580 * If this device has the only valid copy of some data, 4581 * we cannot safely detach it. 4582 */ 4583 if (vdev_dtl_required(vd)) 4584 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4585 4586 ASSERT(pvd->vdev_children >= 2); 4587 4588 /* 4589 * If we are detaching the second disk from a replacing vdev, then 4590 * check to see if we changed the original vdev's path to have "/old" 4591 * at the end in spa_vdev_attach(). If so, undo that change now. 4592 */ 4593 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4594 vd->vdev_path != NULL) { 4595 size_t len = strlen(vd->vdev_path); 4596 4597 for (int c = 0; c < pvd->vdev_children; c++) { 4598 cvd = pvd->vdev_child[c]; 4599 4600 if (cvd == vd || cvd->vdev_path == NULL) 4601 continue; 4602 4603 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4604 strcmp(cvd->vdev_path + len, "/old") == 0) { 4605 spa_strfree(cvd->vdev_path); 4606 cvd->vdev_path = spa_strdup(vd->vdev_path); 4607 break; 4608 } 4609 } 4610 } 4611 4612 /* 4613 * If we are detaching the original disk from a spare, then it implies 4614 * that the spare should become a real disk, and be removed from the 4615 * active spare list for the pool. 4616 */ 4617 if (pvd->vdev_ops == &vdev_spare_ops && 4618 vd->vdev_id == 0 && 4619 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4620 unspare = B_TRUE; 4621 4622 /* 4623 * Erase the disk labels so the disk can be used for other things. 4624 * This must be done after all other error cases are handled, 4625 * but before we disembowel vd (so we can still do I/O to it). 4626 * But if we can't do it, don't treat the error as fatal -- 4627 * it may be that the unwritability of the disk is the reason 4628 * it's being detached! 4629 */ 4630 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4631 4632 /* 4633 * Remove vd from its parent and compact the parent's children. 4634 */ 4635 vdev_remove_child(pvd, vd); 4636 vdev_compact_children(pvd); 4637 4638 /* 4639 * Remember one of the remaining children so we can get tvd below. 4640 */ 4641 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4642 4643 /* 4644 * If we need to remove the remaining child from the list of hot spares, 4645 * do it now, marking the vdev as no longer a spare in the process. 4646 * We must do this before vdev_remove_parent(), because that can 4647 * change the GUID if it creates a new toplevel GUID. For a similar 4648 * reason, we must remove the spare now, in the same txg as the detach; 4649 * otherwise someone could attach a new sibling, change the GUID, and 4650 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4651 */ 4652 if (unspare) { 4653 ASSERT(cvd->vdev_isspare); 4654 spa_spare_remove(cvd); 4655 unspare_guid = cvd->vdev_guid; 4656 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4657 cvd->vdev_unspare = B_TRUE; 4658 } 4659 4660 /* 4661 * If the parent mirror/replacing vdev only has one child, 4662 * the parent is no longer needed. Remove it from the tree. 4663 */ 4664 if (pvd->vdev_children == 1) { 4665 if (pvd->vdev_ops == &vdev_spare_ops) 4666 cvd->vdev_unspare = B_FALSE; 4667 vdev_remove_parent(cvd); 4668 cvd->vdev_resilvering = B_FALSE; 4669 } 4670 4671 4672 /* 4673 * We don't set tvd until now because the parent we just removed 4674 * may have been the previous top-level vdev. 4675 */ 4676 tvd = cvd->vdev_top; 4677 ASSERT(tvd->vdev_parent == rvd); 4678 4679 /* 4680 * Reevaluate the parent vdev state. 4681 */ 4682 vdev_propagate_state(cvd); 4683 4684 /* 4685 * If the 'autoexpand' property is set on the pool then automatically 4686 * try to expand the size of the pool. For example if the device we 4687 * just detached was smaller than the others, it may be possible to 4688 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4689 * first so that we can obtain the updated sizes of the leaf vdevs. 4690 */ 4691 if (spa->spa_autoexpand) { 4692 vdev_reopen(tvd); 4693 vdev_expand(tvd, txg); 4694 } 4695 4696 vdev_config_dirty(tvd); 4697 4698 /* 4699 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4700 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4701 * But first make sure we're not on any *other* txg's DTL list, to 4702 * prevent vd from being accessed after it's freed. 4703 */ 4704 vdpath = spa_strdup(vd->vdev_path); 4705 for (int t = 0; t < TXG_SIZE; t++) 4706 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4707 vd->vdev_detached = B_TRUE; 4708 vdev_dirty(tvd, VDD_DTL, vd, txg); 4709 4710 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4711 4712 /* hang on to the spa before we release the lock */ 4713 spa_open_ref(spa, FTAG); 4714 4715 error = spa_vdev_exit(spa, vd, txg, 0); 4716 4717 spa_history_log_internal(spa, "detach", NULL, 4718 "vdev=%s", vdpath); 4719 spa_strfree(vdpath); 4720 4721 /* 4722 * If this was the removal of the original device in a hot spare vdev, 4723 * then we want to go through and remove the device from the hot spare 4724 * list of every other pool. 4725 */ 4726 if (unspare) { 4727 spa_t *altspa = NULL; 4728 4729 mutex_enter(&spa_namespace_lock); 4730 while ((altspa = spa_next(altspa)) != NULL) { 4731 if (altspa->spa_state != POOL_STATE_ACTIVE || 4732 altspa == spa) 4733 continue; 4734 4735 spa_open_ref(altspa, FTAG); 4736 mutex_exit(&spa_namespace_lock); 4737 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4738 mutex_enter(&spa_namespace_lock); 4739 spa_close(altspa, FTAG); 4740 } 4741 mutex_exit(&spa_namespace_lock); 4742 4743 /* search the rest of the vdevs for spares to remove */ 4744 spa_vdev_resilver_done(spa); 4745 } 4746 4747 /* all done with the spa; OK to release */ 4748 mutex_enter(&spa_namespace_lock); 4749 spa_close(spa, FTAG); 4750 mutex_exit(&spa_namespace_lock); 4751 4752 return (error); 4753 } 4754 4755 /* 4756 * Split a set of devices from their mirrors, and create a new pool from them. 4757 */ 4758 int 4759 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4760 nvlist_t *props, boolean_t exp) 4761 { 4762 int error = 0; 4763 uint64_t txg, *glist; 4764 spa_t *newspa; 4765 uint_t c, children, lastlog; 4766 nvlist_t **child, *nvl, *tmp; 4767 dmu_tx_t *tx; 4768 char *altroot = NULL; 4769 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4770 boolean_t activate_slog; 4771 4772 ASSERT(spa_writeable(spa)); 4773 4774 txg = spa_vdev_enter(spa); 4775 4776 /* clear the log and flush everything up to now */ 4777 activate_slog = spa_passivate_log(spa); 4778 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4779 error = spa_offline_log(spa); 4780 txg = spa_vdev_config_enter(spa); 4781 4782 if (activate_slog) 4783 spa_activate_log(spa); 4784 4785 if (error != 0) 4786 return (spa_vdev_exit(spa, NULL, txg, error)); 4787 4788 /* check new spa name before going any further */ 4789 if (spa_lookup(newname) != NULL) 4790 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4791 4792 /* 4793 * scan through all the children to ensure they're all mirrors 4794 */ 4795 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4796 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4797 &children) != 0) 4798 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4799 4800 /* first, check to ensure we've got the right child count */ 4801 rvd = spa->spa_root_vdev; 4802 lastlog = 0; 4803 for (c = 0; c < rvd->vdev_children; c++) { 4804 vdev_t *vd = rvd->vdev_child[c]; 4805 4806 /* don't count the holes & logs as children */ 4807 if (vd->vdev_islog || vd->vdev_ishole) { 4808 if (lastlog == 0) 4809 lastlog = c; 4810 continue; 4811 } 4812 4813 lastlog = 0; 4814 } 4815 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4816 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4817 4818 /* next, ensure no spare or cache devices are part of the split */ 4819 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4820 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4821 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4822 4823 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4824 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4825 4826 /* then, loop over each vdev and validate it */ 4827 for (c = 0; c < children; c++) { 4828 uint64_t is_hole = 0; 4829 4830 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4831 &is_hole); 4832 4833 if (is_hole != 0) { 4834 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4835 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4836 continue; 4837 } else { 4838 error = SET_ERROR(EINVAL); 4839 break; 4840 } 4841 } 4842 4843 /* which disk is going to be split? */ 4844 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4845 &glist[c]) != 0) { 4846 error = SET_ERROR(EINVAL); 4847 break; 4848 } 4849 4850 /* look it up in the spa */ 4851 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4852 if (vml[c] == NULL) { 4853 error = SET_ERROR(ENODEV); 4854 break; 4855 } 4856 4857 /* make sure there's nothing stopping the split */ 4858 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4859 vml[c]->vdev_islog || 4860 vml[c]->vdev_ishole || 4861 vml[c]->vdev_isspare || 4862 vml[c]->vdev_isl2cache || 4863 !vdev_writeable(vml[c]) || 4864 vml[c]->vdev_children != 0 || 4865 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4866 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4867 error = SET_ERROR(EINVAL); 4868 break; 4869 } 4870 4871 if (vdev_dtl_required(vml[c])) { 4872 error = SET_ERROR(EBUSY); 4873 break; 4874 } 4875 4876 /* we need certain info from the top level */ 4877 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4878 vml[c]->vdev_top->vdev_ms_array) == 0); 4879 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4880 vml[c]->vdev_top->vdev_ms_shift) == 0); 4881 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4882 vml[c]->vdev_top->vdev_asize) == 0); 4883 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4884 vml[c]->vdev_top->vdev_ashift) == 0); 4885 } 4886 4887 if (error != 0) { 4888 kmem_free(vml, children * sizeof (vdev_t *)); 4889 kmem_free(glist, children * sizeof (uint64_t)); 4890 return (spa_vdev_exit(spa, NULL, txg, error)); 4891 } 4892 4893 /* stop writers from using the disks */ 4894 for (c = 0; c < children; c++) { 4895 if (vml[c] != NULL) 4896 vml[c]->vdev_offline = B_TRUE; 4897 } 4898 vdev_reopen(spa->spa_root_vdev); 4899 4900 /* 4901 * Temporarily record the splitting vdevs in the spa config. This 4902 * will disappear once the config is regenerated. 4903 */ 4904 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4905 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4906 glist, children) == 0); 4907 kmem_free(glist, children * sizeof (uint64_t)); 4908 4909 mutex_enter(&spa->spa_props_lock); 4910 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4911 nvl) == 0); 4912 mutex_exit(&spa->spa_props_lock); 4913 spa->spa_config_splitting = nvl; 4914 vdev_config_dirty(spa->spa_root_vdev); 4915 4916 /* configure and create the new pool */ 4917 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4918 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4919 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4920 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4921 spa_version(spa)) == 0); 4922 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4923 spa->spa_config_txg) == 0); 4924 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4925 spa_generate_guid(NULL)) == 0); 4926 (void) nvlist_lookup_string(props, 4927 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4928 4929 /* add the new pool to the namespace */ 4930 newspa = spa_add(newname, config, altroot); 4931 newspa->spa_config_txg = spa->spa_config_txg; 4932 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4933 4934 /* release the spa config lock, retaining the namespace lock */ 4935 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4936 4937 if (zio_injection_enabled) 4938 zio_handle_panic_injection(spa, FTAG, 1); 4939 4940 spa_activate(newspa, spa_mode_global); 4941 spa_async_suspend(newspa); 4942 4943 /* create the new pool from the disks of the original pool */ 4944 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4945 if (error) 4946 goto out; 4947 4948 /* if that worked, generate a real config for the new pool */ 4949 if (newspa->spa_root_vdev != NULL) { 4950 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4951 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4952 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4953 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4954 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4955 B_TRUE)); 4956 } 4957 4958 /* set the props */ 4959 if (props != NULL) { 4960 spa_configfile_set(newspa, props, B_FALSE); 4961 error = spa_prop_set(newspa, props); 4962 if (error) 4963 goto out; 4964 } 4965 4966 /* flush everything */ 4967 txg = spa_vdev_config_enter(newspa); 4968 vdev_config_dirty(newspa->spa_root_vdev); 4969 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 4970 4971 if (zio_injection_enabled) 4972 zio_handle_panic_injection(spa, FTAG, 2); 4973 4974 spa_async_resume(newspa); 4975 4976 /* finally, update the original pool's config */ 4977 txg = spa_vdev_config_enter(spa); 4978 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 4979 error = dmu_tx_assign(tx, TXG_WAIT); 4980 if (error != 0) 4981 dmu_tx_abort(tx); 4982 for (c = 0; c < children; c++) { 4983 if (vml[c] != NULL) { 4984 vdev_split(vml[c]); 4985 if (error == 0) 4986 spa_history_log_internal(spa, "detach", tx, 4987 "vdev=%s", vml[c]->vdev_path); 4988 vdev_free(vml[c]); 4989 } 4990 } 4991 vdev_config_dirty(spa->spa_root_vdev); 4992 spa->spa_config_splitting = NULL; 4993 nvlist_free(nvl); 4994 if (error == 0) 4995 dmu_tx_commit(tx); 4996 (void) spa_vdev_exit(spa, NULL, txg, 0); 4997 4998 if (zio_injection_enabled) 4999 zio_handle_panic_injection(spa, FTAG, 3); 5000 5001 /* split is complete; log a history record */ 5002 spa_history_log_internal(newspa, "split", NULL, 5003 "from pool %s", spa_name(spa)); 5004 5005 kmem_free(vml, children * sizeof (vdev_t *)); 5006 5007 /* if we're not going to mount the filesystems in userland, export */ 5008 if (exp) 5009 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5010 B_FALSE, B_FALSE); 5011 5012 return (error); 5013 5014 out: 5015 spa_unload(newspa); 5016 spa_deactivate(newspa); 5017 spa_remove(newspa); 5018 5019 txg = spa_vdev_config_enter(spa); 5020 5021 /* re-online all offlined disks */ 5022 for (c = 0; c < children; c++) { 5023 if (vml[c] != NULL) 5024 vml[c]->vdev_offline = B_FALSE; 5025 } 5026 vdev_reopen(spa->spa_root_vdev); 5027 5028 nvlist_free(spa->spa_config_splitting); 5029 spa->spa_config_splitting = NULL; 5030 (void) spa_vdev_exit(spa, NULL, txg, error); 5031 5032 kmem_free(vml, children * sizeof (vdev_t *)); 5033 return (error); 5034 } 5035 5036 static nvlist_t * 5037 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5038 { 5039 for (int i = 0; i < count; i++) { 5040 uint64_t guid; 5041 5042 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5043 &guid) == 0); 5044 5045 if (guid == target_guid) 5046 return (nvpp[i]); 5047 } 5048 5049 return (NULL); 5050 } 5051 5052 static void 5053 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5054 nvlist_t *dev_to_remove) 5055 { 5056 nvlist_t **newdev = NULL; 5057 5058 if (count > 1) 5059 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5060 5061 for (int i = 0, j = 0; i < count; i++) { 5062 if (dev[i] == dev_to_remove) 5063 continue; 5064 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5065 } 5066 5067 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5068 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5069 5070 for (int i = 0; i < count - 1; i++) 5071 nvlist_free(newdev[i]); 5072 5073 if (count > 1) 5074 kmem_free(newdev, (count - 1) * sizeof (void *)); 5075 } 5076 5077 /* 5078 * Evacuate the device. 5079 */ 5080 static int 5081 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5082 { 5083 uint64_t txg; 5084 int error = 0; 5085 5086 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5087 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5088 ASSERT(vd == vd->vdev_top); 5089 5090 /* 5091 * Evacuate the device. We don't hold the config lock as writer 5092 * since we need to do I/O but we do keep the 5093 * spa_namespace_lock held. Once this completes the device 5094 * should no longer have any blocks allocated on it. 5095 */ 5096 if (vd->vdev_islog) { 5097 if (vd->vdev_stat.vs_alloc != 0) 5098 error = spa_offline_log(spa); 5099 } else { 5100 error = SET_ERROR(ENOTSUP); 5101 } 5102 5103 if (error) 5104 return (error); 5105 5106 /* 5107 * The evacuation succeeded. Remove any remaining MOS metadata 5108 * associated with this vdev, and wait for these changes to sync. 5109 */ 5110 ASSERT0(vd->vdev_stat.vs_alloc); 5111 txg = spa_vdev_config_enter(spa); 5112 vd->vdev_removing = B_TRUE; 5113 vdev_dirty(vd, 0, NULL, txg); 5114 vdev_config_dirty(vd); 5115 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5116 5117 return (0); 5118 } 5119 5120 /* 5121 * Complete the removal by cleaning up the namespace. 5122 */ 5123 static void 5124 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5125 { 5126 vdev_t *rvd = spa->spa_root_vdev; 5127 uint64_t id = vd->vdev_id; 5128 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5129 5130 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5131 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5132 ASSERT(vd == vd->vdev_top); 5133 5134 /* 5135 * Only remove any devices which are empty. 5136 */ 5137 if (vd->vdev_stat.vs_alloc != 0) 5138 return; 5139 5140 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5141 5142 if (list_link_active(&vd->vdev_state_dirty_node)) 5143 vdev_state_clean(vd); 5144 if (list_link_active(&vd->vdev_config_dirty_node)) 5145 vdev_config_clean(vd); 5146 5147 vdev_free(vd); 5148 5149 if (last_vdev) { 5150 vdev_compact_children(rvd); 5151 } else { 5152 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5153 vdev_add_child(rvd, vd); 5154 } 5155 vdev_config_dirty(rvd); 5156 5157 /* 5158 * Reassess the health of our root vdev. 5159 */ 5160 vdev_reopen(rvd); 5161 } 5162 5163 /* 5164 * Remove a device from the pool - 5165 * 5166 * Removing a device from the vdev namespace requires several steps 5167 * and can take a significant amount of time. As a result we use 5168 * the spa_vdev_config_[enter/exit] functions which allow us to 5169 * grab and release the spa_config_lock while still holding the namespace 5170 * lock. During each step the configuration is synced out. 5171 */ 5172 5173 /* 5174 * Remove a device from the pool. Currently, this supports removing only hot 5175 * spares, slogs, and level 2 ARC devices. 5176 */ 5177 int 5178 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5179 { 5180 vdev_t *vd; 5181 metaslab_group_t *mg; 5182 nvlist_t **spares, **l2cache, *nv; 5183 uint64_t txg = 0; 5184 uint_t nspares, nl2cache; 5185 int error = 0; 5186 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5187 5188 ASSERT(spa_writeable(spa)); 5189 5190 if (!locked) 5191 txg = spa_vdev_enter(spa); 5192 5193 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5194 5195 if (spa->spa_spares.sav_vdevs != NULL && 5196 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5197 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5198 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5199 /* 5200 * Only remove the hot spare if it's not currently in use 5201 * in this pool. 5202 */ 5203 if (vd == NULL || unspare) { 5204 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5205 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5206 spa_load_spares(spa); 5207 spa->spa_spares.sav_sync = B_TRUE; 5208 } else { 5209 error = SET_ERROR(EBUSY); 5210 } 5211 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5212 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5213 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5214 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5215 /* 5216 * Cache devices can always be removed. 5217 */ 5218 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5219 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5220 spa_load_l2cache(spa); 5221 spa->spa_l2cache.sav_sync = B_TRUE; 5222 } else if (vd != NULL && vd->vdev_islog) { 5223 ASSERT(!locked); 5224 ASSERT(vd == vd->vdev_top); 5225 5226 /* 5227 * XXX - Once we have bp-rewrite this should 5228 * become the common case. 5229 */ 5230 5231 mg = vd->vdev_mg; 5232 5233 /* 5234 * Stop allocating from this vdev. 5235 */ 5236 metaslab_group_passivate(mg); 5237 5238 /* 5239 * Wait for the youngest allocations and frees to sync, 5240 * and then wait for the deferral of those frees to finish. 5241 */ 5242 spa_vdev_config_exit(spa, NULL, 5243 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5244 5245 /* 5246 * Attempt to evacuate the vdev. 5247 */ 5248 error = spa_vdev_remove_evacuate(spa, vd); 5249 5250 txg = spa_vdev_config_enter(spa); 5251 5252 /* 5253 * If we couldn't evacuate the vdev, unwind. 5254 */ 5255 if (error) { 5256 metaslab_group_activate(mg); 5257 return (spa_vdev_exit(spa, NULL, txg, error)); 5258 } 5259 5260 /* 5261 * Clean up the vdev namespace. 5262 */ 5263 spa_vdev_remove_from_namespace(spa, vd); 5264 5265 } else if (vd != NULL) { 5266 /* 5267 * Normal vdevs cannot be removed (yet). 5268 */ 5269 error = SET_ERROR(ENOTSUP); 5270 } else { 5271 /* 5272 * There is no vdev of any kind with the specified guid. 5273 */ 5274 error = SET_ERROR(ENOENT); 5275 } 5276 5277 if (!locked) 5278 return (spa_vdev_exit(spa, NULL, txg, error)); 5279 5280 return (error); 5281 } 5282 5283 /* 5284 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5285 * current spared, so we can detach it. 5286 */ 5287 static vdev_t * 5288 spa_vdev_resilver_done_hunt(vdev_t *vd) 5289 { 5290 vdev_t *newvd, *oldvd; 5291 5292 for (int c = 0; c < vd->vdev_children; c++) { 5293 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5294 if (oldvd != NULL) 5295 return (oldvd); 5296 } 5297 5298 /* 5299 * Check for a completed replacement. We always consider the first 5300 * vdev in the list to be the oldest vdev, and the last one to be 5301 * the newest (see spa_vdev_attach() for how that works). In 5302 * the case where the newest vdev is faulted, we will not automatically 5303 * remove it after a resilver completes. This is OK as it will require 5304 * user intervention to determine which disk the admin wishes to keep. 5305 */ 5306 if (vd->vdev_ops == &vdev_replacing_ops) { 5307 ASSERT(vd->vdev_children > 1); 5308 5309 newvd = vd->vdev_child[vd->vdev_children - 1]; 5310 oldvd = vd->vdev_child[0]; 5311 5312 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5313 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5314 !vdev_dtl_required(oldvd)) 5315 return (oldvd); 5316 } 5317 5318 /* 5319 * Check for a completed resilver with the 'unspare' flag set. 5320 */ 5321 if (vd->vdev_ops == &vdev_spare_ops) { 5322 vdev_t *first = vd->vdev_child[0]; 5323 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5324 5325 if (last->vdev_unspare) { 5326 oldvd = first; 5327 newvd = last; 5328 } else if (first->vdev_unspare) { 5329 oldvd = last; 5330 newvd = first; 5331 } else { 5332 oldvd = NULL; 5333 } 5334 5335 if (oldvd != NULL && 5336 vdev_dtl_empty(newvd, DTL_MISSING) && 5337 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5338 !vdev_dtl_required(oldvd)) 5339 return (oldvd); 5340 5341 /* 5342 * If there are more than two spares attached to a disk, 5343 * and those spares are not required, then we want to 5344 * attempt to free them up now so that they can be used 5345 * by other pools. Once we're back down to a single 5346 * disk+spare, we stop removing them. 5347 */ 5348 if (vd->vdev_children > 2) { 5349 newvd = vd->vdev_child[1]; 5350 5351 if (newvd->vdev_isspare && last->vdev_isspare && 5352 vdev_dtl_empty(last, DTL_MISSING) && 5353 vdev_dtl_empty(last, DTL_OUTAGE) && 5354 !vdev_dtl_required(newvd)) 5355 return (newvd); 5356 } 5357 } 5358 5359 return (NULL); 5360 } 5361 5362 static void 5363 spa_vdev_resilver_done(spa_t *spa) 5364 { 5365 vdev_t *vd, *pvd, *ppvd; 5366 uint64_t guid, sguid, pguid, ppguid; 5367 5368 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5369 5370 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5371 pvd = vd->vdev_parent; 5372 ppvd = pvd->vdev_parent; 5373 guid = vd->vdev_guid; 5374 pguid = pvd->vdev_guid; 5375 ppguid = ppvd->vdev_guid; 5376 sguid = 0; 5377 /* 5378 * If we have just finished replacing a hot spared device, then 5379 * we need to detach the parent's first child (the original hot 5380 * spare) as well. 5381 */ 5382 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5383 ppvd->vdev_children == 2) { 5384 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5385 sguid = ppvd->vdev_child[1]->vdev_guid; 5386 } 5387 spa_config_exit(spa, SCL_ALL, FTAG); 5388 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5389 return; 5390 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5391 return; 5392 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5393 } 5394 5395 spa_config_exit(spa, SCL_ALL, FTAG); 5396 } 5397 5398 /* 5399 * Update the stored path or FRU for this vdev. 5400 */ 5401 int 5402 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5403 boolean_t ispath) 5404 { 5405 vdev_t *vd; 5406 boolean_t sync = B_FALSE; 5407 5408 ASSERT(spa_writeable(spa)); 5409 5410 spa_vdev_state_enter(spa, SCL_ALL); 5411 5412 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5413 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5414 5415 if (!vd->vdev_ops->vdev_op_leaf) 5416 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5417 5418 if (ispath) { 5419 if (strcmp(value, vd->vdev_path) != 0) { 5420 spa_strfree(vd->vdev_path); 5421 vd->vdev_path = spa_strdup(value); 5422 sync = B_TRUE; 5423 } 5424 } else { 5425 if (vd->vdev_fru == NULL) { 5426 vd->vdev_fru = spa_strdup(value); 5427 sync = B_TRUE; 5428 } else if (strcmp(value, vd->vdev_fru) != 0) { 5429 spa_strfree(vd->vdev_fru); 5430 vd->vdev_fru = spa_strdup(value); 5431 sync = B_TRUE; 5432 } 5433 } 5434 5435 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5436 } 5437 5438 int 5439 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5440 { 5441 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5442 } 5443 5444 int 5445 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5446 { 5447 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5448 } 5449 5450 /* 5451 * ========================================================================== 5452 * SPA Scanning 5453 * ========================================================================== 5454 */ 5455 5456 int 5457 spa_scan_stop(spa_t *spa) 5458 { 5459 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5460 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5461 return (SET_ERROR(EBUSY)); 5462 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5463 } 5464 5465 int 5466 spa_scan(spa_t *spa, pool_scan_func_t func) 5467 { 5468 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5469 5470 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5471 return (SET_ERROR(ENOTSUP)); 5472 5473 /* 5474 * If a resilver was requested, but there is no DTL on a 5475 * writeable leaf device, we have nothing to do. 5476 */ 5477 if (func == POOL_SCAN_RESILVER && 5478 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5479 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5480 return (0); 5481 } 5482 5483 return (dsl_scan(spa->spa_dsl_pool, func)); 5484 } 5485 5486 /* 5487 * ========================================================================== 5488 * SPA async task processing 5489 * ========================================================================== 5490 */ 5491 5492 static void 5493 spa_async_remove(spa_t *spa, vdev_t *vd) 5494 { 5495 if (vd->vdev_remove_wanted) { 5496 vd->vdev_remove_wanted = B_FALSE; 5497 vd->vdev_delayed_close = B_FALSE; 5498 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5499 5500 /* 5501 * We want to clear the stats, but we don't want to do a full 5502 * vdev_clear() as that will cause us to throw away 5503 * degraded/faulted state as well as attempt to reopen the 5504 * device, all of which is a waste. 5505 */ 5506 vd->vdev_stat.vs_read_errors = 0; 5507 vd->vdev_stat.vs_write_errors = 0; 5508 vd->vdev_stat.vs_checksum_errors = 0; 5509 5510 vdev_state_dirty(vd->vdev_top); 5511 } 5512 5513 for (int c = 0; c < vd->vdev_children; c++) 5514 spa_async_remove(spa, vd->vdev_child[c]); 5515 } 5516 5517 static void 5518 spa_async_probe(spa_t *spa, vdev_t *vd) 5519 { 5520 if (vd->vdev_probe_wanted) { 5521 vd->vdev_probe_wanted = B_FALSE; 5522 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5523 } 5524 5525 for (int c = 0; c < vd->vdev_children; c++) 5526 spa_async_probe(spa, vd->vdev_child[c]); 5527 } 5528 5529 static void 5530 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5531 { 5532 sysevent_id_t eid; 5533 nvlist_t *attr; 5534 char *physpath; 5535 5536 if (!spa->spa_autoexpand) 5537 return; 5538 5539 for (int c = 0; c < vd->vdev_children; c++) { 5540 vdev_t *cvd = vd->vdev_child[c]; 5541 spa_async_autoexpand(spa, cvd); 5542 } 5543 5544 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5545 return; 5546 5547 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5548 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5549 5550 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5551 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5552 5553 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5554 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5555 5556 nvlist_free(attr); 5557 kmem_free(physpath, MAXPATHLEN); 5558 } 5559 5560 static void 5561 spa_async_thread(spa_t *spa) 5562 { 5563 int tasks; 5564 5565 ASSERT(spa->spa_sync_on); 5566 5567 mutex_enter(&spa->spa_async_lock); 5568 tasks = spa->spa_async_tasks; 5569 spa->spa_async_tasks = 0; 5570 mutex_exit(&spa->spa_async_lock); 5571 5572 /* 5573 * See if the config needs to be updated. 5574 */ 5575 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5576 uint64_t old_space, new_space; 5577 5578 mutex_enter(&spa_namespace_lock); 5579 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5580 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5581 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5582 mutex_exit(&spa_namespace_lock); 5583 5584 /* 5585 * If the pool grew as a result of the config update, 5586 * then log an internal history event. 5587 */ 5588 if (new_space != old_space) { 5589 spa_history_log_internal(spa, "vdev online", NULL, 5590 "pool '%s' size: %llu(+%llu)", 5591 spa_name(spa), new_space, new_space - old_space); 5592 } 5593 } 5594 5595 /* 5596 * See if any devices need to be marked REMOVED. 5597 */ 5598 if (tasks & SPA_ASYNC_REMOVE) { 5599 spa_vdev_state_enter(spa, SCL_NONE); 5600 spa_async_remove(spa, spa->spa_root_vdev); 5601 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5602 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5603 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5604 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5605 (void) spa_vdev_state_exit(spa, NULL, 0); 5606 } 5607 5608 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5609 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5610 spa_async_autoexpand(spa, spa->spa_root_vdev); 5611 spa_config_exit(spa, SCL_CONFIG, FTAG); 5612 } 5613 5614 /* 5615 * See if any devices need to be probed. 5616 */ 5617 if (tasks & SPA_ASYNC_PROBE) { 5618 spa_vdev_state_enter(spa, SCL_NONE); 5619 spa_async_probe(spa, spa->spa_root_vdev); 5620 (void) spa_vdev_state_exit(spa, NULL, 0); 5621 } 5622 5623 /* 5624 * If any devices are done replacing, detach them. 5625 */ 5626 if (tasks & SPA_ASYNC_RESILVER_DONE) 5627 spa_vdev_resilver_done(spa); 5628 5629 /* 5630 * Kick off a resilver. 5631 */ 5632 if (tasks & SPA_ASYNC_RESILVER) 5633 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5634 5635 /* 5636 * Let the world know that we're done. 5637 */ 5638 mutex_enter(&spa->spa_async_lock); 5639 spa->spa_async_thread = NULL; 5640 cv_broadcast(&spa->spa_async_cv); 5641 mutex_exit(&spa->spa_async_lock); 5642 thread_exit(); 5643 } 5644 5645 void 5646 spa_async_suspend(spa_t *spa) 5647 { 5648 mutex_enter(&spa->spa_async_lock); 5649 spa->spa_async_suspended++; 5650 while (spa->spa_async_thread != NULL) 5651 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5652 mutex_exit(&spa->spa_async_lock); 5653 } 5654 5655 void 5656 spa_async_resume(spa_t *spa) 5657 { 5658 mutex_enter(&spa->spa_async_lock); 5659 ASSERT(spa->spa_async_suspended != 0); 5660 spa->spa_async_suspended--; 5661 mutex_exit(&spa->spa_async_lock); 5662 } 5663 5664 static void 5665 spa_async_dispatch(spa_t *spa) 5666 { 5667 mutex_enter(&spa->spa_async_lock); 5668 if (spa->spa_async_tasks && !spa->spa_async_suspended && 5669 spa->spa_async_thread == NULL && 5670 rootdir != NULL && !vn_is_readonly(rootdir)) 5671 spa->spa_async_thread = thread_create(NULL, 0, 5672 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5673 mutex_exit(&spa->spa_async_lock); 5674 } 5675 5676 void 5677 spa_async_request(spa_t *spa, int task) 5678 { 5679 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5680 mutex_enter(&spa->spa_async_lock); 5681 spa->spa_async_tasks |= task; 5682 mutex_exit(&spa->spa_async_lock); 5683 } 5684 5685 /* 5686 * ========================================================================== 5687 * SPA syncing routines 5688 * ========================================================================== 5689 */ 5690 5691 static int 5692 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5693 { 5694 bpobj_t *bpo = arg; 5695 bpobj_enqueue(bpo, bp, tx); 5696 return (0); 5697 } 5698 5699 static int 5700 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5701 { 5702 zio_t *zio = arg; 5703 5704 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5705 zio->io_flags)); 5706 return (0); 5707 } 5708 5709 static void 5710 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5711 { 5712 char *packed = NULL; 5713 size_t bufsize; 5714 size_t nvsize = 0; 5715 dmu_buf_t *db; 5716 5717 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5718 5719 /* 5720 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5721 * information. This avoids the dbuf_will_dirty() path and 5722 * saves us a pre-read to get data we don't actually care about. 5723 */ 5724 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5725 packed = kmem_alloc(bufsize, KM_SLEEP); 5726 5727 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5728 KM_SLEEP) == 0); 5729 bzero(packed + nvsize, bufsize - nvsize); 5730 5731 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5732 5733 kmem_free(packed, bufsize); 5734 5735 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5736 dmu_buf_will_dirty(db, tx); 5737 *(uint64_t *)db->db_data = nvsize; 5738 dmu_buf_rele(db, FTAG); 5739 } 5740 5741 static void 5742 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5743 const char *config, const char *entry) 5744 { 5745 nvlist_t *nvroot; 5746 nvlist_t **list; 5747 int i; 5748 5749 if (!sav->sav_sync) 5750 return; 5751 5752 /* 5753 * Update the MOS nvlist describing the list of available devices. 5754 * spa_validate_aux() will have already made sure this nvlist is 5755 * valid and the vdevs are labeled appropriately. 5756 */ 5757 if (sav->sav_object == 0) { 5758 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5759 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5760 sizeof (uint64_t), tx); 5761 VERIFY(zap_update(spa->spa_meta_objset, 5762 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5763 &sav->sav_object, tx) == 0); 5764 } 5765 5766 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5767 if (sav->sav_count == 0) { 5768 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5769 } else { 5770 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5771 for (i = 0; i < sav->sav_count; i++) 5772 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5773 B_FALSE, VDEV_CONFIG_L2CACHE); 5774 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5775 sav->sav_count) == 0); 5776 for (i = 0; i < sav->sav_count; i++) 5777 nvlist_free(list[i]); 5778 kmem_free(list, sav->sav_count * sizeof (void *)); 5779 } 5780 5781 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5782 nvlist_free(nvroot); 5783 5784 sav->sav_sync = B_FALSE; 5785 } 5786 5787 static void 5788 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5789 { 5790 nvlist_t *config; 5791 5792 if (list_is_empty(&spa->spa_config_dirty_list)) 5793 return; 5794 5795 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5796 5797 config = spa_config_generate(spa, spa->spa_root_vdev, 5798 dmu_tx_get_txg(tx), B_FALSE); 5799 5800 /* 5801 * If we're upgrading the spa version then make sure that 5802 * the config object gets updated with the correct version. 5803 */ 5804 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 5805 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5806 spa->spa_uberblock.ub_version); 5807 5808 spa_config_exit(spa, SCL_STATE, FTAG); 5809 5810 if (spa->spa_config_syncing) 5811 nvlist_free(spa->spa_config_syncing); 5812 spa->spa_config_syncing = config; 5813 5814 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5815 } 5816 5817 static void 5818 spa_sync_version(void *arg, dmu_tx_t *tx) 5819 { 5820 uint64_t *versionp = arg; 5821 uint64_t version = *versionp; 5822 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5823 5824 /* 5825 * Setting the version is special cased when first creating the pool. 5826 */ 5827 ASSERT(tx->tx_txg != TXG_INITIAL); 5828 5829 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5830 ASSERT(version >= spa_version(spa)); 5831 5832 spa->spa_uberblock.ub_version = version; 5833 vdev_config_dirty(spa->spa_root_vdev); 5834 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 5835 } 5836 5837 /* 5838 * Set zpool properties. 5839 */ 5840 static void 5841 spa_sync_props(void *arg, dmu_tx_t *tx) 5842 { 5843 nvlist_t *nvp = arg; 5844 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5845 objset_t *mos = spa->spa_meta_objset; 5846 nvpair_t *elem = NULL; 5847 5848 mutex_enter(&spa->spa_props_lock); 5849 5850 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5851 uint64_t intval; 5852 char *strval, *fname; 5853 zpool_prop_t prop; 5854 const char *propname; 5855 zprop_type_t proptype; 5856 zfeature_info_t *feature; 5857 5858 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5859 case ZPROP_INVAL: 5860 /* 5861 * We checked this earlier in spa_prop_validate(). 5862 */ 5863 ASSERT(zpool_prop_feature(nvpair_name(elem))); 5864 5865 fname = strchr(nvpair_name(elem), '@') + 1; 5866 VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature)); 5867 5868 spa_feature_enable(spa, feature, tx); 5869 spa_history_log_internal(spa, "set", tx, 5870 "%s=enabled", nvpair_name(elem)); 5871 break; 5872 5873 case ZPOOL_PROP_VERSION: 5874 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5875 /* 5876 * The version is synced seperatly before other 5877 * properties and should be correct by now. 5878 */ 5879 ASSERT3U(spa_version(spa), >=, intval); 5880 break; 5881 5882 case ZPOOL_PROP_ALTROOT: 5883 /* 5884 * 'altroot' is a non-persistent property. It should 5885 * have been set temporarily at creation or import time. 5886 */ 5887 ASSERT(spa->spa_root != NULL); 5888 break; 5889 5890 case ZPOOL_PROP_READONLY: 5891 case ZPOOL_PROP_CACHEFILE: 5892 /* 5893 * 'readonly' and 'cachefile' are also non-persisitent 5894 * properties. 5895 */ 5896 break; 5897 case ZPOOL_PROP_COMMENT: 5898 VERIFY(nvpair_value_string(elem, &strval) == 0); 5899 if (spa->spa_comment != NULL) 5900 spa_strfree(spa->spa_comment); 5901 spa->spa_comment = spa_strdup(strval); 5902 /* 5903 * We need to dirty the configuration on all the vdevs 5904 * so that their labels get updated. It's unnecessary 5905 * to do this for pool creation since the vdev's 5906 * configuratoin has already been dirtied. 5907 */ 5908 if (tx->tx_txg != TXG_INITIAL) 5909 vdev_config_dirty(spa->spa_root_vdev); 5910 spa_history_log_internal(spa, "set", tx, 5911 "%s=%s", nvpair_name(elem), strval); 5912 break; 5913 default: 5914 /* 5915 * Set pool property values in the poolprops mos object. 5916 */ 5917 if (spa->spa_pool_props_object == 0) { 5918 spa->spa_pool_props_object = 5919 zap_create_link(mos, DMU_OT_POOL_PROPS, 5920 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 5921 tx); 5922 } 5923 5924 /* normalize the property name */ 5925 propname = zpool_prop_to_name(prop); 5926 proptype = zpool_prop_get_type(prop); 5927 5928 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5929 ASSERT(proptype == PROP_TYPE_STRING); 5930 VERIFY(nvpair_value_string(elem, &strval) == 0); 5931 VERIFY(zap_update(mos, 5932 spa->spa_pool_props_object, propname, 5933 1, strlen(strval) + 1, strval, tx) == 0); 5934 spa_history_log_internal(spa, "set", tx, 5935 "%s=%s", nvpair_name(elem), strval); 5936 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5937 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5938 5939 if (proptype == PROP_TYPE_INDEX) { 5940 const char *unused; 5941 VERIFY(zpool_prop_index_to_string( 5942 prop, intval, &unused) == 0); 5943 } 5944 VERIFY(zap_update(mos, 5945 spa->spa_pool_props_object, propname, 5946 8, 1, &intval, tx) == 0); 5947 spa_history_log_internal(spa, "set", tx, 5948 "%s=%lld", nvpair_name(elem), intval); 5949 } else { 5950 ASSERT(0); /* not allowed */ 5951 } 5952 5953 switch (prop) { 5954 case ZPOOL_PROP_DELEGATION: 5955 spa->spa_delegation = intval; 5956 break; 5957 case ZPOOL_PROP_BOOTFS: 5958 spa->spa_bootfs = intval; 5959 break; 5960 case ZPOOL_PROP_FAILUREMODE: 5961 spa->spa_failmode = intval; 5962 break; 5963 case ZPOOL_PROP_AUTOEXPAND: 5964 spa->spa_autoexpand = intval; 5965 if (tx->tx_txg != TXG_INITIAL) 5966 spa_async_request(spa, 5967 SPA_ASYNC_AUTOEXPAND); 5968 break; 5969 case ZPOOL_PROP_DEDUPDITTO: 5970 spa->spa_dedup_ditto = intval; 5971 break; 5972 default: 5973 break; 5974 } 5975 } 5976 5977 } 5978 5979 mutex_exit(&spa->spa_props_lock); 5980 } 5981 5982 /* 5983 * Perform one-time upgrade on-disk changes. spa_version() does not 5984 * reflect the new version this txg, so there must be no changes this 5985 * txg to anything that the upgrade code depends on after it executes. 5986 * Therefore this must be called after dsl_pool_sync() does the sync 5987 * tasks. 5988 */ 5989 static void 5990 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 5991 { 5992 dsl_pool_t *dp = spa->spa_dsl_pool; 5993 5994 ASSERT(spa->spa_sync_pass == 1); 5995 5996 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 5997 5998 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 5999 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6000 dsl_pool_create_origin(dp, tx); 6001 6002 /* Keeping the origin open increases spa_minref */ 6003 spa->spa_minref += 3; 6004 } 6005 6006 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6007 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6008 dsl_pool_upgrade_clones(dp, tx); 6009 } 6010 6011 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6012 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6013 dsl_pool_upgrade_dir_clones(dp, tx); 6014 6015 /* Keeping the freedir open increases spa_minref */ 6016 spa->spa_minref += 3; 6017 } 6018 6019 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6020 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6021 spa_feature_create_zap_objects(spa, tx); 6022 } 6023 rrw_exit(&dp->dp_config_rwlock, FTAG); 6024 } 6025 6026 /* 6027 * Sync the specified transaction group. New blocks may be dirtied as 6028 * part of the process, so we iterate until it converges. 6029 */ 6030 void 6031 spa_sync(spa_t *spa, uint64_t txg) 6032 { 6033 dsl_pool_t *dp = spa->spa_dsl_pool; 6034 objset_t *mos = spa->spa_meta_objset; 6035 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj; 6036 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6037 vdev_t *rvd = spa->spa_root_vdev; 6038 vdev_t *vd; 6039 dmu_tx_t *tx; 6040 int error; 6041 6042 VERIFY(spa_writeable(spa)); 6043 6044 /* 6045 * Lock out configuration changes. 6046 */ 6047 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6048 6049 spa->spa_syncing_txg = txg; 6050 spa->spa_sync_pass = 0; 6051 6052 /* 6053 * If there are any pending vdev state changes, convert them 6054 * into config changes that go out with this transaction group. 6055 */ 6056 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6057 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6058 /* 6059 * We need the write lock here because, for aux vdevs, 6060 * calling vdev_config_dirty() modifies sav_config. 6061 * This is ugly and will become unnecessary when we 6062 * eliminate the aux vdev wart by integrating all vdevs 6063 * into the root vdev tree. 6064 */ 6065 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6066 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6067 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6068 vdev_state_clean(vd); 6069 vdev_config_dirty(vd); 6070 } 6071 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6072 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6073 } 6074 spa_config_exit(spa, SCL_STATE, FTAG); 6075 6076 tx = dmu_tx_create_assigned(dp, txg); 6077 6078 spa->spa_sync_starttime = gethrtime(); 6079 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6080 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6081 6082 /* 6083 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6084 * set spa_deflate if we have no raid-z vdevs. 6085 */ 6086 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6087 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6088 int i; 6089 6090 for (i = 0; i < rvd->vdev_children; i++) { 6091 vd = rvd->vdev_child[i]; 6092 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6093 break; 6094 } 6095 if (i == rvd->vdev_children) { 6096 spa->spa_deflate = TRUE; 6097 VERIFY(0 == zap_add(spa->spa_meta_objset, 6098 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6099 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6100 } 6101 } 6102 6103 /* 6104 * If anything has changed in this txg, or if someone is waiting 6105 * for this txg to sync (eg, spa_vdev_remove()), push the 6106 * deferred frees from the previous txg. If not, leave them 6107 * alone so that we don't generate work on an otherwise idle 6108 * system. 6109 */ 6110 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 6111 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 6112 !txg_list_empty(&dp->dp_sync_tasks, txg) || 6113 ((dsl_scan_active(dp->dp_scan) || 6114 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 6115 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6116 VERIFY3U(bpobj_iterate(defer_bpo, 6117 spa_free_sync_cb, zio, tx), ==, 0); 6118 VERIFY0(zio_wait(zio)); 6119 } 6120 6121 /* 6122 * Iterate to convergence. 6123 */ 6124 do { 6125 int pass = ++spa->spa_sync_pass; 6126 6127 spa_sync_config_object(spa, tx); 6128 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6129 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6130 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6131 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6132 spa_errlog_sync(spa, txg); 6133 dsl_pool_sync(dp, txg); 6134 6135 if (pass < zfs_sync_pass_deferred_free) { 6136 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6137 bplist_iterate(free_bpl, spa_free_sync_cb, 6138 zio, tx); 6139 VERIFY(zio_wait(zio) == 0); 6140 } else { 6141 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6142 defer_bpo, tx); 6143 } 6144 6145 ddt_sync(spa, txg); 6146 dsl_scan_sync(dp, tx); 6147 6148 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6149 vdev_sync(vd, txg); 6150 6151 if (pass == 1) 6152 spa_sync_upgrades(spa, tx); 6153 6154 } while (dmu_objset_is_dirty(mos, txg)); 6155 6156 /* 6157 * Rewrite the vdev configuration (which includes the uberblock) 6158 * to commit the transaction group. 6159 * 6160 * If there are no dirty vdevs, we sync the uberblock to a few 6161 * random top-level vdevs that are known to be visible in the 6162 * config cache (see spa_vdev_add() for a complete description). 6163 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6164 */ 6165 for (;;) { 6166 /* 6167 * We hold SCL_STATE to prevent vdev open/close/etc. 6168 * while we're attempting to write the vdev labels. 6169 */ 6170 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6171 6172 if (list_is_empty(&spa->spa_config_dirty_list)) { 6173 vdev_t *svd[SPA_DVAS_PER_BP]; 6174 int svdcount = 0; 6175 int children = rvd->vdev_children; 6176 int c0 = spa_get_random(children); 6177 6178 for (int c = 0; c < children; c++) { 6179 vd = rvd->vdev_child[(c0 + c) % children]; 6180 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6181 continue; 6182 svd[svdcount++] = vd; 6183 if (svdcount == SPA_DVAS_PER_BP) 6184 break; 6185 } 6186 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6187 if (error != 0) 6188 error = vdev_config_sync(svd, svdcount, txg, 6189 B_TRUE); 6190 } else { 6191 error = vdev_config_sync(rvd->vdev_child, 6192 rvd->vdev_children, txg, B_FALSE); 6193 if (error != 0) 6194 error = vdev_config_sync(rvd->vdev_child, 6195 rvd->vdev_children, txg, B_TRUE); 6196 } 6197 6198 if (error == 0) 6199 spa->spa_last_synced_guid = rvd->vdev_guid; 6200 6201 spa_config_exit(spa, SCL_STATE, FTAG); 6202 6203 if (error == 0) 6204 break; 6205 zio_suspend(spa, NULL); 6206 zio_resume_wait(spa); 6207 } 6208 dmu_tx_commit(tx); 6209 6210 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6211 6212 /* 6213 * Clear the dirty config list. 6214 */ 6215 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6216 vdev_config_clean(vd); 6217 6218 /* 6219 * Now that the new config has synced transactionally, 6220 * let it become visible to the config cache. 6221 */ 6222 if (spa->spa_config_syncing != NULL) { 6223 spa_config_set(spa, spa->spa_config_syncing); 6224 spa->spa_config_txg = txg; 6225 spa->spa_config_syncing = NULL; 6226 } 6227 6228 spa->spa_ubsync = spa->spa_uberblock; 6229 6230 dsl_pool_sync_done(dp, txg); 6231 6232 /* 6233 * Update usable space statistics. 6234 */ 6235 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6236 vdev_sync_done(vd, txg); 6237 6238 spa_update_dspace(spa); 6239 6240 /* 6241 * It had better be the case that we didn't dirty anything 6242 * since vdev_config_sync(). 6243 */ 6244 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6245 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6246 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6247 6248 spa->spa_sync_pass = 0; 6249 6250 spa_config_exit(spa, SCL_CONFIG, FTAG); 6251 6252 spa_handle_ignored_writes(spa); 6253 6254 /* 6255 * If any async tasks have been requested, kick them off. 6256 */ 6257 spa_async_dispatch(spa); 6258 } 6259 6260 /* 6261 * Sync all pools. We don't want to hold the namespace lock across these 6262 * operations, so we take a reference on the spa_t and drop the lock during the 6263 * sync. 6264 */ 6265 void 6266 spa_sync_allpools(void) 6267 { 6268 spa_t *spa = NULL; 6269 mutex_enter(&spa_namespace_lock); 6270 while ((spa = spa_next(spa)) != NULL) { 6271 if (spa_state(spa) != POOL_STATE_ACTIVE || 6272 !spa_writeable(spa) || spa_suspended(spa)) 6273 continue; 6274 spa_open_ref(spa, FTAG); 6275 mutex_exit(&spa_namespace_lock); 6276 txg_wait_synced(spa_get_dsl(spa), 0); 6277 mutex_enter(&spa_namespace_lock); 6278 spa_close(spa, FTAG); 6279 } 6280 mutex_exit(&spa_namespace_lock); 6281 } 6282 6283 /* 6284 * ========================================================================== 6285 * Miscellaneous routines 6286 * ========================================================================== 6287 */ 6288 6289 /* 6290 * Remove all pools in the system. 6291 */ 6292 void 6293 spa_evict_all(void) 6294 { 6295 spa_t *spa; 6296 6297 /* 6298 * Remove all cached state. All pools should be closed now, 6299 * so every spa in the AVL tree should be unreferenced. 6300 */ 6301 mutex_enter(&spa_namespace_lock); 6302 while ((spa = spa_next(NULL)) != NULL) { 6303 /* 6304 * Stop async tasks. The async thread may need to detach 6305 * a device that's been replaced, which requires grabbing 6306 * spa_namespace_lock, so we must drop it here. 6307 */ 6308 spa_open_ref(spa, FTAG); 6309 mutex_exit(&spa_namespace_lock); 6310 spa_async_suspend(spa); 6311 mutex_enter(&spa_namespace_lock); 6312 spa_close(spa, FTAG); 6313 6314 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6315 spa_unload(spa); 6316 spa_deactivate(spa); 6317 } 6318 spa_remove(spa); 6319 } 6320 mutex_exit(&spa_namespace_lock); 6321 } 6322 6323 vdev_t * 6324 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6325 { 6326 vdev_t *vd; 6327 int i; 6328 6329 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6330 return (vd); 6331 6332 if (aux) { 6333 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6334 vd = spa->spa_l2cache.sav_vdevs[i]; 6335 if (vd->vdev_guid == guid) 6336 return (vd); 6337 } 6338 6339 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6340 vd = spa->spa_spares.sav_vdevs[i]; 6341 if (vd->vdev_guid == guid) 6342 return (vd); 6343 } 6344 } 6345 6346 return (NULL); 6347 } 6348 6349 void 6350 spa_upgrade(spa_t *spa, uint64_t version) 6351 { 6352 ASSERT(spa_writeable(spa)); 6353 6354 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6355 6356 /* 6357 * This should only be called for a non-faulted pool, and since a 6358 * future version would result in an unopenable pool, this shouldn't be 6359 * possible. 6360 */ 6361 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6362 ASSERT(version >= spa->spa_uberblock.ub_version); 6363 6364 spa->spa_uberblock.ub_version = version; 6365 vdev_config_dirty(spa->spa_root_vdev); 6366 6367 spa_config_exit(spa, SCL_ALL, FTAG); 6368 6369 txg_wait_synced(spa_get_dsl(spa), 0); 6370 } 6371 6372 boolean_t 6373 spa_has_spare(spa_t *spa, uint64_t guid) 6374 { 6375 int i; 6376 uint64_t spareguid; 6377 spa_aux_vdev_t *sav = &spa->spa_spares; 6378 6379 for (i = 0; i < sav->sav_count; i++) 6380 if (sav->sav_vdevs[i]->vdev_guid == guid) 6381 return (B_TRUE); 6382 6383 for (i = 0; i < sav->sav_npending; i++) { 6384 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6385 &spareguid) == 0 && spareguid == guid) 6386 return (B_TRUE); 6387 } 6388 6389 return (B_FALSE); 6390 } 6391 6392 /* 6393 * Check if a pool has an active shared spare device. 6394 * Note: reference count of an active spare is 2, as a spare and as a replace 6395 */ 6396 static boolean_t 6397 spa_has_active_shared_spare(spa_t *spa) 6398 { 6399 int i, refcnt; 6400 uint64_t pool; 6401 spa_aux_vdev_t *sav = &spa->spa_spares; 6402 6403 for (i = 0; i < sav->sav_count; i++) { 6404 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6405 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6406 refcnt > 2) 6407 return (B_TRUE); 6408 } 6409 6410 return (B_FALSE); 6411 } 6412 6413 /* 6414 * Post a sysevent corresponding to the given event. The 'name' must be one of 6415 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6416 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6417 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6418 * or zdb as real changes. 6419 */ 6420 void 6421 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6422 { 6423 #ifdef _KERNEL 6424 sysevent_t *ev; 6425 sysevent_attr_list_t *attr = NULL; 6426 sysevent_value_t value; 6427 sysevent_id_t eid; 6428 6429 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6430 SE_SLEEP); 6431 6432 value.value_type = SE_DATA_TYPE_STRING; 6433 value.value.sv_string = spa_name(spa); 6434 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6435 goto done; 6436 6437 value.value_type = SE_DATA_TYPE_UINT64; 6438 value.value.sv_uint64 = spa_guid(spa); 6439 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6440 goto done; 6441 6442 if (vd) { 6443 value.value_type = SE_DATA_TYPE_UINT64; 6444 value.value.sv_uint64 = vd->vdev_guid; 6445 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6446 SE_SLEEP) != 0) 6447 goto done; 6448 6449 if (vd->vdev_path) { 6450 value.value_type = SE_DATA_TYPE_STRING; 6451 value.value.sv_string = vd->vdev_path; 6452 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6453 &value, SE_SLEEP) != 0) 6454 goto done; 6455 } 6456 } 6457 6458 if (sysevent_attach_attributes(ev, attr) != 0) 6459 goto done; 6460 attr = NULL; 6461 6462 (void) log_sysevent(ev, SE_SLEEP, &eid); 6463 6464 done: 6465 if (attr) 6466 sysevent_free_attr(attr); 6467 sysevent_free(ev); 6468 #endif 6469 }